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Abstract 

Resting-state functional magnetic resonance imaging (rsfMRI) has shown considerable promise for 

improving our understanding of brain function and characterizing various mental and cognitive states in 

the healthy and disordered brain. However, the lack of accurate and precise estimations of comparable 

functional patterns across datasets, individuals, and ever-changing brain states in a way that captures both 

individual variation and inter-subject correspondence limits the clinical utility of rsfMRI and its 

application to single-subject analyses.  

We posit that using reliable network templates and advanced group-informed network estimation 

approaches to accurately and precisely obtain individualized (dynamic) networks that retain cross-subject 

correspondence while maintaining subject-specific information is one potential solution to overcome the 

aforementioned barrier when considering cross-study comparability, independence of subject-level 

estimates, the limited data available in single studies, and the low signal-to-noise ratio (SNR) of rsfMRI. 

Toward this goal, we first obtained a reliable and replicable network template. We combined rsfMRI data 

of over 100k individuals across private and public datasets and selected around 58k that meet quality 

control (QC) criteria. We then applied multi-model-order independent component analysis (ICA) and 

subsampling to obtain reliable canonical intrinsic connectivity networks (ICNs) across multiple spatial 

scales. The selected ICNs (i.e., network templates) were also successfully replicated by independently 

analyzing the data that did not pass the QC criteria, highlighting the robustness of our adaptive template 

to data quality. 

We next studied the feasibility of estimating the corresponding subject-specific ICNs using a multivariate-

spatially constrained ICA as an example of group-informed network estimation approaches. The results 

highlight that several factors, including ICNs themselves, data length, and spatial resolution, play key 
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roles in successfully estimating the ICNs at the subject level. Large-scale ICNs, in general, require less 

data to achieve a specific level of spatial similarity with their templates (as well as within- and between-

subject spatial similarity). Moreover, increasing data length can reduce an ICN’s subject-level specificity, 

suggesting longer scans might not always be desirable. We also show spatial smoothing can alter results, 

and the positive linear relationship we observed between data length and spatial smoothness (we posit that 

it is at least partially due to averaging over intrinsic dynamics or individual variation) indicates the 

importance of considering this factor in studies such as those focused on optimizing data length. Finally, 

the consistency in the spatial similarity between ICNs estimated using the full-length of data and subset 

of it across different data lengths may suggest that the lower within-subject spatial similarity in shorter 

data lengths is not necessarily only defined by lower reliability in ICN estimates; rather, it can also be an 

indication of brain dynamics (i.e., different subsets of data may reflect different ICN dynamics), and as 

we increase the data length, the result approaches the average (also known as static) ICN pattern, and 

therefore loses its distinctiveness. 

Keywords: Functional Connectivity (FC); Independent Component Analysis (ICA); Intrinsic 

Connectivity Networks (ICNs), Functional Templates 
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1. Introduction 

Resting-state functional MRI (rsfMRI) studies have significantly advanced our knowledge of both typical 

and disordered brain functional organization by evaluating the functional interactions across the brain 

using the blood-oxygenation-level-dependent (BOLD) signal. While rsfMRI has several advantages that 

make its application in a wide range of clinical and research settings more feasible than task-based fMRI 

paradigms, its clinical utility and application in single-subject analyses have been limited.  

Clinical applications and statistical inferences are generally built upon identifying and evaluating common 

patterns/features. In structural MRI analysis, we investigate unambiguous brain structures where changes 

in the properties of a given structure can be assessed as an indication of abnormality. The task-based fMRI 

analysis captures the brain’s response to well-defined external tasks to identify and evaluate the task-

related features across individuals. However, because the ground truth of functional entities in a given 

brain is unknown, the identification of the corresponding functional patterns across individuals is not 

straightforward for rsfMRI. The limitation of existing approaches to obtain comparable functional patterns 

across individuals and brain states in a way that accurately and precisely captures both individual variation 

and inter-subject correspondence is one primary factor limiting rsfMRI applications. 

Focusing on functional connectivity, the most common category of approaches uses anatomically fixed 

regions (i.e., existing atlases) and evaluates the functional connectivity between these regions. By using 

anatomically fixed regions, this category implicitly assumes the functional (connectivity) profile within 

each anatomically fixed region does not vary over time and is the same across individuals. However, many 

static and dynamic rsfMRI studies have challenged this strong assumption by identifying differences in 

the spatial patterns of functional entities both across subjects and within subjects over time (Boukhdhir et 

al., 2021; Erhardt et al., 2011; Iraji et al., 2019a; Iraji et al., 2019c; Luo et al., 2021; Wang et al., 2015). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2022. ; https://doi.org/10.1101/2022.09.03.506487doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.03.506487
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

The presence of within- and between-subject spatial differences is further supported by task-based fMRI 

findings showing that functional connectivity maps and spatial patterns of brain responses vary across 

individuals for a given task as well as within-subject across mental states dictated by tasks (Calhoun et 

al., 2008; Krienen et al., 2014; Salehi et al., 2020; Sui et al., 2009; Wu et al., 2021). As a result, data-

driven approaches are gaining interest because they identify functional entities from the rsfMRI data itself 

and therefore incorporate spatial variabilities in calculating corresponding functional connectivity 

patterns.  

There are two main categories of data-driven approaches. They either (1) estimate functional entities for 

each sample (e.g., subject) and then match them across samples or (2) obtain group-level functional 

entities using entire samples (e.g., group-level brain networks) and then use them as a reference to estimate 

corresponding functional entities for each sample. Early data-driven approaches belong to the first 

category, including those that apply independent component analysis (ICA) to each subject’s data to 

extract intrinsic connectivity networks (ICNs; as estimations of functional entities) and then perform a 

matching step (e.g., clustering) to identify the ICN correspondence across individuals. While this category 

of approaches has remained a matter of great interest with significant potential (Calhoun et al., 2001a; 

Durieux and Wilderjans, 2019; Esposito et al., 2005; Gordon et al., 2017a; Salehi et al., 2020), ambiguity 

and uncertainty that the matched functional entities represent the best corresponding functional patterns 

across individuals remained their major drawback. Studies have shown that a slight change in the seed 

location could result in significant differences in functional connectivity patterns (Yeo et al., 2011), 

indicating that finding the best-matched patterns across individuals requires an extensive search across all 

possibilities. In the case of using functional parcellations as functional entities, this means searching for 

different sizes and locations across all individuals. In addition, extending the application to new unseen 

data, which is necessary for clinical application, requires special solutions as accessibility to the initial 
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dataset and rerunning the process is not only practically unfeasible, but importantly can lead to different 

functional patterns than the original analysis. Differences in data acquisitions, such as different spatial and 

temporal resolutions, can also impact functional pattern identification. Finally, the signal-to-noise ratio 

(SNR) of rsfMRI adds yet another challenge, reducing the likelihood of finding the same functional 

entities across individuals. Finding corresponding functional entities is even more challenging when 

considering the dynamic nature of the brain and the fact that functional entities continuously evolve and 

have different spatial profiles (Iraji et al., 2020).  

The second category of data-driven approaches, also known as group-informed approaches, has been 

deployed to overcome these limitations and enhance the identification of corresponding functional 

patterns across individuals (Calhoun et al., 2001b). These approaches utilize a template obtained from the 

data of multiple subjects to guide the estimation of corresponding functional patterns for each individual. 

Leveraging the data of multiple subjects provides a more reliable estimation of functional entities, and 

using the common template for sample estimation of functional sources improves the identification of 

corresponding patterns across individuals. As a result, this category can be more beneficial for widespread 

clinical adoption as it enhances the possibility of comparing the same functional patterns (and their 

dynamic states) across individuals. Group ICA + back-reconstruction is the most commonly used example 

of this category, which uses group-level ICNs estimates to obtain corresponding subject-level ICNs 

(Erhardt et al., 2011). Yet, two aspects must be improved to fully leverage this category’s potential.  

First, we need to obtain a reliable template (e.g., group-level ICNs) that best represents all individuals. A 

key factor in achieving this goal is to recruit the largest possible dataset. As we increase the size of a 

dataset, the group-level estimations get closer to the central tendency, and therefore, better represent all 

(seen and unseen) individuals. Second, we need to use well-designed group-informed (e.g., reference-

guided or back-reconstruction) network estimation techniques to identify corresponding subject-specific 
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functional patterns accurately and precisely. This step is important to prevent loss of subject-specificity 

and meaningful inter- (and intra-) individual differences. Multiple studies have shown that existing 

techniques capture individual-level variations well (Allen et al., 2012; Erhardt et al., 2011), yet developing 

more advanced network estimation techniques (in addition to accurate estimation of a template) is a key 

element to bringing group-informed approaches to perfection and transitioning to clinical applications of 

rsfMRI. 

In other words, a standardized framework that leverages a very large dataset to obtain a reliable general 

template of functional entities and uses techniques that allows accurate subject-specific estimation of these 

functional entities can lead to the systematic characterization of common and distinct alterations in 

functional patterns across cohorts (including among clinically overlapping disorders) and identifications 

of subject-specific irregularities. This standardized framework makes identifying corresponding 

functional patterns for new subjects and comparing findings among datasets and across studies 

straightforward, which is of great need in the field. Moreover, because the estimation for each subject is 

independent of other subjects in the study, it becomes an ideal solution for both clinical applications as 

well as prediction analysis, which requires complete separation of the training and testing data. 

This study focuses on fulfilling the first piece of this standardized framework, i.e., identifying a reliable 

global ICN template. Towards this goal, we use a large dataset (over 100k subjects) and group multi-

model-order ICA to generate a set of common, reliable multi-spatial-scale ICNs. Compared to previous 

similar attempts (Du et al., 2020), our work uses a much larger sample size, obtains ICNs across multiple 

spatial scales, provides more reliable and replicable ICNs, and does not restrict to typical control cohorts. 

We chose to use all data available to us (including clinical cohorts) to ensure the obtained ICN template 

reflects the diversity and heterogeneity of the brain and can be broadly representative of different groups. 

In this framework, obtaining a universal template that best represents all individuals is the primary 
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objective for the template, and estimating accurate subject-specific networks is the primary objective of 

the group-informed network estimation technique. We evaluate the identification of the corresponding 

subject-specific ICNs using multivariate-objective optimization ICA with reference (MOO-ICAR) (Du 

and Fan, 2013) and present basic tools and metrics to test the successful identification of subject-specific 

ICNs for a given dataset. Applying group-informed approaches to a given dataset does not guarantee the 

successful identification of corresponding functional patterns. There is a significant need to evaluate the 

factors that influence sample-specific estimates and also provide tools for future applications. In this, we 

took our first step toward this important realm of research.  

2. Materials and Methods 

2.1.  Datasets and data preparation   

2.1.1. Dataset  

We utilized rsfMRI data from 100,517 subjects available in more than twenty private and public datasets. 

The full list of datasets and resources for obtaining further details on each can be found in Supplementary 

1. Datasets are from cohorts with different male-to-female ratios, age distributions, handedness, and 

diagnosis, collected by different scanners with varying imaging protocols such as different spatial and 

temporal resolutions. In this initial work, we leveraged as much data as possible to identify an ICN 

template, and the influence of various demographic factors will be evaluated in future studies, given the 

demographic distribution availability. Here, we focused on data quality control (QC) criteria to screen and 

select data without further exclusion criteria. The QC criteria include (a) a minimum of 120 time points 

(volumes) in the rsfMRI time series, (b) mean framewise displacement less than 0.25, (c) head motion 

transition less than 3º rotation and 3 mm translation in any direction, (d) high-quality registration to an 

echo-planar imaging template, and (e) whole-brain (and the top ten and the bottom ten slices) spatial 
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overlap between the individual mask and group mask above 80%. We chose these QC criteria as they are 

both reasonable and achievable across different datasets. This resulted in 57,709 (57.4%) individuals who 

passed the QC criteria, which we called the QC-passed dataset, in contrast to the QC-failed dataset 

defining the remaining 42,808 (42.6%) individuals who did not pass the QC criteria. We used the QC-

passed dataset to extract the ICN template and evaluated the replicability and presence of selected ICNs 

by separately analyzing the QC-failed dataset. 

2.1.2. Preprocessing 

If the preprocessed data were available for a given dataset, we used the preprocessed data; otherwise, we 

performed preprocessing steps, including rigid body motion correction, slice timing correction, and 

distortion correction, using a combination of FMRIB Software Library (FSL v6.0, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and the statistical parametric mapping (SPM12, 

http://www.fil.ion.ucl.ac.uk/spm/) toolboxes under the MATLAB environment. Next, preprocessed 

subject data were warped into a Montreal Neurological Institute (MNI) space using an echo-planar 

imaging (EPI) template, as it has been shown to outperform structural templates (Calhoun et al., 2017) 

when distortion correction is unavailable or unfeasible, as was the case for this study. Finally, subject data 

were resampled to 3 mm3 isotropic voxels and spatially smoothed using a Gaussian kernel with a 6 mm 

full width at half-maximum (FWHM).  

2.2.  Intrinsic Connectivity Network (ICNs) Template Estimation  

The analysis pipeline is displayed in Figure 1. Using our QC-passed dataset, we applied group-level multi-

model-order spatial ICA (gr-msICA) (see section 2.2.1.) to obtain a multi-model-order ICN template. For 

this purpose, we first randomly half split the QC-passed data and applied gr-msICA on each half 

independently. We used model orders of 25, 50, 75, 100, 125, 150, 175, and 200, totaling 900 independent 
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components (ICs) for each data split. We repeated this process 50 times, generating 100 sets of 900 ICs. 

Next, we applied a greedy search and selected the 900 ICs with the highest average pairwise spatial 

similarity (calculated by Pearson correlation) across 100 sets. It is worth mentioning that using more 

granular model order increments and including higher ICA model orders (Iraji et al., 2019b; Smith et al., 

2013) is advantageous to improving the reliability of ICN estimations and obtaining a more complete set 

of reliable ICNs across a broader range of spatial scales. However, implementing these two elements is 

computationally very expensive and becomes impractical considering the large number of ICA runs in our 

proposed stability analysis pipeline. Finally, we manually labeled the ICs and selected 105 of the ICNs 

that are different from each other with all had spatial similarity below 0.8  with each other to serve as the 

final ICN template (see section 2.2.2.). 

 
Figure 1. Analysis pipeline. Data of 100,512 subjects went through preprocessing and quality control (QC). In total, 57,709 
subjects passed the QC and were used to generate the template. The QC-passed dataset was randomly split in half, and group-
level multi-spatial-scale independent component analysis (gr-msICA) was applied on each half split to generate 900 
independent components (ICs). This process was repeated independently 50 times, which resulted in 100 sets of 900 ICs. Next, 
the 900 most stable ICs were identified and labeled as non-ICNs or ICNs, and the 105 most distinct (spatial similarity < 0.8) 
were selected as the ICN template. Finally, several group-level and subject-level analyses were performed.  
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2.2.1. Group-level Multi-Model-Order Spatial Independent Component Analysis (gr-msICA) 

ICA analysis was performed using the Group ICA of FMRI Toolbox (GIFT) v4.0c package 

(https://trendscenter.org/software/gift/) (Iraji et al., 2021). Spatial ICA is a multivariate blind source 

separation technique that simultaneously considers the relationships among all voxels (as opposed to 

pairwise Pearson correlations) to estimate temporally coherent spatial patterns that are maximally 

independent for a selected model order. The group ICA analysis steps are as follows. We first applied 

variance normalization (z-score) on voxel time courses and computed subject spatial principal components 

analysis (PCA) to retain the principal components (PCs) with maximum subject-level variance (greater 

than 95%). Next, group spatial PCA was applied to stacked subject PCs to obtain subject commonalities 

and subspace with the maximum variation across the whole dataset. Group PCs were computed using a 

memory-efficient subsampled time PCA (STP) approach (Rachakonda et al., 2016). We used STP because 

the conventional group spatial PCA is intractable considering the data size used in this study. STP 

estimates the group PC subspace by incremental updating based on a different sub-stack of subject PCs. 

In other words, first-level group PCA was applied to different subsets of subject PCs, and then the final 

group PC subspace was estimated by incrementally updating and incorporating first-level group PCs 

(Rachakonda et al., 2016). Next, we ran gr-msICA using the Infomax ICA algorithm (Bell and Sejnowski, 

1995) with model orders of 25, 50, 75, 100, 125, 150, 175, and 200. We ran Infomax 20 times for each 

model order to obtain the most stable run for each model order (Du et al., 2014).  

We used msICA to extract ICNs that exist across different spatial scales (Iraji et al., 2022), from large-

scale spatially distributed ICNs (Damoiseaux et al., 2008; Iraji et al., 2016) to more spatially granular 

ICNs (Allen et al., 2011; Iraji et al., 2019b). It is worth noting that the model order of ICA effectively sets 

the spatial scale of ICNs without imposing a direct spatial constraint (Iraji et al., 2022). This is a great 

advantage as the complexity varies across brain systems, and there is no reason to expect distinct regions 
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(e.g., temporal lobe vs. the frontal lobe) or systems (e.g., the visual vs. the cognitive control) to have the 

same spatial scale across the brain functional hierarchy. 

The second advantage of using msICA is the superior ability to estimate more reliable ICNs across 

different datasets. Briefly, the amount of variance that can be explained by a given IC relative to other ICs 

can vary across datasets, which impacts the PCs retrieved by group-level PCA steps, and therefore the 

input for ICA decomposition. In other words, subject variabilities influence the data reduction steps prior 

to ICA decomposition, and hence the output of ICA. Variability in ICA estimations, such as statistical 

errors and several equally good local minima solutions, also impact the output of ICA decompositions, 

which we commonly minimize by running ICA several times and identifying the best run (Ma et al., 2011). 

Nonetheless, these sources of variability together lead to a better estimation of a given ICN at different 

model orders across different datasets. In layman’s terms, a given ICN can be best identified either in one 

specific model order across datasets or in different model orders. Thus, by using ICA with multiple model 

orders, we can improve the identification of ICNs across datasets. However, due to computational 

overhead, we only use a limited number of model orders with a relatively large step size of 25 (i.e., 25, 

50, 75, 100, 125, 150, 175, and 200), so we can only leverage this advantage of the multi-model-order 

framework as far as computational feasibility allows. 

2.2.2. ICN Selection 

We applied msICA on 50 random half-splits of QC-passed data and obtained 100 sets of 900 ICs. Next, 

we identified the most stable ICs across the 100 runs. ICASSO is the most commonly used tool to find 

stable ICs and its extension for multi-model-order ICA applications is straightforward. However, the 

computational complexity of ICASSO rapidly increases with the number of ICs and ICA runs, making it 

impractical for our study (900 × 100 IC samples). As such, we applied a procedure that selects ICs based 

on the best pairwise matching of ICs between runs. The steps of the procedure are as follows. First, for 
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each IC of each run, we found its best-matched component from all the other 99 runs. A best-matched 

component was defined as the component with maximum spatial Pearson correlation. We calculated the 

average of the 99 correlation values of best-matched components as the stability index for that given 

component. We obtained this stability index for all components across all runs resulting in a 900 × 100 

stability matrix. Next, we identified the component with maximum stability value across all 900 × 100 

components as the first selected component, and the selected component along with its best-matched 

component in each run were removed from search space (i.e., for each run, the component with maximum 

similarity with the selected component will be identified and omitted for the next iteration). We repeated 

the whole procedure for the remaining 899 × 100 components and continued this procedure until we 

selected 900 components along with their corresponding components across all runs. Next, four authors 

(V.C., Z.F., A.F., and A.I.) manually labeled the 900 selected components as ICNs or non-ICNs. 

Note that some ICNs might have high spatial similarities with each other, and thus we chose a subset of 

ICNs (N = 105) with spatial similarity less than 0.8 as the ICN template (Supplementary 2). All 900 

components and their stability values can be found in Supplementary 3 to allow researchers to select 

criteria that best match their objectives. 

2.3.  Subject-level Estimation of ICNs 

Several factors play roles in estimating corresponding ICNs at the subject level, including fMRI data 

characteristics, ICNs themselves, and group-informed network estimation techniques. The data 

characteristics, such as the amount (i.e., number of time points) of subject-level data and spatial as well 

as the temporal resolutions of data, define the limits of ICNs estimation. In other words, a given ICN 

cannot be estimated if enough information is not present in the data, regardless of group-informed network 

estimation techniques. The properties of each ICN (e.g., its spatial distribution, the amount of data variance 
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it explains, and how densely its main cores are temporally coupled) determine how easily they can be 

extracted. In other words, the spatial and temporal information required to identify each ICN varies. Some 

ICNs can be estimated using fewer time points and coarse spatial and temporal data, while others may 

require fine-grained spatial and temporal information. Group-informed network estimation techniques are 

the determinant factor in obtaining the best estimation of subject-level ICNs for a given fMRI time series. 

As such, there is a significant effort to develop robust, reliable methods with a high level of sensitivity 

and specificity to simultaneously and accurately identify corresponding ICNs for a given sample data 

while capturing sample-specific (e.g., subject-specific) fine information (Du and Fan, 2013; Lin et al., 

2010; Mejia et al., 2020). While we emphasize the necessity of developing new, more advanced methods, 

we leave this effort to future endeavors and use MOO-ICAR to estimate subject-specific ICNs because it 

is suggested to perform well in capturing subject-specific information and removing artifacts (Du et al., 

2016; Du and Fan, 2013). 

All these factors together highlight that merely using an ICN template and a group-informed network 

estimation technique does not guarantee proper estimation of subject-level ICNs, and therefore 

underscores the need to use criteria to evaluate the success of the ICN estimations. Here, we proposed two 

minimum criteria to systemically evaluate how effectively a given ICN is estimated in a given dataset. 

The first criterion evaluates whether the spatial similarity between a given ICN’s template and its subject-

level estimates in a given dataset is significantly higher than the spatial similarity between the ICN’s 

template and components estimated from null data with the same data length and level of spatial 

smoothing. This criterion basically determines whether an ICN is estimated significantly beyond just using 

predefined anatomical information determined by its template. Otherwise, the estimations reduce to using 

predefined spatially fixed weighted nodes/seeds (i.e., become equal to atlas-based approaches). The 

second criterion evaluates if an estimated ICN has significantly higher spatial similarity to its own 
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template compared to its similarity to templates from other ICNs. Data specifications (e.g., resolutions 

and length) and group-informed network estimation techniques determine the ability to differentiate 

between ICNs.  

We evaluate the success of estimating ICNs using the two introduced criteria for the Functional Imaging 

Biomedical Informatics Research Network (FBIRN) (Keator et al., 2016) and Human Connectome Project 

(HCP)(Van Essen et al., 2013) datasets with different specifications (including inherent spatial resolution). 

The FBIRN dataset contains 109 subjects that passed QC with 162 time points, a repetition time (TR) of 

2 sec, and an original voxel size of 3.4375 × 3.4375 × 4 mm3. The HCP dataset consists of 706 subjects 

that passed QC and have four complete rsfMRI scan sessions. Each session has 1200 time points, a TR = 

0.72 sec, and an original voxel size of 2.0 mm isotropic. We also investigated ICN estimation in the context 

of (a) similarity to template ICNs, (b) within-subject similarity, and (c) between-subject similarity for 

different data lengths and sampling rates. We focused on the HCP dataset for data length and temporal 

resolution assessments. We discarded the first 50 time points and partitioned the data from each session 

into incrementally longer segments, beginning at 25 time points with an increment of 25 time points (i.e., 

25, 50, 75, …, 1150). We performed this process for data with different temporal resolutions of 1 to 5 TR 

(0.72, 1.44, …, 3.6 sec). We applied MOO-ICAR separately to each data length and temporal resolution 

to estimate the corresponding 105 ICNs.  

2.4.  On smoothing and reliability analysis 

Spatial smoothness induced by sample size is an understudied research area. For instance, the group ICA 

results, similar to averaging and any group-level analysis, are smoother than the single-subject ICA results, 

as sample-specific spatial variation is gradually smoothed out as more data are included. This phenomenon 

can also be observed when calculating the functional connectivity map of a given seed and averaging it 
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across individuals. This smoothing effect can also be seen when increasing the sample size (number of 

time points in this case) for estimating the subject-level functional connectivity (FC) patterns. The more 

time points that are included, the smoother the FC patterns (e.g., spatially more smoothed ICNs) become. 

This smoothness associated with data lengths directly impacts the results of downstream assessments (e.g., 

reliability assessment) that use spatial similarity to evaluate a system’s performance, since more spatially 

smoothed estimations in general result in higher spatial similarity. Therefore, the impact of this smoothing 

effect should be factored in for reliability analysis and similarity evaluations, especially when comparing 

results from data with different data lengths. Otherwise, the results are always biased toward longer data 

lengths and therefore support the notion of using longer data lengths. A fair comparison between the 

results of different data lengths may need to control for the induced spatial smoothness due to this 

averaging effect. One straightforward solution is to match the smoothness of ICN estimations across 

different data lengths, for instance, by applying different levels of spatial smoothing for different data 

lengths to achieve a similar level of overall smoothing across data lengths. 

At the same time, one should take caution about the extent to which the spatial variations are driven by 

sample variability and error of estimation, or to what extent they reflect a true underlying pattern. While 

higher spatial similarity among a given ICN’s estimations (such as similarity to its reference and its within-

subject and between-subject similarity) is an appealing feature for many analyses, for example, when 

using spatial similarity as reliability or replicability criteria, it could potentially come at the cost of 

reducing subject differences, fine spatial information, and dynamic properties. Thus, applying spatial 

smoothing (to match smoothness across analyses) in studies could also include an assessment of its impact 

not only on reliability and replicability analysis but also its impact on other analyses such as prediction 

and association. Given the extensive results already included in this paper, we plan to incorporate a 

rigorous analysis on the effects of spatial smoothing equalization across different data lengths for future 
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studies. Nonetheless, in the present work, we conducted some baseline analyses to demonstrate the general 

impact of spatial smoothing on subject-level ICN evaluations. For this purpose, we applied post hoc 

smoothing using a Gaussian kernel with a fixed full width half maximum (FWHM) to the subject-level 

ICNs estimated across all data lengths, i.e., the same level of smoothing (FWHM = 4.9 mm) was applied 

to all ICNs, regardless of the data length used for estimation. The FWHM value was selected as the value 

that gave the highest average spatial similarity to the template ICNs across all data lengths in independent 

external data. We evaluated how smoothing affects the results of our analyses, such as the similarity 

between subject-level ICNs and their template, as well as both within-subject and between-subject 

similarities. 

3. Results 

3.1.  Reliable Intrinsic Connectivity Network (ICNs) Template 

Figure 2(A) displays the composite views of the 105 selected ICNs and their average functional 

connectivity. The stability index (average spatial similarity across runs) for all ICNs is well above 0.8. 

Figure 2(B) shows the spatial similarity between ICNs and best-matched components across 100 runs of 

gr-msICA on 50% of the QC-passed dataset. We additionally ran gr-msICA on the QC-failed dataset, 

which was not used in ICNs estimation (unseen dataset), and successfully (spatial similarity > 0.8) 

identified all 105 ICNs. 

Our results suggest that leveraging the msICA framework can improve ICN identification. Figure 2(C) 

shows the average spatial similarity between each ICN and the best IC matches across 100 runs in each 

model order as well as the number of ICNs identified by each model order using the similarity threshold 

of 0.8 (similar to stability index = 0.8). This analysis shows that (1) no single model order ICA can estimate 

all of the 105 ICNs (e.g., only 11 out of 105 ICNs were identified using model order 25 and only about 
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half (58) of the ICNs were identified using model order 175); therefore, msICA provides a more complete 

view of brain functional patterns and (2) the ICNs represent different patterns across the various ICA 

model orders, meaning each can be identified from a different range of model orders. Examples of these 

differences can also be seen in Figure 2(D). For example, ICN 105 was successfully identified across all 

model orders, while ICNs 1, 9, and 60 were only identified in one model order. We also observed that 

some ICNs were successfully identified (ρ ≥ 0.8) across multiple model orders, with one model order 

exhibiting the highest stability value (e.g., ICN 8 and 68).  

Figure 2(E) provides an example of a single ICN where the best-matched components across runs (which 

contain different data) come from different model orders. In this example, we can obtain ICN 58 using a 

single-model-order ICA with a stability index above 0.8; however, because the best-matched components 

can come from different model orders, we achieved higher stability and improved the identification of 

ICNs across datasets by leveraging multi-model-order ICA, which is the second abovementioned 

advantage of multi-model-order ICA. Our analysis shows that 28 of the 105 ICNs came from different 

model orders (2 to 4 different model orders) across 100 half-split runs. We further investigated this benefit 

of multi-model-order ICA by comparing the results of applying msICA on the QC-failed dataset with 100 

runs from the QC-passed dataset. Our findings showed that for 53 out of the 105 ICNs, the corresponding 

ICNs in the QC-failed dataset were identified in different model orders than all QC-passed runs. 
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Figure 2. Group-level multi-spatial-scale independent component analysis (gr-msICA) results. (A) The composite views of the 
105 selected intrinsic connectivity networks (ICNs) and averaged whole-brain functional connectivity. Each ICN spatial map 
was first z-scored and thresholded at z-value = 1.96 (p-value = 0.05). Whole brain functional connectivity was estimated by 
calculating the Pearson correlation between each pair of ICNs and averaged across the QC-passed dataset. (B) Multi-model 
order stability. The spatial similarity of ICNs with corresponding independent components (IC) across 100 gr-msICA runs on 
different halves of the QC-passed dataset. (C) single-model-order versus multi-model-order ICA. The average spatial similarity 
is computed between each ICN and the best IC matches across the 100 runs in each model order (and multi-model-order). The 
blue values on the right side indicate the number of ICNs identified by each model order using the similarity threshold of 0.8 
(similar to stability index = 0.8). (D) Different ICNs can be identified using different ranges of model orders. For example, 
ICN 105 was successfully identified by all model orders used in this study. (E) an example showing how using msICA improves 
the identification of the best corresponding ICN across different subsets of data, suggesting msICA improves the identification 
of ICNs across datasets. 
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3.2. Subject-Level Analysis  

The subject-level analysis suggests that we can identify subject-specific ICNs corresponding to our 

template using existing data acquisition paradigms and back-reconstruction methods. MOO-ICAR 

estimated all ICNs above null for all HCP data lengths (i.e., 25, 50, 75, …, 1150 time points); however, it 

could not effectively extract ICN-specific information for 6, 5, and 2 ICNs for the shortest data lengths of 

25, 50, and 75 time points, respectively, meaning the MOO-ICAR solutions for these ICNs were not 

statistically (p-value > 0.05) more spatially similar to their templates compared to that of other templates. 

Indeed, the results of subject-level estimations can vary based on both back-reconstruction and data 

characteristics. For instance, for the FBIRN dataset with 157 time points and a larger original voxel size 

of 3.4375 × 3.4375 × 4 mm  (i.e., higher inherent spatial smoothness), MOO-ICAR estimation of 12 ICNs 

did not show statistically higher similarity to their reference than other references. In comparison, for the 

HCP dataset with data length equal to or larger than 100 time points, MOO-ICAR successfully estimated 

all 105 ICNs.  

In Figure 3(A), the top row shows an example of subject-level ICN estimation from both the HCP and 

FBIRN datasets. Subject-specific estimations have less spatial smoothness than the ICN template obtained 

from the group-level analysis. Subject-specific smoothness gradually increases as more time points are 

used for MOO-ICAR estimations (Figure 3(B)). In other words, we illustrated the expected increase 

phenomena (see section 2.4) in spatial smoothness (computed as one minus average gradient magnitude 

across the whole brain) as a function of data length for an exemplar ICN. We also employed the post hoc 

subject-level spatial smoothing (see section 2.4) and observed that this smoothing indeed increased the 

similarity between subject-level ICNs and templates obtained from group-level analysis (the bottom row 

of Figure 3(A) provides a visual illustration). 
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Figure 3. Subject-level estimation and the effect of smoothness. (A) Estimation of intrinsic connectivity network  6 (ICN 6) for 
a single subject from the Human Connectome Project (HCP) dataset using different data lengths and one subject from the 
Functional Imaging Biomedical Informatics Research Network (FBIRN). The subject-level estimation is less smooth than the 
template obtained using group-level analysis. The subject-level estimate depends on several factors, including data 
characteristics such as length of data and original voxel size. (B) The smoothness of ICN 6 estimated as a function of data 
lengths for the HCP dataset is shown in green. The red color represents the same measure for the FBIRN dataset with 157 time 
points. Blue shows the smoothness level for the template of ICN 6. Y-axis shows the normalized smoothness level with a 
maximum value of 1, which corresponds to a constant image (when all voxels have the same value, the normalized smoothness 
level is equal to one). Normalized smoothness equals one minus average gradient magnitude across the whole brain. 

The results of the spatial similarity analysis between the subject-specific ICNs and the template are 

summarized in Figure 4. The left column shows the results for the original ICN estimations, and the right 

column represents assessments after applying the post hoc spatial smoothing (i.e., applying the same 

spatial smoothing with FWHM = 4.9 mm to all ICNs and data lengths). The first row (Figure 4(A)) shows 

the average similarity of 105 ICNs with the template, where the green shaded area represents its standard 

deviations across individuals, and Figure 4(B) shows an example of the spatial similarity for ICN 38. The 

pattern of spatial similarity with the template varies across ICNs. Figure 4(C) shows differences in the 
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similarity of selected ICNs with the template, indicating different ICNs need different data lengths (i.e., 

numbers of samples) to achieve a specific spatial similarity to the template and spatial smoothing increases 

the similarity across all ICNs.  

We also evaluated the effect of the sampling rate (Figure 4(D)). For the same number of time points (i.e., 

the same number of samples or the same data length), lower sampling rates (i.e., a longer amount of time 

between samples) result in slightly (but statistically significant) higher spatial similarities with the 

template. The effect of sampling rate is more significant in smaller data lengths. For example, the F-

statistic between data with TR = 0.72, 1.44, 2.16, and 3.6 sec was 1121 for the data length of 25 time 

points compared to 489 for the data length of 250 time points. Furthermore, for the evaluated TR values, 

the two-sample t-test indicates that the impact of sampling rate reduces as sampling rate (TR) increases. 

For example, for the original estimation with 25 points, the t-value between the sampling rates of 0.72 and 

1.44 seconds is 35, while this value is 22 for the sampling rates of 1.44 and 2.88 seconds. However, the 

increase in spatial similarity as a function of sampling rate seems trivial, especially considering we can 

(1) collect more data for the same amount of time using shorter TR and (2) better assess the changes in 

functional patterns over time. 
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Figure 4. Assessment of subject-level intrinsic connectivity networks (ICNs) estimated using multivariate-objective 
optimization ICA with reference (MOO-ICAR). The left and right columns are the results of original ICNs estimations and 
after applying post hoc spatial smoothing. (A) The average spatial similarity between subject-level estimations and the template 
using different data lengths (from 25 to 1150 time points). The green shaded area represents its standard deviations, and the 
blue and red dot lines represent the fitted curve and its extrapolation. (B) The same plot as (A) but for one ICN as an example. 
(C) While the spatial similarity between single-subject estimations and templates increases as the length of data increases, 
different ICNs show different patterns. Here, we show an average similarity as a function of time for a few randomly selected 
ICNs with and without spatial smoothing. (D) The sampling rate (TR) effect on the spatial similarity between template and 
subject-level estimations. 

Within-subject and between-subject analyses were consistent with the results of the similarity analysis 

with the template. For instance, we calculated the within-subject spatial similarity between different 

sessions of the HCP data and observed an increase in the within-subject spatial similarity as a function of 

data length (Figure 5(A)). Furthermore, post hoc spatial smoothing enhanced within-subject and between-

subject spatial similarities (Figure 5(B)). 

While increasing data length increases within- and between-subject spatial similarities, this pattern of 

within- (and between-) subject similarity across ICNs remains fairly consistent across data lengths, with 

a higher consistency for within-subject analysis. In Figure 5(C), we calculated the average within-subject 
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spatial similarity for all 105 ICNs at each data length. Then, we measured the Pearson correlation between 

105 similarity values for each pair of data lengths. Figure 5(D) shows the same analysis for between-

subject analysis, and Figure 5(E) and (F) illustrate the same analyses for post hoc spatially smoothed data. 

We also observed that within- and between-subject similarities are positively correlated with the size of 

ICNs, meaning within- and between-subject similarities seem to be higher for larger-scale ICNs than 

spatially more granular ICNs. Figure 5(G) and (I) illustrate the relationship between the number of voxels 

with Z > 1.96 (p-value < 0.05) and within- and between-subject spatial similarities. 

We also evaluated the impact of data lengths and smoothing in within-session similarities relative to 

between-session similarities (Figure 5(H) and (J)). For this purpose, we calculated the spatial similarity of 

the ICNs estimated using the given data length with those estimated using a portion (25% and 50%) of 

that data length. For example, for the data length of 100 time points, we calculated the similarity between 

ICNs estimated using 100 time points with ones estimated using the initial 25 and 50 time points. Within-

session similarities are more similar across data lengths, compared to between-session analysis, 

particularly for original estimations (Figure 5(H)). For instance, the Pearson correlation between full-

length and 50% remains around 0.8 across different data lengths. Moreover, post hoc spatial smoothing 

has a larger impact on between-session similarities than within-session similarities. Our analysis shows 

the increase in spatial similarity as the result of spatial smoothing is more prominent in between-session 

similarities compared to within-session similarities. 

The effect of the sampling rate within and between-subject similarity (Figure 5(K), (L), (M), and (N)) is 

also similar to what we observed in the context of similarity to the template. For the same number of 

samples, lower sampling rates (i.e., a longer amount of time between samples) result in overall higher 

within- and between-subject spatial similarities. However, the ability to collect more data for the same 

amount of time favors using higher sampling rates. 
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For the last analysis, we evaluated subject-specificity by comparing within- and between-subject 

similarities (Figure 6). We observed that ICNs show different patterns and levels of subject specificity. 

For example, Figure 6(A) shows a few ICNs with different maximum t-values and different relationships 

between data length and ICN's subject specificity power. The maximum t-value is an indication of a given 

ICN’s ability to differentiate between individuals, and we observed, for example, this value is much higher 

for ICN 68 (commonly known to belong to the frontoparietal domain) than ICN 5, which is a large-scale 

ICN in the cerebellum. Moreover, the t-value of within- and between-subject similarity gradually increases 

as a function of data length for ICN 68 in explored data length, while the value reaches the maximum in 

mid-range data lengths for ICN 5. Figure 6(B) shows that the pattern of ICNs’ subject-specificity remains 

fairly similar across different data lengths, particularly when the data length is above 500 time points. 

Similar to the previous analyses, subject-specificity is positively correlated with the ICN spatial extent, 

meaning larger scale ICNs estimated using MOO-ICAR carry more subject-specificity power relative to 

spatially finer scale ICNs (Figure 6(C)). Further investigation shows that subject-specificity variability 

was non-uniformly distributed across systems. ICNs associated with frontoparietal and default mode show 

higher within-versus-between subject t-values, while ICNs associated with the subcortical and cerebellum 

have the lowest subject-specificity power, and this pattern is similar for the original as well as post hoc 

smoothing (Figure 6(D)). 
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Figure 5. Assessment of within- and between-subject similarities. The left and right columns show the results of original ICNs 
estimations and after applying spatial smoothing. (A) and (B) the average within- and between-subject spatial similarity using 
different data lengths (from 25 to 1150 time points). (C) and (E) show the similarity of the ICNs’ within-subject spatial 
similarity across different data lengths for original and post hoc smoothed ICNs. (D) and (F) show similar results for between-
subject spatial similarity. These results suggest that while within- and between-subject similarity is positively correlated with 
the data lengths (i.e., higher similarity with longer data lengths), the pattern of similarity across ICNs is consistent for different 
data lengths. (G) and (I) show a strong positive correlation between ICNs size and within- as well as between-subject similarity. 
(H) and (J) show the impact of data length on the similarity of ICNs obtained using full data lengths with those obtained using 
a portion (25% or 50%) of data. While the within-session similarity increases as a function of data length, this increase is not 
substantial, particularly compared to between-session similarity. (K) to (N) demonstrate the impact of sampling rate on within- 
and between-subject similarities for original analysis as well as post hoc smoothed ICNs. 
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Figure 6. Within-subject versus between-subject comparison. (A) shows examples of this comparison for selected ICNs and 
different data lengths. (B) illustrates similarity in ICNs’ t-values across different data lengths. (C) the relationship between the 
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t-value of within- versus between-subject comparison and the size of the ICNs. (D) demonstrates that the subject-specificity 
pattern is similar for original estimations and smoothed ones and the distribution of ICNs' subject-specificity power. 

4. Discussion  

rsfMRI is a non-invasive brain imaging method with arguably the best existing spatial and temporal 

resolution trade-off and minimal demand from individuals during data acquisition. These properties make 

rsfMRI a promising tool for studying brain function and for use in clinical applications. Among different 

features acquired from rsfMRI, functional connectivity, which assesses the interactions across the brain, 

has shown associations with various mental and cognitive measures, as well as characteristic alterations 

in certain brain disorders. However, the limitations of existing methods and datasets prevent us from fully 

leveraging the potential of rsfMRI to study FC and transition it into a well-established, valid clinical tool. 

A key step toward establishing rsfMRI as a prevalent clinical tool is the accurate estimation of 

corresponding functional patterns, i.e., the identification of equivalent functional patterns across 

individuals and brain states in a way that captures both individual variations and inter-subject 

correspondence. Accumulating evidence of spatial differences in functional patterns across individuals 

and even within individuals over time (Bhinge et al., 2019; Boukhdhir et al., 2021; Fan et al., 2021; Iraji 

et al., 2019a; Iraji et al., 2019c; Iraji et al., 2020; Luo et al., 2021; Salehi et al., 2020; Wu et al., 2021) 

highlights the necessity of using data-driven approaches instead of predefined (anatomical or functional) 

atlases in FC studies. However, several factors must be taken into account when using data-driven 

approaches. First, the calculation of functional patterns for each subject should preferably be estimated 

independently from other subjects, particularly in the case of prediction and machine learning, which 

require the training and testing data to be completely separate. Data-driven approaches that separately 

estimate functional patterns for each subject and then use a data-driven matching technique to find the 

correspondence fail to adequately satisfy this criterion because the matching step requires comparing the 

functional patterns across all data (training and testing) and therefore results in data leakage. Second, 
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differences in datasets across studies can influence results. For example, changes in datasets used in a 

study (e.g., adding new subject data) can impact the matching steps (and dataset-specific group-level 

estimates) and lead to different results. Furthermore, we often do not have access to all data used in 

previous studies, and even if we do, rerunning analyses by adding new data to the previous ones each time 

is impractical and can lead to different solutions. To address the abovementioned complications, a 

straightforward and practical solution is to use reliable templates and group-informed data-driven 

techniques to obtain corresponding functional patterns for each individual separately. 

Here, we contribute to the solution above by identifying reliable group-level multi-spatial-scale ICNs (as 

an estimation of a universal template) using data from over 100k subjects and gr-msICA. We used ICA to 

obtain our templates because of several key factors. First, ICA is a widely used multivariate tool that 

divides the brain into temporally coherent patterns, known as intrinsic connectivity networks (ICNs), 

which are potentially spatially overlapping, yet functionally distinct patterns (Calhoun and Adali, 2012; 

Calhoun and de Lacy, 2017; Iraji et al., 2022), and therefore good estimates of intrinsic functional 

“sources” or entities (Iraji et al., 2022; Iraji et al., 2020). Another appealing attribute of ICA is its ability 

to separate artifactual signals from ICNs in the mixed rsfMRI time series (Calhoun and de Lacy, 2017). 

As such, FNC estimations (both intra- and inter-network FC) have been shown to be more robust to 

artifacts and less contaminated with erroneous signals compared to other FC measurements (Calhoun and 

de Lacy, 2017). Furthermore, an ICN’s spatial map has a value at every voxel, indicating the contribution 

of each voxel to the ICN. Therefore, instead of splitting the brain into separate parcels, ICA appreciates 

the brain’s functional heterogeneity and multifunctionality (Calhoun et al., 2009; Haak and Beckmann, 

2020; Iraji et al., 2020). Another major advantage of ICA is its ability to capture ICNs across multiple 

spatial scales without imposing a hard constraint on the spatial extent of ICNs (Iraji et al., 2022). This is 

an important attribute because the spatial scale of functional systems in the brain does not necessarily 
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change at the same rate. We used gr-msICA (Iraji et al., 2022; Meng et al., 2021) to estimate ICNs across 

multiple spatial scales and to obtain a more complete view of brain function. Supplementary 4 and 5 

contain corresponding ICNs can be obtained from single low and high model orders (25 and 175) for those 

interested in using single scale analysis at only large spatial scale or fine-grained ones. 

Moreover, our results show different ICNs may have different optimal model orders across different 

datasets. Our results show that, for 28 of the 105 ICNs, the best-matched components came from different 

model orders across 100 half-split subsets of the QC-passed dataset, and the same was observed for 53 

out of 105 ICNs in the QC-failed dataset. These findings demonstrate that gr-msICA can significantly 

improve the stability of ICA results and the identification of corresponding ICNs across datasets. The 

ability to identify the same ICNs in new data is challenging for group-level ICA analysis and can impact 

its replicability, particularly when the datasets are independent and have different characteristics (Du et 

al., 2020). It should be noted that while our findings show ICNs are identified across different ranges of 

ICA model orders (see examples of different ranges in Figure 2(D)), we posit all would appear across 

multiple model orders, with one model order exhibiting the highest stability value (similar to ICN 8 and 

68) if we had used a larger range of model orders with smaller intervals (e.g., model order 2 to 500 with 

an incremental step of 1). It is also worth mentioning that the ICNs can be used to estimate a 

comprehensive subject-specific (and group-level (Joliot et al., 2015)) canonical parcellation/atlas.  

A prior study uses 1005 and 823 typical control individuals from the HCP and the Genomics Superstruct 

Project (GSP) datasets and group level spatial ICA to obtain a template (Du et al., 2020). Our work is 

different and improves this initial template in several key aspects. In this study, we used a much larger 

dataset (over 57k individuals after quality control) from various demographics (not just typical control) to 

extract our ICN template; as such, it provides a closer estimation of a global template. Another major 

difference is that, rather than using a single model order of 100, here we leverage gr-msICA to improve 
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the consistency of estimated ICNs and to obtain a more comprehensive template of ICNs across multiple 

spatial scales. Moreover, we use a much higher spatial correlation value as the threshold (0.8 versus 0.4) 

for the reproducibility and stability of ICNs. If we were to use a threshold of 0.8, the data from Du et al. 

template shows only 16 replicable ICNs. In contrast, all 105 ICNs of our template have spatial similarity 

above 0.8 with an unseen independent QC-failed dataset. We also evaluated the presence of the Du et al. 

ICNs in our selected ICs. For the threshold of 0.4, we found correspondence for all 53 template ICNs 

among 900 ICs. However, only 45 out of 53 ICNs for Du et al., show spatial similarity above 0.4 with our 

105 template ICNs; in other words, some of the ICNs in the initial template did not meet our criteria of 

being an ICN. 

Focusing on sample-specific (e.g., subject-specific) estimation, we used group-informed network 

estimation techniques where our template was used to guide subject-specific solutions. We recommend 

using group-informed network estimation techniques combined with our template for several reasons. 

Firstly, group-informed techniques more accurately estimate subject-specific patterns, particularly for low 

SNR rsfMRI data with short data lengths, because the templates are utilized as a constraint to limit the 

search space. A recent study (Duda et al., 2022) suggests that this pipeline could potentially shorten 

clinical rsfMRI scans to just 2-4 minutes without significant loss in static group comparison. Group-

informed techniques also enhance the estimation of subject-specific correspondence by optimizing the 

solution to be jointly spatially independent and close to a common template. In addition, these techniques 

only use the template and subject data itself to estimate subject-specific ICNs, and therefore the estimation 

of each individual is independent of other samples in a given study. Using our template as a universal 

reference also facilitates the comparison of findings across existing and future studies as we retain the 

correspondence ICNs across all subjects that the pipeline is applied to.  
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The first step toward using any subject-level estimates is to evaluate whether or not network-estimation 

and parcellation techniques successfully estimate subject-level patterns for a given dataset. This has been 

mainly overlooked in previous studies. Here, we introduced two criteria for this purpose which assess 

whether the subject-level estimates of each ICN in a given dataset provide (1) subject-specific information 

beyond predefined spatially fixed nodes (weighted masks) and (2) unique information about the associated 

ICN compared to other ICNs. The second criterion is important for highly similar ICNs and evaluating if 

we can differentiate between them in subject-level estimation in a given dataset. In this work, we assessed 

the ability of the existing MOO-ICAR framework to obtain the subject-level estimation of our template. 

But these two criteria can be used to evaluate other network-estimation and parcellation techniques, and 

we also call for further investigation on this understudied but important area. 

We also evaluated the role of different parameters in estimating subject-level ICNs. The results show that 

in addition to the data length, which has been the center of many reliability investigations (Birn et al., 

2013; Duda et al., 2022; Gordon et al., 2017b; Murphy et al., 2007), other data characteristics (particularly 

inherent spatial resolution) play key roles in successfully extracting subject-level ICNs. For instance, 

MOO-ICAR successfully estimated all 105 ICNs using 100 time points for the HCP dataset; however, 12 

ICNs did not survive the second criterion for the FBIRN dataset, even using 157 time points. This might 

suggest the spatial resolution of data is an important factor in differentiating these highly spatially similar 

ICNs. These highly spatially similar ICNs (Supplementary 6)  that we, for the first time, observed at the 

group-level analysis resemble the previously reported parallel interdigitated distributed networks observed 

at the subject level (Braga and Buckner, 2017). 

In addition to data characteristics, the intrinsic properties of a given ICN are an important factor in 

calculating subject-level estimates. In general, larger ICNs require less data to achieve a specific level of 

within-subject (between-subject and template) spatial similarity. Given that spatial similarity is commonly 
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used as a reliability index, we could postulate large-scale ICNs are more stable and requires less data to 

be estimated reliably at the subject level. This result agrees with previous findings showing that lower 

model-order ICA generates more consistent components than the higher model orders. Our findings also 

indicate that ICNs carry different levels of subject fingerprint information, with ICNs associated with the 

subcortical domain having the least subject-specific information and those suggested to be involved in 

higher cognitive functions, particularly ICNs associated with frontoparietal domains showing the 

maximum within-to-between-subject differences. A previous fingerprint study also identified the 

connectivity patterns of the frontoparietal network as the most distinguishing of individuals (Finn et al., 

2015). 

Interestingly, ICNs exhibit different patterns of within-to-between-subject differences across data lengths, 

which can relate to the temporality aspect of functional fingerprinting (Van De Ville et al., 2021), for 

example, the within-to-between-subject difference peaks at different data lengths for different ICNs. Our 

analysis using the HCP dataset with TR = 0.72 seconds and a step size of 25 time points shows the peak 

varies between 125 to 875 time points (90 to 630 seconds). These findings may also imply (1) increasing 

data length is not always desirable even though it increases within-subject similarity, which is commonly 

used in reliability analyses to support using longer data lengths (30 mins and more) in analysis, (2) studies 

should take the length of the data into account in their analyses and interpreting the results, and (3) future 

work can analyze and leverage multi-data-length information. One related key factor that was not explored 

in this study is incorporating and assessing the brain dynamics. The lower spatial similarity for smaller 

data lengths can be partially related to brain spatial dynamics and changes in the spatial patterns of ICNs 

over time (Iraji et al., 2019a). These differences observed in findings across ICNs and data lengths (and 

probably other factors) highlight the challenge of within- and between-subject variabilities in 

understanding brain functional organization and its changes across different conditions.  
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Notably, while there are observable differences in findings between data lengths, the findings across 

various data lengths still show a similar pattern across ICNs. For instance, while within-subject and 

between-subject similarities are different across data lengths (i.e., a systematic increase in spatial 

similarity as a function of data length), the pattern of spatial similarity across ICNs remain fairly similar 

across data lengths (e.g., Figure 5(C) and (D)), suggesting features that encode ICN properties relative to 

each other might be more robust to the data length and therefore possibly more generalizable indicators 

of brain function. 

We also observe that differences in spatial smoothness across data lengths (also between datasets) can 

impact the results and outcome of analyses, and therefore may limit the comparison of findings across 

studies. We show how spatial smoothing can alter results, including improving within-subject spatial 

similarity. As such, we highlight the necessity of correcting for differences in spatial smoothness, 

particularly those associated with data lengths, for any interpretation of results and comparing the findings 

across analyses. 

Finally, the within-session results (i.e., our analyses of different overlapping data within each session for 

different data lengths) may indicate that the lower spatial similarity in smaller data lengths may not be 

solely related to lower reliability in estimation but also associated with the dynamic nature of brain 

function. We observed that the within-session similarity between ICNs estimated using the full-length of 

data and subset of it (e.g., 50% and 25% data lengths) remains fairly similar for different full-lengths of 

data (cf. blue and green curves are relatively flat in Figure 5(H)). For example, the spatial similarity 

between ICNs estimated using 100 time points and the first 50 time points is close to 0.8, as is the similarity 

between 1000 time points and the first 500 time points. We would expect a significantly lower spatial 

similarity between 100 and 50 time points if their ICNs estimates were unreliable compared to those from 

longer data lengths. We posit that the lower between-session spatial similarity for lower data lengths might 
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be because the two separated data carry different spatial dynamic information of ICNs, and as the data 

lengths increase, they are gradually getting closer to average (also known as static) estimates of ICNs, and 

therefore become more similar. Indeed, the larger increase in the spatial similarity of between-session 

analysis relative to within-session analysis may further support this posit. 

5. Conclusion 

In this work, we identified a reliable and replicable multi-spatial-scale ICNs template using gr-msICA and 

around 58k subject data that meet the quality control criteria. The template was also replicated in data that 

did not pass the QC criteria. We aim to use this template to generalize and standardize functional 

connectivity analysis. This study builds on the recently proposed concept of Neuromark. NeuroMark is a 

comprehensive mapping of (unimodal or multimodal) coherent brain patterns which correspond among 

individuals by leveraging universal templates derived from prior data coupled with guided data-driven 

approaches. Previously, NeuroMark_fMRI_1.0 template, including 53 ICNs, was obtained from two large 

rsfMRI datasets and single model order ICA (Du et al., 2020). Here, we augmented the previous effort by 

using much larger datasets and gr-msICA. 

In addition to providing an enhanced ICN template, we also studied the feasibility of estimating the 

corresponding ICNs at subject-level. Previous work showed additional flexibility and robustness 

Neuromark framework even across different processing pipelines (DeRamus et al., 2021). But there is a 

significant gap in evaluating factors that influence successful captures of subject-specific information  

(ICNs or functional parcellations), due in part to a lack of known ground truth for evaluation of estimates. 

Here, we introduced two criteria to evaluate the successful identification of subject-specific ICNs (or other 

functional parcellations) for a given dataset and a group-informed estimation approach and studied the 

role of different factors in subject-level ICN estimates. The results suggest that intrinsic properties of the 
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ICNs themselves, data length, and spatial resolution are some key factors in successfully estimating ICNs 

at the subject level. We illustrated an increase in spatial smoothness as a function of data length and the 

impact of spatial smoothing on findings. As such, we suggest future studies should control for the effect 

of spatial smoothness in their analysis to mitigate its impact on our ability to compare the findings across 

different studies. We also observed increasing data length can reduce an ICN’s subject-level specificity, 

suggesting longer scans might not always be desirable. Finally, the consistency in the spatial similarity 

between ICNs estimated using the full-length of data and subset of it across different data lengths may 

suggest that the lower within-subject spatial similarity in shorter data lengths is not necessarily defined by 

only lower reliability in ICNs estimates and demands further investigations. Our future work will focus 

on incorporating the findings of this study in functional connectivity analysis and developing new group-

informed network estimation techniques to improve the estimation of corresponding subject-specific 

ICNs. Future research can benefit from using higher model order ICAs and lower step sizes. Future work 

can explore using other multi-model-order ICA approaches (Du et al., 2021) and develop more advanced 

gr-msICA to estimate ICNs across multiple spatial scales. We will also soon release the Neuromark 

templates for other imaging modalities. 
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