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Abstract

Alpha is the strongest electrophysiological rhythm in awake humans at rest. Despite its
predominance in the EEG signal, strong variations can be observed in alpha properties during
development, with an increase of alpha frequency over childhood and adulthood. Here we
tested the hypothesis that these changes of alpha rhythm are related to the maturation of visual
white matter pathways. We capitalized on a large dMRI-EEG dataset (dMRI n=2,747, EEG
n=2,561) of children and adolescents (age range: 5-21 years old) and showed that maturation
of the optic radiation specifically accounts for developmental changes of alpha frequency.
Behavioral analyses also confirmed that variations of alpha frequency are related to
maturational changes in visual perception. The present findings demonstrate the close link
between developmental variations in white matter tissue properties, electrophysiological

responses, and behavior.
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Introduction

The alpha rhythm (8-12 Hz) is one of the most prominent and consistent electrophysiological
brain signatures in both human and animal brains'>. In the 1920s, this dominant brain rhythm
was first reported in humans at rest by Hans Berger'. Despite its widespread occurrence and
long history, the neuroanatomical structures that influence the alpha rhythm and its
development are still under discussion. This work capitalizes on structural (diffusion magnetic
resonance imaging; dMRI) and functional (electroencephalography; EEG) brain measures from
a large sample (dMRI n=2,747, EEG n=2,561) spanning 5 to 21 years of age to clarify the

neurobiological underpinnings of human spontaneous alpha across development.

One of the major neural sources of the alpha rhythm is the thalamus (pulvinar and lateral
geniculate nucleus, LGN**®), whose crucial role has been shown in in-vitro slice preparations’
and further confirmed by human studies where fluctuations in thalamic activity (due to tasks or
lesions) lead to changes in occipital alpha®'°. Besides the thalamus, additional alpha
generators have been localized in the visual cortex of both humans and animals?''2, Crucially,
these thalamic and cortical generators can synchronize and show a high degree of alpha
coherence™™. This supports the idea that modulations of alpha depend not only on a single
brain area’s activity but also on cortico-thalamic connections' and their white matter
properties'. Specifically, mathematical models of spontaneous brain rhythms have proposed
that electrophysiological oscillations can be described as a function of the structural properties
of white matter fibers (e.g., fiber length, localization, distribution, density;'='°). Despite the high
precision of these models, there is still no definitive evidence supporting the theorized link
between white matter and alpha. The optic radiation has been the most studied cortico-thalamic
pathway since it connects two major alpha generators: LGN and the primary visual cortex®.
However, the experimental findings are mixed, with research studies reporting positive
effects?’??, null effects®® and studies highlighting the role of other cortical connections (corona
radiata, corpus callosum?). Part of the source of this incongruence likely stems from small
sample sizes: most previous studies linking alpha to white matter properties included

20-302°2'2 participants and the largest study to date included 89 participants?.

The present work leverages a large EEG-dMRI dataset (dMRI n=2,747, EEG n=2,561)
including children and adults ranging from 5 to 21 years of age and reveals a relationship
between white matter fiber properties and individual differences in spontaneous alpha activity.
This structural-functional link is specific to the optic radiation, and is consistent across
development. Moreover, developmental changes of occipital alpha are partially mediated by

development of the optic radiation. Additional analyses on potential behavioral correlates of
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alpha confirmed its role for the accuracy of conscious visual target detection®2%. This is in line
with the idea that the alpha rhythm reflects a general brain mechanism of inhibition that can
modulate visual processing by selectively gating the neural signal flow between the thalamus
and V1%, These findings further expand our understanding of alpha by showing a link
between the development of visual white matter pathways, brain oscillations and visual

behavior.

Results

Structural bases of alpha. Individual alpha properties including central frequency, power and
bandwidth were estimated with the Fitting Oscillations and One-Over-F (FOOOF) toolbox®.
These alpha estimates were calculated separately for eyes closed (EC) and eyes open (EO)
resting state conditions. DMRI data were processed with QSlprep® and tractometry was
performed with pyAFQ* and quality controlled®® to identify the optic radiations (and control
pathways) in each individual’'s brain. We first tested whether alpha features were related to the
average fractional anisotropy (FA) of the optic radiations by fitting a linear mixed effects (LME)
model on FA that included alpha frequency, power, bandwidth, and age as fixed factors. Site
location was included as a random effect (for site effects in the HBN dataset see®). Frequency
was the only alpha feature that was consistently related to the optic radiations FA across eyes
open/closed conditions (frequency, EC: $=0.003, SE=0.001, t=2.65, p=0.008; EO: 8=0.002,
SE=0.001, t=2.58, p=0.01; power, EC: £$=0.008, SE=0.003, t=2.32, p=0.02; EO: £=0.005,
SE=0.004, t=1.06, p=0.29; bandwidth: EC: $=0.001, SE=0.001, t=0.06, p=0.95; EO: £=-0.001,
SE=0.001, t=0.71, p=0.48). A separate LME model on alpha frequency showed that every
increase of 1 Hz in the alpha frequency corresponded to an increase of 0.002 in optic radiations
FA after accounting for age and site location (EC: 8= 4.26, SE= 1.85, t= 2.30, p=0.021, EO: =
5.20, SE= 2.58, t= 2.01, p=0.044; Fig. 1). Adding the factor of optic radiations average length
did not improve the model fit (starting model, BIC=1836; after adding fiber length BIC=1852),
suggesting that individual alpha frequency could be better predicted based on optic radiations
FA than fiber length.
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Fig 1. A: Example of a power spectrum from a 5-year-old male participant (in black) with closed
eyes (EC). The corresponding FOOOF model fit is displayed in red and it corresponds to the
sum of the periodic (gaussian function included in the purple square) and the aperiodic signal
(dashed line). Three different estimates are extracted from the periodic signal within the alpha
frequency range: power, central frequency and bandwidth. B: Examples of original power
spectra and corresponding FOOOF model fits in the EC condition. Data come from two
representative male participants of 12 years of age with high and low FA average values (high
FA=0.55: low FA=0.50; median FA=0.53). C: Relationship between alpha frequency and the FA
of the optic radiations in the EC and EO conditions in the full participant sample. Model fits of
the periodic signal are shown for high and low FA participants (defined based on a median
split). Beta estimates of alpha frequency were calculated based on the following LME model:

alpha ~ FA + age + (1|sj). Model fits of the periodic signal were derived based on the formula

2
. —(frequency — Central Frequency)2/(2*Bandwidth
Gaussian = Power * ¢ UTee quencn)2/( 4D Shaded areas represented +/-

1 SE.

We next examined which part of the optic radiation was related to alpha frequency by fitting the
same LME models for each node along the tract profile (n nodes = 100). The LME models
included age as a fixed factor and site location as a random factor. The alpha-FA relationship
was mainly observed in the centro-posterior part of the optic radiations (Fig. 2; for GAM models

results see Sl Appendix, Figure S2).
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Fig 2. A: Three-dimensional rendering of the left optic radiation for a single representative
participant (5-year old female). The rendering was derived from the Automated Fiber
Quantification software®. B: Tract profiles of the optic radiations FA for each alpha frequency
group (defined based on a median split) in EC and EO conditions. The plots show FA values
estimated based on the beta coefficients extracted from node-by-node LME models. The optic
radiations FA was modeled as a function of alpha frequency after accounting for age and site
location (i.e., FA ~ alpha frequency + age + (1]|site)). Red horizontal lines highlight nodes where

FDR corrected p-values are below 0.025. Shaded areas represent +/- 1 SE.
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We checked for the anatomical specificity of the alpha frequency effect on the optic radiation by
running the same LME models on a set of control tracts. We did not see a relationship with
alpha frequency in other cortico-thalamic pathways (anterior thalamic radiation: EC: 3=1.16,
SE=2.08, t=0.56, p=0.58; EO: =1.58, SE=2.76, t=0.57, p=0.57) or in white matter pathways
that end in the posterior part of the cortex (occipital segment of the corpus callosum: EC:
$=0.26, SE=1.37, t=0.19, p=0.85; EO: £=3.33, SE=2.05, t=1.63, p=0.10; posterior parietal
segment of the corpus callosum: EC: 8=0.93, SE=1.31, =0.71, p=0.48; EO: $8=0.32, SE=1.61,
t=0.20, p=0.85; inferior fronto-occipital fasciculus: EC: £=0.84, SE=1.41, t=0.59, p=0.55: EO:
EO: 8=0.53, SE=1.72, t=0.31, p=0.76; Fig. 3).
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Fig 3. A: Three-dimensional rendering of the control tracts from three representative
participants (ATR: 6 year-old male; PostParietal: 7 year-old female; IFO and Occipital: 12

year-old male). B: Tract profiles of control tracts for each alpha frequency group (defined based


https://doi.org/10.1101/2022.09.03.506461
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.03.506461; this version posted September 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

on a median split) in EC and EO conditions (first and second row, respectively). The plots show
FA values estimated based on the beta coefficients extracted from node-by-node LME models

as in Fig. 2. Shaded areas represent +/- 1 SE.

Other white matter microstructural properties. The FA of the optic radiations was mainly
tested as it represents the diffusion property that has been most largely reported to correlate
with electrophysiological measures®~¢. Mean diffusivity measures of the optic radiations did not
show a similar relationship with alpha features (frequency, EC: 8=-0.002, SE=0.001, =1.37,
p=0.17; EO: B=-0.001, SE=0.001, t=0.34, p=0.74; power, EC: $=0.001, SE=0.004, t=0.13,
p=0.90; EO: $=-0.001, SE=0.005, t=0.10, p=0.92; bandwidth: EC: $=-0.001, SE=0.001, t=1.24,
p=0.21; EO: 8=-0.001, SE=0.001, t=0.90, p=0.37).

Developmental changes of alpha and optic radiations. A clear developmental trajectory
could be observed in alpha estimates and in the optic radiations FA (Fig. 4). Between 5 and 21
years of age, alpha frequency, power and bandwidth increased (frequency, EC: r=+0.36,
p=2e-19; EO: r=+0.34, p=1e-17; power, EC: r=+0.18, p=2e-5; EO: r=+0.05, p=0.26;
bandwidth, EC: r=+0.17, p=4e-5; EO: r=+0.12, p=0.004; Sl Appendix, Figure S3). Moreover,

the optic radiations FA increased with age (r=+0.30, p=9e-12).
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Fig 4. A: Developmental trajectory of the power spectra in the EEG final sample (n=1,388) for
EC and EO conditions. Age groups approximately correspond to different developmental
stages: pre-puberty (5-8 years, n=373), early adolescence (9-11 vyears, n=488),
mid-adolescence (12-16 years, n=416) and late adolescence (>16 years, n=111)". B:
Developmental trajectory of the optic radiations FA values in the dMRI final sample (n=1,394).
Average FA values and FA values along the tract profile are displayed on the left and right
panel, respectively. Age groups correspond to pre-puberty (5-8 years, n=308), early
adolescence (9-11 years, n=481), mid-adolescence (12-16 years, n=436) and late adolescence
(>16 years, n=180)*". All shaded areas represent +/- 1 SE.

Despite these robust developmental changes, the alpha-optic radiation relationship was
consistent across development. For instance, adding the interaction between age and optic
radiations FA did not improve the model fit of the LME model alpha ~ FA + age + (1|sitelD)
(BIC= 1836; after adding the interaction BIC= 1839), which suggests that the alpha-white matter

link was present even after controlling for additive and interactive developmental effects.

10


https://paperpile.com/c/p5ieKP/PqL1
https://paperpile.com/c/p5ieKP/PqL1
https://doi.org/10.1101/2022.09.03.506461
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.03.506461; this version posted September 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

We further tested whether developmental changes of the optic radiation mediate development
of alpha by performing a causal mediation analysis*®. Two linear regression models were
specified: a mediator model estimating the effect of age on FA, and an outcome model
estimating the effect of age and FA on alpha frequency for both EC and EO. The mediation R
package*® uses these two models as starting points to compute the average causal mediation
effect (indirect effect of age on alpha that is related to the FA mediator) and the average direct
effect (effect of age on alpha after partialling out the FA mediator effect). The sum of these two
effects resulted in the total effect of age on alpha. A bootstrap analysis with 1000 simulations
was used to calculate the uncertainty estimates of these effects*®. This analysis showed that
development of the optic radiation partially mediated developmental changes of alpha
frequency (EC: average causal mediation effect: $=0.008, C/ [0.009; 0.02], p=0.034;
percentage of age effect that is due to the FA mediator: 6.44%, p=0.034; EO: average causal
mediation effect: §=0.011, C/ [0.002; 0.02], p=0.02; percentage of age effect that is due to the
FA mediator: 6.77%, p=0.02; Fig. 5). The effect of age on alpha was still present after taking
into account the mediator (EC: average direct effect: =0.11, C/ [0.09; 0.14], p<0.001; EO:
average direct effect: §=0.15, C/ [0.12; 0.18], p<0.001), suggesting that FA variations partially

mediated alpha development.
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Fig. 5 Mediation effect of the optic radiation on alpha development. A: Schematic

representation of the mediation analysis results. Standardized coefficients are reported. B:
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Beta coefficients of the main effects of the mediation analysis are displayed in red. Yellow bars

represent +/- 1SE.

Behavioral correlates of alpha. Finally, we explored behavioral correlates of occipital alpha by
extracting measures of visual perception for each individual. Participants performed a visual
contrast change detection task where they were presented with an annular pattern (1° of inner
radius; 6° of outer radius), which consisted of two overlaid gratings (each one tilted 45° to the
left and to the right, respectively). At the beginning of the trial, these two gratings had the same
visual image contrast (560%). Within the following 1600 ms, one of the two gratings gradually
changed its contrast to 0% while the other reached a contrast of 100% (total of three blocks
with 24 trials each, equally distributed across left and right sides; the experimental paradigm is
described in detail in*®°). Participants were asked to press one of two response buttons based on
the grating that had the strongest contrast. After 800 ms the gratings’ contrast level came back
to baseline (50%) and participants received feedback on their trial performance (ITI could be
2.8, 4.4 or 6 sec). Individual average accuracy scores were calculated and only participants
with above-chance performance were considered (n = 917, average accuracy: 83.66, SD:
0.12). A linear regression model was fitted to these accuracy measures including alpha features
(power, frequency, bandwidth) and age as factors. Individual alpha frequency was the only
electrophysiological property related to contrast detection accuracy (EC: 8=0.011, SE=0.003,
t=3.34, p<0.001, R?=27.7%; EO: £=0.008, SE=0.003, t=3.18, p=0.002, R?=27.5%). Drift
diffusion models®' were also run in order to combine reaction times and accuracy scores within
the same dependent variable. Individual drift rates were obtained, which correspond to an
estimate of the rate with which the visual system extracts information to inform a decision. The
drift rate was associated with alpha frequency (EC: £=0.072, SE=0.030, t=2.42, p=0.016,
R?=13.8%; EO: 8=0.064 , SE=0.023, t=2.70, p=0.007, R?=13.7%), suggesting that participants
with a fast alpha rhythm also extracted visual information more efficiently than participants with
a slow alpha rhythm (i.e., they had a high drift rate at the visual detection task). Moreover, a
mediation analysis showed that developmental changes of accuracy scores were mediated by
alpha frequency changes (EC: average causal mediation effect: $=0.002, C/ [0.001; 0.002],
p<0.001; percentage of age effect that is due to the alpha mediator: 8.08%, p<0.001; EO:
average causal mediation effect: §=0.001, C/ [0.001; 0.002], p<0.001; percentage of age effect
that is due to the alpha mediator: 7.39%, p<0.001; Figure 6). Similar mediation effects of alpha
were observed with developmental changes of drift rate scores, although only in the EC
condition (EC: average causal mediation effect: $=0.007, C/ [0.0003; 0.01], p=0.046;
percentage of age effect that is due to the alpha mediator: 9.24%, p=0.046; EO: average causal
mediation effect: $=0.006, C/ [-0.002; 0.01], p=0.13).
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We finally tested whether the optic radiations FA further contributed to explain the variability in
visual perception performances by examining a sample of participants that have EEG, dMRI
and behavioral measures available (n = 399). A linear regression model on this smaller dataset
confirmed the effect of EC alpha frequency on visual accuracy (EC: 8=0.012, SE=0.006, t=2.04,
p=0.042, R?=26.5%; EO: 8=0.005, SE=0.004, t=1.46, p=0.15, R?>=26.4%), while no effect could
be observed for the optic radiations FA (EC: £8=0.13, SE=0.19, =0.71, p=0.48; EO: £$=0.13,
SE=0.19, t=0.70 , p=0.49). No significant effects were observed in the drift rate analysis for this

sample.
A Eyes Open Eyes Closed
Alpha Frequency Alpha Frequency
+0.109*** +0.107*** +0.109*** +0.117***

Visual detection Age Visual detection

accuracy accuracy
+0.158***(+0.146***) +0.158***(+0.145***)

Age

B

Mediation Effect o Mediation Effect

Direct Effect Direct Effect

Total Effect . Total Effect

-0.003 0.0 0.005 0010 0015  0.020 -0.003 0.0 0.005 0010 0015  0.020

Coefficient values Coefficient values

Fig. 6 Mediation effect of alpha on visual detection development. A: Schematic representation
of the mediation analysis results. Standardized coefficients are reported. B: Beta coefficients of

the main effects of the mediation analysis are displayed in red. Yellow bars represent +/- 1SE.

Discussion

This work capitalized on a large dMRI-EEG developmental sample to test the relationship
between visual white matter pathways and spontaneous alpha rhythm. Our results showed that
alpha frequency at rest is specifically related to the structural properties of optic radiations:
children and adolescents with a fast alpha rhythm also show high FA values of the optic
radiations. This structural-functional relationship was observed after accounting for age effects,
suggesting that alpha oscillations have a consistent structural correlate between 5 and 21 years

old. Among the optic radiations structural properties that can be at the basis of alpha frequency
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variations there are axonal density, axonal size, fiber spatial organization, myelination, glial cells
structural properties®?*3(which can all affect FA values®***), while fiber length does not seem to
play a crucial role. Interestingly, FA but not MD was related to electrophysiological properties
(for a similar asymmetry see?*“°). This discrepancy might be related to spatial differences in the
statistical power of the two methods®, as well as to a difference in sensitivity of these two
estimates. For instance, fiber orientation coherence is likely to affect FA more than MD*® and it
also has an impact on neural synchronization, which ultimately modulates the EEG activity
measured on the scalp®®. Overall, the observed link between visual white matter
microstructural properties and occipital electrophysiological responses supports the idea that
the optic radiations FA is related to the coherence with which white matter fibers can deliver
neural signals, which are finally reflected by oscillatory brain activity??2445° Future work can
identify which microstructural properties mainly contribute to the neural oscillatory modulations

observed here.

The portions of white matter fibers that were mainly related to alpha frequency were located in
the centro-posterior segment of the optic radiations. There are at least two possible
explanations for the location of this effect. First, this segment of the tract represents the closest
location to the alpha recording site and cortical generators. Second, the posterior part of the
optic radiation has a higher signal-to-noise ratio (and smaller SE) as compared to the anterior
segment, which is probably due to the large size of the posterior endpoint ROI (V1) and a more

linear trajectory of the posterior as compared to the anterior segment of the tract®.

Our findings also showed that development of the optic radiations accounts for changes of
alpha frequency between childhood and late adolescence. Between five and 21 years of age
the visual brain network undergoes a large range of structural and functional transformations.
Visual white matter pathways increase their structural coherence, axonal diameter, axonal
density and myelination®®%2, This happens with a concomitant increase of FA values and
improved signal transmission®. At the same time, the rhythm of spontaneous occipital alpha
speeds up®, which probably reflects a higher precision in neural synchrony over long distances
and greater coherence between thalamo-cortical alpha generators®®. Our findings showed that
these two maturational phenomena are interrelated, with structural changes of the optic
radiations mediating the development of alpha oscillations. This result complements previous
reports showing a link between the development of the optic radiations and other types of
electrophysiological responses, such as early visual evoked responses peaking around 100
ms®. Overall, these findings suggest that the maturation of the optic radiations (and possibly a

greater fiber spatial orientation coherence) accounts for changes in the precision and frequency
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of neural synchronization within the alpha band (i.e., rhythmic neural activity every 100 ms).
Future longitudinal studies will help clarify the temporal sequence of these structural and

functional changes during development.

Finally, our visual detection task analyses highlighted that a proper development of
spontaneous alpha activity has crucial behavioral implications. Data from the contrast detection
task confirmed that the individual variability observed in alpha frequency predicts changes in
the quality of visual perception. Participants with a fast alpha rhythm showed a more accurate
performance at an image contrast detection task and a more efficient visual information
extraction. These results are fully in line with previous reports showing that alpha speed
determines the temporal resolution at which visual information can be consciously sampled?,
as well as studies showing a link between prestimulus alpha and conscious visual
detection®2367.68  A|| these findings are compatible with the hypothesis that alpha oscillations
represent a general electrophysiological mechanism of rhythmic inhibition pulses (every 100
ms) that is able to cyclically modulate the level of excitability of a given brain area?*®® (e.g.
visual cortex). According to this perspective, spontaneous occipital alpha reflects a general
gating mechanism that regulates neural information flow between the thalamus and the visual
cortex and ultimately impacts our conscious visual perception. Our findings showed that the
maturation of the optic radiation mediates the development of this inhibition mechanism
reflected by alpha, which ultimately contributes to visual detection accuracy improvement during

childhood and adolescence.

In summary, alpha is a predominant rhythm of our brain and its characteristics can widely vary
over development. Individual variability in alpha frequency is specifically related to the structural
properties of visual white matter pathways and can ultimately predict the rate of our visual
information extraction. This work shows that the maturation of optic radiations is linked to an
increase of alpha frequency, which contributes to visual detection enhancement over childhood

and adolescence.

Methods

Participants

Participants data came from the Healthy Brain Network pediatric mental health study (HBN"),
which include dMRI (initial raw data sample size = 2,747) and EEG (initial raw data sample size
= 2,561) measures of English speaking children and adolescents from 5 to 21 years of age.
Exclusion criteria included: moderate to severe cognitive impairment (IQ below 65),

encephalopathy, neurodegenerative disorders, hearing and visual impairment All participants
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had normal or corrected to normal vision. Informed consent was obtained for each participant
above 18 years of age. Written assent was obtained for younger participants, and their legal

guardians were asked to sign a written consent.

dMRI acquisition and preprocessing

Diffusion MRI (dMRI) data were acquired using a 1.5T Siemens mobile scanner and three fixed
3T Siemens scanners in the New York area (four locations: Staten Island, Rutgers University
Brain Imaging Center, the CitiGroup Cornell Brain Imaging Center, and the City University of
New York Advanced Science Research Center). Voxel resolution was 1.8x1.8x1.8 mm with 64
non-collinear directions measured for each of b = 1000 s/mm2 and b = 2000 s/mm2.

QSIPrep*®  preprocessed dMRI data were accessed from AWS S3 at
s3:/[fcp-indi/data/Projects/HBN/BIDS _curated/derivatives/qsiprep/ together with individual
quality control scores (n=1885, for the preprocessing pipeline description and quality control
scores definition see®). The left and the right optic radiations were identified using pyAFQ3
based on two endpoint regions of interest (ROls, for a similar pipeline see®): the primary visual
cortex and the central part of the thalamus including the lateral geniculate nucleus (defined
based on the AICHA atlas,”!; minimum distance 3 mm). Three exclusion ROIs were also used
to further clean the tract from crossing fibers (temporal pole, and occipital pole from the AICHA
atlas, and the posterior portion of the thalamus based on the brainnetome atlas; minimum
distance 3 mm?®72). All ROIs were defined in a MNI template and transformed to each
participant’s native space. A final cleaning step was carried out to remove outlier fibers based
on streamline average length and mean Gaussian distance from the bundle core (distance
threshold: 3 mm; length threshold: 4 SD%*). Diffusion metrics were projected onto the optic
radiations and fractional anisotropy (FA) was mapped onto each tract, weighting the values
based on the streamline’s distance from the core of the tract®®. Overall, we could detect 1,798
left optic radiations and 1,799 right optic radiations. Further analysis was conducted only on
participants where both left and right optic radiation could be found (n=1,774). FA values of the
left and right optic radiations were averaged for each participant. Moreover, the mean length of
the optic radiations was calculated by averaging the median values of the streamlines length for
the left and right optic radiations (step size=0.5 mm). A similar pyAFQ pipeline was used to
segment default white matter bundles (total: 24), among which a subset of cortico-thalamic
(anterior thalamic radiation and corticospinal tract) and posterior bundles (inferior
fronto-occipital fascicle, occipital and posterior parietal part of the corpus callosum) were used
as control tracts. Only participants with quality control scores higher than 0.3 (based on*®) were

included in the final statistical analyses (final dMRI sample size=1,394).
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EEG acquisition and preprocessing

EEG data were recorded with a 128-channel EEG geodesic hydrocel (Magstim EGI) in a
sound-shielded room of one of the four New York recording locations (sampling rate=500 Hz;
bandpass filter=0.1-100 Hz). The online reference was at Cz. The impedance was kept below
40 kOhm and tested every 30 min of EEG recording. EEG raw data were accessed from
s3://fcp-indi/data/Projects/HBN/EEG.

EEG analysis was performed on a cluster of 13 occipital electrodes (E69, E70, E71, E72, E73,
E74, E75, E76, E81, E82, E83, E88, E89) using MNE™. The EEG signal was re-referenced
offline to the mastoids’ average activity. High and low pass filters were applied (1 and 40 Hz,
respectively). Epochs of 10 sec were segmented for each condition (tot 10 epochs, 5 for EC
and 5 for EO condition). Bad EEG epochs were automatically rejected or corrected by using the
autoreject algorithm™, which has been already employed for the preprocessing of big
electrophysiological dataset (Human Connectome Project’*”®). Having an additional
preprocessing step where ocular artifacts were further corrected through ICA did not affect the
structural-functional results reported here (S| Appendix, Figure S3). Only participants with at
least two clean epochs for EC and EO (minimum duration of clean EEG signal = 20 sec) were
further analyzed (n=2,364). A ftrial-by-trial time frequency analysis was performed using a
multitaper estimation of the power spectra’®, then averaged across epochs and electrodes of
the cluster. The power spectrum was estimated from 1 to 40 Hz, with a window half-bandwidth
of 4 Hz. We used the Fitting Oscillations and One-Over-F (FOOOF) toolbox* to estimate the
periodic and aperiodic signals of each individual power spectrum (peak width=0.5-20; maximum
oscillatory peaks=1; minimum peak height=0.2). Most of the participants had a maximum power
peak around 10 Hz in both EC and EO conditions (SI Appendix, Figure S5). Only those
participants that showed a maximum oscillatory peak in both EC and EO within 5 and 15 Hz
were included in the next steps of the analysis (n=1,820). The final EEG sample included only
subjects where FOOOF models accurately fit the individual power spectrum (r*>>0.75; final EEG
sample size=1,388). Alpha power, frequency and bandwidth were estimated for each participant
and condition. The relationship between alpha features and white matter was tested after
intersecting the dMRI and EEG samples (final EEG-dMRI sample size n=585).
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Sl Appendix

Figure S1. GAM results for tract profile analyses.

We adopted a multi-analysis approach where both LME and GAM models were applied for tract
profile analyses (following these guidelines ’). GAM models were run on the dMRI-EEG
sample (n=585) using the tractr R package (https://github.com/richford/tractr), which
implements the pipeline reported in 8. Our GAM formula was: FA ~ age + alpha frequency +
s(nodelD, by = alpha frequency, k = 64) + s(subjectID, bs = "re"). Similarly to what seen in the

results from the node-by-node LME models, GAM analyses showed that alpha frequency had

an impact on the optic radiations FA and this effect was mainly localized in the centro-posterior

part of the tract (EO: estimate= 0.021, SE= 0.002, t= 12.03; EC: estimate= 0.024, SE= 0.002, t=
13.73).
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Figure S2. Developmental effects on EC and EO alpha
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Individual alpha properties (frequency, power and bandwidth) are shown for each condition (EC
and EO). The first row shows that alpha frequency and power in EC highly correlate with alpha
frequency and power in EO, suggesting that a similar electrophysiological phenomenon is
observed across conditions. The second row shows the effect of age on individual FOOOF?*2

models of alpha (calculated as Gaussian = Power * ' U7eteney ~ Centrat Frequency)z/ (2*Bandwideh))

). The third row shows the relationships between alpha features and age for both EC and EO
conditions.
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Figure S3. After adding ICA to the EEG preprocessing pipeline the alpha-white matter
relationship is still observed.
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A different EEG preprocessing pipeline was also performed to make sure that ocular
movements did not affect the present findings. An Independent Component Analysis (ICA) was
applied to the filtered EEG signal obtained as described in the section “EEG acquisition and
preprocessing”’. Ocular artifact detection was based on Pearson correlations between the ICA
components and the filtered electro-oculogram (EOG) channels (n=6). Thresholding was based
on adaptive z-scoring where z-scores were recomputed until there was no component
exceeding the threshold (z-score threshold=3). Independent components that were highly
correlated to electro-oculogram channels were excluded. The cleaned EEG signal was epoched
and further analyzed as described in the main text. LME models on these EEG data showed
again a relationship between alpha and visual white matter pathways. Individual frequency was
related to the optic radiations FA. This effect was more evident in the EC condition, which has
the highest signal to noise ratio (frequency, EC: $=0.003, SE=0.001, =3.33, p=0.001; EO:
3=0.001, SE=0.001, t=1.87, p=0.06; power, EC: $=0.009, SE=0.003, t=2.67, p=0.008; EO:
3=0.006, SE=0.004, t=1.39, p=0.17; bandwidth: EC: $8=0.001, SE=0.001, t=0.46, p=0.65; EO:
£$=0.001, SE=0.001, t=0.32, p=0.75). A separate LME models on alpha frequency showed that
a higher alpha rhythm corresponded to an increase of optic radiations FA after accounting for
age and site location (EC: 8= 5.32, SE= 1.80, t= 2.96, p=0.003, EO: 8= 4.68, SE= 2.26, t=
2.07, p=0.04; Fig. S3).
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Figure S4. Most participants had a maximum peak within alpha frequency range for both EO
and EC conditions.
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