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 2

Abstract 29 

Fetal functional magnetic resonance imaging (fMRI) offers critical insight into the developing 30 

brain and could aid in predicting developmental outcomes. As the fetal brain is surrounded by 31 

heterogeneous tissue, it is not possible to use adult- or child-based segmentation toolboxes. 32 

Manually-segmented masks can be used to extract the fetal brain; however, this comes at 33 

significant time costs. Here, we present a new BIDS App for masking fetal fMRI, funcmasker-34 

flex, that overcomes these issues with a robust 3D convolutional neural network (U-net) 35 

architecture implemented in an extensible and transparent Snakemake workflow. Open-access 36 

fetal fMRI data with manual brain masks from 159 fetuses (1103 total volumes) were used for 37 

training and testing the U-net model. We also tested generalizability of the model using 82 38 

locally acquired functional scans from 19 fetuses, which included over 2300 manually 39 

segmented volumes. Dice metrics were used to compare performance of funcmasker-flex to the 40 

ground truth manually segmented volumes, and segmentations were consistently robust (all 41 

Dice metrics ≥0.74). The tool is freely available and can be applied to any BIDS dataset 42 

containing fetal bold sequences. Funcmasker-flex reduces the need for manual segmentation, 43 

even when applied to novel fetal functional datasets, resulting in significant time-cost savings 44 

for performing fetal fMRI analysis. 45 

 46 

Keywords: fetal fMRI, segmentation, brain extraction, U-net 47 
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1. Introduction 49 

 Over the last 2 decades, research in fetal MRI protocols has increasingly been used to 50 

non-invasively study the functional, metabolic and structural origins of the fetal brain in vivo 51 

(Huisman et al., 2002; Prayer et al., 2004; Rousseau et al., 2006; Thomason et al., 2013, 2015; 52 

Wheelock et al., 2019). Improved methods to study the fetal brain in vivo makes it possible to 53 

understand not only how typical, healthy brain development occurs and predicts later cognitive 54 

and motor outcomes, but also allows us to study atypical development (Arroyo et al., 2019; 55 

Rajagopalan et al., 2021). As fetal functional MRI is becoming more common, there has been an 56 

increase in demand for automatic preprocessing and analysis software; while there is an 57 

abundance of neuroimaging analysis software for infant, child, and adults, there is currently a 58 

dearth of fetus-specific tools, making the process of preprocessing fetal neuroimaging data, 59 

especially functional MRI, quite difficult and time-consuming. 60 

 One of the most complicated steps in the fetal preprocessing pipeline is brain extraction 61 

from the echo-planar imaging (EPI) sequences, the process of isolating the brain within the 62 

image, creating a “mask” and stripping away the skull and surrounding tissue laying outside of 63 

the identified region. In pediatric and adult samples this step is straightforward; numerous tools 64 

have been developed, with algorithms relying heavily on identifying the dark cerebrospinal fluid 65 

that separates the brain from the skull (Kalavathi & Prasath, 2016). As the fetal brain does not 66 

have clear boundaries separating it from the surrounding tissue, such algorithms are not 67 

feasible for brain extraction in this population, and fail to accurately segment the brain from 68 

tissues such as the placenta and the mother’s organs. The lack of brain extraction tools creates 69 

a major roadblock for fetal fMRI analysis. 70 
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 In the past, brain extraction of fetal fMRI data was performed by manually (Thomason 71 

et al., 2014, 2015) or semi-automatically (Thomason et al., 2013; van den Heuvel et al., 2018) 72 

segmenting the brain from the surrounding tissue. As fMRI data generally consists of many 73 

acquisitions of multi-slice, 3D volumes, manual and semi-automatic segmentation can take over 74 

30 hours per scan, a time-cost that is incredibly prohibitive for fetal researchers. Recently, 75 

Rutherford et al. (Rutherford et al., 2021) demonstrated the feasibility of an automated 76 

approach, using manual whole-brain segmentations to train a U-net convolutional neural 77 

network (CNN). Although this approach provides significant time-cost savings, it uses 2D 78 

convolutions on 2D slices, potentially hindering performance and generalization to new 79 

datasets. For example, Dice similarity coefficients of the overlap between manual 80 

segmentations and automated brain masks correlated significantly with gestational age, 81 

performing better in older fetuses. Thus, there remains a need for robust masking tools that 82 

perform well on fMRI data obtained in a range of participants. 83 

 Here, we present funcmasker-flex, a new BIDS App for masking fetal fMRI that 84 

overcomes the complexities of fetal fMRI brain masking with a robust 3D CNN architecture and 85 

is implemented in an extensible and transparent Snakemake workflow. Using locally acquired 86 

fetal fMRI data while also leveraging the large open dataset provided by Rutherford and 87 

colleagues, we provide an open-source fetal brain segmentation tool that performs well on 88 

data from a range of gestational ages and acquisition sites. 89 
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2. Results 90 

2.1 Model performance 91 

 Performance of the baseline method (2D U-net) (1) and the proposed method (3D U-92 

net) are shown in Fig. 1, comparing the distribution of Dice metrics on the training and 93 

generalization datasets. Funcmasker-flex segmentations were consistently robust (all Dice 94 

metrics ≥0.74), while the baseline method produced segmentations with substantial errors 95 

(Dice < 0.6) in 4% of the source dataset volumes, and in 11% (238 volumes) of the 96 

generalization dataset volumes. In un-labelled data, visual quality control similarly 97 

demonstrated no observable errors in the funcmasker-flex outputs.  98 

 99 

Fig. 1. Comparison between the baseline 2D U-net model and the proposed 3D U-net model. 100 

Left, Dice similarity coefficients between manual masks and model performance when tested 101 

on the testing data of the source dataset, as well as distribution of Dice scores and descriptive 102 

statistics. Right, Dice similarity coefficients between manual masks and model performance 103 
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when tested on the generalization dataset, as well as distribution of Dice scores and descriptive 104 

statistics. 105 

 106 

2.2 Comparison to 2D CNN model 107 

 When comparing performance on the test dataset, funcmasker-flex performed 108 

significantly better than the baseline 2D U-net model, V = 28,882, p < .001. When comparing 109 

performance on the generalization dataset, funcmasker-flex again performed significantly 110 

better than the baseline 2D U-net model, V = 705,528, p < .001.  111 

2.3 Performance based on scanner strength (1.5T versus 3T) 112 

  Dice similarity coefficients by scanner strength for each model are shown in Fig. 2. 113 

Linear mixed effects analysis showed a significant main effect of model (F(4,890.2) = 749.43, p < 114 

.001) and a significant model X scanner strength interaction (F(4,890.2) = 300.96, p < .001). 115 

Estimated marginal means revealed that at each scanner strength, the proposed 3D U-net 116 

model performed significantly better than the baseline model (all ps < .001), whereas there was 117 

no statistical difference between the 1.5T and 3T scanners within or between models (all ps > 118 

.05). 119 

 120 
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 121 

Fig. 2. Dice coefficients by scanner strength for baseline and proposed models.  122 

 123 

2.4 Correlation between Dice similarity coefficients and gestational age 124 

 Linear mixed effects analysis showed a significant main effect of model (F(4,890.1) = 125 

57.84, p < .001) and a significant model X scanner strength interaction (F(4,890.1) = 33.31, p < 126 

.001). As shown in Fig. 3, there was no relationship between gestational age and dice 127 

coefficients in the proposed 3D U-net model, whereas the baseline 2D U-net model showed a 128 

positive relationship, with Dice similarity coefficients being higher at later gestational ages. 129 

7
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 130 

Fig. 3. Dice coefficients by gestational age for baseline and proposed models.  131 

 132 

3. Discussion 133 

 In this work, we present funcmasker-flex, an automated brain masking tool for fetal 134 

fMRI. Because standard brain extraction tools (e.g., BET by FSL) are not capable of delineating 135 

the fetal brain within the surrounding tissue, conducting analyses on fetal fMRI, in general, 136 

resulted in spending hundreds of hours manually segmenting the brain in each volume, a 137 

significant burden for researchers. To address this issue, we used a large set of manually-138 

segmented fMRI volumes, we trained a 3D CNN to create a robust model to detect the brain 139 

within the surrounding tissue. Importantly, this model performed with high accuracy on an 140 

untrained dataset collected on a different scanner, demonstrating its generalizability.  141 

 When comparing funcmasker-flex’s performance on a new, untrained dataset to the 142 

gold standard manual tracing of the same data, we found high levels of similarity as measured 143 

8
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by Dice similarity coefficients. That is, there was a high overlap in the spatial distribution of 144 

masks generated automatically by funcmasker-flex and the manual tracing. While manually 145 

segmenting the fetal brain in a single EPI volume took trained tracers approximately 17 146 

minutes, automated segmentation took 1 minute and did not require a researcher to be 147 

present except to run the command, providing significant time-cost savings. A previous 2D CNN 148 

model (Rutherford et al., 2021) performed significantly less accurately on the untrained data, 149 

with Dice similarity coefficients ranging from .37 to .97. While this model still provides huge 150 

savings in terms of time spent manually segmenting the brain, it requires a large amount of 151 

manual correction to fill in missing segments of the mask. 152 

 We took several steps to make this tool easy to access, install, and use. First, the 153 

documentation and corresponding code is hosted on GitHub 154 

(https://github.com/khanlab/funcmasker-flex) and are open access. The pipeline was written in 155 

an extensible and transparent Snakemake workflow. It is also easy to install on any Linux 156 

machine with the command “pip install funcmasker-flex”, and will download any required 157 

dependencies, including containers (when the --use-singularity option is applied), when it is 158 

executed. It can be executed with a single command, and will work on any BIDS-formatted fetal 159 

fMRI dataset. If the user prefers not to download the entire package, it can also be run as a 160 

container, and example usage is provided in the documentation. The output also follows the 161 

BIDS naming convention, which means that it can easily be fed into other BIDS-dependent tools 162 

such as fMRIPrep (Esteban et al., 2019). 163 

 This study builds on previous work showing the feasibility of using CNNs in segmenting 164 

biomedical images (Isensee et al., 2021; Rutherford et al., 2021). Specifically, segmentation was 165 
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performed using nnU-Net, a deep learning based method that automatically configures itself 166 

(Isensee et al., 2021). This framework showed a high degree of accuracy when segmenting 167 

several types of biomedical images, including the heart, liver, and kidneys. Building upon the 168 

nnU-Net framework allowed us to create a tool specific to the fetal brain, making use of open-169 

source scientific tools.  170 

 We also build upon previous work showing the feasibility of CNNs in segmenting the 171 

fetal brain (Rutherford et al., 2021). This previous tool used a 2D CNN to mask 2D slices of fMRI 172 

data; while it performed well on some volumes in the untrained data, the overall Dice similarity 173 

coefficients of the overlap between manual and automated segmentations was low. Rutherford 174 

and colleagues showed a significant positive correlation with model performance and 175 

gestational age, suggesting that its generalizability may be limited to older fetuses. By using a 176 

3D CNN, funcmasker-flex takes into account spatial boundaries between slices of a single EPI 177 

volume, improving performance as well as generalizability. Indeed, we did not see a significant 178 

correlation between model performance and age. 179 

 Although performance measures were generally high, there are several limitations to 180 

the tool that must be discussed. First, despite the robustness of funcmasker-flex in masking 181 

fetal brain volumes, visual inspection for quality control is still required. This is true however for 182 

all brain extraction methods; the output of tools such as FSL’s BET (Smith, 2002) and AFNI’s 183 

3dSkullStrip must be inspected for accuracy. It is also unclear how far the generalizability of 184 

funcmasker-flex can extend, for example to variations in strength of the scanner, although it 185 

performed equally well on data collected at 1.5T and 3T. 186 
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 In summary, funcmasker-flex is a new tool that provides fast and robust brain masking 187 

of fetal fMRI data that requires no expertise, generalizes well, and will work on any fetal fMRI 188 

data in BIDS format. It is freely available and easy to use. It eliminates the burden of manual 189 

segmentation, and by reducing the time it takes to segment a fetal brain volume from roughly 190 

37 hours to minutes, it removes a severe roadblock to performing fetal fMRI.  191 

4. Materials and Methods 192 

 This research includes data from a cross-sectional study conducted at Western 193 

University as well as the openly-available dataset Rutherford et al. (Rutherford et al., 2021) 194 

(obtained from OpenNeuro, dataset identifier: ds003090). The Rutherford dataset (WS/YU) 195 

contains two cohorts, one from Wayne State University (WSU) and one from Yale University 196 

(YU). The study at Western University was approved by the Western University Research Ethics 197 

Board and all caregivers gave written informed consent. The WSU and YU studies were 198 

approved by the corresponding institutional ethics boards, and all caregivers gave written 199 

informed consent. An overview of the study cohorts is given in Table 1. 200 

 201 

Table 1. Characteristics of each fetal cohort 

Cohort Unique 

Individuals 

Individuals 

with 

longitudinal 

data 

Ages scanned 

(weeks 

gestational 

age) 

Number of 

individual 

BOLD 4D 

scans 

Number of 3D volumes 

per scan 

M �SD (min, max) 

Analyses 

Western 

cohort 

8 0 33 – 38  19  110 �0 (110, 110) Primary 

WS/YU cohort 159 22 24 – 39  181 6.06 �2.17 (2, 13) Secondary 

 202 
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4.1 Participants 203 

 4.1.1 Western cohort 204 

 This cohort consisted of cross-sectional data from the third trimester. Between October 205 

2018 and March 2020, 11 pregnant women were recruited for scanning at 33 – 38 weeks 206 

gestational age. Usable data were available for eight of the 11 participants. Inclusion criteria 207 

were singleton pregnancy and maternal age ≥18 years. Exclusion criteria were contraindication 208 

to safely undergoing non-contrast MRI, weight/body habitus that would prevent a successful 209 

MRI, suspected congenital anomalies, and concomitant substance use. 210 

 4.1.2 WS/YU cohort 211 

 This cohort consisted of longitudinal data from the second and third trimester. Data 212 

from 159 fetuses were available, and 22 had second time points. Fetuses ranged in gestational 213 

age from 24 – 39 weeks. Inclusion criteria were singleton pregnancy, maternal age ≥18 years, 214 

no complications, and no contraindications for MRI. 215 
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4.2 Magnetic Resonance Imaging 216 

 4.2.1 Western cohort 217 

 Fetal imaging data were acquired using either a 3T GE Discovery scanner (Milwaukee, 218 

Wisconsin, USA) and 32-channel torso coil at the Translational Imaging Research Facility 219 

(Robarts Research Institute, Western University, London, Canada; n = 5) or a 1.5T GE scanner 220 

with a GEM posterior and anterior array coil (London Health Sciences Center, London, Canada; 221 

n = 6). A minimum of one and a maximum of three blood oxygen level-dependent (BOLD) fMRI 222 

(TR: 2 s, TE: 45-60 ms [3T] / 60 ms [1.5T], flip angle 70°, voxel size 3.75x3.75x4 mm
3
, 22 slices, 223 

110 volumes) were acquired in each fetus. 224 

 4.2.2 WS/YU cohort 225 

 WSU fetal fMRI data were acquired on a 3T Siemens Verio scanner (Erlangen, Germany) 226 

using an abdominal 4-Channel Flex Coil. Functional images were acquired using an echo-planar 227 

sequence (TR = 2000 ms, TE = 30 ms, slice thickness = 4 mm, 360 volumes). Multi-echo resting-228 

state sequences were also collected in a portion of these subjects (TR/ TEs: 2000/18,34,50). The 229 

Yale University cohort contains ten fetuses scanned twice longitudinally (gestational ages 30-36 230 

weeks, M=32.7, SD=1.9). The YU data were acquired on a 3T Siemens Skyra scanner using a 32-231 

channel abdominal coil (TR: 2 s, TE: 30 ms, slice thickness = 3 mm, 32 slices, 150 volumes). A 232 

subset of volumes from each acquisition were made available (Table 1). 233 

4.3 Manual brain segmentation 234 

 For the Western cohort, manual brain segmentation of 2,090 volumes was performed 235 

on raw EPI scans using FSLeyes (McCarthy, 2021; Smith et al., 2004) by four tracers trained to 236 

identify the fetal brain, with each tracer segmenting an independent set of brains. 237 
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Segmentation took approximately 17 minutes per volume, and each scan had 110 volumes, 238 

leading to a total of 31.2 hours spent performing manual tracing per fetal fMRI scan. For the 239 

WS/YU cohort, manual brain segmentation was performed using BrainSuite software (Shattuck 240 

& Leahy, 2002). 241 

4.4 U-Net architecture 242 

 Training and inference was carried out using nnU-net (Isensee et al., 2021), a framework 243 

that automatically configures a U-net network architecture for a new task based on basic 244 

dataset properties, and has been shown to outperform specialized pipelines in a range of 245 

segmentation tasks. 246 

4.5 Model training 247 

 Workflows for training, testing, and evaluating fetal segmentation were built using 248 

Snakebids, a tool that allows Snakemake workflows to easily parse and create BIDS datasets 249 

and to function as BIDS Apps (Khan & Haast, 2021). Fetal fMRI data from the WS/YU cohort (1) 250 

was used for training and testing the nnU-net model, using the functional scans acquired using 251 

an echo-planar imaging (EPI) sequence from 112 fetuses for training, and 48 fetuses for testing. 252 

We used the same training and test splits as Rutherford et al, as these were made available in 253 

the code.  The nnU-net 3D full-res model was trained using 5-fold cross-validation for 500 254 

epochs using the automatically-configured parameters, and required approximately 24 hours 255 

for each fold when running on NVIDIA T4 GPUs. Inference does not require GPU-acceleration, 256 

and was implemented using models from all 5 folds, along with test-time augmentation, to 257 

provide a single prediction for each volume. Post-processing by nnU-net (including retention of 258 

the largest connected component) was disabled. The command-line interface, along with 259 
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visualization of the participant-level (inference) workflow is shown in Fig. 4. The workflows can 260 

be applied to any BIDS dataset containing fetal EPI sequences and performs the appropriate 261 

resampling and padding for running inference, returning 4D binary masks for each EPI run in 262 

BIDS-Derivatives naming standards, and in the same space as the original bold datasets. 263 

4.6 Evaluation 264 

 We also tested generalizability of the model using 19 locally acquired functional scans 265 

from 8 fetuses (gestational age range=33-38 weeks, M=36.46, SD=0.98), which included 2,090 266 

manually segmented 3D volume 267 

 268 

Fig. 4. Left, visualization of the participant-level (inference) workflow. Top right, the command-269 

line interface. Bottom right, example of a single volume mask created by manual tracing, the 270 

proposed 3D U-net model, and the baseline 2D U-net model. 271 

 272 

4.7 Model comparison 273 
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 Dice metrics were used to compare performance of the baseline 2D U-net approach (1) 274 

and the proposed 3D nnU-net approach as implemented in funcmasker-flex to the ground truth 275 

manually segmented volumes. A paired Wilcoxon signed-rank test was performed to determine 276 

whether the distributions of Dice similarity coefficients for each model statistically differed. 277 

Performance based on scanner strength (1.5T versus 3T) 278 

 To determine whether scanner strength affected the accuracy of both the baseline 2D 279 

U-net and proposed 3D nnU-net approach, we examined Dice similarity coefficients across the 280 

two models. Linear mixed effects models were constructed with dice as the dependent 281 

variable, model (baseline/proposed) and scanner strength (1.5T/3T) as categorical variables and 282 

a model X scanner strength interaction. Participant was included as a random effect.   283 

Correlation between Dice similarity coefficients and gestational age 284 

 To determine whether performance was affected by gestational age, we examined Dice 285 

similarity coefficients across ages in each model. Linear mixed effects models were constructed 286 

with dice as the dependent variable, model as a categorical factor, gestational age as a 287 

continuous factor, and a model X gestational age interaction. Participant was included as a 288 

random effect. 289 

 290 

  291 
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