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21 Abstract

22  Systems genetics holds the promise to decipher complex traits by interpreting their associated SNPs
23 through gene regulatory networks derived from comprehensive multi-omics data of cell types,
24 tissues, and organs. Here, we propose SpecVar to integrate paired chromatin accessibility and gene
25  expression data into context-specific regulatory network atlas and regulatory categories, conduct
26 heritability enrichment analysis with GWAS summary statistics, identify relevant tissues, and depict
27  shared heritability and regulations by relevance correlation. Our method improves power upon
28  existing approaches by associating SNPs with context-specific regulatory elements to assess
29  heritability enrichments and by explicitly prioritizing gene regulations underlying relevant tissues.
30  Experiments on GWAS of six phenotypes show that SpecVar can improve heritability enrichment,
31  accurately detect relevant tissues, and reveal causal regulations. Furthermore, SpecVar correlates
32  the relevance patterns for pairs of phenotypes and better reveals shared heritability and regulations
33  of phenotypes than existing methods. Studying GWAS of 206 phenotypes in UK-Biobank
34  demonstrates that SpecVar leverages the context-specific regulatory network atlas to prioritize
35  phenotypes’ relevant tissues and shared heritability for biological and therapeutic insights. SpecVar
36  provides a powerful way to interpret SNPs via context-specific regulatory networks and is available
37 at https://github.com/AMSSwanglab/SpecVar.
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40 Introduction

41  Genome-Wide Association Studies (GWAS) have gained a great success to identify thousands of
42  genetic variants significantly associated with a variety of human complex phenotypes. Interpretation
43  of those genetic variants holds the key to biological mechanism discovery and personalized
44  medicine practice. However, this task is hindered by the genetic architecture that the heritability is
45  distributed across SNPs of the whole genome with linkage disequilibrium (LD), cumulatively
46  affecting complex traits. By quantifying the contribution of true polygenic signal considering
47  linkage disequilibrium, LD Score regression (LDSC) provides a widely appreciated method to
48  estimate heritability (B. K. Bulik-Sullivan et al., 2015) and genetic correlation (B. Bulik-Sullivan
49  etal, 2015) from GWAS summary statistics.

50

51  Another obstacle to genetic variant interpretation is that SNPs contribute to phenotype through gene
52  regulatory networks in certain cellular contexts, i.e., causal tissues or cell types. Those tissues are
53  characterized by different types of epigenetic data, which give the active regions of the genome that
54  interact with transcription factors (TF) to regulate gene expression. Stratified LDSC (S-LDSC)
55  extends LDSC and can estimate the partitioned heritability enrichment in the functional categories
56  (Finucane et al., 2015). The categories can be non-specific genome annotations (such as coding,
57  UTR, promoter, and intronic regions) and context-specific regulatory regions called from chromatin
58  data of different cell types, such as DNase-I hypersensitive sites from DNase-seq data, accessible
59  peaks from ATAC-seq data, histone marker or TF binding sites from ChIP-seq data (LDSC-AAP
60  and LDSC-SAP). Using expression data, the functional categories can be alternatively constructed
61 by the 100-kb windows around the transcribed regions of specifically expressed genes (LDSC-SEG)
62  (Hilary K. Finucane et al., 2018). Essentially, these strategies summarize the high dimensional SNP
63  signals from the whole genome into partitioned heritability enrichments and successfully identify
64  relevant cellular tissues for many phenotypes (Finucane et al., 2015).

65

66  The rapid increase of multi-modal data resources, especially matched gene expression, chromatin
67  states, and TF binding sites (i.e., measured on the same sample), offers an exciting opportunity to
68  construct better functional categories for estimating heritability enrichment. One efficient way is to
69 integrate large-scale epigenomic and transcriptomic data spanning diverse human contexts to infer
70  regulatory networks (Duren et al., 2017). Those regulatory networks provide rich context-specific
71  information and usually comprise TFs, regulatory elements (REs), and target genes (TGs). Recently,
72 we developed the PECA2 model to infer regulatory network from paired expression and chromatin
73 accessibility data (Duren et al., 2017; Duren et al., 2020). The inferred regulatory networks have
74 been used to identify the master regulators in stem cell differentiation (Li et al., 2019) and to
75  interpret conserved regions for the non-model organisms (Xin et al., 2020). Non-coding genetic
76  variants can be interpreted in the regulatory networks on how they cooperatively affect complex
77  traits through gene regulation in certain tissues or cell types. For example, genetic variants in the
78  regulatory network of cranial neural crest cells are elucidated on how they affect human facial
79  morphology (Feng et al., 2021). RSS-NET utilizes gene regulatory networks of multiple contexts
80  and shows better tissue enrichment estimation by decomposing the total effect of a SNP through
81  TF-TG regulations (Zhu et al., 2021) and HiChIP RE-TG regulations (Ma et al., 2022). And the
82  phenotype-associated SNPs often function in a tissue- or cell-type-specific manner (Westra &
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83  Franke, 2014). The advances in constructing regulatory networks and interpreting genetic variants
84  with regulatory networks enlighten us to 1) assemble a more comprehensive context-specific
85  regulatory network atlas by using paired expression and accessibility data across diverse cellular
86  contexts; 2) build context-specific regulatory categories by focusing on RE’s specificity of
87  regulatory networks; 3) systematically identify enriched tissues or cell types, shared heritability (van
88  Rheenen et al., 2019), and the underlying gene regulations of phenotypes.
89
90  Specifically, we proposed SpecVar to first leverage the publicly available paired expression and
91  chromatin accessibility data in ENCODE and ROADMAP to systematically construct context-
92  specific regulatory networks of 77 human contexts, covering major cell types and germ layer
93  lineages. This atlas served as a valuable resource for genetic variants interpretation in multi-cellular
94  contexts. SpecVar then used this atlas to construct regulatory categories in the genome. The
95  heritability enrichment of GWAS was shown to be significantly improved by our context-specific
96  regulatory categories. Based on the heritability enrichment and P-value in our regulatory categories,
97  SpecVar defined the relevance score to give the context-specific representation of the GWAS. We
98  showed that, for a single phenotype, the relevance score of SpecVar could identify relevant tissues
99  more efficiently; and for multiple phenotypes, SpecVar could use relevance correlation to reveal

100  shared heritability, common relevant tissues, and underlying gene regulations. These results showed

101  that SpecVar is promising to serve as a tool for post-GWAS analysis.

102

103 Results

104 Overview of SpecVar method

105  SpecVar assembled a context-specific regulatory network atlas and built the context-specific
106  representation (relevance score and SNP-associated regulatory network) of GWAS summary
107  statistics based on heritability enrichment. Fig. 1 summarized the major steps of SpecVar to
108  construct context-specific regulatory network atlas and regulatory categories, calculate heritability
109  enrichment and SNP-associated regulatory network, and investigate interpretable relevant tissues
110  and relevance correlation.

111

112 We first reconstructed regulatory networks of M (M=77 in this paper) contexts. Each network is
113  represented by a set of relations between TF and RE and between RE and TG. The M contexts
114  included samples from all three germ layers, such as “frontal cortex” (ectoderm), “fetal thymus”
115  (mesoderm), and “body of pancreas” (endoderm), which ensured the wide coverage and system-
116 level enrichment (Fig. S1). The context-specific regulatory networks were extracted based on the
117  specificity of REs in each context’s regulatory network compared to other contexts, considering the
118  hierarchical relationship of M contexts (Methods, Table S1). The REs in the i-th context-specific
119  regulatory network were pooled to form a regulatory category C; in the genome, which restricted
120  the annotation to context-specific REs associated with active binding TFs and nearby regulated TGs
121 (Fig. 1a). Our atlas leads to M regulatory categories, Cj,C,,...,Cy of SpecVar. Given GWAS
122  summary statistics, the M regulatory categories allowed partitioned heritability enrichment analysis
123 by S-LDSC. For a phenotype, S-LDSC modeled genome-wide polygenic signal, partitioned SNPs
124 into categories with different contributions for heritability, and considered SNP’s linkage
125  disequilibrium with the following polygenic model:
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127 Fig. 1. Overview of SpecVar. (a) SpecVar constructs an atlas of context-specific regulatory networks and regulatory
128 categories. Then SpecVar represents GWAS summary statistics into relevance score and SNP-associated regulatory
129 subnetworks. (b) For a single phenotype, SpecVar can use relevance score and SNP-associated regulatory
130 subnetworks to identify and interpret relevant tissues. (c) For multiple phenotypes, based on relevance score,

131 SpecVar can reveal relevance correlation, common relevant tissues, and shared regulations.

132

133 E(x?) =NZTil(j,i)+Na+1 (1)
i

134  Here )(]2- was the marginal association of SNP j from GWAS summary statistics; N was the
135  sample size; [(j, 1) = Xec, rﬁ( was the LD score of SNP j in the i-th regulatory category C;,
136 where 1, was the correlation between SNP j and SNP k in population; a measured the
137  contribution of confounding biases; and 7; represented the heritability enrichment of SNPs in C;.
138  S-LDSC estimated the P-value p; for the heritability enrichment (Finucane et al., 2015).

139

140  We defined the relevance score (R;) of this phenotype to i-th context (Fig. 1a) as follows by
141  combining the enrichment score and statistical significance (P-value):
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142 R; =1, (—logpy) (2)

143  The relevance score (R score) provided a decision trade-off between the heritability enrichment
144 and P-value resulting from a hypothesis test. It offered a new robust means to rank and select
145  relevant tissues for a given phenotype (Xiao et al., 2014).

146

147  Meanwhile, SpecVar associated SNPs with context-specific regulatory networks for biological
148  interpretation. We defined an association score (A score) to prioritize the REs by combining its
149  regulatory strength and association significance with the phenotype (averaged —logP of SNPs
150  located near the RE and down-weighted by their LD scores and distance to this RE). We extracted
151  the REs with significant A scores (P < 0.05), as well as their directly linked upstream TFs,
152  downstream TGs, and associated SNPs, to form the SNP-associated regulatory subnetwork (Fig. 1a,
153  Methods). Given GWAS summary statistics of a phenotype, SpecVar obtained M SNP-associated
154 regulatory subnetworks, G;, G5, ..., Gy, allowing to interpret relevant tissues by SNP’s regulation
155  mechanism.

156

157  The relevance score to diverse human contexts and SNP-associated regulatory networks allowed
158  SpecVar to perform post-GWAS analysis. For a single phenotype, the R scores indicated the
159  relevance of this phenotype to M contexts, which could be used to identify relevant tissues. Then in
160 the relevant tissues, we could investigate the SNP-associated regulatory subnetwork to interpret the
161  relevance (Fig. 1b, Methods). For multiple phenotypes, we could correlate the R score vectors in
162  multiple contexts to define relevance correlation (Hilary K. Finucane et al., 2018). The relevance
163  correlation might give insights into the association of phenotypes since SpecVar could further
164  interpret the relevance correlation between two phenotypes by common relevant tissues and the
165  overlapped SNP-associated regulatory subnetwork in common relevant tissues (Fig. 1¢, Methods).
166

167 Context-specific regulatory networks improve heritability enrichment

168  We first designed experiments to show that the context-specific regulatory networks could improve
169  heritability enrichment. We collected GWAS summary statistics of six phenotypes, including two
170  lipid phenotypes (Willer et al., 2013): low-density lipoprotein (LDL) and total cholesterol (TC); two
171  human intelligential phenotypes (Lee et al., 2018): educational attainment (EA) and cognitive
172  performance (CP); and two craniofacial bone phenotypes: brain shape (Naqvi et al., 2021)
173  (BrainShape) and facial landmark point distances (Xiong et al., 2019) (Face). We used these six
174  phenotypes as a benchmark since their relevant tissues have been studied and partially known: lipid
175  phenotypes are associated with the liver for its key role in lipid metabolism (Nguyen et al., 2008);
176  human intelligential phenotypes are associated with brain tissues (Goriounova & Mansvelder, 2019);
177  Face and BrainShape had shared heritability in cranial neural crest cells (CNCC) (Naqvi et al., 2021).
178  We compared our context-specific regulatory networks with four alternative methods of functional
179  categories: all regulatory elements (ARE), all accessible peaks (AAP), specifically accessible peaks
180 (SAP) (Finucane et al., 2015), and specifically expressed genes (Hilary K. Finucane et al., 2018)
181  (SEG) (Methods).

182

183
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185 Fig. 2. (a) The heritability enrichment of LDL in the “right lobe of liver” by five regulatory categories methods. (b)
186 The heritability enrichment of TC in the “right lobe of liver” by five regulatory categories methods. (c) The five
187 brain tissues’ averaged heritability enrichment of EA by five regulatory categories methods. (d) The five brain tissues
188 averaged heritability enrichment of CP by five regulatory categories methods. (¢) The heritability enrichment of
189 BrainShape in “CNCC” by five regulatory categories methods. (f) The heritability enrichment of Face in “CNCC”
190 by five regulatory categories methods. (g) Boxplot of top 10 tissues’ heritability enrichment for each of the five
191 regulatory categories.

192

193  First, we showed that SpecVar could achieve higher heritability enrichment in the relevant tissues

s
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194  than other methods. For LDL and TC, SpecVar obtained the highest heritability in their relevant
195  tissue “right lobe of liver” than the other four methods (Fig. 2a, b). For EA and CP, they were
196  relevant to brain tissues: “frontal cortex”, “cerebellum”, “caudate nucleus”, “Ammon’s horn” and
197  “putamen”. SpecVar obtained the highest averaged heritability enrichment in these five brain tissues
198  than the other four methods (Fig. 2¢, d). For BrainShape and Face, SpecVar obtained a higher
199  heritability enrichment in their relevant context “CNCC” than the other four methods (Fig. 2e, f).
200 Second, except for the known relevant tissues, these complex traits may be relevant to other contexts.
201  So, for every method, we ranked the heritability enrichment to get the top 10 contexts and used the
202  top contexts’ heritability enrichment to compare the ability of these five methods to explain
203 heritability in certain tissues or cell types. SpecVar also showed the best performance of heritability
204  enrichment among the fiver methods (Fig. 2g). Taking BrainShape for example, SpecVar achieved
205  significantly higher heritability enrichment (averaged heritability enrichment 96.13) than LDSC-
206  ARE (26.77, P = 3.42 X 1073), LDSC-SAP (42.92, P = 1.85 X 1072), LDSC-SAP (20.34, P =
207  1.84 x 1073), and LDSC-SEG (2.25, P = 3.05 X 10~%). We found specificity could significantly
208  improve the heritability enrichment. Among the five methods in our comparison, SpecVar and
209  LDSC-SAP are categories based on the specificity of LDSC-ARE and LDSC-AAP, respectively.
210  SpecVar showed significantly higher heritability enrichment than LDSC-ARE and LDSC-SAP
211  showed significantly higher heritability enrichment than LDSC-AAP (Fig. 2g). For BrainShape,
212 SpecVar obtained averaged heritability enrichment of 96.31 of the top 10 contexts, which was
213 significantly higher than LDSC-ARE (averaged heritability enrichment 26.77, P = 3.42 x 1073);
214  LDSC-SAP obtained average heritability enrichment of 42.92, and LDSC-AAP’s averaged
215  heritability enrichment was 20.34 (P = 2.68 X 10™3). The other five phenotypes showed a similar
216  improvement (Fig. 2g).

217

218  In summary, the experiment on six phenotypes’ GWAS summary statistics proved that SpecVar
219  achieved the best performance in explaining the heritability of phenotypes. This demonstrated the
220  power of integrating expression and chromatin accessibility data and considering contexts’
221 specificity.

222

223 SpecVar can accurately reveal relevant tissues for phenotypes

224 After establishing that SpecVar could use the context-specific regulatory networks to improve
225  heritability enrichment, we next showed that for given phenotype, SpecVar could use R scores
226  identify relevant tissues more accurately than other methods of functional categories. In this
227  experiment, we also used the above six phenotypes with their known relevant tissues as a benchmark
228  and compared SpecVar to the other two specificity-based methods: LDSC-SAP and LDSC-SEG
229 (Methods).

) . Significant SNP . . .
Trait Sample size SpecVar identified relevant tissues
number

LDL 173,082 3,077 Right lobe of liver
TC 187,365 4,169 Right lobe of liver, Fetal adrenal gland
EA 1070,751 30,519 Frontal cortex, Ammon’s horn, Adrenal gland
CP 257,841 13,732 Frontal cortex, Ammon’s horn

BrainShape 19,644 38,630 CNCC, Trophoblast cultured cells
Face 10,115 495 CNCC, Fibroblast
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230 Table 1. The total sample size, number of significant SNPs, and SpecVar identified relevant tissues of six phenotypes.
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232 Fig. 3. The top 5 relevant tissues ranked by the relevant score of SpecVar, LDSC-SAP, and LDSC-SEG for (a) LDL,
233 (b) TC, (c) EA, (d) CP, (e) BrainShape, and (f) Face. Compared to LDSC-SAP and LDSC-SEG, SpecVar identified
234 relevant tissue more accurately and stably.

235

236  For two lipid phenotypes, SpecVar revealed that both LDL and TC were most significantly relevant
237  to the “right lobe of liver” (Fig. 3a, b, Table 1), which was consistent with the existing reports that
238  the liver plays a central role in lipid metabolism, serving as the center for lipoprotein uptake,
239 formation, and export to the circulation (Jha et al., 2018; Nguyen et al., 2008). SpecVar found TC
240  was significantly relevant to the “fetal adrenal gland” and the adrenal cortex has been revealed to
241  play an important role in lipid mentalism (Boyd et al., 1983). However, LDSC-SAP and LDSC-
242  SEG failed to prioritize liver tissue as the significant relevant tissue. For LDL, LDSC-SAP identified
243 the “frontal cortex” to be the most relevant tissue. LDSC-SEG identified the most relevant tissue to
244 be “HepG2”, which was human hepatoma cell lines, but the relevance score was not significant (Fig.
245 3a, Table S2). For TC, LDSC-SAP identified the “fetal adrenal gland” and LDSC-SEG obtained
246 “HepG2” with an insignificant relevance score (Figure 3b, Table S2).

247
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248  For two human intelligential phenotypes, SpecVar prioritized the “frontal cortex” to be the most
249  relevant tissue for both EA and CP (Fig. 3¢, d, Table 1). “Frontal cortex” is the cerebral cortex
250  covering the front part of the frontal lobe and is implicated in planning complex cognitive behavior,
251 personality expression, decision making, and moderating social behavior (Gabrieli et al., 1998;

L INT3

252 Yang & Raine, 2009). There were five tissues (“frontal cortex”, “Ammon's horn”, “cerebellum”,
253  “putamen”, “caudate nucleus”) from the brain in our atlas and they were significantly higher ranked
254 by SpecVar’s relevance score than non-brain tissues for EA (Wilcoxon Rank-Sum test, P =
255  6.07 X 1077, Fig. 3c) and CP (P = 8.00 x 10~°, Fig. 3d). In comparison, for EA, LDSC-SAP
256  prioritized brain tissues to be higher ranked than non-brain tissues, but with a less significant P-
257  value (P = 2.28 X 1073, Fig. 3¢, Table S2). LDSC-SEG could not rank brain tissues to be higher
258 than non-brain tissues (P = 0.64, Fig. 3¢, Table S2). For CP, LDSC-SAP failed to rank brain tissues
259 as the most relevant tissues (P = 0.06, Fig. 3d, Table S2), and LDSC-SEG identified brain tissues
260  to be more relevant than non-brain tissues but with a less significant P-value (P = 3.18 x 1073,
261  Fig. 3d, Table S2).

262

263  For both Face and BrainShape, SpecVar identified cranial neural crest cell (CNCC) as the most
264 relevant context (Fig. 3e, f, Table 1). CNCC is a migratory cell population in early human
265  craniofacial development that gives rise to the peripheral nervous system and many non-neural
266 tissues such as smooth muscle cells, pigment cells of the skin, and craniofacial bones, which make
267 it much more related to facial morphology and brain shape than the other 76 contexts (Cordero et
268 al., 2011; "Neural crest makes a face," 2008). Face morphology and brain shape were also revealed
269  to share heritability in CNCC (Naqvi et al., 2021). But the other two methods failed to identify
270  CNCC as the most relevant context. For BrainShape, LDSC-SAP identified “H1-hESC” and LDSC-
271  SEG identified “tibial nerve” to be the most relevant tissue (Fig. 3e, Table S2). For Face, LDSC-
272  SAP and LDSC-SEG identified “foreskin” and “sigmoid colon” to be the most relevant tissues,
273 respectively (Fig. 3f, Table S2).

274

275  After identifying the relevant tissues, SpecVar could further interpret the relevance by extracting
276  SNP-associated regulatory subnetwork (Methods). For example, we obtained BrainShape’s SNP-
277  associated regulatory subnetwork in CNCC (Fig. 4a). There were 62 SNPs associated with 24 REs,
278 73 TFs, and 52 TGs. The TGs were tightly involved with brain development. For example, POU3F3
279  is a well-known transcription factor involved in the development of the central nervous system and
280 s related to many neurodevelopmental disorders (Blok et al., 2019). EMX2 is expressed in the
281  developing cerebral cortex and involved in the patterning of the rostral brain (Cecchi & Boncinelli,
282  2000). FOXC?2 is a member of the FOX family, which were modular competency factors for facial
283  cartilage (Xu et al., 2018), and its mutation is linked to the cleft palate (Bahuau et al., 2002). By
284  GWAS study, FOXC2 was previously found to be associated with brain shape by its nearest
285  significant SNP “16:86714715” (Naqvi et al., 2021). However, in CNCC, we did not find any
286 accessible peaks that overlapped with this SNP. Instead, we found a CNCC-specific RE that
287  regulated FOXC?2 in a locus of the 650k downstream. GWAS revealed the SNPs in this region had
288  astrong association with brain shape and had high LD with each other (Fig. 4b). Our CNCC-specific
289  regulations further prioritized only two SNPs (“16:87237097”, “16:87236947”) located in this
290  CNCC-specific RE, which may influence the expression of FOXC2 and the brain shape phenotypes.
291  This example showed the power of SpecVar to interpret the genetic variants’ association to
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292  phenotypes with detailed regulatory networks in relevant tissues.

293

294  In summary, we evaluated SpecVar’s ability to identify relevant tissues using six well-studied
295  phenotypes as the gold standard by comparison with the functional categories of LDSC-SAP and
296  LDSC-SEG. The results showed that SpecVar could identify relevant tissues more accurately and
297  stably and meanwhile provide detailed regulations to interpret the relevance to tissues.

298
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300 Fig 4. (a) The BrainShape’s SNP-associated regulatory subnetwork in CNCC. The dash arrows indicate significant
301 SNPs that are not located in RE but near this RE. (b) SNP associated regulation of FOXC2. There is a group of
302 significant SNPs of BrainShape that is located in the 650k downstream of FOXC?2 and they are with high linkage
303 disequilibrium. SpecVar prioritizes SNPs located in a CNCC-specific RE as causal genetic variants affecting brain
304 shape through regulation of FOXC2.

305

306  SpecVar reveals the association of multiple phenotypes by relevance correlation

307  SpecVar’s accurate and robust relevance to tissues enlightens us to define the relevance correlation
308  of'two phenotypes by Spearman correlation of their R scores (Methods). The relevance correlation

309  might approximate phenotypic correlation since if two phenotypes are correlated, their relevance to
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310  human contexts will also be correlated. We used two GWAS datasets with phenotypic correlation
311  computed from individual phenotypic data as the gold standard and compared SpecVar to two other
312  methods LDSC-SAP and LDSC-SEG.

313

314  The first dataset was GWAS of 78 distances on the human face (Xiong et al., 2019). Based on
315  summary statistics, we computed the relevance correlation of 3,003 pairs of distances with SpecVar,
316  LDSC-SAP, and LDSC-SEG. We compared the relevance correlation with phenotypic correlation
317  from individual phenotypic data and computed the Pearson coefficient correlation (PCC, Methods)
318  to evaluate the performance of these three methods. SpecVar’s relevance correlation showed the
319  best performance in approximating phenotypic correlation (Fig. 5a, b, PCC=0.522), which
320  outperformed the other three methods: LDSC-SAP PCC=0.467 (Fig. 5b), LDSC-SEG PCC=0.405
321  (Fig. 5b). We also evaluated the ability to approximate the phenotypic correlation of highly
322  correlated phenotypes. By setting the threshold of phenotypic correlation to be 0.4, we obtained the
323 363 highly correlated phenotype pairs of facial landmark distances and compared the three methods
324  based on their performance on these pairs of phenotypes. We found SpecVar also performed best
325  with PCC 0.467, which was the largest among the three methods: LDSC-SAP PCC=0.454, LDSC-
326 SEG PCC=0.245 (Fig. 5¢). We used the mean square error as a metric to evaluate the performance
327  (Methods) and SpecVar was also the best among the three methods (Fig. S2).

328

329 The second GWAS dataset was from UK-Biobank. There were 4,313 GWAS in UK-Biobank, from
330  which we selected 206 high-quality GWAS summary statistics of 12 classes (Table S3, Methods).
331 We applied SpecVar and the other two methods to obtain the relevance correlations among these
332 206 phenotypes and used the phenotypic correlation computed from individual data as validation.
333  First, SpecVar performed best in the approximation of phenotypic correlation (PCC=0.360),
334  followed by LDSC-SAP (PCC=0.315) and LDSC-SEG (PCC=0.285) (Fig. 5d, Fig. S3a). For highly
335  correlated phenotypes, SpecVar’s relevance correlation was also closest to phenotypic correlation
336  (Fig. Se, Fig. S3b). We found that the heritability of these 206 phenotypes was quite variable. For
337  example, “100630” (Rose wine intake) had a heritability of 6.52 X 1073, and “5257 irnt” (Corneal
338  resistance factor right) had a heritability of 0.336. So, we checked if the heritability would influence
339  the quality of relevance correlation. To do this, we set different thresholds of heritability and
340  obtained a subset of phenotypes for each threshold. Then for the phenotype subset of each
341  heritability threshold, we computed the PCC between relevance correlation and phenotypic
342  correlation. For almost all the thresholds of heritability, SpecVar showed the best performance of
343  PCC (Fig. 51, Fig. S3c¢), and the smallest variance regarded heritability among these three methods
344  (Fig. S3d, e). This means that the relevance correlation of SpecVar could estimate phenotypic
345  correlation more accurately and robustly. SpecVar can interpret the relevance correlation by the
346  common relevant tissues and shared regulations of two phenotypes. For example, body mass index
347  and leg fat-free mass (right) were correlated with a phenotypic correlation of 0.697. SpecVar
348 obtained a relevance correlation of 0.602, while LDSC-SAP obtained a relevance correlation of
349  0.342 and LDSC-SEG obtained a relevance correlation of 0.437. SpecVar further revealed that these
350  two phenotypes were correlated because they were both relevant to the “frontal cortex” (Fig. 5g).
351  Body mass index has been reported to be related to frontal cortex development (Laurent et al., 2020)
352 and relevant to the reduced and thin frontal cortex (Islam et al., 2018; Shaw et al., 2018). Obesity
353 and fat accumulation are also revealed to be associated with the frontal cortex (Gluck et al., 2017,
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354  Kakoschke etal.,2019). SpecVar further extracted these two phenotypes’ SNP-associated regulatory
355  networks in the “frontal cortex” and found their SNP-associated networks were significantly
356  overlapped. The significant overlap was observed at SNP, RE, TG, and TF levels: P =
357 8.17x107% for SNPs, P =1.38%x 107%7 for REs, P = 5.96 x 1072°> for TGs, and P =
358  8.23 X 107%° for TFs (Fig. S4). The shared regulatory network was involved with body weight
359  and obesity. For example, in the brain, SH2B1 enhances leptin signaling and leptin’s anti-obesity
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361 Fig. 5. The scatter plot of true phenotypic correlation and relevance correlation by SpecVar. Each point means a pair
362 of facial distances. (b) For all phenotype pairs of facial distances, the PCC between phenotypic correlation and
363 relevance correlation of three methods. (¢) For highly correlated phenotype pairs of facial distances, the PCC
364 between phenotypic correlation and relevance correlation of three methods. (d) For all pairs of UKBB phenotypes,
365 the PCC between phenotypic correlation and relevance correlation of three methods. (e) For highly correlated pairs
366 of UKBB phenotypes, the PCC between phenotypic correlation and relevance correlation of three methods. (f) For
367 UKBB phenotype pairs with different heritability thresholds, the PCC between phenotypic correlation and relevance
368 correlation of four methods. (g) Scatter plot of R scores across 77 human contexts of body mass index and leg fat-
369  free mass (right).

370

371  action, which is associated with the regulation of energy balance, body weight, and glucose
372  metabolism (Rui, 2014).

373

374  Through the application of relevance correlation to two datasets with the gold standard of
375  phenotypic correlation, we concluded that SpecVar can use the accurate relevance score to define
376  relevance correlation, which could better estimate phenotypic correlation and could reveal shared
377  heritability with common relevant tissues and overlapped context-specific regulatory networks.
378

379

380 Discussion

381  In this paper, we introduced the context-specific regulatory network, which integrated paired gene
382  expression and chromatin accessibility data, to construct context-specific regulatory categories for
383  better interpretation of GWAS data. SpecVar was developed as a tool to interpret genetic variants of
384  GWAS summary statistics. The key message is that integrating chromatin accessibility and gene
385  expression data into context-specific regulatory networks can provide better regulatory categories
386  for heritability enrichment (Gazal et al., 2019). SpecVar is based on the popular model S-LDSC
387  (Finucane et al., 2015), which includes 52 function categories as the baseline model. In addition,
388  we showed extending the functional categories from non-context-specific regions to context-
389  specific regions could improve the heritability enrichment, which is consistent with other studies
390  based on gene expression (Hilary K. Finucane et al., 2018) and ChIP-seq (van de Geijn et al., 2020)
391  data.

392

393  SpecVar outperformed the existing methods in three points. First, SpecVar defined relevance score
394  based on both heritability enrichment and P-value. Because of the variability in the number of REs
395  in the context-specific regulatory networks (Table S4), using only heritability enrichment or P-value
396  will not give a stable estimation of the relevance of phenotype to tissues. For example, in the
397  experiment of identifying six phenotypes’ relevant tissues, heritability could select most relevant
398  tissues for LDL and TC to be the “right lobe of liver” but failed to get correct tissues for other
399  phenotypes (Fig. S5). P-value could obtain correct tissues for CP (“frontal cortex™) and BrainShape
400  (CNCC) but failed to get correct tissues for LDL, TC, EA, and Face (Fig. S6). By combining
401  heritability enrichment and P-value into R score, SpecVar could prioritize correct relevant tissues
402  for all the six phenotypes (Fig. 3). Like the R score-based relevance correlation, we could use the
403  heritability enrichment and P-value to compute relevance correlation (Fig. S7a, b). We found
404  heritability enrichment and P-value would give larger MSE (Fig. S7¢, ) and lower PCC (Fig. S7d,
405  f) than the R score, which showed that SpecVar’s R score can achieve a better approximation of
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406  phenotypic correlation. Those comparisons showed that the R score was a good metric to evaluate
407  tissue’s relevance to the phenotype. Second, SpecVar’s regulatory categories had advantages over
408  the existing functional categories to explain heritability. The context-specific regulatory networks
409  formed regulatory categories enable better heritability enrichment than other methods (Fig. 2). The
410  regulatory categories of SpecVar can be used to calculate R scores to identify relevant tissues more
411  accurately than other methods (Fig. 3). And the R score of SpecVar can also be used to compute
412  relevance correlation to better approximate phenotypic correlation than other methods when we do
413  not have comprehensive phenotype measurement in each individual (Fig. 5). Third, with the
414  constructed context-specific regulatory network atlas, SpecVar could further interpret the relevant
415  tissue by SNP-associated regulatory networks (Fig. 4) and interpret relevance correlation by
416  common relevant tissues and shared SNP-associated regulations in relevant tissues (Fig. 5g, Fig.
417 S4). These three aspects made SpecVar an interpretable tool for heritability enrichment, identifying
418  relevant tissues, and accessing associations of phenotypes.

419

420  Based on the accurate and highly interpretable relevant tissue identification, the relevance
421  correlation of SpecVar provides us with another perspective of associations between two phenotypes:
422  if two phenotypes are correlated, their relevance to human contexts will also be correlated. This
423  rationale is independent of genetic correlation, which is the proportion of variance that two
424  phenotypes share due to genetic causes and can be estimated with GWAS summary statistics by
425  LDSC-GC (B. Bulik-Sullivan et al., 2015). When using measured phenotype value correlation as
426  the gold standard of phenotype correlation, we found that SpecVar performed better when the
427  heritability of phenotype was low while LDSC-GC performed better when the heritability was high
428  (Fig. S8a, b). This indicated that the integration of relevance correlation and genetic correlation
429  might give a better estimation of phenotypic correlation. We validated this idea by regressing
430  phenotypic correlation on relevance correlation and genetic correlation in two GWAS datasets. For
431  the phenotypes of facial distances, if we only use relevance correlation to regress phenotypic
432  correlation, the coefficient of determination (R square) was 0.2720; if we only used genetic
433 correlation, the R square was 0.0002; if we used the linear combination of relevance correlation and
434  genetic correlation to regress phenotypic correlation, the R square was 0.2765, which was
435  significantly higher than that only with SpecVar (F test of R square increase, P < 1.77 X 1075) or
436  only with LDSC-GC (P < 5.27 X 107213); and if we used a product (non-linear combination) of
437  relevance correlation and genetic correlation, the R square was much higher: 0.2911 (Fig. S8c, d).
438  And for 206 phenotypes of UK-BioBank, if we only used relevance correlation, the R square was
439  0.1289; if we only used genetic correlation, the R square was 0.5614; if we used the linear
440  combination of relevance correlation and genetic correlation to regress phenotypic correlation, the
441 R square was 0.5927, which was significantly higher than that only with SpecVar (P <
442 2.20 x 107®) or only with LDSC-GC (P < 2.20 x 107°); and if we used a product of relevance
443  correlation and genetic correlation, the R square was 0.7375, which was much improved (Fig. S8e,
444 f). These results showed that relevance correlation and genetic correlation revealed the association
445  of phenotypes in a complementary way.

446

447  Our work can be improved in several aspects. The usage of context-specific regulatory networks
448  contributed most to the improvement of SpecVar. But the context-specific regulatory networks can
449  only cover part of the regulatory elements and genetic variants, which are highly essential and
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450  representative. Higher-quality and more comprehensive regulatory networks will help obtain better
451  representation. Currently, we built the atlas of regulatory networks of 77 human contexts and only
452  included CNCC in the early developmental stage, which was far from complete. We expect more
453  developmental stages will be included with multi-omics data from ENCODE (Consortium et al.,
454 2020) and GTEx (Consortium, 2020). On the other hand, the 77 human contexts were tissues and
455  cell lines. Single-cell-omics data (Han et al., 2020) will provide cell type level resolution and allows
456  the extension of SpecVar to include broader cell types. The higher-quality and more comprehensive
457  data will help SpecVar to construct better regulatory categories and improve interpretation. Lastly,
458 it will be useful to extend the current approach using a model based on individual Whole Genome
459  Sequencing data (Li et al., 2020).

460

461  Methods

462  Regulatory network inference with paired expression and chromatin accessibility data by
463  PECA2

464  The regulatory networks were inferred by the PECA2 (Duren et al., 2020) model with paired
465  expression and chromatin accessibility data. First, we collected paired expression and chromatin
466  accessibility data of 76 human tissue or cell lines from ENCODE and ROADMARP (Table S1). Then
467  with paired expression and accessibility data of each context, PECA2 calculated two scores. One
468  was the trans-regulatory score. Specifically, PECA2 hypothesized that TF regulated the downstream
469  TGby binding at REs. The trans-regulatory score was calculated by integrating multiple REs bound
470 by a TF to regulate TG to quantify the regulatory strength of this TF on the TG. And PECA?2 also
471 considered a prior TF-TG correlation across external public data from ENCODE database. In detail,
472 the TRS score TRS;; of i-th TF and j-th TG was quantified as

473 TRSU = (Z BiROkaj) X 2|Rij| X ’TFLTG] (3)
k

474 Here TF; and TG; were the expressions of the i-th TF and j-th TG. By, was the motif binding
475  strength of i-th TF on k-th RE, which was defined as the sum of the binding strength of all the
476  binding sites of i-th TF on k-th RE. Oy was the measure of accessibility for k-th RE. [
477  represented the interaction strength between k-th RE and j-th TG, which was learned from the
478  PECA model on diverse ENCODE cellular contexts (Duren et al., 2017; Duren et al., 2018). R;;
479  was the expression correlation of i-th TF and j-th TG across diverse ENCODE samples. The
480  significance of the TRS score was obtained by a background of randomly selected TF-TG pairs and
481  the threshold of the TRS score was decided by controlling the false discovery rate (FDR) at 0.001.
482

483  The other one was the cis-regulatory score to measure the regulatory strength of RE on a TG. The
484 cis-regulatory score CRSy; of k-th RE on j-th TG was quantified as

485 CRSk] = (Z BlkTRSl]) X Ik] X Ok (4—)
i
486  We approximated the distribution of logz(l + CRS;, j) by a normal distribution and predicted RE-

487 TG associations by selecting the RE-TG pairs that have P-value<0.05.
488
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489  The output of PECA2 was a regulatory network with TFs, REs, and TGs as nodes and the regulations
490  among them as edges. This procedure was applied to 76 human contexts with paired expression and
491  chromatin accessibility data and obtained 76 regulatory networks. We noted that the regulatory
492  network of early development stage CNCC was reconstructed recently (Feng et al., 2021) and we
493  included the regulatory network of CNCC to form our regulatory network atlas of 77 human
494 contexts.

495

496  Construction of context-specific regulatory network atlas

497  The context-specific regulatory network was obtained based on the specificity of REs. In detail, we
498  had 77 regulatory networks, and each regulatory network had a set of REs RE;,1 < i < 77. Firstly,
499  we hierarchically clustered 77 contexts’ the regulatory networks into 36 groups by trans-regulatory
500  score (Table S1). Then for a given context, a RE was defined as a context-specific RE if it was not
501  overlapped with REs of other contexts. Formally, the context-specific RE set of i-th context C;
502  was defined as

503 C; = {RE; € RE;|RE;, & RE;,j + i} (5)
504  Here RE; ¢ RE; means RE; was notoverlapped with any REs in RE;:
505 REy ¢ RE; & RE; is not overlapped with any REj; in RE; (6)

506  And we defined “overlapped” 1) for REs from contexts of the different groups, two REs were
507  overlapped if their overlapping base ratio were over 50%; 2) for REs from contexts of the same
508  group, two REs were overlapped if their overlapping base ratio were over 60%. The reason we used
509  different “overlapped” criteria for REs from the same group and different groups was to retain
510  group-specific REs. For example, for the brain tissues, we had five cell types: “Ammon’s horn”,
511  “caudate nucleus”, “cerebellum”, “frontal cortex”, and “putamen”. If we defined RE’s specificity
512  with stringent condition among these five brain cell types, many common brain REs would be lost.
513

514  Finally, the context-specific regulatory network was formed by specific REs and their directly linked
515  upstream TFs and downstream TGs. And the context-specific RE sets C;, 1 <i <77 gave the
516  regulatory categories of SpecVar.

517

518  Heritability enrichment and R score of GWAS summary statistics by SpecVar

519  SpecVar used stratified LDSC (Finucane et al., 2015) to compute partitioning heritability
520  enrichment. Under the linear additive model, S-LDSC models the causal SNP effect on phenotype

521 as drawn from a distribution with mean zero and variance

522 Var(ﬁj) = Z_Til{jeci} (7)

523  And with the assumption that the LD of a category that is enriched for heritability will increase the
524  x? statistic of a SNP more than the LD of a category that does not contribute to heritability, the
525  expected y? statistic is modeled as follows:

526 E(r) =N ) wl(,d + Na+1 (8)
i

527  where N is the sample size, C; denotes the regulatory category formed by the i-th context-
528  specific regulatory network, )(]2- is the marginal association of SNP j from GWAS summary
529  statistics, [(j, i) = Ykeg, rﬁ( is the LD score of SNP j in the i-th category, a measures the

530  contribution of confounding biases and 7; represents heritability enrichment of SNPs in C;. S-
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531  LDSC estimates standard errors with a block jackknife and uses these standard errors to calculate
532  the P-value p; for the heritability enrichment (Finucane et al., 2015).

533

534  To make a trade-off between heritability enrichment score and P-value resulting from a hypothesis
535  test, we combined heritability enrichment and statistical significance (P-value) to define the
536  relevance score (R;) of this phenotype to i-th context as follows:

537 R; =1, (—logpy) 9)

538  The relevance score (R score) offered a new robust means to rank and select relevant tissue for a
539  given phenotype (Xiao et al., 2014) (Fig. S5-7).

540

541  Four alternative methods to construct representations of GWAS summary statistics

542  Based on expression and chromatin accessibility data, there were four alternative methods for
543  constructing regulatory categories: All Accessible Peaks (AAP), Specifically Accessible Peaks
544 (SAP), Specifically Expressed Genes (SEG), and All Regulatory Elements (ARE).

545

546 ~ The AAP method used all the chromatin accessible peaks of each context to form a genome
547  functional category, which was used for partitioned heritability enrichment analysis. The SAP
548  method used the same rules of SpecVar above to obtain context-specifically accessible peaks of
549  each context, and the context-specific peaks sets of M contexts formed functional categories of SAP.
550  The SEG method was constructed by following the procedure in (H. K. Finucane et al., 2018). First,
551 the t-statistics for differential expression of each gene in each of the M contexts were calculated.
552  Then for each context, the top 10% genes ranked by t-statistic were selected, and the 100Kb
553  windows around those top 10% genes were used to form a functional category. For the ARE method,
554  we obtained all REs in the regulatory network of a context to be a functional category, and the RE
555  sets of M contexts formed regulatory categories of ARE.

556

557  We could conclude the relationship between the five methods: SpecVar, SAP, and SEG were
558  methods based on specificity; SpecVar and SAP were based on the specificity of ARE and AAP,
559  respectively. SpecVar and ARE used the expression and chromatin accessibility simultaneously;
560  SAP and AAP only used the chromatin accessibility data; and SEG only used the gene expression
561  data.

562

563  After obtaining functional categories with these four alternate methods, we could also use S-LDSC
564  to obtain heritability enrichment and define the R score representation of GWAS summary
565  statistics with equations (8) and (9). We called them LDSC-AAP, LDSC-SAP, LDSC-SEG, and
566  LDSC-ARE, respectively. We compared these four alternate methods with SpecVar.

567

568  Relevant tissue identification and relevance correlation analysis by SpecVar

569  SpecVar identified relevant tissues and defined relevance correlation based on R scores. The R
570  scores to M contexts could be aggregated into a context-specific vector representation of GWAS
571  summary statistics:

572 R = (Ry, Ry, -+, Ryy) (10)
573  For a single phenotype, the R scores to M contexts could be used to get the relevant tissues. We
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574  used six phenotypes to analyze the distribution of R scores and found that the R scores followed

575 a Gaussian distribution (Fig. S9). We approximated the distribution of R to be Gaussian distribution

576  and used the threshold P-value<0.05 to get the relevant tissues. This gave the relevant tissues of the

577  six phenotypes (Table 1), which was consistent with prior knowledge.

578

579  For two phenotypes, such as phenotype p and phenotype q, we obtained their R score

580  representations:

581 RP = (RY,RY,--,RY)

582 R =(R!,R},,R}) (11)

583  Then the Spearman correlation of their R score representation was used to define the relevance

584  correlation:

- 6Zi[r(Rf) — r(qu)]Z (12)
M* (M? —1)

586  Here 7(RY) and 7(R}) were the ranks of i-th context by the relevance score for the two

587  phenotypes.

588

589  For two other specificity-based regulatory categories LDSC-SAP and LDSC-SEG, we also used

590 their functional categories to compute heritability enrichment and P-value and defined the R score

591  with equation (7-9). The R scores of LDSC-SAP and LDSC-SEG were used to obtain relevant

592  tissues and relevance correlation.

593

594  Evaluation of relevant tissue identification and relevance correlation

585 pg = p(Rp’Rq) =1

595  To evaluate the performance of the SpecVar and other methods, we used different datasets as the
596  gold standard.

597

598  For the application to identify relevant tissues, we used six well-studied phenotypes that we had
599  knowledge of the relevant tissues: two lipid phenotypes (LDL and TC) were relevant to the liver;
600  two human intelligential phenotypes (EA and CP) were relevant to the brain; two craniofacial bone
601  phenotypes (Face and BrainShape) were relevant to CNCC. We used different methods to identify
602  relevant tissues of these six phenotypes and checked if they obtained the correct tissues.

603

604  For relevance correlation, we used the phenotypic correlation computed with individual phenotypic
605  data as the gold standard. First, we computed the Pearson correlation coefficient (PCC) between
606  relevance correlation and phenotypic correlation:

Zi,jEP(pij _ﬁij)(pl{j _ﬁl{j) (13)
= 2 ! =~/ 2
\/Zi,jEP(pij - pij) Zi,jEP(pij — DPij
608  Here P was the set of phenotypes, and N was the number of phenotype pairs; p;; was the

PCC =

607

609  phenotypic correlation computed with individual phenotypic data, and p;; was the relevance
610  correlation; p;; was the average of p;;, and p; ; was the average of i - A larger PCC indicated
611  better performance in approximating phenotypic correlation.

612

613  Another metric we used was the mean square error (MSE) between relevance correlation and
614  phenotypic correlation:
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615 MSE =

)
Zi,jEP(pij - pij)

Y (14)
616 A smaller MSE indicated better performance in approximating phenotypic correlation.

617

618  Extracting SNP-associated regulatory subnetworks in relevant tissues

619  Given a phenotype’s GWAS summary statistics and a context, SpecVar identified SNPs associated
620  regulatory subnetwork by considering the following two factors: 1) the cis-regulatory score of SNP-
621  associated RE should be large enough to indicate its importance in the regulatory network; 2) the
622  risk signal of SNPs (i.e., P-value) on or near this RE should be large to indicate its association with
623  phenotype. We combined these two factors to define the association score (A score) of SNP-
624  associated REs.

625

626  First, the regulatory strength of £-th RE was measured by the maximum cis-regulatory score of this
627  RE. Formally,

628 Cx = max CRS; (15)
J

629  Here CRSy; was the cis-regulatory score of k-th RE on j-th TG. For the k-th RE, the larger Cj
630  was, the more important this RE was in the regulatory network. Second, the risk score of GWAS
631 S, for k-th RE was defined as the average of the -log(P-value) of SNPs located on or near this RE,
632  which were down-weighted by their LD scores and distances to RE:

1 _dy
633 Sk =15 Z —w;-log(p))-e % (16)

634  Here P, was the set of SNPs whose distances were less than 50Kb to the k-th RE and |P,| was
635  the total number of this SNP set; w; (the reciprocal of LD score, downloaded at
636  https://data.broadinstitute.org/alkesgroup/LDSCORE/) was the weight of the [-th SNP; p; was p-
637  value of the [-th SNP in summary statistics; dj, was the base pair distance of the /-th SNP to k-th
638 RE and d,, was a constant, which was set to be 5,000 as default. For the k-th RE, a larger value of
639 S, indicated a stronger association with the given phenotype.

640

641  Finally, we obtained the association score (A score) of k-th RE by combining these two factors:
642 A =G %Sk (17)
643  Every RE in the context-specific regulatory network was qualified by the A score. We used the
644  GWAS of six phenotypes to analyze the distribution of A scores and found that the A scores
645  followed a Gaussian distribution (Fig. S10). So, we hypothesized the distribution of A scores was

646  Gaussian distribution and we selected the REs associated with the given phenotype by A scores’
647  FDR threshold of 0.05. The prioritized REs, as well as their directly linked upstream TFs,
648  downstream TGs, and the associated SNPs, formed the SNP-associated regulatory subnetwork.
649

650

651  GWAS summary statistics of UK-Biobank

652  The GWAS summary statistics of UK-Biobank were downloaded at http://www.nealelab.is/uk-
653  biobank. There were 4,176 phenotypes and 11,372 GWAS summary statistics. We selected 206
654  GWAS summary statistics (Table S3) based on the following conditions.
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655 1.  Excluding sex-specific and “raw” type GWAS.

656 2. Sample size condition: N = 50,000 and N.ontror > Nease = 10,000 for binary and
657 categorical phenotypes.

658 3. Significant SNP number condition: the number of SNPs that pass the threshold of 5 x 1078
659 was not less than 500.

660 4. Manually curation: removing duplicated phenotypes, “job”, “parent” and “sibling” associated

661 phenotypes.

662

663  Data and code available

664  Codes and regulatory network resources are available at

665  https:/github.com/AMSSwanglab/SpecVar. Expression and chromatin accessibility data were
666  summarized in Table S1. GWAS data used: GWAS summary statistics of LDL and TC were
667 downloaded at http://csg.sph.umich.edu/willer/public/lipids2013/; GWAS summary statistics of EA
668  (GCST006442), CP (GCST006572), BrainShape (GCST90012880-GCST90013164), and Face
669 (GCST009464) were downloaded at GWAS catalog https://www.ebi.ac.uk/gwas/summary-statistics;
670  GWAS summary statistics of UK-Biobank were downloaded at http://www.nealelab.is/uk-biobank.
671  The LDSC genetic correlation and phenotypic correlation computed from individual phenotypic
672 data were downloaded at https://ukbb-rg.hail.is/.
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Figure S9: Distribution of R score of (a). LDL, (b). TC, (c). EA, (d). CP, (e). Face, (f). BrainShape.
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Figure S10: Distribution of A score of (a). LDL in “right lobe of liver”, (b). TC in “right lobe of liver”, (c). EA in “frontal cortex”,
(d). CP in “frontal cortex”, (e). BrainShape in “CNCC?”, (f). Face in “CNCC”.
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