

1 **ExoJ: an ImageJ2/Fiji plugin for automated spatiotemporal detection and**
2 **analysis of exocytosis**

3 LIU Junjun¹ [§], VERWEIJ Frederik Johannes², VAN NIEL Guillaume^{3,4,5}, GALLI Thierry^{4,6}
4 DANGLOT Lydia^{4,6,7, *}, BUN Philippe⁷ [§]

5

6 ¹ Jinan Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China

7 ² Utrecht University, Faculty of Science, Department of Biology, 3584 CH Utrecht, The
8 Netherlands

9 ³ Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM
10 U1266, Team Endosomal dynamics in neuropathies, 75014 Paris, France

11 ⁴ GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France

12 ⁵ present address: Team 7bis EVICAT, CRCI2NA, quai Moncousu, Nantes, France

13 ⁶ Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM
14 U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France

15 ⁷ Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM
16 U1266, NeurImag Imaging Core Facility, 75014 Paris, France

17 ^{*} Co-senior authors, [§] Corresponding authors

18 Emails: ftdxfish@163.com, f.j.verweij@uu.nl, guillaume.van-niel@inserm.fr,
19 thierry.galli@inserm.fr, lydia.danglot@inserm.fr, philippe.bun@inserm.fr

20

21 **Keywords**

22 ImageJ, Exocytosis, Membrane Fusion, Live-cell imaging, pH-sensitive probe

23

24

25 Abstract

26 Exocytosis is a dynamic physiological process that enables the release of biomolecules to the
27 surrounding environment via the fusion of membrane compartments to the plasma membrane.
28 Understanding its mechanisms is crucial, as defects can compromise essential biological functions.
29 The development of pH-sensitive optical reporters alongside fluorescence microscopy enables the
30 assessment of individual vesicle exocytosis events at the cellular level. Manual annotation
31 represents, however, a time-consuming task, prone to selection biases and human operational
32 errors. Here, we introduce ExoJ, an automated plugin based on ImageJ2/Fiji. ExoJ identifies user-
33 defined genuine populations of exocytic events, recording quantitative features including intensity,
34 apparent size and duration. We designed ExoJ to be fully user-configurable, making it suitable to
35 study distinct forms of vesicle exocytosis regardless of the imaging quality. Our plugin
36 demonstrates its capabilities by showcasing distinct exocytic dynamics among tetraspanins and
37 vesicular SNAREs protein reporters. Assessment of performance on synthetic data demonstrated
38 ExoJ is a robust tool, capable to correctly identify exocytosis events independently of signal-to-
39 noise ratio conditions. We propose ExoJ as a standard solution for future comparative and
40 quantitative studies of exocytosis.

41 **Introduction**

42 Exocytosis is a fundamental biological process to convey sets of chemical information to the
43 extracellular environment, and deliver membrane proteins and lipids to the plasma membrane (PM)
44 (Jahn and Südhof, 1999). Briefly, the process consists in the transport, docking, priming and fusion
45 of intracellular compartments to the PM (Verhage and Sørensen, 2008). This eventually leads to
46 the deposition of proteins and lipids into the PM, and the release of their luminal content to sustain
47 important physiological functions and to respond to external stimuli. An orchestrated
48 spatiotemporal control of exocytosis is thus critical in the regulation of physiological and
49 pathological processes such as those sustained by the release of exosomes (Alberts et al., 2006;
50 Bebelman et al., 2018; Chen and Scheller, 2001; Guček et al., 2019; Gundelfinger et al., 2003;
51 Lamichhane et al., 2015; Martinez-Arca et al., 2001a; Meldolesi, 2018; Urbina et al., 2018; van
52 Niel et al., 2018; Wang et al., 2018). This also underlies the need to characterize the structural
53 dynamics of the fusion machinery, the biochemical profile of the biological contents and the
54 spatiotemporal dynamics of their release. In addition to a collection of biochemical approaches,
55 methods using live-cell imaging of fluorescently-tagged intracellular vesicles allow for
56 spatiotemporal monitoring and quantitative analysis of content release (Ge et al., 2010). In
57 particular, total internal reflection fluorescence microscopy (TIRFM) has become the imaging
58 modality of choice due to its inherent high signal-to-noise ratio with a reduced phototoxicity while
59 increasing temporal resolution (Axelrod and Omann, 2006; Bebelman et al., 2020; Burchfield et
60 al., 2010; Mattheyses et al., 2010; Miesenböck et al., 1998; Sankaranarayanan et al., 2000a;
61 Schmoranzer et al., 2000). The TIRFM evanescent field of illumination enables the recording of
62 events close to the PM, minimizing the disturbance from fluorescently-labeled vesicles in the
63 cytoplasm. Specific labeling of vesicle exocytosis is achieved by tagging the content and/or the

64 vesicle membrane with a pH-sensitive fluorescent protein (FP) variant of GFP, known as pHluorin
65 (Miesenböck et al., 1998). The FP pHluorin is quenched in the acidic vesicular lumen, and
66 brightens in the neutral extracellular environment upon vesicle fusion to the PM (hereafter termed
67 fusion event). Using TIRFM, the fusion event appears as an abrupt brightening followed by
68 spreading of the fluorescence signal (Miesenböck et al., 1998). Besides the vesicle-specific protein
69 marker, the choice of the FP greatly influences the monitoring of the dynamics of exocytosis steps
70 as evidenced by others (Liu et al., 2021a; Martineau et al., 2017; Sankaranarayanan et al., 2000b;
71 Shen et al., 2014). Taken together, the subsequent amount of data generated by fluorescent time
72 series poses the need of a robust analysis pipeline to identify exocytic events in an unbiased manner.
73 Manual annotation of each candidate event represents a time-consuming task, and is prone to
74 selection biases. In particular, recordings of fusion event XY location to report potential
75 intracellular hotspots, the intensity which estimates the relative amount of proteins, the apparent
76 size and the duration are hardly reproducible from one cell to the other. Numerous algorithms have
77 been developed to address these challenges in a semi- (Bebelman et al., 2020; Huang et al., 2007;
78 Jullie et al., 2014; Wang et al., 2018) or fully automated manner (Diaz et al., 2010; Mahmood et
79 al., 2023; Moro et al., 2021a; Persoon et al., 2019; Sebastian et al., 2006; Urbina and Gupton, 2021;
80 Yuan et al., 2015). These solutions are, however, optimized for a particular population of vesicular
81 cargoes and hence specific applications (Bebelman et al., 2020; Burchfield et al., 2010; Diaz et al.,
82 2010; Huang et al., 2007; Jullie et al., 2014; Moro et al., 2021b; Persoon et al., 2019; Sebastian et
83 al., 2006; Urbina et al., 2018; Wang et al., 2018; Yuan et al., 2015). Here we present Project-ExoJ
84 (hereafter named ExoJ), a solution developed as an ImageJ2/Fiji (Schindelin et al., 2012) plugin
85 that automates the identification of fluorescently-reported fusion event. We designed ExoJ to be
86 fully user-configurable, with a graphical user interface to set up a series of parameters that define
87 a genuine population of exocytic events according to the experimental conditions. To improve user

88 experience, we provided tools for visualizing and further reporting features such as spatial location,
89 intensity over time, apparent size and duration. To illustrate ExoJ capability, we focused on fusions
90 events reported by tetraspanin (TSPAN) and vesicular soluble N-ethylmaleimide-sensitive fusion
91 protein attachment protein receptor (v-SNARE) proteins coupled to pHluorin. Recordings of
92 quantitative features revealed significant differences between and among labeled vesicle
93 populations. Assessment of ExoJ performance using synthetic data revealed a highly robust and
94 reliable identification tool insensitive to noise encountered in experimental settings.

95 **Results**

96 **ExoJ workflow for automated identification of exocytic events**

97 At least three modes of exocytosis have been identified (full-collapse, kiss-and-run and compound
98 exocytosis) and characterized according to their fusion dynamic patterns (Wu et al., 2014).
99 Although each mode has its own fluorescence fluctuation pattern, the intensity decays to a certain
100 extent right after vesicle fusion to the PM. This makes automatic recognition possible. Hence, we
101 describe a fusion event as a transient diffraction-limited or large object that displays a sudden
102 increase followed by an exponentially decreasing fluorescence intensity into the background. This
103 fluorescence decrease is characterized by the mean lifetime decay τ (Fig. 1A). With this definition,
104 we designed a processing pipeline broken into three main steps. Each step is managed in its own
105 graphical user interface (GUI) dialog in which every parameter can be manually adjusted (Fig. 1).
106 These parameters can be saved and called in the pipeline to improve reproducibility (Fig. 1B,C,D
107 and Table 1).

108 *Vesicle detection*

109 The first step consists in detecting vesicles seen as bright spots from image series (Fig. 1B and
110 Table 2). Before performing spot detection, we apply a custom photobleaching correction
111 algorithm to compensate for the variations in image intensity within fluorescent time sequences, as
112 described in the Materials and Methods section. Users can rely on either a wavelet-based (default
113 option) or local maximum algorithm detection (by unchecking the wavelet filter box; Fig. 1B). For
114 the wavelet-based option, we employ the multiscale à trous wavelet transform algorithm (Olivo-
115 Marin, 2002).

116 To selectively keep user-specified sized spots from image series, images are convolved with a set
117 of wavelet functions that are scaled according to the minimum and maximum vesicle radius (Min.
118 and Max. vesicle radius; Fig. 1B). The resulting images are then decomposed into high and low-
119 frequency components. On the low frequency component images, pixel values are now equal to
120 wavelet coefficients C_{wavelet} as a result of wavelet transformation (Show wavelet lowpass image;
121 Fig. 1B). The coefficient C_{wavelet} coarsely translates the similarity between sets of pixels and the
122 user-defined wavelet functions. C_{wavelet} value increases when there is a close resemblance between
123 the intensity signal and the user-defined wavelet functions.

124 The median absolute deviation (MAD) is a measure of variability similar to standard deviation but
125 less sensitive to outliers (e.g. non-specific cell compartments, noise saturated pixels, ...). We next
126 define a single hard threshold parameter $k\sigma_{\text{wavelet}}$ with σ_{wavelet} calculated from the MAD of C_{wavelet}
127 as follows:

128
$$\sigma_{\text{wavelet}} = \text{median}(\text{abs}(C_{\text{wavelet}} - \text{median}(C_{\text{wavelet}})))$$

129 Users set the tolerance of the spot detection algorithm when they set the value of k . Thus, the
130 algorithm sets to zero the pixel coefficients C_{wavelet} whose absolute values are lower than $k\sigma_{\text{wavelet}}$
131 (Fig. 1B). Hence, setting a high k value would decrease the number of detected objects. An inverse
132 transform is finally applied to reconstruct single fluorescence intensity images (Fig. 1B and Table
133 2). Alternatively, users can rely on a custom-written local maximum algorithm on single images
134 (unchecked Wavelet Filter box; Fig. 1B). In this option, each pixel is replaced with its
135 corresponding neighborhood maximum intensity value. The radius of the neighborhood is set to
136 twice the user-defined minimal vesicle size. With this approach we also defined $k\sigma_F$ where σ_F is
137 now obtained from the MAD of pixel intensity at each image.

138 The detection result on single images can be previewed to ensure that proper fluorescence spots
139 were accurately detected (Fig. 1B and Table 2). Once determined, the parameter is applied for the
140 whole image series to extract the XY location of all fluorescent spots with a local maxima method
141 within an adaptive window sized to $2 * \text{Min. vesicle radius} + 1$.

142 *Vesicle tracking*

143 The second step consists in building individual time-lapse trajectories of previously localized
144 fluorescent spots (Fig. 1C). While the starts of single trajectories are due to the appearance of a
145 bright spot, the ends are not solely due to the fusion to the PM but could result from limitations in
146 imaging conditions (e.g. low signal-to-noise ratio, loss of focus, ...). To account for this caveat, we
147 combine a simple but yet sufficient multi-frame nearest-neighbor approach with a gap-closing
148 algorithm (Chenouard et al., 2014; Crocker and Grier, 1996). Here, our plugin introduces three cut-
149 off parameters that need to be tailored according to vesicle behavior, consisting of a spatial
150 searching range, a temporal searching window and a minimal event size (Fig. 1C and Table 3).
151 Spot size, direction and intensity are not considered during the frame-to-frame tracking process.
152 Spots within the user-defined spatial and temporal searching range are assigned to the same
153 trajectory, minimizing their global lateral displacement.

154 *Fusion event identification*

155 Various features have been considered to streamline the accurate identification of different types
156 of fusion events in different cellular contexts (Bebelman et al., 2020; Burchfield et al., 2010; Diaz
157 et al., 2010; Moro et al., 2021a; Sebastian et al., 2006; Urbina et al., 2018; Wang et al., 2018; Yuan
158 et al., 2015). Here, we combine advantages of previous methods to define a versatile processing
159 protocol. We reason that all fusion events display a statistically significant and transient

160 fluorescence peak fluctuation F above the local background F_0 , followed by an exponential
161 fluorescence decay (Fig. 1D). Considering single vesicle trajectories, we first perform consecutive
162 adjacent image subtraction to normalize the background fluorescence intensity (Jullie et al., 2014;
163 Sebastian et al., 2006). This step results in a high signal-to-noise ratio 1st-order differential
164 fluorescent image series dF (Fig. 1D). For each candidate fusion event, we calculate σ_{dF} as the
165 MAD of dF instead of solely considering the normalized peak change in fluorescence intensity
166 $\Delta F/F_0$ (Bebelman et al., 2020; Jullie et al., 2014; Persoon et al., 2019; Urbina et al., 2018). To refine
167 the estimation of σ_{dF} , the trajectories of single candidate events are extended before (resp. after)
168 the appearance (resp. disappearance) of the vesicle according to user entries (Expanding Frames;
169 Fig. 1D). We eventually proceed with a moving linear regression on the fluorescence peak intensity
170 profile to refine the onset time t_0 of candidate fusion events. This step helps considering
171 fluorescence saturation and successive events at the same XY location. The algorithm also
172 evaluates the maximal displacement of candidate events relative to their initial XY location at t_0 .

173 Additional measurements are made by our plugin to describe the population of candidate fusing
174 vesicles, including the mean lifetime τ which relates to the fusion dynamics and serves as a proxy
175 for the fusion duration; the apparent size of the fusion event and the normalized peak change in
176 fluorescence intensity $\Delta F/F_0$ which estimates the relative amount of fluorescently-labeled proteins.

177 To account for various types of vesicle fusion and/or image series acquired under different
178 experimental conditions, we integrate user-defined entries to modulate the definition of a genuine
179 fusion event and hence the identification requirements of the algorithm (Table 4). In particular,
180 candidate events with dF higher than $k\sigma_{dF}$ (Detection threshold; Fig. 1D), limited displacements
181 (Max. displacement), duration (Upper/Lower decay limit) and estimated size (Upper/Lower est.
182 radius limit) at t_0 that comply with user inputs are seen as genuine fusion events (Fig. 1D). For the

183 last two parameters, the goodness-of-fit, reported by the coefficient of determination R^2 , is set as a
184 threshold value (Min. R^2) above which events are selectively kept (Fig. 1D, see parameters 8 and
185 9). Once the identification parameters are set, the plugin summarizes features of user-defined
186 genuine events for potential manual curation, visualization and export of detection features (Fig.
187 S1).

188 **ExoJ is an adaptative tool to detect fusion events with high accuracy**

189 To evaluate whether our tool can accurately detect fusion events, we used Hela cells expressing
190 pHluorin-tagged CD9, CD63 and CD81 TSPANs commonly used to track extracellular vesicle
191 (EV) exocytosis (Crescitelli et al., 2013; Kowal et al., 2016; Mathieu et al., 2021; Théry et al.,
192 2018; Witwer and Théry, 2019), and v-SNARE VAMP2 and VAMP7 proteins which are
193 components in the fusion machineries in many cellular contexts (Burgo et al., 2012; Chaineau et
194 al., 2008; Daste et al., 2015; Gupton and Gertler, 2010; Han et al., 2017; Jahn and Scheller, 2006;
195 Martinez-Arca et al., 2001b; Martinez-Arca et al., 2003; Proux-Gillardeaux et al., 2005; Proux-
196 Gillardeaux et al., 2007; Vats and Galli, 2022; Verderio et al., 2012; Wang et al., 2018) (Fig. 2A).

197 To account for different image qualities and/or fusion reporter signal intensity (Fig. 2A), we
198 iteratively refined the detection threshold values $k\sigma_{\text{wavelet}}$ (Fig. 1B and Table 2), dF/σ_{dF} (Fig. 1D
199 and Table 4) and the time window centered around candidate events at t_0 (Expanding frames; Fig.
200 1D and Table 4) until we reach a plateau of detected TSPAN- and v-SNARE-reported fusion
201 events. While detection thresholds allow for distinct fusion intensity with respect to the local
202 background, our algorithm explores a user-set time window to optimize the capture of fusion events
203 of different dynamics. No further adjustments were made before running the identification process
204 of each vesicle population in a batch-processed manner. We eventually reported a total number of
205 481 and 315 analyzed events for TSPAN and v-SNARE population respectively. After in-depth

206 reviews, we removed 10 TSPAN-pHluorin and 2 v-SNARE-pHluorin detection hits that did not
207 correspond to fusion events but rather to filopodia tips coming in and out of focus, extracellular
208 fluorescent objects and stationary vesicles. The overall identification error rate of 1.5% is
209 comparable or better than previously published algorithms (Urbina et al., 2018; Yuan et al., 2015).
210 The capacity to modulate the identification algorithm ensures our plugin to be adaptive in detecting
211 distinct types of fluorescently-reported fusion event with high accuracy.

212

213 **ExoJ feature evaluation provides quantitative insights into distinct forms of vesicle-mediated**
214 **exocytosis**

215 We next evaluated whether ExoJ could be used to quantitatively study exocytosis. TSPAN CD9,
216 CD63 and CD81 are known to form protein microdomains at the PM (Hemler, 2005; le Naour et
217 al., 2006) regulating various cellular function ranging from cell adhesion to proliferation (Becic et
218 al., 2022) and signaling at the immunological synapse (Levy and Shoham, 2005). Recently, these
219 three TSPANs are found to be enriched to various degrees in the membrane of EV subpopulations
220 such as ectosomes and exosomes (Crescitelli et al., 2013; Escola et al., 1998; Kowal et al., 2016;
221 Mathieu et al., 2021; Théry et al., 2018; Verweij et al., 2018). Exosomes are formed as intraluminal
222 vesicles in late endosomes, and their secretion can be detected using pHluorin-tagged proteins (Fig.
223 2A). Previous studies have, however, found CD9 mainly enriched in other subtypes of EVs directly
224 budding from the plasma membrane and hence not monitored by our approach (Kowal et al., 2016;
225 Mathieu et al., 2021; Verweij et al., 2018). We examined post-fusion features of TSPAN
226 subpopulations and compared them to transport vesicles reported with v-SNARE-pHluorin (Fig.
227 2A). In Hela cells, the detection algorithm recorded a statistically similar fusion activity between

228 individual reporter populations (Fig. 2B) with no correlation with the intensity and fusion apparent
229 size (Fig. 2C,D). Despite TSPAN-pHluorin-reported events displaying two to three-fold higher
230 fusion intensity than the v-SNAREs, our unbiased automatic detection method was able to capture
231 exocytic events reported by both, highlighting the effectiveness of our approach even in the
232 presence of significantly varying signal intensity (Fig. 2A,C). The recorded difference among v-
233 SNARE-pHluorin subpopulations is consistent with previous findings in various cellular contexts,
234 where v-SNAREs VAMP2 and VAMP7 were observed to be differently localized in endosomes at
235 different stages (Gupton and Gertler, 2010; Wang et al., 2018) (Fig. 2C,E). The estimation of
236 apparent size of events reported by TSPAN-pHluorin (Fig. 2D) matches previous qualitative
237 analysis at supra-optical electron microscopy (EM) resolution using a dynamic correlative light
238 electron microscopy approach (Verweij et al., 2018). In addition, the apparent size did not differ
239 significantly from v-SNARE-pHluorin-reported events (Fig. 2D) which was at the lower end of the
240 total spectrum previously reported by Altick and colleagues (Altick et al., 2009). This, however,
241 closely matches early quantitative EM studies in the central nervous system (Roizin et al., 1967).
242 Focusing on the fusion duration, we first noted the short-lived fluorescence signal of v-SNARE-
243 pHluorin, corresponding to a rapid either post-fusion lateral diffusion at the PM or endocytic
244 process (Alberts et al., 2006; Miesenböck et al., 1998; Urbina et al., 2018; Verweij et al., 2018;
245 Wang et al., 2018) (Fig. 2E). We also showed that subpopulations of TSPAN-pHluorin displayed
246 a significantly distinct fusion event duration (Fig. 2E). The signal duration at the PM of CD81-
247 pHluorin was almost two- and three-fold longer than CD63- and CD9-pHluorin respectively. This
248 could not previously be measured with this level of accuracy (Verweij et al., 2018). The divergence
249 in fusion duration could not be explained by a noticeable difference in apparent size, nor a
250 significantly higher amount of TSPANs (Fig. 2C,D). For CD63 and CD81, we hypothesized that
251 this difference could either reflect the various regulatory fusion machineries and/or the

252 heterogeneity in the composition, the biogenesis, the maturation and the secretion of reported EV
253 subpopulations (Edgar et al., 2016; Larios et al., 2020). Indeed, TSPANs are known to organize in
254 distinct TSPAN-enriched microdomains that consist primarily of less than 120 nm homotypic
255 TSPAN-TSPAN interactions and specific partner proteins (Charrin et al., 2009; Rubinstein et al.,
256 1996; van Deventer et al., 2021) and mark distinct populations of exosomes (Matsui et al., 2021).
257 Furthermore, the signal duration of CD9-pHluorin was similar to v-SNARE-labeled population of
258 vesicles, as previously observed (Verweij et al., 2018). This suggested that CD9-pHluorin bursts
259 of fluorescence may reflect post-fusion lateral diffusion over the PM or endocytosis similarly to v-
260 SNARE-pHluorin rather than exosome secretion in most events.

261 Altogether, our computer vision-assisted tool enabled us to record and evaluate features of different
262 types of cargo and/or vesicles, providing quantitative insights into post-fusion dynamics.

263

264 **Performance assessment of ExoJ evidences a highly robust solution to detect fusion events**

265 To fully assess the performance of ExoJ, we simulated movies with synthetic data corresponding
266 to fluorescence signal of fusion events randomly distributed at the cell surface (Fig. 3A). In our
267 simulation, we modeled a random number of events across a wide range of normalized intensity
268 $\Delta F/F_0$, apparent size and duration τ features including data collected in this study and in different
269 cellular contexts and/or protein reporters from others (Persoon et al., 2019; Urbina et al., 2018;
270 Verweij et al., 2018; Wang et al., 2018; Yuan et al., 2015). We also simulated events featured as
271 non-relevant, exhibiting distinct signal decay behaviors (see Materials and Methods for details).
272 We additionally tested the influence of increasing Gaussian noise signal which coarsely
273 recapitulates local background variation (Fig. 3A). ExoJ was able to accurately capture simulated

274 events within the range of typical signal-to-noise ratio observed experimentally, with an
275 identification error rate (also equates to 100 – accuracy) as low as 1.5% up to 3% which remains
276 comparable to Urbina and colleagues' work (Urbina et al., 2018) (Fig. 3B). At each noise
277 increment, we thoroughly adjusted the algorithm requirements by refining $k\sigma_{\text{wavelet}}$ (step 1), dF/σ_{dF}
278 (step 3), both goodness-of-fit R^2 and the time window to optimize event identification (Fig. 1D and
279 Table 4). In response to incremental Gaussian noise, ExoJ detection capability was significantly
280 degraded with an error rate up to $7\% \pm 1.4\%$, which still performs at a higher level of accuracy
281 under equal noise condition (Urbina et al., 2018). Error rate alone is an incomplete measure on
282 simulated movies with disparate fusion activity. Thus, we introduced standard metrics such as
283 sensitivity, precision and specificity which altogether score the ability to correctly detect events
284 while accurately discarding those featured as non-relevant (see Materials and Methods for details).
285 Results on simulated events demonstrated that ExoJ is a highly robust tool with scoring metrics
286 above 97% (Fig. 3C) which bettered previously published algorithms (Sebastian et al., 2006;
287 Urbina et al., 2018). Increasing the contribution of Gaussian noise signal significantly impaired the
288 ability to correctly capture fusion events down to 89.6% (sensitivity) in the lowest condition.
289 However, these captured events were accurately identified (precision of 97.8%) while avoiding
290 those non-relevant (specificity of 97.3%) (Fig. 3C). This balance between sensitivity and precision
291 was observed independently of added Gaussian noise signal, and reported with a very high F1 score
292 (Fig. 3C). In addition, there was no correlation between ExoJ scoring results and the frequency rate
293 of fusion events simulated per movie. The flexibility of ExoJ enabled us to relax the algorithm
294 requirements to account for changes in imaging signal-to-noise ratio without degrading its ability
295 to effectively capture fusion events.

296 Finally, we asked whether the event detection procedure is reliable enough to handle biological
297 variability between individual cells. To mimic this, we took advantage of the random
298 spatial distribution of Gaussian noise added to simulated timeseries. We added noise with a sigma
299 value of 1, followed by event identification using constant set of parameters previously optimized
300 for single simulated movies. We repeated this procedure ten times, scored ExoJ performance at
301 each round and reported the overall relative variation using the MAD. Our results demonstrated a
302 high repeatability in detection, independently of the simulated fusion event rate as well (Fig. 3D).
303 The average MAD evaluation showed an overall variation of 4.1%, 4.0% and 7.7% for accuracy,
304 F_1 score, and specificity, respectively.
305 Taken together, assessment of ExoJ performance revealed a robust tool in identifying fusion events
306 insensitive to experimental noise.

307 **Discussion**

308

309 Here we presented ExoJ, a computer-vision assisted tool for the automated identification and
310 analysis of vesicle exocytosis events marked by a pH-sensitive probe. The identification algorithm
311 was designed as a fully user-configurable processing pipeline, making it suitable to detect and
312 analyze various forms of exocytic events independently of the imaging condition. Built-in options
313 were implemented for visualization and manual curation of event features.

314

315 **Considerations and future applications**

316 We demonstrated ExoJ ability in monitoring fusion events reported by TSPAN- and v-SNARE-
317 pHluorin proteins with high accuracy. Reporting of spatiotemporal features provided quantitative
318 insights with unique details between and among subpopulations of vesicle exocytosis. Using
319 simulated data covering a wide range of feature data, performance assessment underscored ExoJ
320 as a robust and reliable identification tool. As it is, ExoJ usage has no specific constraints on vesicle
321 exocytosis features including normalized intensity $\Delta F/F_0$, duration of signal decay τ and apparent
322 size. In response to changing condition in imaging, the sensitivity of event detection could be
323 adjusted by lowering the detection threshold value $k\sigma$ right from the first step (Fig. 1B). This will
324 increase the number of captured spots along with the processing time in the subsequent steps (up
325 to 12 minutes per movie on average for $+\sigma_G$ condition; Fig. 3A). We derived the duration of fusion
326 events by evaluating the mean lifetime τ of fluorescence peak intensity profiles F fitted with single
327 mono-exponential decay functions (Fig. 1A). While most studies described exocytosis kinetics
328 with single exponential decay, raw data are available for export and manual curation using a

329 different mathematical model as performed by Mahmood and colleagues (Mahmood et al., 2023).
330 Apparent size is not a limiting factor since spots are seen as gaussian-shaped intensity over a user-
331 defined range of gaussian widths. In contrast to fusion intensity and duration, apparent size results
332 were, however, modest due to the resolution limit of TIRFM (Fig. 2D). The advent of fast-imaging
333 Structured Illumination Microscopy and novel fluorescent markers may improve the recording of
334 the structural dynamics of exocytosis with unprecedented resolution (Huang et al., 2018; Li et al.,
335 2015; Liu et al., 2021b; Roth et al., 2020). In combination with ExoJ, we are confident that these
336 developments will certainly help providing insights into exocytosis-associated protein dynamics,
337 and exploring machinery involved in EV biogenesis and secretion (Verweij et al., 2022).

338

339 **Relevance to existing methods**

340 Numerous bioinformatics tools on single or cross-platforms have previously been developed for
341 specific applications which make fair comparison difficult (Bebelman et al., 2020; Burchfield et
342 al., 2010; Diaz et al., 2010; Jullie et al., 2014; Mahmood et al., 2023; Moro et al., 2021a; Persoon
343 et al., 2019; Sebastian et al., 2006; Urbina et al., 2018; Wang et al., 2018; Yuan et al., 2015). In
344 addition, some image formats are not accepted, file size limit could hinder the time of analysis, and
345 feature extraction approach could vary (Mahmood et al., 2023; Urbina and Gupton, 2021; Urbina
346 et al., 2018; Yuan et al., 2015). Our goal in developing ExoJ was to provide a common, yet robust
347 computer-vision assisted solution regardless of the experimental condition. To this end, we
348 designed a GUI-based tool as a plugin for ImageJ2/Fiji, a well-established platform for biological
349 image analysis (Schindelin et al., 2012). As a result, ExoJ accepts all type of image formats and bit
350 depths recognized by ImageJ2/Fiji. Prior to running ExoJ if necessary, experimental data could be
351 pre-processed using built-in filter toolboxes. In the last decade, supervised methods approaches

352 have achieved great success in providing solutions for detecting subcellular structures in
353 fluorescent microscopy images (Boland and Murphy, 2001; Hu et al., 2010; Johnson et al., 2015).
354 In particular, machine learning approaches were successfully applied for spot detection upon a
355 training phase (Jiang et al., 2007; Lin et al., 2019). Careful selection and label of training datasets
356 is, however, an essential prerequisite, either manually or using other detection methods. Instead,
357 we opted for unsupervised methods which also perform well with simple user-configurable features
358 such as fluorescently patterned vesicular spots (Basset et al., 2015; Smal et al., 2010). We
359 illustrated the capacity of ExoJ to detect distinct exocytic events, illustrated here by TSPAN- and
360 SNARE-pHluorin, using a limited number of biological parameters (Fig. 1B-D). We based ExoJ
361 detection on a proven wavelet transform algorithm (Lagache et al., 2018; Olivo-Marin, 2002;
362 Püspöki et al., 2016; Ruusuvuori et al., 2010; Toonen et al., 2006; Yuan et al., 2015). We also
363 introduced the statistical measure MAD to hone the capture of candidate exocytic events which
364 could partly explain the performance difference with Yuan and colleagues' wavelet-based tool
365 (Yuan et al., 2015). Our detection algorithm also explored a user-set time window centered around
366 exocytic events, whereas previously published tools had it fixed or hardly modifiable (Mahmood
367 et al., 2023; Urbina and Gupton, 2021; Urbina et al., 2018; Yuan et al., 2015). Throughout the
368 workflow, users can go back and forth to readjust parameters and preview results. Much efforts
369 have been devoted to facilitate the identification of user-defined genuine events as well as
370 implementing options for data visualization, manual curation and export (Fig. S1). In addition to
371 our study, ExoJ has recently demonstrated its capability in providing quantitative insights on the
372 role of SNARE protein SNAP29 in CD63-pHluorin-labelled EVs in PC-3 cells imaged with a
373 confocal spinning-disk microscope (Hessvik et al., 2023). We are convinced that ExoJ could
374 become a standard tool for quantitative review of comparative studies of vesicle exocytosis in an
375 unbiased manner.

376 **Materials and Methods**

377

378 **Installation and system requirements**

379 ExoJ was developed as an ImageJ2/Fiji (Schindelin et al., 2012) plugin for the automated detection
380 and analysis of exocytic events in 8 or 16-bit grayscale fluorescent image series. The plugin is
381 published under the GPLv3 license. It uses ImageJ2/Fiji capabilities to open a wide range of image
382 formats using the plugin Bio-Formats (Linkert et al., 2010). The plugin ExoJ can be downloaded
383 on the following website <https://www.project-exoj.com/> with the code source available at
384 <https://github.com/zs6e/exocytosis-analyzer-plugin>. To install the plugin, place the .jar file in the
385 ImageJ2/Fiji plugin directory. After a restart, ExoJ will be available in the ImageJ2/Fiji plugin
386 menu. ExoJ is compatible with ImageJ v1.53t or newer version, and has been tested on Windows
387 and MacOS platforms. We recommend using a 64-bit operating system with Java 8 installed and
388 at least 4 GB RAM.

389

390 **Photobleaching correction**

391 The main challenges posed by reliable vesicle detection are associated with prolonged live-cell
392 acquisition, such as cell migration, focus drift and photobleaching. While cell migration and focus
393 drift lead to unpredictable fluorescent changes at a given pixel, the photobleaching effect can be
394 theoretically compensated to a certain extent (Miura, 2020). The variations of fluorescent signals
395 over time within cell compartments are occurring at slower dynamics compared to single fusion
396 events. To compensate for this effect, we implement an optional custom-written correction based
397 on a non-fitting, pixel-by-pixel weighted detrending method. The option is available during the

398 spot detection step (Fig. 1B). If “Correct photobleaching” is selected in the setting menu, the
399 correction is applied on the whole time series and can be reversed upon deselection. In detail, for
400 each pixel P_{xy} , we measured the fluorescence intensity difference between the first P_{xy0} and last
401 P_{xyt} frame in the image series. These values were then normalized by the difference between the
402 maximal μ_{max} and minimal μ_{min} intensity, also calculated throughout the image series to generate a
403 weight map (W_{xy}) such as:

404

$$W_{xy} = (P_{xy0} - P_{xyt}) / (\mu_{max} - \mu_{min})$$

405 Next, for each frame i we calculate the difference d_i between the mean intensity of the entire image
406 series μ and the mean intensity of that frame μ_i . Finally, the fluorescence intensity of every pixel
407 at each frame is compensated by $W_{xy} d_i$ to obtain the final detrended image series.

408

409 **Built-in tools**

410 A series of built-in options are implemented to visualize single and/or the population of fusing
411 vesicles. Each analyzed fusion event can be visualized as a sequence of cropped images with
412 associated fluorescence peak intensity F , 1st order differential intensity dF and estimated radius
413 fitting plots. We also record the fluorescence spreading over time associated with each vesicle
414 fusion event (Spatial dynamics; Fig. S1A) as initially proposed by Bowser and colleagues (Bowser
415 and Khakh, 2007). We allow the possibility to discard events using the appropriate button in the
416 result table (Remove; Fig. S1A). Similarly, candidate fusion events can be manually added and
417 immediately reviewed (draw and press Add; Fig. S1A). Upon selection, the plugin will prompt the
418 user to define the timeframe of candidate fusion events. A spatiotemporal map distribution of

419 fusion events is available upon selection in the result table (Fig. S1B), and can further be exported
420 as an RGB image.

421

422 **Reporters of fusion events in live cells**

423 We used TSPAN and v-SNARE proteins as fusion event reporters. Specifically, we focused on
424 TSPAN CD9, CD63 and CD81 (Escola et al., 1998; Kowal et al., 2016; Théry et al., 2018; Yáñez-
425 Mó et al., 2015), and v-SNARE VAMP2/synaptobrevin2 (vesicle-associated membrane protein 2)
426 and VAMP7/TI-VAMP (vesicle-associated membrane protein 7 / Tetanus neurotoxin-Insensitive
427 vesicle-associated membrane protein) (Chaineau et al., 2009; Galli et al., 1998) proteins coupled
428 to pHluorin (Alberts et al., 2006; Miesenböck et al., 1998). CD9-pHluorin, CD63-pHluorin and
429 CD81-pHluorin plasmids were constructed as previously described by Verweij and colleagues
430 (Verweij et al., 2018). VAMP2-pHluorin was a kind gift from Dr. T. Ryan (Cornell University,
431 USA). VAMP7-pHluorin construction corresponds to an improved version (Chaineau et al., 2008)
432 previously described (Alberts et al., 2006; Martinez-Arca et al., 2000) and further characterized
433 (Burgo et al., 2013; Wang et al., 2018). We used Hela cells cultured in DMEM supplemented with
434 10% FBS (Perbio Sciences; HyClone), 100 U/ml penicillin G, 100 mg/ml streptomycin sulfate and
435 2 mM glutamax (Invitrogen, ThermoFischer Scientific). Cells at 50% to 60% confluence were
436 transfected using Lipofectamine 2000 reagent (Invitrogen) on either 35-mm glass bottom petri
437 dishes (Ibidi) scaled with 500 ng of TSPAN-plasmids or 18-mm round glass coverslips deposited
438 in 12-well plates scaled with 1 µg of VAMP plasmid. Glass coverslips were further mounted on a
439 Chamlide EC magnetic chamber (LCI).

440

441 **Live cell imaging**

442 Prior to imaging, cell medium was replaced with homemade Hepes-buffered Krebs-Ringer as
443 previously used by Danglot and colleagues (Danglot et al., 2012) or Leibovitz's L-15 solution
444 (Gibco). Hela cells were imaged 24 h after transfection on an inverted microscope (Axio Observer
445 7, Zeiss) equipped with a TIRF module and a top stage imaging chamber (Tokai Hit STX-CO2)
446 ensuring a constant temperature at 37°C. All imaging experiments were carried out with a 63x 1.4
447 NA oil objective (Zeiss), an air-cooled 488 nm laser line at 0.4-0.6% power, with a TIRF angle set
448 for 300-400-nm penetration depth and an additional optovar 1.6x to reach a pixel size of 100 nm.
449 Images were acquired with Zen Black (SP2.3, Zeiss) onto an electron-multiplying charge-coupled
450 device camera (iXon, Andor) at a frame rate of 5 Hz. Fluorescent timeseries were saved as tiff or
451 czi files. Fusion activity was defined as the number of detected events throughout the cell surface
452 over the course of a time-lapse experiment, which was typically 3 minutes (Fig. 2B). Thus,
453 experimental data in this study consisted in single fluorescent timeseries of 901 images. Cell
454 surface measurement was carried out using ImageJ/Fiji segmentation tools (Schindelin et al.,
455 2012). Number of analyzed cells (N) per labeled population is indicated.

456

457 **Procedure for TSPAN- and vSNARE-reported fusion events**

458 The detection parameters are adapted to the different types of fusion event. After a few rounds of
459 optimization, we set the detection threshold values $k\sigma_{\text{wavelet}}$ to 4.0-5.0 (resp. 3.0) and dF/σ_{dF} to 4.0-
460 5.0 (resp. 3.0-3.5) for fusion events reported by TSPAN-pHluorin (resp. v-SNARE-pHluorin). We
461 imposed a minimal signal duration of two frames (Fig. 1D). We completed the detection of
462 candidate events with additional frames corresponding to 1 s (resp. 3-4 s) before (resp. after) the

463 maximal peak fluorescence at t_0 (Expanding frames; Fig. 1C and Table 4). For v-SNARE-pHluorin,
464 we limited the temporal window to 0.6 s (resp. 2-3 s) before (resp. after) the maximal peak. The
465 fluorescence profiles were fitted with a minimal number of five points and a minimal goodness-of-
466 fit R^2 of 0.75 were set as the fitting threshold. The initial vesicle radius (step 1; Fig. 1B) and the
467 tracking parameters (step 2; Fig. 1C) do not vary between TSPAN and v-SNARE protein reporters.
468 In details, we reported the number of identified events n for each protein reporters as follows: CD9,
469 $n = 129$; CD63, $n = 200$; CD81, $n = 152$; Vamp2, $n = 232$; Vamp7, $n = 83$.

470

471 **Computer simulation of exocytosis**

472 To fairly assess the robustness of ExoJ, we generated 20 movies of 901 images with randomly-
473 distributed gaussian-shaped pHluorin signal intensity on the cell surface. We simulated two groups
474 of synthetic events, labeled as relevant and non-relevant according to the features we imposed. A
475 series of parameters was defined to encompass distinct features of relevant exocytic events
476 including those approximated by users in this study as well as previous works (Persoon et al., 2019;
477 Urbina et al., 2018; Verweij et al., 2018; Wang et al., 2018; Yuan et al., 2015). In details, we
478 imposed to the simulated events a random distribution of: (1) normalized fluorescence peak
479 intensity $\Delta F/F_0$ as low as 10% up to 200% above the local background (centered circle of 9-pixel
480 radius) and (2) apparent size over a range of gaussian widths from 3 to 7 pixels. Events featured as
481 relevant exhibited single exponential decay behaviour with a mean lifetime τ from 1 to 50
482 timeframes. In contrast, we modified the transient nature of exocytic events featured as non-
483 relevant where the signal decay could be (1) 1-frame long, (2) long-lived and constant fluorescence
484 peak intensity, or (3) a damped sine wave along with (4) a random spatial displacement. The
485 maximal number of simulated relevant and non-relevant events was both fixed to 50, and randomly

486 set for each movie. The simulated fusion activity eventually ranged from 1.2 to 9.8 $\mu\text{m}^{-2}.\text{min}^{-2}.10^3$
487 which matches with previously recorded frequency rate (Persoon et al., 2019; Urbina et al., 2018;
488 Verweij et al., 2018; Wang et al., 2018; Yuan et al., 2015). The identification pipeline was
489 optimized to capture simulated events labeled as relevant. To represent random noise, we added a
490 range of fluorescent intensities that follow a Gaussian distribution to the simulated movies using
491 ImageJ built-in function Add Specified Noise.

492

493 **Performance evaluation metrics**

494 To benchmark the performance of ExoJ several metrics were used including identification error
495 rate, sensitivity, precision, specificity and F1 score. These metrics were recorded for analysis on
496 movies with simulated events with relevant (resp. non-relevant) features considered as true positive
497 (TP) (resp. true negative, TN) attribute. When running ExoJ, each identified event was considered
498 with either relevant (TP) or non-relevant (labeled as false positive, FP) attributes. Finally,
499 undetected relevant event was considered with false negative (FN) attribute. Considering these
500 definitions, metrics are measured based on direct count of true and false positives and negatives
501 such as:

502 *Identification error rate = $100 * (1 - ((TP + TN) / \text{all simulated events}))$*

503 which corresponds to the proportion of correctly identified relevant and non-relevant events out of
504 all the simulated events.

505 *Sensitivity = $100 * (TP / (TP + FN))$*

506 which reports the proportion of correctly identified relevant events out of the total number of
507 simulated relevant events;

508 $Precision = 100 * (TP / (TP + FP))$

509 which reports the proportion of correctly identified relevant events out of the total number of
510 identified fusion events;

511 $Specificity = 100 * (TN / (TN + FP))$

512 which reports the proportion of correctly identified non-relevant events out of the total number of
513 simulated non-relevant events.

514 We additionally introduced F_1 score (Fawcett, 2006) which reports the capability to both capture
515 relevant events (sensitivity) and be accurate with the events ExoJ does capture (precision) as:

516 $F_1 score = 2 * ((sensitivity * precision) / (sensitivity + precision))$

517 with 1.0 as the highest possible value.

518

519 **Statistical data analysis**

520 We performed statistical analysis using Prism 9.0 (GraphPad). For multiple comparisons between
521 populations of labeled vesicles, Kruskal-Wallis non-parametric ANOVA was used to determine
522 significance, followed by Dunn's post hoc test for multiple comparisons between populations of
523 labeled vesicles and simulated movies with increasing Gaussian noise intensity. Statistical
524 significance was considered for $\alpha = 0.05$. Data are reported as box and whisker plots. Boxes show
525 the median +/- interquartile range and the whiskers go down to the minimum and up to the maximal

526 value in each dataset. For each population, median value is displayed in brackets below each
527 corresponding box and whisker plot unless mentioned otherwise in the legend.

528 **Acknowledgements**

529 We acknowledge the NeurImag imaging facility of the Institute of Psychiatry and Neurosciences
530 of Paris (Inserm U1266) where the imaging experiments were carried out. NeurImag is part of GIS
531 IBISA and the national infrastructure France BioImaging supported by the French National
532 Research Agency (ANR-10-INBS-04). We thank Dr. Liangyi Chen and Dr. Yongdeng Zhang for
533 sharing their Matlab executable tool for exocytosis detection. We are grateful to Julie N'guyen for
534 maintaining and providing HeLa cells. We thank Dr. Sebastien Nola, Dr. Cédric Blouin and Brett
535 Davis for their insightful comments on the manuscript. Zeiss Confocal LSM 880 Elyra PS.1
536 equipped with a TIRF module was purchased with a Région Ile-de-France grant awarded to Lydia
537 Danglot DIM Cerveau et Pensée project. Guillaume Van Niel would like to acknowledge Institut
538 National du Cancer, Fondation ARC pour la Recherche sur le Cancer and the ANR for their financial
539 support.

540

541 **Author contributions**

542 **JL:** Conceptualization, Methodology, Software, Data curation, Resources, Visualization, Writing-
543 Original draft, Writing- Review and Editing. **FJV:** Methodology, Resources, Investigation,
544 Validation, Writing-Review and Editing. **GVN:** Supervision, Funding acquisition, Writing-Review
545 and Editing. **TG:** Resources, Writing-Review and Editing. **LD:** Conceptualization, Supervision,
546 Methodology, Funding acquisition, Resources, Investigation, Writing-Review and Editing. **PB:**
547 Conceptualization, Supervision, Project administration, Methodology, Software, Data curation,
548 Investigation, Formal analysis, Visualization, Writing-Original draft, Writing-Review and Editing.

549

550 **Fundings**

551 This work was funded by Agence Nationale de la Recherche (ANR-19-HBPR-0003, ANR-19-
552 CE16-0012) and FLAG-ERA (Sensei grant 19-CE16-0012-01) to L.D., by a European Molecular
553 Biology Organization grant (EMBO ALTF 1383-2014), a Fondation ARC pour la Recherche sur
554 le Cancer fellowship (PGA1RF20190208474) to F.J.V., a Fondation pour la Recherche Médicale
555 grant (AJE20160635884) to G.V.N, and an Institut National Du Cancer grant (INCA N°2019-125
556 PLBIO19-059) and ANR (ANR-20-CE18-0026-01) to F.J.V. and G.V.N.

557

558 **Availability of data and Material**

559 The datasets used and/or analysed during the current study are available from the corresponding
560 authors on reasonable request. Time series including the one used in this report as well as five
561 simulated movies are available in the Zenodo repository: <https://doi.org/10.5281/zenodo.6610894>
562 and <https://doi.org/10.5281/zenodo.7595198>. The latest version of ExoJ as well as a tutorial can be
563 found on the following website <https://www.project-exoj.com/>. The source code was deposited in
564 a GitHub repository: <https://github.com/zs6e/excytosis-analyzer-plugin>.

565

566 **Competing interests**

567 The authors declare that they have no competing interests.

568

569

570 **Abbreviations**

571 **PM:** Plasma membrane

572 **TIRF:** Total Internal Reflection Fluorescence

573 **FP:** Fluorescent protein

574 **MAD:** Median absolute deviation

575 **RGB:** Red green blue

576 **VAMP2:** Vesicle-associated membrane protein 2

577 **VAMP7/TI-VAMP:** Vesicle-associated membrane protein 7 / Tetanus neurotoxin-Insensitive
578 vesicle-associated membrane protein

579 **EV:** Extracellular vesicle

580 **EM:** Electron microscopy

581 **SIM:** Structured illumination microscopy

582

583 **References**

584 **Alberts, P., Rudge, R., Irinopoulou, T., Danglot, L., Gauthier-Rouvière, C. and Galli, T.** (2006).
585 Cdc42 and Actin Control Polarized Expression of TI-VAMP Vesicles to Neuronal Growth Cones
586 and Their Fusion with the Plasma Membrane. *Mol Biol Cell* **17**, 1194–1203.

587 **Altick, A. L., Baryshnikova, L. M., Vu, T. Q. and von Bartheld, C. S.** (2009). Quantitative analysis of
588 multivesicular bodies (MVBs) in the hypoglossal nerve: Evidence that neurotrophic factors do not
589 use MVBs for retrograde axonal transport. *J Comp Neurol* **514**, 641–657.

590 **Axelrod, D. and Omann, G. M.** (2006). Combinatorial microscopy. *Nat Rev Mol Cell Biol* **7**, 944–952.

591 **Basset, A., Boulanger, J., Salamero, J., Bouthemy, P. and Kervrann, C.** (2015). Adaptive Spot
592 Detection With Optimal Scale Selection in Fluorescence Microscopy Images. *IEEE Transactions on*
593 *Image Processing* **24**, 4512–4527.

594 **Bebelman, M. P., Smit, M. J., Pegtel, D. M. and Baglio, S. R.** (2018). Biogenesis and function of
595 extracellular vesicles in cancer. *Pharmacol Ther* **188**, 1–11.

596 **Bebelman, M. P., Bun, P., Huvveneers, S., van Niel, G., Pegtel, D. M. and Verweij, F. J.** (2020). Real-
597 time imaging of multivesicular body–plasma membrane fusion to quantify exosome release from
598 single cells. *Nat Protoc* **15**, 102–121.

599 **Becic, A., Leifeld, J., Shaukat, J. and Hollmann, M.** (2022). Tetraspanins as Potential Modulators of
600 Glutamatergic Synaptic Function. *Front Mol Neurosci* **14**.

601 **Boland, M. V. and Murphy, R. F.** (2001). A neural network classifier capable of recognizing the patterns
602 of all major subcellular structures in fluorescence microscope images of HeLa cells. *Bioinformatics*
603 **17**, 1213–1223.

604 **Bowser, D. N. and Khakh, B. S.** (2007). Two forms of single-vesicle astrocyte exocytosis imaged with
605 total internal reflection fluorescence microscopy. *Proceedings of the National Academy of Sciences*
606 **104**, 4212–4217.

607 **Burchfield, J. G., Lopez, J. A., Mele, K., Vallotton, P. and Hughes, W. E.** (2010). Exocytotic Vesicle
608 Behaviour Assessed by Total Internal Reflection Fluorescence Microscopy. *Traffic* **11**, 429–439.

609 **Burgo, A., Proux-Gillardeaux, V., Sotirakis, E., Bun, P., Casano, A., Verraes, A., Liem, R. K. H.,**
610 **Formstecher, E., Coppey-Moisan, M. and Galli, T.** (2012). A Molecular Network for the
611 Transport of the TI-VAMP/VAMP7 Vesicles from Cell Center to Periphery. *Dev Cell* **23**, 166–180.

612 **Burgo, A., Casano, A. M., Kuster, A., Arold, S. T., Wang, G., Nola, S., Verraes, A., Dingli, F., Loew,**
613 **D. and Galli, T.** (2013). Increased activity of the Vesicular Soluble N-Ethylmaleimide-sensitive
614 Factor Attachment Protein Receptor TI-VAMP/VAMP7 by Tyrosine Phosphorylation in the Longin
615 Domain. *Journal of Biological Chemistry* **288**, 11960–11972.

616 **Chaineau, M., Danglot, L., Proux-Gillardeaux, V. and Galli, T.** (2008). Role of HRB in Clathrin-
617 dependent Endocytosis. *Journal of Biological Chemistry* **283**, 34365–34373.

618 **Chaineau, M., Danglot, L. and Galli, T.** (2009). Multiple roles of the vesicular-SNARE TI-VAMP in
619 post-Golgi and endosomal trafficking. *FEBS Lett* **583**, 3817–3826.

620 **Charrin, S., le Naour, F., Silvie, O., Milhiet, P.-E., Boucheix, C. and Rubinstein, E.** (2009). Lateral
621 organization of membrane proteins: tetraspanins spin their web. *Biochemical Journal* **420**, 133–154.

622 **Chen, Y. A. and Scheller, R. H.** (2001). SNARE-mediated membrane fusion. *Nat Rev Mol Cell Biol* **2**,
623 98–106.

624 **Chenouard, N., Smal, I., de Chaumont, F., Maška, M., Sbalzarini, I. F., Gong, Y., Cardinale, J.,**
625 **Carthel, C., Coraluppi, S., Winter, M., et al.** (2014). Objective comparison of particle tracking
626 methods. *Nat Methods* **11**, 281–289.

627 **Crescitelli, R., Lässer, C., Szabó, T. G., Kittel, A., Eldh, M., Dianzani, I., Buzás, E. I. and Lötvall, J.**
628 (2013). Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies,
629 microvesicles and exosomes. *J Extracell Vesicles* **2**, 20677.

630 **Crocker, J. C. and Grier, D. G.** (1996). Methods of Digital Video Microscopy for Colloidal Studies. *J*
631 *Colloid Interface Sci* **179**, 298–310.

632 **Danglot, L., Zylbersztein, K., Petkovic, M., Gauberti, M., Meziane, H., Combe, R., Champy, M.-F.,**
633 **Birling, M.-C., Pavlovic, G., Bizot, J.-C., et al.** (2012). Absence of TI-VAMP/Vamp7 Leads to
634 Increased Anxiety in Mice. *Journal of Neuroscience* **32**, 1962–1968.

635 **Daste, F., Galli, T. and Tareste, D.** (2015). Structure and function of longin SNAREs. *J Cell Sci*.

636 **Diaz, E., Ayala, G., Diaz, M. E., Liang-Wei Gong and Toomre, D.** (2010). Automatic Detection of
637 Large Dense-Core Vesicles in Secretory Cells and Statistical Analysis of Their Intracellular
638 Distribution. *IEEE/ACM Trans Comput Biol Bioinform* **7**, 2–11.

639 **Edgar, J. R., Manna, P. T., Nishimura, S., Banting, G. and Robinson, M. S.** (2016). Tetherin is an
640 exosomal tether. *Elife* **5**.

641 **Escola, J.-M., Kleijmeer, M. J., Stoorvogel, W., Griffith, J. M., Yoshie, O. and Geuze, H. J.** (1998).
642 Selective Enrichment of Tetraspan Proteins on the Internal Vesicles of Multivesicular Endosomes
643 and on Exosomes Secreted by Human B-lymphocytes. *Journal of Biological Chemistry* **273**, 20121–
644 20127.

645 **Fawcett, T.** (2006). An introduction to ROC analysis. *Pattern Recognit Lett* **27**, 861–874.

646 **Galli, T., Zahraoui, A., Vaidyanathan, V. v., Raposo, G., Tian, J. M., Karin, M., Niemann, H. and**
647 **Louvard, D.** (1998). A Novel Tetanus Neurotoxin-insensitive Vesicle-associated Membrane Protein
648 in SNARE Complexes of the Apical Plasma Membrane of Epithelial Cells. *Mol Biol Cell* **9**, 1437–
649 1448.

650 **Ge, S., Koseoglu, S. and Haynes, C. L.** (2010). Bioanalytical tools for single-cell study of exocytosis.
651 *Anal Bioanal Chem* **397**, 3281–3304.

652 **Guček, A., Gandasi, N. R., Omar-Hmeadi, M., Bakke, M., Døskeland, S. O., Tengholm, A. and Barg,**
653 **S.** (2019). Fusion pore regulation by cAMP/Epac2 controls cargo release during insulin exocytosis.
654 *Elife* **8**.

655 **Gundelfinger, E. D., Kessels, M. M. and Qualmann, B.** (2003). Temporal and spatial coordination of
656 exocytosis and endocytosis. *Nat Rev Mol Cell Biol* **4**, 127–139.

657 **Gupton, S. L. and Gertler, F. B.** (2010). Integrin Signaling Switches the Cytoskeletal and Exocytic
658 Machinery that Drives Neuritogenesis. *Dev Cell* **18**, 725–736.

659 **Han, J., Pluhackova, K. and Böckmann, R. A.** (2017). The Multifaceted Role of SNARE Proteins in
660 Membrane Fusion. *Front Physiol* **8**,

661 **Hemler, M. E.** (2005). Tetraspanin functions and associated microdomains. *Nat Rev Mol Cell Biol* **6**,
662 801–811.

663 **Hessvik, N. P., Sagini, K., Romero, S., Ramirez-Garrastacho, M., Rodriguez, M., Tuttoren, A. E. V.,**
664 **Kvalvaag, A., Stang, E., Brech, A., Sandvig, K., et al.** (2023). siRNA screening reveals that
665 SNAP29 contributes to exosome release. *Cellular and Molecular Life Sciences* **80**, 177.

666 **Hu, Y., Osuna-Highley, E., Hua, J., Nowicki, T. S., Stolz, R., McKayle, C. and Murphy, R. F.** (2010).
667 Automated analysis of protein subcellular location in time series images. *Bioinformatics* **26**, 1630–
668 1636.

669 **Huang, S., Lifshitz, L. M., Jones, C., Bellve, K. D., Standley, C., Fonseca, S., Corvera, S., Fogarty,**
670 **K. E. and Czech, M. P.** (2007). Insulin Stimulates Membrane Fusion and GLUT4 Accumulation in
671 Clathrin Coats on Adipocyte Plasma Membranes. *Mol Cell Biol* **27**, 3456–3469.

672 **Huang, X., Fan, J., Li, L., Liu, H., Wu, R., Wu, Y., Wei, L., Mao, H., Lal, A., Xi, P., et al.** (2018).
673 Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. *Nat*
674 *Biotechnol* **36**, 451–459.

675 **Jahn, R. and Scheller, R. H.** (2006). SNAREs — engines for membrane fusion. *Nat Rev Mol Cell Biol* **7**,
676 631–643.

677 **Jahn, R. and Südhof, T. C.** (1999). Membrane Fusion and Exocytosis. *Annu Rev Biochem* **68**, 863–911.

678 **Jiang, S., Zhou, X., Kirchhausen, T. and Wong, S. T. C.** (2007). Detection of molecular particles in live
679 cells via machine learning. *Cytometry Part A* **71A**, 563–575.

680 **Johnson, G. R., Li, J., Shariff, A., Rohde, G. K. and Murphy, R. F.** (2015). Automated Learning of
681 Subcellular Variation among Punctate Protein Patterns and a Generative Model of Their Relation to
682 Microtubules. *PLoS Comput Biol* **11**, e1004614.

683 **Jullie, D., Choquet, D. and Perrais, D.** (2014). Recycling Endosomes Undergo Rapid Closure of a
684 Fusion Pore on Exocytosis in Neuronal Dendrites. *Journal of Neuroscience* **34**, 11106–11118.

685 **Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J. P., Primdal-Bengtson, B., Dingli, F., Loew,**
686 **D., Tkach, M. and Théry, C.** (2016). Proteomic comparison defines novel markers to characterize
687 heterogeneous populations of extracellular vesicle subtypes. *Proceedings of the National Academy of*
688 *Sciences* **113**,

689 **Lagache, T., Grassart, A., Dallongeville, S., Faklaris, O., Sauvonnet, N., Dufour, A., Danglot, L. and**
690 **Olivo-Marin, J.-C.** (2018). Mapping molecular assemblies with fluorescence microscopy and
691 object-based spatial statistics. *Nat Commun* **9**, 698.

692 **Lamichhane, T. N., Sokic, S., Schardt, J. S., Raiker, R. S., Lin, J. W. and Jay, S. M.** (2015). Emerging
693 Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine. *Tissue Eng Part*
694 *B Rev* **21**, 45–54.

695 **Larios, J., Mercier, V., Roux, A. and Gruenberg, J.** (2020). ALIX- and ESCRT-III-dependent sorting
696 of tetraspanins to exosomes. *Journal of Cell Biology* **219**,

697 **le Naour, F., André, M., Boucheix, C. and Rubinstein, E.** (2006). Membrane microdomains and
698 proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts. *Proteomics* **6**,
699 6447–6454.

700 **Levy, S. and Shoham, T.** (2005). The tetraspanin web modulates immune-signalling complexes. *Nat Rev
701 Immunol* **5**, 136–148.

702 **Li, D., Shao, L., Chen, B.-C., Zhang, X., Zhang, M., Moses, B., Milkie, D. E., Beach, J. R., Hammer,
703 J. A., Pasham, M., et al.** (2015). Extended-resolution structured illumination imaging of endocytic
704 and cytoskeletal dynamics. *Science (1979)* **349**,

705 **Lin, D., Lin, Z., Cao, J., Velmurugan, R., Ward, E. S. and Ober, R. J.** (2019). A two-stage method for
706 automated detection of ring-like endosomes in fluorescent microscopy images. *PLoS One* **14**,
707 e0218931.

708 **Linkert, M., Rueden, C. T., Allan, C., Burel, J.-M., Moore, W., Patterson, A., Loranger, B., Moore,
709 J., Neves, C., MacDonald, D., et al.** (2010). Metadata matters: access to image data in the real
710 world. *Journal of Cell Biology* **189**, 777–782.

711 **Liu, A., Huang, X., He, W., Xue, F., Yang, Y., Liu, J., Chen, L., Yuan, L. and Xu, P.** (2021a).
712 pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps.
713 *Nat Commun* **12**, 1413.

714 **Liu, A., Huang, X., He, W., Xue, F., Yang, Y., Liu, J., Chen, L., Yuan, L. and Xu, P.** (2021b).
715 pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps.
716 *Nat Commun* **12**, 1413.

717 **Mahmood, A., Otruba, Z., Weisgerber, A. W., Palay, M. D., Nguyen, M. T., Bills, B. L. and
718 Knowles, M. K.** (2023). Exosome secretion kinetics are controlled by temperature. *Biophys J* **122**,
719 1301–1314.

720 **Martineau, M., Somasundaram, A., Grimm, J. B., Gruber, T. D., Choquet, D., Taraska, J. W.,
721 Lavis, L. D. and Perrais, D.** (2017). Semisynthetic fluorescent pH sensors for imaging exocytosis
722 and endocytosis. *Nat Commun* **8**, 1412.

723 **Martinez-Arca, S., Alberts, P., Zahraoui, A., Louvard, D. and Galli, T.** (2000). Role of Tetanus
724 Neurotoxin Insensitive Vesicle-Associated Membrane Protein (Ti-Vamp) in Vesicular Transport
725 Mediating Neurite Outgrowth. *Journal of Cell Biology* **149**, 889–900.

726 **Martinez-Arca, S., Coco, S., Mainguy, G., Schenk, U., Alberts, P., Bouillé, P., Mezzina, M.,
727 Prochiantz, A., Matteoli, M., Louvard, D., et al.** (2001a). A Common Exocytotic Mechanism
728 Mediates Axonal and Dendritic Outgrowth. *The Journal of Neuroscience* **21**, 3830–3838.

729 **Martinez-Arca, S., Coco, S., Mainguy, G., Schenk, U., Alberts, P., Bouillé, P., Mezzina, M.,
730 Prochiantz, A., Matteoli, M., Louvard, D., et al.** (2001b). A Common Exocytotic Mechanism
731 Mediates Axonal and Dendritic Outgrowth. *The Journal of Neuroscience* **21**, 3830–3838.

732 **Martinez-Arca, S., Rudge, R., Vacca, M., Raposo, G., Camonis, J., Proux-Gillardeaux, V., Daviet,
733 L., Formstecher, E., Hamburger, A., Filippini, F., et al.** (2003). A dual mechanism controlling the

734 localization and function of exocytic v-SNAREs. *Proceedings of the National Academy of Sciences*
735 **100**, 9011–9016.

736 **Mathieu, M., Névo, N., Jouve, M., Valenzuela, J. I., Maurin, M., Verweij, F. J., Palmulli, R.,**
737 **Lankar, D., Dingli, F., Loew, D., et al.** (2021). Specificities of exosome versus small ectosome
738 secretion revealed by live intracellular tracking of CD63 and CD9. *Nat Commun* **12**, 4389.

739 **Matsui, T., Osaki, F., Hiragi, S., Sakamaki, Y. and Fukuda, M.** (2021). ALIX and ceramide
740 differentially control polarized small extracellular vesicle release from epithelial cells. *EMBO Rep*
741 **22**,.

742 **Mattheyses, A. L., Simon, S. M. and Rappoport, J. Z.** (2010). Imaging with total internal reflection
743 fluorescence microscopy for the cell biologist. *J Cell Sci* **123**, 3621–3628.

744 **Meldolesi, J.** (2018). Exosomes and Ectosomes in Intercellular Communication. *Current Biology* **28**,
745 R435–R444.

746 **Miesenböck, G., de Angelis, D. A. and Rothman, J. E.** (1998). Visualizing secretion and synaptic
747 transmission with pH-sensitive green fluorescent proteins. *Nature* **394**, 192–195.

748 **Miura, K.** (2020). Bleach correction ImageJ plugin for compensating the photobleaching of time-lapse
749 sequences. *F1000Res* **9**, 1494.

750 **Moro, A., Hoogstraaten, R. I., Persoon, C. M., Verhage, M. and Toonen, R. F.** (2021a). Quantitative
751 analysis of dense-core vesicle fusion in rodent CNS neurons. *STAR Protoc* **2**, 100325.

752 **Moro, A., van Nifterick, A., Toonen, R. F. and Verhage, M.** (2021b). Dynamin controls neuropeptide
753 secretion by organizing dense-core vesicle fusion sites. *Sci Adv* **7**,.

754 **Olivo-Marin, J.-C.** (2002). Extraction of spots in biological images using multiscale products. *Pattern*
755 *Recognit* **35**, 1989–1996.

756 **Persoon, C. M., Hoogstraaten, R. I., Nassal, J. P., van Weering, J. R. T., Kaeser, P. S., Toonen, R. F.**
757 **and Verhage, M.** (2019). The RAB3-RIM Pathway Is Essential for the Release of Neuromodulators.
758 *Neuron* **104**, 1065–1080.e12.

759 **Proux-Gillardeaux, V., Rudge, R. and Galli, T.** (2005). The Tetanus Neurotoxin-Sensitive and
760 Insensitive Routes to and from the Plasma Membrane: Fast and Slow Pathways? *Traffic* **6**, 366–373.

761 **Proux-Gillardeaux, V., Raposo, G., Irinopoulou, T. and Galli, T.** (2007). Expression of the Longin
762 domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. *Biol Cell* **99**, 261–
763 271.

764 **Püspöki, Z., Sage, D., Ward, J. P. and Unser, M.** (2016). SpotCaliper: fast wavelet-based spot detection
765 with accurate size estimation. *Bioinformatics* **32**, 1278–1280.

766 **Roizin, L., Nishikawa, K., Koizumi, J. and Keosseian, S.** (1967). The Fine Structure of the
767 Multivesicular Body and Their Relationship to the Ultracellular Constituents of the Central Nervous
768 System * †. *J Neuropathol Exp Neurol* **26**, 223–249.

769 **Roth, J., Mehl, J. and Rohrbach, A.** (2020). Fast TIRF-SIM imaging of dynamic, low-fluorescent
770 biological samples. *Biomed Opt Express* **11**, 4008.

771 **Rubinstein, E., Le Naour, F., Lagaudrière-Gesbert, C., Billard, M., Conjeaud, H. and Boucheix, C.**
772 (1996). CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to
773 HLA-DR and VLA integrins. *Eur J Immunol* **26**, 2657–2665.

774 **Ruusuvuori, P., Äijö, T., Chowdhury, S., Garmendia-Torres, C., Selinummi, J., Birbaumer, M.,**
775 **Dudley, A. M., Pelkmans, L. and Yli-Harja, O.** (2010). Evaluation of methods for detection of
776 fluorescence labeled subcellular objects in microscope images. *BMC Bioinformatics* **11**, 248.

777 **Sankaranarayanan, S., de Angelis, D., Rothman, J. E. and Ryan, T. A.** (2000a). The Use of pHluorins
778 for Optical Measurements of Presynaptic Activity. *Biophys J* **79**, 2199–2208.

779 **Sankaranarayanan, S., De Angelis, D., Rothman, J. E. and Ryan, T. A.** (2000b). The Use of pHluorins
780 for Optical Measurements of Presynaptic Activity. *Biophys J* **79**, 2199–2208.

781 **Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,**
782 **Rueden, C., Saalfeld, S., Schmid, B., et al.** (2012). Fiji: an open-source platform for biological-
783 image analysis. *Nat Methods* **9**, 676–682.

784 **Schmoranzer, J., Goulian, M., Axelrod, D. and Simon, S. M.** (2000). Imaging Constitutive Exocytosis
785 with Total Internal Reflection Fluorescence Microscopy. *Journal of Cell Biology* **149**, 23–32.

786 **Sebastian, R., Diaz, M.-E., Ayala, G., Letinic, K., Moncho-Bogani, J. and Toomre, D.** (2006). Spatio-
787 Temporal Analysis of Constitutive Exocytosis in Epithelial Cells. *IEEE/ACM Trans Comput Biol*
788 *Bioinform* **3**, 17–32.

789 **Shen, Y., Rosendale, M., Campbell, R. E. and Perrais, D.** (2014). pHuji, a pH-sensitive red fluorescent
790 protein for imaging of exo- and endocytosis. *Journal of Cell Biology* **207**, 419–432.

791 **Smal, I., Loog, M., Niessen, W. and Meijering, E.** (2010). Quantitative Comparison of Spot Detection
792 Methods in Fluorescence Microscopy. *IEEE Trans Med Imaging* **29**, 282–301.

793 **Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R.,**
794 **Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., et al.** (2018). Minimal information for
795 studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society
796 for Extracellular Vesicles and update of the MISEV2014 guidelines. *J Extracell Vesicles* **7**, 1535750.

797 **Toonen, R. F., Kochubey, O., de Wit, H., Gulyas-Kovacs, A., Konijnenburg, B., Sørensen, J. B.,**
798 **Klingauf, J. and Verhage, M.** (2006). Dissecting docking and tethering of secretory vesicles at the
799 target membrane. *EMBO J* **25**, 3725–3737.

800 **Urbina, F. and Gupton, S. L.** (2021). Automated Detection and Analysis of Exocytosis. *Journal of*
801 *Visualized Experiments*.

802 **Urbina, F. L., Gomez, S. M. and Gupton, S. L.** (2018). Spatiotemporal organization of exocytosis
803 emerges during neuronal shape change. *Journal of Cell Biology* **217**, 1113–1128.

804 **van Deventer, S., Arp, A. B. and van Spriel, A. B.** (2021). Dynamic Plasma Membrane Organization: A
805 Complex Symphony. *Trends Cell Biol* **31**, 119–129.

806 **van Niel, G., D'Angelo, G. and Raposo, G.** (2018). Shedding light on the cell biology of extracellular
807 vesicles. *Nat Rev Mol Cell Biol* **19**, 213–228.

808 **Vats, S. and Galli, T.** (2022). Role of SNAREs in Unconventional Secretion—Focus on the VAMP7-
809 Dependent Secretion. *Front Cell Dev Biol* **10**,.

810 **Verderio, C., Cagnoli, C., Bergami, M., Francolini, M., Schenk, U., Colombo, A., Riganti, L.,**
811 **Frassoni, C., Zuccaro, E., Danglot, L., et al.** (2012). TI-VAMP/VAMP7 is the SNARE of
812 secretory lysosomes contributing to ATP secretion from astrocytes. *Biol Cell* **104**, 213–228.

813 **Verhage, M. and Sørensen, J. B.** (2008). Vesicle Docking in Regulated Exocytosis. *Traffic* **9**, 1414–
814 1424.

815 **Verweij, F. J., Bebelman, M. P., Jimenez, C. R., Garcia-Vallejo, J. J., Janssen, H., Neefjes, J., Knol,**
816 **J. C., de Goeij-de Haas, R., Piersma, S. R., Baglio, S. R., et al.** (2018). Quantifying exosome
817 secretion from single cells reveals a modulatory role for GPCR signaling. *Journal of Cell Biology*
818 **217**, 1129–1142.

819 **Verweij, F. J., Bebelman, M. P., George, A. E., Couty, M., Bécot, A., Palmulli, R., Heiligenstein, X.,**
820 **Sirés-Campos, J., Raposo, G., Pegtel, D. M., et al.** (2022). ER membrane contact sites support
821 endosomal small GTPase conversion for exosome secretion. *Journal of Cell Biology* **221**,.

822 **Wang, G., Nola, S., Bovio, S., Bun, P., Coppey-Moisan, M., Lafont, F. and Galli, T.** (2018).
823 Biomechanical Control of Lysosomal Secretion Via the VAMP7 Hub: A Tug-of-War between
824 VARP and LRRK1. *iScience* **4**, 127–143.

825 **Witwer, K. W. and Théry, C.** (2019). Extracellular vesicles or exosomes? On primacy, precision, and
826 popularity influencing a choice of nomenclature. *J Extracell Vesicles* **8**, 1648167.

827 **Wu, L.-G., Hamid, E., Shin, W. and Chiang, H.-C.** (2014). Exocytosis and Endocytosis: Modes,
828 Functions, and Coupling Mechanisms. *Annu Rev Physiol* **76**, 301–331.

829 **Yáñez-Mó, M., Siljander, P. R.-M., Andreu, Z., Bedina Zavec, A., Borràs, F. E., Buzas, E. I., Buzas,**
830 **K., Casal, E., Cappello, F., Carvalho, J., et al.** (2015). Biological properties of extracellular
831 vesicles and their physiological functions. *J Extracell Vesicles* **4**, 27066.

832 **Yuan, T., Lu, J., Zhang, J., Zhang, Y. and Chen, L.** (2015). Spatiotemporal Detection and Analysis of
833 Exocytosis Reveal Fusion “Hotspots” Organized by the Cytoskeleton in Endocrine Cells. *Biophys J*
834 **108**, 251–260.

835

836

837 **Figure legends**

838 **Figure 1. ExoJ facilitates the automated identification of pHluorin-reported exocytosis.**

839 **(A)** A prompt of available files appears at the start of ExoJ. Users can load, refresh and select image
840 series of interest. The framework of the algorithm comprises three main steps to identify and
841 analyze exocytic events from fluorescent time series. A typical fusion event labeled by CD9-
842 pHluorin in Hela cell is shown as a time-lapse montage. Before fusion (gray), the fluorescence is
843 quenched in acidic environment. Upon fusion, the pHluorin is exposed to neutral pH. A bright
844 diffraction-limited spot appears and diffuses over time (blue-colored inset frames). Signal intensity
845 is fitted using a mono-exponential decay function to extract the mean lifetime, denoted as τ . **(B)**
846 Detection of vesicles (seen as spots) are first defined by setting the minimal and maximal vesicle
847 radius. Vesicles are detected using either a local maximum (unchecked box) or à trous wavelet
848 transform algorithm (default option, checked box). The detection threshold value is manually set
849 by users to permit the algorithm to detect spots on single images (here in red). The threshold value
850 is a multiple of σ (MAD) of either wavelet coefficients C_{wavelet} (à trous wavelet transform) or pixel
851 intensity calculated for each fluorescent image (local maximum). Increasing the detection threshold
852 ultimately leads to a decreased number of detected vesicles as illustrated for both algorithms here.
853 **(C)** Previously detected spots are connected to reconstruct time-lapse trajectories. The parameters
854 considered for reconstruction are illustrated, and include the maximal distance (spatial searching
855 range) and the time gap (temporal searching depth) between two successive spots as well as the
856 minimal number of connected spots (event duration). Tracking results including intensity profile
857 and fluorescent montage for single candidate events can be reviewed upon selection (Show
858 Tracking list button). **(D)** For each candidate fusion event, a series of user-defined parameters are
859 applied to identify fusion events. (1) The number of data points used for fitting a negative mono-

860 exponential function to derive the mean lifetime τ can be adjusted. (2-3) The number of additional
861 frames around the detected event (intensity peak) is set by users to refine the evaluation of local
862 background. (4) The detection threshold σ_{dF} is the MAD of the 1st order differential fluorescence
863 intensity profile set to sort exocytic events. (5) Upper and lower decay limit entries enable users to
864 set the range of mean lifetime τ of fusion events. The fluorescence peak intensity profiles at
865 different timepoints were fitted with a two-dimensional Gaussian fit to estimate the apparent radius
866 of fusion event and track the XY position. Fusion events can be identified by accordingly setting
867 the range of apparent radius (6) and the position XY over time (7). Evaluation of both mean lifetime
868 τ and apparent radius is associated with the goodness-of-fit R^2 (8-9).

869

870 **Figure 2. Feature evaluation of fusion events evidences distinct dynamics of vesicle-mediated**
871 **exocytosis.**

872 (A) Schematic model illustrating the markers used in this work to monitor vesicle fusion to the PM.
873 The content and/or the vesicle membrane are labeled with pHluorin. Time-lapse montages of
874 TSPAN- and v-SNARE-mediated fusion events are shown (invert LUT). (B-E) Combined scatter
875 dot (black circle) and box and whisker (red border) plots are shown for individual population of
876 labeled vesicles. The median values of fusion (B) activity, (C) normalized peak intensity ($\Delta F/F_0$),
877 (D) apparent size and (E) event duration (τ) are displayed in brackets. (B) Number of analyzed
878 cells (N) for TSPAN and v-SNARE proteins are indicated and represented with black circles. (C-
879 E) Feature comparisons between TSPAN- and v-SNARE-labeled vesicular population were
880 performed using a Kruskal-Wallis's test followed with a post hoc Dunn's multiple comparison test.
881 Only statistical differences are indicated. Black circles correspond to single fusion events. (C) For

882 fusion activity reported by $\Delta F/F_0$: ****, $P < 0.0001$; **, $P < 0.0002$; **(D)** For fusion apparent size,
883 *, $P < 0.04$; **(E)** For fusion duration reported by the mean lifetime τ , ****, $P < 0.0001$; **, $P <$
884 0.0002; *, $P < 0.03$.

885

886 **Figure 3. ExoJ is a highly robust tool to identify distinct forms of fusion events.**

887 **(A)** Examples of simulated exocytic event signal at the cell surface with increasing Gaussian noise
888 intensity (Invert LUT). The inset (blue box) shows four simulated relevant (resp. non-relevant)
889 events indicated by green (resp. pink) arrowhead(s). The total number of simulated exocytic events
890 as well as their XY location, normalized peak intensity $\Delta F/F_0$, apparent size and duration τ are
891 randomly set (see Materials and Methods). **(B)** A total of 20 movies were simulated with an overall
892 balanced number of randomly generated relevant (green) and non-relevant exocytic (pink) events
893 as indicated. The XY plot corresponds to the evaluation of identification error rate with increasing
894 Gaussian noise intensity. The estimated noise range of experimental image series is indicated in
895 yellow. Data represent mean \pm SEM. Kruskal-wallis's test was performed ($P < 0.0001$) followed
896 with a post hoc Dunn's multiple comparison test with 0 as the control (****, $P < 0.0001$; **, $P <$
897 0.002; n.s., non-significant). **(C)** Assessment of ExoJ sensitivity (proportion of correctly identified
898 relevant events), precision (proportion of identified events as relevant ones that were actually
899 correct), specificity (proportion of correctly identified non-relevant events) with increasing
900 Gaussian noise intensity are shown as combined scatter dot (black) and box and whisker (red) plots.
901 Mean value as well as average F_1 score are reported for each condition. Black dots correspond to
902 the scoring results of individual simulated movies. Kruskal-wallis's test was performed ($P <$
903 0.0001) followed with a post hoc Dunn's multiple comparison test with 0 as the control (****, $P <$

904 0.0001; **, $P < 0.002$; n.s., non-significant). **(D)** Assessment of ExoJ repeatability on individual
905 simulated movies with added Gaussian noise of sigma equal to 1, and reported by the MAD of
906 accuracy, F_1 score and specificity. Scoring results of simulated results are shown as combined
907 scatter dot (black) and whisker (red) plots, and were sorted according to the simulated fusion
908 activity.

909

910 **Figure S1. Built-in tools for visualizing fusion events.**

911 **(A)** Series of measurements on single fusion events are summarized in a result table, including the
912 XY location, the onset time (peak frame), the maximal displacement during the fusion event, the
913 detection threshold value (dF/σ_{dF}), the local background (F_0) and normalized peak fluorescence
914 intensity ($\Delta F/F_0$), the estimated apparent size (est. radius) and mean lifetime decay (τ).
915 Corresponding graphs can be displayed for each fusion event upon selection in the result table. **(B)**
916 Visualization of the distribution of fusion event duration (Tau Stat.), apparent size (Radius Stat.)
917 and temporal occurrence (Event counts) throughout the fluorescent times series can be generated
918 upon selection. A spatial occurrence map (Distribution map) is also available for export.

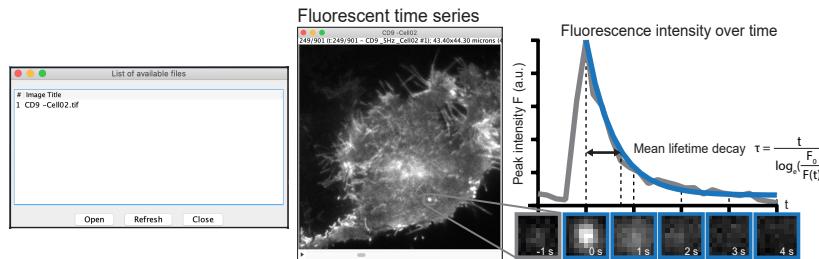
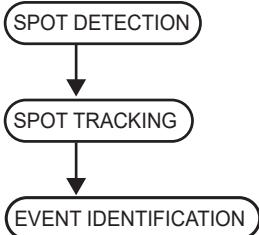
919 **Table legends**

920 **Table 1.** General commands throughout the identification and analysis process

921 **Table 2.** Parameters and options for vesicle (seen as spot) detection

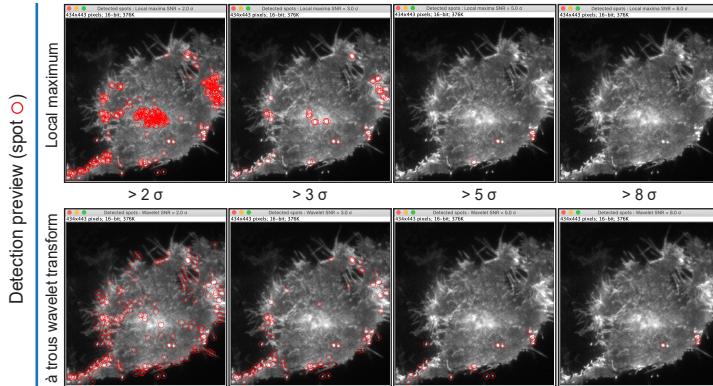
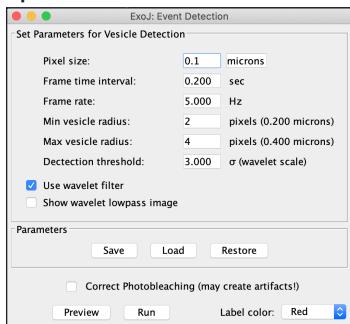
922 **Table 3.** Parameters and options for vesicle (seen as spot) tracking

923 **Table 4.** Parameters and options for the identification of vesicle fusion events

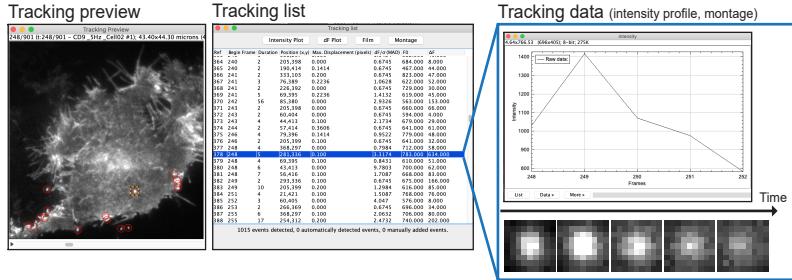
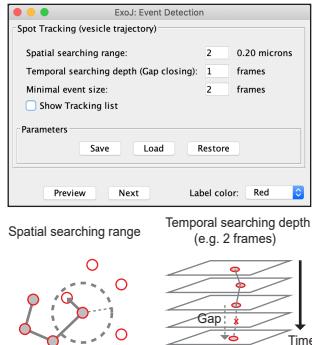


924

925 **Supplementary Materials**

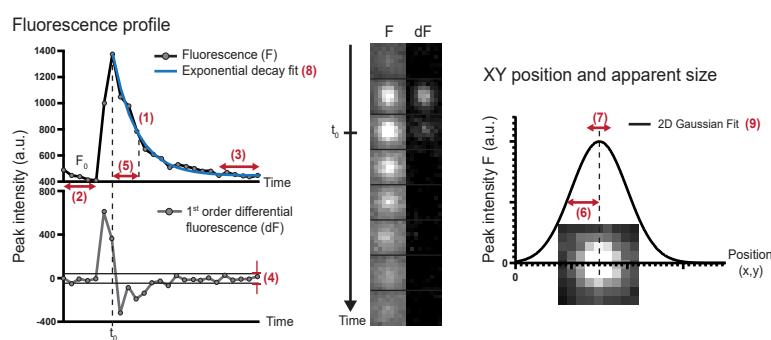
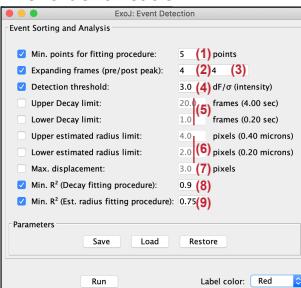
926 **File 1.** Configuration file for the identification of TSPAN-labeled fusion events.

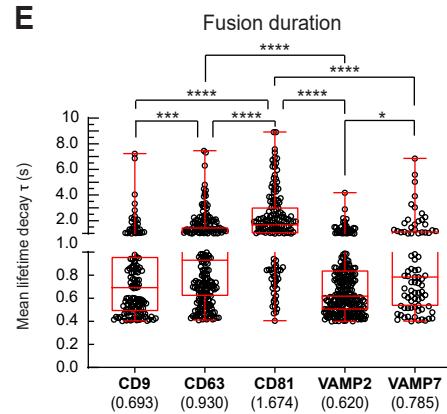
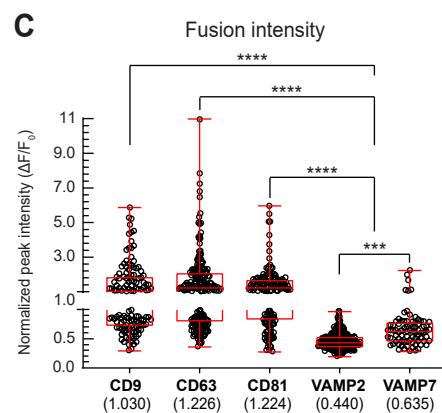
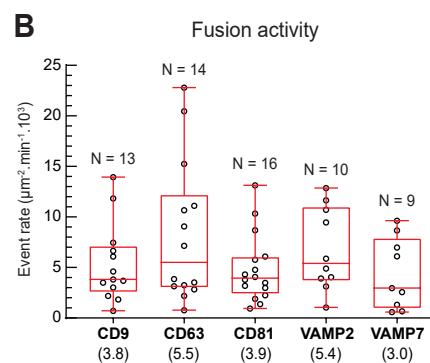
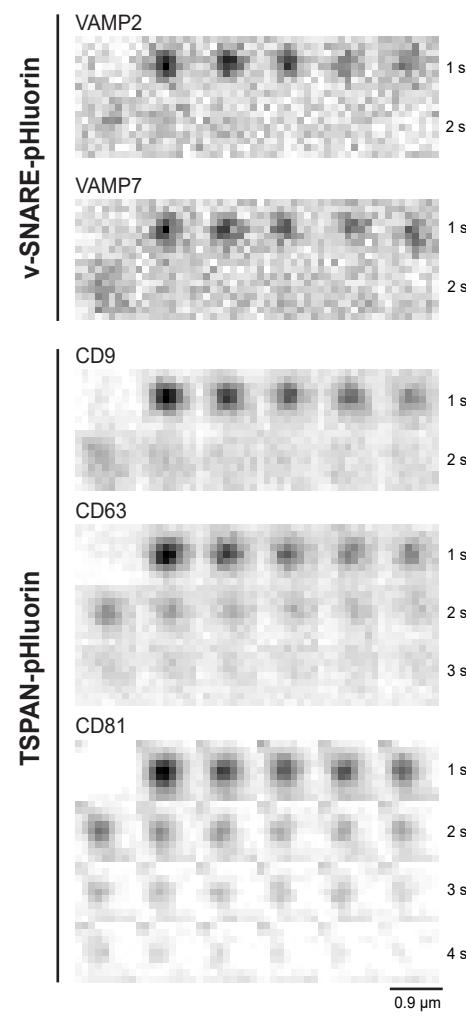
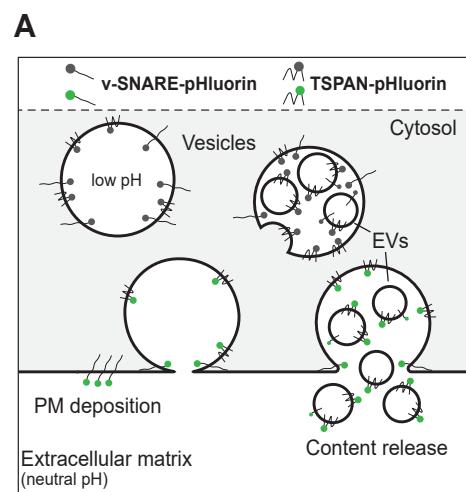


927 **File 2.** Configuration file for the identification of v-SNARE-labeled fusion events.

A

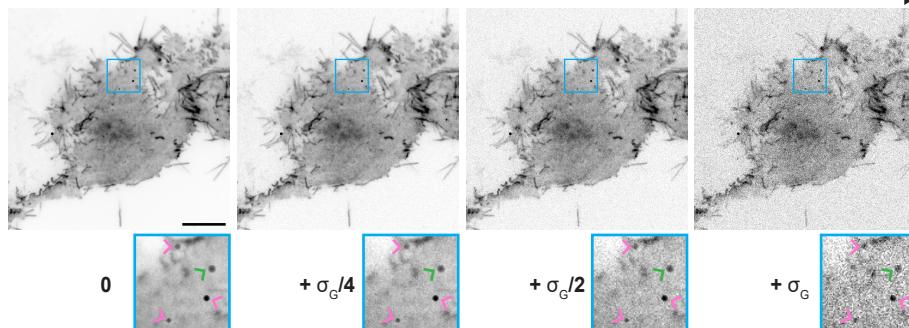


B

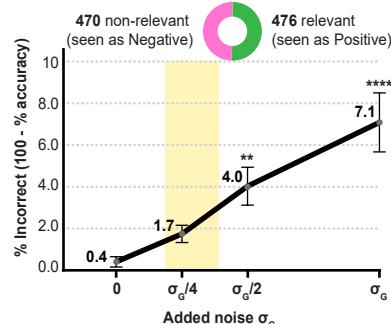
Spot detection



C






Spot tracking

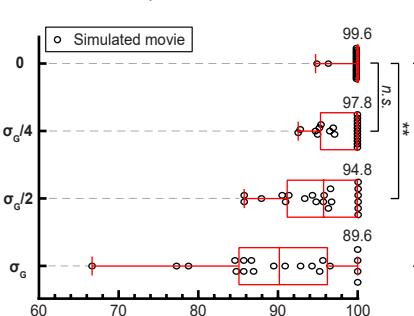
D


Event identification


A

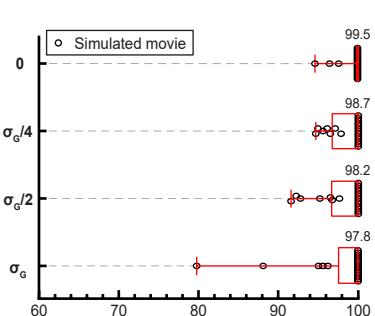
Simulated exocytic events

Gaussian noise addition (standard deviation σ_G)**B**

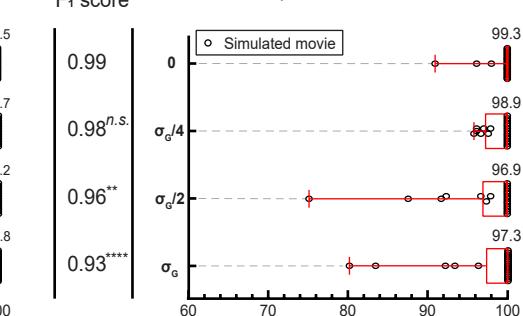

Event identification error rate

N = 20 simulated movies

C

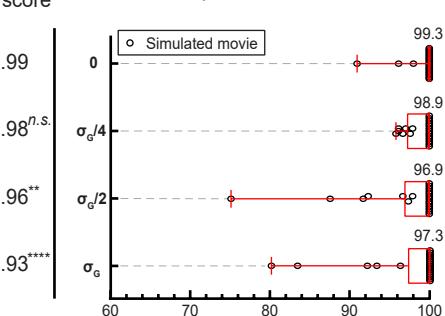
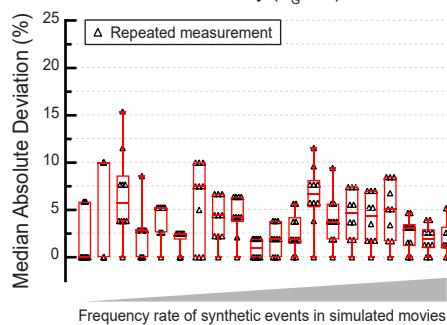
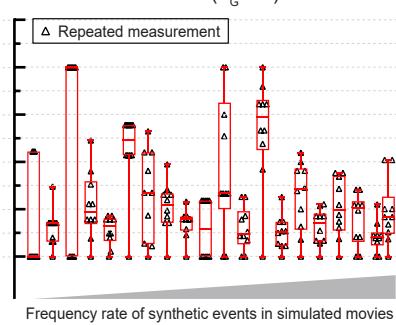
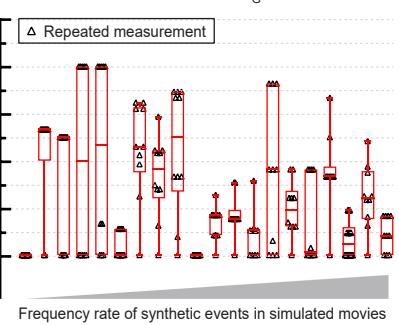

Sensitivity

% correctly identified relevant events



Precision

% identified events as relevant that are correct

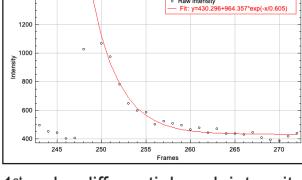





F1 score

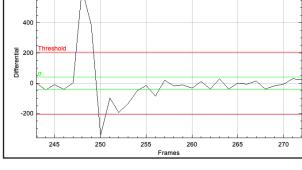
Specificity

% correctly identified non-relevant events

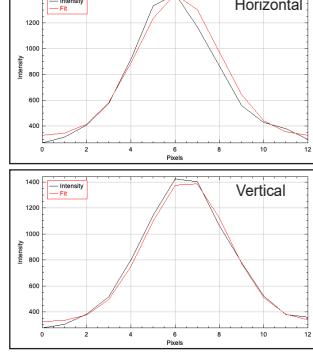
DAccuracy ($\sigma_G = 1$)F1 score ($\sigma_G = 1$)Specificity ($\sigma_G = 1$)

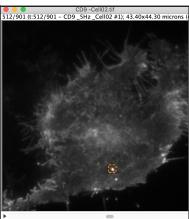

A

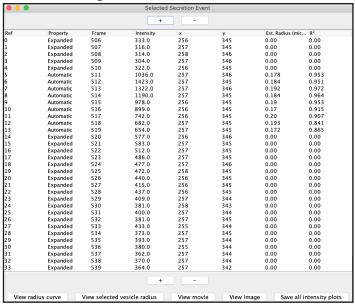
List of detected fusion events

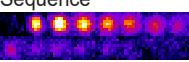

Detected event/track list													
Ref	Property	Begin Frame	End Frame	Peak Intensity (F)	Radius	Spatial dynamics	Movie	Montage	Distribution Map	Event Counts	Radius Stat.	Tau Stat.	
1	Automatic	250	42	255.313	4.123	0.163	0.884	7.239	0.907	7.925	456.00	486.00	
2	Automatic	570	31	575	4.123	0.152	0.887	0.848	0.885	31.909	347.00	1226.00	
3	Automatic	686	30	291	4.123	0.163	0.887	0.860	0.885	14.409	74.00	745.00	
4	Automatic	697	34	702	3.606	0.146	0.987	0.788	0.99	30.778	365.00	1712.00	
5	Automatic	67	33	23	3.241	0.145	0.893	0.893	0.893	37.000	252.00	1000.00	
6	Automatic	508	24	512	31.615	0.152	0.854	0.824	0.872	15.772	154.00	1317.00	
7	Automatic	654	31	664	253.114	0.162	0.151	0.959	0.427	0.903	6.408	104.00	338.00
8	Automatic	524	29	259	1.500	0.150	0.945	0.891	0.891	1.500	29.00	296.00	
9	Automatic	334	28	359	211.368	2.822	0.128	0.962	0.488	0.987	23.607	378.00	816.00
10	Automatic	577	30	580	3.241	0.145	0.893	0.893	0.893	37.000	248.00	1000.00	
11	Automatic	598	31	603	193.322	2.828	0.147	0.969	0.57	0.891	51.217	336.00	1346.00
12	Automatic	678	35	684	279.220	2.828	0.179	0.985	1.128	0.983	18.796	287.00	149.00
13	Automatic	513	31	511	280.220	2.828	0.150	0.939	0.919	0.919	15.000	153.00	1000.00
14	Automatic	243	30	249	281.334	2.736	0.173	0.969	0.605	0.986	15.321	386.00	1031.00
15	Automatic	644	40	574	259.220	2.726	0.152	0.927	0.842	0.842	8.200	204.00	944.00
16	Automatic	347	29	153	259.189	2.000	0.138	0.902	0.864	0.883	31.185	442.00	783.00
17	Automatic	260	37	265	226.366	2.000	0.138	0.978	2.149	0.981	28.065	433.00	957.00
18	Automatic	209	29	213	267.358	1.414	0.150	0.920	0.975	0.975	17.000	477.00	1377.00
19	Automatic	156	27	162	267.358	1.414	0.138	0.975	0.981	0.981	9.32	439.00	398.00
20	Automatic	505	27	508	267.358	1.414	0.138	0.975	0.981	0.981	10.000	477.00	1377.00
21	Automatic	48	32	453	230.384	1.414	0.206	0.901	0.847	0.949	5.462	458.00	456.00
22	Automatic	754	32	759	318.272	1.414	0.153	0.964	0.836	0.881	21.303	438.00	780.00
23	Automatic	687	31	593	267.358	1.414	0.150	0.975	0.981	0.981	42.000	1377.00	1377.00
24	Automatic	685	36	691	212.222	1.00	0.159	0.807	2.31	0.844	12.43	350.00	264.00
25	Automatic	627	37	632	256.339	1.00	0.145	0.982	1.103	0.973	24.066	369.00	961.00

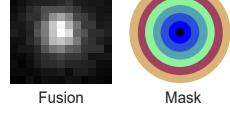
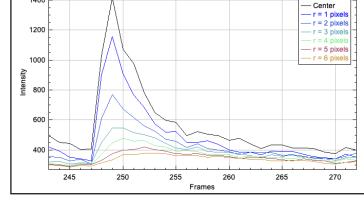
25 events detected, 25 automatically detected events, 0 manually added events.


Fluorescence peak intensity (F)

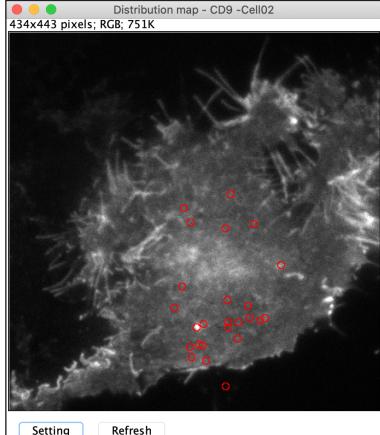

1st-order differential peak intensity (dF)


Radius profiles

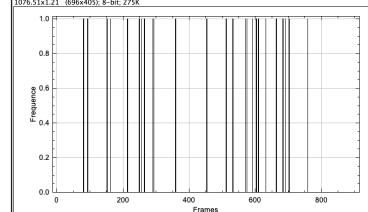

XY location



XY tracking over time

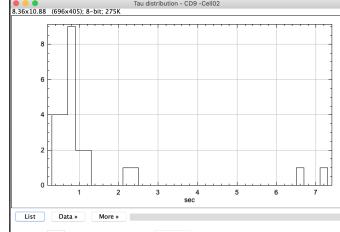
Sequence

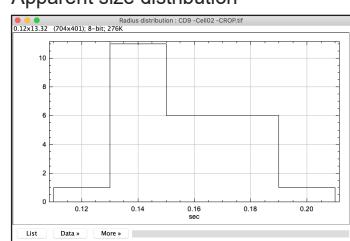


Mean radial intensity (Spatial dynamics)



B


Distribution map


Temporal occurrence

Mean lifetime distribution

Apparent size distribution

<p>(Pop-up window)</p> <p>List of available files</p>	<p>Upon starting the plugin, a pop-up window lists opened image-type files. To start (resp. stop) the analysis, press Open (resp. Close). If an image series does not appear, Refresh the pop-up window.</p> <p>After pressing Open, the selected image series will be duplicated for further processing and analysis. Note that the plugin can run in parallel multiple instances.</p>
<p>Save, Load, Restore</p>	<p>Parameters are saved (in .dat format), loaded (.dat file) or restored to the metadata of the image series.</p>
<p>Label color</p>	<p>Detected vesicles (seen as spots) are marked by circles of selected color.</p>
<p>Preview, Run</p>	<p>At each step, processing results can be reviewed for different set of parameters (Preview).</p> <p>During the spot detection step, single fluorescent images are displayed. During the spot tracking step, the whole sequence is shown.</p> <p>During the event identification step, the whole sequence and the table result are displayed.</p> <p>To proceed to the next step, press Run.</p>

Pixel size, Frame rate, Frame time interval	Pixel size, frame rate (and time interval) are automatically extracted from the metadata of selected image series. Correct if necessary.
Min. and Max. vesicle radius	Initial user-entries for the estimated radius (in pixel) of the vesicular population of interest.
(Checked) Use wavelet filter	Apply à trous wavelet transform algorithm on fluorescent image series where pixel values now correspond to wavelet coefficient (C_{wavelet}). Result on single images can be reviewed (Preview button).
Detection threshold	Critical integer value that corresponds to a multiple of the MAD of C_{wavelet} (noted σ_{wavelet}). For a high (resp. low) value, number of detected spots is decreasing (resp. increasing) along with the calculation time.
Show lowpass image	When activated, this option displays the result of the à trous wavelet transform algorithm on single frames including fluorescent spots (colored circles) with C_{wavelet} above the detection threshold .
(Unchecked) Use wavelet filter	The spot detection relies on the local maximum algorithm with Min. and Max. vesicle radius as initial entries.
Detection threshold	Critical integer value that corresponds to a multiple of the MAD of all pixel intensity (noted $\sigma_{\text{intensity}}$) at each image.
Correct Photobleaching	A pixel-by-pixel detrending method is immediately applied to the image series. Strongly recommend to correct photobleaching when applicable to improve wavelet-based spot detection. Note that the correction can introduce bright/saturated pixels. The process can be reversed by deactivating the option.

Spatial searching radius (in pixel)	This integer value corresponds to the maximal acceptable displacement of the spot (flagged by its fluorescence peak) between two consecutive frames. We recommend setting the value similar to Min. vesicle radius (from Step 1) to account for possible movements during image acquisition (cell, imaging setup, ...).
Temporal searching depth (in frame number)	This integer value corresponds to the maximal acceptable frame gap if the tracked spot disappears from one frame to the next. In this case, the algorithm will suppose that the given spot remains at the same position until it reappears in the following frames. The algorithm will hence generate virtual spots to fill the gap and assemble tracks. By default, the value 1 corresponds to a <u>no gap</u> situation.
Minimal event size (in frame number)	This threshold value corresponds to the minimal duration of each individual track that will be processed and analyzed (Event identification step). Note that gaps are not counted in the track size.
Show tracking list	When activated, the list of all vesicle trajectories with a user-specified Minimal event size is displayed for review. Traces of F and dF, montages of still images can be generated and saved.

Min. points for fitting procedure	Integer value that corresponds to the minimal number of points needed to fit the fluorescence decay intensity over time to derive the mean lifetime. By default, 5 data points are recommended.
Expanding frames (pre/post peak)	Addition of frames around the peak detection. Note that a large window after peak detection (post) improves the evaluation of mean lifetime decay but might hinder the detection of consecutive fusion events at the same location. The two integer values influence the evaluation of MAD of the 1st order differential intensity peak (dF), noted σ .
Detection threshold (dF/σ)	Integer value above which the 1st order differential intensity peak dF is seen as a fusion event.
Upper/Lower decay limit	Integer range for the mean lifetime decay of candidate fusion events. A minimal value of 2 timepoints is recommended.
Upper/Lower estimated radius limit	Integer range for the estimated radius of candidate fusion events.
Max. displacement	Maximal lateral shift of the peak intensity (F) recorded throughout the fusion event process.
Min. R^2	Minimal value of goodness-of-fit R^2 set as a threshold and evaluated from fitted curves for deriving the mean lifetime and the estimated radius of the fusion event