

1 The injury-induced circular RNA circGLIS3 activates dermal fibroblasts to

2 promote wound healing

4 Maria A. Toma¹, Qizhang Wang^{1,2,3}, Dongqing Li^{1,4}, Yunting Xiao⁴, Guanglin Niu¹, Jennifer
5 Geara¹, Manika Vij^{1,5}, Minna Piipponen¹, Zhuang Liu¹, Letian Zhang¹, Xiaowei Bian¹, Aoxue
6 Wang⁶, Pehr Sommar^{7*}, and Ning Xu Landén^{1,8*}

7

⁸ ¹Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular
⁹ Medicine, Karolinska Institutet; Stockholm, Sweden

10 ²Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital,
11 College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai, China

12 ³Current address: State Key Laboratory of Oral Diseases, National Clinical Research Center for
13 Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of
14 Stomatology, Sichuan University; Chengdu, China

15 ⁴Current address: Key Laboratory of Basic and Translational Research on Immune-Mediated Skin
16 Diseases, Chinese Academy of Medical Sciences; Jiangsu Key Laboratory of Molecular Biology
17 for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and
18 Peking Union Medical College, Nanjing, China.

19 ⁵Current address: Department of Dermatology and Venereology, Medical Center – University of
20 Freiburg; Freiburg, Germany

21 ⁶Department of Dermatology, The Second Hospital of Dalian Medical University, College of
22 Integrative Medicine, Dalian Medical University; Dalian, China

23 ⁷Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm,
24 Sweden

25 ⁸Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet,
26 Stockholm, Sweden

27

28 *Correspondence to Ning Xu Landén, ning.xu@ki.se and Pehr Sommar,
29 Pehr.sommar@regionstockholm.se

30

31 **One Sentence Summary:** Transient increase of the circular RNA circGLIS3 promotes the wound
32 fibroblast activation and extracellular matrix production to facilitate wound closure.

33

34 **Abstract:** Delayed skin wound healing and excessive scarring are consequences of an impaired
35 healing process and represent a major health and economic burden worldwide. Current
36 intervention strategies lack efficacy and suffer from high recurrence rates necessitating the
37 investigation into alternative treatment modalities like circular RNAs (circRNAs). By RNA
38 sequencing, we profiled circRNA expression changes during human skin wound healing as well
39 as in keratinocytes and fibroblasts isolated from donor-matched skin and acute wounds. CircGLIS3
40 was found to be transiently upregulated in the dermal fibroblasts upon skin injury, which was at
41 least partially due to the activated IL-1 signaling. Similarly, overabundant circGLIS3 expression
42 was detected in human keloid lesions compared to the surrounding healthy skin. We found that

43 circGLIS3 resided mainly in the cytoplasm, where it interacted with and stabilized Procollagen C-
44 endopeptidase enhancer 1 (PCPE-1) protein to enhance TGF- β signaling, fibroblast activation, and
45 production of extracellular matrix – important biological processes required for wound repair.
46 Accordingly, knockdown of circGLIS3 in human *ex vivo* wounds potently reduced wound
47 contraction and delayed re-epithelialization. Collectively, we have identified a previously
48 uncharacterized circRNA regulator of human skin wound healing that may open an avenue for
49 circRNA-based therapeutics for abnormal scarring or nonhealing wounds.

50

51 **INTRODUCTION**

52 Delayed skin repair and skin fibrosis affect millions of people around the world annually,
53 representing a heavy medical and economic burden (1). Despite the high prevalence and the use
54 of different therapeutic approaches for skin repair impairments, no treatments effectively revert or
55 prevent chronic wounds or excessive scars (2, 3). Thus, it is critical to elucidate the molecular
56 factors driving healthy skin repair to understand better what mediates its complications.

57 Skin wound repair is a multiphase process that requires detailed coordination of multiple cell types
58 (e.g., immune, epithelial, stromal) and signaling pathways to achieve healing. During repair, skin
59 cells are subjected to the sequential but overlapping phases of inflammation, growth, and
60 remodeling (4). Keratinocytes are the main cellular component of the epidermal layer in the skin,
61 while fibroblasts are the main cell type found in the mostly acellular dermis. Both keratinocytes
62 and fibroblasts produce extracellular matrix (ECM), which is crucial for all the healing phases (5).
63 Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules that have the 3'
64 and 5' ends joined together through back-splicing (6). Due to their unique structure, they are more

65 stable than linear RNAs and were shown to have tissue- and cell-specific expression patterns (7).
66 Mechanistically, circRNAs sequester microRNAs, interact with proteins, and even encode short
67 peptides (8, 9). In the past decade, several studies have begun to explore the functional roles of
68 circRNAs in tissue homeostasis and disease (10-12), but too few have addressed, so far, the role
69 of circRNAs in skin repair.
70 To fill up this knowledge gap and further identify circRNAs with potential functions in wound
71 repair, we performed RNA sequencing (RNA-seq) to profile circRNA expression change during
72 human skin wound healing (13) as well as in keratinocytes and fibroblasts isolated from donor-
73 matched skin and acute wounds. We identified circGLIS3 as being transiently upregulated in the
74 wound dermis and overexpressed in skin fibrotic disease keloid, which suggested its potential role
75 in wound fibroblasts. Our following functional study revealed that circGLIS3 promotes fibroblast
76 activation and ECM production by increasing the cellular responsiveness to TGF- β 1 signaling.
77 Importantly, we found that human *ex vivo* wounds lacking circGLIS3 failed to close, which further
78 reinforces its essential role in wound repair.

79

80 RESULTS

81 CircGLIS3 is upregulated in wound fibroblasts

82 To identify circRNAs with functional roles in skin repair, we first aimed to profile their expression
83 change during human skin wound healing. For this, we developed a unique human *in vivo* wound
84 model by making full-thickness excisional wounds (3mm in diameter) on the skin of healthy
85 volunteers and then collecting wound-edge tissues with 6mm biopsy punches 1, 7, and 30 days
86 later from the same donor (Fig. 1A, Table 1, and Table S1). These time points are chosen to

87 capture the three sequential phases of wound repair, i.e., inflammation (~3 days), proliferation (~4-
88 21 days), and remodeling (~21 days-one year) (4). To further dissect the circRNA expression in
89 individual cell types, we also isolated CD45⁻ epidermal keratinocytes and CD90⁺ dermal
90 fibroblasts from some of these tissue samples by magnetic activation cell sorting (**Fig. 1A**).

91 We profiled circRNA expression by poly (A) independent total RNA-seq in the matched skin and
92 day7-wound tissues (n=5 donors) as well as the isolated cells (n=5 donors). By filtering the top
93 changed and abundant circRNAs (normalized read counts >1, $P < 0.05$ by Wald test, and
94 $|\log_2\text{FoldChange}| > 2$), we identified 56 differentially expressed (DE) circRNAs in the day7-wound
95 compared to the skin tissues, 62 and 29 DE circRNAs in keratinocytes and fibroblasts,
96 respectively, isolated from the day7-wound versus skin (**Fig 1B** and **Table S2**). By intersecting
97 the sequencing results of the tissues and cells, we found circGLIS3 to be the only circRNA
98 upregulated in wound biopsies and fibroblasts compared to the skin and whose expression was not
99 altered in wound keratinocytes (**Fig. 1B-D** and **Table S2**).

100 We further validated circGLIS3 expression in additional clinical samples (**Table 1** and **Table S1**)
101 by quantitative real-time PCR (qRT-PCR) with divergent primers to specifically amplify the back-
102 splicing junction (BSJ) of circGLIS3, which is absent in its cognate linear isoform (**Fig. 2A**). In
103 the wound and skin tissues (n=5 donors) (**Fig. 1E**), epidermal and dermal compartments separated
104 by laser capture microdissection (LCM) of the skin and wound-edges (n=7 donors) (**Fig. 1F**), as
105 well as epidermal cells and dermal fibroblasts sorted from the matched skin and wounds at each
106 stage of wound healing (n=5 donors) (**Fig. 1G, H**), we confirmed the prominently upregulated
107 circGLIS3 expression in dermal fibroblasts, but not in epidermal cells, during skin wound healing.
108 Interestingly, in keloids, a fibroproliferative skin disease characterized by an abnormal wound
109 healing process, massive production of ECM, and hyperplasia of dermal tissue (14, 15), we also

110 found overabundant circGLIS3 expression in lesional sites compared to donor-matched healthy
111 skin biopsies (n=8 donors) (**Fig. 1I, Table 1, and Table S1**). These results highlight the specific
112 upregulation of circGLIS3 expression in wound fibroblasts and skin fibrosis, which prompted us
113 to further study the role of circGLIS3 in dermal fibroblasts.

114

115 **Molecular characterization of circGLIS3**

116 CircGLIS3 (circBase ID: hsa_circ_0002874) is a circular RNA that derives from the second exon
117 of the *GLIS family zinc finger 3 (GLIS3)* gene, and its expression is conserved in other species
118 such as mouse (**Fig. 2A**) (16). We confirmed its circularity by using primers spanning the BSJ of
119 either human or mouse circGLIS3 in RT-PCR analysis (**Fig. 2B and C, Table S4**). The circularity
120 of circGLIS3 was further supported by its resistance to the exonuclease RNase R digestion, which
121 in turn leads to the degradation of most linear RNAs (**Fig. 2B and C**) (17). The sequences of
122 predicted BSJ regions of human and mouse circGLIS3 were verified by Sanger sequencing of the
123 RT-PCR products (**Fig. 2D**). Moreover, in a mouse *in vivo* wound model, we found that circGlis3
124 expression was also upregulated in the day-7 and day-10 acute wounds compared to the intact skin
125 (**Fig. 2E**). Thus, the injury-induced circGLIS3 expression pattern is conserved between human and
126 mouse.

127 We further characterized the subcellular localization of circGLIS3 to elucidate its mode of action.
128 For this, we divided human primary fibroblasts into subcellular fractions of nucleus, cytoplasm,
129 and mitochondria, which were enriched with nuclear long non-coding RNA MALAT1 (18),
130 *GAPDH* mRNA, and *16S* mitochondrial rRNA (19), respectively, confirming a successful fraction
131 separation. We found that circGLIS3 was mainly detected in the cytoplasm (**Fig. 2F**), which was

132 also observed in *in situ* hybridization analysis of circGLIS3 in fibroblasts (**Fig. 2G, H, and Fig. S1A**).

134 Moreover, we treated fibroblasts with Actinomycin-D (5 μ g/mL) to block transcription (20) and
135 then characterized the stability of circGLIS3 (**Fig. 2I**). qRT-PCR analysis revealed a longer half-
136 life of 22 hours for circGLIS3 compared to 8 hours for GLIS3 mRNA or 18 hours for ACTB
137 mRNA (**Fig. 2I**). The above analysis revealed that circGLIS3 was an exonic circRNA, resistant to
138 RNaseR digestion (21), more stable compared to linear RNAs (22), and localized mainly in the
139 cell cytoplasm.

140 To understand why circGLIS3 expression was increased upon skin injury, we stimulated human
141 dermal fibroblasts with a panel of cytokines and growth factors that are reportedly important for
142 wound repair (**Fig. 2J**). We found that IL-1 α treatment led to circGLIS3 upregulation (**Fig. 2J**),
143 which occurred less than 10 hours after adding IL-1 α (**Fig. 2K**). IL-1 is rapidly produced in the
144 injured site and is one of the first signals to alert the surrounding cells of barrier damage (23).
145 Interestingly, qRT-PCR results showed that *GLIS3* mRNA levels were not altered by IL-1 α ,
146 indicating that IL-1 signaling may specifically affect circGLIS3 biogenesis and does not enhance
147 the expression of the *GLIS3* gene (**Fig. S1B**). Additionally, we found that IL-1 α and circGLIS3
148 expression levels were significantly correlated (Pearson $r= 0.6078$, $P = 0.0001$) in human skin and
149 wounds *in vivo* as well as in the isolated fibroblasts from skin and wounds analyzed by RNA-seq
150 (**Fig. 2L**). These results suggest that the increased circGLIS3 expression in wound fibroblasts may
151 be a consequence of the injury-induced IL-1 α signal activation.

152

153 **CircGLIS3 enhances TGF- β 1 signaling**

154 To investigate the role of circGLIS3 in skin wound healing, we modulated its expression in human
155 dermal fibroblasts. To knock down circGLIS3 expression, we designed three siRNAs targeting its
156 diagnostic junction (si-circGLIS3). As controls, a scrambled siRNA sequence (si-ctrl) and a
157 siRNA partially (10 out of 21 nucleotides) complementary to the junction sequence of circGLIS3
158 (si-circGLIS3_ctrl) were used (**Fig. S2A, Table S3**). To overexpress circGLIS3, we subcloned the
159 DNA sequence corresponding to circGLIS3 and its endogenous flanking region, which also
160 included complementary circular frames needed for circularization, into a plasmid expression
161 cassette (pLC5-circGLIS3). With qRT-PCR analysis, we confirmed that both strategies effectively
162 changed the circGLIS3 levels in fibroblasts and did not significantly affect those of its linear
163 counterparts (**Fig. S2B-E**).

164 We next carried out transcriptomic profiling by microarray in dermal fibroblasts and identified 56
165 up- and 74 down-regulated genes ($|\log_2\text{FC}| > 1.5$, FDR < 0.05) upon circGLIS3 knockdown (**Fig.**
166 **3A**). Gene Ontology enrichment analysis of these differentially expressed genes (DEGs) revealed
167 biological processes important for wound healing and placed TGF- β 1 among the top signaling
168 pathways affected by circGLIS3 (**Fig. 3B**). TGF- β 1 is a crucial growth factor involved in many
169 biological processes essential for wound repair, such as inflammation, angiogenesis, granulation
170 tissue formation, and remodeling (24). TGF- β 1 is known to potently induce the differentiation of
171 fibroblasts into the more contractile myofibroblasts as well as the deposition and remodeling of
172 ECM (25). Gene Set Enrichment Analysis (GSEA) of our microarray data revealed that the genes
173 involved in the TGF- β 1 pathway (from GSE79621, a dataset of TGF- β 1-induced transcriptional
174 response in human dermal fibroblasts) (26) were significantly enriched among the genes
175 downregulated by the circGLIS3 knockdown in fibroblasts, suggesting that circGLIS3 may
176 potentiate TGF- β 1 signaling (**Fig. 3C**).

177 To assess whether circGLIS3 directly affects the activity of the TGF- β 1 pathway, we co-
178 transfected siRNAs targeting circGLIS3 with a luciferase reporter construct containing multiple
179 copies of TGF- β response transcriptional activator Smad binding elements (pSBE4) into human
180 primary fibroblasts (27). We showed that TGF- β 1 treatment enhanced the expression of this
181 luciferase reporter (**Fig. 3D**). Importantly, circGLIS3 silencing significantly reduced the luciferase
182 activity under the TGF- β 1 treatment, demonstrating that circGLIS3 is required for the TGF- β 1
183 signaling in fibroblasts (**Fig. 3D**). Accordingly, we found that the expression of several TGF- β 1-
184 induced target genes, including alpha smooth muscle actin (*ACTA2*, also referred to as α -SMA),
185 fibronectin 1 (*FNI*), collagen type I (*COL1A1*) and IV (*COL1A4*), were significantly
186 downregulated by circGLIS3 knockdown (**Fig. 3E**), whereas their expression was further
187 enhanced by circGLIS3 overexpression (**Fig. 3F**). Moreover, we observed that circGLIS3
188 silencing also decreased the TGF- β 1-induced α -SMA and procollagen type 1 protein expression,
189 as shown by Western blotting (**Fig. 3G**) and immunofluorescence (**Fig. 3H and I**). Additionally,
190 in murine dermal fibroblasts with circGlis3 silencing, we observed a decrease in the Tgf- β 1-
191 induced expression of *Acta2*, *Colla1*, *Col4a1*, and *Fn1*, which parallels the effect observed in
192 human fibroblasts (**Fig. S3**). Collectively, our results identified circGLIS3 as a positive regulator
193 for TGF- β 1-induced fibroblast activation into matrix-secreting fibroblasts.

194

195 **CircGLIS3 interacts with and stabilizes PCPE-1**

196 We next explored the molecular mechanism by which circGLIS3 regulates fibroblast activation.
197 As circGLIS3 was mainly detected in the cytosol (**Fig. 2F-H**), we sought to characterize its protein
198 interactome. Due to limited transfection efficiency in primary fibroblasts, we performed circRNA

199 pulldown in HEK293T cells by expressing circGLIS3 tagged with MS2 hairpins and a FLAG-
200 tagged fusion protein recognizing MS2 (MS2-CP). The circGLIS3-protein complexes were pulled
201 down by FLAG antibody-conjugated beads, and the co-purified proteins were subjected to mass
202 spectrometry (MS) analysis (**Fig. 4A**). The successful pulldown of the MS2-tagged circGLIS3
203 compared to the non-tagged circGLIS3 was confirmed by qRT-PCR analysis of circGLIS3 (**Fig.**
204 **4B**). We identified 55 proteins uniquely bound to the circGLIS3-MS2, and among them,
205 Procollagen-C Proteinase Enhancer 1 (PCPE-1) and Rho GTPase Activating Protein 31 (RHG31)
206 were enriched in dermal fibroblasts, as shown in the Human Protein Atlas (**Fig. 4C, Table S4**, and
207 **S6**). Compared to RHG31, PCPE-1 had a higher interaction score with circGLIS3-MS2 and more
208 abundant expression in fibroblasts (**Fig. 4D** and **Table S5**). In human dermal fibroblasts, the
209 circGLIS3-PCPE-1 interaction was further validated by RNA-binding protein
210 immunoprecipitation (RIP), where we precipitated PCPE-1 protein with an antibody (**Fig. 4E**). We
211 showed that circGLIS3, but not *GAPDH* mRNA, was enriched in the anti-PCPE-1 group compared
212 to the IgG negative control (**Fig. 4F**).

213 PCPE-1 has been known for its TGF- β 1-induced expression and its important function in collagen
214 biosynthesis (28). Here, Western blotting (**Fig. 4G**) and immunofluorescent staining (**Fig. 4H** and
215 **I**) showed that PCPE-1 protein levels were reduced by circGLIS3 knockdown in fibroblasts treated
216 with TGF- β 1. Thereby, we hypothesized that circGLIS3 might be needed to maintain the level of
217 PCPE-1 proteins by either enhancing its production or reducing its degradation. To discern these
218 two possibilities, we probed the endogenous PCPE-1 protein turnover in TGF- β 1-stimulated
219 fibroblasts treated with an inhibitor of protein translation – cycloheximide (CHX), and a
220 proteasome inhibitor – MG132 (29). We found that blockage of the protein degradation pathway,
221 but not inhibition of translation, equalized the PCPE-1 protein levels between circGLIS3-depleted

222 fibroblasts and control fibroblasts, suggesting the importance of circGLIS3 for stabilizing the
223 PCPE-1 protein (**Fig. 4J**). To validate this, we performed CEllular Thermal Shift Assay (CETSA)
224 to assess whether circGLIS3 may affect the thermal properties of PCPE-1 protein (**Fig. 4K**) (30).
225 Protein lysates from TGF- β 1-treated fibroblasts with or without circGLIS3 knockdown were
226 incubated at different temperatures (ranging from 55-90°C), and the amount of PCPE-1 present in
227 the soluble fraction was quantified by Simple Western (**Fig. 4K-M**). We found that circGLIS3
228 silencing induced a shift to a lower melting temperature of PCPE-1 ($\Delta T_m = -2.23^\circ\text{C}$), confirming
229 that circGLIS3 is needed to stabilize PCPE-1 protein in fibroblasts (**Fig. 4M**).
230 Furthermore, we interrogated the role of PCPE-1 on TGF- β 1 signaling in dermal fibroblasts.
231 Similar to circGLIS3, knockdown of PCOLCE, the gene encoding the PCPE-1 protein, also
232 decreased the TGF- β 1-induced expression of the matrisome genes, such as *COL1A1*, *COL4A1*,
233 and *FNI*, and the contractility-related gene, *ACTA2* (**Fig. 5A-C**). Moreover, with the TGF- β 1
234 signal-responsive luciferase reporter assay, we showed that lack of PCOLCE also decreased
235 luciferase activity in human primary fibroblasts under both basal and TGF- β 1-treated conditions
236 (**Fig. 5D**). Together, these results suggest that circGLIS3 interacts with and stabilizes PCPE-1
237 protein, which is required for enhancing the TGF- β 1 signaling in human dermal fibroblasts (**Fig.**
238 **7**).

239

240 **CircGLIS3 is needed for wound closure in human *ex vivo* wounds**

241 To further evaluate the potential importance of circGLIS3 in human skin wound healing, we
242 employed a human *ex vivo* wound model (**Fig. 6A**). To this end, we topically applied circGLIS3-
243 specific siRNAs or scramble control oligos on partial-thickness wounds created on surgery

244 discarded human skin immediately after the injury and three days later. On day 6, these wounds
245 were collected for histological and molecular analysis (**Fig. 6A**). We found that the circGLIS3
246 siRNA treatment hindered wound closure by significantly reducing the re-epithelialization and
247 wound-edge contraction, as shown by hematoxylin and eosin (H&E) staining (**Fig. 6B, C**).
248 Moreover, by qRT-PCR analysis on the separated dermal and epidermal layers of the wound
249 tissues, we confirmed that circGLIS3 levels were effectively reduced by the siRNA treatment in
250 the dermis but not in the epidermis (**Fig 6D, E**). In line with our *in vitro* findings (**Fig. 3E, H**),
251 circGLIS3 knockdown decreased the expression of the contractility-related gene *ACTA2* and the
252 matrisome genes *COL1A1* and *COL4A1* in human *ex vivo* wound dermis (**Fig. 6E**). Additionally,
253 immunofluorescent staining showed reduced α -SMA expression in the dermal compartments of
254 the human *ex vivo* wounds lacking circGLIS3, which explained why these wounds contracted less
255 (**Fig. 6F, G**). Collectively, this study emphasizes the essential role of circGLIS3 in human skin
256 wound healing to promote fibroblast activation and their differentiation into matrix-secreting and
257 contracting cells.

258

259 **DISCUSSION**

260 This study provides evidence for the dynamic regulation of circGLIS3 in fibroblasts during skin
261 wound healing, whose expression is upregulated in an IL-1 α -dependent manner during early
262 phases and later approaches homeostatic skin levels by day 30. The increased expression of
263 circGLIS3 in the wounds of both humans and mice suggests its evolutionary conserved role in skin
264 repair. Loss- and gain-of-function studies of circGLIS3 demonstrated its role in regulating the
265 cellular responsiveness to TGF- β 1, leading to the activation of fibroblasts and the production of
266 ECM– requirements for granulation tissue formation and skin repair (**Fig. 7**) (31).

267 TGF- β 1 is released in the wound environment by platelets, macrophages, and keratinocytes at the
268 early stages of healing to promote the recruitment of inflammatory cells and angiogenesis (23). In
269 the interim stages of wound healing and the transition to the proliferative phase, TGF- β 1 prompts
270 the expression of crucial ECM proteins, such as fibronectin and collagens, and enhances fibroblast
271 contraction via the expression of α -SMA, to enable wound closure (24, 25, 32). Despite its
272 beneficial role for wound healing, overexuberant granulation tissue function due to persistent TGF-
273 β 1 signaling was shown to lead to excessive scarring (33, 34). Keloid scars have been widely
274 associated with exacerbated ECM deposition characterized by excessive fibril collagen and
275 fibronectin, while hypertrophic scars (HTS) also displayed an overwhelming presence of α -SMA-
276 expressing (myo)fibroblasts (14, 15). Interestingly, here we identified circGLIS3 to be highly
277 upregulated in keloid lesions compared to the healthy skin found in proximity. Similarly, HTS
278 tissues were shown to contain higher circGLIS3 levels compared to healthy skin tissue (35). These
279 lines of evidence highlight that, besides its beneficial role for wound closure, circGLIS3 may also
280 regulate dermal fibrosis and represent a therapeutic target in keloids and HTS.

281 CircGLIS3 has been recently shown to play oncogenic roles in non-small cell lung cancer, bladder
282 cancer, and glioma (36-39). Also, it is packaged into beta cell-derived exosomes and transferred
283 to islet endothelial cells, reducing angiogenesis and contributing to type 2 diabetes development
284 (40). Here we identified circGLIS3 as a critical factor controlling activation mechanisms of wound
285 fibroblasts. Mechanistically, it binds to PCPE-1 protein to amplify ECM production via TGF- β 1
286 signaling. PCPE-1 has been known as a secreted protein that enhances collagen maturation by
287 promoting the activity of bone morphogenetic protein 1/tolloid-like proteinases to cleave the C-
288 propeptides from procollagens (41). This process is important for the formation of collagen
289 monomers capable of forming fibrils. PCPE-1 has been proposed as a marker of fibrosis, given its

290 consistent overexpression in various fibrotic diseases (42-44). In addition, it has been reported that
291 PCPE-1, together with collagen type I and IV and fibronectin, are secreted in higher amounts by
292 HTS fibroblasts compared to normal fibroblasts (45), suggesting that PCPE-1 may be a potential
293 therapeutic target. Our findings reveal that the depletion of circGLIS3 in dermal fibroblasts
294 destabilizes PCPE-1 protein, and the reduced PCPE-1 levels compromised TGF- β 1 signaling.
295 Thus, the inhibition of circGLIS3 with clinically approved siRNA in dermal fibroblasts may
296 represent a promising therapeutic intervention for reducing scar formation.

297 IL-1 α is a proinflammatory cytokine rapidly released from epidermal keratinocytes at the
298 inflammatory stage of wound healing, and it promotes keratinocyte migration and proliferation
299 (23). Additionally, IL-1 α has been shown to act in a paracrine fashion to activate dermal fibroblasts
300 and enhance their production of collagen (46) and keratinocyte growth factor FGF-7, thus
301 facilitating wound re-epithelialization (47). However, despite its beneficial roles for wound
302 closure, increased exposure to IL-1 α has been reported to be associated with (48) and lead to
303 dermal fibrosis (49). Our study uncovers that IL-1 α upregulates circGLIS3 expression, which at
304 least partially explains the increased levels of circGLIS3 in fibroblasts in human wounds *in vivo*.
305 Further functional analysis of circGLIS3 suggests that it may mediate some of the pro-healing and
306 pro-fibrotic functions of IL-1 α in fibroblasts. Given the high levels of both IL-1 α and circGLIS3
307 in keloids and HTS, we postulate that, while it is beneficial for wound closure, sustained IL-
308 1 α /circGLIS3 stimulatory axis in fibroblasts may lead to pathological scarring.

309 Our study builds upon the emerging roles of circRNAs in skin repair. We have previously shown
310 that a circular RNA deriving from the *PRKDC* locus, hsa_circ_0084443, was upregulated in
311 diabetic foot ulcers (DFUs), which is a common type of chronic nonhealing wounds, compared to
312 acute wounds, and it impaired epidermal keratinocyte migration while promoting their abnormal

313 growth (50). Subsequent studies revealed that hsa_circ_0084443 knockdown enhanced
314 keratinocyte migration via miR-31/FBN1 (51) and miR-20a-3p/RASA1 (52) axes to promote
315 wound healing, reinforcing the therapeutic potential of this circRNA. Another circRNA, circ-
316 Amotl1, was shown to promote fibroblast proliferation and migration and accelerate skin wound
317 healing in mice by facilitating the transcription factor Stat3 nuclear translocation and modulating
318 Dnmt3a and miR-17 function (53). Collectively, these studies highlight that circRNAs are potent
319 gene expression regulators required for wound healing. Our current study exposes a previously
320 uncharacterized circRNA player in human skin wound repair and its connection with the crucial
321 TGF- β 1 signaling pathway to regulate fibroblast functions.

322 The human *ex vivo* model employed in this study is clinically relevant; however, it only allows for
323 the study of the early phases of wound healing, not scar formation or fibrosis. Using this model,
324 we uncovered a clear physiological role for circGLIS3 in wound healing, and its importance under
325 pathophysiological conditions, such as keloid, warrants further studies. Previous evidence has
326 shown that circGLIS3 can be exported out of cells (36, 40), and it would be of interest to investigate
327 whether circGLIS3 can be found in exosomes alongside PCPE-1 from fibroblasts to mediate
328 collagen maturation and deposition.

329 In summary, our results comprehensively characterize the function and mechanism of circGLIS3
330 in dermal fibroblasts, highlighting how the transient upregulation of circGLIS3 is beneficial for
331 skin wound healing. CircGLIS3 induces fibroblast activation via TGF- β 1 to increase ECM
332 production and speed up wound closure, which may also contribute to pathological skin scarring.
333 Future work should explore the targeted modulation of circGLIS3 expression to alter ECM
334 production in pathological conditions such as excessive scars.

335

336 **MATERIALS AND METHODS**

337 **Study design**

338 The goals of this study were (i) to identify circRNAs with potential functions in human skin wound
339 healing and (ii) to uncover the physiological role of circGLIS3 in wound fibroblasts and its
340 underlying molecular mechanism. For circRNA identification and quantification by RNA-seq,
341 LCM, and qRT-PCR, human skin and wound biopsies were obtained from healthy volunteers, and
342 matched skin and lesion biopsies were obtained from patients with keloids. Written informed
343 consent was obtained from all the donors for collecting and using clinical samples. The study of
344 donors 1-32 was performed at the Karolinska University Hospital Solna (Sweden) and was
345 approved by the Stockholm Regional Ethics Committee. The keloid and matched skin tissue
346 samples from donors 33-40 were obtained from the Jiangsu Biobank of Clinical Resources (China)
347 and approved by the Ethics Committee of the Hospital for Skin Diseases (Institute of
348 Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College. The
349 study was conducted according to the Declaration of Helsinki's principles. A series of *in vitro*
350 experiments were performed to assess gene expression, cell function, and RNA-protein
351 interactions on dermal fibroblasts isolated from human skin. A human *ex vivo* wound model was
352 used to study the impact of circGLIS3 on wound healing in an *in vivo*-like setting. Sample sizes,
353 replicates, and statistical methods are specified in the figure legends and the "Statistical analysis"
354 section.

355 **Human skin and wound specimens**

356 To investigate *in vivo* circRNA expression in human skin wound healing, we collected skin and
357 wound biopsies from 27 healthy volunteers (**Table 1** and **Table S1**). The exclusion criteria for
358 healthy donors were diabetes, skin diseases, unstable heart diseases, infections, bleeding disorders,

359 immune suppression, and any ongoing medical treatments. On the skin of each donor, two or three
360 excisional wounds were created using a 3-mm punch, and the excised skin from these surgical
361 wounds was saved as intact skin control. Wound-edge tissues were collected with a 6-mm punch
362 one day, seven days, and 30 days later. For donors 1-10, full-thickness wound-edge tissues were
363 collected for RNA-seq and qRT-PCR. For donors 11-20, the wound-edge tissues were collected
364 for magnetic cell activation sorting. For donors 21-27, the wound-edge tissues were used for LCM
365 (**Table S1**). Local lidocaine injection was used for anesthesia while sampling. Moreover, skin
366 discarded from plastic surgeries was collected for the establishment of an *ex vivo* wound model
367 (donor 28-30) and the isolation of dermal fibroblasts (donor 31-32) (**Table S1**). Keloid and the
368 surrounding normal skin tissues were collected at the time of surgery from donors 33-40 (**Table**
369 **S1**).

370 **RNA-seq library preparation and sequencing**

371 Total RNAs were isolated from the full-depth biopsies of the skin, Wound1, and Wound7 (n =
372 5/each group), and isolated keratinocytes and fibroblasts from the skin and Wound7 (n = 5/each
373 group) (**Table 1** and **Table S1**) by using the miRNeasy Mini kit (Qiagen, Hilden, Germany) and
374 prepared for library construction. First, the ribosomal RNA (rRNA) was removed using the
375 Epicentre Ribo-zero® rRNA Removal Kit (Epicentre, Road Madison, WI) with a total amount of
376 2 ug RNA as an input for each library. Second, strand-specific RNA-seq libraries were constructed
377 by using the NEB Next® UltraTM Directional RNA Library Prep Kit for Illumina® (NEB)
378 according to the manufacturer's instructions. The isolated keratinocytes and fibroblasts RNA-seq
379 libraries were constructed by following the tutorial of the NuGen Ovation Solo RNA-Seq System
380 (Human part no. 0500). Finally, the libraries were sequenced on the Illumina Hiseq 4000 platform
381 (Illumina, Inc., San Diego, CA) by using 150 bp paired-end reads.

382 **Laser capture microdissection**

383 Frozen tissue samples were cut with a rotary microtome Microm HM355S (ThermoFisher
384 Scientific, Carlsbad, CA) into 10 μ m sections and stained with Mayers hematoxylin (HistoLab,
385 Stockholm, Sweden). Laser capture microdissection was performed with Leica LMD7000 (Leica
386 Microsystems, Wetzlar, Germany).

387 **Magnetic activation cell sorting**

388 Fresh tissue samples were washed 2–3 times in PBS and incubated in 5 U/ml dispase
389 (ThermoFisher Scientific) supplemented with antibiotics (penicillin 50U/I and streptomycin 50
390 mg/ml. ThermoFisher Scientific) overnight at four °C. The epidermis was separated from the
391 dermis as previously described (54). The epidermis was cut into small pieces using scissors and
392 then digested in Trypsin/EDTA Solution (ThermoFisher Scientific) for 15 minutes at 37 °C, from
393 which CD45 $^{-}$ cells (mainly composed of keratinocytes) were separated using CD45 Microbeads
394 with MACS MS magnetic columns (Milteney Biotec, North Rhine-Westphalia, Germany). The
395 dermis was incubated in the enzyme mix from the whole skin dissociation kit (Milteney Biotec)
396 for 3 hours according to the manufacturer's instructions and further processed by Medicon tissue
397 disruptor (BD Biosciences, Stockholm, Sweden). The dermal cell suspension was incubated with
398 CD90 Microbeads, and CD90 $^{+}$ fibroblasts were isolated with MACS MS magnetic columns
399 according to the manufacturer's instructions (Milteney Biotec).

400 ***In situ* hybridization**

401 A circGLIS3 probe targeting the circGLIS3 BSJ, a negative control probe targeting *Bacillus*
402 *subtilis* dihydrodipicolinate reductase (DapB) gene, and a positive control probe targeting *Homo*
403 *sapiens* peptidylprolyl isomerase B (cyclophilin B) (PPIB) mRNA were designed and synthesized

404 by Advanced Cell Diagnostics (ACD, Newark, CA). Human fibroblasts were cultured on slides
405 and fixed in cold 4% formaldehyde for 15 minutes. After dehydration with 50%, 70%, and 100%
406 ethanol, the cells were incubated with Protease III (ACD) at room temperature for 20 min. The
407 slides were then incubated with either a circGLIS3 probe or the negative or positive control probes
408 for two hours at 40°C in HybEZ™ II Hybridization System by using BaseScope™ Reagent Kit v2
409 – RED Assay (ACD). The hybridization signals were amplified via sequential hybridization of
410 amplifiers and obtained by chromogenic staining with Fast RED dye. Cells were counterstained
411 with 50% hematoxylin for 2 minutes. The cells were visualized with brightfield microscopy on a
412 Nikon eclipse Ni-E microscope (Nikon, Amstelveen, Netherlands) at 20X and 40X magnification.

413 **Cell culture and functional studies**

414 Human primary dermal fibroblasts, adult (HDFa; Cascade Biologics, Portland, OR) were cultured
415 in Medium 106 (Cascade Biologics) supplemented with 10% Low Serum Growth Supplement
416 (LSGS) and 1% penicillin/ streptomycin at 37°C in 5% CO₂ (ThermoFisher Scientific).

417 Dermal fibroblasts were isolated from adult human skin from abdominal or thigh reduction plastic
418 surgery (n = 2) (donors 31 and 32 in **Table S1**). Six-mm full-depth skin biopsies were collected
419 with a punch knife and washed with PBS. The tissues were then placed in a culture plate and left
420 to attach to the bottom. Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10%
421 heat-inactivated fetal bovine serum (FBS) and 1% penicillin-streptomycin (ThermoFisher
422 Scientific) was then added to the culture plate, which was kept at 37 °C in 5% CO₂. Fibroblasts
423 grew out from the tissues, and the culture became confluent in approximately two weeks. Cells
424 were passaged once for expansion. Passage two fibroblasts were cryopreserved. Fibroblasts in
425 passages three and four were used in this study.

426 NIH/3T3 mouse embryonic fibroblasts (CRL-1658TM; ATCC, Manassas, VA) were cultured in
427 DMEM medium supplemented with 10% heat-inactivated FBS and 1% penicillin-streptomycin at
428 37°C in 5% CO₂ (ThermoFisher Scientific). HEK293T cells were cultured in DMEM medium
429 supplemented with 10% FCS and 1% penicillin-streptomycin at 37°C in 5% CO₂.

430 To evaluate RNA stability, we incubated human fibroblasts with Actinomycin-D 5 µg/ml for up
431 to 24 hours. To study the mechanism regulating circGLIS3 expression, we treated human
432 fibroblasts with IL-1 α (20 ng/ml), IL-6 (50 ng/ml), IL-8 (50 ng/ml), IL-22 (30 ng/ml), IL-36 α (100
433 ng/ml), TNF- α (50 ng/ml), TGF- β 1 (20 ng/ml), TGF- β 2 (10 ng/ml), TGF- β 3 (20 ng/ml), BMP-2
434 (100 ng/ml), EGF (20 ng/ml), IGF-1 (20 ng/ml), FGF-2 (30 ng/ml), VEGFA (20 ng/ml), HB-EGF
435 (20 ng/ml) or PBS as control for 24 hours and circGLIS3 expression was analyzed by qRT-PCR.
436 All these cytokines and growth factors were purchased from either ImmunoTools (Friesoyte,
437 Germany) or R&D Systems (Minneapolis, MN) (**Table S3**).

438 To study the functions of circGLIS3 in fibroblasts, we knocked down or overexpressed circGLIS3.
439 For knockdown experiments, cells at 60–70% confluence were transfected with 10 nM of siRNA
440 targeting circGLIS3 or a scrambled siRNA for 24 and 48 hours using LipofectamineTM 3000
441 (ThermoFisher Scientific). To overexpress circGLIS3, we transfected fibroblasts at 80-90%
442 confluence with circGLIS3 overexpression plasmid (pLC5-circGLIS3) or mock vector (pLC5-
443 empty) (250ng/ml) with LipofectamineTM 3000 for 48 hours. The successful modulation of
444 circGLIS3 expression level was confirmed by qRT-PCR (**Fig. 3E, F, and Fig. S2**). For evaluation
445 of the effect of circGLIS3 on TGF- β signaling, human fibroblasts with either circGLIS3 depletion
446 or overexpression or 3T3 cells with circGlis3 knockdown that had been transfected for 24h were
447 stimulated with 5 ng/ml TGF- β 1 (R&D Systems) for 24 hours. The corresponding amount of TGF-
448 β 1 reconstitution buffer was used as vehicle negative control. These cells were used for qRT-PCR

449 analysis. To test the endogenous PCPE-1 protein turnover, we treated human fibroblasts with 0.5
450 μ M MG132 (Sigma-Aldrich, Cat. No. M7449) and 5 μ g/ml cycloheximide (Sigma-Aldrich, Cat
451 No. C4859).

452 **Luciferase assay**

453 To evaluate the effect of circGLIS3 on the responsiveness of human fibroblasts to TGF- β 1
454 stimulation, we used a TGF- β reporter plasmid pSBE4-Luc (Addgene, plasmid #16495). This
455 plasmid contains four tandem copies of the Smad binding sites, which drive the transcription of
456 the Firefly luciferase reporter gene (27). pBV-Luc (Addgene, plasmid #16539), a luciferase
457 reporter plasmid with very low basal activity, was used as a negative control (55). Human dermal
458 fibroblasts were co-transfected with the luciferase reporters (200 ng/ml), together with 10 nM
459 siRNA targeting circGLIS3 or scrambled control, using the LipofectamineTM 3000 (ThermoFisher
460 Scientific). One day later, the transfected cells were treated with 5 ng/ml TGF- β 1 (R&D Systems)
461 for 24 hours. Luciferase activity was analyzed using the Dual-Luciferase[®] Reporter Assay System
462 and read with GloMax[®]-Multi Detection System (Promega, Madison, WI).

463 **Plasmids construction**

464 The circGLIS3 overexpression plasmid was constructed with the help of Guangzhou Geneseeed
465 Biotech Co. (Guangzhou, China). In brief, the pLC5-ciR vector, which includes front and back
466 circular frames for the circularization of the transcripts, was used as the backbone plasmid. The
467 front circular frame contains an endogenous flanking genomic sequence with the EcoRI restriction
468 site, and the back circular frame contains part of the inverted upstream sequence with the BamHI
469 restriction site. The cDNA encoding circGLIS3 in HEK293T cells was amplified using the primers
470 listed in **Table S3**. The amplicon, which contained an EcoRI site, the circGLIS3 linear sequence

471 with the corresponding splice sites, and a BamHI site, was then cloned into the pLC5-ciR backbone
472 vector between the two frames. Vector construction was verified by Sanger sequencing. A mock
473 vector containing only a nonsense sequence between the two circular frames was used as a control
474 plasmid.

475 The circGLIS3 overexpression plasmids with or without MS2 hairpins were constructed with the
476 help of Creative Biogene Biotechnology (Shirley, NY). In brief, the cDNA encoding circGLIS3
477 or circGLIS3-MS2 were subcloned into the pLO-circRNA backbone by restriction digestion with
478 EcoRI and BamHI and ligation with T4 DNA ligase. Vector construction was verified by Sanger
479 sequencing, and the primers used are listed in **Table S3**.

480 **MS2-mediated pulldown of circGLIS3-bound proteins and mass spectrometry**

481 Pulldown of MS2-tagged circGLIS3 and its protein interactome was performed using previously
482 published methods (56, 57). In brief, we co-transfected HEK293T cells with 1 μ g circGLIS3
483 overexpression plasmids with or without the MS2 hairpins (circGLIS3 and circGLIS3-MS2)
484 together with a captured protein expression plasmid (MS2-CP) containing a FLAG tag for 48 hours
485 by using LipofectamineTM Reagent and PLUSTM reagent (ThermoFisher Scientific) (**Fig. 4A**). The
486 immunoprecipitation of the circGLIS3-RBP complex was performed with protein A+G beads
487 coated with an anti-FLAG antibody. RNA-protein complexes were eluted from the beads; RNA
488 and protein fractions were isolated. The enrichment of circGLIS3 in the circGLIS3-MS2 group
489 after immunoprecipitation was validated by qRT-PCR. The protein fractions from circGLIS3-MS2
490 (test) and circGLIS3 (control) were analyzed with mass spectrometry. Briefly, the proteins in the
491 eluate were reduced with 0.05M TCEP solution at 60°C for 1 hour and then alkylated with 55 nM
492 MMTS for 45 min at room temperature. The solution was filtered on 10 kDa centrifugal filter
493 devices for 20 min at 12000 x g. The proteins were then digested with trypsin at 37°C overnight

494 using an enzyme-to-protein ratio of 1:50. The resulting peptides were collected by centrifugation
495 and vacuum dried at low temperature. Peptides were then dissolved in 2% ACN and 0.1% formic
496 acid and analyzed on a Thermo Scientific Q Exactive Mass Spectrometer (ThermoFisher
497 Scientific). The MS was operated in data-dependent mode, automatically switching between MS
498 and MS2 acquisition, with a mass resolution of 70,000 and 17,500, respectively. Mascot software
499 was used for protein identification. MS raw files were searched against a database of 20386 *Homo*
500 *sapiens* sequences from uniprot.org. Protein scores (**Table S4**) were derived from ion scores where
501 individual ion scores > 22 indicated identity or extensive homology ($p < 0.05$). The protein lists
502 identified in each group were overlapped with a list of 924 proteins with enriched expression in
503 human skin fibroblasts (**Table S5**) obtained from proteinatlas.org (**Fig. 4C**).

504 **RNA-binding protein immunoprecipitation**

505 To test the interaction between human circGLIS3 and PCPE-1, we performed a RIP assay using
506 Magna RIP RNA-Binding Protein Immunoprecipitation Kit (Millipore, Burlington, MA). HDFa
507 were lysed in RIP lysis buffer, and then 100 μ l of whole cell extract was incubated with anti-human
508 PCPE-1 antibody (sc-73002, Santa Cruz Biotechnology) coated on A + G magnetic beads
509 (Millipore) in RIP buffer. Normal rabbit IgG (Millipore) was used as a negative control. The
510 samples were then incubated with proteinase K to digest protein, and the immunoprecipitated RNA
511 was isolated. circGLIS3 and GAPDH mRNA levels were detected by qRT-PCR.

512 **Cellular thermal shift assay (CETSA) and immunoblot**

513 Human dermal fibroblasts transfected with either 10 nM si-circGLIS3 or scrambled siRNA
514 (Eurofins Genomics, Ebersberg, Germany) for 48 hours and treated with 5 ng/ml TGF- β 1 (R&D
515 Systems) were rinsed and pelleted in PBS. Cells were resuspended in PBS supplemented with
516 protease inhibitors (Roche, Basel, Switzerland) and counted to normalize equal cell density

517 between conditions. Cells were lysed with three rounds of freeze-thaw cycles by incubating for
518 three minutes on dry ice and three minutes in a water bath at 37°C, followed by centrifugation at
519 16,000 × g for 20 minutes at 4°C. The supernatant was then aliquoted into PCR tubes and heated
520 individually at different temperatures (range: 55-90°C, 2.5°C increments) for 3 minutes in a
521 gradient thermal cycler ProFlex PCR System (ThermoFisher Scientific) and immediately cooled
522 down at room temperature. After centrifugation (20,000 × g for 20 minutes at 4°C), the supernatant
523 was transferred to a new tube and prepared for immunodetection with an anti-human PCPE-1
524 antibody (1:25; catalog sc-73002; Santa Cruz Biotechnology) with Protein Simple Jess/Wes
525 capillary-based system (Bio-Techne, Minneapolis, MN) according to manufacturer instructions.

526 **Human *ex vivo* wound model**

527 To evaluate the effect of circGLIS3 in a physiologically relevant model of human skin wound
528 healing, we employed a human *ex vivo* wound model (58). Human skin was obtained from
529 abdominal reduction surgeries or thighplasty (donors 28-30 in **Table S1**). The wounds were made
530 using a 2 mm biopsy punch on the epidermal side of the skin (2-4 wounds per donor), excised
531 using a 6 mm biopsy punch, and subsequently transferred to a cell culture plate containing DMEM
532 plus 10% FBS and antibiotics (penicillin 50 U/l and streptomycin 50 mg/ml; ThermoFisher
533 Scientific). MaxSuppressor In Vivo RNA-LANCER II (Bioo Scientific, Austin, TX) was mixed
534 with 0.1 nmol siRNA targeting circGLIS3 or a scrambled siRNA (Eurofins Genomics) in a volume
535 of 5 µl per wound. The siRNA-lipid complexes were mixed 1:2 (volumes) in 30% pluronic F-127
536 gel (Sigma-Aldrich). 15 µl mixture was topically applied on the wounds immediately after injury
537 and 3 days later. Wound samples were collected one day later for gene expression analysis (**Fig.**
538 **6D, E**) and six days after injury for histological analysis (**Fig. 6B, C, F, G**).

539 **Statistics**

540 Data analysis was performed using R and GraphPad 8.4.0 (GraphPad Software). All quantitative
541 data were presented as means \pm SD. Normality and distribution of data were checked with the
542 Shapiro-Wilk test ($p < 0.05$ indicated data that did not pass the normality test). Comparison
543 between two groups was performed with a two-tailed Student's t-test (parametric) or Mann-
544 Whitney U test (non-parametric, unpaired), or Wilcoxon test (non-parametric, paired).
545 Comparison between more than two groups that contained paired data (matched samples or
546 repeated measures) was made with RM one-way ANOVA and Tukey's multiple comparisons test
547 (parametric data) or Friedman test and Dunn's multiple comparisons test (non-parametric data).
548 Comparison between more than two groups with unpaired data was performed with Ordinary one-
549 way ANOVA and Dunnett's multiple comparisons test (parametric data) or Kruskal-Wallis and
550 Dunn's multiple comparisons test (non-parametric data). p -value < 0.05 was considered
551 statistically significant.

552

553 **Supplementary Materials**

554 Materials and Methods

555 Fig. S1. The molecular characteristics of circGLIS3.

556 Fig. S2. Modulation of circGLIS3 levels in human dermal fibroblasts.

557 Fig. S3. circGlis3 regulates Tgf- β 1 target genes in mouse fibroblasts.

558 Table S1. Human sample information.

559 Table S2. Differentially expressed circRNAs in human day-7 wounds compared to the matched
560 skin (tissue biopsies, dermal fibroblasts, and epidermal keratinocytes).

561 Table S3. List of reagents used in this study.

562 Table S4. Mass spectrometry analysis of protein interactome of circGLIS3.

563 Table S5. Proteins expressed in human skin fibroblasts.

564

565 **REFERENCES AND NOTES**

566 1. K. Jarbrink *et al.*, The humanistic and economic burden of chronic wounds: a protocol for
567 a systematic review. *Syst Rev* **6**, 15 (2017).

568 2. R. G. Frykberg, J. Banks, Challenges in the Treatment of Chronic Wounds. *Adv Wound
569 Care (New Rochelle)* **4**, 560-582 (2015).

570 3. G. G. Gauglitz, H. C. Korting, T. Pavicic, T. Ruzicka, M. G. Jeschke, Hypertrophic
571 scarring and keloids: pathomechanisms and current and emerging treatment strategies.
572 *Mol Med* **17**, 113-125 (2011).

573 4. J. M. Reinke, H. Sorg, Wound repair and regeneration. *Eur Surg Res* **49**, 35-43 (2012).

574 5. K. S. Midwood, L. V. Williams, J. E. Schwarzbauer, Tissue repair and the dynamics of
575 the extracellular matrix. *Int J Biochem Cell Biol* **36**, 1031-1037 (2004).

576 6. W. R. Jeck *et al.*, Circular RNAs are abundant, conserved, and associated with ALU
577 repeats. *RNA* **19**, 141-157 (2013).

578 7. S. Memczak *et al.*, Circular RNAs are a large class of animal RNAs with regulatory
579 potency. *Nature* **495**, 333-338 (2013).

580 8. X. Li, L. Yang, L. L. Chen, The Biogenesis, Functions, and Challenges of Circular
581 RNAs. *Mol Cell* **71**, 428-442 (2018).

582 9. L. L. Chen, The expanding regulatory mechanisms and cellular functions of circular
583 RNAs. *Nat Rev Mol Cell Biol* **21**, 475-490 (2020).

584 10. Q. Yang, F. Li, A. T. He, B. B. Yang, Circular RNAs: Expression, localization, and
585 therapeutic potentials. *Mol Ther* **29**, 1683-1702 (2021).

586 11. X. Mao, Y. Cao, Z. Guo, L. Wang, C. Xiang, Biological roles and therapeutic potential of
587 circular RNAs in osteoarthritis. *Mol Ther Nucleic Acids* **24**, 856-867 (2021).

588 12. L. Santer, C. Bar, T. Thum, Circular RNAs: A Novel Class of Functional RNA
589 Molecules with a Therapeutic Perspective. *Mol Ther* **27**, 1350-1363 (2019).

590 13. M. A. Toma *et al.*, Circular Rna Signatures Of Human Healing And Non-Healing
591 Wounds. *J Invest Dermatol*, (2022).

592 14. T. Zhang *et al.*, Current potential therapeutic strategies targeting the TGF-beta/Smad
593 signaling pathway to attenuate keloid and hypertrophic scar formation. *Biomed
594 Pharmacother* **129**, 110287 (2020).

595 15. H. P. Ehrlich *et al.*, Morphological and immunochemical differences between keloid and
596 hypertrophic scar. *Am J Pathol* **145**, 105-113 (1994).

597 16. W. Wu, P. Ji, F. Zhao, CircAtlas: an integrated resource of one million highly accurate
598 circular RNAs from 1070 vertebrate transcriptomes. *Genome Biol* **21**, 101 (2020).

599 17. S. Dodbele, N. Mutlu, J. E. Wilusz, Best practices to ensure robust investigation of
600 circular RNAs: pitfalls and tips. *EMBO Rep* **22**, e52072 (2021).

601 18. T. Gutschner, M. Hammerle, S. Diederichs, MALAT1 -- a paradigm for long noncoding
602 RNA function in cancer. *J Mol Med (Berl)* **91**, 791-801 (2013).

603 19. S. Bandiera *et al.*, Nuclear outsourcing of RNA interference components to human
604 mitochondria. *PLoS One* **6**, e20746 (2011).

605 20. O. Bensaude, Inhibiting eukaryotic transcription: Which compound to choose? How to
606 evaluate its activity? *Transcription* **2**, 103-108 (2011).

607 21. H. Suzuki, T. Tsukahara, A view of pre-mRNA splicing from RNase R resistant RNAs.
608 *Int J Mol Sci* **15**, 9331-9342 (2014).

609 22. W. R. Jeck, N. E. Sharpless, Detecting and characterizing circular RNAs. *Nat Biotechnol*
610 **32**, 453-461 (2014).

611 23. S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, M. Tomic-Canic, Growth factors
612 and cytokines in wound healing. *Wound Repair Regen* **16**, 585-601 (2008).

613 24. J. W. Penn, A. O. Grobbelaar, K. J. Rolfe, The role of the TGF-beta family in wound
614 healing, burns and scarring: a review. *Int J Burns Trauma* **2**, 18-28 (2012).

615 25. M. B. Vaughan, E. W. Howard, J. J. Tomasek, Transforming growth factor-beta1
616 promotes the morphological and functional differentiation of the myofibroblast. *Exp Cell
617 Res* **257**, 180-189 (2000).

618 26. S. Bhattacharyya *et al.*, Tenascin-C drives persistence of organ fibrosis. *Nat Commun* **7**,
619 11703 (2016).

620 27. L. Zawel *et al.*, Human Smad3 and Smad4 are sequence-specific transcription activators.
621 *Mol Cell* **1**, 611-617 (1998).

622 28. Q. Zhu *et al.*, Synergistic effect of PCPE1 and sFRP2 on the processing of procollagens
623 via BMP1. *FEBS Lett* **593**, 760 (2019).

624 29. E. V. Rusilowicz-Jones, S. Urbe, M. J. Clague, Protein degradation on the global scale.
625 *Mol Cell* **82**, 1414-1423 (2022).

626 30. R. Jafari *et al.*, The cellular thermal shift assay for evaluating drug target interactions in
627 cells. *Nat Protoc* **9**, 2100-2122 (2014).

628 31. L. E. Tracy, R. A. Minasian, E. J. Caterson, Extracellular Matrix and Dermal Fibroblast
629 Function in the Healing Wound. *Adv Wound Care (New Rochelle)* **5**, 119-136 (2016).

630 32. M. Pakyari, A. Farrokhi, M. K. Maharlooei, A. Ghahary, Critical Role of Transforming
631 Growth Factor Beta in Different Phases of Wound Healing. *Adv Wound Care (New*
632 *Rochelle)* **2**, 215-224 (2013).

633 33. J. Lu *et al.*, Increased expression of latent TGF-beta-binding protein 4 affects the fibrotic
634 process in scleroderma by TGF-beta/SMAD signaling. *Lab Invest* **97**, 591-601 (2017).

635 34. M. K. Lichtman, M. Otero-Vinas, V. Falanga, Transforming growth factor beta (TGF-
636 beta) isoforms in wound healing and fibrosis. *Wound Repair Regen* **24**, 215-222 (2016).

637 35. X. Li, Z. He, J. Zhang, Y. Han, Identification of crucial non-coding RNAs and mRNAs in
638 hypertrophic scars via RNA sequencing. *FEBS Open Bio* **11**, 1673-1684 (2021).

639 36. Y. Li *et al.*, CircGLIS3 Promotes High-Grade Glioma Invasion via Modulating Ezrin
640 Phosphorylation. *Front Cell Dev Biol* **9**, 663207 (2021).

641 37. S. Wu *et al.*, Circular RNA circGLIS3 promotes bladder cancer proliferation via the miR-
642 1273f/SKP1/Cyclin D1 axis. *Cell Biol Toxicol* **38**, 129-146 (2022).

643 38. Z. Wu, H. Jiang, H. Fu, Y. Zhang, A circGLIS3/miR-644a/PTBP1 positive feedback loop
644 promotes the malignant biological progressions of non-small cell lung cancer. *Am J*
645 *Cancer Res* **11**, 108-122 (2021).

646 39. J. Xu *et al.*, Overexpression of hsa_circ_0002874 promotes resistance of non-small cell
647 lung cancer to paclitaxel by modulating miR-1273f/MDM2/p53 pathway. *Aging (Albany*
648 *NY)* **13**, 5986-6009 (2021).

649 40. L. Xiong *et al.*, Lipotoxicity-induced circGlis3 impairs beta cell function and is
650 transmitted by exosomes to promote islet endothelial cell dysfunction. *Diabetologia* **65**,
651 188-205 (2022).

652 41. R. Adar, E. Kessler, B. Goldberg, Evidence for a protein that enhances the activity of
653 type I procollagen C-proteinase. *Coll Relat Res* **6**, 267-277 (1986).

654 42. E. Hassoun, M. Safrin, H. Ziv, S. Pri-Chen, E. Kessler, Procollagen C-Proteinase
655 Enhancer 1 (PCPE-1) as a Plasma Marker of Muscle and Liver Fibrosis in Mice. *PLoS*
656 *One* **11**, e0159606 (2016).

657 43. G. Kessler-Icekson, H. Schlesinger, S. Freimann, E. Kessler, Expression of procollagen
658 C-proteinase enhancer-1 in the remodeling rat heart is stimulated by aldosterone. *Int J*
659 *Biochem Cell Biol* **38**, 358-365 (2006).

660 44. V. W. Wong, F. You, M. Januszyk, G. C. Gurtner, A. A. Kuang, Transcriptional profiling
661 of rapamycin-treated fibroblasts from hypertrophic and keloid scars. *Ann Plast Surg* **72**,
662 711-719 (2014).

663 45. L. Ma *et al.*, Comparative proteomic analysis of extracellular matrix proteins secreted by
664 hypertrophic scar with normal skin fibroblasts. *Burns Trauma* **2**, 76-83 (2014).

665 46. A. E. Postlethwaite *et al.*, Modulation of fibroblast functions by interleukin 1: increased
666 steady-state accumulation of type I procollagen messenger RNAs and stimulation of
667 other functions but not chemotaxis by human recombinant interleukin 1 alpha and beta.
668 *The Journal of cell biology* **106**, 311-318 (1988).

669 47. A. Tang, B. A. Gilchrest, Regulation of keratinocyte growth factor gene expression in
670 human skin fibroblasts. *J Dermatol Sci* **11**, 41-50 (1996).

671 48. Y. Kawaguchi, IL-1 alpha gene expression and protein production by fibroblasts from
672 patients with systemic sclerosis. *Clin Exp Immunol* **97**, 445-450 (1994).

673 49. T. Z. Kirk, M. D. Mayes, IL-1 rescues scleroderma myofibroblasts from serum-
674 starvation-induced cell death. *Biochem Biophys Res Commun* **255**, 129-132 (1999).

675 50. A. Wang *et al.*, Circular RNA hsa_circ_0084443 Is Upregulated in Diabetic Foot Ulcer
676 and Modulates Keratinocyte Migration and Proliferation. *Adv Wound Care (New*
677 *Rochelle)* **9**, 145-160 (2020).

678 51. D. Han, W. Liu, G. Li, L. Liu, Circ_PRKDC knockdown promotes skin wound healing
679 by enhancing keratinocyte migration via miR-31/FBN1 axis. *J Mol Histol* **52**, 681-691
680 (2021).

681 52. L. N. Jiang, X. Ji, W. Liu, C. Qi, X. Zhai, Identification of the circ_PRKDC/miR-20a-
682 3p/RASA1 axis in regulating HaCaT keratinocyte migration. *Wound Repair Regen*,
683 (2021).

684 53. Z. G. Yang *et al.*, The Circular RNA Interacts with STAT3, Increasing Its Nuclear
685 Translocation and Wound Repair by Modulating Dnmt3a and miR-17 Function. *Mol Ther*
686 **25**, 2062-2074 (2017).

687 54. S. Cheuk *et al.*, CD49a Expression Defines Tissue-Resident CD8(+) T Cells Poised for
688 Cytotoxic Function in Human Skin. *Immunity* **46**, 287-300 (2017).

689 55. T. C. He, T. A. Chan, B. Vogelstein, K. W. Kinzler, PPARdelta is an APC-regulated
690 target of nonsteroidal anti-inflammatory drugs. *Cell* **99**, 335-345 (1999).

691 56. J. H. Yoon, M. Gorospe, Identification of mRNA-Interacting Factors by MS2-TRAP
692 (MS2-Tagged RNA Affinity Purification). *Methods Mol Biol* **1421**, 15-22 (2016).

693 57. L. M. Holdt *et al.*, Circular non-coding RNA ANRIL modulates ribosomal RNA
694 maturation and atherosclerosis in humans. *Nat Commun* **7**, 12429 (2016).

695 58. O. Stojadinovic, M. Tomic-Canic, Human ex vivo wound healing model. *Methods Mol*
696 *Biol* **1037**, 255-264 (2013).

697

698 **Acknowledgments:** We thank all the tissue donors participating in this study and Helena Griehsel
699 for technical support during sample collection. We thank the Microarray core facility at
700 Novum, BEA, which is supported by the board of research at KI and the research
701 committee at the Karolinska hospital. The computations/data handling was enabled by
702 resources in projects of sens2020010 and SNIC2019/8-262 provided by the Swedish
703 National Infrastructure for Computing (SNIC) at UPPMAX, partially funded by the
704 Swedish Research Council through grant agreement no. 2018-05973.

705 **Funding:**

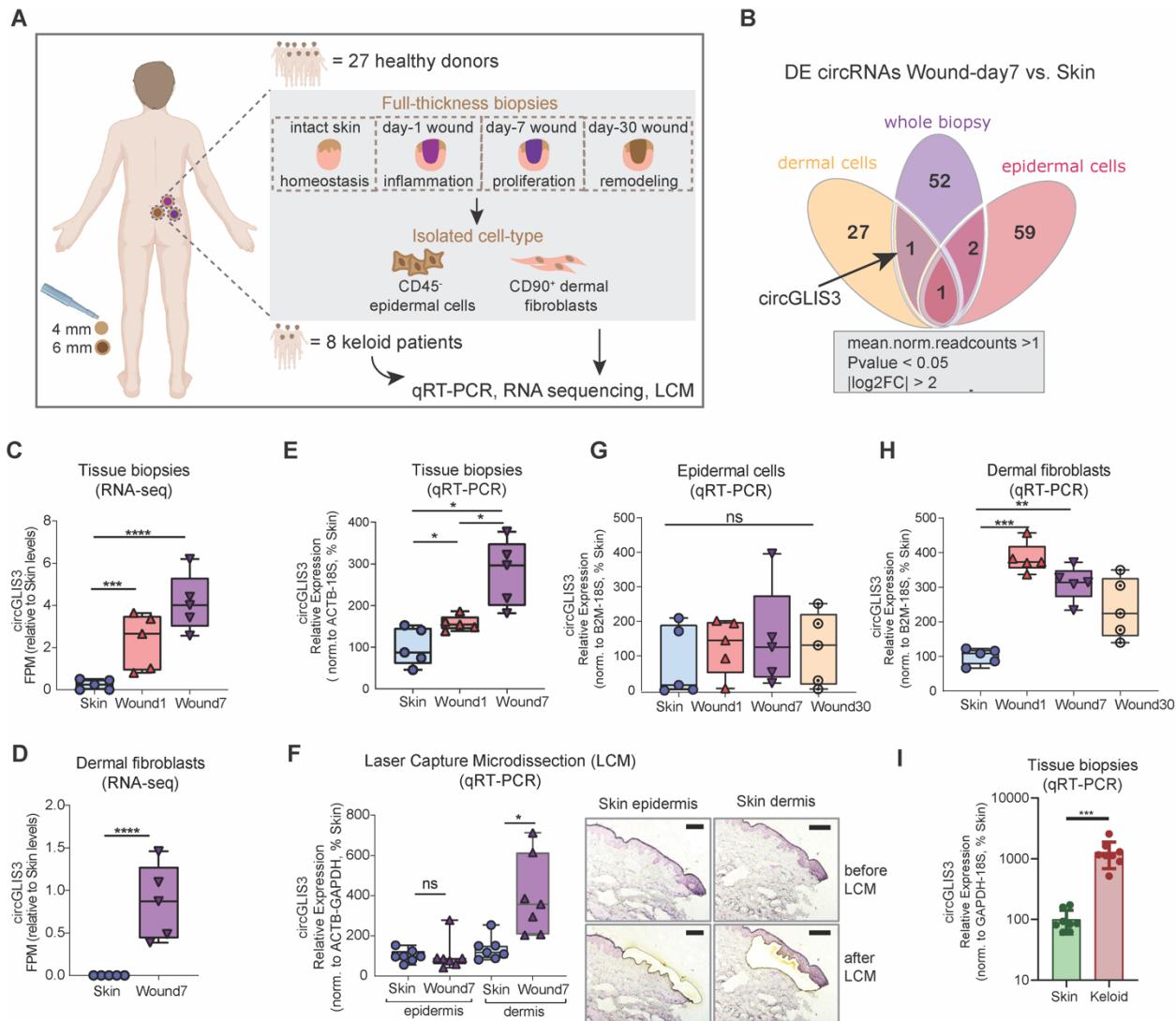
706 Swedish Research Council (Vetenskapsrådet) grants 2016-02051 and 2020-01400 (NXL)
707 Ragnar Söderbergs Foundation, grant M31/15 (NXL)
708 Welander and Finsens Foundation (Hudfonden) (NXL)
709 Ming Wai Lau Centre for Reparative Medicine (NXL)
710 LEO Foundation (NXL)
711 Cancerfonden (NXL)
712 Karolinska Institutet (NXL)

713 **Author contributions:**

714 Conceptualization: NXL, MAT, PS
715 Methodology: MAT, ZL, MV, MP, AW, DL, PS
716 Investigation: MAT, QW, MV, MP, ZL, LZ, DL, GN, JG, YX, XB, PS
717 Visualization: MAT, NXL, GN
718 Funding acquisition: NXL
719 Project administration: MAT, NXL
720 Supervision: NXL, PS

721 Writing – original draft: MAT, NXL

722 Writing – review & editing: MAT, QW, DL, YX, GN, JG, MV, MP, ZL, LZ, XB, AW,

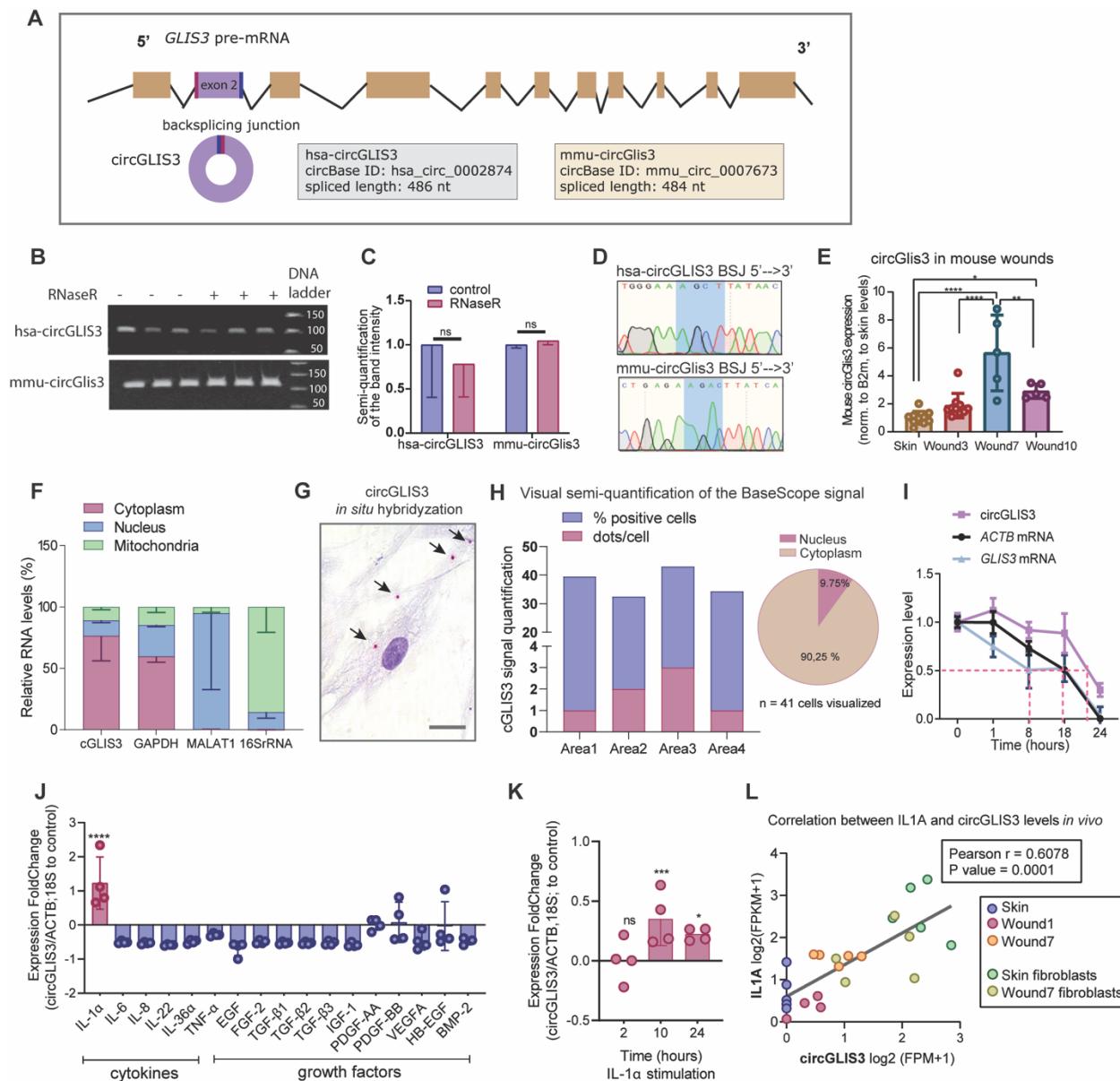

723 PS, NXL

724 **Competing interests:** Authors declare that they have no competing interests.

725 **Data and materials availability:** The circRNA expression data from RNA-seq of human skin and
726 wound tissues have been previously reported (13) and presented as a web resource at
727 <https://www.xulandenlab.com/humanwounds-circrna>. The circRNA expression data from
728 RNA-seq of isolated keratinocytes and fibroblasts are presented in the supplementary
729 material in Table S2. The transcriptomic profiling of dermal fibroblasts with circGLIS3
730 knockdown by microarray has been deposited to Gene Expression Omnibus with the
731 ascension number GSE196260 (token: adkficmuhnmdfsv). All codes required to reanalyze
732 the data reported in this paper can be requested from the lead contact.

733

734 **FIGURES**



735

736 **Fig. 1. CircGLIS3 is upregulated in wound fibroblasts. (A)** Excisional wounds were created on
737 the skin of 27 healthy volunteers and collected 1 (Wound1), 7 (Wound7), and 30 days later
738 (Wound30) from the same donor. CD45⁻ epidermal cells and CD90⁺ fibroblasts were isolated from
739 matched skin and Wound7 samples. Biopsies were also collected from lesional sites and
740 surrounding skin of 8 keloid patients. CircRNAs were analyzed in these clinical samples by RNA-
741 seq, qRT-PCR, and laser capture microdissection (LCM). **(B)** Venn diagram showing the
742 commonly identified differentially expressed (DE) circRNAs in the isolated cell types and tissue

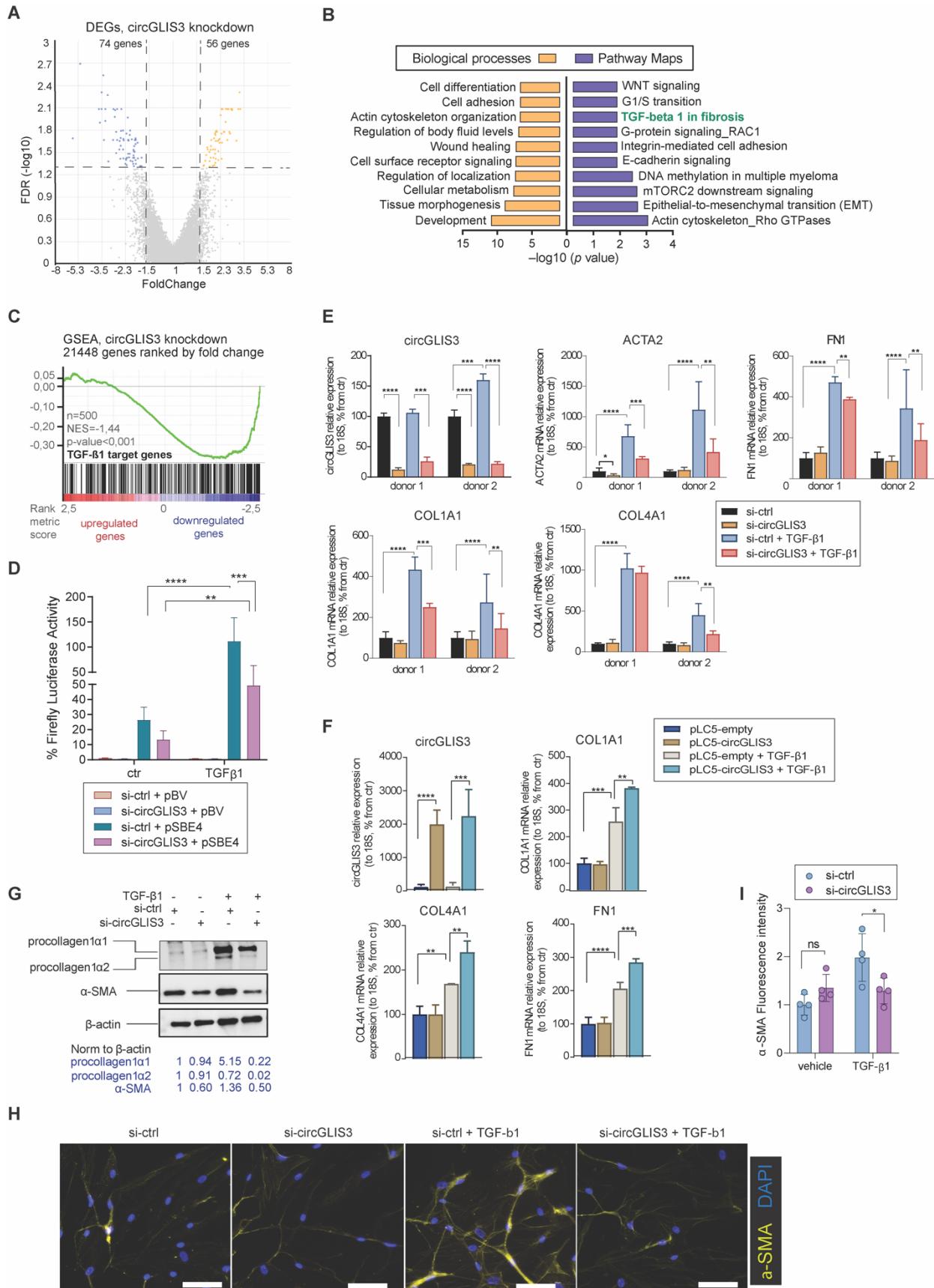
743 biopsies of the skin and Wound7 analyzed by RNA-seq. CircGLIS3 expression in the skin and
744 wound tissue biopsies (n=5 donors) (**C**) and isolated fibroblasts (n=5 donors) (**D**) was analyzed by
745 RNA-seq. qRT-PCR validation of circGLIS3 expression in additional skin and wound biopsies
746 (n=5 donors) (**E**), LCM of epidermal and dermal compartments of the skin and wounds (n=7
747 donors) (**F**), CD45⁻ epidermal cells (**G**) and CD90⁺ fibroblasts (**H**) isolated from the skin and
748 wounds (n=5 donors), donor matched skin and keloid biopsies (n=8 donors) (**I**). *P<0.05,
749 **P<0.01, ***P<0.001, and ****P<0.0001 by Wilcoxon test (**D, I**) or RM one-way ANOVA and
750 Tukey's multiple comparisons test (**C, E, F-H**).

751

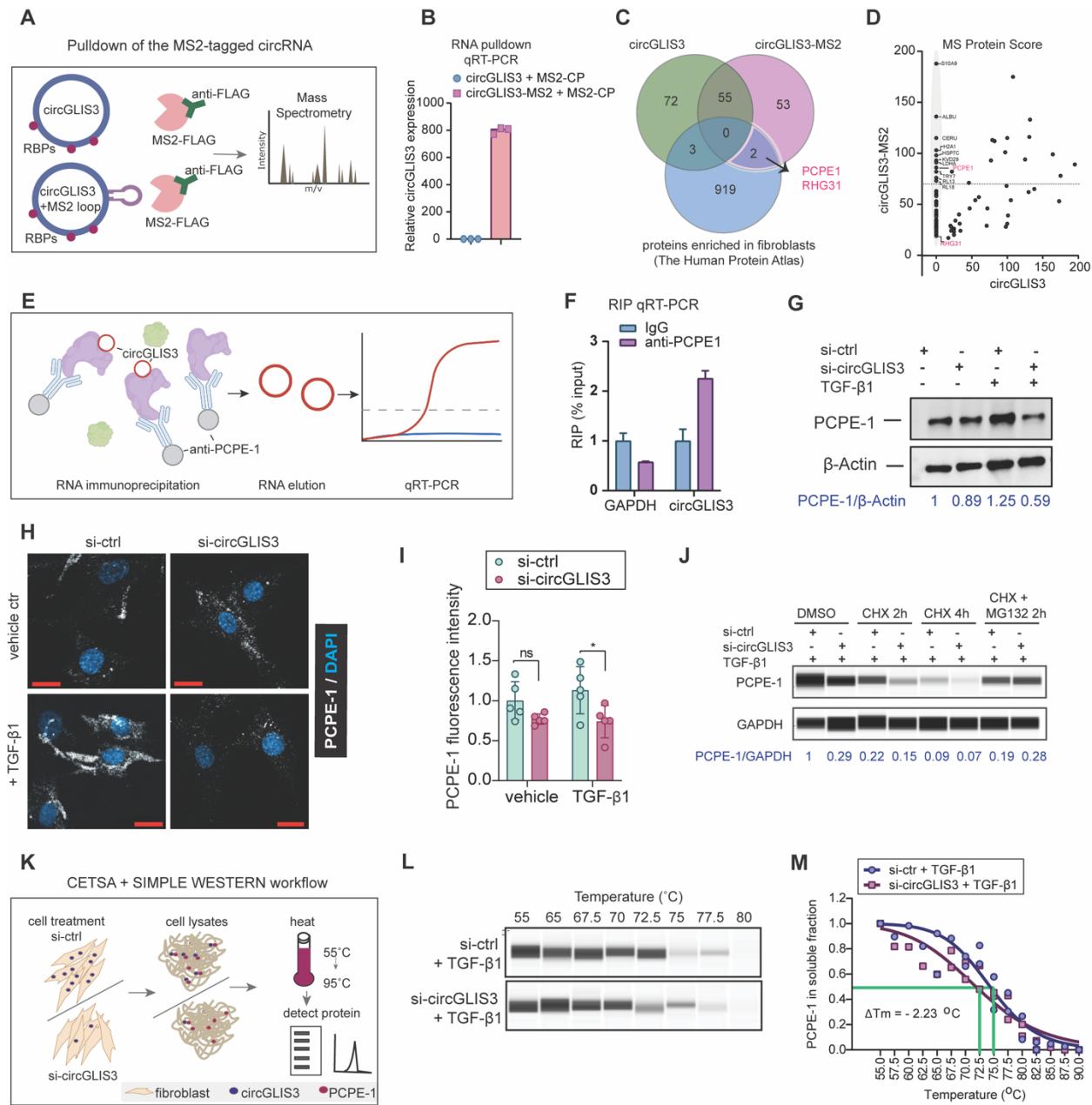
752

753 **Fig. 2. The molecular characteristics of circGLIS3. (A)** Illustration of circGLIS3 biogenesis.

754 **(B)** Agarose gel electrophoresis of circGLIS3 RT-PCR products from RNaseR-digested or control

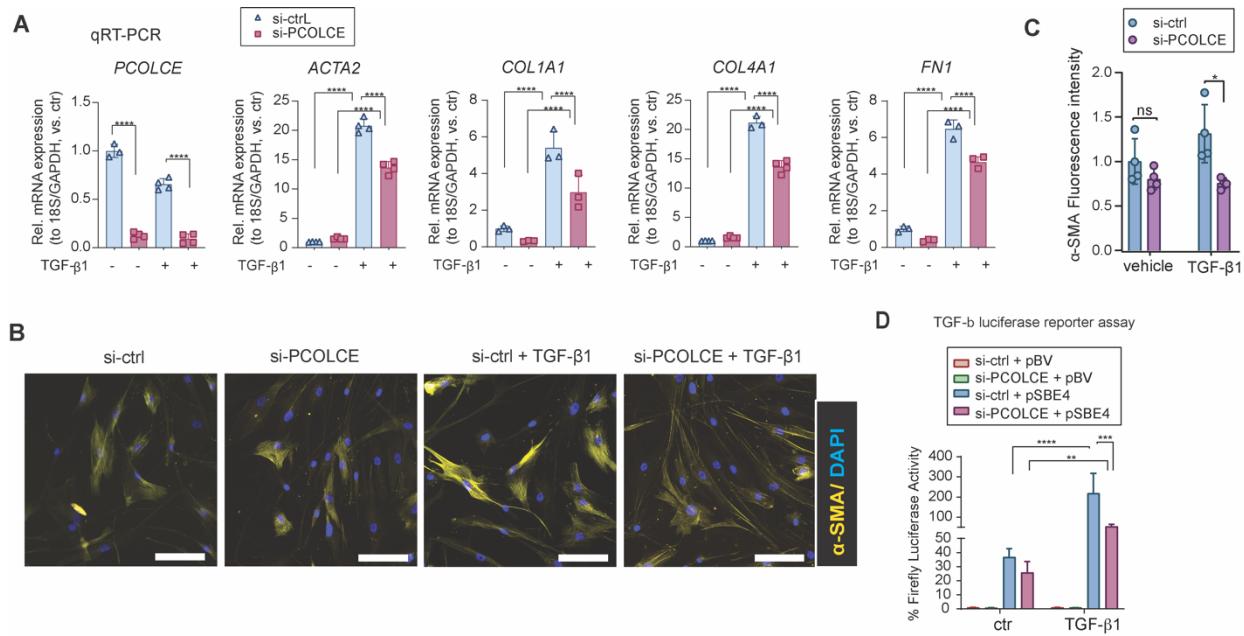

755 RNA from human (top) and mice (bottom) fibroblasts (n=3). Band intensity was quantified in **(C)**.

756 **(D)** Sanger sequencing of the RT-PCR products verified sequences of the BSJ regions of human


757 (top) and mouse (bottom) circGLIS3. **(E)** qRT-PCR of circGLIS3 in skin and day3, 7, and 10 acute

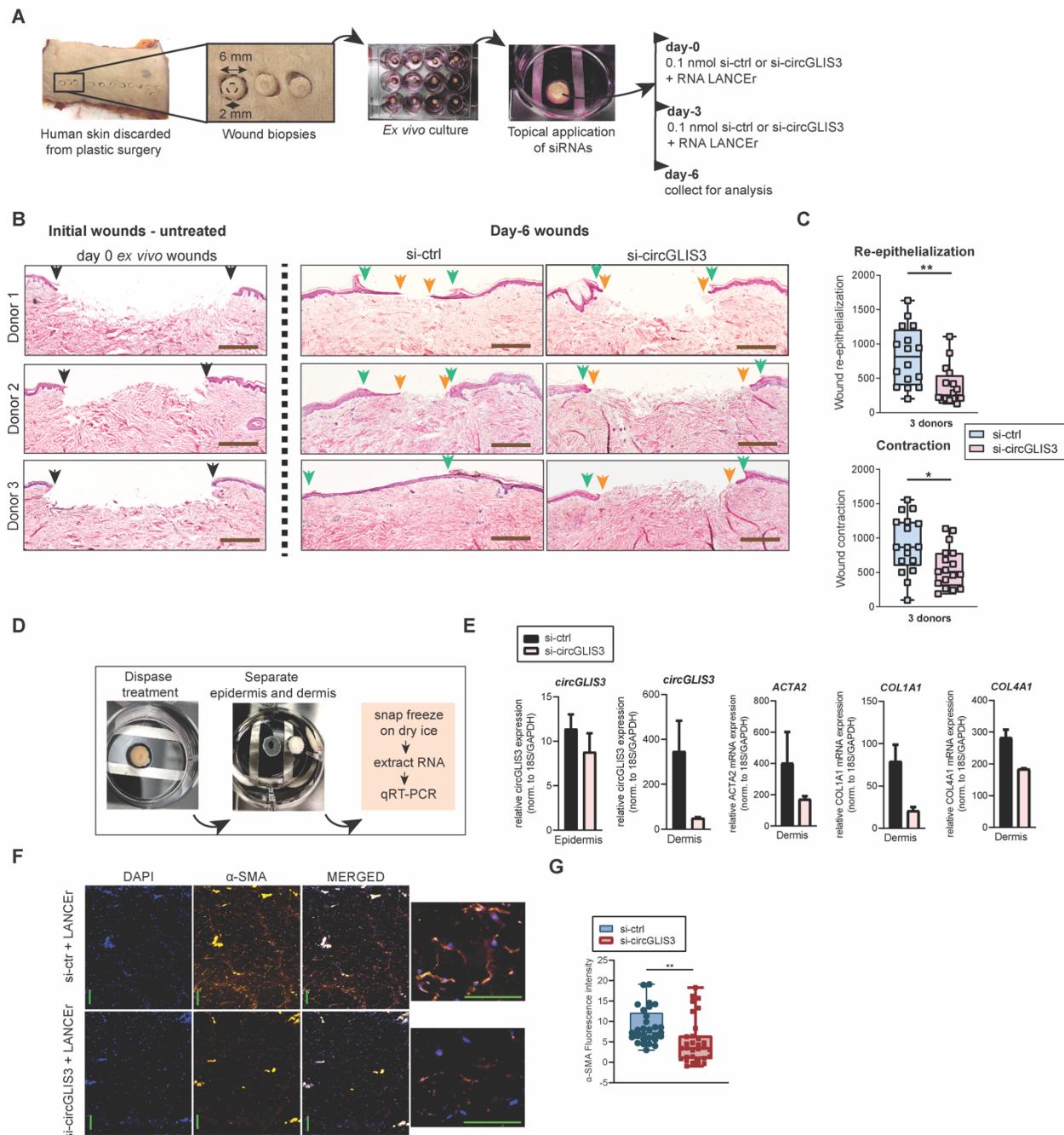
758 wounds from C57BL/6 mice (n=15). **(F)** qRT-PCR of circGLIS3, GAPDH, MALAT1, and 16S

759 rRNA in nuclear, cytoplasmic, and mitochondrial fractions of human fibroblasts (n=3). **(G)** *In situ*
760 hybridization of circGLIS3 in human fibroblasts. **(H)** Visual semi-quantification of the circGLIS3
761 positive cells and the number of circGLIS3 signal dots/cell. **(I)** qRT-PCR of circGLIS3, *GLIS3*,
762 and *ACTB* mRNA levels in human fibroblasts treated with Actinomycin-D (n=4). qRT-PCR of
763 circGLIS3 in human fibroblasts treated with wound-related cytokines and growth factors for 24
764 hours (n=4) **(J)**, or IL-1 α for 2-24 hours (n=4) **(K)**. **(L)** Correlation between circGLIS3 and *IL1A*
765 expression in human wound samples analyzed by RNA-seq. Data are presented as means \pm SD.
766 *P<0.05, ***P<0.001, and ****P<0.0001 by two-tailed Student's t-test **(J, K)** or RM one-way
767 ANOVA and Tukey's multiple comparisons test **(E)**.
768


770 **Fig. 3. CircGLIS3 enhances TGF- β 1 signaling.** (A) Microarray profiling of human fibroblasts
771 with circGLIS3 knockdown. The volcano plot shows the differentially expressed genes (DEGs)
772 with $|Fold\ change|>1.5$ and $FDR<0.05$. (B) Gene Ontology analysis of the DEGs. (C) Gene Set
773 Enrichment Analysis evaluated the enrichment of TGF- β 1 signaling-related genes in the
774 microarray data. (D) Luciferase activity in fibroblasts transfected with TGF- β reporter plasmid or
775 empty vector together with si-ctrl or si-circGLIS3 for 24 hours and then treated with TGF- β 1 for
776 another 24 hours (n=4). qRT-PCR of circGLIS3, *ACTA2*, *FN1*, *COL1A1*, and *COL4A1* mRNA in
777 fibroblasts transfected with si-ctrl or si-circGLIS3 (E), circGLIS3 overexpression plasmid or
778 empty vector (F) for 24 hours and then stimulated with TGF- β 1 for another 24 hours (n=4). (G)
779 Western blotting of procollagen type 1 and α -SMA and semi-quantification of the band intensity
780 (relative to β -actin levels) in fibroblasts with circGLIS3 depletion and TGF- β 1 treatment. (H)
781 Immunofluorescence staining of α -SMA in fibroblasts with circGLIS3 depletion and TGF- β 1
782 treatment. Scale bar=100 μ m. The signal intensity was quantified in (I). Data are presented as
783 means \pm SD (D-F, I). **P<0.01, ***P<0.001, and ****P<0.0001 by one-way ANOVA and
784 Dunnett's multiple comparisons test (D-F); *P<0.05 by two-tailed Student's t-test (I).
785

786

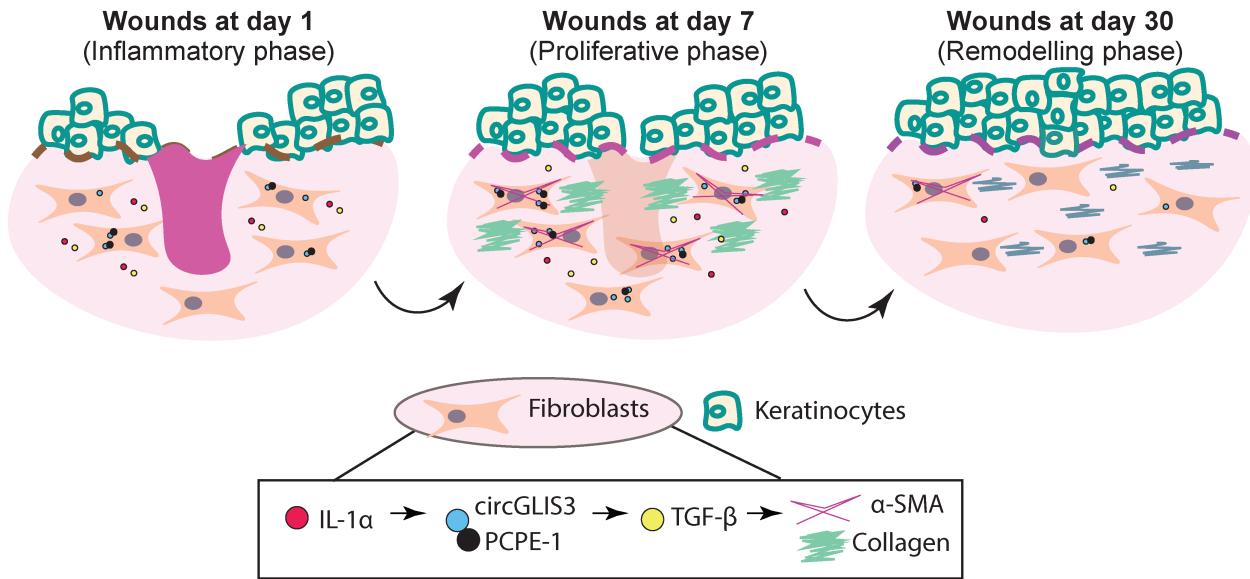
787 **Fig. 4. CircGLIS3 interacts with and stabilizes PCPE-1.** (A) A plasmid containing circGLIS3
788 tagged with MS2 hairpins (circGLIS3-MS2) was co-transfected with a plasmid expressing a
789 FLAG-tagged fusion protein with an MS2-recognizing portion (MS2-CP) in cells. Control cells
790 were co-transfected with circGLIS3 plasmids and MS2-CP. The ribonucleoprotein complexes
791 (RNPs) were isolated by using anti-FLAG antibodies, and the eluted RNA-binding proteins (RBD)
792 were analyzed by Mass Spectrometry (MS). (B) qRT-PCR of circGLIS3 in the RNPs. (C) Venn


793 diagram showing proteins identified by MS overlapped with a list of proteins expressed in human
794 dermal fibroblasts. **(D)** Proteins identified by MS were plotted with their interaction scores. **(E)**
795 Schematics of RNA-binding protein immunoprecipitation (RIP) strategy. **(F)** qRT-PCR of
796 circGLIS3 and *GAPDH* mRNA in RNPs immunoprecipitated with anti-PCPE-1 antibody or IgG.
797 Western blotting **(G)** and immunofluorescence analysis (IF) **(H, I)** of PCPE-1 in fibroblasts with
798 circGLIS3 depletion and TGF- β 1 treatment. Scale bar=20 μ m. **(J)** Simple Western of PCPE-1 in
799 fibroblasts with circGLIS3 depletion and TGF- β 1 treatment for 24 hours and then treated with
800 cycloheximide (CHX) and/or MG132 for 2-4 hours. **(K)** Illustration of CETSA assay. Simple
801 Western **(L)** and melting curves **(M)** of PCPE-1 protein in the CETSA assay. *P<0.05 by two-
802 tailed Student's t-test.
803

804

805 **Fig. 5. PCPE-1 is required for TGF- β 1 signaling and fibroblast activation. (A)** qRT-PCR of
806 *PCOLCE* (the gene encoding PCPE-1), *ACTA2*, *COL1A1*, *COL4A1*, and *FN1* mRNA in fibroblasts
807 transfected with si-ctrl or si-PCOLCE and stimulated with TGF- β 1 for 24 hours (n=3-4).
808 Immunofluorescence analysis of α -SMA in human fibroblasts with PCPE-1 depletion and TGF-
809 β 1 treatment. Representative pictures (Scale bar = 100 μ m) are shown in (B), and the signal
810 intensity is quantified in (C). (D) Luciferase activity in fibroblasts transfected with a TGF- β
811 reporter plasmid or empty vector and si-ctrl or si-PCOLCE for 24 hours and then treated with
812 TGF- β 1 (5 ng/ μ l) for another 24 hours. **P < 0.01, ***P < 0.001, and ****P < 0.0001 by one-
813 way ANOVA and Dunnett's multiple comparisons test.

814



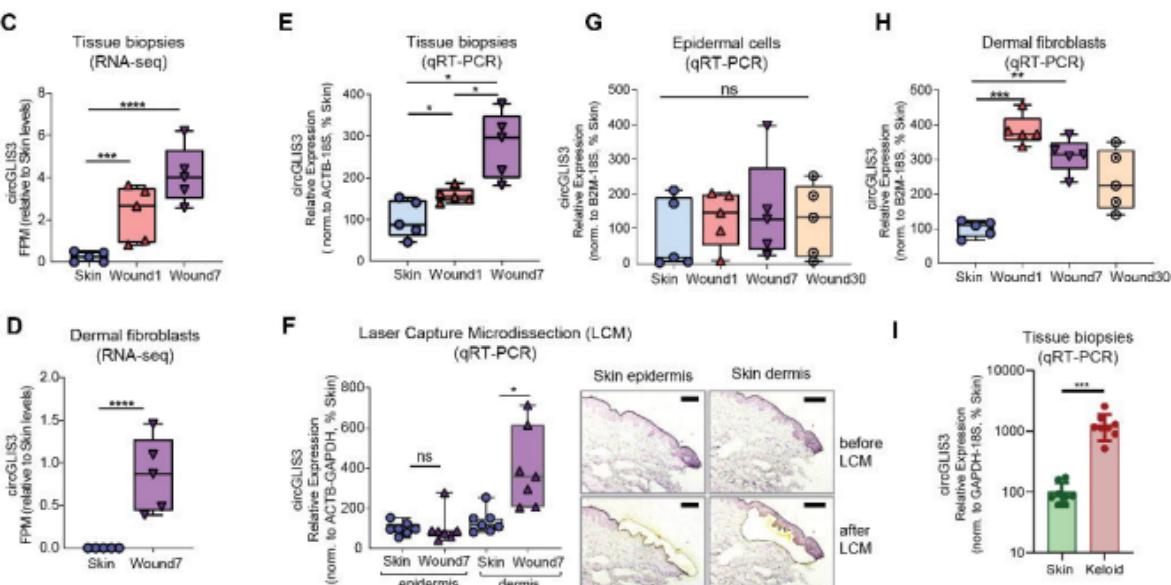
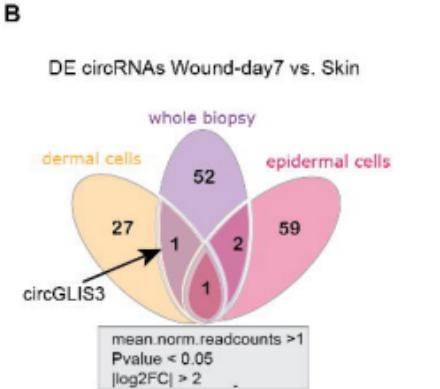
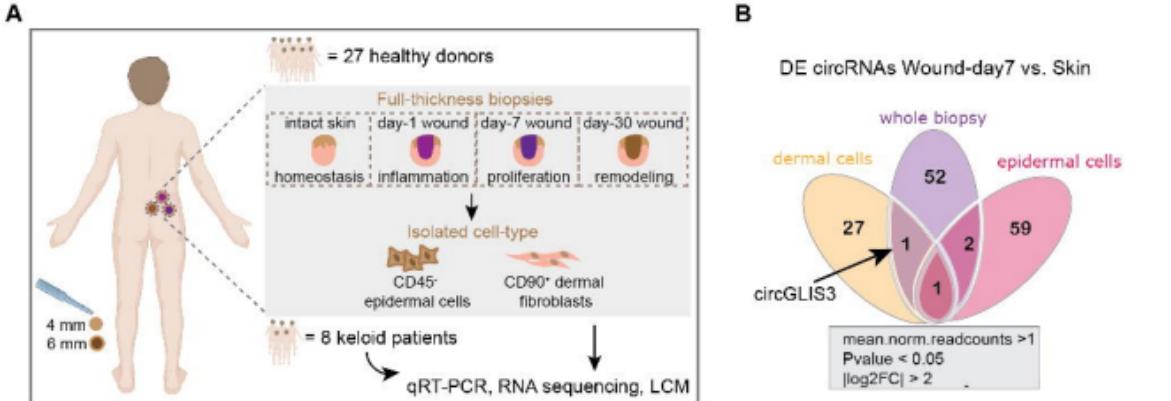
815

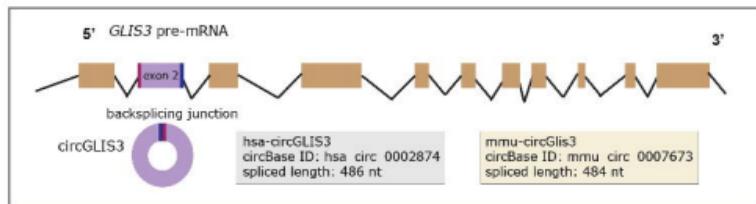
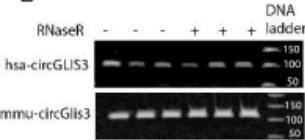
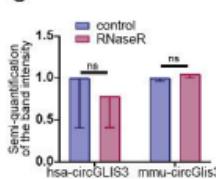
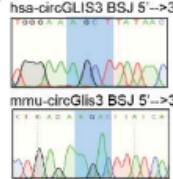
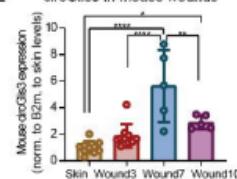
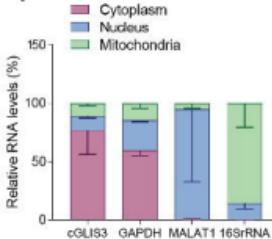
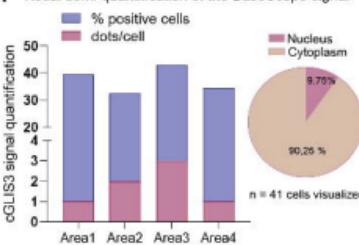
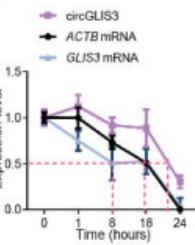
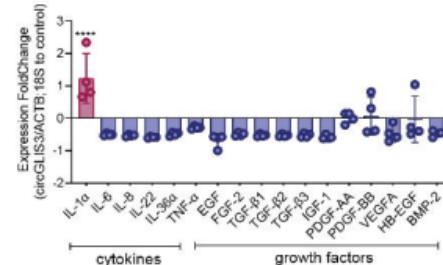
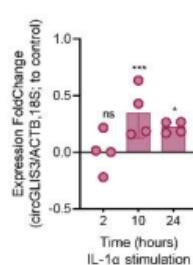
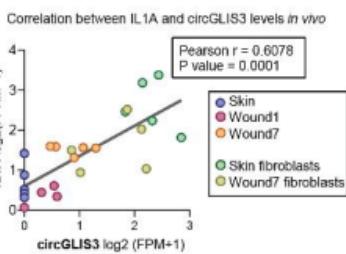
816 **Fig. 6. CircGLIS3 is needed for the closure of human *ex vivo* wounds. (A)** Scheme of topical
 817 treatment of human *ex vivo* wounds with si-RNA targeting circGLIS3 or a scrambled control
 818 siRNA. **(B)** Hematoxylin and eosin staining of day-0 and day-6 wounds. Black arrows demarcate
 819 the initial wound edges at day 0, green arrows indicate the wound edges at day 6, and orange
 820 arrows highlight the newly formed epidermis. Scale bar = 500 μ m. **(C)** Quantification of wound

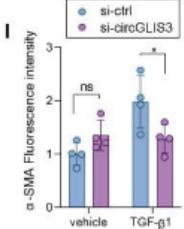
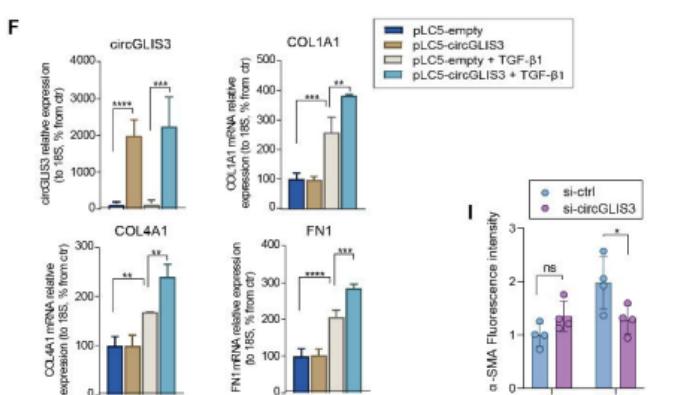
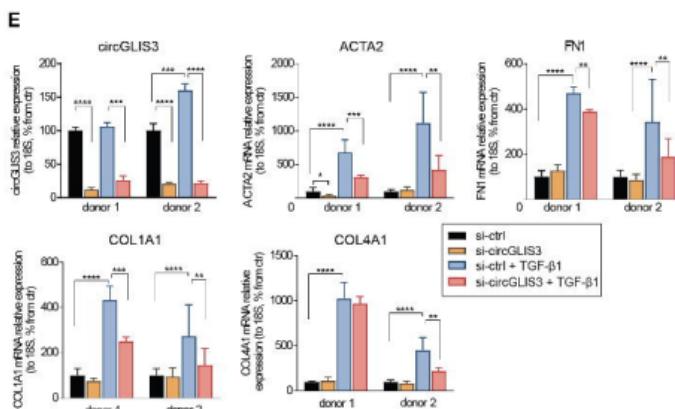
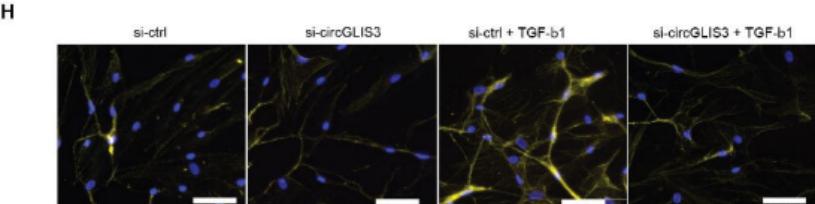
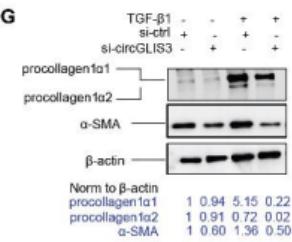
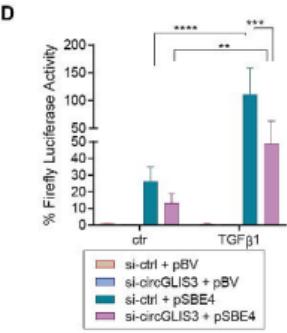
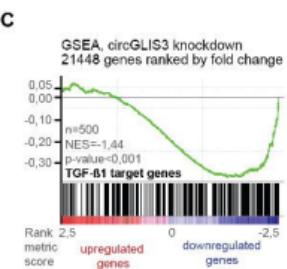
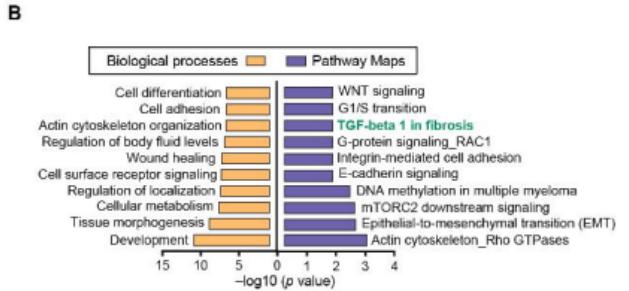
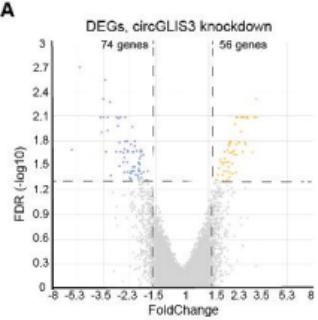
821 re-epithelialization (distance between green arrows – distance between orange arrows) and
822 contraction (distance between black arrows – distance between green arrows) of at least two
823 wounds per donor for three donors. **(D)** Workflow of epidermis and dermis separation from day-1
824 *ex vivo* wounds. **(E)** qRT-PCR of circGLIS3 expression in the epidermis and dermis and *ACTA2*,
825 *COL1A1*, and *COL4A1* mRNA in the dermis of *ex vivo* wounds (n = 2 donors).
826 Immunofluorescence analysis of α -SMA on the treated *ex vivo* wound. Representative pictures
827 (scale bar = 100 μ m) are shown in **(F)**, and the signal intensity is quantified in **(G)**. *P < 0.05, **P
828 < 0.01 by two-tailed Student's t-test **(C, G)**.

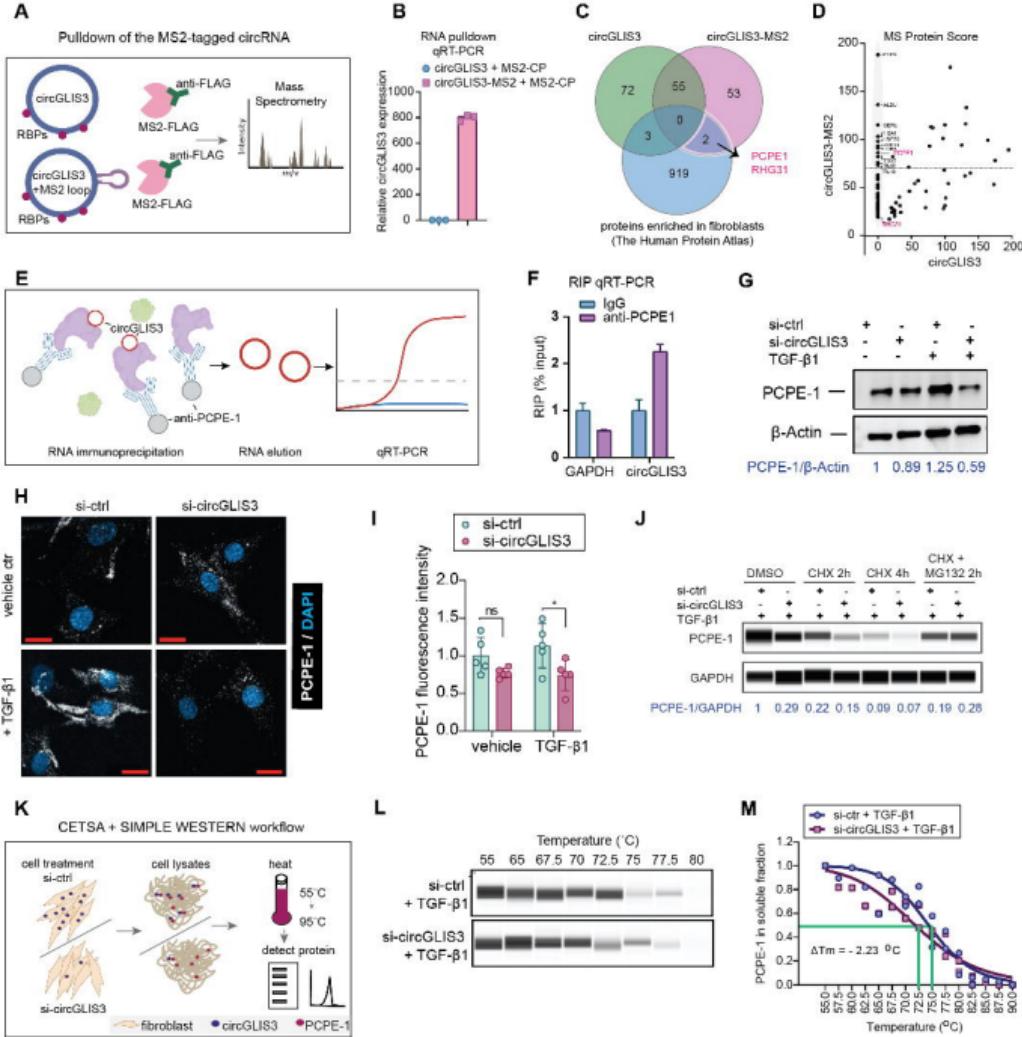
829

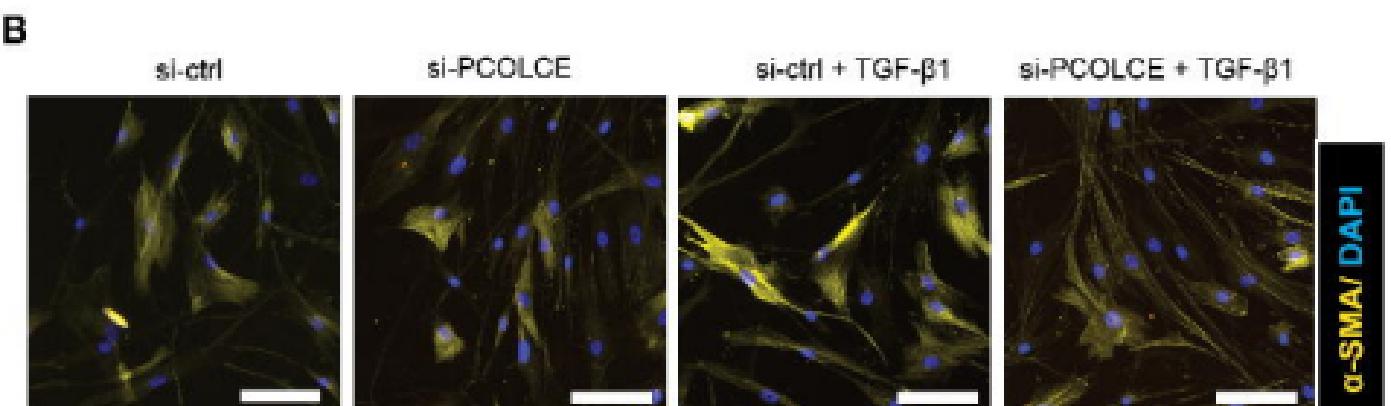
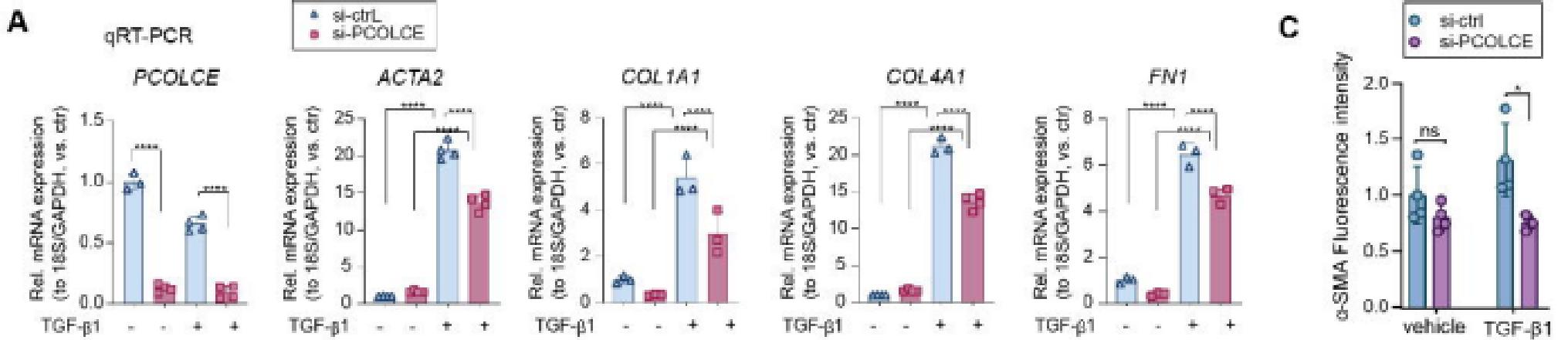
830




831 **Fig. 7. Summary of the study findings.** circGLIS3 expression is transiently upregulated in the
832 dermal fibroblasts upon skin injury, which was at least partially due to the activated IL-1 signaling.
833 circGLIS3 resides mainly in the cytoplasm, where it interacts with and stabilizes PCPE-1 protein,
834 enhancing TGF- β signaling, fibroblast activation, and extracellular matrix production. At the
835 remodeling phase, circGLIS3 expression decreases and approaches the skin fibroblast levels,
836 reinforcing its important role in the early stages of wound healing, where it modulates wound
837 contraction and ECM deposition.

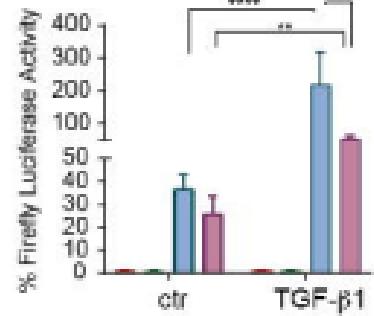











838

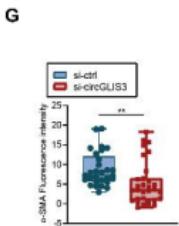
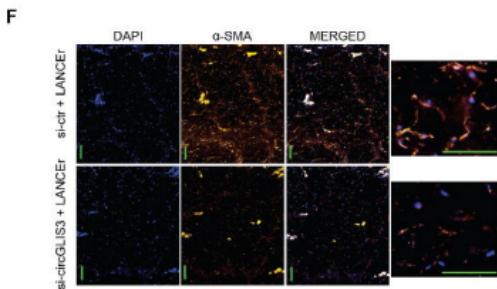
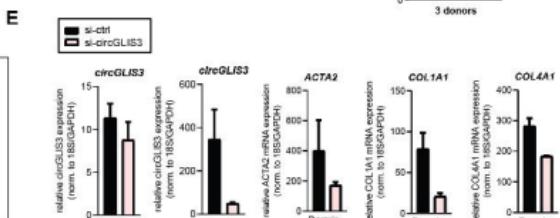
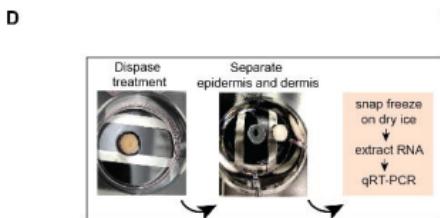
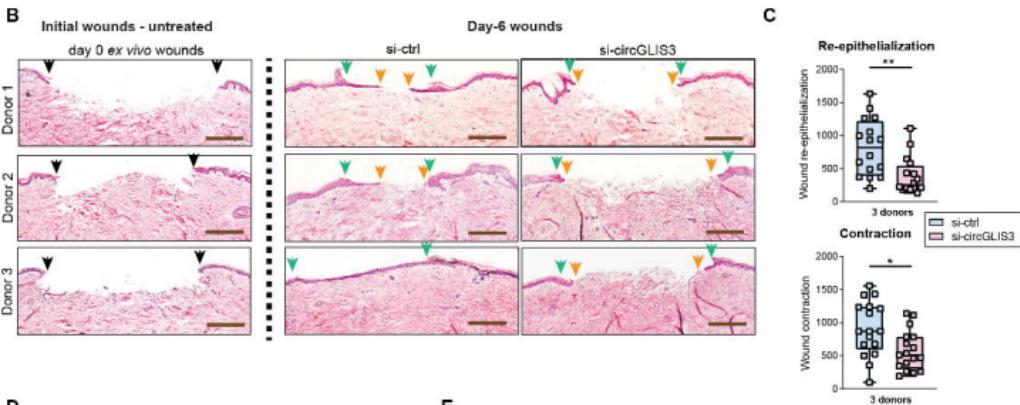









839 **Table 1.** Characteristics of tissue donors (n=40)

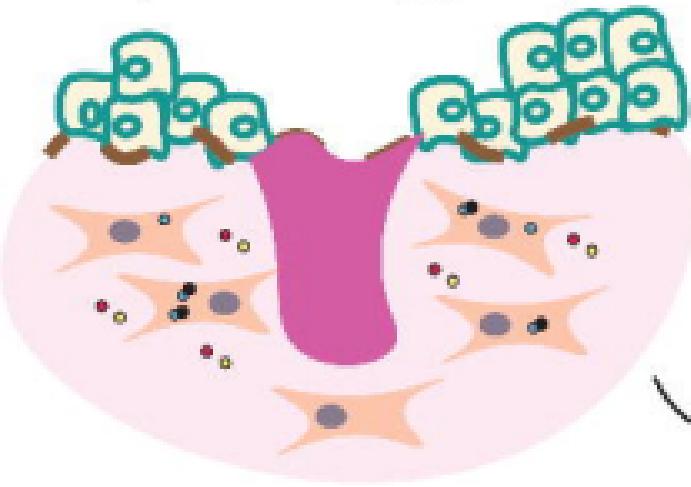

Experiments	Study population	Age, years (mean \pm s.d.)	Ethnicity; Sex (male: female)
Full-thickness biopsy RNA-seq (<i>Fig. 1B-C</i>)	5	65.3 \pm 3.2	Caucasian; 2:3
Isolated cell type RNA-seq (<i>Fig. 1B, D</i>)	5	33.2 \pm 10.3	Caucasian; 3:2
Full-thickness biopsy qRT-PCR validation (<i>Fig. 1E</i>)	5	63.6 \pm 3.4	Caucasian; 0:5
Isolated cell type qRT-PCR validation (<i>Fig. 1G-H</i>)	5	33.8 \pm 12.1	Caucasian; 3:2
LCM-qRT-PCR validation (<i>Fig. 1F</i>)	7	40.6 \pm 13.3	Caucasian; 4:3
Skin for <i>ex vivo</i> wound model (<i>Fig. 6</i>)	3	49 \pm 6.6	Caucasian; 0:3
Skin for fibroblast isolation (<i>Fig. 2-5</i>)	2	50 \pm 1	Caucasian; 0:2
Skin and keloid biopsies from patients (<i>Fig. 11</i>)	8	36.8 \pm 11.9	Asian; 4:4



840 Abbreviation: s.d., standard deviation

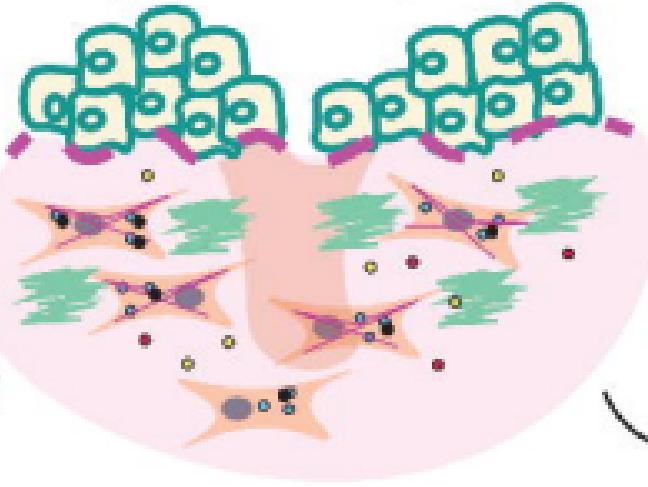
A**B****C****D****E****F****G****H****I****J****K****L**

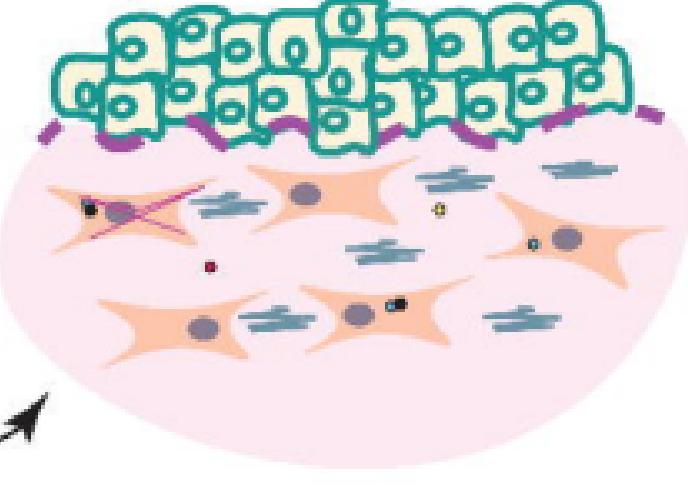



D TGF- β luciferase reporter assay

Legend: si-ctrl + pBV (red), si-POOLCE + pBV (green), si-ctrl + pSBE4 (blue), si-POOLCE + pSBE4 (purple)




Wounds at day 1
(Inflammatory phase)

Wounds at day 7
(Proliferative phase)

Wounds at day 30
(Remodelling phase)

Fibroblasts

Keratinocytes

IL-1 α \rightarrow

circGLIS3
PCPE-1

\rightarrow

TGF- β \rightarrow

α -SMA

Collagen