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Abstract

Rhabdomyosarcoma (RMS) is the main form of soft-tissue sarcoma in children and
adolescents. For 20 years, and despite international clinical trials, its cure rate has not
really improved, and remains stuck at 20% in case of relapse. The definition of new
effective therapeutic combinations is hampered by the lack of reliable models, which
complicate the transposition of promising results obtained in pre-clinical studies into
efficient solutions for young patients. Inter-patient heterogeneity, particularly in the so-
called fusion-negative group (FNRMS), adds an additional level of difficulty in optimizing
the clinical management of children and adolescents with RMS.

Here, we describe an original 3D-organoid model derived from relapsed FNRMS and
show that it finely mimics the characteristics of the original tumor, including inter- and
intra-tumoral heterogeneity. Moreover, we have established the proof-of-concept of their
preclinical potential by re-evaluating the therapeutic opportunities of targeting apoptosis
in FNRMS from a streamlined approach based on the exploitation of bulk and single-cell
omics data.
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Introduction

Triggering tumor cell elimination through activation of death signaling pathways
conceptually appears to be one of the most direct methods to cure patients with cancer?.
Among cell death mechanisms, induction of tumor cells’ apoptosis seemed particularly
promising, given the finely regulated nature of this process at the molecular level.
Apoptosis is one of the major forms of programmed cell death by which a supernumerary,
ectopic or abnormal cell triggers its own elimination?. Reciprocally, resistance to
apoptosis is considered as one of the first 6 features described as acquired by cells during
tumor initiation and progression3. Then, the development of drugs capable of restoring
the execution of apoptosis in tumor cells has emerged as a significant therapeutic lever!.
However, despite promising results in vitro and in preclinical trials, these therapies have
so far been disappointing in patients45. One of the reasons for these results could be the
lack of appropriate models to select therapeutic combinations sufficient to efficiently
trigger apoptotic pathways in tumor cells, taking into account the intrinsic complexity of
these signaling cascades and of the tumor ecosystem®-8.

This pitfall could notably apply to rhabdomyosarcoma (RMS). RMS are rare cancers,
representing 5% of pediatric solid tumors and affecting 4 children/adolescents per
million®. RMS are characterized by their similarities to embryonic muscle tissue,
including the expression of specific markers such as Desmin, MYOD1, or Myogenin, which
are routinely used in their differential diagnosis'®11. Apart from this single common
denominator, RMS are a heterogeneous group of cancers. Two main subclasses of RMS
have been defined based on histological features in the pediatric population. More than
70% of all RMS falls into the embryonal RMS subclass (ERMS) and 20% into the alveolar
rhabdomyosarcoma (ARMS) one. In contrast to ERMS, ARMS are more common in older
children and young adolescents!?. Considerable advances in understanding the molecular
etiology of RMS has resulted from the identification of pathognomonic chromosomal
translocations associated with 85% of ARMS, which lead to the expression of oncogenic
fusion transcription factors, PAX3-FOX01 or PAX7-FOX0113. However, the molecular
bases of the group gathering ERMS and ARMS lacking PAX-FOXO01 translocation are more
complex. Indeed, these so-called fusion-negative RMS (FNRMS) could result from
recurrent single nucleotide variations in a number of well-characterized oncogenes such
as HRAS, NRAS, KRAS, ALK, FGFR4, PIK3CA, FBXW?7, NF1, TP53, CTNNB1, or BCOR'4, while
some sequenced tumors do not have identifiable driver mutations!4. Fusion-positive RMS
(FPRMS) tumors are generally considered as high-risk, notably due to their higher
propensity to metastasizel516, but the situation is more complicated in the heterogeneous
FNRMS entity. Indeed, no reliable molecular alteration that could help clinicians to adapt
treatment intensity is available so farl®. Treatment commonly combines an aggressive
neo-adjuvant chemotherapy (Vincristine, Dactinomycin, and
Cyclophosphamide/Ifosphamide) with secondary surgery, associated more often with
radiotherapy, and maintenance chemotherapy for high-risk patients. Considering the
long-term side effects of such intensive multimodal regimens in early lifel?, new
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molecular tools are required to improve FNRMS patients’ stratification in risk groups.
Irradiation of children, especially those less than 36 months, is notably challenging given
the risk of sequelae and associated morbidity and must be reserved for the most
aggressive cases. Moreover, the 5 year-survival rate ranges from 60 to 80% for patients
with localized tumors, with only a slight improvement in the prognosis over the last 20
years'618, Only 20% of RMS that have relapsed or with metastases at the time of diagnosis
can be cured?®.

Targeting apoptosis has been considered as a putative therapeutic lever in RMS6.19-23,
Indeed, a shift towards cell survival resulting notably from the aberrant activation of the
RAS/PI3K pathway is one of the main known oncogenic hallmarks of FNRMS!L.
Alterations in the expression of some apoptotic effectors have been linked to clinical
outcome?42> and several studies have evaluated the therapeutic potential of targeting
apoptosis, mostly in vitro on cell lines grown as monolayers and in vivo in xenograft
experiments!®. However, the potential for clinical translation of these data is hampered
by the anticipation of the emergence of resistance, which has been observed in clinical
trials in other cancers®2°.

We propose here to reconsider the therapeutic potential of targeting apoptosis in RMS,
especially the fusion-negative ones, starting from an integrative transcriptomic analysis
of apoptotic pathways. By establishing a comprehensive cartography of these pathways,
we show here that FNRMS can be considered as primed-for-death, and highlight the
potential clinical value of this death pathway for risk stratification. More importantly, we
have developed an original 3D patient-derived organoid model, which recapitulates
aggressive FNRMS tumors' histological and molecular characteristics. By combining
bioinformatic analyses of bulk and single-cell transcriptome data and using these 3D-
innovative models, we prove that it is possible to improve the efficacy of therapeutic
strategies focused on apoptosis by a streamlined approach combining the precise and
simultaneous targeting of blocking points and intra-tumor heterogeneity.

Results

Apoptosis is committed and has a prognostic value in FNRMS based on bulk tumor
transcriptomic data integration

Until now, apoptotic blockage in RMS has been evaluated mostly at discrete levels,
without trying to reconstruct the global state of functionality of associated pathways.
Starting from bulk transcriptomic profiling of independent RMS cohorts131427 (Extended
Data Fig. 1), we first analyzed RMS apoptotic signature heterogeneity using
dimensionality reduction methods?8. Plots by uniform manifold approximation and
projection (UMAP) and principal component analysis (PCA) demonstrated separated
clusters for RMS (in yellow) and healthy control muscles (in blue) in two independent
cohorts, solely based on the expression of an apoptotic signature?® (Fig. 1a, Extended Data
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Fig. 2a and Supplementary Table 1). Similarly, FNRMS and FPRMS cluster largely separate
based on this apoptotic signature in plots generated by UMAP and PCA (Fig. 1b and
Extended Data Fig. 2b-c). To explore the biological significance of this clustering, we used
causal inference approaches to define the apoptotic cascades’ activation level status
based on the expression profile of their effectors3?. Activation of a transcriptional
regulatory network predicting engagement notably of the Death Receptors (DR) extrinsic
signaling was identified by Ingenuity Pathway Analysis (IPA) in RMS tumors compared
to normal muscle samples in cohort 1 (p-value < 0.0001, z-score = 0.60) and cohort 2 (p-
value < 0.0001, z-score = 1.94; Fig. 1c). Z-scores positivity of apoptotic pathways was also
significantly higher in FNRMS compared to FPRMS in cohort 3 (p-value < 0.0001, z-score
= 1.94; Fig. 1d) and cohort 4 (p-value < 0.0001, z-score = 1.41; Extended Data Fig. 2d). In
addition, we used the PROGENy method to infer downstream apoptotic-response
footprint from perturbation-response genes indicative of the DR TRAIL activity3l. As
shown in Fig. 1e, TRAIL pathway activity is significantly decreased in RMS compared with
normal muscles in cohort 1 (wilcoxon-test, p-value < 0.0001) and cohort 2 (wilcoxon-test,
p-value = 0.00155), while it is equivalently low in FN- and FPRMS (Fig. 1f and Extended
Data Fig. 2e). This observation suggests similar blocking in apoptosis execution in both
malignant entities. Since apoptotic pathways are predicted to be more activated in
FNRMS, we then tested whether the expression profile of apoptotic effectors may have a
clinical value in this subgroup. Using a cross-validation strategy, we generated an
apoptotic gene metascore based on a two-genes signature with BNIP3 (p-value < 0.05 in
186/250 iterations) and FASLG (p-value < 0.05 in 170/250 iterations) (see Methods;
Extended Data Fig. 2f). We showed its association with the survival outcome of patients
with FNRMS, with reproducible and significant effects in both independent cohorts 3 (HR
= 2.7 [1.6-4.7]; p-value < 0.001) and 5 (HR = 1.7 [1.1-2.6]; p-value = 0.036) (Fig. 1g). We
found that metascore-high patients, i.e. with a high expression of both BNIP3 and FASLG,
have a significantly poorer outcome compared with metascore-low patients in FNRMS
(log-rank tests; cohort 3, p-value < 0.001; cohort 5, p-value = 0.0028) (Fig. 1g and
Extended Data Fig. 2g).

Overall, our transcriptomic profiling integration unveils a significant switch in the
expression of apoptotic effectors between RMS and their non-tumoral muscle
counterparts, which could be of prognostic interest to distinguish FNRMS high-risk
patients. Causal inference of transcriptomic data predicts that apoptotic cascades are
somehow committed in RMS, and notably in FNRMS, but fail to execute, underlying the
necessity to pinpoint these blocking points from a therapeutic point-of-view.

Overexpression of the anti-apoptotic BIRC5 gene blocks FNRMS in a primed-for-
death state

Given the predicted activation state of apoptosis in FNRMS, we sought to identify
pathway’s blocking points. Differential gene expression analysis unveils that 72% of
genes from a 86-gene apoptotic signature are differentially expressed (DE) between
FNRMS and non-tumoral muscles (Fig. 2a and Supplementary Table 2). Interestingly,
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47% of pro-apoptotic DE genes are expressed at significantly higher levels in tumors and
54% of the 13 anti-apoptotic DE genes are down-regulated in FNRMS compared with
normal muscles. By plotting the master effectors of the extrinsic and intrinsic pathways
that are DE on a signaling map, we observed that pro-apoptotic effectors overexpressed
in tumors mostly belong to the upper part of the apoptotic cascade, consistently with our
observation that apoptosis is committed in FNRMS (Fig. 2b). The expression pattern of
genes encoding anti-apoptotic BCL-2 family proteins is contrasted, with a lower
expression of BCLZ in FNRMS compared with normal tissue (log2(FC) =-1.3; p < 0.0001),
but a slight increase of MCL-1 (log2(FC) = 0.6; p = 0.0015) and BCL-XL (log2(FC) = 0.6; p
= 0.0016) expression, this gain being however not found in cohort 2 (Fig. 2a-b and
Supplementary Table 2). Moreover, the pro-apoptotic Bax is significantly more expressed
in FNRMS (log2(FC) = 2.9; p < 0.0001; Fig. 2a-b and Supplementary Table 2), suggesting
that the pressure on apoptosis execution may not rely on the balance between pro- and
anti-apoptotic BCL-2 family proteins. On the contrary, two major downstream pro-
apoptotic effectors, the cytochrome C-encoding gene CYCS (log2(FC) =-0.8; p < 0.0001)
and the caspase-independent endonuclease ENDOG (log2(FC) =-3.6; p <0.0001) are less
expressed in FNRMS (Fig. 2a-b and Supplementary Table 2), suggesting that the blockage
of apoptosis execution is rather associated with a dysfunction of the downstream part.
Accordingly, BIRC5, which encodes the IAP (Inhibitor of Apoptosis Protein) Survivin that
inhibits the two executioners caspase-3 and -7, is significantly overexpressed in FNRMS
(log2(FC) = 2.9; p < 0.0001) in two independent cohorts (Fig. 2a-c and Supplementary
Table 2). This observation led us to consider that FNRMS may be primed-for-death. This
notion is related to a state of cell dependency on an anti-apoptotic protein for survival:
the corollary is that inhibition of this anti-apoptotic effector is sufficient to initiate cell
death3?. To define whether FNRMS may be dependent on BIRC5 expression for survival,
we performed a medium-scale drug screening focused on therapeutic compounds
targeting apoptosis on 2D FNRMS cell lines (Fig. 2d). As expected, FNRMS cells are highly
susceptible to the BIRC5-inhibitor YM155, with 10 nM of this compound being sufficient
to drive massive cell death in all three tested 2D FNRMS cell lines (Fig. 2d and not shown),
in agreement with the “primed-for-death” concept. In contrast, FNRMS cells are resistant
to other IAP, BCL-2 and DNA repair inhibitors, confirming the blockage in apoptosis
execution.

Thus, integration of transcriptomic data and in vitro analysis of 2D cells sensitivity to
apoptosis-targeting drugs support the notion that FNRMS can be considered as “primed-
for-death”, relying on the expression of anti-apoptotic BIRC5 for survival.

FNRMS-derived organoids are new preclinical models that finely mimic tumor
characteristics

Based on our results established on 2D FNRMS cell lines, BIRC5 targeting could represent
an appealing therapeutic strategy in FNRMS. However, lack of transposition of promising
preclinical findings into efficient clinical treatments notably results from relying solely
on such 2D cell lines, which do not faithfully reproduce the complexity of the tumors,
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notably in their heterogeneous and plastic components33:34, One of the ways to improve
the predictive value of preclinical trials is to use models that recapitulate the biology of
tumors and their behavior in the clinic as closely as possible. For this purpose, tumor-
derived organoids (i.e. tumoroids) represent a considerable technological breakthrough.
According to the initial definition3®, these 3D cellular structures derived from tumor
stem/progenitor-like cells, preserve the histological and molecular characteristics of
their original tumor even after long-term expansion in culture, making them accurate and
powerful tools for basic, translational and clinical research3>.

Although new models were recently successfully derived from RMS patients’ biopsies or
patient-derived xenografts3637, such 3D-tumor-derived organoid models, characterized
as reproducing the features of their original tumors and expandable over the long term
to fit with the criteria of the organoid technology, have not been developed for FNRMS
yet. By adjusting culture conditions according to the existing literature, but also by
deciphering active signaling cascades that could support tumor cell growth thanks to
transcriptome datasets (Extended Data Fig. 1), we have set up a culture medium (referred
to as M3) and established a protocol that is sufficient to rapidly generate and expand 3D
FNRMS-derived organoids (also designed thereafter as RMS-O or tumoroids) directly
from fresh tumor specimens at relapse (100% efficiency, 6/6 samples; Fig. 3a and
Supplementary Table 3). We have also used this protocol to derive primary 2D FNRMS
models (100% efficiency on 7/7 samples, against 17% on 1/6 samples in classical DMEM-
FBS 10% culture medium) (Fig. 3a and Supplementary Table 3). Keeping in mind that
survival at relapse is less than 20% for patients with RMS, we decided to focus and
characterize in depth these unprecedented 3D RMS-O models. All established RMS-0O
expand long-term (> 6 months) in culture, with a consistent split ratio of 1:2-1:3 every
10-15 days. These models are derived from tumors comprising diverse locations (head-
neck, extremities, genito-urinary), histology (ERMS, pleomorphic RMS) and ages
(pediatric and young adult patients) (Supplementary Table 3). RMS-O give rise to tumors
when orthotopically xenografted (tibialis anterior) in mice, confirming their tumoral
potential (Fig. 3b). RMS-0O and their tumor-derived xenografts (RMS-XG) recapitulate
accurately the histological features of their tumor-of-origin. For example, Patient 1 model
(RMS1-0) preserves the patient's tumor histology (RMS1-T), with cells of variable size,
some with small nuclei and often reduced cytoplasm and some rhabdomyoblast cells,
which are typical of RMS tumors, while the RMS-0 derived from Patient 2 sample (RMS2-
0) preserves the rather undifferentiated state of its tumor-of-origin (RMS2-T, Fig. 3b).
Tumor morphological features are maintained in our 3D models even after long-term
expansion in culture (over 6 months not shown). Besides histological organization, RMS-
O also reproduce the expression pattern of key RMS diagnostic markers, such as Desmin
and Myogenin, and the proliferation rates from their corresponding patient tissue (Fig.
3b).

To further characterize FNRMS-derived organoid cultures and validate the adequation
with their respective tumor-of-origin, we then compared their transcriptomic profiles
using RNAseq analysis. An average of 100 million reads per sample were generated with
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96% of the reads that mapped to the human genome of reference. While the first
dimension explains most of the inter-patient heterogeneity, PCA analysis clearly shows
that RMS-0 models are grouped with their respective tumor-of-origin, both on Dim1 and
Dim2 axes (Fig. 4a). On the contrary, corresponding 2D models cultured in standard
DMEM-FBS 10% culture medium (DMEM_2D) or 3D models cultured in an incomplete
culture medium (M2_3D) progressively derive from their initial tissue, simultaneously
along Dim1 and Dim2 axes (Fig. 4a). Interestingly, we did not observe this phenomenon
with 2D models grown in RMS-O optimized medium (M3_2D), even after long term
growth and cryopreservation (Fig. 4a). Accordingly, Pearson’s correlation heatmap based
on global gene expression profiles confirms that both RMS-0O and their equivalent 2D
models cultured in M3 medium (M3_2D) clusterize with their corresponding patient-
derived tissues in an unsupervised analysis, while both DMEM_2D and M2_3D models are
positioned in clusters independent of their tissue-of-origin (Fig. 4b). When examining
more precisely RMS and differentiation markers, similar hierarchical clustering analysis
highlights the high level of similarities between RMS-O and their corresponding tumor
samples, even after cryopreservation, while unveiling notable differences with 2D
cultures established from the same tumor sample, even if grown in M3 optimized medium
(Fig. 4c). For example, for Patient 1 sample, the patterns of expression of both GPC3 and
MYCN were comparable in RMS-O and its tumor-of-origin, while being both
downregulated in M3_2D culture. Similarly, the tumor from Patient 1 and its matched
RMS-0, but not 2D cultures, both express markers of satellite cells and myoblasts such as
PAX7, MYOD1, TNNTZ, MYL138-4243 (Fig. 4c). These markers are barely expressed in both
Patient 2 sample and its matched RMS-0, which reciprocally both present a reminiscent
expression pattern of embryonic skeletal muscle development, as exemplified by the
strong upregulation of MEOX2, a specific marker of early paraxial mesoderm#*. FNRMS-
derived organoid cultures then also accurately reproduce inter-patient heterogeneity
and tumor differentiation status, and notably tumors’ spectrum of myogenesis markers’
expression. Moreover, functional gene set enrichment confirms that 2D cultures are
characterized by unspecific processes notably related to cell adhesion regulation
(Extended Data Fig. 3a). At the same time, FNRMS-derived organoids preserve an
expected developmental and muscular identity (Extended Data Fig. 3a). Importantly,
RMS-O0 also maintain more accurately, even after cryopreservation, the initial pattern of
apoptotic gene expression compared to 2D models cultured in standard conditions
(Extended Data Fig. 3b). Besides gene expression profile, RMS-0 also faithfully retain the
mutational landscape of the parental tumor, even after long term culture (>P20) and
biobanking (Fig. 4d). Finally, as a proof-of-concept, we showed that RMS1-0 reproduces
the Vincristine resistance profile observed in Patient 1 (Fig. 4e-g). Although treatment is
associated with a significant reduction in tumoroid growth and cell death (Fig. 4f-g),
Vincristine treatment is insufficient to prevent the regrowth of tumor cells post treatment
washout, which parallels the resistance observed in this patient (Fig. 4f-g).

Therefore, these FNRMS-derived organoids are an unprecedented 3D-tool for studying
RMS biology and response to treatments at relapse.
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The definition of relevant apoptotic-based therapeutic combinations relies on
targeting FNRMS intra-tumor heterogeneity using tumoroids as models
Intra-tumoral heterogeneity is widely considered as a key driver of resistance to
treatments3334. To define whether our model preserves the recently described RMS
tumor hierarchy reminiscent of human muscle development374>, we generated droplet-
based single-cell RNA sequencing (scRNA-seq) data on RMS-O using 10x Genomics'
technology. Overall, 14,371 tumoral cells (RMS1-0_P13 = 7608; RMS1-0_P14 = 6763)
expressing a total of 33,538 transcripts and 15,175 detectable genes with more than 3
transcripts in at least one cell were quantified (Extended Data Fig. 4a). Biological
replicates (different passages) were merged without batch correction as no difference
was observed between samples (Extended Data Fig. 4b). We performed UMAP to
visualize the unified transcriptomes of all cells*¢ and identified 6 clusters using an
unsupervised Leiden algorithm#’, each expressing a specific subset of biomarker genes
(Fig. 5a; Supplementary Table 4). Supervised and unsupervised trajectory inference
analyses on RMS-0 scRNA-seq data unveils a myogenic differentiation sequence from
quiescent satellite cell state (clusters 4-3) to myoblast-proliferative identity (clusters 5-
2-6), accompanied by a gradual change in muscle differentiation markers (Fig. 5b-c and
Extended Data Fig. 4c). Of note, clusters 5-2-6 define myoblasts at different cell cycle
stages and were subsequently grouped into a single myoblast-proliferative cluster
(Extended Data Fig. 4d). Interestingly, the intermediate cluster 1 fits with a human fetal
skeletal muscle state already described in normal muscle38 (Extended Data Fig. 4e), which
expresses canonical myogenic markers, albeit at slightly lower levels, but are mainly
characterized by a gene signature suggesting a more mesenchymal-like nature38. We
performed gene set enrichment analyses to confirm and further define cluster identities
(Fig. 5d; Supplementary Table 5). Quiescent satellite cells are enriched in a hypoxic gene
signature and in other genes involved in the regulation of ribosome and protein
translation activity (Fig. 5d). On their side, cycling myoblasts are enriched in genes
involved in quiescence exit, and in the previously reported pediatric cancer signature,
which was generated by selecting DE genes between a panel of more than 70 xenografts
from 8 types of childhood tumors (including RMS) and normal tissues*? (Fig. 5d).

To go further, clusters were manually characterized according to their differential
expression of key muscle marker genes described in the litterature38-42. As expected,
clusters 4-3 express CRYAB, GLUL and MTX1, three genes robustly defining satellite cells
in multiple recent scRNA-seq studies performed on human muscles384142 (Fig. 5e). Cells
in cluster 1 were characterized by markers of smooth muscle tissue like CALD1 and
MYL6*°. Moreover, this cluster specifically express PAX7, suggesting a commitment
towards myogenic differentiation and satellite cell activation*® (Fig. 5e). This
differentiation ends at clusters 5-2-6, which express EZHZ, a gene specifically induced in
activated satellite cells during myogenesis*3 and early myoblastic differentiation genes
markers such as MSTN and TPM450. Importantly, those tumor cells fail to express late
markers of muscular differentiation (Supplementary Tables 4 and 5). Thus, proliferating
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myoblasts at the end of the myogenic continuum described in this RMS-0O model appear
as ‘halted’ in an early stage of differentiation. This confirms recent studies on RMS tumor
hierarchy, showing that cells with different degrees of differentiation mirror the normal
developmental stages, but fail to completely differentiate and remain stalled in actively
cycling progenitor states37:45, We then asked if differences in apoptotic genes’ expression
and associated drug sensitivity may exist in those different reminiscent developmental
myogenic states. Interestingly, the proliferative halted-myoblasts population was
specifically characterized by a high level of BIRC5 expression (Fig. 5f). We validated this
result by immunofluorescence on FNRMS-derived organoid and observed a
colocalization between BIRC5-encoded protein Survivin, and Ki-67 in dividing cells (Fig.
5g). These data suggest that response to BIRC5-targeting drugs may be incomplete due to
the heterogeneous expression of this apoptotic effector in RMS cells. To test this
hypothesis, we evaluated the efficiency of BIRC5-inhibitor YM155 on this FNRMS-derived
organoid model. RMS-0 were exposed for 48h to a dose of YM155 sufficient to shut-off
cellular ATP production as a marker of cell viability (Extended Data Fig. 4f). Treatment
efficiency was evaluated after washout of the drug, by analyzing tumoroids regrowth.
YM155 induces a massive wave of cell death and a major destruction of tumoroid
structures at the treatment endpoint (Fig. 5h and Extended Data Fig. 4g). However, within
24 days post washout, 33% of tumoroids have grown back from leftover cells that were
not eliminated by YM155 (Fig. 5h and Extended Data Fig. 4h). Based on our observation
that BIRCS expression was restricted to the halted-myoblasts population, we looked for
another target more strongly expressed in the quiescent satellite cell-like population. We
identified the Voltage-Dependent Anion-selective Channel protein-2 encoding gene
(VDACZ2) as a putative candidate (Fig. 5i). VDAC2 forms a pore in the outer mitochondrial
membrane and regulates its permeability to several molecules. This protein has been
involved in the regulation of several processes and notably cell death via both ferroptosis
and apoptosis modulation®1-53, We then decided to evaluate the impact of a therapeutic
combination, including YM155 and Erastin, a known inhibitor of VDAC2 activity>354,
Consistently with the pattern of expression of these genes in tumor cell clusters, this
combined treatment is sufficient to induce a massive destruction of tumoroid structures
in only 30h of treatment (Fig. 5j-k), at a dose of Erastin that is largely ineffective in
monotherapy (Extended Data Fig. 4i). Most importantly, while Erastin or YM155-based
monotherapies are largely insufficient in blocking RMS-0O regrowth, their combination
was on the contrary highly effective even after several weeks (Fig. 5j-k and Extended Data
Fig. 4j).

Altogether, these data support that FNRMS-derived organoids are crucial tools to define
effective therapeutic strategies in preclinical approaches, by pinpointing resistance
resulting from the coexistence of different cell states.
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Discussion

Despite the implementation of many randomized trials from US and European groups,
RMS remain a clinical challenge, due to the insufficient effectiveness of current
treatments?®. Therapy failure results from relapse due in part to intrinsic or acquired
drug resistance. New tools are then necessary to improve the design of relevant drug
combinations and to validate their efficiency in settings of robust preclinical trials. Here,
we show that the use of organoid technology could make a major contribution to the
definition and development of new therapeutic combinations, which are essential to
improve the clinical outcome of patients with RMS.

Tumor-derived organoids have been almost exclusively derived from epithelial
malignancies so far>>. Here, we show that it is feasible to derive 3D-tumoroids from
mesenchymal FNRMS tumors, which meet the definition of organoids since they
accurately and precisely reproduce the histology and molecular characteristics of their
tumor-of-origin. Although other protocols have been proposed3®3’, our derivation
pipeline is to date the only one that allows the accurate reproduction of FNRMS tumor
features especially in their three-dimensional component, and the expansion of
tumoroids over a long period of time. Preservation of this 3D structure is definitely a key
issue to reproduce cell-cell contacts, as well as physical and mechanical constraints
existing in malignancies, and thus to mimic tumor behavior>6. Due to FPRMS tumor rarity,
we were only able to test this derivation protocol on FNRMS to date. However, we believe
that our pipeline is at least a solid basis to set up tumoroid models for other types of RMS,
including FPRMS, although minor adjustments of the culture medium might be necessary.
Moreover, the establishment of a collection of relapse FNRMS-derived organoids is highly
relevant considering that i) this subgroup is the most prevalent one in children and
adolescents, ii) a collection of such models, which we initiated here, is crucial to provide
proxies of the high level of complexity resulting from the inter-patient heterogeneity
existing in the FNRMS group and that iii) survival rate of patients at relapse is about 20%,
pointing out the need for models to establish new efficient therapeutic approaches.

Indeed, one of the major challenges to improve RMS management is to define new
therapeutic options that could be efficient for the largest fraction of FNRMS, despite the
molecular diversity of this entity, and in particular for the high-risk forms, which still
struggle to be clearly identified at the time of diagnosis!®. Of note, we show here that
FNRMS patients with a higher apoptotic metascore, established on the basis of apoptotic
gene expression profiles, are significantly associated with a poorer prognosis. Several
prognostic metascores have already been proposed to allow stratification of patients with
FNRMS?57, but none has been shown to be readily applicable in the clinic to date. Although
tested on two independent cohorts, our mathematical model will have to be validated on
larger groups of patients to define its clinical prognostic value compared to current
criteria including tumor size, location or metastatic dissemination. It nevertheless
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highlights the fact that targeting apoptosis may still be relevant to improve the outcome
of FNRMS patients.

Although a source of hope in the 2000s, targeting apoptotic pathways has so far shown
limitations in preclinical testing and/or clinical trials, notably in RMS?6. However, based
on the integration of transcriptomic data, our results indicate that FNRMS can be
considered as primed-for-death. Traditionally, programmed cell death was perceived as
a binary black-or-white matter: cells are either alive or dead, depending on whether
apoptotic pathways are turned on or off. This view has evolved to identify several cell
states associated with intermediate activation of the apoptotic pathways. The notion of
death priming has been used to define dependency of cancer cells on an anti-apoptotic
protein for survival>8-60, The underlying idea is that death pathways are committed but
that their execution is prevented by overexpression of an anti-apoptotic effector, which
until now was mainly described as a member of the BCL-2 family. Consequently,
inhibition of this anti-apoptotic protein is sufficient to trigger apoptosis execution in
these cells. Based on the exploitation of transcriptomic data and the use of apoptotic
pathway activation signatures, our data suggest that upstream apoptotic pathways are
indeed sustained in an activated state in FNRMS compared with their non-tumoral
counterpart, i.e. skeletal muscle. This state results, in particular, from the overexpression
of upstream pro-apoptotic proteins associated with the death receptor pathway, and
from the loss of expression of major anti-apoptotic proteins such as Bcl-2. Although these
data need to be confirmed at the protein level, considering the importance of both
transcriptional and post-transcriptional mechanisms in the regulation of the expression
of apoptotic effectors®1-64, these findings argue for the identification of an anti-apoptotic
protein whose inhibition would be sufficient to release the execution apoptosis in FNRMS
cells.

Mapping of apoptotic pathways from bulk tumors’ transcriptomic data clearly suggested
that targeting BIRC5 could be this effective lever. The addiction state of FNRMS tumor
cells to BIRC5 overexpression was clearly confirmed in vitro by a medium-scale drug
screening, focused on an apoptotic library of compounds. Indeed, 2D FNRMS cell lines
appear highly sensitive to the BIRC5-inhibitor YM155. Targeting BIRC5 has already been
proposed as a putative therapeutic approach in several cancers including RMS, based on
such in vitro assays2265. New drugs targeting apoptosis are still being tested at early
clinical study stage, more often combined with chemotherapy (NCT03236857;
NCT04029688). However, to date, no combination including one of BIRC5 inhibitors has
shown clinical efficacy. Consistently, the use of our FNRMS-derived organoid models
sheds new light on these contradictory data, and provides leads to re-explore the
therapeutic potential of targeting BIRC5 while explaining its limits and the potential
origin of resistance observed in patients. Indeed, RMS-0 models also preserve the intra-
tumor heterogeneity of the original tumor. We were notably able to identify a
developmental hierarchy within FNRMS comprising a quiescent satellite cell state,
transitioning towards an activated mesenchymal-like state and halted-myoblasts,
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actively dividing and expressing early myogenic markers, thereby reproducing the
incomplete muscle differentiation pattern described in RMS3745. This reminiscent
developmental program represents an interesting perspective to identify new
therapeutic vulnerabilities that could be exploited to reduce disease recurrence. Very
interestingly, BIRC5 expression appears restricted to the myoblast proliferative clusters,
consistently with the dual role of Survivin in both apoptosis inhibition and cell cycle
promotion®. Then, the use of YM155, although associated with a robust decrease in
FNRMS-derived organoid size and induction of cell death, only resulted in a transient
effect in this model, with a resumption of growth observed upon discontinuation of
treatment. Transposed to a patient context, BIRC5 inhibition could then be only
transiently sufficient, at clinically relevant doses, to trigger death of the proliferative
fraction of tumor cells, but could be largely ineffective on the most quiescent stem ones,
as previously observed with other therapies®3’. Bulk -omics characterization of tumors
provides essential information on tumor biology and can be used to define the identity of
tumor cell states. Notably, we observed an enrichment of the pediatric cancer signature
defined by Whiteford and colleagues*® in RMS-O proliferative-myoblast clusters.
Nevertheless, this observation also underlies the need to conduct single-cell omic
characterization of tumors/models to unveil the full spectrum of tumor cell diversity, a
prerequisite for defining efficient combined therapies*S.

Because it finely reproduces the complexity and dynamics of intra-tumor heterogeneity,
FNRMS-derived organoids then offer a seizable opportunity to reexplore the
vulnerabilities of the tumor cell population that can be exploited therapeutically using
relevant apoptotic-targeting drug combinations. The idea is not so much to define
therapeutic synergies as to unveil complementarities based on targeting different tumor
populations. We propose here YM155/Erastin as a putative therapeutic lead, but other
promising strategies could be tested on our FNRMS models. In particular, PLK1 inhibition
with volasertib has showed interesting efficacy in vitro on 2D cell lines and in vivo®7.68-
although tumor regrowth was observed in some cases-justifying its use in combination.
Interestingly, PLK1 expression is restricted to the G1/S proliferative cluster of FNRMS-
derived organoids (data not shown), thus providing an explanation for the observed
resistance and new potential combinations based on the simultaneous targeting of
negative-PLK1 populations. Besides apoptosis, this approach could be extended to other
death pathways, especially considering the interconnection and plasticity of death
cascades-some effectors being able to engage different signalings depending on the
cellular context’8-, and the targeting of different death effectors by several therapeutic
compounds. Regarding this last point, we can not exclude here that Erastin exerts its
death promoting effect solely via the inhibition of VDACZ2, but also potentially via the
induction of ferroptosis through depletion of GSH>3.

Then, the use of FNRMS-derived organoid models could reconcile the promising data
obtained in vitro and the failures observed in the clinic, in particular when targeting
apoptotic pathways, to rapidly provide new effective therapeutic opportunities to
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prevent and anticipate resistance and relapse. The next challenge will be to establish a
bio-collection of tumoroid models sufficient to mimic inter-patient heterogeneity and
validate the relevance of these new approaches on a large fraction of patients.
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Methods

Gene-Expression Analysis of available muscle/RMS datasets

Three microarray datasets were collected from public databases. Schiafer and Welle
(cohort 1) log2-transformed data comprising 26 normal muscles and 30 RMS samples
were downloaded from the R2 genomic platform (http://r2.amc.nl) using the gene
reporter selection mode, ie. HugoOnce algorithm that selects a single probeset to
represent a gene. GSE28511 (cohort 2) quantile normalized data®® were downloaded
from the GEO database (www.ncbi.nlm.nih.gov/geo/) and were then log2-transformed.
After quality control, we removed the GSM706247 normal sample (tumor adjacent
skeletal muscle cell) subject to high levels of tumor-in-normal contamination leading to a
dataset of 5 normal muscles and 18 RMS samples. E-TABM-1202 (cohort 3)!3 raw
microarray data (.CEL files) with 101 RMS samples are accessible at the ArrayExpress
platform (https://www.ebi.ac.uk/arrayexpress/) and were normalized using the Robust
Multiarray Average (RMA) algorithm (oligo R library v.1.58.0). Last, Javed Khan and
colleagues kindly shared Khan collection’s log2-transformed data (cohort 5) with 86 RMS
samples!*. Gene reporter selection was performed by selecting the probeset with the
highest average expression levels across samples, except for the Schiafer and Welle
dataset with default probeset assignment.

St. Jude RNA-seq data (cohort 4) of 60 RMS samples have been retrieved from St. Jude
Cloud (https://www.stjude.cloud) and generated as described’?. Briefly, read mapping
was done using STAR (v.2.7.9a)71 on the hg38 human genome and gene-level counts were
generated using HTSeq-count’? based on the Gencode v31 gene annotations’3. We
focused on transcripts with consistent annotations, i.e. protein-coding genes, and filtered
those with less than 10 reads in overall samples. Gene expression data were normalized
using a variance-stabilizing transformation procedure with vst function (DESeq2 R
library v.1.34.0)74. To remove unwanted variability driven by technical and non-
biological factors, we used the removeBatchEffect function implemented in the limma R
library (v.3.50.3)75> and specified the “fusion status” as the variable to consider in the
linear model.

Apoptotic genes expression profiling and pathway activation scores

We selected manually curated genes, known to encode proteins involved in apoptosis and
other forms of cell death mechanisms, from the Deathbase platform
(http://deathbase.org/, downloaded on March 31, 2022). Only genes characterized in the
Homo sapiens organism have been selected. Based on this list of 86 genes (Supplementary
Table 1), we performed differential expression analyses using limma R library
(v.3.50.3)75 for microarray data and DESeq2 R library (v.1.34.0)74 using Shrunken log2
fold changes (LFC) for RNA-seq data. We tested gene expression differences between (1)
normal versus tumor samples in the cohort 1 (Schidfer and Welle) and cohort 2
(GSE28511); and (2) fusion-negative versus -positive tumor samples in the cohort 3 (E-
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TABM-1202), cohort 4 (St. Jude) and cohort 5 (Khan). Statistical probabilities were
adjusted using the False Discovery Rate (FDR) method’¢. Only apoptotic genes with
significant differences between the two conditions (FDR < 0.05) were then selected for
visualization. Visualization plots were generated with the ComplexHeatmap R library
(v.2.10.0) using ward.D2 clustering on the inverse Spearman’s correlation coefficient
matrix to assess the distance between samples and genes. Single gene expression
comparison between normal and tumor samples was performed using ggboxplot (ggpubr
R library v.0.4.0) for visualization and rstatix (v.0.7.0) for statistical analysis using
Wilcoxon signed-rank test. Ingenuity Pathway Analysis (IPA) was performed with
QIAGEN [IPA (v.01-20-04, https://digitalinsights.qgiagen.com/IPA)?? to predict
downstream effects on biological functions based on the expression log fold change ratio
of apoptotic genes with significant differences between conditions (FDR < 0.05), i.e.
normal versus tumoral or fusion-negative versus -positive samples. To infer TRAIL
apoptotic pathway activity from gene expression data, we used progeny (R library
v.1.16.0), a computational method built by analyzing large-scale transcriptomic changes
from signaling perturbation experiments’8.

Establishment of a prognostic apoptotic metascore in patients with FNRMS

Only FNRMS patients with known survival time and status information were selected for
analysis (cohorts 3 and 4). The cohort 3 (E-TABM-1202) was used as the training set and
the cohort 4 (Khan) as the independent test set. For each apoptotic gene, univariate Cox
proportional hazards models were performed to test the prognostic value of each gene.
To limit optimism bias, the selection strategy was based on a leave-10-out cross-
validation procedure with 250 iterations in the training set. Genes were ranked based on
their statistical significance (p-value < 0.05) across iterations and those significantly
associated with the overall survival probability of patients with FNRMS in at least 150
(60%) iterations were included in the multivariate Cox proportional hazards model.
Proportional hazard hypothesis was checked using Schoenfeld residuals’? using cox.zph
function (survival R library). In order to explore collinearity between predictor genes,
associations were assessed with Pearson correlation coefficients using cor function (stats
Rlibrary v.4.1.3) with method = “pearson”. For each sample, the apoptotic metascore was
calculated as the sum of the predictor genes expression levels weighted by the regression
coefficients of the training model, generated on the FNRMS samples of the cohort 1 (E-
TABM-1202). For each cohort, an independent optimal risk cut point was identified in
order to define two groups, high and low apoptotic metascore, among FNRMS. For each
of the 250 iterations, a cut point of the metascore was identified using the surv_cutpoint
function (survminer R library). This algorithm relies on the maxstat function (maxstat R
library v.0.7-25) that performs a test of independence between a quantitative predictor
X (here, the apoptotic metascore) and a censored response Y (here, the survival status)
using maximally selected rank statistics. This defines which cutpoint p in X determines
two groups of observations regarding the response Y and measures the difference
between the two groups as the absolute value of an appropriate standardized two-sample
linear rank statistic of the responses. We retained as final threshold the median of overall
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cutpoints (n=250). The two groups defined by low and high apoptotic metascore have
been studied in more detail from a discriminatory point of view. Kaplan-Meier survival
curves were drawn using the ggsurvplot function (survminer R library). Survival curves
in high and low metascore groups were compared using log-rank tests in the training and
test sets. Dynamic receiver operating characteristic (ROC) curves were built using
timeROC R library (v.0.4). All statistical analyses were performed in the R statistical
environment (v.4.1.3) using survival (v.3.3-1; Therneau 2022), survivalROC (v.1.0.3;
Heagerty 2013) and survminer (v.0.4.9; Kassambara 2021) libraries.

Human specimens

Leftovers from RMS samples were obtained through biopsies/resections performed at
the Pediatric Hematology and Oncology Institute (i(HOPE, Lyon) or Hopital Femme Mere
Enfant (HFME, Lyon; AC2022-4937). The Biological Resource Centre (BRC) of the Centre
Léon Bérard (n°BB-0033-00050) and the biological material collection and retention
activity are declared to the Ministry of Research (DC-2008-99 and AC-2019-3426).
Samples were used in the context of patient diagnosis. Non-used parts of the samples
might be used for research if the patient is not opposed to it (information notice
transmitted to each patient). This study was approved by the ethical review board of
Centre Léon Bérard (N° 2020-02). This BRC quality is certified according to AFNOR
NFS96900 (N° 2009/35884.2) and ISO 9001 (Certification N° 2013/56348.2). In brief,
tumor pieces were put in a sterile saline solution (0.9%), while confirmed to be RMS by
anatomopathologists. The study had all necessary regulatory approvals and informed
consents are available for all patients. For each RMS sample, tissues were split into four
parts and processed for histology, RNA and DNA isolation, or dissociated and processed
for RMS models derivation.

Derivation and culture of tumoroids and 2D lines.

RMS tissues (~5-125 mm3) were minced into small pieces, digested in a solution
containing collagenase D (0.125 mg/mL Roche, cat. no. 1108866001) diluted in HBSS
(Gibco, cat. no. 14025050) and washed using Advanced DMEM /F-12 medium (Gibco, cat.
no. 12634010) supplemented with Hepes (1X, Gibco, cat. no. 15630106), GlutaMAX™ (1X,
Gibco, cat. no. 35050038) and Penicillin-Streptomycin (1X, Gibco, cat. no. 15140122).
After centrifugation, cultures were established in 96-well ULA plates (Corning, cat. no.
7007) or in 6-well plates (Corning, cat. no. 353046) either in DMEM or in an optimized
M3 medium. Culture medium was changed twice a week, and RMS-organoids were split
every 2 weeks on average. All cultures were tested every month for mycoplasma using
the MycoAlert® Mycoplasma Detection Kit (Lonza, cat. no. LT07-318), in accordance with
the manufacturer's instructions. To prepare frozen vials, all organoid cultures were
dissociated and resuspended in Recovery™ Cell Culture Freezing medium (Gibco, cat. no.
12648010).
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Xenograft

6-weeks-old male NSG-NOD SCID mice were obtained from Charles River animal facility.
The mice were housed in sterilized filter-topped cages and maintained in the P-PAC
pathogen-free animal facility (D 69 388 0202). For orthotopic grafts, 300 000 from RMS1-
0 and 500 000 from RMS2-0 cells were prepared in 50% culture medium-50% Matrigel
Low Growth Factor (Corning, cat. no. 356231) and were injected orthotopically into the
tibialis anterior muscle of mice. Visible tumors developed in approximately 2-3 months
(RMS1-0) and 3-4 weeks (RMS2-0). Mice were culled when the tumor reached the limit
end-point (600 mm?3). All experiments were performed in accordance with relevant
guidelines validated by the local Animal Ethic Evaluation Committee (C2EA-15) and
authorized by the French Ministry of Education and Research (Authorization
APAFIS#28836).

Histological analyses

FNRMS-derived organoids were fixed and processed as described before?. In brief,
immunohistochemistry (IHC) was performed on an automated immunostainer (Ventana
discoveryXT, Roche) using rabbit Omni map DAB kit. Organoids’ slides were stained with
HPS (Hematoxylin Phloxine Saffron), or the following antibodies: anti-Desmin (1/50,
Dako, cat. no. M0760), anti-Myogenin (1/100, Dako, cat. no. M3559), and anti-Ki67
(1/100, Dako, cat. no. M7240). Then, slides were incubated in relevant antibody-HRP
conjugate for 1 hour at room temperature (RT) and finally revealed with 3,3'-
diaminobenzidine (DAB) for 5 min, counterstained Gill’'s-hematoxylin. Following IHC,
slides were mounted using Pertex (Histolab, Ref# 00801-EX). Co-immunofluorescence
(IF) was performed on Bond RX automated immunostainer (Leica biosystems) using
OPAL detection kits (ref NEL871001KT, AKOYA bioscience). Primary antibodies specific
to Survivin (1/400, Cell Signaling, cat. no. 2808S) and Ki-67 (1/100, Dako, cat. no. M7240)
were applied 30 min at RT, as described previously®’. Sequential immunofluorescence
was performed using OPAL 520 (Survivin, green), OPAL 690 (Ki-67, red), and cells were
counterstained with DAPI. Slides were then mounted in Prolong™ Gold Antifad Reagent
(Invitrogen, Ref# P36930). Sections were scanned with panoramic scan II (3D Histech,
Hungary) at 40x for IHC and using the Vectra POLARIS device (Akoya bioscience) for
multiplexed IF.

Molecular profiling of FNRMS-derived organoids

For RNA-seq library construction, 100 to 1000 ng of total RNAs from tissues/organoids
were isolated using the Allprep DNA/RNA/miRNA universal kit (Qiagen, cat. no. 80224),
RNeasy mini kit (Qiagen, cat. no. 74104) and Arcturus® PicoPure® RNA Isolation Kit
(ThermoFisher Scientific, cat. no. KIT0204) following manufacturer’s instructions.
Libraries were prepared with Illumina Stranded mRNA Prep (Illumina, cat. no.
20040534) following recommendations. Quality was further assessed using the
TapeStation 4200 automated electrophoresis system (Agilent) with High Sensitivity
D1000 ScreenTape (Agilent). All libraries were sequenced (2x75 bp) using NovaSeq 6000
(Illumina) according to the standard Illumina protocol.
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Raw FASTQ files were then processed using the following steps. Quality control was
performed using FASTQC (v.0.11.9)81, followed by trimming of adapter sequences with
Cutadapt (v.3.4) using -a CTGTCTCTTATACACATCT and -A CTGTCTCTTATACACATCT
parameters82. Reads were mapped using STAR (v.2.7.9)71 to the human reference genome
assembly GRCh38.p13 with --seedSearchStartLmax 38 --outFilterMatchNminOverLread
0.66 --outReadsUnmapped Fastx --outSAMmultNmax -1 --outMultimapperOrder
Random --outFilterScoreMinOverLread 0.66 --quantMode TranscriptomeSAM --
outSAMstrandField intronMotif --twopassMode Basic --limitSjdblnsertNsj 1324910
parameters. Gene expression data was generated with HTseq-count (v.0.13.5)72 using --
order pos --stranded reverse parameter and symbols were annotated with their
respective Ensembl gene IDs using the package org.Hs.eg.db v3.14.083 based on Gencode
v37 (Ensembl v103)73.

Genomic DNA from both RMS tissues and models were extracted using the Allprep
DNA/RNA/miRNA universal kit (Qiagen, cat. no. 80224) following manufacturer’s
instructions. Polymerase Chain Reaction (PCR) were performed using the FIREPol®
Master Mix Ready to Load (Solis biodyne, 04-12-00115) and a T100 thermal cycler
(Biorad). Sequences of the primers used are the following ones: FGFR4_1648G>A
(forward  primer: 5’-TCTGACAAGGACCTGGCCGA-3’;  reverse  primer: 5’-
CTCTCCTTCCCAGTCCTGGT-3’); TET2 220 _C>T (forward primer: 5’-
AACTTATGTCCCCAGTGTTG-3’; reverse primer: 5-AGTCTGGCCAAAGAATGATC-3’);
TP53_844C>T (forward primer: 5’-GGACCTGATTTCCTTACTCC-3’; reverse primer: 5’-
GTGAATCTGAGGCATAACTG-3"); TP53_416C>T (forward primer: 5’-
CTGTTCACTTGTGCCCTGAC-3’; reverse primer: 5’-CTGCTCACCATGGCTATCTG-3).
Amplified DNA were purified on a 1.5% agarose gel (Sigma-Aldrich, cat. no. 16500-500)
and cleaned using the NucleoSpin© Gel and PCR clean-up kit (Macherey-Nagel, cat. no.
740609) following manufacturer’s instructions. Mutations were identified by Sanger
sequencing performed by Eurofins genomics.

To assess the concordance of tissues with FNRMS-derived organoids, raw HTseq counts
for all tissues and derived-models were loaded using DESeq2 R library’> with the “design”
parameter combining sample conditions (tissue/culture, 2D/3D culture). Genes with low
counts, i.e. less than 10 reads across samples, were then filtered. Gene expressions were
normalized using the vst function of DESeq2 R library’4 with parameter "blind=FALSE"
and only protein coding genes were kept for further analysis. DESeq-normalized data
were extracted using the DESeq function (DESeq2 R library). Principal Component
Analysis (PCA) and Hierarchical Clustering on Principal Components (HCPC) were
performed using FactoMineR (v.2.4)8% and factoextra (v1.0.7)8> R libraries. Heatmaps
were generated using ComplexHeatmap R library (v2.10.0)8¢ with euclidean distance as
the clustering method and color palettes of RcolorBrewer R library (v.1.1-3). All analyses
were performed in a R statistical environment (v.4.1.2) using DESeq2 (v1.34.0) library.
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Single-cell RNA sequencing analysis of FNRMS-derived organoids

For single-cell suspension preparation, FNRMS-derived organoids were dissociated using
TrypLE Express Enzyme (ThermoFisher Scientific, cat. no. 12605010) preheated to 37 °c
for 3 min. Cells were then filtered through a 30-pm strainer (Miltenyi Biotec, cat. no. 130-
098-458), centrifuged at 500g for 5 min, resuspended in complete culture medium and
sorted using a FACSAria (BD Biosciences). Cells were centrifuged again at 500g for 8 min
and resuspended in PBS (Gibco, cat. no. 14190-094) with 0.04% BSA (Sigma-Aldrich, cat.
no.A7030) for a final cell concentration of 1,000 cells/pL. Approximately 10 pL of isolated
cells were loaded on a 10X Genomic chip and run on the Chromium Controller system
(10X Genomics) to target 10,000 cells per sample.

Gene expression data was generated with the Chromium Single Cell 5’ v3.1 assay (10X
Genomics) and sequenced on the NovaSeq 6000 platform (S1 flow cell, lllumina). To
generate gene-barcode count matrices, raw sequencing reads were processed using
mkfastq and count (Cell Ranger v.3.1.0, 10x Genomics)®’. The raw base call (BCL) files
were demultiplexed into FASTQ files and aligned to the hg38 human genome as reference.
Overall, 23993 cells (RMS2_P13, n=11627; RMS2_P14, n=12366) passed the quality
control criteria. Each single cell dataset was imported using Read10X function and
converted into a Seurat object with CreateSeuratObject function with at least
min.features = 200 and min.cells = 3. To retain only high-quality cells, we applied a joint
filtration based on unique molecular identifier (UMI), number of detected genes and
number of mitochondrial counts criteria®. For each sample, independently, we retained
cells within a three median absolute deviation (MAD) around the population median for
these metrics, combined with absolute quality thresholds. We considered low-quality
cells as cells with (1) low (nGene < 200 genes) and high (nGene > 3MAD) number of
detected genes; (2) high mitochondrial gene content (mitoRatio > 3MAD); and (3) cells
with relatively high library sizes (nUMI > 4,500). We predicted doublets/multiplets, i.e.
multiple cells captured within the same droplet or reaction volume, using the scDblFinder
R library (v.1.10.0)8% but kept this variable as indicative. The single-cell datasets were
then merged and normalized using methods adapted from Scran pipeline (scran R library
v.1.24.0) comprising quickCluster, computeSumFactors with min.mean = 0.1 and
logNormCounts steps®0. The highly variable genes (HGVs) were detected using three
algorithms including scran, Seurat and a rank custom strategy. The scran method
comprises: (1) a modelGeneVar function that models the variance of the log-expression
profiles for each gene; (2) a metadata function to fit the mean-variance trend; and (3) a
getTopHVGs function to extract the top features. The Seurat V3 algorithm was
implemented in the highly_variable_genes function (scanpy python library v.1.8.2)°1 and
consists of ranking genes according to a normalized variance procedure. The custom
strategy (1) ranks genes according to their expression levels for each cell; (2) measures
the standard deviation of rank for each gene across overall cells; and (3) sort genes based
on their ranked expression levels; and (4) select the most variable ones. For each strategy,
we selected the top 2,000 most variable genes and retained a list of 1,158 genes that were
detected in at least two of the three methods. Variable features included the top 484 of
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these most variable genes and 245 genes known to be biologically relevant in the process
of myogenic differentiation38414292.93 and were used for principal component analysis
(PCA) using RunPCA function. We kept the first 9 principal components (PCs) for analysis
based on the ElbowPlot method that allows a visualization of the standard deviation of
each PC. The most contributing dimensions were then chosen based on two metrics: (1)
the percent of variation associated with each PC (cumulative percent of variation > 90%
and percent of variation < 5%); and (2) the percent change in variation between
consecutive PCs (< 0.1%). Clusters were identified with the FindClusters function using a
resolution set to 0.3 and the Leiden algorithm. Briefly, this strategy comprises local
moving of nodes, refinement of the partition and aggregation of the network based on the
refined partition, as previously described*’. Cluster identities of the cells were then
mapped on a UMAP using the RunUMAP function. Specific marker genes for clusters were
identified using the FindAllMarkers function with only.pos = TRUE, min.pct = 0.25 and
test.use = “MAST”. Trajectory inference analyses was performed using slingshot R library
(v.2.4.0)°* with start.clus = 4 and stretch = 0 for a supervised strategy and scVelo python
library (v.0.2.4) for an unsupervised one based on RNA velocity data generated by loom
python library (v.3.0.6). For each cluster, we also identified both positive and negative
cluster marker genes using FindAllMarkers function with min.pct = 0.25 and test.use =
“MAST”. We then ranked these genes based on their fold change ratio and performed
functional enrichment analysis. HALLMARK (H), Gene Ontology (subcategory: Biological
Processes), curated (C2) and cell type signature (C8) gene sets, downloaded from MSigDB
(http://www.gsea-msigdb.org/)?, and custom lists based on literature review
(Supplementary Table 5) were selected for functional analyses. Overall, 14,818 gene sets
were tested for Gene Set Enrichment Analysis (GSEA) using fgsea R library (v.1.22.0).
Statistical probabilities were adjusted based on the number of tested biological processes
using the FDR method’¢. Only custom, hypoxic, ribosomal and translational biological
processes with a significant enrichment (FDR < 0.01) were retained for Fig. 5d. Analyses
were performed in a R statistical environment (v.4.1.3) using Seurat R library (v.4.1.1)%
and python environment (v.3.9.10).

Analysis of drugs’ impact on FNRMS-derived organoids

For IC50 determination, tumoroids were dissociated and plated at 5000 cells/well in 96-
well ULA plates (Corning, cat. no. 4515). RMSO were allowed to form during 72 hours,
and then treated with serial dilutions of YM155 (Selleckchem, cat. no. S1130), Erastin
(Selleckchem, cat. no. S7242) or Vincristine (Teva, collected at the pharmacy of Centre
Léon Bérard). Impact of treatments on intracellular ATP content was measured using the
CellTiter-Glo® 3D Cell Viability Assay (Promega, cat. no. G9681) at 48 hours
(Erastin/YM155) or 96 hours (Vincristine). Relative luminescence units (RLU) of each
well were normalized to the mean RLU from the DMSO negative control wells as 100%
viability. Gambogic acid (10 uM, Cayman Chemical, cat. no. 14761) was used as a positive
control. All acquisitions of luminescence were performed on a Spark® microplate reader
(Tecan) with a 400 ms exposition and auto-attenuation. Three technical replicates per
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condition were performed for each experiment. IC50 curves were drawn using Prism 7.04
(GraphPad).

For washout experiments, tumoroids were seeded at 5000 cells/well in 96-well ULA
plates (Corning, cat. no. 7007). After 72 hours, RMSO were treated either with DMSO as
negative control, or 0.25 pM Erastin, or 25 nM YM155, or a combination of both
compounds. Two days after, RMS-0O were then collected, washed twice in fresh medium
and put back in new wells with complete culture medium. Culture medium was renewed
once a week. When reaching the growth plateau (around 4 to 6x105 um? in area), FNRMS-
derived organoids were split and reseeded at 5,000 cells/well.

For IF staining of dead and viable cells, the LIVE/DEAD™ Viability/Cytotoxicity Kit
(ThermoFisher Scientific, cat. no. L3224) was used directly on treated RMS-O following
manufacturer’s instructions. RMS-0 imaging was performed using the EVOS™ M7000
Imaging System (Invitrogen).

Drug screening on 2D cell lines

Briefly, 2,000 living cells from RDAbI and 4000 from RD or Rh36 FNRMS cell lines were
seeded per well in 384-well plates (Corning, cat. no. 3830) and incubated in the presence
of a selection of 20 drugs in a humidified environment at 37°C and 5% CO2. Cells were
grown in DMEM medium supplemented with 10% fetal bovine serum, 1% penicillin-
streptomycin, 1% Glutamax and 1% non-essential amino acids. Drugs were distributed
with the Echo 550 liquid dispenser (Labcyte) at 6 different concentrations covering 3 logs
(ie, 1 nMto 1 puM; 10 nM to 10 uM; 100 nM to 100 uM) in constant DMSO. Cell viability
was measured using CellTiter-Glo® 2.0 Cell Viability Assay (Promega, cat. no. G9243)
after 72 hours of drug incubation and luminescence was read using a Pherastar® plate
reader (BMG Labtech). Data were normalized to negative control wells (DMSO only).
IC50, defined as half maximal inhibitory concentration values, were deduced from dose-
response curves obtained using Prism 9.3.1 (GraphPad).

Data availability
Raw bulk and single-cell RNA sequencing data will be available via GEO. Accession

numbers are pending. Supplemental Tables 4 and 5 are available upon request.

Code availability
All data analyses’ codes will be made available without restriction upon request.
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Figure Legends

Figure 1. Apoptosis is committed and has a prognostic value in FNRMS.

a-b. UMAP of RMS (yellow) and normal muscle (blue) samples (cohorts 1 and 2; a), or
FNRMS (black) and FPRMS (pink) samples (cohort 3; b) based on the expression of
apoptotic effectors (see Methods; Supplementary Table 1). c-d. Activation state of
apoptotic cascades using Ingenuity Pathway Analysis in RMS versus normal muscle
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samples (cohorts 1 and 2; c¢) or FNRMS versus FPRMS samples (cohort 3; d). Significant
difference corresponds to z-score > 0 and p-value < 0.0001. e-f. TRAIL apoptotic pathway
activity inferred from a specific genes-response signature using PROGENy algorithm in
RMS versus normal muscle samples (cohorts 1 and 2; e) or FNRMS versus FPRMS samples
(cohort 3; f). Significant differences between groups are displayed on top for PROGENy
analysis (wilcoxon signed-rank test; *** p-value < 0.001; **** p-value < 0.0001; ns, non
significant). g. Survival analyses of the apoptotic metascore in FNRMS samples of the
training (cohort 3) and test (cohort 5) sets. Kaplan-Meier curves were generated using
its dichotomized form defined by a cross-validated optimal cutpoints procedure in a
cohort-dependent manner. Differences of overall survival (cohort 3) and event free
survival (cohort 5) probabilities between both groups were tested using log-rank tests
and associated statistical probabilities are displayed on the graph. Number of patients at
risk are indicated in the tables below the curves. Time-dependent receiver operating
characteristic (ROC) curves and hazard ratios were generated using continuous apoptotic
metascore. FNRMS: Fusion-Negative Rhabdomyosarcoma; FPRMS: Fusion-Positive
Rhabdomyosarcoma; RMS: Rhabdomyosarcoma; UMAP: Uniform  Manifold
Approximation and Projection.

Figure 2. Overexpression of the anti-apoptotic BIRC5 gene blocks FNRMS in a
primed-for-death state.

a. Heatmap representing the transcriptomic expression levels of apoptotic genes
significantly differentially expressed (FDR < 0.05) between FNRMS (yellow) and normal
muscle (blue) samples (cohort 1). Normalized and scaled gene expression levels are
color-coded with a blue (low expression) to red (high expression) gradient. Samples in
columns are clustered using Ward's method on the inverse Spearman’s correlation
coefficient matrix. b. Mapping of main pro-apoptotic (rectangle) and anti-apoptotic
(circle) effectors significantly differentially expressed (FDR < 0.05; UP = FC > 1.5; DN
[Down] = FC < 1.5) between FNRMS and normal muscle samples. Genes with altered
expression compared with normal tissue are colored in red or green, when alterations
are potentially associated with apoptotic blockage or not, respectively. Drug-target genes
are indicated with an orange label. Abstract Inhibitors of Apoptosis (IAP)s comprise NAIP
(BIRC1), BIRC2 (C-IAP1), BIRC3 (C-IAP2), XIAP (BIRC4). For a simplified overview,
aliases are present including TRAIL (TNFSF10), TRAILR1 (TNFRSF10A, DR4), TRAILR2
(TNFRSF10B, DR5), C-FLIP (CFLAR), BCL-XL (BCL2L1), BCL-W (BCL2L2), SMAC
(DIABLO). c. Expression levels of BIRC5 between normal muscles and FNRMS samples
(cohorts 1 and 2). Differences between groups were tested using wilcoxon signed-rank
test with associated statistical probability displayed on top (** p-value < 0.01; **** p-
value < 0.0001). d. Medium-scale drug screening of FNRMS cells (RDAb], RD and Rh36)
representing their sensitivity (pIC50) to a panel of 20 drugs, including IAPs, BCL-2, and
DNA repair inhibitors, as well as chemotherapy agents, with a blue (low sensitivity) to
yellow (high sensitivity) color-coded gradient. FC: Fold Change; FDR: False Discovery
Rate; FNRMS: Fusion Negative Rhabdomyosarcoma.
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Figure 3. Design of a FNRMS-derived organoid model from fresh patients’ biopsies.
a. Pipeline of organoids (RMS-0) derivation from fresh FNRMS tumors. Samples were
obtained from patients undergoing biopsy/surgery (patients' information detailed in
Supplementary Table 3) and were processed as described in Methods. Six RMS-0O have
been established and expanded using this protocol. RMS1-0 and RMS2-0 derived from
Patients 1 and 2, respectively, are shown. From day 3 to 15 post-seeding, FNRMS-derived
organoids expand to 1,000 pum (RMS1-0) and 1,500 pm (RMS2-0) diameter. White scale
bar: 1 cm. Black scale bar: 200 um. b. Representative HPS and immunohistochemistry
(IHC) characterization of RMS1-0 and RMS2-0 using clinical markers. RMS-O cultures
and their matched-xenograft (RMS-XG) in mice were matched in blind by
anatomopathologist experts to their tumor-of-origin (RMS-T). Expression of key clinical
markers routinely used for RMS diagnosis such as Desmin, Myogenin and Ki-67 was
evaluated by IHC. Scale bar: 50 pm. RMS1-T, Tumor from Patient 1; RMS2-T, Tumor from
Patient 2; RMS1-0, Tumor-derived organoid from RMS1-T; RMS2-0, Tumor-derived
organoid from RMS2-T; RMS1-XG, Xenograft from RMS1-0; RMS2-XG, Xenograft from
RMS2-0. FNRMS, Fusion-Negative Rhabdomyosarcoma.

Figure 4. FNRMS-derived organoids are new preclinical models that finely mimic
FNRMS characteristics.

a. Principal Component Analysis (PCA) of RNA-seq data (normalized counts) plotted in
2D, using their projections onto the first two principal components (Dim1 and Dim?2).
Each data point represents one sample. Each sample is designed according to i) the
medium in which it was derived, ii) its 2D or 3D structure, and iii) its passage at time of
collection, and then labeled as follows: Culture Medium_Dimension_Passage. M3:
optimized tumoroid medium; M2: incomplete medium; DMEM: Dulbecco's Modified
Eagle's Medium. Patient 1-derived models and tissue (RMS1): pink dots; Patient 2-
derived models and tissue (RMS2): blue dots. b. Pearson’s correlation heatmap based on
global transcriptomic expression profile showing the clustering of RMS-O with their
paired tissue-of-origin. Each sample is designed as above (see a). Color-coded annotation
matches Patient 1-derived models and tissue as RMS1 (pink squares) and Patient 2-
derived models and tissue as RMS2 (blue squares). c. Hierarchical clustering analysis
based on the centered-normalized expression values of RMS tumor and differentiation
markers highlights the high level of similarities between RMS-0 and their corresponding
tumoral samples. Top-left column indicates whether the indicated genes are markers of
stem (progenitors/satellite cells) or committed muscle cells (muscle differentiation), or
cancer features (RMS cancer). Each sample is designed as above (see a). Color-coded
annotation matches Patient 1-derived models and tissue as RMS1 (pink squares) and
Patient 2-derived models and tissue as RMS2 (blue squares). d. Preservation of tumor
mutational profile in RMS-0. Sanger sequencing on gDNA of RMS-1 and -2 tissues and
their corresponding tumoroids, respectively RMS1-0 and RMS2-0, were performed after
purification of PCR product surrounding mutations, based on genomics clinical reports.
Early: RMS-0 collected at early passages (<20). Late: RMS-O collected at late passages
(>20). e. Vincristine dose-responses curves performed on FNRMS-organoid derived from
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Patient 1 (RMS1-0). Viability is expressed as a percentage of the value in untreated cells
(CellTiter-Glo®). Means +/- std are represented (n=3). f. Growth curve of FNRMS-
organoid derived from Patient 1 (RMS1-0) after treatment with Vincristine. RMS1-0
were treated (grey line) or not (black line) with Vincristine during 4 days, before washout
and follow-up of growth. Each point corresponds to mean +/- std of at least 3 RMS1-0
areas. 8. Representative brightfield images at 0 hour and 96 hours of treated (Vincristine)
or control (CTL) RMS1-O. 1 nM; scale bar: 200 pm. FNRMS, Fusion-Negative
Rhabdomyosarcoma; PCR, Polymerase Chain Reaction.

Figure 5. FNRMS-derived organoids preserve intra-tumor heterogeneity and can
help improve therapeutic combinations targeting apoptosis.

a-b. UMAP visualization of unified scRNA-seq data of tumoroids derived from Patient 1
(RMS1-0) samples (P13 and P14 passages) showing cluster identities (a), and
unsupervised trajectory inference analysis using scVelo (b). c. Module scores of quiescent
satellite cells (left panel, MuSC) and myoblasts (right panel) expression programs
displayed on scRNA-seq UMAP of RMS1-0 samples. d. Functional enrichment between
quiescent satellite-like cells (clusters 4-3) and myoblast-proliferative cells (clusters 5-2-
6) (see Methods). Dots are colored according to their adjusted statistical probabilities
with a yellow (lower significance) to blue (higher significance) gradient and sized by the
count number of genes matching the biological process. e. Dot plot representing gene
expressions of specific myogenic differentiation markers between cluster groups. Dots
are sized according to the percentage of cells in each cluster group that express the gene
(transcript level > 0) and color-coded by average gene expression levels across cells. f.
UMAP representation of MKI67 (upper panel) and BIRC5 (bottom panel) expressions in
RMS1-0 scRNA-seq data. g. Immunofluorescence showing heterogeneous expression of
BIRCS (in red) among tumor cells on a tumoroid section (RMS1-0). Overlap between
BIRC5-encoded protein, Survivin and Ki67 (in green) in proliferative cells is shown in
enlarged boxes (bottom panel). Nuclei were counterstained with Hoechst 33342 (blue).
White scale-Bar: 50 pum. Orange scale-Bar: 10 pm. h. BIRC-5 inhibitor YM155 shows
transient efficiency on tumoroids. Left panel: representative images of FNRMS-derived
organoids from Patient 1 (RMS1-0) treated or not with 25 nM of YM155 during two days.
A halo of dead cells is visible around the residual cluster of tumor cells in the treated
condition. Right panel: RMS1-0 regrowth rate within 24 days after treatment washout,
showing transient efficiency of YM155 in 33% of cases. Scale-Bar: 200 pm. i. UMAP
representation of VDACZ expression in RMS1-O scRNA-seq data. j-k. Efficiency of
Erastin/YM155 combination on RMS-O derived from Patient 1 (RMS1-0). RMS1-0 were
treated or not with YM155, Erastin or a combination of both for two days. Treatments
were then stopped and regrowth of structures was evaluated within 80 days in each case.
When regrowth of RMS1-0 was observed, they were splitted two times to ensure that
their renewal properties were preserved (j. Red lines, split ratio 1:2; k. vertical falls of
growth curve lines to 0). j. Representative brightfield images of RMS1-0 in the different
conditions tested. K. Growth curve of RMS1-0 after treatment washout in the different
conditions tested. Each point corresponds to mean +/-std of at least 3 RMS1-0 areas and
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lines are color-coded according to treatment: control (blue), Erastin (red), YM155
(green), combination of Erastin and YM155 (purple). UMAP, Uniform Manifold
Approximation and Projection.
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