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Abstract 21 

Systems genetics holds the promise to decipher complex traits by interpreting their associated SNPs 22 
through gene regulatory networks derived from comprehensive multi-omics data of cell types, 23 
tissues, and organs. Here, we propose SpecVar to integrate paired chromatin accessibility and gene 24 
expression data into context-specific regulatory network atlas and regulatory categories, conduct 25 
heritability enrichment analysis with GWAS summary statistics, identify relevant tissues, and depict 26 
shared heritability and regulations by relevance correlation. Our method improves power upon 27 
existing approaches by associating SNPs with context-specific regulatory elements to assess 28 
heritability enrichments and by explicitly prioritizing gene regulations underlying relevant tissues. 29 
Experiments on GWAS of six phenotypes show that SpecVar can improve heritability enrichment, 30 
accurately detect relevant tissues, and reveal causal regulations. Furthermore, SpecVar correlates 31 
the relevance patterns for pairs of phenotypes and better reveals shared heritability and regulations 32 
of phenotypes than existing methods. Studying GWAS of 206 phenotypes in UK-Biobank 33 
demonstrates that SpecVar leverages the context-specific regulatory network atlas to prioritize 34 
phenotypes’ relevant tissues and shared heritability for biological and therapeutic insights. SpecVar 35 
provides a powerful way to interpret SNPs via context-specific regulatory networks and is available 36 
at https://github.com/AMSSwanglab/SpecVar. 37 
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Introduction 40 

Genome-Wide Association Studies (GWAS) have gained a great success to identify thousands of 41 
genetic variants significantly associated with a variety of human complex phenotypes. Interpretation 42 
of those genetic variants holds the key to biological mechanism discovery and personalized 43 
medicine practice. However, this task is hindered by the genetic architecture that the heritability is 44 
distributed across SNPs of the whole genome with linkage disequilibrium (LD), cumulatively 45 
affecting complex traits. By quantifying the contribution of true polygenic signal considering 46 
linkage disequilibrium, LD Score regression (LDSC) provides a widely appreciated method to 47 
estimate heritability (B. K. Bulik-Sullivan et al., 2015) and genetic correlation (B. Bulik-Sullivan 48 
et al., 2015) from GWAS summary statistics. 49 
 50 
Another obstacle to genetic variant interpretation is that SNPs contribute to phenotype through gene 51 
regulatory networks in certain cellular contexts, i.e., causal tissues or cell types. Those tissues are 52 
characterized by different types of epigenetic data, which give the active regions of the genome that 53 
interact with transcription factors (TF) to regulate gene expression. Stratified LDSC (S-LDSC) 54 
extends LDSC and can estimate the partitioned heritability enrichment in the functional categories 55 
(Finucane et al., 2015). The categories can be non-specific genome annotations (such as coding, 56 
UTR, promoter, and intronic regions) and context-specific regulatory regions called from chromatin 57 
data of different cell types, such as DNase-I hypersensitive sites from DNase-seq data, accessible 58 
peaks from ATAC-seq data, histone marker or TF binding sites from ChIP-seq data (LDSC-AAP 59 
and LDSC-SAP). Using expression data, the functional categories can be alternatively constructed 60 
by the 100-kb windows around the transcribed regions of specifically expressed genes (LDSC-SEG) 61 
(Hilary K. Finucane et al., 2018). Essentially, these strategies summarize the high dimensional SNP 62 
signals from the whole genome into partitioned heritability enrichments and successfully identify 63 
relevant cellular tissues for many phenotypes (Finucane et al., 2015). 64 
 65 
The rapid increase of multi-modal data resources, especially matched gene expression, chromatin 66 
states, and TF binding sites (i.e., measured on the same sample), offers an exciting opportunity to 67 
construct better functional categories for estimating heritability enrichment. One efficient way is to 68 
integrate large-scale epigenomic and transcriptomic data spanning diverse human contexts to infer 69 
regulatory networks (Duren et al., 2017). Those regulatory networks provide rich context-specific 70 
information and usually comprise TFs, regulatory elements (REs), and target genes (TGs). Recently, 71 
we developed the PECA2 model to infer regulatory network from paired expression and chromatin 72 
accessibility data (Duren et al., 2017; Duren et al., 2020). The inferred regulatory networks have 73 
been used to identify the master regulators in stem cell differentiation (Li et al., 2019) and to 74 
interpret conserved regions for the non-model organisms (Xin et al., 2020). Non-coding genetic 75 
variants can be interpreted in the regulatory networks on how they cooperatively affect complex 76 
traits through gene regulation in certain tissues or cell types. For example, genetic variants in the 77 
regulatory network of cranial neural crest cells are elucidated on how they affect human facial 78 
morphology (Feng et al., 2021). RSS-NET utilizes gene regulatory networks of multiple contexts 79 
and shows better tissue enrichment estimation by decomposing the total effect of a SNP through 80 
TF-TG regulations (Zhu et al., 2021) and HiChIP RE-TG regulations (Ma et al., 2022). And the 81 
phenotype-associated SNPs often function in a tissue- or cell-type-specific manner (Westra & 82 
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Franke, 2014). The advances in constructing regulatory networks and interpreting genetic variants 83 
with regulatory networks enlighten us to 1) assemble a more comprehensive context-specific 84 
regulatory network atlas by using paired expression and accessibility data across diverse cellular 85 
contexts; 2) build context-specific regulatory categories by focusing on RE’s specificity of 86 
regulatory networks; 3) systematically identify enriched tissues or cell types, shared heritability (van 87 
Rheenen et al., 2019), and the underlying gene regulations of phenotypes. 88 
 89 
Specifically, we proposed SpecVar to first leverage the publicly available paired expression and 90 
chromatin accessibility data in ENCODE and ROADMAP to systematically construct context-91 
specific regulatory networks of 77 human contexts, covering major cell types and germ layer 92 
lineages. This atlas served as a valuable resource for genetic variants interpretation in multi-cellular 93 
contexts. SpecVar then used this atlas to construct regulatory categories in the genome. The 94 
heritability enrichment of GWAS was shown to be significantly improved by our context-specific 95 
regulatory categories. Based on the heritability enrichment and P-value in our regulatory categories, 96 
SpecVar defined the relevance score to give the context-specific representation of the GWAS. We 97 
showed that, for a single phenotype, the relevance score of SpecVar could identify relevant tissues 98 
more efficiently; and for multiple phenotypes, SpecVar could use relevance correlation to reveal 99 
shared heritability, common relevant tissues, and underlying gene regulations. These results showed 100 
that SpecVar is promising to serve as a tool for post-GWAS analysis. 101 
 102 

Results 103 

Overview of SpecVar method 104 
SpecVar assembled a context-specific regulatory network atlas and built the context-specific 105 
representation (relevance score and SNP-associated regulatory network) of GWAS summary 106 
statistics based on heritability enrichment. Fig. 1 summarized the major steps of SpecVar to 107 
construct context-specific regulatory network atlas and regulatory categories, calculate heritability 108 
enrichment and SNP-associated regulatory network, and investigate interpretable relevant tissues 109 
and relevance correlation. 110 
 111 
We first reconstructed regulatory networks of M (M=77 in this paper) contexts. Each network is 112 
represented by a set of relations between TF and RE and between RE and TG. The M contexts 113 
included samples from all three germ layers, such as “frontal cortex” (ectoderm), “fetal thymus” 114 
(mesoderm), and “body of pancreas” (endoderm), which ensured the wide coverage and system-115 
level enrichment (Fig. S1). The context-specific regulatory networks were extracted based on the 116 
specificity of REs in each context’s regulatory network compared to other contexts, considering the 117 
hierarchical relationship of M contexts (Methods, Table S1). The REs in the 𝑖-th context-specific 118 
regulatory network were pooled to form a regulatory category 𝐶#	in the genome, which restricted 119 
the annotation to context-specific REs associated with active binding TFs and nearby regulated TGs 120 
(Fig. 1a). Our atlas leads to M regulatory categories, 𝐶%, 𝐶',… , 𝐶)  of SpecVar. Given GWAS 121 
summary statistics, the M regulatory categories allowed partitioned heritability enrichment analysis 122 
by S-LDSC. For a phenotype, S-LDSC modeled genome-wide polygenic signal, partitioned SNPs 123 
into categories with different contributions for heritability, and considered SNP’s linkage 124 
disequilibrium with the following polygenic model: 125 
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 126 
Fig. 1. Overview of SpecVar. (a) SpecVar constructs an atlas of context-specific regulatory networks and regulatory 127 
categories. Then SpecVar represents GWAS summary statistics into relevance score and SNP-associated regulatory 128 
subnetworks. (b) For a single phenotype, SpecVar can use relevance score and SNP-associated regulatory 129 
subnetworks to identify and interpret relevant tissues. (c) For multiple phenotypes, based on relevance score, 130 
SpecVar can reveal relevance correlation, common relevant tissues, and shared regulations. 131 
 132 

𝐸+𝜒-'. = 𝑁1𝜏#𝑙(𝑗, 𝑖)
#

+ 𝑁𝑎 + 1 +1. 133 

Here 𝜒-'  was the marginal association of SNP 𝑗 from GWAS summary statistics; 𝑁 was the 134 
sample size;	𝑙(𝑗, 𝑖) = ∑ 𝑟-<'<∈>!  was the LD score of SNP 𝑗 in the 𝑖-th regulatory category 𝐶# , 135 
where 𝑟-<  was the correlation between SNP 𝑗  and SNP 𝑘  in population; 𝑎  measured the 136 

contribution of confounding biases; and 𝜏# represented the heritability enrichment of SNPs in 𝐶#. 137 
S-LDSC estimated the P-value 𝑝# for the heritability enrichment (Finucane et al., 2015). 138 
 139 
We defined the relevance score (𝑅# ) of this phenotype to 𝑖-th context (Fig. 1a) as follows by 140 
combining the enrichment score and statistical significance (P-value): 141 
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𝑅# = B𝜏# ∙ (− log 𝑝#) +2. 142 

The relevance score (𝑅 score) provided a decision trade-off between the heritability enrichment 143 
and P-value resulting from a hypothesis test. It offered a new robust means to rank and select 144 
relevant tissues for a given phenotype (Xiao et al., 2014). 145 
 146 
Meanwhile, SpecVar associated SNPs with context-specific regulatory networks for biological 147 
interpretation. We defined an association score (𝐴 score) to prioritize the REs by combining its 148 
regulatory strength and association significance with the phenotype (averaged −𝑙𝑜𝑔𝑃 of SNPs 149 
located near the RE and down-weighted by their LD scores and distance to this RE). We extracted 150 
the REs with significant 𝐴 scores (𝑃 ≤ 0.05), as well as their directly linked upstream TFs, 151 
downstream TGs, and associated SNPs, to form the SNP-associated regulatory subnetwork (Fig. 1a, 152 
Methods). Given GWAS summary statistics of a phenotype, SpecVar obtained M SNP-associated 153 
regulatory subnetworks, 𝐺%,𝐺',… , 𝐺), allowing to interpret relevant tissues by SNP’s regulation 154 
mechanism. 155 
 156 
The relevance score to diverse human contexts and SNP-associated regulatory networks allowed 157 
SpecVar to perform post-GWAS analysis. For a single phenotype, the 𝑅  scores indicated the 158 
relevance of this phenotype to M contexts, which could be used to identify relevant tissues. Then in 159 
the relevant tissues, we could investigate the SNP-associated regulatory subnetwork to interpret the 160 
relevance (Fig. 1b, Methods). For multiple phenotypes, we could correlate the 𝑅 score vectors in 161 
multiple contexts to define relevance correlation (Hilary K. Finucane et al., 2018). The relevance 162 
correlation might give insights into the association of phenotypes since SpecVar could further 163 
interpret the relevance correlation between two phenotypes by common relevant tissues and the 164 
overlapped SNP-associated regulatory subnetwork in common relevant tissues (Fig. 1c, Methods). 165 
 166 
Context-specific regulatory networks improve heritability enrichment 167 
We first designed experiments to show that the context-specific regulatory networks could improve 168 
heritability enrichment. We collected GWAS summary statistics of six phenotypes, including two 169 
lipid phenotypes (Willer et al., 2013): low-density lipoprotein (LDL) and total cholesterol (TC); two 170 
human intelligential phenotypes (Lee et al., 2018): educational attainment (EA) and cognitive 171 
performance (CP); and two craniofacial bone phenotypes: brain shape (Naqvi et al., 2021) 172 
(BrainShape) and facial landmark point distances (Xiong et al., 2019) (Face). We used these six 173 
phenotypes as a benchmark since their relevant tissues have been studied and partially known: lipid 174 
phenotypes are associated with the liver for its key role in lipid metabolism (Nguyen et al., 2008); 175 
human intelligential phenotypes are associated with brain tissues (Goriounova & Mansvelder, 2019); 176 
Face and BrainShape had shared heritability in cranial neural crest cells (CNCC) (Naqvi et al., 2021). 177 
We compared our context-specific regulatory networks with four alternative methods of functional 178 
categories: all regulatory elements (ARE), all accessible peaks (AAP), specifically accessible peaks 179 
(SAP) (Finucane et al., 2015), and specifically expressed genes (Hilary K. Finucane et al., 2018) 180 
(SEG) (Methods). 181 
 182 
 183 
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 184 
Fig. 2. (a) The heritability enrichment of LDL in the “right lobe of liver” by five regulatory categories methods. (b) 185 
The heritability enrichment of TC in the “right lobe of liver” by five regulatory categories methods. (c) The five 186 
brain tissues’ averaged heritability enrichment of EA by five regulatory categories methods. (d) The five brain tissues’ 187 
averaged heritability enrichment of CP by five regulatory categories methods. (e) The heritability enrichment of 188 
BrainShape in “CNCC” by five regulatory categories methods. (f) The heritability enrichment of Face in “CNCC” 189 
by five regulatory categories methods. (g) Boxplot of top 10 tissues’ heritability enrichment for each of the five 190 
regulatory categories. 191 
 192 
First, we showed that SpecVar could achieve higher heritability enrichment in the relevant tissues 193 
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than other methods. For LDL and TC, SpecVar obtained the highest heritability in their relevant 194 
tissue “right lobe of liver” than the other four methods (Fig. 2a, b). For EA and CP, they were 195 
relevant to brain tissues: “frontal cortex”, “cerebellum”, “caudate nucleus”, “Ammon’s horn” and 196 
“putamen”. SpecVar obtained the highest averaged heritability enrichment in these five brain tissues 197 
than the other four methods (Fig. 2c, d). For BrainShape and Face, SpecVar obtained a higher 198 
heritability enrichment in their relevant context “CNCC” than the other four methods (Fig. 2e, f). 199 
Second, except for the known relevant tissues, these complex traits may be relevant to other contexts. 200 
So, for every method, we ranked the heritability enrichment to get the top 10 contexts and used the 201 
top contexts’ heritability enrichment to compare the ability of these five methods to explain 202 
heritability in certain tissues or cell types. SpecVar also showed the best performance of heritability 203 
enrichment among the fiver methods (Fig. 2g). Taking BrainShape for example, SpecVar achieved 204 
significantly higher heritability enrichment (averaged heritability enrichment 96.13) than LDSC-205 
ARE (26.77, 𝑃 = 3.42 × 10UV), LDSC-SAP (42.92, 𝑃 = 1.85 × 10U'), LDSC-SAP (20.34, 𝑃 =206 
1.84 × 10UV), and LDSC-SEG (2.25, 𝑃 = 3.05 × 10UX). We found specificity could significantly 207 
improve the heritability enrichment. Among the five methods in our comparison, SpecVar and 208 
LDSC-SAP are categories based on the specificity of LDSC-ARE and LDSC-AAP, respectively. 209 
SpecVar showed significantly higher heritability enrichment than LDSC-ARE and LDSC-SAP 210 
showed significantly higher heritability enrichment than LDSC-AAP (Fig. 2g). For BrainShape, 211 
SpecVar obtained averaged heritability enrichment of 96.31 of the top 10 contexts, which was 212 
significantly higher than LDSC-ARE (averaged heritability enrichment 26.77, 𝑃 = 3.42 × 10UV); 213 
LDSC-SAP obtained average heritability enrichment of 42.92, and LDSC-AAP’s averaged 214 
heritability enrichment was 20.34 (𝑃 = 2.68 × 10UV). The other five phenotypes showed a similar 215 
improvement (Fig. 2g). 216 
 217 
In summary, the experiment on six phenotypes’ GWAS summary statistics proved that SpecVar 218 
achieved the best performance in explaining the heritability of phenotypes. This demonstrated the 219 
power of integrating expression and chromatin accessibility data and considering contexts’ 220 
specificity. 221 
 222 
SpecVar can accurately reveal relevant tissues for phenotypes 223 
After establishing that SpecVar could use the context-specific regulatory networks to improve 224 
heritability enrichment, we next showed that for given phenotype, SpecVar could use 𝑅 scores 225 
identify relevant tissues more accurately than other methods of functional categories. In this 226 
experiment, we also used the above six phenotypes with their known relevant tissues as a benchmark 227 
and compared SpecVar to the other two specificity-based methods: LDSC-SAP and LDSC-SEG 228 
(Methods). 229 

Trait Sample size 
Significant SNP 

number 
SpecVar identified relevant tissues 

LDL 173,082 3,077 Right lobe of liver 
TC 187,365 4,169 Right lobe of liver, Fetal adrenal gland 
EA 1070,751 30,519 Frontal cortex, Ammon’s horn, Adrenal gland 
CP 257,841 13,732 Frontal cortex, Ammon’s horn 

BrainShape 19,644 38,630 CNCC, Trophoblast cultured cells 
Face 10,115 495 CNCC, Fibroblast  
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Table 1. The total sample size, number of significant SNPs, and SpecVar identified relevant tissues of six phenotypes. 230 

 231 
Fig. 3. The top 5 relevant tissues ranked by the relevant score of SpecVar, LDSC-SAP, and LDSC-SEG for (a) LDL, 232 
(b) TC, (c) EA, (d) CP, (e) BrainShape, and (f) Face. Compared to LDSC-SAP and LDSC-SEG, SpecVar identified 233 
relevant tissue more accurately and stably. 234 
 235 
For two lipid phenotypes, SpecVar revealed that both LDL and TC were most significantly relevant 236 
to the “right lobe of liver” (Fig. 3a, b, Table 1), which was consistent with the existing reports that 237 
the liver plays a central role in lipid metabolism, serving as the center for lipoprotein uptake, 238 
formation, and export to the circulation (Jha et al., 2018; Nguyen et al., 2008). SpecVar found TC 239 
was significantly relevant to the “fetal adrenal gland” and the adrenal cortex has been revealed to 240 
play an important role in lipid mentalism (Boyd et al., 1983). However, LDSC-SAP and LDSC-241 
SEG failed to prioritize liver tissue as the significant relevant tissue. For LDL, LDSC-SAP identified 242 
the “frontal cortex” to be the most relevant tissue. LDSC-SEG identified the most relevant tissue to 243 
be “HepG2”, which was human hepatoma cell lines, but the relevance score was not significant (Fig. 244 
3a, Table S2). For TC, LDSC-SAP identified the “fetal adrenal gland” and LDSC-SEG obtained 245 
“HepG2” with an insignificant relevance score (Figure 3b, Table S2). 246 
 247 
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For two human intelligential phenotypes, SpecVar prioritized the “frontal cortex” to be the most 248 
relevant tissue for both EA and CP (Fig. 3c, d, Table 1). “Frontal cortex” is the cerebral cortex 249 
covering the front part of the frontal lobe and is implicated in planning complex cognitive behavior, 250 
personality expression, decision making, and moderating social behavior (Gabrieli et al., 1998; 251 
Yang & Raine, 2009). There were five tissues (“frontal cortex”, “Ammon's horn”, “cerebellum”, 252 
“putamen”, “caudate nucleus”) from the brain in our atlas and they were significantly higher ranked 253 
by SpecVar’s relevance score than non-brain tissues for EA (Wilcoxon Rank-Sum test, 𝑃 =254 
6.07 × 10U[, Fig. 3c) and CP (𝑃 = 8.00 × 10U\, Fig. 3d). In comparison, for EA, LDSC-SAP 255 
prioritized brain tissues to be higher ranked than non-brain tissues, but with a less significant P-256 
value (𝑃 = 2.28 × 10UV, Fig. 3c, Table S2). LDSC-SEG could not rank brain tissues to be higher 257 
than non-brain tissues (𝑃 = 0.64, Fig. 3c, Table S2). For CP, LDSC-SAP failed to rank brain tissues 258 
as the most relevant tissues (𝑃 = 0.06, Fig. 3d, Table S2), and LDSC-SEG identified brain tissues 259 
to be more relevant than non-brain tissues but with a less significant P-value (𝑃 = 3.18 × 10UV, 260 
Fig. 3d, Table S2). 261 
 262 
For both Face and BrainShape, SpecVar identified cranial neural crest cell (CNCC) as the most 263 
relevant context (Fig. 3e, f, Table 1). CNCC is a migratory cell population in early human 264 
craniofacial development that gives rise to the peripheral nervous system and many non-neural 265 
tissues such as smooth muscle cells, pigment cells of the skin, and craniofacial bones, which make 266 
it much more related to facial morphology and brain shape than the other 76 contexts (Cordero et 267 
al., 2011; "Neural crest makes a face," 2008). Face morphology and brain shape were also revealed 268 
to share heritability in CNCC (Naqvi et al., 2021). But the other two methods failed to identify 269 
CNCC as the most relevant context. For BrainShape, LDSC-SAP identified “H1-hESC” and LDSC-270 
SEG identified “tibial nerve” to be the most relevant tissue (Fig. 3e, Table S2). For Face, LDSC-271 
SAP and LDSC-SEG identified “foreskin” and “sigmoid colon” to be the most relevant tissues, 272 
respectively (Fig. 3f, Table S2). 273 
 274 
After identifying the relevant tissues, SpecVar could further interpret the relevance by extracting 275 
SNP-associated regulatory subnetwork (Methods). For example, we obtained BrainShape’s SNP-276 
associated regulatory subnetwork in CNCC (Fig. 4a). There were 62 SNPs associated with 24 REs, 277 
73 TFs, and 52 TGs. The TGs were tightly involved with brain development. For example, POU3F3 278 
is a well-known transcription factor involved in the development of the central nervous system and 279 
is related to many neurodevelopmental disorders (Blok et al., 2019). EMX2 is expressed in the 280 
developing cerebral cortex and involved in the patterning of the rostral brain (Cecchi & Boncinelli, 281 
2000). FOXC2 is a member of the FOX family, which were modular competency factors for facial 282 
cartilage (Xu et al., 2018), and its mutation is linked to the cleft palate (Bahuau et al., 2002). By 283 
GWAS study, FOXC2 was previously found to be associated with brain shape by its nearest 284 
significant SNP “16:86714715” (Naqvi et al., 2021). However, in CNCC, we did not find any 285 
accessible peaks that overlapped with this SNP. Instead, we found a CNCC-specific RE that 286 
regulated FOXC2 in a locus of the 650k downstream. GWAS revealed the SNPs in this region had 287 
a strong association with brain shape and had high LD with each other (Fig. 4b). Our CNCC-specific 288 
regulations further prioritized only two SNPs (“16:87237097”, “16:87236947”) located in this 289 
CNCC-specific RE, which may influence the expression of FOXC2 and the brain shape phenotypes. 290 
This example showed the power of SpecVar to interpret the genetic variants’ association to 291 
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phenotypes with detailed regulatory networks in relevant tissues. 292 
 293 
In summary, we evaluated SpecVar’s ability to identify relevant tissues using six well-studied 294 
phenotypes as the gold standard by comparison with the functional categories of LDSC-SAP and 295 
LDSC-SEG. The results showed that SpecVar could identify relevant tissues more accurately and 296 
stably and meanwhile provide detailed regulations to interpret the relevance to tissues. 297 
 298 

 299 
Fig 4. (a) The BrainShape’s SNP-associated regulatory subnetwork in CNCC. The dash arrows indicate significant 300 
SNPs that are not located in RE but near this RE. (b) SNP associated regulation of FOXC2. There is a group of 301 
significant SNPs of BrainShape that is located in the 650k downstream of FOXC2 and they are with high linkage 302 
disequilibrium. SpecVar prioritizes SNPs located in a CNCC-specific RE as causal genetic variants affecting brain 303 
shape through regulation of FOXC2. 304 
 305 
SpecVar reveals the association of multiple phenotypes by relevance correlation 306 
SpecVar’s accurate and robust relevance to tissues enlightens us to define the relevance correlation 307 
of two phenotypes by Spearman correlation of their 𝑅 scores (Methods). The relevance correlation 308 
might approximate phenotypic correlation since if two phenotypes are correlated, their relevance to 309 
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human contexts will also be correlated. We used two GWAS datasets with phenotypic correlation 310 
computed from individual phenotypic data as the gold standard and compared SpecVar to two other 311 
methods LDSC-SAP and LDSC-SEG. 312 
 313 
The first dataset was GWAS of 78 distances on the human face (Xiong et al., 2019). Based on 314 
summary statistics, we computed the relevance correlation of 3,003 pairs of distances with SpecVar, 315 
LDSC-SAP, and LDSC-SEG. We compared the relevance correlation with phenotypic correlation 316 
from individual phenotypic data and computed the Pearson coefficient correlation (PCC, Methods) 317 
to evaluate the performance of these three methods. SpecVar’s relevance correlation showed the 318 
best performance in approximating phenotypic correlation (Fig. 5a, b, PCC=0.522), which 319 
outperformed the other three methods: LDSC-SAP PCC=0.467 (Fig. 5b), LDSC-SEG PCC=0.405 320 
(Fig. 5b). We also evaluated the ability to approximate the phenotypic correlation of highly 321 
correlated phenotypes. By setting the threshold of phenotypic correlation to be 0.4, we obtained the 322 
363 highly correlated phenotype pairs of facial landmark distances and compared the three methods 323 
based on their performance on these pairs of phenotypes. We found SpecVar also performed best 324 
with PCC 0.467, which was the largest among the three methods: LDSC-SAP PCC=0.454, LDSC-325 
SEG PCC=0.245 (Fig. 5c). We used the mean square error as a metric to evaluate the performance 326 
(Methods) and SpecVar was also the best among the three methods (Fig. S2). 327 
 328 

The second GWAS dataset was from UK-Biobank. There were 4,313 GWAS in UK-Biobank, from 329 
which we selected 206 high-quality GWAS summary statistics of 12 classes (Table S3, Methods). 330 
We applied SpecVar and the other two methods to obtain the relevance correlations among these 331 
206 phenotypes and used the phenotypic correlation computed from individual data as validation. 332 
First, SpecVar performed best in the approximation of phenotypic correlation (PCC=0.360), 333 
followed by LDSC-SAP (PCC=0.315) and LDSC-SEG (PCC=0.285) (Fig. 5d, Fig. S3a). For highly 334 
correlated phenotypes, SpecVar’s relevance correlation was also closest to phenotypic correlation 335 
(Fig. 5e, Fig. S3b). We found that the heritability of these 206 phenotypes was quite variable. For 336 
example, “100630” (Rose wine intake) had a heritability of 6.52 × 10UV, and “5257_irnt” (Corneal 337 
resistance factor right) had a heritability of 0.336. So, we checked if the heritability would influence 338 
the quality of relevance correlation. To do this, we set different thresholds of heritability and 339 
obtained a subset of phenotypes for each threshold. Then for the phenotype subset of each 340 
heritability threshold, we computed the PCC between relevance correlation and phenotypic 341 
correlation. For almost all the thresholds of heritability, SpecVar showed the best performance of 342 
PCC (Fig. 5f, Fig. S3c), and the smallest variance regarded heritability among these three methods 343 
(Fig. S3d, e). This means that the relevance correlation of SpecVar could estimate phenotypic 344 
correlation more accurately and robustly. SpecVar can interpret the relevance correlation by the 345 
common relevant tissues and shared regulations of two phenotypes. For example, body mass index 346 
and leg fat-free mass (right) were correlated with a phenotypic correlation of 0.697. SpecVar 347 
obtained a relevance correlation of 0.602, while LDSC-SAP obtained a relevance correlation of 348 
0.342 and LDSC-SEG obtained a relevance correlation of 0.437. SpecVar further revealed that these 349 
two phenotypes were correlated because they were both relevant to the “frontal cortex” (Fig. 5g). 350 
Body mass index has been reported to be related to frontal cortex development (Laurent et al., 2020) 351 
and relevant to the reduced and thin frontal cortex (Islam et al., 2018; Shaw et al., 2018). Obesity 352 
and fat accumulation are also revealed to be associated with the frontal cortex (Gluck et al., 2017; 353 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2022.09.06.506769doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506769
http://creativecommons.org/licenses/by/4.0/


 12 

Kakoschke et al., 2019). SpecVar further extracted these two phenotypes’ SNP-associated regulatory 354 
networks in the “frontal cortex” and found their SNP-associated networks were significantly 355 
overlapped. The significant overlap was observed at SNP, RE, TG, and TF levels: 𝑃 =356 
8.17 × 10U\V  for SNPs, 𝑃 = 1.38 × 10UX[  for REs, 𝑃 = 5.96 × 10U'^  for TGs, and 𝑃 =357 
8.23 × 10U'^ for TFs (Fig. S4). The shared regulatory network was involved with body weight 358 
and obesity. For example, in the brain, SH2B1 enhances leptin signaling and leptin’s anti-obesity 359 

 360 
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Fig. 5. The scatter plot of true phenotypic correlation and relevance correlation by SpecVar. Each point means a pair 361 
of facial distances. (b) For all phenotype pairs of facial distances, the PCC between phenotypic correlation and 362 
relevance correlation of three methods. (c) For highly correlated phenotype pairs of facial distances, the PCC 363 
between phenotypic correlation and relevance correlation of three methods. (d) For all pairs of UKBB phenotypes, 364 
the PCC between phenotypic correlation and relevance correlation of three methods. (e) For highly correlated pairs 365 
of UKBB phenotypes, the PCC between phenotypic correlation and relevance correlation of three methods. (f) For 366 
UKBB phenotype pairs with different heritability thresholds, the PCC between phenotypic correlation and relevance 367 
correlation of four methods. (g) Scatter plot of R scores across 77 human contexts of body mass index and leg fat-368 
free mass (right). 369 
 370 
action, which is associated with the regulation of energy balance, body weight, and glucose 371 
metabolism (Rui, 2014). 372 
 373 
Through the application of relevance correlation to two datasets with the gold standard of 374 
phenotypic correlation, we concluded that SpecVar can use the accurate relevance score to define 375 
relevance correlation, which could better estimate phenotypic correlation and could reveal shared 376 
heritability with common relevant tissues and overlapped context-specific regulatory networks. 377 
 378 
 379 

Discussion 380 

In this paper, we introduced the context-specific regulatory network, which integrated paired gene 381 
expression and chromatin accessibility data, to construct context-specific regulatory categories for 382 
better interpretation of GWAS data. SpecVar was developed as a tool to interpret genetic variants of 383 
GWAS summary statistics. The key message is that integrating chromatin accessibility and gene 384 
expression data into context-specific regulatory networks can provide better regulatory categories 385 
for heritability enrichment (Gazal et al., 2019). SpecVar is based on the popular model S-LDSC 386 
(Finucane et al., 2015), which includes 52 function categories as the baseline model. In addition, 387 
we showed extending the functional categories from non-context-specific regions to context-388 
specific regions could improve the heritability enrichment, which is consistent with other studies 389 
based on gene expression (Hilary K. Finucane et al., 2018) and ChIP-seq (van de Geijn et al., 2020) 390 
data. 391 
 392 
SpecVar outperformed the existing methods in three points. First, SpecVar defined relevance score 393 
based on both heritability enrichment and P-value. Because of the variability in the number of REs 394 
in the context-specific regulatory networks (Table S4), using only heritability enrichment or P-value 395 
will not give a stable estimation of the relevance of phenotype to tissues. For example, in the 396 
experiment of identifying six phenotypes’ relevant tissues, heritability could select most relevant 397 
tissues for LDL and TC to be the “right lobe of liver” but failed to get correct tissues for other 398 
phenotypes (Fig. S5). P-value could obtain correct tissues for CP (“frontal cortex”) and BrainShape 399 
(CNCC) but failed to get correct tissues for LDL, TC, EA, and Face (Fig. S6). By combining 400 
heritability enrichment and P-value into 𝑅 score, SpecVar could prioritize correct relevant tissues 401 
for all the six phenotypes (Fig. 3). Like the R score-based relevance correlation, we could use the 402 
heritability enrichment and P-value to compute relevance correlation (Fig. S7a, b). We found 403 
heritability enrichment and P-value would give larger MSE (Fig. S7c, e) and lower PCC (Fig. S7d, 404 
f) than the R score, which showed that SpecVar’s 𝑅 score can achieve a better approximation of 405 
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phenotypic correlation. Those comparisons showed that the 𝑅 score was a good metric to evaluate 406 
tissue’s relevance to the phenotype. Second, SpecVar’s regulatory categories had advantages over 407 
the existing functional categories to explain heritability. The context-specific regulatory networks 408 
formed regulatory categories enable better heritability enrichment than other methods (Fig. 2). The 409 
regulatory categories of SpecVar can be used to calculate R scores to identify relevant tissues more 410 
accurately than other methods (Fig. 3). And the R score of SpecVar can also be used to compute 411 
relevance correlation to better approximate phenotypic correlation than other methods when we do 412 
not have comprehensive phenotype measurement in each individual (Fig. 5). Third, with the 413 
constructed context-specific regulatory network atlas, SpecVar could further interpret the relevant 414 
tissue by SNP-associated regulatory networks (Fig. 4) and interpret relevance correlation by 415 
common relevant tissues and shared SNP-associated regulations in relevant tissues (Fig. 5g, Fig. 416 
S4). These three aspects made SpecVar an interpretable tool for heritability enrichment, identifying 417 
relevant tissues, and accessing associations of phenotypes. 418 
 419 
Based on the accurate and highly interpretable relevant tissue identification, the relevance 420 
correlation of SpecVar provides us with another perspective of associations between two phenotypes: 421 
if two phenotypes are correlated, their relevance to human contexts will also be correlated. This 422 
rationale is independent of genetic correlation, which is the proportion of variance that two 423 
phenotypes share due to genetic causes and can be estimated with GWAS summary statistics by 424 
LDSC-GC (B. Bulik-Sullivan et al., 2015). When using measured phenotype value correlation as 425 
the gold standard of phenotype correlation, we found that SpecVar performed better when the 426 
heritability of phenotype was low while LDSC-GC performed better when the heritability was high 427 
(Fig. S8a, b). This indicated that the integration of relevance correlation and genetic correlation 428 
might give a better estimation of phenotypic correlation. We validated this idea by regressing 429 
phenotypic correlation on relevance correlation and genetic correlation in two GWAS datasets. For 430 
the phenotypes of facial distances, if we only use relevance correlation to regress phenotypic 431 
correlation, the coefficient of determination (R square) was 0.2720; if we only used genetic 432 
correlation, the R square was 0.0002; if we used the linear combination of relevance correlation and 433 
genetic correlation to regress phenotypic correlation, the R square was 0.2765, which was 434 
significantly higher than that only with SpecVar (F test of R square increase, 𝑃 ≤ 1.77 × 10U^) or 435 
only with LDSC-GC (𝑃 ≤ 5.27 × 10U'%V); and if we used a product (non-linear combination) of 436 
relevance correlation and genetic correlation, the R square was much higher: 0.2911 (Fig. S8c, d). 437 
And for 206 phenotypes of UK-BioBank, if we only used relevance correlation, the R square was 438 
0.1289; if we only used genetic correlation, the R square was 0.5614; if we used the linear 439 
combination of relevance correlation and genetic correlation to regress phenotypic correlation, the 440 
R square was 0.5927, which was significantly higher than that only with SpecVar ( 𝑃 ≤441 
2.20 × 10U%\) or only with LDSC-GC (𝑃 ≤ 2.20 × 10U%\); and if we used a product of relevance 442 
correlation and genetic correlation, the R square was 0.7375, which was much improved (Fig. S8e, 443 
f). These results showed that relevance correlation and genetic correlation revealed the association 444 
of phenotypes in a complementary way. 445 
 446 
Our work can be improved in several aspects. The usage of context-specific regulatory networks 447 
contributed most to the improvement of SpecVar. But the context-specific regulatory networks can 448 
only cover part of the regulatory elements and genetic variants, which are highly essential and 449 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2022.09.06.506769doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506769
http://creativecommons.org/licenses/by/4.0/


 15 

representative. Higher-quality and more comprehensive regulatory networks will help obtain better 450 
representation. Currently, we built the atlas of regulatory networks of 77 human contexts and only 451 
included CNCC in the early developmental stage, which was far from complete. We expect more 452 
developmental stages will be included with multi-omics data from ENCODE (Consortium et al., 453 
2020) and GTEx (Consortium, 2020). On the other hand, the 77 human contexts were tissues and 454 
cell lines. Single-cell-omics data (Han et al., 2020) will provide cell type level resolution and allows 455 
the extension of SpecVar to include broader cell types. The higher-quality and more comprehensive 456 
data will help SpecVar to construct better regulatory categories and improve interpretation. Lastly, 457 
it will be useful to extend the current approach using a model based on individual Whole Genome 458 
Sequencing data (Li et al., 2020). 459 
 460 

Methods 461 

Regulatory network inference with paired expression and chromatin accessibility data by 462 
PECA2 463 
The regulatory networks were inferred by the PECA2 (Duren et al., 2020) model with paired 464 
expression and chromatin accessibility data. First, we collected paired expression and chromatin 465 
accessibility data of 76 human tissue or cell lines from ENCODE and ROADMAP (Table S1). Then 466 
with paired expression and accessibility data of each context, PECA2 calculated two scores. One 467 
was the trans-regulatory score. Specifically, PECA2 hypothesized that TF regulated the downstream 468 
TG by binding at REs. The trans-regulatory score was calculated by integrating multiple REs bound 469 
by a TF to regulate TG to quantify the regulatory strength of this TF on the TG. And PECA2 also 470 
considered a prior TF-TG correlation across external public data from ENCODE database. In detail, 471 
the TRS score 𝑇𝑅𝑆#-  of 𝑖-th TF and 𝑗-th TG was quantified as 472 

𝑇𝑅𝑆#- = a1𝐵#<𝑂<𝐼<-
<

e × 2fg!"f × h𝑇𝐹#𝑇𝐺- +3. 473 

Here 𝑇𝐹# and 𝑇𝐺- were the expressions of the 𝑖-th TF and 𝑗-th TG. 𝐵#< was the motif binding 474 

strength of 𝑖-th TF on 𝑘-th RE, which was defined as the sum of the binding strength of all the 475 
binding sites of 𝑖-th TF on 𝑘-th RE. 𝑂<  was the measure of accessibility for 𝑘-th RE. 𝐼<- 476 

represented the interaction strength between 𝑘-th RE and 𝑗-th TG, which was learned from the 477 
PECA model on diverse ENCODE cellular contexts (Duren et al., 2017; Duren et al., 2018). 𝑅#-  478 

was the expression correlation of 𝑖-th TF and 𝑗-th TG across diverse ENCODE samples. The 479 
significance of the TRS score was obtained by a background of randomly selected TF-TG pairs and 480 
the threshold of the TRS score was decided by controlling the false discovery rate (FDR) at 0.001. 481 
 482 
The other one was the cis-regulatory score to measure the regulatory strength of RE on a TG. The 483 
cis-regulatory score 𝐶𝑅𝑆<-  of 𝑘-th RE on 𝑗-th TG was quantified as 484 

𝐶𝑅𝑆<- = a1𝐵#<𝑇𝑅𝑆#-
#

e × 𝐼<- × 𝑂< +4. 485 

We approximated the distribution of log'+1 + 𝐶𝑅𝑆<-. by a normal distribution and predicted RE-486 
TG associations by selecting the RE-TG pairs that have P-value≤0.05. 487 
 488 
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The output of PECA2 was a regulatory network with TFs, REs, and TGs as nodes and the regulations 489 
among them as edges. This procedure was applied to 76 human contexts with paired expression and 490 
chromatin accessibility data and obtained 76 regulatory networks. We noted that the regulatory 491 
network of early development stage CNCC was reconstructed recently (Feng et al., 2021) and we 492 
included the regulatory network of CNCC to form our regulatory network atlas of 77 human 493 
contexts. 494 
 495 
Construction of context-specific regulatory network atlas 496 
The context-specific regulatory network was obtained based on the specificity of REs. In detail, we 497 
had 77 regulatory networks, and each regulatory network had a set of REs 𝑅𝐸#, 1 ≤ 𝑖 ≤ 77. Firstly, 498 
we hierarchically clustered 77 contexts’ the regulatory networks into 36 groups by trans-regulatory 499 
score (Table S1). Then for a given context, a RE was defined as a context-specific RE if it was not 500 
overlapped with REs of other contexts. Formally, the context-specific RE set of 𝑖-th context 𝐶# 501 
was defined as 502 

𝐶# = j𝑅𝐸#< ∈ 𝑅𝐸#|𝑅𝐸#< ∉ 𝑅𝐸-, 𝑗 ≠ 𝑖n +5. 503 
Here 𝑅𝐸#< ∉ 𝑅𝐸- means 𝑅𝐸#< was not overlapped with any REs in 𝑅𝐸-: 504 

𝑅𝐸#< ∉ 𝑅𝐸- ⟺ 𝑅𝐸#<	is	not	overlapped	with	any	𝑅𝐸-}	𝑖𝑛	𝑅𝐸- +6. 505 
And we defined “overlapped” 1) for REs from contexts of the different groups, two REs were 506 
overlapped if their overlapping base ratio were over 50%; 2) for REs from contexts of the same 507 
group, two REs were overlapped if their overlapping base ratio were over 60%. The reason we used 508 
different “overlapped” criteria for REs from the same group and different groups was to retain 509 
group-specific REs. For example, for the brain tissues, we had five cell types: “Ammon’s horn”, 510 
“caudate nucleus”, “cerebellum”, “frontal cortex”, and “putamen”. If we defined RE’s specificity 511 
with stringent condition among these five brain cell types, many common brain REs would be lost. 512 
 513 
Finally, the context-specific regulatory network was formed by specific REs and their directly linked 514 
upstream TFs and downstream TGs. And the context-specific RE sets 𝐶#, 1 ≤ 𝑖 ≤ 77 gave the 515 
regulatory categories of SpecVar. 516 
 517 
Heritability enrichment and R score of GWAS summary statistics by SpecVar 518 
SpecVar used stratified LDSC (Finucane et al., 2015) to compute partitioning heritability 519 
enrichment. Under the linear additive model, S-LDSC models the causal SNP effect on phenotype 520 
as drawn from a distribution with mean zero and variance 521 

Var+𝛽-. =1 𝜏#1{-∈>!}#
+7. 522 

And with the assumption that the LD of a category that is enriched for heritability will increase the 523 
𝜒' statistic of a SNP more than the LD of a category that does not contribute to heritability, the 524 
expected 𝜒' statistic is modeled as follows: 525 

𝐸+𝜒-'. = 𝑁1𝜏#𝑙(𝑗, 𝑖)
>!

+ 𝑁𝑎 + 1 +8. 526 

where 𝑁  is the sample size, 𝐶#  denotes the regulatory category formed by the 𝑖-th context-527 
specific regulatory network, 𝜒-'  is the marginal association of SNP 𝑗  from GWAS summary 528 
statistics, 𝑙(𝑗, 𝑖) = ∑ 𝑟-<'<∈>!  is the LD score of SNP 𝑗  in the 𝑖 -th category, 𝑎  measures the 529 

contribution of confounding biases and 𝜏#  represents heritability enrichment of SNPs in 𝐶# . S-530 
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LDSC estimates standard errors with a block jackknife and uses these standard errors to calculate 531 
the P-value 𝑝# for the heritability enrichment (Finucane et al., 2015). 532 
 533 
To make a trade-off between heritability enrichment score and P-value resulting from a hypothesis 534 
test, we combined heritability enrichment and statistical significance (P-value) to define the 535 
relevance score (𝑅#) of this phenotype to 𝑖-th context as follows: 536 

𝑅# = B𝜏# ∙ (− log 𝑝#) +9. 537 

The relevance score (𝑅 score) offered a new robust means to rank and select relevant tissue for a 538 
given phenotype (Xiao et al., 2014) (Fig. S5-7). 539 
 540 
Four alternative methods to construct representations of GWAS summary statistics 541 
Based on expression and chromatin accessibility data, there were four alternative methods for 542 
constructing regulatory categories: All Accessible Peaks (AAP), Specifically Accessible Peaks 543 
(SAP), Specifically Expressed Genes (SEG), and All Regulatory Elements (ARE). 544 
 545 
The AAP method used all the chromatin accessible peaks of each context to form a genome 546 
functional category, which was used for partitioned heritability enrichment analysis. The SAP 547 
method used the same rules of SpecVar above to obtain context-specifically accessible peaks of 548 
each context, and the context-specific peaks sets of M contexts formed functional categories of SAP. 549 
The SEG method was constructed by following the procedure in (H. K. Finucane et al., 2018). First, 550 
the t-statistics for differential expression of each gene in each of the M contexts were calculated. 551 
Then for each context, the top 10% genes ranked by t-statistic were selected, and the 100Kb 552 
windows around those top 10% genes were used to form a functional category. For the ARE method, 553 
we obtained all REs in the regulatory network of a context to be a functional category, and the RE 554 
sets of M contexts formed regulatory categories of ARE. 555 
 556 
We could conclude the relationship between the five methods: SpecVar, SAP, and SEG were 557 
methods based on specificity; SpecVar and SAP were based on the specificity of ARE and AAP, 558 
respectively. SpecVar and ARE used the expression and chromatin accessibility simultaneously; 559 
SAP and AAP only used the chromatin accessibility data; and SEG only used the gene expression 560 
data. 561 
 562 
After obtaining functional categories with these four alternate methods, we could also use S-LDSC 563 
to obtain heritability enrichment and define the 𝑅  score representation of GWAS summary 564 
statistics with equations (8) and (9). We called them LDSC-AAP, LDSC-SAP, LDSC-SEG, and 565 
LDSC-ARE, respectively. We compared these four alternate methods with SpecVar. 566 
 567 
Relevant tissue identification and relevance correlation analysis by SpecVar 568 
SpecVar identified relevant tissues and defined relevance correlation based on 𝑅 scores. The 𝑅 569 
scores to 𝑀 contexts could be aggregated into a context-specific vector representation of GWAS 570 
summary statistics: 571 

𝑅 = (𝑅%, 𝑅',⋯ , 𝑅)) +10. 572 
For a single phenotype, the 𝑅 scores to 𝑀 contexts could be used to get the relevant tissues. We 573 
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used six phenotypes to analyze the distribution of 𝑅 scores and found that the 𝑅 scores followed 574 
a Gaussian distribution (Fig. S9). We approximated the distribution of R to be Gaussian distribution 575 
and used the threshold P-value≤0.05 to get the relevant tissues. This gave the relevant tissues of the 576 
six phenotypes (Table 1), which was consistent with prior knowledge. 577 
 578 
For two phenotypes, such as phenotype 𝑝  and phenotype 𝑞 , we obtained their 𝑅  score 579 
representations: 580 

𝑅� = +𝑅%
�,𝑅'

�,⋯ , 𝑅)
� . 581 

𝑅� = +𝑅%
�,𝑅'

�,⋯ , 𝑅)
� . +11. 582 

Then the Spearman correlation of their 𝑅 score representation was used to define the relevance 583 
correlation: 584 

𝜌� = 𝜌(𝑅�, 𝑅�) = 1 −
6∑ �𝑟+𝑅#

�. − 𝑟+𝑅#
�.�'#

𝑀 ∗ (𝑀' − 1) +12. 585 

Here 𝑟+𝑅#
�.  and 𝑟+𝑅#

�.  were the ranks of 𝑖 -th context by the relevance score for the two 586 
phenotypes. 587 
 588 
For two other specificity-based regulatory categories LDSC-SAP and LDSC-SEG, we also used 589 
their functional categories to compute heritability enrichment and P-value and defined the 𝑅 score 590 
with equation (7-9). The 𝑅 scores of LDSC-SAP and LDSC-SEG were used to obtain relevant 591 
tissues and relevance correlation. 592 
 593 
Evaluation of relevant tissue identification and relevance correlation 594 
To evaluate the performance of the SpecVar and other methods, we used different datasets as the 595 
gold standard. 596 
 597 
For the application to identify relevant tissues, we used six well-studied phenotypes that we had 598 
knowledge of the relevant tissues: two lipid phenotypes (LDL and TC) were relevant to the liver; 599 
two human intelligential phenotypes (EA and CP) were relevant to the brain; two craniofacial bone 600 
phenotypes (Face and BrainShape) were relevant to CNCC. We used different methods to identify 601 
relevant tissues of these six phenotypes and checked if they obtained the correct tissues. 602 
 603 
For relevance correlation, we used the phenotypic correlation computed with individual phenotypic 604 
data as the gold standard. First, we computed the Pearson correlation coefficient (PCC) between 605 
relevance correlation and phenotypic correlation: 606 

PCC =
∑ +𝑝#- − 𝑝̅#-.+𝑝#-� − 𝑝̅#-� .#,-∈�

h∑ +𝑝#- − 𝑝̅#-.
'

#,-∈� ∑ +𝑝#-� − 𝑝̅#-� .
'

#,-∈�

+13. 607 

Here 𝑃  was the set of phenotypes, and 𝑁  was the number of phenotype pairs; 𝑝#-  was the 608 
phenotypic correlation computed with individual phenotypic data, and 𝑝#-�  was the relevance 609 
correlation; 𝑝̅#-  was the average of 𝑝#- , and 𝑝̅#-�  was the average of 𝑝#-� . A larger PCC indicated 610 

better performance in approximating phenotypic correlation. 611 
 612 
Another metric we used was the mean square error (MSE) between relevance correlation and 613 
phenotypic correlation: 614 
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MSE =
∑ +𝑝#- − 𝑝#-� .

'
#,-∈�

𝑁 +14. 615 

A smaller MSE indicated better performance in approximating phenotypic correlation. 616 
 617 
Extracting SNP-associated regulatory subnetworks in relevant tissues 618 
Given a phenotype’s GWAS summary statistics and a context, SpecVar identified SNPs associated 619 
regulatory subnetwork by considering the following two factors: 1) the cis-regulatory score of SNP-620 
associated RE should be large enough to indicate its importance in the regulatory network; 2) the 621 
risk signal of SNPs (i.e., P-value) on or near this RE should be large to indicate its association with 622 
phenotype. We combined these two factors to define the association score (𝐴 score) of SNP-623 
associated REs. 624 
 625 
First, the regulatory strength of k-th RE was measured by the maximum cis-regulatory score of this 626 
RE. Formally, 627 

𝐶< = max
-
𝐶𝑅𝑆<- (15) 628 

Here 𝐶𝑅𝑆<-  was the cis-regulatory score of k-th RE on j-th TG. For the 𝑘-th RE, the larger 𝐶< 629 

was, the more important this RE was in the regulatory network. Second, the risk score of GWAS 630 
𝑆< for 𝑘-th RE was defined as the average of the -log(P-value) of SNPs located on or near this RE, 631 
which were down-weighted by their LD scores and distances to RE: 632 

𝑆< =
1
|𝑃<|

1 −𝜔} ∙ 𝑙𝑜𝑔(𝑝}) ∙ 𝑒
U�#$�%

}∈�$

(16) 633 

Here 𝑃< was the set of SNPs whose distances were less than 50Kb to the 𝑘-th RE and |𝑃<| was 634 
the total number of this SNP set; 𝜔}  (the reciprocal of LD score, downloaded at 635 
https://data.broadinstitute.org/alkesgroup/LDSCORE/) was the weight of the 𝑙-th SNP; 𝑝} was p-636 
value of the 𝑙-th SNP in summary statistics;	 𝑑}< was the base pair distance of the l-th SNP to k-th 637 
RE and 𝑑� was a constant, which was set to be 5,000 as default. For the 𝑘-th RE, a larger value of 638 
𝑆< indicated a stronger association with the given phenotype. 639 
 640 
Finally, we obtained the association score (𝐴 score) of k-th RE by combining these two factors: 641 

𝐴< = B𝐶< ∗ 𝑆< (17) 642 
Every RE in the context-specific regulatory network was qualified by the 𝐴 score. We used the 643 
GWAS of six phenotypes to analyze the distribution of 𝐴 scores and found that the 𝐴 scores 644 
followed a Gaussian distribution (Fig. S10). So, we hypothesized the distribution of 𝐴 scores was 645 
Gaussian distribution and we selected the REs associated with the given phenotype by 𝐴 scores’ 646 
FDR threshold of 0.05. The prioritized REs, as well as their directly linked upstream TFs, 647 
downstream TGs, and the associated SNPs, formed the SNP-associated regulatory subnetwork. 648 
 649 
 650 
GWAS summary statistics of UK-Biobank 651 
The GWAS summary statistics of UK-Biobank were downloaded at http://www.nealelab.is/uk-652 
biobank. There were 4,176 phenotypes and 11,372 GWAS summary statistics. We selected 206 653 
GWAS summary statistics (Table S3) based on the following conditions. 654 
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1. Excluding sex-specific and “raw” type GWAS. 655 
2. Sample size condition: 𝑁 ≥ 50,000  and 𝑁��� ¡�} , 𝑁�¢£¤  ≥ 10,000  for binary and 656 

categorical phenotypes. 657 
3. Significant SNP number condition: the number of SNPs that pass the threshold of 5 × 10U¥ 658 

was not less than 500. 659 
4. Manually curation: removing duplicated phenotypes, “job”, “parent” and “sibling” associated 660 

phenotypes. 661 
 662 
Data and code available 663 
Codes and regulatory network resources are available at  664 
https://github.com/AMSSwanglab/SpecVar. Expression and chromatin accessibility data were 665 
summarized in Table S1. GWAS data used: GWAS summary statistics of LDL and TC were 666 
downloaded at http://csg.sph.umich.edu/willer/public/lipids2013/; GWAS summary statistics of EA 667 
(GCST006442), CP (GCST006572), BrainShape (GCST90012880-GCST90013164), and Face 668 
(GCST009464) were downloaded at GWAS catalog https://www.ebi.ac.uk/gwas/summary-statistics; 669 
GWAS summary statistics of UK-Biobank were downloaded at http://www.nealelab.is/uk-biobank. 670 
The LDSC genetic correlation and phenotypic correlation computed from individual phenotypic 671 
data were downloaded at https://ukbb-rg.hail.is/. 672 
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Fig. S1: PCA plot of regulatory network atlas of 77 human tissues. The TRS score across 77 tissues are
used for PCA analysis

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2022.09.06.506769doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.06.506769
http://creativecommons.org/licenses/by/4.0/


M
S

E
M

S
E

a

b

Fig. S2: (s). For all phenotype pairs of facial distances, the MSE between true phenotypic correlation and
relevance correlation of SpecVar, LDSC-SAP, and LDSC-SEG. (f). For highly  correlated phenotype pairs of
facial distances, the MSE between true phenotypic correlation and estimated phenotypic correlation of
SpecVar, LDSC-SAP, and LDSC-SEG.
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Fig. S3: (a). For all phenotype pairs of facial distances, the MSE between true phenotypic correlation and
relevance correlation of three methods. (b). For highly correlated phenotype pairs of facial distances, the MSE
between true phenotypic correlation and relevance correlation of three methods. (c) For UKBB phenotype pairs
with different heritability thresholds, the MSE between true phenotypic correlation and relevance correlation of
three methods. (d). Boxplot of relevance correlation MSE under different threshold of phenotype heritability.
Specvar shows the smallest variance. (e). Boxplot of relevance correlation PCC under different threshold of
phenotype heritability. Specvar and LDSC-SAP shows the smallest variance.
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Fig. S4: SNP associated regulatory network of “body mass index” (left) and “right leg fat-free mass” (right) in “frontal cortex”.
These two phenotype associated regulatory networks are significantly overlapped (middle).
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Fig. S5: Top 10 contexts ranked by heritability enrichment in context-specific regulatory elements of (a).
LDL, (b). TC, (c). EA, (d). CP, (e). BrainShape, (f). Face.
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Fig. S6: Top 10 contexts ranked by P-values of heritability enrichment in context-specific regulatory elements
of (a). LDL, (b). TC, (c). EA, (d). CP, (e). BrainShape, (f). Face.
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Fig. S7: The scatter plot of true phenotypic correlation and estimated relevance correlation by (a). heritability
enrichment, (b). -log(P-value). Each point means a pair of facial distances. (c). For all phenotype pairs, the
MSE between phenotypic correlation and relevance correlation of SpecVar, heritability enrichment, and
-log(P-value). (d). For all phenotype pairs, the PCC between phenotypic correlation and relevance correlation
of SpecVar, heritability enrichment , and -log(P-value). (e). For high correlated phenotype pairs, the MSE
between phenotypic correlation and relevance correlation of SpecVar, heritability enrichment, and
-log(P-value). (f). For high correlated phenotype pairs, the PCC between phenotypic correlation and relevance
correlation of SpecVar, heritability enrichment , and -log(P-value).
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Fig. S8: (a). For phenotype pairs with different heritability thresholds, the MSE between true phenotypic correlation and
SpecVar’s relevance correlation; and MSE between true phenotypic correlation and LDSC-GC’s genetic correlation. (b). For
phenotype pairs with different heritability thresholds, the PCC between true phenotypic correlation and SpecVar’s relevance
correlation; and MSE between true phenotypic correlation and LDSC-GC’s genetic correlation. (c). The R2 metric of regression
bertween phenotypic correlation and relevance correlation, genetic correlation, linear combination, product in Face distance
phenotypes. (d). The PCC metric of four regression in Face distance phenotypes. (e). The R2 metric of four regression in
UKBB phenotypes. (f). The PCC metric of four regression in UKBB phenotypes.
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Figure S9: Distribution of R score of (a). LDL, (b). TC, (c). EA, (d). CP, (e). Face, (f). BrainShape.
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Figure S10: Distribution of A score of (a). LDL in “right lobe of liver”, (b). TC in “right lobe of liver”, (c). EA in “frontal cortex”,
(d). CP in “frontal cortex”, (e). BrainShape in “CNCC”, (f). Face in “CNCC”.
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