

Self-generated brain-wide spiking cascades govern replay dynamics in the hippocampus

Yifan Yang¹, David A. Leopold^{3,4}, Jeff H. Duyn⁵, Xiao Liu^{1,2*}

Affiliations:

¹Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

²Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.

³Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

⁴Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.

⁵Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

* Corresponding Author: Xiao Liu, PhD
431 Chemical and Biomedical Engineering Building
The Pennsylvania State University
University Park, PA 16802-4400
Tel: +1 814 863 4419
Fax: +1 814 863 0490
E-mail: xxl213@psu.edu

Author Contributions:

Y.Y. & X.L. contributed to the conception, design of the work, and data analysis;
X.L. also devoted the efforts to the supervision, project administration and funding acquisition;
Y.Y., D.A.L., J.H.D. & X.L. contributed to data visualization, and writing the paper.

36 **Abstract**
37

38 During states of behavioral quiescence, neurons in the hippocampus replay sequences of spiking activity
39 experienced in earlier behavioral episodes. While such replay sequences are hypothesized to serve
40 learning and memory by facilitating synaptic consolidation, their generative mechanisms remain poorly
41 understood. Increasing evidence suggests that they might be generated internally, or at least strongly
42 constrained by internal circuit dynamics. Recent work demonstrated that, across the forebrain,
43 approximately 70% of neurons participate in a pattern of sequential spiking cascades during rest. Like
44 hippocampal replay sequences, these brain-wide spiking cascades occur together with high-frequency
45 hippocampal ripples and therefore may share a common generative mechanism. Here we systematically
46 investigated the relationship between replay activity and sequential spiking cascades by analyzing a
47 database of intracortical electrocortical recordings in mice. For neuronal subpopulations in the
48 hippocampus and visual cortex, we assessed spiking sequences elicited during video viewing as well as
49 potential replay events during subsequent periods of rest. We found that replay events were unique to
50 hippocampal time-sensitive neurons and occurred together with spiking cascades throughout the
51 forebrain. Furthermore, forward and time-reversed replay sequences were associated with different types
52 of spiking cascades. Overall, these findings indicate that hippocampal replay events are generated and
53 structured according to resting state circuit dynamics manifest across a large portion of the brain.

54
55
56

57 **Introduction**

58

59 Learning and memory are the cornerstone of intelligence. The hippocampus is a key brain structure
60 involved in these functions. A remarkable finding about the rodent hippocampus is the fact that its place
61 selective neurons (“place cells”) can replay sequences of activity previously induced by active exploration
62 of a spatial environment. Often these replay episodes take place during rest and sleep and are typically
63 manifest in a temporally compressed form (1–4). Such replay sequences are associated with prototypical
64 electrical events originating in the hippocampus called sharp wave ripple complexes (SPW-R) (5–7).
65 These events, which are evident as high-amplitude bursts in hippocampal local field recordings, have been
66 proposed to play an important role in the consolidation of episodic memory (8–11).

67

68 The nature of hippocampal firing sequences during quiescent periods is a matter of active research.
69 Increasing evidence suggests that these sequences, rather than being induced by the external experience
70 itself, are fundamentally a product of internal circuit dynamics (12–16). A puzzling finding is that, in
71 addition to replaying previous sequences generated during active behaviors, hippocampal place cells also
72 appear to “preplay” a firing sequence that is only encountered later during exposure to a novel
73 environment (17–19), suggesting that the hippocampal sequences exist before experience. Similarly, in a
74 related subclass of hippocampal neurons, firing sequences are appear generated not by the registration of
75 external events, but instead by the passage of time (20). The sequential firing of these “time neurons” can
76 occur in the absence of changing environmental or body-derived inputs (21–24). These findings of
77 preplays and time neurons have propelled a new theory that episode-specific activity sequences of
78 hippocampal neuronal assembly roll forward as a result of self-organization of the brain and this temporal
79 flow of activity is determined by intrinsic neuronal architecture (12–14).

80

81 A distinct type of sequential activations have recently been shown to shape neural firing across the
82 forebrain beyond the hippocampus, across multiple cortical and thalamic structures (25). Like the replay,
83 preplay, and time sequences observed in the hippocampus, these widespread patterns operate
84 autonomously in the absence of external perturbations. They are expressed as stereotypic spiking cascades
85 that affect a large proportion (~70%) of the neural population in all tested forebrain areas. They are
86 synchronized and quasi-periodic, with individual sequences lasting between 5-15 s. Moreover, each
87 individual neuron bears a consistent temporal signature in its peak firing, leading or lagging the
88 population peak by a fixed temporal interval. Importantly, these single-cell spiking sequences, which are
89 expressed at many locations across the forebrain, were found to be synchronized with the slow
90 modulation of hippocampal SPW-R occurrence (25). This synchronization with hippocampal ripples
91 raises the question whether these widespread sequential spiking cascades might stem from the same self-
92 generated brain dynamics as the hippocampal replays, which also concur with the hippocampal ripples as
93 sequential activations.

94

95 In the present study, we investigated this possibility by analyzing population neuronal recordings from the
96 visual cortex and hippocampus of the mouse under conditions conducive to replay activity. Using data
97 available through the Allen Visual Coding project (26, 27), we first evaluated the activity of individual
98 neurons in the visual cortex and hippocampus recorded during the viewing of a movie. Neurons in both
99 areas yielded responses associated with particular moments or events in the movie, forming temporal
100 sequences of neuronal spiking. The activity of these apparently time-selective neurons during subsequent
101 periods of rest recapitulated the movie-induced sequence in a temporally compressed manner in the
102 hippocampus, but not the visual cortex. We then investigated the relationship between these movie-related
103 replay events and previously reported spontaneous firing cascades that engulf the brain during rest (25).

104 Importantly, the hippocampal replay events were temporally aligned to the spiking cascades, indicating
105 that the replay activity in the hippocampus is one facet of a larger-scale pattern of sequential neural
106 dynamics expressed spontaneously across the brain. A fine-scale analysis further revealed that forward
107 and reverse hippocampal replays appeared respectively during two fundamental types of spiking cascade
108 events of shorter duration. Together, these findings indicate that the hippocampal replay events are
109 generated and structured according to resting state circuit dynamics manifest as the spiking cascade across
110 a large portion of the brain.

111

112 Results

113 We analyzed large-scale neuronal recordings in mice from the Visual Coding project of the Allen
114 Institute. The dataset includes spiking activity of a large group of neurons simultaneously recorded from
115 various brain cortical and subcortical regions. We focused on the spiking data of ~10,000 neurons
116 recorded from 14 mice in 44 brain regions (730 ± 178 neurons per mouse, mean \pm SD) during two movie
117 sessions and a spontaneous session (**Fig. 1A-1B**). In each of the two movie sessions (i.e., the pre-rest and
118 post-rest ones), the same 30-sec movie clip was repeatedly presented to mice 30 times. The spontaneous
119 session is free of visual stimulation, and the 14 mice remained stationary for extended periods of time
120 (>20 minutes) (see Materials and Methods for stationary quantification).

121

122 *Hippocampal and visual neurons showed time-selective response during movie watching*

123 We first examined time-selective responses of neurons in the hippocampus and the visual cortex during
124 movie watching. To do this, a time course of time specificity score was computed for each neuron to
125 quantify its firing rate increase at a specific moment (i.e., a 0.5-sec time bin) compared with other periods
126 of the movie. The peak score quantifies the amplitude of the time-selective response, whereas the time to
127 achieve this peak is regarded as the time field of the neuron (**Fig. 1C**; see Materials and Methods for
128 details). After being sorted by the time field, sequential activations of the neurons are evident as a
129 diagonal dark band in the averaged spiking activity during the movie watching. This is especially strong
130 for the visual (VIS) neurons and to a much less extent for the hippocampal CA1 neurons. The same
131 analysis on the shuffled data, where neuronal spikes were temporally shuffled within each movie trial,
132 results in much lighter diagonal bands (**Fig. 1D**, upper panels). Consistent with this observation, the peak
133 time specificity scores derived from the original data are significantly higher than those of the shuffled
134 data (**Fig. 1D**, lower panels). In addition, the diagonal bands from the original data are curved at the
135 beginning and end of the movie, suggesting a disproportional representation of time, whereas those from
136 the shuffled data are largely straight lines (**Fig. 1D**, upper panels). The distributions of the peak time
137 specificity score were significantly different between the real and shuffled data, as measured by the
138 Kolmogorov-Smirnov (KS) scores. The differences are much larger for the VIS neurons than for the CA1
139 neurons (**Fig. 1E**). Similar results were also obtained for the post-rest movie session and an extended
140 group of mice (**Fig. S1C and S1D**). The neurons with a significant ($p < 0.05$) peak time specificity score
141 were regarded as time-selective neurons. This is different from the conventionally defined time neurons
142 (20, 22) since in this case their activity may have been responses to events in the movie stimulus rather
143 than only reflect the passage of time. Both the CA1 and VIS time-selective neurons are reproducible
144 across presentations of the same movie (**Fig. S1E and S1H**) with the CA1 time-selective neurons show
145 more variability relatively (**Fig. S1E and S1G**).

146

147 *Movie-induced sequence of the CA1 time-selective neurons replays at rest*

148 We then studied whether the firing sequence observed during the movie watching would replay at rest,
149 similar to the place cell firing sequence during maze running (6, 7). We adapted a template matching
150 method to detect the replay events. Briefly, the resting-state spiking data were divided into time segments

151 according to troughs of the global mean spiking rate (vertical dotted lines in **Fig. 2A**) similar to the
152 previous study (25), but the global mean signal was first low-pass (<5 Hz) filtered to generate fine-scale
153 segments whose duration (556 ± 186 ms) roughly matched up with the known timescale of hippocampal
154 replays. A delay profile was computed to describe the order of sequential activations of time-selective
155 neurons within each segment, and then correlated (Spearman's rank correlation) with the time-selective
156 neuron firing sequence during the movie (**Fig. 2A** and **2B**; see Materials and Methods for details). The
157 replay events were then detected as time segments showing significant ($p < 0.01$, horizontal dash lines in
158 **Fig. 2A**) positive (forward) and negative (reverse) correlations (red and blue bars in **Fig. 2A**). The same
159 procedure was repeated for randomized movie sequences ($N = 200$) to create a null distribution for the
160 replay counts. In 8 out of 14 mice, the number of replay events of the CA1 time-selective neurons were
161 significantly higher than what would be expected from the randomized controls. The above analysis was
162 repeated for three control cases: the equal number of VIS time-selective neurons showing the strongest
163 time-selective responses to the movie, the CA1 non-time-selective neurons that did not show significant
164 time-selective responses, and the CA1 time-selective neurons derived from the shuffled data described
165 above. Significant replay events were seen in none of these cases, including the VIS time-selective
166 neurons that had a stronger time-specific responses in the movie sessions than the CA1 time-selective
167 neurons. Consistent with the previous findings (6, 7, 28), independently detected SPW-R events (see
168 Methods) peaked around the center of the replay events of the CA1 time-selective neurons (**Fig. 2E**).
169

170 ***Hippocampal replays co-occur with brain-wide spiking cascades***

171 We further investigated the potential link between the replay events and previously reported brain-wide
172 cascades of neuronal firing (25). The slow spiking cascades can be clearly seen in the resting-state
173 recordings after sorting all recorded neurons from various brain regions according to their principal delay
174 profile (**Fig. 3A**), i.e., the first principal component of delay profiles of coarse-scale time segments (see
175 (25) for more details). This coarse-scale principal delay profile represents the direction of sequential
176 activations of the spiking cascade. The cascade started with slow and sequential entrainments of the
177 negative-delay neurons (top, blue-symbolled neurons in **Fig. 3**) at the early phase and then reached a
178 tipping point featuring the rapid transitioning to the activation of the positive-delay neurons (bottom, red-
179 symbolled neurons in **Fig. 3**), which were then slowly and sequentially disengaged in ~1-3 seconds (**Fig.**
180 **3A** and **3B**). The cascade involved ~70% of all recorded neurons from various brain regions (25), and the
181 region-specific mean spiking activity showed significant modulations at the cascade in every recorded
182 brain region (**Fig. 3C**). Tracking the occurrence of the CA1 replays along with the spiking cascade
183 revealed an interesting pattern: the reverse replays of movie sequence in the CA1 time-selective neurons
184 are much more likely to occur around the fast transitioning (yellow arrows) of the spiking cascades (**Fig.**
185 **3A**). This observation is consistent with the distribution of the reverse replays over the cascade cycle (**Fig.**
186 **3D** and **3E**). The forward replays displayed an opposite modulation and were less likely to appear around
187 this transitioning point (time zero in **Fig. 3D** and **3E**). In comparison, the replays detected for the three
188 control groups of neurons, including the VIS time-selective neurons, did not show significant modulations
189 across the spiking cascade cycle, particularly at the transitioning point (**Fig. S4E**).
190

191 ***Distinct micro-cascades mark forward and reverse replay events***

192 Our pilot investigations revealed similar cascade dynamics of shorter sub-second timescale, which we
193 here term “micro-cascades”, and related them to both the occurrence and structure of spontaneous replay
194 events. The structure of such micro-cascades can be seen in Fig 4A-D. Briefly, these finer-scale events
195 featured a similar sequential transition from the negative-delay neurons to the positive-delay neurons as
196 the coarse-scale cascade, but the positive-delay neurons were only briefly activated for <100ms.
197 Importantly, they were often associated with single SPW-R events (**Fig. 4B**, red arrows). To better
198 understand the fine-scale dynamics, we correlated the delay profiles of the fine-scale time segments with

199 the coarse-scale principal delay profile. The resulting sequential scores (i.e., normalized correlations)
200 were significantly (KS test; $p = 0$) stronger than randomized controls (**Fig. 4C**). Unlike the sequential
201 scores of the coarse-scale segments that mostly showed large positive values (**Fig. S4A**), the fine-scale
202 segments have both large sequential scores of negative and positive values (**Fig. 4A**). In addition, the
203 principal delay profile derived directly from the fine-scale segments is highly similar to the coarse-scale
204 principal delay profile (**Fig. S6B**), suggesting that both slow (seconds) and fast (hundreds of milliseconds)
205 cascade dynamics feature sequential activations along a similar direction.

206
207 We then extracted the fine-scale segments with significant ($p < 0.001$) negative and positive sequential
208 scores and called them the P-N (positive-delay neurons to negative-delay neurons) and N-P micro-
209 cascades respectively. Their averaged patterns clearly showed sequential activations along and opposite to
210 the principal delay profile direction (**Fig. 4D**). The brief positive-delay neuron activation at these micro-
211 cascades was tightly coupled by a sharp increase in the SPW-R probability (**Fig. 4E**). Most importantly,
212 the reverse and forward replays co-occurred with the N-P and P-N micro-cascades respectively (**Fig. 4F**
213 and **4G**). At the same time, the sequential scores of the reverse and forward replay segments are biasedly
214 distributed towards the negative and positive values respectively (**Fig. 4H**). These results remained
215 similar with removing the micro-cascades, mostly the N-P type, at the fast transitioning point of the slow
216 spiking cascades (**Fig. S7**).

217
218 **Discussion**
219 Here we examined the activity of a large population of neurons from throughout the brain during
220 hippocampal replay following passive movie viewing in rodents. We found that both forward and reverse
221 hippocampal replay were embedded within brain-wide cascades of sequential neuronal activation
222 involving many forebrain structures. Within the replay activity, the reverse hippocampal replay events
223 were most directly correlated with the peaks of these large-scale cascades. At a finer timescale, both
224 forward and reverse replay events matched unique brain-wide cascade patterns.

225
226 The embedding of hippocampal replays in the highly structured, resting-state global dynamics supports
227 recent theory about the self-organized nature of the hippocampal neural sequences (12, 15, 20). The
228 replays of movie-related hippocampal sequence observed here are similar to what has been repeatedly
229 reported for maze-running-related place-cell sequences (21). Interestingly, the place-cell sequences were
230 also found to “pre-play” before the maze running. While such pre-plays had once been explained as the
231 internal dynamics for action planning (21), this planning interpretation may not explain the pre-plays
232 occurring even before animals see the maze track (17, 19). The pre-play finding is however consistent
233 with another line of research into hippocampal time cells (14, 20, 29) since both suggested the self-
234 generated nature of hippocampal sequences. It was found that hippocampal neuronal sequences can be
235 robustly formed with animals running on a wheel without apparent changing of environmental or body-
236 derived inputs, suggesting that they actually represent self-generated dynamics for time-encoding (20).

237
238 The existence of apparent time cells has led to the idea that the sequential firing in the hippocampus
239 during a temporally structured event may be internally generated rather than driven by a sequence of
240 external stimuli (12, 20). The new theory would reconcile the “pre-play” and “re-play” findings if self-
241 generated sequential dynamics generally follow a pre-existing temporal order. Here we showed that the
242 movie evoked the time-selective responses, and thus the temporal activation sequences, of both the
243 hippocampal and visual neurons. The sequence of the hippocampal time-selective neurons, but not the
244 visual neurons with stronger time-selective responses, was found to replay during the rest period after the
245 movie watching. The difference might be due to the fact that the time sequences in hippocampus result

246 from the firing order imposed by its neural substrate, while the order observed in visual cortex is imposed
247 by time-specific movie features.

248
249 Importantly, the replays of the hippocampal sequences were embedded in pre-existing, self-organized
250 global brain dynamics, consisting of coarse- and fine-scale spiking cascades (25). These resting-state
251 activity cascades featured sequential activations of the whole-brain neuronal populations along a specific
252 direction. This temporal direction governed the sequential activations of different timescales and across
253 different populations, including the hippocampal sequence during the movie watching (30 sec), the coarse
254 spiking cascades (5-15 sec), the micro-cascades and the replays of the movie sequence (~hundreds of
255 milliseconds). Thus, it may represent a general direction of sequential activity in the brain.

256
257 Increasing evidence suggested that the hippocampal ripples are coordinated with brain-wide neural
258 dynamics (25, 30–32). The present study extended these findings by showing that the hippocampal
259 replays are embedded in the global cascade dynamics of sequential activation. This arrangement could
260 have certain advantages at least theoretically.

261
262 First, the global dynamics may open a critical time window for the hippocampo-cortical interactions that
263 are essential for memory consolidation. The spiking cascades involved ~70% of brain neurons in various
264 cortical and subcortical areas. Particularly around the rapid transitioning point, most of the recorded
265 neurons, including the hippocampal and cortical neurons, fired within a very brief (hundreds of
266 milliseconds) time window, and created an opportunity for information transfer between the hippocampus
267 and the cortex. The hippocampo-cortical interplay has been observed previously as slow (~10 sec) co-
268 modulations of the cortical delta-band power and the hippocampal ripples (33, 34). The ripples were also
269 found to trigger widespread cortical fMRI responses of the seconds timescale (35). These hippocampo-
270 cortical interactions may represent the same brain process as the spiking cascade, which was coupled to
271 slow modulations of both the cortical delta power and hippocampal ripples (25).

272
273 Second, the embedding of the hippocampal replays in the global dynamics could be an efficient way of
274 consolidating the learning and memory. Different daily-life experiences can be encoded in neuronal
275 sequences of different subgroups of hippocampal neurons (15, 21, 24). The spiking cascades that entrain
276 most brain neurons would then be able to replay them all at once through a global sequential activation
277 following the pre-existing principal direction.

278
279 Lastly, the global spiking cascades may provide the driving forces for the hippocampal replays. The
280 importance of the hippocampal replays makes their occurrence unlikely to rely completely on random
281 fluctuations of spontaneous brain activity. In the absence of external perturbations during rest and sleep,
282 the self-generated dynamics could be critical for driving these events in a controllable way. The highly
283 organized spiking cascades would serve this purpose by driving the replay events and warranting their re-
284 occurrences. Nevertheless, it remains unclear what in turn drives the spiking cascades. Modulatory
285 influences from the various neurotransmitter systems, including the cholinergic system (36–38), are
286 among the possibilities. The resting-state global brain activity measured by fMRI and
287 electrocorticography has been linked to subcortical arousal-regulating areas (39), particularly the major
288 locations of the cholinergic neuron (40, 41). In fact, the deactivation of the basal forebrain cholinergic
289 regions effectively suppressed the resting-state global activity. The spiking cascades, which are shown as
290 the global brain activity of single neuron level, were phase coupled to slow pupil dilations (25), which
291 have previously been shown to be linked to the activation of cholinergic neurons (42). This explanation

292 would be consistent with the known role of the cholinergic projections in the generation of the
293 hippocampal ripples (43–45).

294

295 Acknowledgements

296 This work was supported by the Brain Initiative award (1RF1MH123247-01), the NIH R01 award
297 (1R01NS113889-01A1), and the Intramural Research Program of the National Institute of Mental Health
298 (ZIA-MH002838). We also thank Dr. Feng Han for proof reading the paper and assisting some figure
299 illustrations.

300 Data and materials availability:

301 We used the Neuropixels Visual Coding dataset from the Allen Institute (26, 27). All the multimodal data
302 are available at <https://portal.brain-map.org/explore/circuits/visual-coding-neuropixels>. The Python code
303 that produced the major results of this paper will be available at <https://github.com/psu-mcnl/Neural-Seq>.

304

305 Reference

- 306 1. J. O'Keefe, L. Nadel, *The Hippocampus as a Cognitive Map* (Oxford: Clarendon Press, 1978).
- 307 2. M. A. Wilson, B. L. McNaughton, Dynamics of the Hippocampal Ensemble Code for Space. *Science* (1979)
308 **261**, 1055–1058 (1993).
- 309 3. J. O'Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the
310 freely-moving rat. *Brain Res* **34**, 171–175 (1971).
- 311 4. M. P. Karlsson, L. M. Frank, Awake replay of remote experiences in the hippocampus. *Nat Neurosci* **12**,
312 913–918 (2009).
- 313 5. T. J. Davidson, F. Kloosterman, M. A. Wilson, Hippocampal Replay of Extended Experience. *Neuron* **63**,
314 497–507 (2009).
- 315 6. K. Diba, G. Buzsáki, Forward and reverse hippocampal place-cell sequences during ripples. *Nat Neurosci* **10**,
316 1241–1242 (2007).
- 317 7. D. J. Foster, M. A. Wilson, Reverse replay of behavioural sequences in hippocampal place cells during the
318 awake state. *Nature* **440**, 680–683 (2006).
- 319 8. A. Ylinen, *et al.*, Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus:
320 network and intracellular mechanisms. *The Journal of Neuroscience* **15**, 30 (1995).
- 321 9. G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzsáki, M. B. Zugaro, Selective suppression of hippocampal
322 ripples impairs spatial memory. *Nat Neurosci* **12**, 1222–1223 (2009).
- 323 10. V. Ego-Stengel, M. A. Wilson, Disruption of ripple-associated hippocampal activity during rest impairs
324 spatial learning in the rat. *Hippocampus* **20**, 1–10 (2010).
- 325 11. H. R. Joo, L. M. Frank, The hippocampal sharp wave–ripple in memory retrieval for immediate use and
326 consolidation. *Nat Rev Neurosci* **19**, 744–757 (2018).
- 327 12. G. Buzsáki, Time, space and memory. *Nature* **497**, 568–569 (2013).

328 13. G. Pezzulo, M. A. A. van der Meer, C. S. Lansink, C. M. A. Pennartz, Internally generated sequences in
329 learning and executing goal-directed behavior. *Trends Cogn Sci* **18**, 647–657 (2014).

330 14. K. Friston, G. Buzsáki, The Functional Anatomy of Time: What and When in the Brain. *Trends Cogn Sci* **20**,
331 500–511 (2016).

332 15. A. S. Gupta, M. A. A. van der Meer, D. S. Touretzky, A. D. Redish, Hippocampal Replay Is Not a Simple
333 Function of Experience. *Neuron* **65**, 695–705 (2010).

334 16. J. Cheng, D. Ji, Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse
335 model. *Elife* **2013** (2013).

336 17. G. Dragoi, S. Tonegawa, Preplay of future place cell sequences by hippocampal cellular assemblies. *Nature*
337 **469**, 397–401 (2011).

338 18. Andres Grosmark, György Buzsáki, Diversity in neural firing dynamics supports both rigid and learned
339 hippocampal sequences. *Science* (1979) **351**, 1440–1443 (2016).

340 19. G. Dragoi, S. Tonegawa, Distinct preplay of multiple novel spatial experiences in the rat. *Proceedings of the*
341 *National Academy of Sciences* **110**, 9100–9105 (2013).

342 20. H. Eichenbaum, Time cells in the hippocampus: A new dimension for mapping memories. *Nat Rev Neurosci*
343 **15**, 732–744 (2014).

344 21. E. Pastalkova, V. Itskov, A. Amarasingham, G. Buzsáki, Internally Generated Cell Assembly Sequences in the
345 Rat Hippocampus. *Science* (1979) **321**, 1322–1327 (2008).

346 22. C. J. MacDonald, K. Q. Lepage, U. T. Eden, H. Eichenbaum, Hippocampal “time cells” bridge the gap in
347 memory for discontiguous events. *Neuron* **71**, 737–749 (2011).

348 23. P. R. Gill, S. J. Y. Mizumori, D. M. Smith, Hippocampal episode fields develop with learning. *Hippocampus*
349 **21**, 1240–1249 (2011).

350 24. U. Gray, *et al.*, Time cells in the human hippocampus and entorhinal cortex support episodic memory.
351 *Proceedings of the National Academy of Sciences* **117**, 28463–28474 (2020).

352 25. X. Liu, D. A. Leopold, Y. Yang, Single-neuron firing cascades underlie global spontaneous brain events.
353 *Proceedings of the National Academy of Sciences* **118**, e2105395118 (2021).

354 26. S. E. J. de Vries, *et al.*, A large-scale standardized physiological survey reveals functional organization of the
355 mouse visual cortex. *Nat Neurosci* **23**, 138–151 (2020).

356 27. J. H. Siegle, *et al.*, Survey of spiking in the mouse visual system reveals functional hierarchy. *Nature* **592**,
357 86–92 (2021).

358 28. D. J. Foster, Replay Comes of Age. *Annu Rev Neurosci* **40**, 581–602 (2017).

359 29. E. T. Rolls, P. Mills, The Generation of Time in the Hippocampal Memory System. *Cell Rep* **28**, 1649–1658.e6
360 (2019).

361 30. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Neurophysiological investigation of the
362 basis of the fMRI signal. *Nature* **412**, 150–157 (2001).

363 31. N. Nitzan, R. Swanson, D. Schmitz, G. Buzsáki, Brain-wide interactions during hippocampal sharp wave
364 ripples. *Proceedings of the National Academy of Sciences* **119**, e2200931119 (2022).

365 32. J. Karimi Abadchi, *et al.*, Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave
366 ripples. *Elife* **9**, e51972 (2020).

367 33. P. Sanda, *et al.*, Bidirectional Interaction of Hippocampal Ripples and Cortical Slow Waves Leads to
368 Coordinated Spiking Activity During NREM Sleep. *Cerebral Cortex* **31**, 324–340 (2021).

369 34. A. Sirota, J. Csicsvari, D. Buhl, G. Buzsáki, Communication between neocortex and hippocampus during
370 sleep in rodents. *Proceedings of the National Academy of Sciences* **100**, 2065–2069 (2003).

371 35. N. K. Logothetis, *et al.*, Hippocampal–cortical interaction during periods of subcortical silence. *Nature* **491**,
372 547–553 (2012).

373 36. R. T. Bartus, R. L. Dean, B. Beer, A. S. Lippa, The Cholinergic Hypothesis of Geriatric Memory Dysfunction.
374 *Science* (1979) **217**, 408–414 (1982).

375 37. D. A. Drachman, J. Leavitt, Human Memory and the Cholinergic System: A Relationship to Aging? *Arch
376 Neurol* **30**, 113–121 (1974).

377 38. H. Hampel, *et al.*, The cholinergic system in the pathophysiology and treatment of Alzheimer's disease.
378 *Brain* **141**, 1917–1933 (2018).

379 39. Y. Gu, *et al.*, Brain Activity Fluctuations Propagate as Waves Traversing the Cortical Hierarchy. *Cerebral
380 Cortex* **31**, 3986–4005 (2021).

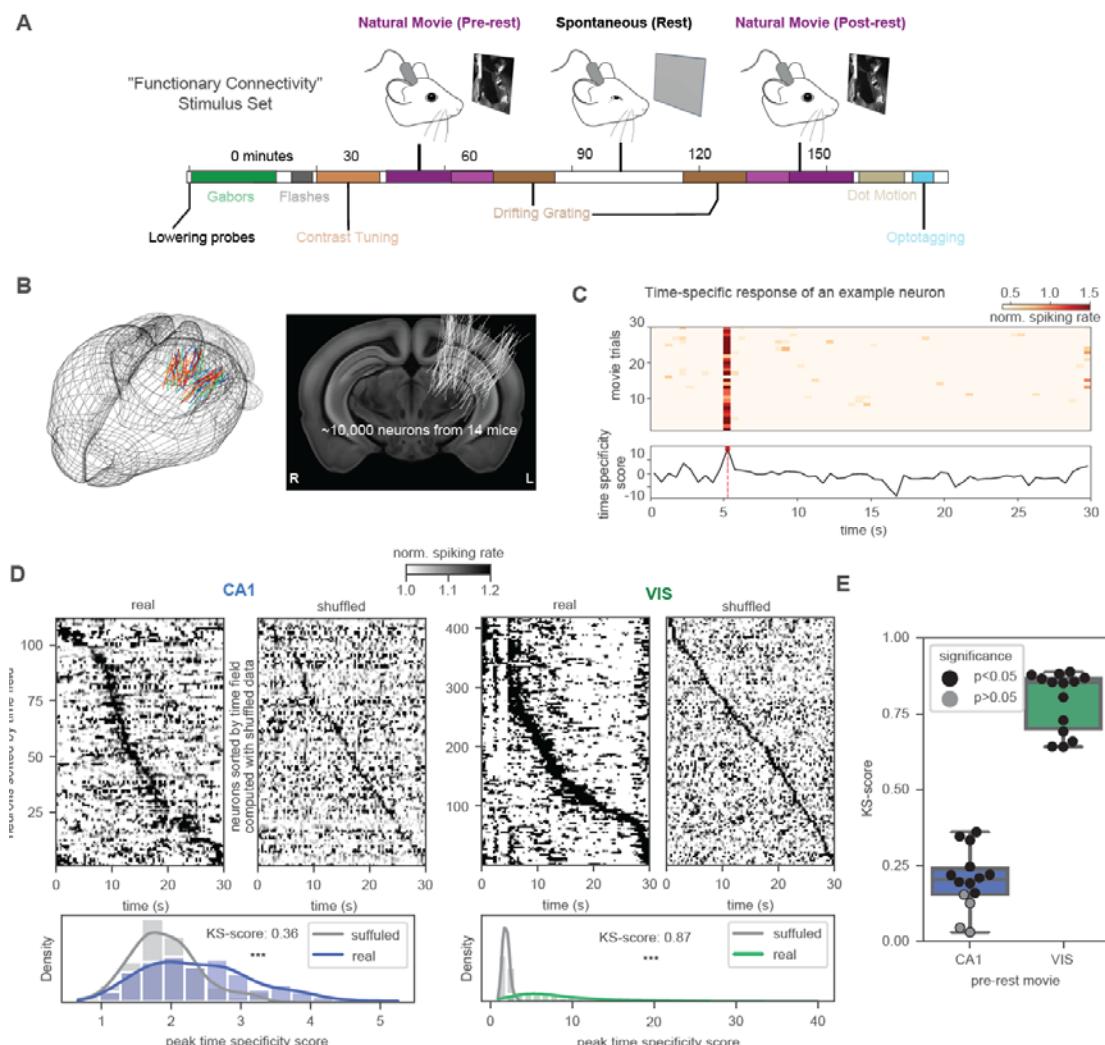
381 40. X. Liu, *et al.*, Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. *Nat
382 Commun* **9**, 395 (2018).

383 41. J. Turchi, *et al.*, The Basal Forebrain Regulates Global Resting-State fMRI Fluctuations. *Neuron* **97**, 940–
384 952.e4 (2018).

385 42. J. Reimer, *et al.*, Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. *Nat
386 Commun* **7**, 13289 (2016).

387 43. G. Buzsáki, Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning.
388 *Hippocampus* **25**, 1073–1188 (2015).

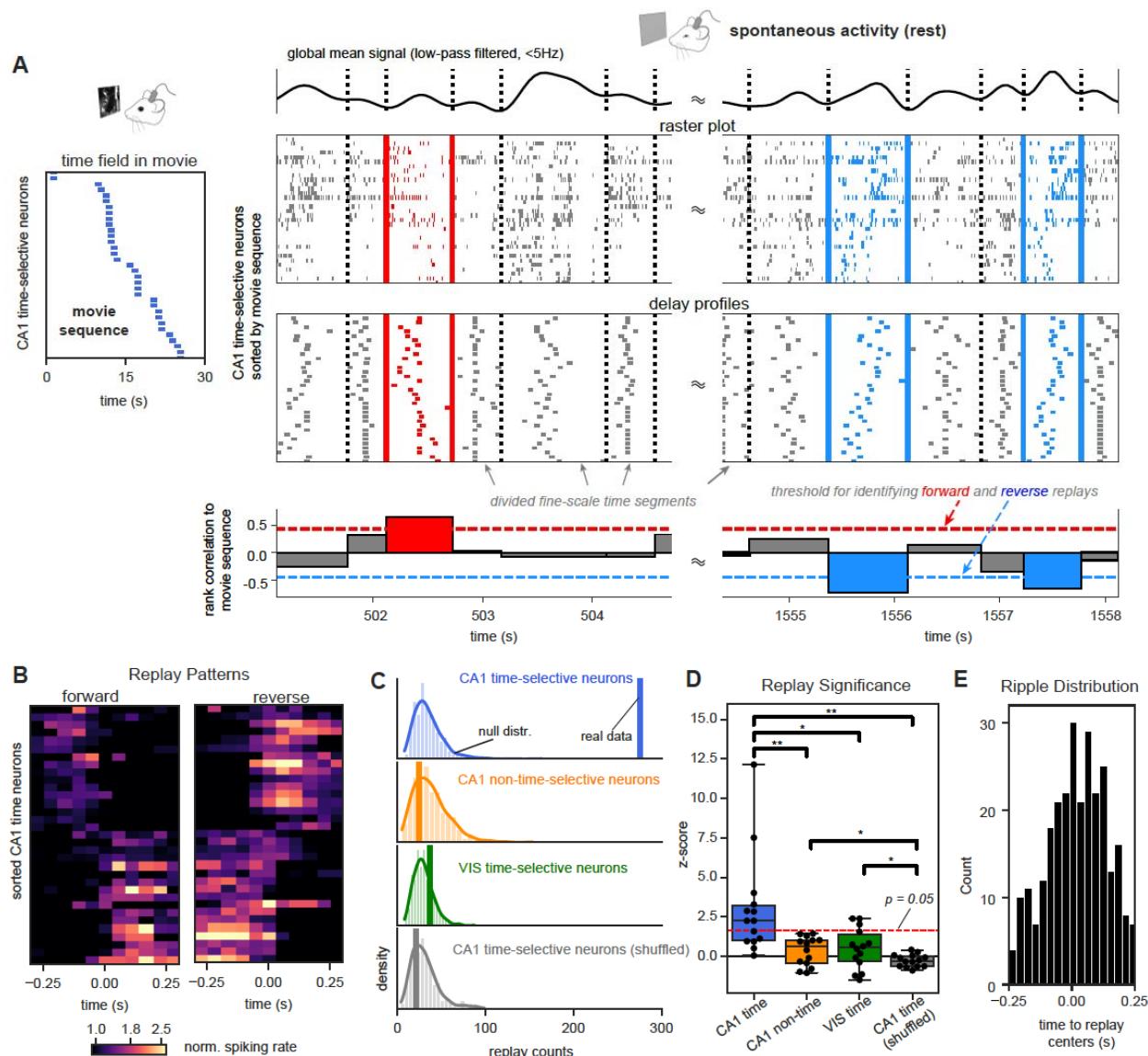
389 44. V. T. Takács, *et al.*, Co-transmission of acetylcholine and GABA regulates hippocampal states. *Nat Commun*
390 **9**, 2848 (2018).


391 45. M. Vandecasteele, *et al.*, Optogenetic activation of septal cholinergic neurons suppresses sharp wave
392 ripples and enhances theta oscillations in the hippocampus. *Proceedings of the National Academy of
393 Sciences* **111**, 13535–13540 (2014).

394

395

396


Figures

397

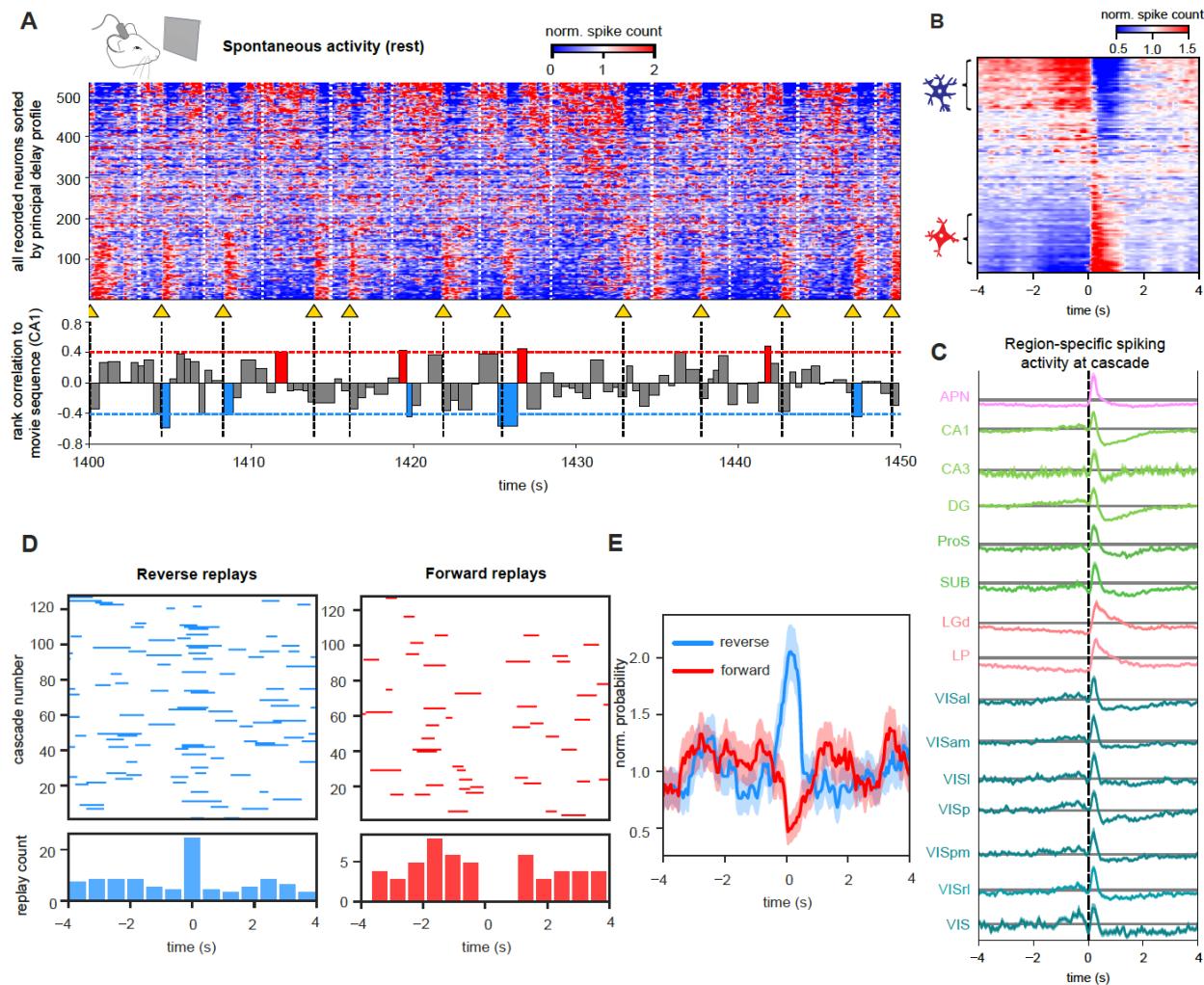
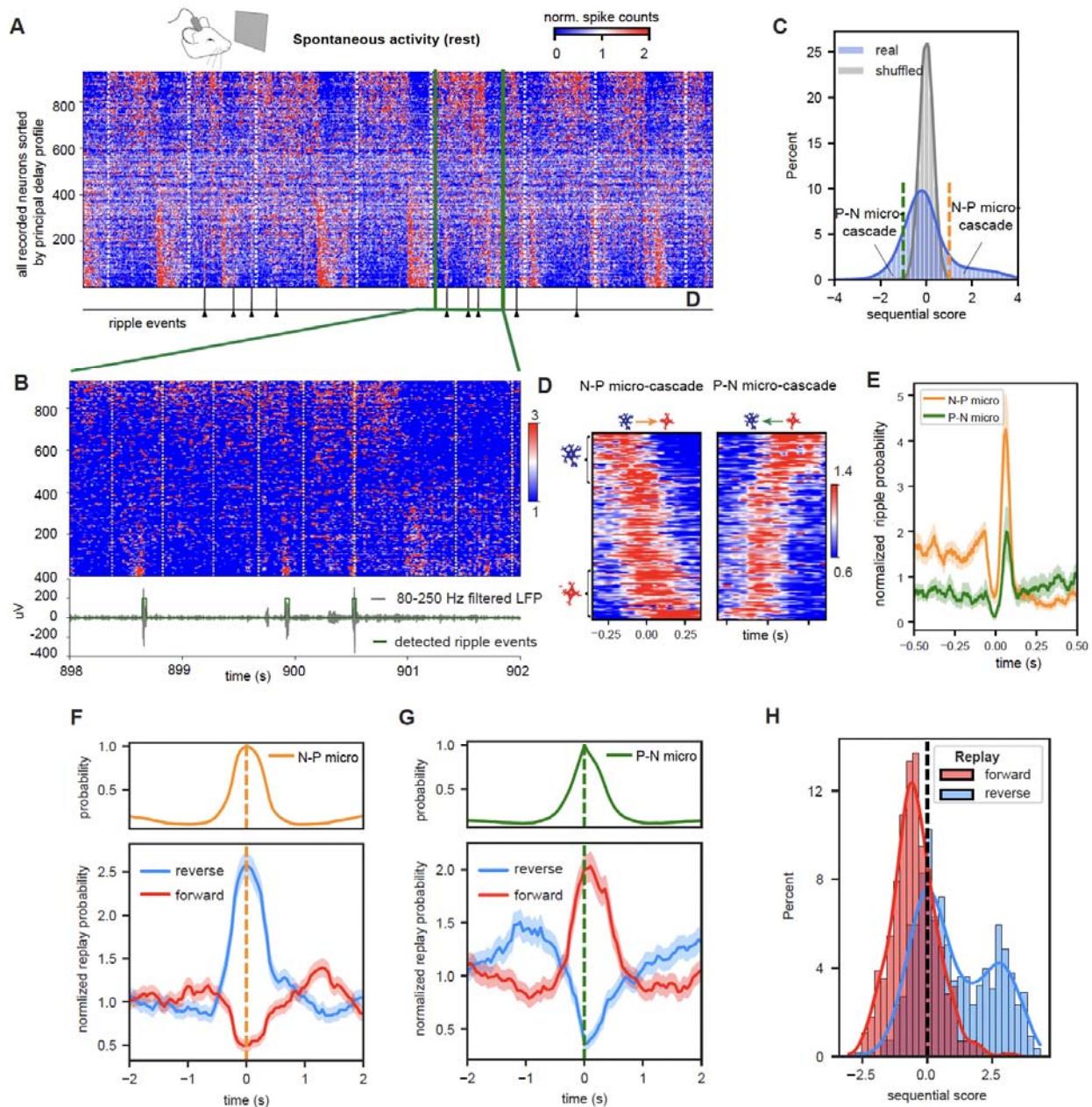

398

Figure 1. Time-specific responses of the hippocampal and visual neurons. (A) Illustration of the "Functional Connectivity" stimulus set of the "Visual Coding – Neuropixels" project, which includes a 30-minute spontaneous resting session and two natural movie sessions used in this study. (B) The three-dimensional (3D) location of 6,171 channels on 79 probes from 14 mice (left) and their projection onto the 2D middle slice of the brain template (right) in Allen Mouse Common Coordinate Framework. (C) An example neuron showing strong time-selective responses that are consistent across different trials of movie watching (top). The spiking rate was normalized to percentage changes with respect to its temporal mean. A time course of the time specificity score (bottom) achieved the peak value at the time field of this neuron (red line). (D) The averaged ($N = 30$ trials) spiking activity of the CA1 (left) and visual (right) neurons during the pre-rest movie watching. The neurons were sorted according to their time field. The two panels for each region show the results from the original data (left) and the shuffled control (right), which shuffled the spiking data of 0.5-sec time bins randomly within each movie trial. Distributions of the peak time specificity scores are compared between the real and shuffled data for both the CA1 (bottom left) and visual neurons (bottom right). The box plot of Kolmogorov–Smirnov (KS) score for all 14 mice. The KS score measures the difference in peak time specificity score distribution between the real and shuffled data. They are summarized for CA1 neurons and VIS neurons respectively. Each dot represents a mouse, and the black dot indicates a significant difference between the real and shuffled data ($p < 0.05$).


415

416 **Figure 2. Movie-induced sequence of hippocampal time-selective neurons replayed at rest. (A)** Detection of
417 replays in a representative mouse. Spiking data was divided into fine-scale time segments according to troughs of
418 the filtered (<5 Hz) global mean signal (top). The segment boundaries were marked by dotted lines. A delay profile
419 (the 3rd row) was computed to describe the relative timing of the time-selective neurons' spiking activity (the 2nd
420 row) within each time segment. A template of movie-induced sequence (left) was constructed based on the time
421 fields of the CA1 time-selective neurons in the movie. The bar plot (bottom) shows the Spearman's rank
422 correlations between the movie sequence and the delay profiles of the fine-scale segments. The forward (red) and
423 reverse (blue) replays were detected as the time segments showing significant ($p < 0.01$) positive and negative
424 correlations, respectively. (B) The averaged pattern of the forward (left) and reverse (right) replays from the
425 representative mouse. They were obtained by aligning and averaging the detected replay segments. (C) The
426 number of detected replay events was compared against a null distribution built with repeating the same analysis
427 on randomized movie sequences. The same result was derived for the CA1 time-selective neurons, CA1 non-time-
428 selective neurons, VIS-time-selective neurons, and CA1-time-selective neurons identified from the shuffled data
429 (from top to bottom). (D) The box plot of z-scores quantifying the difference between the real counts of replay
430 events and the null distributions from all 14 mice. (E) The distribution of hippocampal ripples counts relative to the
431 detected replay events of the CA1 time-selective neurons from all 14 mice.

432

433 **Figure 3. Hippocampal replay events temporally locked to spiking cascades across the forebrain.** (A) A
434 50-s example of spiking data during the resting state in a representative mouse with all recorded
435 forebrain neurons being sorted by the principal delay profile (top). Boundaries of the coarse-scale time
436 segments and spiking cascade (dashed white lines) were delineated by the troughs of the coarsely filtered
437 (<0.5 Hz) global mean signal. The bar plot (bottom) shows the rank correlations between the movie
438 sequence and the delay profile of the CA1 time-selective neurons. The forward and reverse replays were
439 colored by red and blue respectively, and the dotted horizontal lines represent the thresholds for detecting
440 the replay events. Yellow arrows and black dotted lines mark the fast-transitioning points from the
441 negative-delay neurons to the positive-delay neurons. (B) The averaged pattern of the spiking cascade
442 from the representative mouse. (C) Averaged spiking dynamics of different brain regions at the slow
443 spiking cascade. Only 15 brain regions with > 100 neurons were shown. (D) The detected reverse (top
444 left) and forward (top right) replays were distributed over the cycle of the spiking cascades from a
445 representative mouse. Each row corresponds to a spiking cascade and short horizontal lines represent the
446 detected replays. The length of each line equals to the duration of the replay. Their distributions were
447 summarized in the histograms (bottom). (E) The normalized probability of forward (red) and reverse
448 (blue) replays across the cascade cycle with the data from all the 14 mice. The shaded region denotes
449 area within 1 SEM ($N = 1787$).

450

451 **Figure 4. Distinct micro-cascades are associated with the forward and backward hippocampal replay**
 452 **events.** (A) An example of resting-state spiking data with a finer (20ms) temporal resolution. The bottom
 453 trace shows the identified SPW-R events. (B) A 4-sec segment in (A) was amplified horizontally. The
 454 spiking data was divided into fine-scale segments based on the troughs of the finely filtered (<5 Hz)
 455 global mean signal. The period with apparently sustained activations of the negative-delay neurons is
 456 punctuated by very brief (< 100ms) activations of positive-delay neurons, which are often associated with
 457 a single SPW-R. (C) The distribution of sequential scores of all the fine-scale segments. The sequential
 458 score is the normalized correlation between the delay profile of the fine-scale segments and the coarse-
 459 scale principal delay profile. The fine-scale segments with significant ($p < 0.001$) positive (right to the
 460 orange dash line) and negative (left to the green dash line) sequential score were defined as the negative-
 461 to-positive (N-P) and positive-to-negative (P-N) micro-cascades. (D) The averaged patterns of the N-P
 462 (left) and P-N (right) micro-cascades from a representative mouse, aligned and averaged according to
 463 the global spiking peaks in the identified micro-cascades. (E) The normalized probability of SPW-R

464 *across the cycle of the N-P and P-N micro-cascades. They were aligned and averaged according to the*
465 *brief peaks of positive-delay neuron activations in the micro-cascades. (F, G) The normalized*
466 *probabilities for the forward and reverse replays across the cycle of the N-P and P-N micro-cascades.*
467 *(H) Sequential score distributions for the fine-scale segments associated with the forward and reverse*
468 *hippocampal replays.*