

Delayed SARS-CoV-2 Spread and Olfactory Cell Lineage Impairment in Close-Contact Infection Syrian Hamster Models

1 Rumi Ueha^{1,2*}, Toshihiro Ito³, Satoshi Ueha⁴, Ryutaro Furukawa³, Masahiro Kitabatake³, Noriko Ouji-
2 Sageshima³, Tsukasa Uranaka², Hirotaka Tanaka^{2,5}, Hironobu Nishijima², Kenji Kondo², Tatsuya
3 Yamasoba²

4 ¹Swallowing Center, the University of Tokyo Hospital, Tokyo, Japan

5 ²Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, the University of Tokyo, Tokyo,
6 Japan

7 ³Department of Immunology, Nara Medical University, Nara, Japan

8 ⁴Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical
9 Sciences, Tokyo University of Science, Chiba, Japan

10 ⁵Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan

11 *Correspondence

12 Rumi Ueha, MD., PhD.

13 E-mail: ruu1025@yahoo.co.jp, uehar-oto@h.u-tokyo.ac.jp

14 **Keywords:** SARS-CoV-2, close contact, short-term cohabitation, olfactory receptor cells, nose, lung

15 **Abstract**

16 Objectives: Close contact with patients with COVID-19 is speculated to be the most common cause of viral
17 transmission, but the pathogenesis of COVID-19 by close contact remains to be elucidated. In addition, despite
18 olfactory impairment being a unique complication of COVID-19, the impact of SARS-CoV-2 on the olfactory
19 cell lineage has not been fully validated. This study aimed to elucidate close-contact viral transmission to the nose
20 and lungs and to investigate the temporal damage in the olfactory receptor neuron (ORN) lineage caused by
21 SARS-CoV-2.

22 Methods: Syrian hamsters were orally administered SARS-CoV-2 as direct-infection models. On day 7 after
23 inoculation, infected and uninfected hamsters were housed in the same cage for 30 minutes. These uninfected
24 hamsters were subsequently assigned to a close-contact group. First, viral presence in the nose and lungs was
25 verified in the infection and close-contact groups at several time points. Next, the impacts on the olfactory
26 epithelium, including olfactory progenitors, immature ORNs, and mature ORNs, were examined histologically.
27 Then, the viral transmission status and chronological changes in tissue damage were compared between the direct-
28 infection and close-contact groups.

29 Results: In the close-contact group, viral presence could not be detected in both the nose and lungs on day 3, and
30 the virus was identified in both tissues on day 7. In the direct-infection group, the viral load was highest in the
31 nose and lungs on day 3, decreased on day 7, and was no longer detectable on day 14. Histologically, in the direct-
32 infection group, mature ORNs were most depleted on day 3 ($p < 0.001$) and showed a recovery trend on day 14,

Short-term Close Contact with SARS-CoV-2

33 with similar trends for olfactory progenitors and immature ORNs. In the close-contact group, there was no
34 obvious tissue damage on day 3, but on day 7, the number of all ORN lineage cells significantly decreased ($p <$
35 0.001).

36 Conclusion: SARS-CoV-2 was transmitted even after brief contact and subsequent olfactory epithelium and lung
37 damage occurred more than 3 days after the trigger of infection. The present study also indicated that SARS-CoV-
38 2 damages all ORN lineage cells, but this damage can begin to recover approximately 14 days post infection.

39 1 Introduction

40 Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is
41 a pandemic since the end of December 2019 (1, 2) that remains to be contained; rather, the infected population
42 is increasing worldwide. The incubation period from SARS-CoV-2 exposure to the onset of COVID-19 symptoms
43 is reported to be approximately 6 days, and the viral load in droplets increases several days prior to the onset of
44 symptoms in patients with COVID-19 (3-5). Accordingly, if virus carriers do not take appropriate infection control
45 measures during the asymptomatic period, they may play an important role in unintentional COVID-19 spread (6,
46 7). The most likely asymptomatic carriers are considered close contacts, defined as individuals who had contact
47 with infected persons for more than 15 minutes within a 1-m distance without properly wearing masks, and these
48 individuals are considered at high risk of exposure to SARS-CoV-2 and developing infection (8, 9). Nevertheless,
49 how the virus spreads and multiplies in the body after brief close contact with an infected person has not been
50 sufficiently studied.

51 The nasal cavity comprises important tissue for the replication of SARS-CoV-2, and SARS-CoV-2 can cause
52 chemosensory dysfunction and affect olfaction (10, 11). In the early days of the COVID-19 pandemic, olfactory
53 dysfunction was often the first manifestation of COVID-19 (12). The prevalence and severity of COVID-19-
54 related olfactory dysfunction has decreased since the omicron variant became prevalent, but it remains an
55 important issue as a sequela of COVID-19 (13). Despite the nose being an essential sensory organ, it has not been
56 fully elucidated whether short-term close contact with an infected person can cause nasal damage. In previous
57 studies using animal models, animals were administered high doses of SARS-CoV-2 and severe nasal epithelial
58 damage was identified within a few days after viral exposure (14-17). However, as high doses of viruses are
59 unlikely to be taken in at once in a real-life environment, the damage to the olfactory epithelium (OE) of the nose
60 in these SARS-CoV-2 infection models may be discrepant from the actual situation. Therefore, it is imperative to
61 validate close-contact infection models that readily resemble the infection situation in daily life. In addition,
62 SARS-CoV-2 can be transmitted both nasally and orally in daily life, and the longitudinal tissue damage after
63 nasal and oral virus administration needs to be evaluated.

64 The OE is composed of supporting cells (sustentacular cells), basal progenitor cells, immature olfactory receptor
65 cells (ORNs), and mature ORNs (18). Basal cells and supporting cells are particularly susceptible to damage by
66 SARS-CoV-2 infection, and the entire OE may be denuded depending on the site (10, 14, 15, 19). This OE
67 impairment improves over time, and the OE is nearly normalized within approximately 1 month after SARS-
68 CoV-2 infection, although the regenerative kinetics may differ according to the nose area, such as the nasal septum

Short-term Close Contact with SARS-CoV-2

69 and lateral nasal turbinate (14). Although temporal histological changes in the epithelial thickness of the OE over
70 time have been reported, the impact of SARS-CoV-2 on the various cell groups comprising the OE over time has
71 not been verified. Furthermore, as the susceptibility to damage and regeneration progression varies depending on
72 the location in the nose (20, 21), it would be meaningful to examine the effects of SARS-CoV-2 on the OE,
73 especially on the ORN lineage, in a site-specific manner.

74 In this study, to elucidate the biological effects of short-term close contact with SARS-CoV-2 infected individuals,
75 we created short-term contact models and examined histological and molecular biological changes over time in
76 the nose and lungs. Next, we examined the temporal changes in the OE in a nasal-cavity site-specific manner in
77 hamsters infected with SARS-CoV-2. Last, we compared the time course of virus spread in tissues between direct-
78 infection and close-contact models.

79 2 Materials and Methods

80 2.1 Animals

81 We selected Syrian hamsters (*Mesocricetus auratus*) as the animal model for this study because Syrian golden
82 hamsters have been used in various studies related to SARS-CoV-2 and are recognized as an excellent small
83 animal model for SARS-CoV-2 infection (22, 23). Six-week-old, male Syrian hamsters were purchased from
84 Japan SLC (Hamamatsu, Shizuoka, Japan) and maintained in a specific pathogen-free environment at the Animal
85 Research Center of Nara Medical University. The animal experimental protocols followed the ARRIVE
86 guidelines and were approved by The Animal Care and Use Committee at Nara Medical University (approval
87 number, 12922). All procedures were performed in compliance with relevant guidelines on the Care and Use of
88 Laboratory Animals, Nara Medical University and Animal Research, and Animal Care and Use Committee of the
89 University of Tokyo.

90 2.2 Animal model preparation

91 SARS-CoV-2 infected animal models were prepared following previously reported methods (19, 24). In short,
92 the SARS-CoV-2 strain (JPN/TY/WK-521, provided by the National Institute of Infectious Diseases, Japan) was
93 used. Twenty-four hamsters were distributed into three groups: four hamsters in the control group, 12 hamsters
94 in the SARS-CoV-2 transoral infection group (infected group), and eight hamsters in the short-term close-contact
95 group (contact group). All experiments using SARS-CoV-2 were performed at the biosafety level 3 experimental
96 facility of Nara Medical University, Japan. The time course is shown in Figure 1A.

97 The hamsters were anesthetized with an intraperitoneal injection of pentobarbital (10 mg/mL, 0.8 mL/hamster)
98 before virus inoculation. To the SARS-CoV-2 transoral infection group, 50 μ L of virus solution diluted with saline
99 (including 1.0×10^3 pfu of SARS-CoV-2) was administered orally as previously reported (19, 24). To the control
100 group, 50 μ L of saline was administered. At 3, 7, and 14 days after inoculation, the SARS-CoV-2-inoculated
101 hamsters were euthanized by intraperitoneal injection of 1.0 ml sodium pentobarbital (10 mg/mL) followed by
102 cardiac exsanguination.

Short-term Close Contact with SARS-CoV-2

103 To prepare the short-term close-contact models, uninfected hamsters were transferred to the cages of infected
104 hamster on day 3 of SARS-CoV-2 administration and cohoused. After 30 minutes of cohabitation, the short-term
105 close-contact hamsters and directly infected hamsters were separated. Three and 7 days after contact, the close-
106 contact-group hamsters were euthanized. The noses were sampled for histopathological examination, and the
107 lungs were sampled for histopathological examination and quantitative polymerase chain reaction (qPCR).

108 2.3 RNA extraction and RT-qPCR

109 We validated SARS-CoV-2 viral RNA in the lungs to confirm the SARS-CoV-2 infection status of each hamster.
110 Total RNA was isolated from the lung using NucleoSpin® RNA (Macherey-Nagel, Düren, Germany), and then
111 converted to cDNA using a High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific, Waltham,
112 MA, USA), according to the previous protocol (19, 24) and the manufacturer's instructions. RT-qPCR analysis
113 was performed using a StepOnePlus Real-Time PCR System (Thermo Fisher Scientific). The gene-specific
114 primers and probes used were: *Gapdh* as endogenous control (TaqMan assay Cg04424038) and SARS-CoV-2
115 nucleocapsid gene (forward: 5'- AAATTTGGGGACCAGGAAC -3', reverse: 5'-
116 TGGCAGCTGTGTAGGTCAAC -3', the TaqMan probe: FAM-ATGTCGCGATTGGCATGGA-BHQ). The
117 expression levels of each gene were normalized to the level of *Gapdh* expression for each sample.

118 2.4 Tissue preparation

119 Immediately after tissue harvesting, the lungs and nasal tissues assigned for histological analyses were gently
120 irrigated and fixed in 4% paraformaldehyde for 14 days. Then, the tissue samples were decalcified, dehydrated in
121 graded ethanol solutions, and embedded in paraffin. Coronal sections were obtained from all samples at the level
122 of the anterior end of the olfactory bulb for histological analysis of the olfactory mucosa (18, 25-27). Four-
123 micrometer-thick paraffin sections were deparaffinized in xylene and rehydrated in ethanol before staining.

124 2.5 Histological analyses

125 Hematoxylin and eosin staining was performed to evaluate the overall tissue structure. For immunostaining,
126 deparaffinized sections were treated with 3% hydrogen peroxide to block endogenous peroxidase activity and
127 then incubated in Blocking One solution (Nacalai Tesque, Kyoto, Japan) to block non-specific immunoglobulin
128 binding. After antigen retrieval, the samples were incubated with primary antibodies, followed by secondary
129 antibodies.

130 The primary antibodies used in this study are listed in Table 1. Anti-SARS-CoV-2 nucleocapsid antibody was
131 used to identify SARS-CoV-2. The following antibodies were used to evaluate ORN neurogenesis: sex-
132 determining region Y-box 2 (SOX2), expressed by proliferating stem cells or progenitor cells in the basal layer of
133 the OE; growth-associated protein 43 (GAP43), expressed by immature ORNs in the OE; and olfactory marker
134 protein (OMP), expressed by mature ORNs in the OE.

135 The ORNs are classified into four groups according to their zonal-expression patterns, and odorant receptors are
136 expressed by sensory neurons distributed within one of four circumscribed zones (28-30). Of these, zone 1 is

Short-term Close Contact with SARS-CoV-2

137 determined by co-localization with NQO1 expression and zones 2–4 are determined by OCAM expression (28–
138 31). Our previous studies have shown that the OE of the dorsal nasal septum area represents OCAM⁺/NQO1⁺
139 expression (Zone 1) and that of the lateral area represents OCAM⁺/NQO1⁺ expression (zones 2–4). Therefore, to
140 analyze the OE, we divided coronal sections of the OE into two areas along the zonal organization: the dorsal
141 nasal septum (NS) area and lateral turbinate (LT) area (Figure 1B).

142 Images were captured using a digital microscope camera (Keyence BZ-X700, Osaka, Japan) with 10× and 40×
143 objective lenses. OMP⁺ ORNs, SOX2⁺ ORN progenitors, and GAP43⁺ immature ORNs in a 300-μm region of
144 each area were counted in the right and left sides of each sample. The number of each cell type was quantitatively
145 analyzed using sections with immunostaining for each antigen and counterstaining with hematoxylin.

146 2.6 Statistical analysis

147 Statistical comparisons between groups were performed with one-way analysis of variance using GraphPad Prism
148 software (version 6.7; GraphPad Software, Inc., San Diego, CA, USA, www.graphpad.com). qPCR data were
149 subjected to logarithmic transformation prior to analysis. Results with $p < 0.05$ were considered statistically
150 significant.

151 3 Results

152 3.1 Time course of SARS-CoV-2 infection after oral virus inoculation is analogous in the nose and 153 lungs with a tendency to subside 7 days post infection

154 To confirm that SARS-CoV-2 infection was established, we preliminary evaluated the presence of the virus in the
155 noses and lungs of the SARS-CoV-2-infected hamsters on day 3 after oral inoculation with immunohistochemistry
156 and RT-qPCR. The virus was identified in the noses with immunohistochemistry and in the lungs with
157 immunohistochemistry and RT-qPCR. Viruses were found in various areas of the nasal cavity but were not evenly
158 spread throughout the nasal mucosa. On day 7 post infection, the presence of virus diminished in both the noses
159 and lungs, and the viral load in the lungs was reduced to less than 1 in 1000 according to the qPCR analyses. In
160 the nasal cavity, the virus was rarely observed in the area near the nasal septum, but the virus was still present in
161 the outer region. On the 14th day of infection, no virus was identified histologically in either the noses or lungs
162 (Figure 2A, 2B) and no viral genes could be detected with qPCR (Figure 2C).

163 Taken together, in the virus-direct inoculation model, the infection findings were severe on approximately day 3,
164 and the viral load decreased on day 7 after virus administration; by day 14, the virus had almost completely
165 cleared from the nose and lungs (Figure 2).

166 3.2 No SARS-CoV-2 infection signs appeared in the first few days after short-term close contact but 167 became apparent after a certain period following contact

168 Next, we examined whether SARS-CoV-2 could infect the nose and lungs over time by brief contact with infected
169 animals. SARS-CoV-2 was not identified in the noses or lungs on day 3 after short-term contact, but the virus was

Short-term Close Contact with SARS-CoV-2

extensively identified in both the nose and lungs of all hamsters on day 7 after close contact. In the nasal cavity, the virus was more apparent in the LT area than in the NS area. As for the lungs, on day 7, more virus was present in the close-contact group than in the direct-infection group, at an almost similar level to that of day 3 in the direct-infection group (Figure 3). The period for the virus to be identified in the tissues was markedly delayed compared to the direct-infection group.

3.3 Transoral SARS-CoV-2 infection influences the ORNs at various differentiation stages over time

Subsequently, we examined the temporal effects of SARS-CoV-2 infection on the ORN lineage in the direct-infection model. We found differences in tissue damage between the NS and LT areas; in the NS area, on day 3, almost all superficial cells above the basal layer were missing, especially in the severely damaged areas, but the thickness of the OE tended to recover on day 14 of infection, suggesting OE regeneration. Conversely, in the LT area, the OE did not detach from the basal layer during days 3 to 14 after virus administration (Figure 4A). Figure 4 illustrates representative findings in the most severely affected areas of the OE.

In addition, we examined the impact of SARS-CoV-2 on all ORN lineage cells depending on the OE area. SOX2⁺ olfactory progenitors were scarcely identified in the NS area on days 3 and 7 but recovered to the same level as that in the control group on day 14. In contrast, in the LT area, the number of SOX2⁺ cells decreased on days 3 and 7, but it became higher on day 14 compared to that of the control group (Figure 4B). GAP43⁺ immature ORNs could scarcely be seen in both the NS and LT areas on days 3 and 7, whereas the number of these cells increased on day 14 compared to the control group (Figure 4C). OMP⁺ ORNs could rarely be observed in the NS area on days 3 and 7, but a recovery tendency in cell counts was evident on day 14, but did not reach the level in the control group. In the LT area, OMR⁺ ORNs existed to some extent in the OE on days 3, 7, and 14, although they were fewer than those in the control group (Figure 4D). Thus, the ORN lineage was differently affected by SARS-CoV-2 infection in the NS and LT areas.

3.4 Short-term close contact with SARS-CoV-2 infected models causes late damage in all ORN lineage cells

Last, we investigated how late-onset SARS-CoV-2 infection by short-term close contact with infected animals influences the OE over time. Although no structural changes in the OE were observed on day 3 after short-term close contact, marked disruption of the OE in the NS area was observed on day 7 (Figure 5A). Immunohistological examination showed no significant differences in the number of all ORN lineage cells of the OE on the 3rd day after contact compared with the control group, which supported the observation that no virus was identified in the tissue. Conversely, in the OE on day 7 after contact, neither SOX2⁺ olfactory progenitors nor GAP43⁺ immature ORNs could be identified in the NS or LT area, with only a few OMP⁺ mature ORNs in the LT area (Figure 5B-D). Thus, it was evident that short-term close contact could impair the ORN lineage, and the timing of this impairment was later than that by direct virus administration.

4 Discussion

Short-term Close Contact with SARS-CoV-2

204 The present study showed that short-term close contact with infected hamsters did not cause nasal or pulmonary
205 damage by day 3 but resulted in widespread infection of the nose and lungs within 7 days. In contrast, direct
206 SARS-CoV-2 administration caused tissue damage in the nose and lungs with the virus being detected within a
207 few days. Thereafter, the viral load in the tissues decreased over time, and no virus was identified in the nose or
208 lungs 14 days post infection. We also demonstrated that SARS-CoV-2 extensively damaged the OE, and the
209 degree of OE damage over time varied depending on the OE site. The numbers of ORN-related cells were reduced
210 in all lineage cells with time and then tended to recover (Figure 6).

211 Clinically, the incubation period, which required for COVID-19 symptoms to appear, is approximately 6 days (3,
212 32), and SARS-CoV-2 RNA shedding lasts approximately 17 days in the upper respiratory tract (33, 34). Animal
213 studies using SARS-CoV-2 infection models have reported that the viral load is highest on days 2–5 after virus
214 administration (14, 35, 36) and the virus is eliminated from the tissues on days 8–10 after administration (14, 35);
215 the direct-infection model in the present study showed a similar trend in viral load. In this study, the SARS-CoV-
216 2 viral load in hamsters increased after 1 week, despite a short contact time of 30 minutes. Therefore, there is a
217 risk of viral transmission when in contact with SARS-CoV-2 infected individuals, even if it is only for a short
218 period of time (approximately 30 minutes). Even though the virus could not be identified in the nose or lungs on
219 the 3rd day after close contact, severe damage in both tissues was observed on the 7th day after contact, suggesting
220 that the 4th to 6th day after contact with the infected animal was the time when the virus, which had remained
221 latent in the meantime, multiplied. Although the present validation could only examine a period of 7 days after
222 close contact, on day 7, the viral load in the lungs of the animals in the close-contact group was higher than that
223 of the animals in the direct-infection group, implying that another week or longer may be required for the viral
224 load level to become sufficiently low. Temporal changes in viral load and tissue damage after close contact remain
225 a future topic of investigation.

226 Regarding the transmission form in this short-term close-contact model, as the mouths and noses of the hamsters
227 were not covered, various routes of infection may be considered, including contact, droplet, and airborne infection.
228 Accordingly, if someone infected with SARS-CoV-2 talks or eats with others without a mask for 30 minutes, he
229 or she can spread the infection to others. The percentage of people contracting SARS-CoV-2 and being
230 asymptomatic is estimated to range from 1.2 to 12.9% (37, 38). It has now been more than 2 years since COVID-
231 19 became endemic, and the spread of infection has not been well-controlled. If asymptomatic carriers do not
232 take appropriate infection control measures, they may spread the SARS-CoV-2 infection without realizing it.

233 Olfactory dysfunction caused by SARS-CoV-2 is quite common, and it is now well established how the virus
234 spreads to various olfactory-related tissues, such as the olfactory mucosa, olfactory bulb, and olfactory cortex
235 (39-41). Regarding the effects of SARS-CoV-2 on the OE, it has been reported that the degree of epithelial damage
236 and recovery rate of the OE differ depending on the location in the nasal cavity (14). However, the impact of
237 SARS-CoV-2 on each ORN lineage cell has not been sufficiently verified. We previously reported that all ORN
238 lineage cells are impaired by SARS-CoV-2 (19), and in this study, we verified related longitudinal effects for the
239 first time to our knowledge.

Short-term Close Contact with SARS-CoV-2

240 In the NS area, SARS-CoV-2 infection caused shedding of almost all cells of the OE and greatly thinned the OE.
241 The supporting cells of the OE express high levels of ACE2 (15, 42, 43), which may be susceptible to infection
242 by SARS-CoV-2. It is possible that SARS-CoV-2 infection of the supporting cells interferes with their structural
243 support, resulting in widespread epithelial shedding. ACE2 is also expressed in the basal olfactory progenitor
244 cells (10, 42), and the low number of SOX2-positive cells on day 3 post infection suggests that SARS-CoV-2
245 infection may have directly impaired the olfactory progenitor cells. In addition, as the other receptor of SARS-
246 CoV-2, neuropilin-1 is expressed in almost all cells of the OE (44, 45), it is not surprising that all ORN lineage
247 cells could be affected by SARS-CoV-2. Thereafter, by day 14, the olfactory progenitors and immature ORNs had
248 developed, and epithelial regeneration had become active, but mature ORNs had not sufficiently regenerated,
249 suggesting that overall recovery from SARS-CoV-2 infection-induced OE damage may require longer than 14
250 days (Figure 6). In fact, Urata et al. (14) and Reyna et al. (35) reported that in the NS, more than 21 days are
251 needed for the OE thickness to recover to normal. Based on the results of this validation and previous reports, our
252 hypothesis regarding the temporal impact of SARS-CoV-2 on the ORN lineage is presented in Figure 6.

253 In the LT area, the number of OMP-positive cells did not considerably change over time, possibly because some
254 ORNs are impaired by the virus, whereas the unimpaired ORNs remain present in the OE. Thus, it is conceivable
255 that the SARS-CoV-2 receptor expression of the cells in that area may differ depending on the olfactory epithelium
256 site. Moreover, given the increase in GAP43⁺ immature ORNs in the LT area on day 14, the number of impaired
257 OMP⁺ mature ORNs is expected to increase on day 14 or later. As shown in Figure 6, the recovery of mature
258 OMPs may need longer in the LT area than in the NS area because of the later timing of the numerical peak of
259 ORN progenitors and immature ORNs in the LT area than in the NS area. Future studies are needed for further
260 observations of the long-term infectious course after short-term close contact.

261 In conclusion, the present study demonstrated that SARS-CoV-2 can be transmitted even after brief contact and
262 that subsequent OE damage occurs more than 3 days after the trigger of infection. Moreover, SARS-CoV-2 could
263 damage the olfactory receptor system, but the damage could begin to recover approximately 14 days post infection.
264 For SARS-CoV-2 infection control, it is desirable to have a global discussion on the infection control measures
265 that should be implemented and to create common worldwide rules.

266 5 Conflict of Interest

267 The authors declare that the research was conducted in the absence of any commercial or financial relationships
268 that could be construed as a potential conflict of interest.

269 6 Authors' contributions

270 RU developed the concept, designed and performed the experiments, analyzed the data, produced the
271 figures, and wrote the initial draft of the manuscript. TI developed the concept, prepared the animal models,
272 performed some of the experiments, and analyzed the data. SU developed the concept, designed the experiments,
273 and revised the manuscript. RF, MK, and NOS prepared the animal models, performed some of the experiments,
274 and analyzed the data. TU, HT, and HN performed some of the experiments and analyzed the data. KK and TY

Short-term Close Contact with SARS-CoV-2

275 developed the concept and critically revised the manuscript. All authors contributed to interpretation of the data
276 and writing of the manuscript.

277 7 Funding

278 This work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) [grant number 19K09841],
279 and MSD Life Science Foundation.

280 8 Acknowledgements

281 Not applicable.

282 9 References

283 1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease
284 2019 in China. *The New England journal of medicine* (2020) 382(18):1708-20. doi: 10.1056/NEJMoa2002032.
285 PubMed PMID: 32109013; PubMed Central PMCID: PMC7092819.

286 2. Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S, et al. Severe Acute Respiratory
287 Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. *JAMA
288 pediatrics* (2020) 174(9):882-9. doi: 10.1001/jamapediatrics.2020.1467. PubMed PMID: 32320004.

289 3. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV)
290 infections among travellers from Wuhan, China, 20-28 January 2020. *Euro surveillance : bulletin Europeen sur
291 les maladies transmissibles = European communicable disease bulletin* (2020) 25(5). doi: 10.2807/1560-
292 7917.ES.2020.25.5.2000062. PubMed PMID: 32046819; PubMed Central PMCID: PMC7014672.

293 4. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and
294 transmissibility of COVID-19. *Nature medicine* (2020) 26(5):672-5. doi: 10.1038/s41591-020-0869-5. PubMed
295 PMID: 32296168.

296 5. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of
297 Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application.
298 *Annals of internal medicine* (2020) 172(9):577-82. doi: 10.7326/M20-0504. PubMed PMID: 32150748; PubMed
299 Central PMCID: PMC7081172.

300 6. Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection : A Narrative Review. *Annals
301 of internal medicine* (2020) 173(5):362-7. doi: 10.7326/M20-3012. PubMed PMID: 32491919; PubMed Central
302 PMCID: PMC7281624.

303 7. Nikolai LA, Meyer CG, Kremsner PG, Velavan TP. Asymptomatic SARS Coronavirus 2 infection:
304 Invisible yet invincible. *International journal of infectious diseases : IJID : official publication of the
305 International Society for Infectious Diseases* (2020) 100:112-6. doi: 10.1016/j.ijid.2020.08.076. PubMed PMID:

Short-term Close Contact with SARS-CoV-2

306 32891737; PubMed Central PMCID: PMC7470698.

307 8. Organization WH. Coronavirus disease (COVID-19) advice for the public [updated May 10, 2022;
308 cited 2022 July 31]. Available from: <https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public>.

310 9. Prevention CfDCa. COVID-19, Appendices [updated Jan 4, 2022; cited 2022 July 31]. Available
311 from: <https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html>.

312 10. Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an
313 Olfactory Route to Brain Infection. *The Neuroscientist : a review journal bringing neurobiology, neurology and*
314 *psychiatry* (2021) 27(6):582-603. doi: 10.1177/1073858420956905. PubMed PMID: 32914699; PubMed Central
315 PMCID: PMC7488171.

316 11. Biadsee A, Biadsee A, Kassem F, Dagan O, Masarwa S, Ormianer Z. Olfactory and Oral Manifestations
317 of COVID-19: Sex-Related Symptoms-A Potential Pathway to Early Diagnosis. *Otolaryngology--head and neck*
318 *surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery* (2020) 163(4):722-8.
319 doi: 10.1177/0194599820934380. PubMed PMID: 32539587; PubMed Central PMCID: PMC7298562.

320 12. Saniasiaya J, Islam MA, Abdullah B. Prevalence of Olfactory Dysfunction in Coronavirus Disease 2019
321 (COVID-19): A Meta-analysis of 27,492 Patients. *The Laryngoscope* (2021) 131(4):865-78. doi:
322 10.1002/lary.29286. PubMed PMID: 33219539; PubMed Central PMCID: PMC7753439.

323 13. Boscolo-Rizzo P, Tirelli G, Meloni P, Hopkins C, Madeddu G, De Vito A, et al. Coronavirus disease
324 2019 (COVID-19)-related smell and taste impairment with widespread diffusion of severe acute respiratory
325 syndrome-coronavirus-2 (SARS-CoV-2) Omicron variant. *International forum of allergy & rhinology* (2022).
326 doi: 10.1002/alr.22995. PubMed PMID: 35286777; PubMed Central PMCID: PMC9082058.

327 14. Urata S, Maruyama J, Kishimoto-Urata M, Sattler RA, Cook R, Lin N, et al. Regeneration Profiles of
328 Olfactory Epithelium after SARS-CoV-2 Infection in Golden Syrian Hamsters. *ACS chemical neuroscience*
329 (2021) 12(4):589-95. doi: 10.1021/acschemneuro.0c00649. PubMed PMID: 33522795; PubMed Central PMCID:
330 PMC7874468.

331 15. Seo JS, Yoon SW, Hwang SH, Nam SM, Nahm SS, Jeong JH, et al. The Microvillar and Solitary
332 Chemosensory Cells as the Novel Targets of Infection of SARS-CoV-2 in Syrian Golden Hamsters. *Viruses* (2021)
333 13(8). doi: 10.3390/v13081653. PubMed PMID: 34452517; PubMed Central PMCID: PMC8402700.

334 16. Golden JW, Cline CR, Zeng X, Garrison AR, Carey BD, Mucker EM, et al. Human angiotensin-
335 converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease.
336 *JCI insight* (2020) 5(19). doi: 10.1172/jci.insight.142032. PubMed PMID: 32841215; PubMed Central PMCID:
337 PMC7566707.

Short-term Close Contact with SARS-CoV-2

338 17. Kishimoto-Urata M, Urata S, Kagoya R, Imamura F, Nagayama S, Reyna RA, et al. Prolonged and
339 extended impacts of SARS-CoV-2 on the olfactory neurocircuit. *Scientific reports* (2022) 12(1):5728. doi:
340 10.1038/s41598-022-09731-7. PubMed PMID: 35388072; PubMed Central PMCID: PMC8987081.

341 18. Ueha R, Ueha S, Kondo K, Sakamoto T, Kikuta S, Kanaya K, et al. Damage to Olfactory Progenitor
342 Cells Is Involved in Cigarette Smoke-Induced Olfactory Dysfunction in Mice. *The American journal of pathology*
343 (2016) 186(3):579-86. doi: 10.1016/j.ajpath.2015.11.009. PubMed PMID: 26806086.

344 19. Ueha R, Ito T, Furukawa R, Kitabatake M, Ouji-Sageshima N, Ueha S, et al. Oral SARS-CoV-2
345 Inoculation Causes Nasal Viral Infection Leading to Olfactory Bulb Infection: An Experimental Study. *Frontiers*
346 in *cellular and infection microbiology* (2022) 12:924725. doi: 10.3389/fcimb.2022.924725. PubMed PMID:
347 35770069; PubMed Central PMCID: PMC9234459.

348 20. Tuerdi A, Kikuta S, Kinoshita M, Kamogashira T, Kondo K, Iwasaki S, et al. Dorsal-zone-specific
349 reduction of sensory neuron density in the olfactory epithelium following long-term exercise or caloric restriction.
350 *Scientific reports* (2018) 8(1):17300. doi: 10.1038/s41598-018-35607-w. PubMed PMID: 30470811; PubMed
351 Central PMCID: PMC6251928.

352 21. Ueha R, Ueha S, Kondo K, Nishijima H, Yamasoba T. Effects of Cigarette Smoke on the Nasal
353 Respiratory and Olfactory Mucosa in Allergic Rhinitis Mice. *Frontiers in neuroscience* (2020) 14:126. doi:
354 10.3389/fnins.2020.00126. PubMed PMID: 32132898; PubMed Central PMCID: PMC7040099.

355 22. Lee CY, Lowen AC. Animal models for SARS-CoV-2. *Current opinion in virology* (2021) 48:73-81.
356 doi: 10.1016/j.coviro.2021.03.009. PubMed PMID: 33906125; PubMed Central PMCID: PMC8023231.

357 23. Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as
358 a small animal model for SARS-CoV-2 infection and countermeasure development. *Proceedings of the National*
359 *Academy of Sciences of the United States of America* (2020) 117(28):16587-95. doi: 10.1073/pnas.2009799117.
360 PubMed PMID: 32571934; PubMed Central PMCID: PMC7368255.

361 24. Furukawa R, Kitabatake M, Ouji-Sageshima N, Suzuki Y, Nakano A, Matsumura Y, et al. Persimmon-
362 derived tannin has antiviral effects and reduces the severity of infection and transmission of SARS-CoV-2 in a
363 Syrian hamster model. *Scientific reports* (2021) 11(1):23695. doi: 10.1038/s41598-021-03149-3. PubMed PMID:
364 34880383; PubMed Central PMCID: PMC8654961.

365 25. Ueha R, Ueha S, Sakamoto T, Kanaya K, Suzukawa K, Nishijima H, et al. Cigarette Smoke Delays
366 Regeneration of the Olfactory Epithelium in Mice. *Neurotoxicity research* (2016) 30(2):213-24. doi:
367 10.1007/s12640-016-9617-5. PubMed PMID: 27003941.

368 26. Ueha R, Ueha S, Kondo K, Kikuta S, Yamasoba T. Cigarette Smoke-Induced Cell Death Causes
369 Persistent Olfactory Dysfunction in Aged Mice. *Frontiers in aging neuroscience* (2018) 10:183. doi:
370 10.3389/fnagi.2018.00183. PubMed PMID: 29950987; PubMed Central PMCID: PMC6008309.

Short-term Close Contact with SARS-CoV-2

371 27. Ueha R, Kondo K, Ueha S, Yamasoba T. Dose-Dependent Effects of Insulin-Like Growth Factor 1 in
372 the Aged Olfactory Epithelium. *Frontiers in aging neuroscience* (2018) 10:385. doi: 10.3389/fnagi.2018.00385.
373 PubMed PMID: 30515092; PubMed Central PMCID: PMC6256067.

374 28. Yoshihara Y, Kawasaki M, Tamada A, Fujita H, Hayashi H, Kagamiyama H, et al. OCAM: A new
375 member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and
376 vomeronasal axons. *The Journal of neuroscience : the official journal of the Society for Neuroscience* (1997)
377 17(15):5830-42. PubMed PMID: 9221781; PubMed Central PMCID: PMC6573213.

378 29. Mori K, von Campenhausen H, Yoshihara Y. Zonal organization of the mammalian main and accessory
379 olfactory systems. *Philosophical transactions of the Royal Society of London Series B, Biological sciences* (2000)
380 355(1404):1801-12. doi: 10.1098/rstb.2000.0736. PubMed PMID: 11205342; PubMed Central PMCID:
381 PMC1692907.

382 30. Imamura F, Hasegawa-Ishii S. Environmental Toxicants-Induced Immune Responses in the Olfactory
383 Mucosa. *Frontiers in immunology* (2016) 7:475. doi: 10.3389/fimmu.2016.00475. PubMed PMID: 27867383;
384 PubMed Central PMCID: PMC5095454.

385 31. Gussing F, Bohm S. NQO1 activity in the main and the accessory olfactory systems correlates with the
386 zonal topography of projection maps. *The European journal of neuroscience* (2004) 19(9):2511-8. doi:
387 10.1111/j.0953-816X.2004.03331.x. PubMed PMID: 15128404.

388 32. Cheng C, Zhang D, Dang D, Geng J, Zhu P, Yuan M, et al. The incubation period of COVID-19: a
389 global meta-analysis of 53 studies and a Chinese observation study of 11 545 patients. *Infectious diseases of
390 poverty* (2021) 10(1):119. doi: 10.1186/s40249-021-00901-9. PubMed PMID: 34535192; PubMed Central
391 PMCID: PMC8446477.

392 33. Fontana LM, Villamagna AH, Sikka MK, McGregor JC. Understanding viral shedding of severe acute
393 respiratory coronavirus virus 2 (SARS-CoV-2): Review of current literature. *Infection control and hospital
394 epidemiology* (2021) 42(6):659-68. doi: 10.1017/ice.2020.1273. PubMed PMID: 33077007; PubMed Central
395 PMCID: PMC7691645.

396 34. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV
397 viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. *The
398 Lancet Microbe* (2021) 2(1):e13-e22. doi: 10.1016/S2666-5247(20)30172-5. PubMed PMID: 33521734; PubMed
399 Central PMCID: PMC7837230.

400 35. Reyna RA, Kishimoto-Urata M, Urata S, Makishima T, Paessler S, Maruyama J. Recovery of anosmia
401 in hamsters infected with SARS-CoV-2 is correlated with repair of the olfactory epithelium. *Scientific reports*
402 (2022) 12(1):628. doi: 10.1038/s41598-021-04622-9. PubMed PMID: 35022504; PubMed Central PMCID:
403 PMC8755745.

Short-term Close Contact with SARS-CoV-2

404 36. Lee AC, Zhang AJ, Chan JF, Li C, Fan Z, Liu F, et al. Oral SARS-CoV-2 Inoculation Establishes
405 Subclinical Respiratory Infection with Virus Shedding in Golden Syrian Hamsters. *Cell reports Medicine* (2020)
406 1(7):100121. doi: 10.1016/j.xcrm.2020.100121. PubMed PMID: 32984855; PubMed Central PMCID:
407 PMC7508015.

408 37. Al-Sadeq DW, Nasrallah GK. The incidence of the novel coronavirus SARS-CoV-2 among
409 asymptomatic patients: A systematic review. *International journal of infectious diseases : IJID : official*
410 *publication of the International Society for Infectious Diseases* (2020) 98:372-80. doi: 10.1016/j.ijid.2020.06.098.
411 PubMed PMID: 32623083; PubMed Central PMCID: PMC7330573.

412 38. Jabs JM, Schwabe A, Wollkopf AD, Gebel B, Stadelmaier J, Erdmann S, et al. The role of routine
413 SARS-CoV-2 screening of healthcare-workers in acute care hospitals in 2020: a systematic review and meta-
414 analysis. *BMC infectious diseases* (2022) 22(1):587. doi: 10.1186/s12879-022-07554-5. PubMed PMID:
415 35780088; PubMed Central PMCID: PMC9250183.

416 39. Jiao L, Yang Y, Yu W, Zhao Y, Long H, Gao J, et al. The olfactory route is a potential way for SARS-
417 CoV-2 to invade the central nervous system of rhesus monkeys. *Signal transduction and targeted therapy* (2021)
418 6(1):169. doi: 10.1038/s41392-021-00591-7. PubMed PMID: 33895780; PubMed Central PMCID: PMC8065334.

419 40. Vidal E, Lopez-Figueroa C, Rodon J, Perez M, Brustolin M, Cantero G, et al. Chronological brain
420 lesions after SARS-CoV-2 infection in hACE2-transgenic mice. *Veterinary pathology* (2022) 59(4):613-26. doi:
421 10.1177/03009858211066841. PubMed PMID: 34955064; PubMed Central PMCID: PMC9207990.

422 41. Yu P, Deng W, Bao L, Qu Y, Xu Y, Zhao W, et al. Comparative pathology of the nasal epithelium in
423 K18-hACE2 Tg mice, hACE2 Tg mice, and hamsters infected with SARS-CoV-2. *Veterinary pathology* (2022)
424 59(4):602-12. doi: 10.1177/03009858211071016. PubMed PMID: 35094625; PubMed Central PMCID:
425 PMC9208069.

426 42. Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, et al. Non-neuronal
427 expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-
428 associated anosmia. *Science advances* (2020) 6(31). doi: 10.1126/sciadv.abc5801. PubMed PMID: 32937591.

429 43. Ueha R, Kondo K, Kagoya R, Shichino S, Shichino S, Yamasoba T. ACE2, TMPRSS2, and Furin
430 expression in the nose and olfactory bulb in mice and humans. *Rhinology* (2021) 59(1):105-9. doi:
431 10.4193/Rhin20.324. PubMed PMID: 33249429.

432 44. Cantuti-Castelvetro L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1
433 facilitates SARS-CoV-2 cell entry and infectivity. *Science* (2020) 370(6518):856-60. doi:
434 10.1126/science.abd2985. PubMed PMID: 33082293; PubMed Central PMCID: PMC7857391.

435 45. Ziuza-Januszewska L, Januszewski M. Pathogenesis of Olfactory Disorders in COVID-19. *Brain*
436 *sciences* (2022) 12(4). doi: 10.3390/brainsci12040449. PubMed PMID: 35447981; PubMed Central PMCID:

Short-term Close Contact with SARS-CoV-2

437 PMC9029941.

438

439 **Availability of data and materials**

440 The datasets used and/or analyzed during the current study are available from the corresponding author on
441 reasonable request.

442

Short-term Close Contact with SARS-CoV-2

443

Table 1. The primary antibodies used in this study

Primary antibody	Source	Catalog No.	Host	Type	Dilution
SARS-CoV-2 nucleocapsid	GeneTex (Irvine, CA, USA)	GTX135357	Rabbit	polyclonal	1:1000
SOX2	Abcam (Cambridge, UK),	ab92494	Rabbit	monoclonal	1:300
GAP43	Novus Biologicals (Centennial, CO, USA)	NB300-143B	Rabbit	polyclonal	1:1000
OMP	Wako (Tokyo, Japan)	019-22291	Goat	polyclonal	1:8000

444

Short-term Close Contact with SARS-CoV-2

445 Figure legends

446 **Figure 1.** Experimental timeline and nasal structure.

447 **A:** Hamsters were administered orally severe acute respiratory syndrome coronavirus 2 (SARS-
448 CoV-2) (1.0×10^3 pfu). To prepare the short-term close-contact models, the uninfected hamsters
449 were cohoused for 30 minutes with SARS-CoV-2 infected hamsters (3 days after SARS-CoV-2
450 inoculation), and then separated. **B:** Representative images of the olfactory epithelium from control
451 hamsters. The boxes indicate the regions of the dorsal nasal septum (NS) and lateral turbinate (LT)
452 areas.

453 **Figure 2.** Temporal SARS-CoV-2 infection findings in the nose and lungs.

454 **A:** Representative images of immunohistological staining of severe acute respiratory syndrome
455 coronavirus 2 (SARS-CoV-2) in control (CT) hamsters and SARS-CoV-2 hamsters on days 3, 7,
456 and 14. SARS-CoV-2 is shown in brown. **B:** Immunohistochemistry staining of SARS-CoV-2 in
457 the lung. **C:** SARS-CoV-2 gene detection with RT- quantitative polymerase chain reaction in the
458 CT hamster and SARS-CoV-2 hamsters on days 3, 7, and 14.

459 SARS-CoV-2: severe acute respiratory syndrome coronavirus 2

460 **Figure 3.** Representative SARS-CoV-2 infection findings in the nose and lungs after short-term 461 close contact with SARS-CoV-2 infected animals

462 **A, B:** Representative images of SARS-CoV-2 staining in the nose (**A**) and lungs (**B**) 3 and 7 days
463 after short-term close contact with SARS-CoV-2 infected animals (co-Day 3, co-Day 7). The
464 number of each type of cell in a 300- μ m region of each area was counted in the right and left sides
465 of each sample ($n = 4$, each group). **C:** SARS-CoV-2 gene detection with RT- quantitative
466 polymerase chain reaction in the CT hamster and contact hamsters on days 3 and 7.

467 SARS-CoV-2: severe acute respiratory syndrome coronavirus 2

468 **Figure 4.** Effects of SARS-CoV-2 infection on the olfactory receptor neuron lineage

469 **A:** Representative hematoxylin and eosin staining (HE) images of the olfactory epithelium in
470 control (CT) hamsters and SARS-CoV-2 hamsters on days 3, 7, and 14. **B-D:** Representative images
471 of immunohistological staining in CT and SARS-CoV-2 hamsters. Nasal septum (NS) area and
472 lateral turbinate (LT) area are shown in magnified view. Sex-determining region Y-box 2 (SOX2) $^+$
473 progenitor cells (**B**), growth-associated protein 4 (GAP43) $^+$ immature olfactory receptor neurons
474 (ORNs) (**C**), and olfactory marker protein (OMP) $^+$ ORNs (**D**) are shown in brown. The basal layer
475 is indicated by arrows. Tissue sections were counterstained with the nuclear dye hematoxylin (blue).
476 Numbers of SOX2 $^+$ ORN progenitors per 300 μ m of the basal layer, and GAP43 $^+$ immature ORNs

Short-term Close Contact with SARS-CoV-2

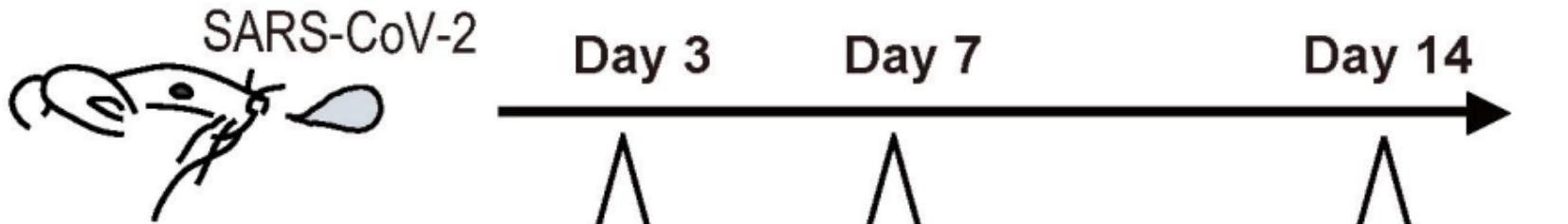
477 and OMP⁺ mature ORNs per 300 μm of olfactory epithelium in each area are counted in CT or
478 SARS-CoV-2 hamsters. **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$.

479 SARS-CoV-2: severe acute respiratory syndrome coronavirus 2

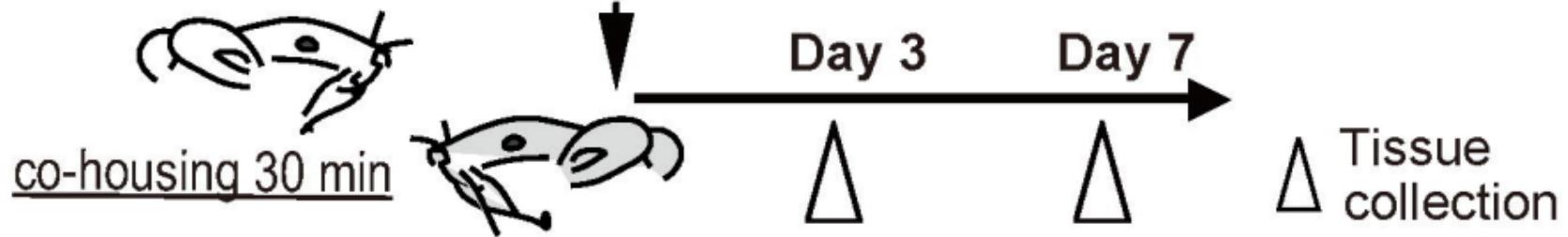
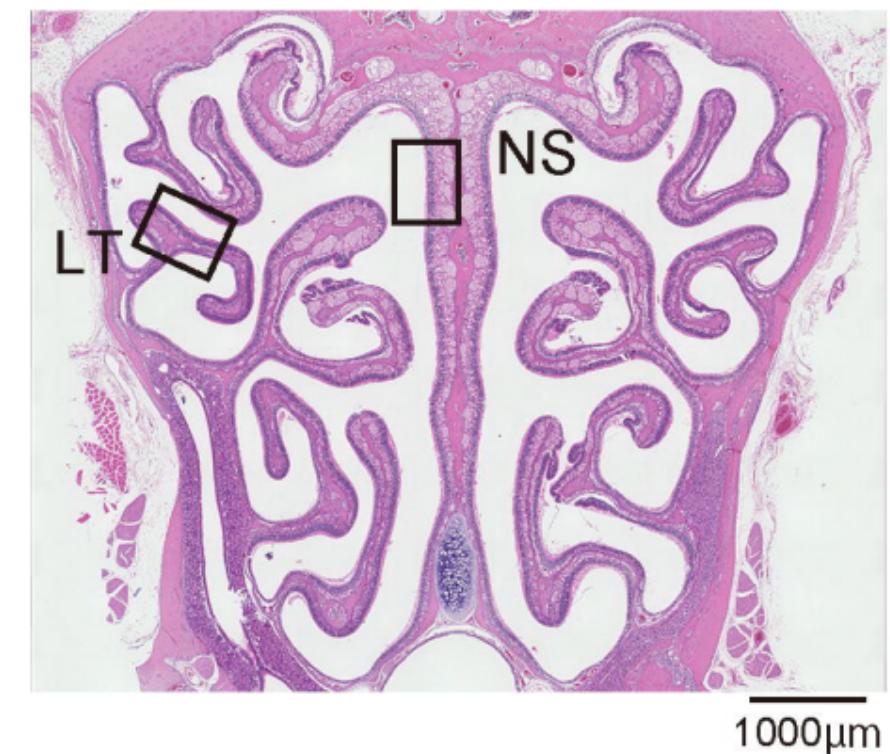
480 **Figure 5.** Effects of SARS-CoV-2 on the olfactory receptor neuron lineage after short-term close
481 contact

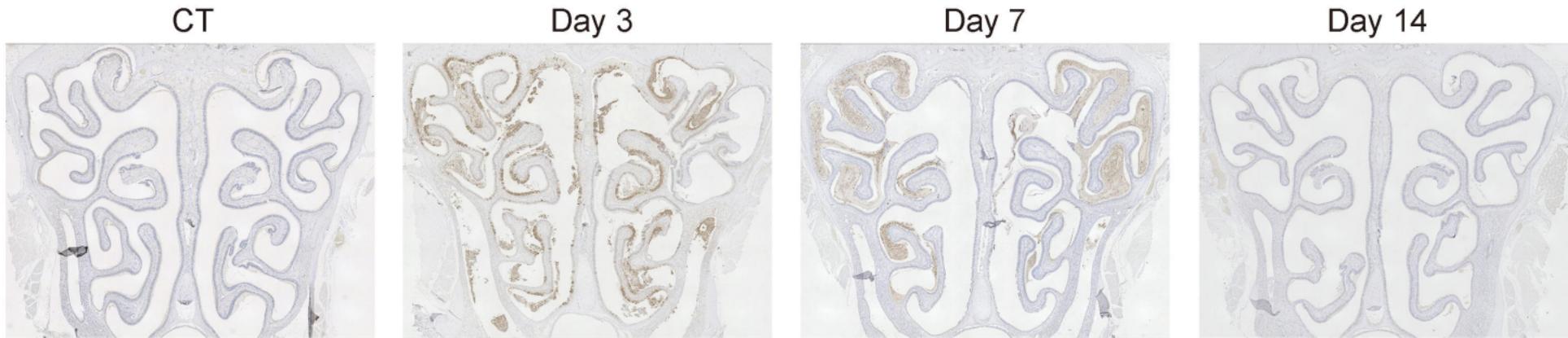
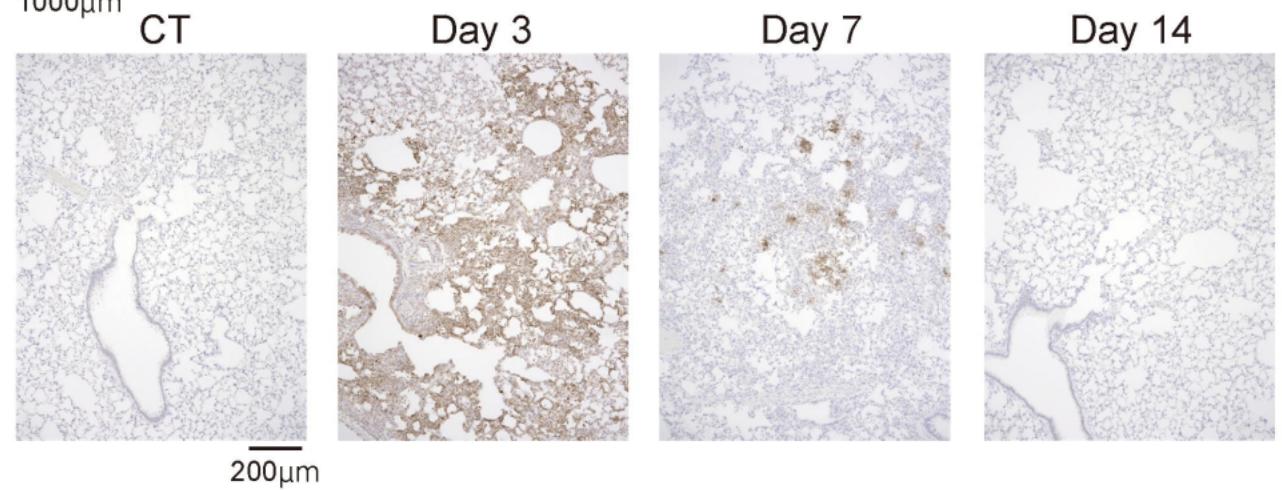
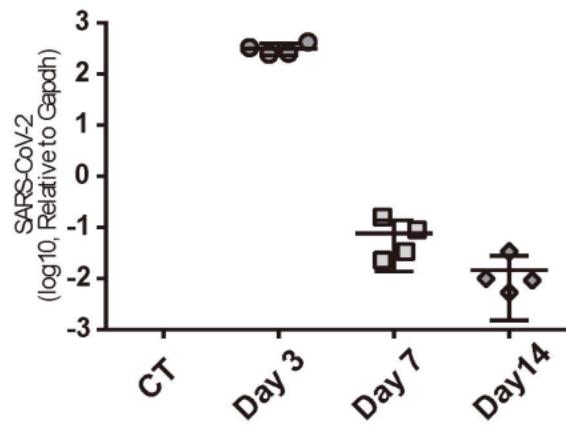
482 **A:** Representative hematoxylin and eosin staining (HE) images of the olfactory epithelium in
483 control (CT) hamsters and contact hamsters on days 3 and 7 (co-Day 3, co-Day7). **B–D:**
484 Representative images of immunohistological staining. The nasal septum (NS) area and lateral
485 turbinate (LT) area are shown in magnified view. Sex-determining region Y-box 2 (SOX2)⁺
486 progenitor cells (**B**), growth-associated protein 4 (GAP43)⁺ immature olfactory receptor neurons
487 (ORNs) (**C**), and olfactory marker protein (OMP)⁺ ORNs (**D**) are shown in brown. The basal layer
488 is indicated by arrows. Tissue sections were counterstained with the nuclear dye hematoxylin (blue).
489 Numbers of SOX2⁺ ORN progenitors per 300 μm of the basal layer and GAP43⁺ immature ORNs
490 and OMP⁺ mature ORNs per 300 μm of olfactory epithelium in each area are counted in CT or
491 contact hamsters. ****, $P < 0.0001$.

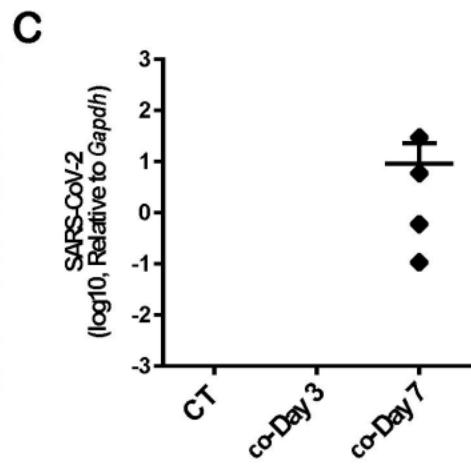
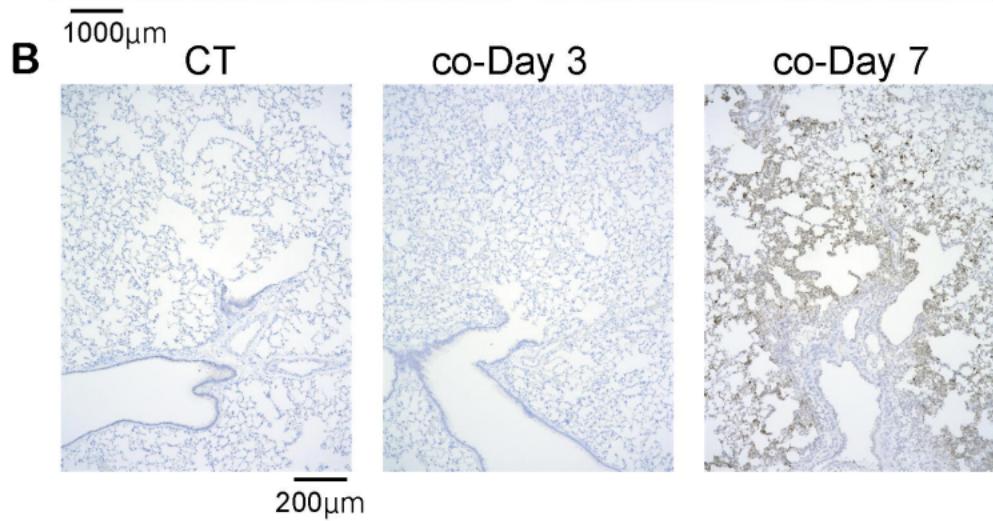
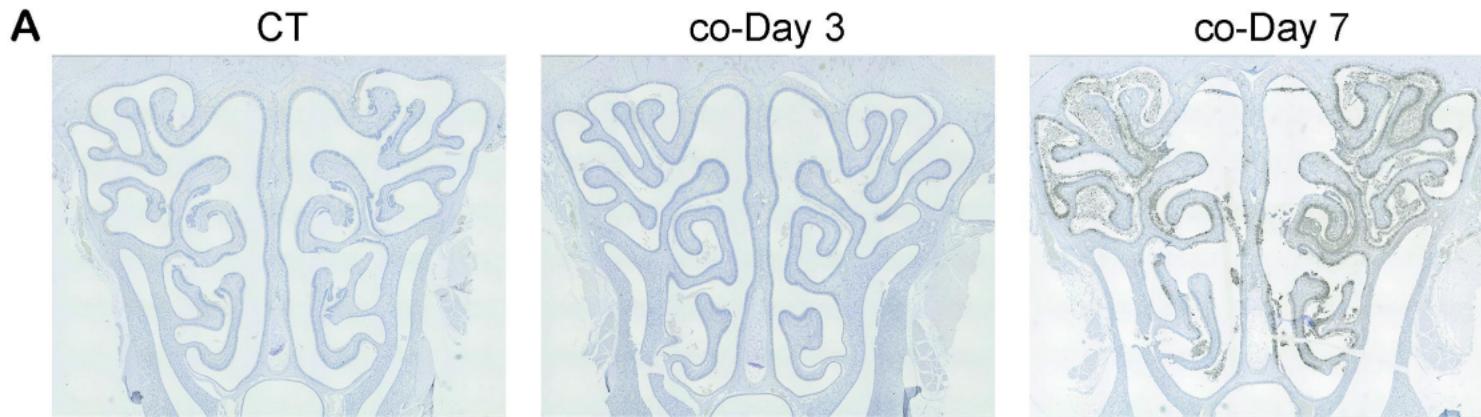
492 SARS-CoV-2: severe acute respiratory syndrome coronavirus 2


493 **Figure 6.** Hypothesis of temporal changes in the SARS-CoV-2 viral load in the lungs and the
494 number of olfactory receptor neuron-related cells in different nasal areas

495 Changes over time in the ratio of the number of olfactory receptor neuron lineage cells divided by
496 that of the control group at each time point are displayed in the graph. The dashed line shows the
497 speculated future trend. In addition, the estimated viral load of SARS-CoV-2 in the lungs is overlaid
498 on each graph.



499 NS: nasal septum, LT: lateral turbinate, OMP: OMP⁺ mature olfactory receptor neurons, GAP43:
500 GAP43⁺ immature olfactory receptor neurons, SARS-CoV-2: severe acute respiratory syndrome
501 coronavirus 2, SOX2: SOX2⁺ olfactory progenitors.




A

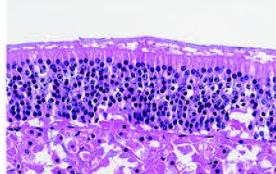



SARS-CoV-2 transoral infected group

Short-term close contact group

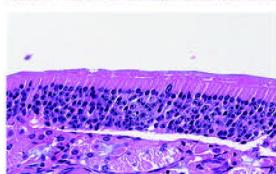
B

A**B****C**

A. HE


CT

Day 3


Day 7

Day 14

NS

LT

50μm

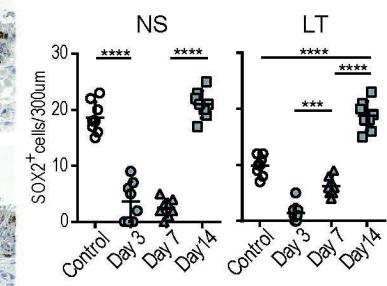
B. SOX2

CT

Day 3

Day 7

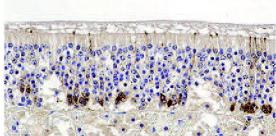
Day 14


NS

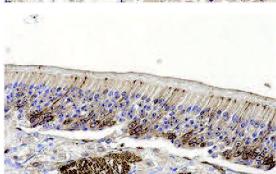
LT

50μm

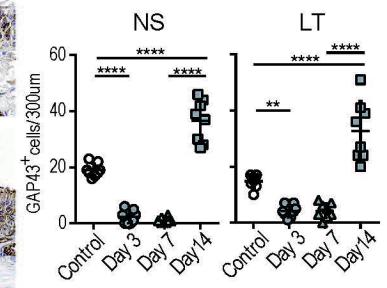
C. GAP43


CT

Day 3


Day 7

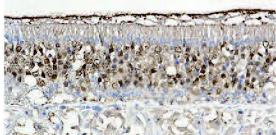
Day 14


NS

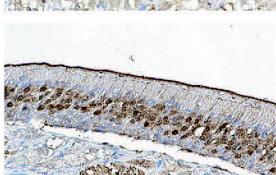
LT

50μm

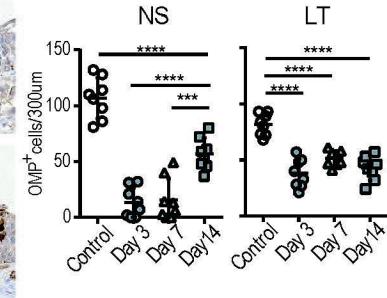
D. OMP

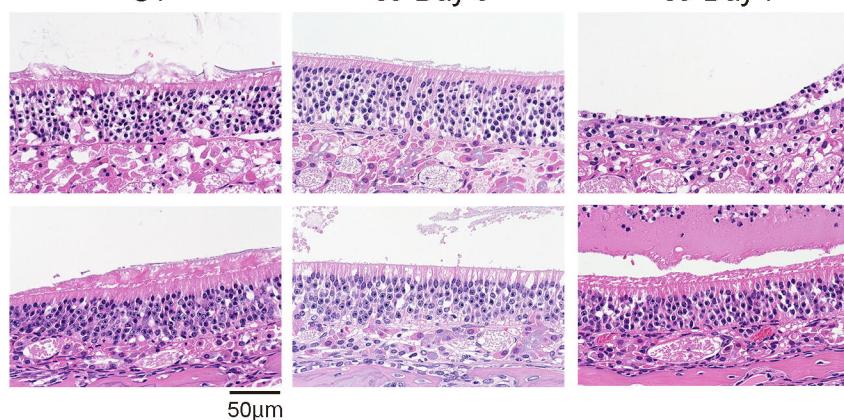
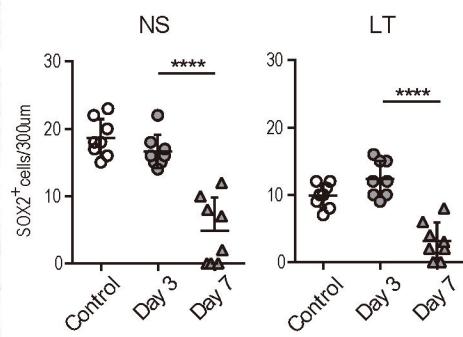
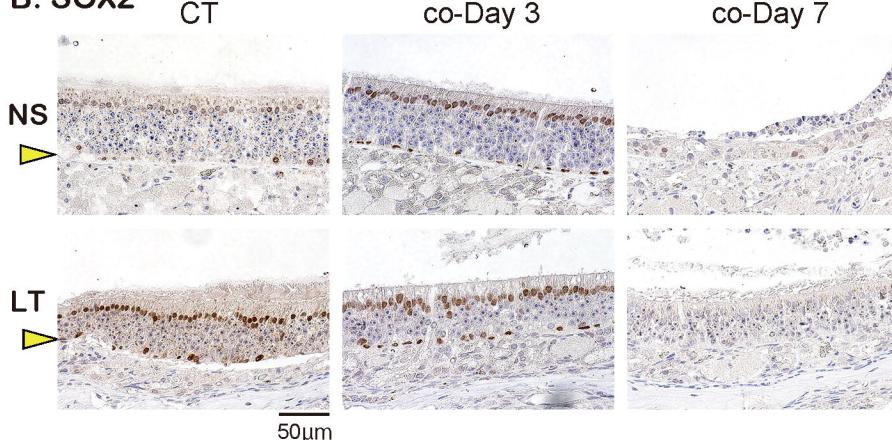
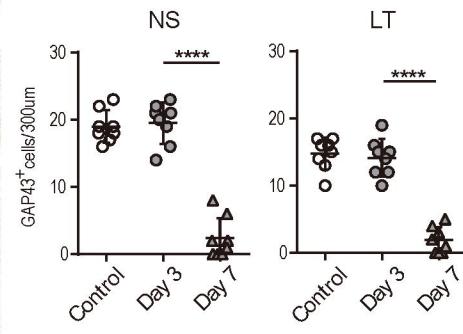
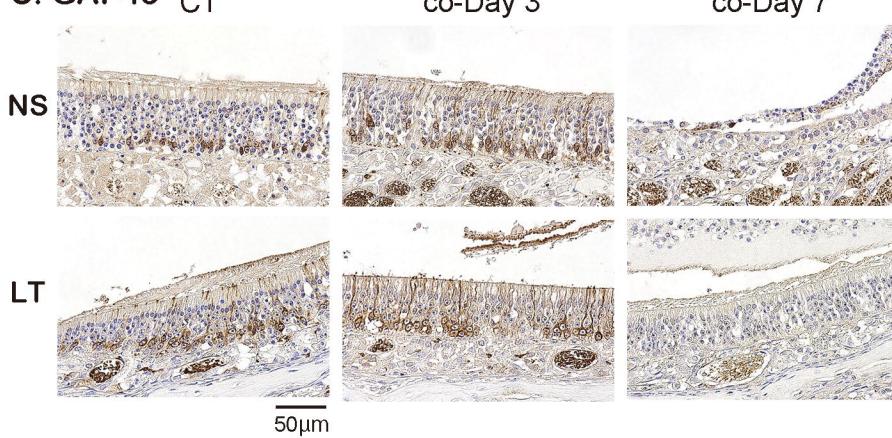
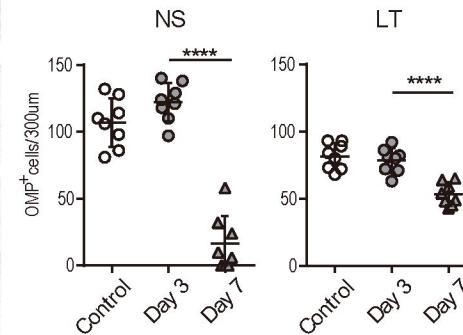
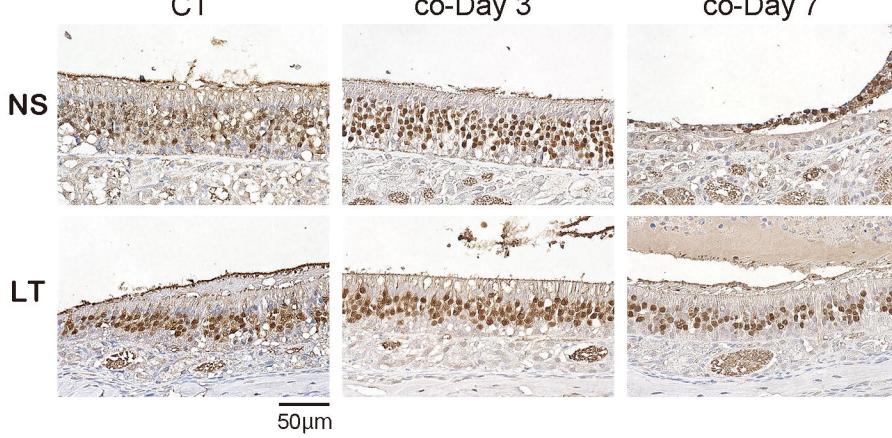

CT

Day 3

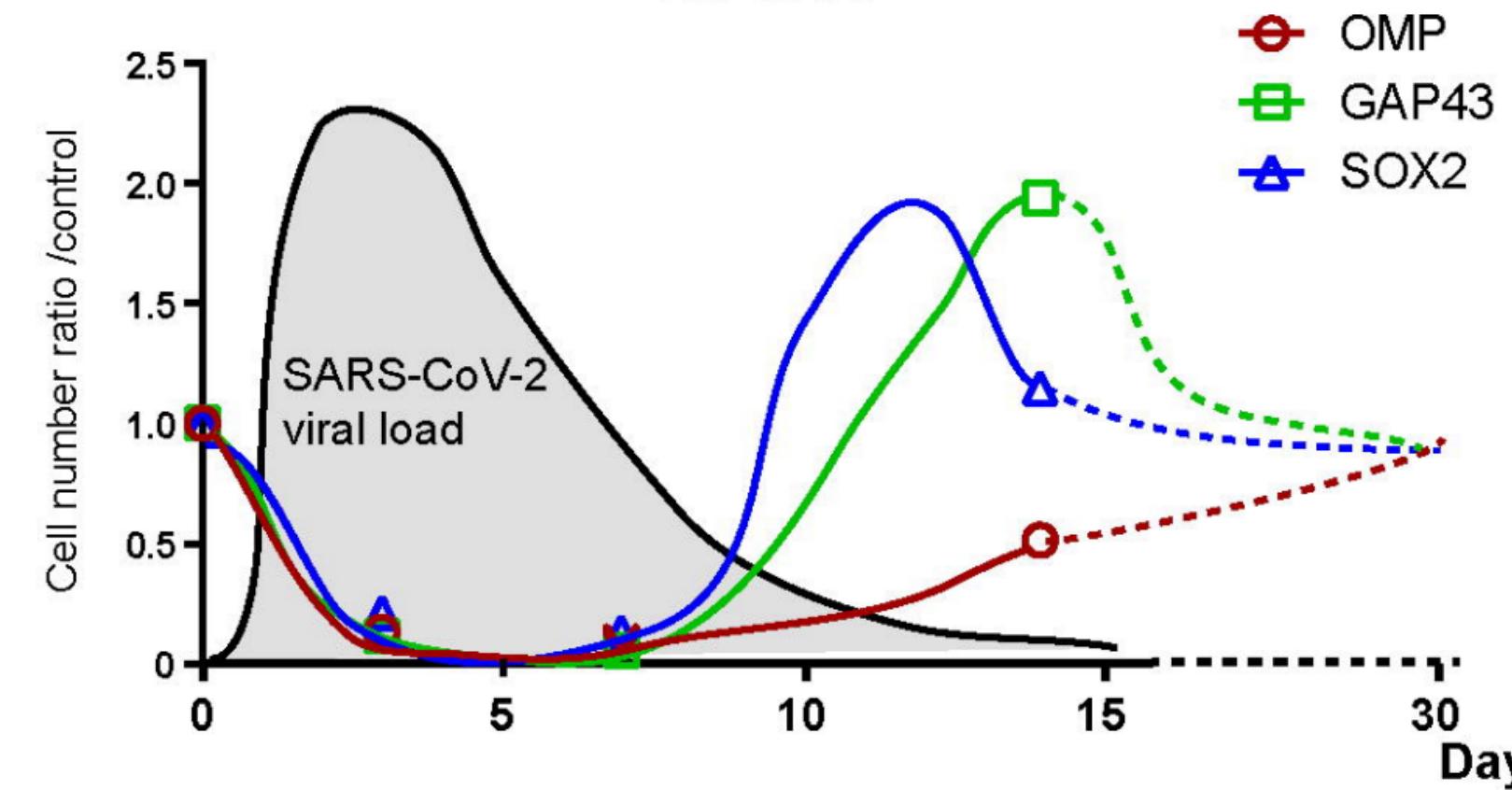

Day 7

Day 14

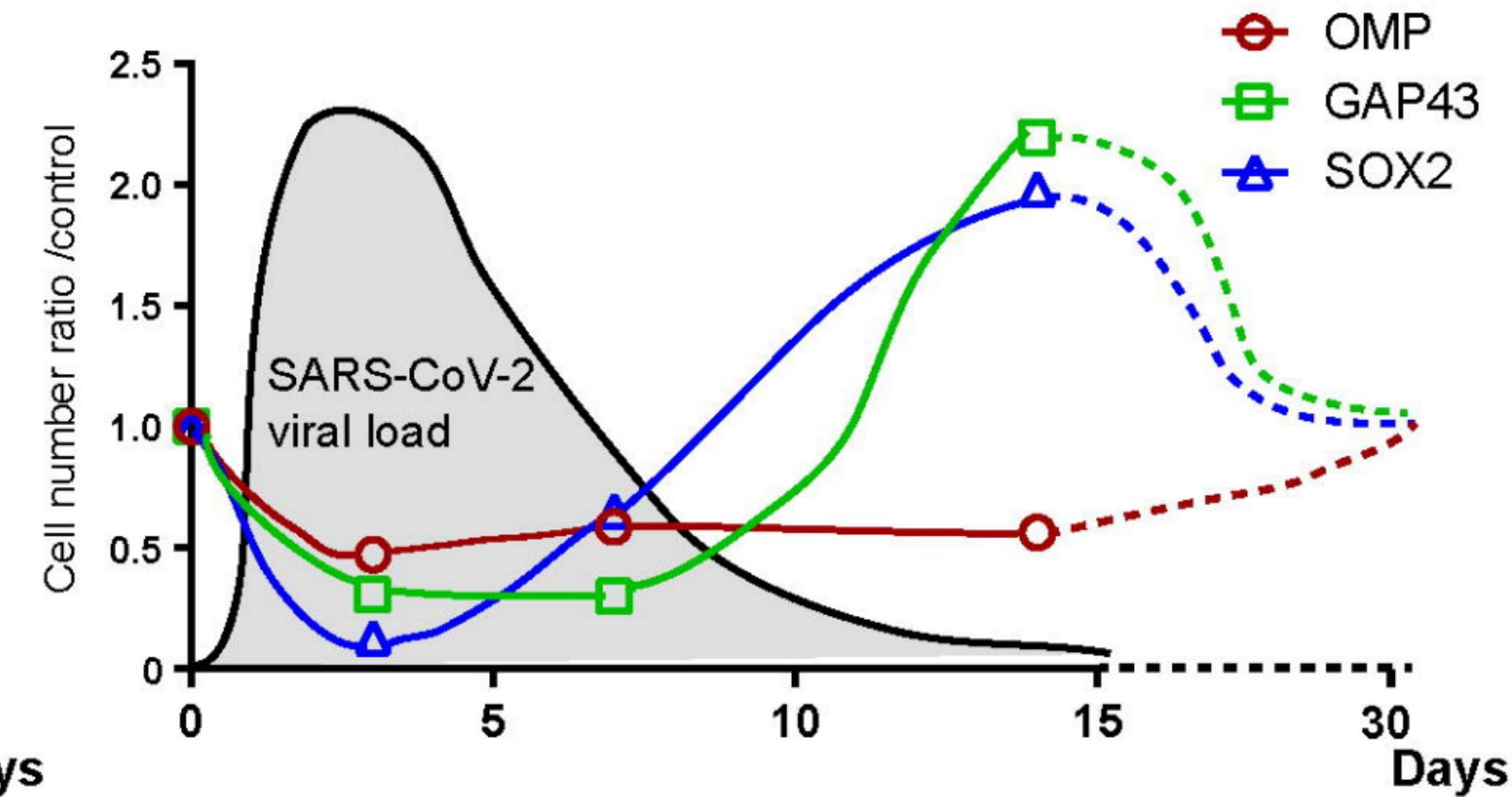

NS

LT



50μm



A. HE**B. SOX2****C. GAP43****D. OMP**

NS area

LT area

