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Abstract

Fetal functional magnetic resonance imaging (fMRI) offers critical insight into the developing
brain and could aid in predicting developmental outcomes. As the fetal brain is surrounded by
heterogeneous tissue, it is not possible to use adult- or child-based segmentation toolboxes.
Manually-segmented masks can be used to extract the fetal brain; however, this comes at
significant time costs. Here, we present a new BIDS App for masking fetal fMRI, funcmasker-
flex, that overcomes these issues with a robust 3D convolutional neural network (U-net)
architecture implemented in an extensible and transparent Snakemake workflow. Open-access
fetal fMRI data with manual brain masks from 159 fetuses (1103 total volumes) were used for
training and testing the U-net model. We also tested generalizability of the model using 82
locally acquired functional scans from 19 fetuses, which included over 2300 manually
segmented volumes. Dice metrics were used to compare performance of funcmasker-flex to the
ground truth manually segmented volumes, and segmentations were consistently robust (all
Dice metrics 20.74). The tool is freely available and can be applied to any BIDS dataset
containing fetal bold sequences. Funcmasker-flex reduces the need for manual segmentation,
even when applied to novel fetal functional datasets, resulting in significant time-cost savings

for performing fetal fMRI analysis.

Keywords: fetal fMRI, segmentation, brain extraction, U-net
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1. Introduction

Over the last 2 decades, research in fetal MRI protocols has increasingly been used to
non-invasively study the functional, metabolic and structural origins of the fetal brain in vivo
(Huisman et al., 2002; Prayer et al., 2004; Rousseau et al., 2006; Thomason et al., 2013, 2015;
Wheelock et al., 2019). Improved methods to study the fetal brain in vivo makes it possible to
understand not only how typical, healthy brain development occurs and predicts later cognitive
and motor outcomes, but also allows us to study atypical development (Arroyo et al., 2019;
Rajagopalan et al., 2021). As fetal functional MRI is becoming more common, there has been an
increase in demand for automatic preprocessing and analysis software; while there is an
abundance of neuroimaging analysis software for infant, child, and adults, there is currently a
dearth of fetus-specific tools, making the process of preprocessing fetal neuroimaging data,
especially functional MRI, quite difficult and time-consuming.

One of the most complicated steps in the fetal preprocessing pipeline is brain extraction
from the echo-planar imaging (EPI) sequences, the process of isolating the brain within the
image, creating a “mask” and stripping away the skull and surrounding tissue laying outside of
the identified region. In pediatric and adult samples this step is straightforward; numerous tools
have been developed, with algorithms relying heavily on identifying the dark cerebrospinal fluid
that separates the brain from the skull (Kalavathi & Prasath, 2016). As the fetal brain does not
have clear boundaries separating it from the surrounding tissue, such algorithms are not
feasible for brain extraction in this population, and fail to accurately segment the brain from
tissues such as the placenta and the mother’s organs. The lack of brain extraction tools creates

a major roadblock for fetal fMRI analysis.
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In the past, brain extraction of fetal fMRI data was performed by manually (Thomason
et al., 2014, 2015) or semi-automatically (Thomason et al., 2013; van den Heuvel et al., 2018)
segmenting the brain from the surrounding tissue. As fMRI data generally consists of many
acquisitions of multi-slice, 3D volumes, manual and semi-automatic segmentation can take over
30 hours per scan, a time-cost that is incredibly prohibitive for fetal researchers. Recently,
Rutherford et al. (Rutherford et al., 2021) demonstrated the feasibility of an automated
approach, using manual whole-brain segmentations to train a U-net convolutional neural
network (CNN). Although this approach provides significant time-cost savings, it uses 2D
convolutions on 2D slices, potentially hindering performance and generalization to new
datasets. For example, Dice similarity coefficients of the overlap between manual
segmentations and automated brain masks correlated significantly with gestational age,
performing better in older fetuses. Thus, there remains a need for robust masking tools that
perform well on fMRI data obtained in a range of participants.

Here, we present funcmasker-flex, a new BIDS App for masking fetal fMRI that
overcomes the complexities of fetal fMRI brain masking with a robust 3D CNN architecture and
is implemented in an extensible and transparent Snakemake workflow. Using locally acquired
fetal fMRI data while also leveraging the large open dataset provided by Rutherford and
colleagues, we provide an open-source fetal brain segmentation tool that performs well on

data from a range of gestational ages and acquisition sites.
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90 2. Results

91 2.1 Model performance

92 Performance of the baseline method (2D U-net) (1) and the proposed method (3D U-
93 net) are shown in Fig. 1, comparing the distribution of Dice metrics on the training and

94  generalization datasets. Funcmasker-flex segmentations were consistently robust (all Dice
95  metrics 20.74), while the baseline method produced segmentations with substantial errors
96 (Dice <0.6) in 4% of the source dataset volumes, and in 11% (238 volumes) of the

97 generalization dataset volumes. In un-labelled data, visual quality control similarly

98 demonstrated no observable errors in the funcmasker-flex outputs.

Test Performance on Source Dataset Test Performance on Generalization Dataset
100 Wethod I o0 Method
[ Baseline (2D-unet) 600 = Baseline (2D-unet)
80 == Proposed (3D-unet} 500- T= Proposed (3D-unet)
2 60 T 400
5 ]
8 $ 300
40+
200
203} 100
0 |rl T Ay, = . 0 T T T 1 T
0.0 0.2 0.4 0.6 0.8 1.0 04 0.5 0.6 0.7 0.8 1.0
Dice Similarity, Automated vs Manual Dice Similarity, Automated vs Manual

'é‘ 10 . ré Lo "
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99

100 Fig. 1. Comparison between the baseline 2D U-net model and the proposed 3D U-net model.
101  Left, Dice similarity coefficients between manual masks and model performance when tested
102  on the testing data of the source dataset, as well as distribution of Dice scores and descriptive

103  statistics. Right, Dice similarity coefficients between manual masks and model performance
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104  when tested on the generalization dataset, as well as distribution of Dice scores and descriptive
105  statistics.

106

107 2.2 Comparison to 2D CNN model

108 When comparing performance on the test dataset, funcmasker-flex performed

109  significantly better than the baseline 2D U-net model, V = 28,882, p < .001. When comparing
110 performance on the generalization dataset, funcmasker-flex again performed significantly

111  better than the baseline 2D U-net model, V =705,528, p < .001.

112 2.3 Performance based on scanner strength (1.5T versus 3T)

113 Dice similarity coefficients by scanner strength for each model are shown in Fig. 2.

114  Linear mixed effects analysis showed a significant main effect of model (F(4,890.2) =749.43, p <
115 .001) and a significant model X scanner strength interaction (F(4,890.2) = 300.96, p < .001).

116  Estimated marginal means revealed that at each scanner strength, the proposed 3D U-net

117  model performed significantly better than the baseline model (all ps < .001), whereas there was
118 no statistical difference between the 1.5T and 3T scanners within or between models (all ps >
119  .05).

120
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Fig. 2. Dice coefficients by scanner strength for baseline and proposed models.

2.4 Correlation between Dice similarity coefficients and gestational age

Linear mixed effects analysis showed a significant main effect of model (F(4,890.1) =
57.84, p < .001) and a significant model X scanner strength interaction (F(4,890.1) =33.31, p <
.001). As shown in Fig. 3, there was no relationship between gestational age and dice
coefficients in the proposed 3D U-net model, whereas the baseline 2D U-net model showed a

positive relationship, with Dice similarity coefficients being higher at later gestational ages.
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Dice coefficients across gestational age by model

3

1
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20

Fig. 3. Dice coefficients by gestational age for baseline and proposed models.

3. Discussion

In this work, we present funcmasker-flex, an automated brain masking tool for fetal

fMRI. Because standard brain extraction tools (e.g., BET by FSL) are not capable of delineating

the fetal brain within the surrounding tissue, conducting analyses on fetal fMRI, in general,

resulted in spending hundreds of hours manually segmenting the brain in each volume, a

significant burden for

researchers. To address this issue, we used a large set of manually-

segmented fMRI volumes, we trained a 3D CNN to create a robust model to detect the brain

within the surrounding tissue. Importantly, this model performed with high accuracy on an

untrained dataset collected on a different scanner, demonstrating its generalizability.

When comparing funcmasker-flex’s performance on a new, untrained dataset to the

gold standard manual tracing of the same data, we found high levels of similarity as measured
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by Dice similarity coefficients. That is, there was a high overlap in the spatial distribution of
masks generated automatically by funcmasker-flex and the manual tracing. While manually
segmenting the fetal brain in a single EPI volume took trained tracers approximately 17
minutes, automated segmentation took 1 minute and did not require a researcher to be
present except to run the command, providing significant time-cost savings. A previous 2D CNN
model (Rutherford et al., 2021) performed significantly less accurately on the untrained data,
with Dice similarity coefficients ranging from .37 to .97. While this model still provides huge
savings in terms of time spent manually segmenting the brain, it requires a large amount of
manual correction to fill in missing segments of the mask.

We took several steps to make this tool easy to access, install, and use. First, the
documentation and corresponding code is hosted on GitHub

(https://github.com/khanlab/funcmasker-flex) and are open access. The pipeline was written in

an extensible and transparent Snakemake workflow. It is also easy to install on any Linux
machine with the command “pip install funcmasker-flex”, and will download any required
dependencies, including containers (when the --use-singularity option is applied), when it is
executed. It can be executed with a single command, and will work on any BIDS-formatted fetal
fMRI dataset. If the user prefers not to download the entire package, it can also be run as a
container, and example usage is provided in the documentation. The output also follows the
BIDS naming convention, which means that it can easily be fed into other BIDS-dependent tools
such as fMRIPrep (Esteban et al., 2019).

This study builds on previous work showing the feasibility of using CNNs in segmenting

biomedical images (Isensee et al., 2021; Rutherford et al., 2021). Specifically, segmentation was
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166 performed using nnU-Net, a deep learning based method that automatically configures itself
167 (lsensee et al., 2021). This framework showed a high degree of accuracy when segmenting

168 several types of biomedical images, including the heart, liver, and kidneys. Building upon the
169 nnU-Net framework allowed us to create a tool specific to the fetal brain, making use of open-
170  source scientific tools.

171 We also build upon previous work showing the feasibility of CNNs in segmenting the
172  fetal brain (Rutherford et al., 2021). This previous tool used a 2D CNN to mask 2D slices of fMRI
173  data; while it performed well on some volumes in the untrained data, the overall Dice similarity
174  coefficients of the overlap between manual and automated segmentations was low. Rutherford
175 and colleagues showed a significant positive correlation with model performance and

176  gestational age, suggesting that its generalizability may be limited to older fetuses. By using a
177 3D CNN, funcmasker-flex takes into account spatial boundaries between slices of a single EPI
178 volume, improving performance as well as generalizability. Indeed, we did not see a significant
179  correlation between model performance and age.

180 Although performance measures were generally high, there are several limitations to
181  the tool that must be discussed. First, despite the robustness of funcmasker-flex in masking

182 fetal brain volumes, visual inspection for quality control is still required. This is true however for
183  all brain extraction methods; the output of tools such as FSL’s BET (Smith, 2002) and AFNI’s

184  3dSkuliStrip must be inspected for accuracy. It is also unclear how far the generalizability of

185  funcmasker-flex can extend, for example to variations in strength of the scanner, although it

186  performed equally well on data collected at 1.5T and 3T.


https://doi.org/10.1101/2022.09.02.506391
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506391; this version posted September 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

11
187 In summary, funcmasker-flex is a new tool that provides fast and robust brain masking
188  of fetal fMRI data that requires no expertise, generalizes well, and will work on any fetal fMRI
189  datain BIDS format. It is freely available and easy to use. It eliminates the burden of manual
190 segmentation, and by reducing the time it takes to segment a fetal brain volume from roughly
191 37 hours to minutes, it removes a severe roadblock to performing fetal fMRI.
192 4. Materials and Methods
193 This research includes data from a cross-sectional study conducted at Western
194  University as well as the openly-available dataset Rutherford et al. (Rutherford et al., 2021)
195 (obtained from OpenNeuro, dataset identifier: ds003090). The Rutherford dataset (WS/YU)
196 contains two cohorts, one from Wayne State University (WSU) and one from Yale University
197  (YU). The study at Western University was approved by the Western University Research Ethics
198 Board and all caregivers gave written informed consent. The WSU and YU studies were
199 approved by the corresponding institutional ethics boards, and all caregivers gave written
200 informed consent. An overview of the study cohorts is given in Table 1.
201
Table 1. Characteristics of each fetal cohort
Cohort Unique Individuals Ages scanned Number of Number of 3D volumes Analyses
Individuals with (weeks individual per scan
longitudinal gestational BOLD 4D M +£SD (min, max)
data age) scans
Western 8 0 33-38 19 110 +0 (110, 110) Primary
cohort
WS/YU cohort | 159 22 24 -39 181 6.06 £2.17 (2, 13) Secondary

202
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4.1 Participants

4.1.1 Western cohort

This cohort consisted of cross-sectional data from the third trimester. Between October
2018 and March 2020, 11 pregnant women were recruited for scanning at 33 — 38 weeks
gestational age. Usable data were available for eight of the 11 participants. Inclusion criteria
were singleton pregnancy and maternal age 218 years. Exclusion criteria were contraindication
to safely undergoing non-contrast MRI, weight/body habitus that would prevent a successful
MRI, suspected congenital anomalies, and concomitant substance use.

4.1.2 WS/YU cohort

This cohort consisted of longitudinal data from the second and third trimester. Data
from 159 fetuses were available, and 22 had second time points. Fetuses ranged in gestational
age from 24 — 39 weeks. Inclusion criteria were singleton pregnancy, maternal age 218 years,

no complications, and no contraindications for MRI.
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4.2 Magnetic Resonance Imaging

4.2.1 Western cohort

Fetal imaging data were acquired using either a 3T GE Discovery scanner (Milwaukee,
Wisconsin, USA) and 32-channel torso coil at the Translational Imaging Research Facility
(Robarts Research Institute, Western University, London, Canada; n =5) or a 1.5T GE scanner
with a GEM posterior and anterior array coil (London Health Sciences Center, London, Canada;
n = 6). A minimum of one and a maximum of three blood oxygen level-dependent (BOLD) fMRI
(TR: 2's, TE: 45-60 ms [3T] / 60 ms [1.5T], flip angle 70°, voxel size 3.75x3.75x4 mm?>, 22 slices,
110 volumes) were acquired in each fetus.

4.2.2 WS/YU cohort

WSU fetal fMRI data were acquired on a 3T Siemens Verio scanner (Erlangen, Germany)
using an abdominal 4-Channel Flex Coil. Functional images were acquired using an echo-planar
sequence (TR = 2000 ms, TE = 30 ms, slice thickness = 4 mm, 360 volumes). Multi-echo resting-
state sequences were also collected in a portion of these subjects (TR/ TEs: 2000/18,34,50). The
Yale University cohort contains ten fetuses scanned twice longitudinally (gestational ages 30-36
weeks, M=32.7, SD=1.9). The YU data were acquired on a 3T Siemens Skyra scanner using a 32-
channel abdominal coil (TR: 2 s, TE: 30 ms, slice thickness = 3 mm, 32 slices, 150 volumes). A
subset of volumes from each acquisition were made available (Table 1).
4.3 Manual brain segmentation

For the Western cohort, manual brain segmentation of 2,090 volumes was performed
on raw EPI scans using FSLeyes (McCarthy, 2021; Smith et al., 2004) by four tracers trained to

identify the fetal brain, with each tracer segmenting an independent set of brains.
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238  Segmentation took approximately 17 minutes per volume, and each scan had 110 volumes,
239 leading to a total of 31.2 hours spent performing manual tracing per fetal fMRI scan. For the
240  WS/YU cohort, manual brain segmentation was performed using BrainSuite software (Shattuck
241 & Leahy, 2002).

242 4.4 U-Net architecture

243 Training and inference was carried out using nnU-net (Isensee et al., 2021), a framework
244  that automatically configures a U-net network architecture for a new task based on basic

245  dataset properties, and has been shown to outperform specialized pipelines in a range of

246  segmentation tasks.

247 4.5 Model training

248 Workflows for training, testing, and evaluating fetal segmentation were built using

249  Snakebids, a tool that allows Snakemake workflows to easily parse and create BIDS datasets
250 and to function as BIDS Apps (Khan & Haast, 2021). Fetal fMRI data from the WS/YU cohort (1)
251  was used for training and testing the nnU-net model, using the functional scans acquired using
252  an echo-planar imaging (EPI) sequence from 112 fetuses for training, and 48 fetuses for testing.
253  We used the same training and test splits as Rutherford et al, as these were made available in
254  the code. The nnU-net 3D full-res model was trained using 5-fold cross-validation for 500

255  epochs using the automatically-configured parameters, and required approximately 24 hours
256  for each fold when running on NVIDIA T4 GPUs. Inference does not require GPU-acceleration,
257  and was implemented using models from all 5 folds, along with test-time augmentation, to
258  provide a single prediction for each volume. Post-processing by nnU-net (including retention of

259  the largest connected component) was disabled. The command-line interface, along with
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260  visualization of the participant-level (inference) workflow is shown in Fig. 4. The workflows can
261  be applied to any BIDS dataset containing fetal EPI sequences and performs the appropriate
262  resampling and padding for running inference, returning 4D binary masks for each EPI run in
263  BIDS-Derivatives naming standards, and in the same space as the original bold datasets.

264 4.6 Evaluation

265 We also tested generalizability of the model using 19 locally acquired functional scans
266  from 8 fetuses (gestational age range=33-38 weeks, M=36.46, SD=0.98), which included 2,090

267  manually segmented 3D volume

funcmaster—ﬂex usage: funcmasker-flex [-h] [--workflow-mode] [--force-conversion] [--retrofit]
. [--help-snakemake]
participant [--participant label PARTICIPANT LABEL [PARTICIPANT LABEL ...]]
anaiysis level [--exclude participant label [EXCLUDE_PARTICIPANT LABEL ...]

[--derivatives DERIVATIVES [DERIVATIVES ...]]
[--filter bold FILTER_BOLD [FILTER BOLD ...]]
(--filter mask FILTER MASK [FILTER MASK ...]]

spiit [--wildcards-bold WILDCARDS_BOLD [WILDCARDS_BOLD ...]]
[--wildcards-mask WILDCARDS MASK [WILDCARDS MASK ...]]
l [--path-bold PATH BOLD] [--path-mask PATH_MASK]
— bids_dir output_dir {participant,train,evaluate}
| conform | | download_model
\'\ 7
¥ ’
Manual Proposed (3D U-net) Baseline (2D U-net)
run_inference
merge_mask
Y

unconform

269  Fig. 4. Left, visualization of the participant-level (inference) workflow. Top right, the command-

268

270 line interface. Bottom right, example of a single volume mask created by manual tracing, the
271  proposed 3D U-net model, and the baseline 2D U-net model.
272

273 4.7 Model comparison


https://doi.org/10.1101/2022.09.02.506391
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506391; this version posted September 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

16

274 Dice metrics were used to compare performance of the baseline 2D U-net approach (1)
275  and the proposed 3D nnU-net approach as implemented in funcmasker-flex to the ground truth
276  manually segmented volumes. A paired Wilcoxon signed-rank test was performed to determine
277  whether the distributions of Dice similarity coefficients for each model statistically differed.
278  Performance based on scanner strength (1.5T versus 3T)

279 To determine whether scanner strength affected the accuracy of both the baseline 2D
280  U-net and proposed 3D nnU-net approach, we examined Dice similarity coefficients across the
281 two models. Linear mixed effects models were constructed with dice as the dependent

282  variable, model (baseline/proposed) and scanner strength (1.5T/3T) as categorical variables and
283  a model X scanner strength interaction. Participant was included as a random effect.

284  Correlation between Dice similarity coefficients and gestational age

285 To determine whether performance was affected by gestational age, we examined Dice
286  similarity coefficients across ages in each model. Linear mixed effects models were constructed
287  with dice as the dependent variable, model as a categorical factor, gestational age as a

288  continuous factor, and a model X gestational age interaction. Participant was included as a

289  random effect.

290

291


https://doi.org/10.1101/2022.09.02.506391
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506391; this version posted September 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

17

292  Acknowledgements: The authors would like to thank the women who participated in these
293  studies. We also thank the researchers at WS/YU for making their data and code available. We
294  thank Megan Mueller, Sarah Abu Al-Saoud, Tajveer Ubhi, and Alissa Papadopolous for their
295  assistance with manually tracing the fetal MRI data, and David Reese for his assistance in

296  collecting the fetal MRI data.

297

298  Funding: The funding for this research was provided by the Canadian Institutes of Health

299  Research, the Molly Towell Perinatal Health Foundation and the Canada First Research

300 Excellence Fund by BrainsCAN.

301

302 Competing interests: The authors declare no competing interests.


https://doi.org/10.1101/2022.09.02.506391
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506391; this version posted September 5, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

available under aCC-BY 4.0 International license.

18

Arroyo, M. S., Hopkin, R. J., Nagaraj, U. D., Kline-Fath, B., & Venkatesan, C. (2019). Fetal brain
MRI findings and neonatal outcome of common diagnosis at a tertiary care center. Journal
of Perinatology, 39(8), 1072—1077. https://doi.org/10.1038/s41372-019-0407-9

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. ., Erramuzpe, A., Kent, J. D.,
Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack,
R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline for functional
MRI. Nature Methods, 16(1), 111-116. https://doi.org/10.1038/541592-018-0235-4

Huisman, T. A. G. M., Martin, E., Kubik-Huch, R., & Marincek, B. (2002). Fetal magnetic
resonance imaging of the brain: Technical considerations and normal brain development.
European Radiology, 12(8), 1941—-1951. https://doi.org/10.1007/s00330-001-1209-x

Isensee, F., Jaeger, P. F., Kohl, S. A. A, Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-
configuring method for deep learning-based biomedical image segmentation. Nature
Methods, 18(2), 203-211. https://doi.org/10.1038/s41592-020-01008-z

Kalavathi, P., & Prasath, V. B. S. (2016). Methods on Skull Stripping of MRI Head Scan Images—a
Review. Journal of Digital Imaging, 29(3), 365-379. https://doi.org/10.1007/s10278-015-
9847-8

Khan, A., & Haast, R. (2021). Snakebids - BIDS integration into snakemake workflows.
https://doi.org/10.5281/ZENODO.4488249

McCarthy, P. (2021). FSLeyes. https://doi.org/10.5281/ZENODO.5576035

Prayer, D., Brugger, P. C., & Prayer, L. (2004). Fetal MRI: techniques and protocols. Pediatric

Radiology, 34(9), 685-693. https://doi.org/10.1007/s00247-004-1246-0


https://doi.org/10.1101/2022.09.02.506391
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506391; this version posted September 5, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

available under aCC-BY 4.0 International license.

19

Rajagopalan, V., Deoni, S., Panigrahy, A., & Thomason, M. E. (2021). Is fetal MRI ready for
neuroimaging prime time? An examination of progress and remaining areas for
development. Developmental Cognitive Neuroscience, 51, 100999.
https://doi.org/10.1016/j.dcn.2021.100999

Rousseau, F., Glenn, O. A,, lordanova, B., Rodriguez-Carranza, C., Vigneron, D. B., Barkovich, J.
A., & Studholme, C. (2006). Registration-Based Approach for Reconstruction of High-
Resolution In Utero Fetal MR Brain Images. Academic Radiology, 13(9), 1072—-1081.
https://doi.org/10.1016/j.acra.2006.05.003

Rutherford, S., Sturmfels, P., Angstadt, M., Hect, J., Wiens, J., van den Heuvel, M. I., Scheinost,
D., Sripada, C., & Thomason, M. (2021). Automated Brain Masking of Fetal Functional MRI
with Open Data. Neuroinformatics. https://doi.org/10.1007/s12021-021-09528-5

Shattuck, D. W., & Leahy, R. M. (2002). BrainSuite: an automated cortical surface identification
tool. Medical Image Analysis, 6(2), 129—142. https://doi.org/10.1016/s1361-
8415(02)00054-3

Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143—
155. https://doi.org/10.1002/hbm.10062

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg,
H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J.,
Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in
functional and structural MR image analysis and implementation as FSL. Neuroimage, 23

Suppl 1, S208-19. https://doi.org/10.1016/j.neuroimage.2004.07.051


https://doi.org/10.1101/2022.09.02.506391
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506391; this version posted September 5, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

20

345 Thomason, M. E., Brown, J. A., Dassanayake, M. T., Shastri, R., Marusak, H. A., Hernandez-

346 Andrade, E., Yeo, L., Mody, S., Berman, S., Hassan, S. S., & Romero, R. (2014). Intrinsic
347 functional brain architecture derived from graph theoretical analysis in the human fetus.
348 PLoS ONE, 9(5), 1-10. https://doi.org/10.1371/journal.pone.0094423

349 Thomason, M. E., Dassanayake, M. T., Shen, S., Katkuri, Y., Alexis, M., Anderson, A. L., Yeo, L.,

350 Mody, S., Hernandez-Andrade, E., Hassan, S. S., Studholme, C., Jeong, J. W., & Romero, R.
351 (2013). Cross-hemispheric functional connectivity in the human fetal brain. Science
352 Translational Medicine, 5(173). https://doi.org/10.1126/scitranslmed.3004978

353 Thomason, M. E., Grove, L. E., Lozon, T. A, Vila, A. M,, Ye, Y., Nye, M. J., Manning, J. H., Pappas,

354 A., Hernandez-Andrade, E., Yeo, L., Mody, S., Berman, S., Hassan, S. S., & Romero, R.
355 (2015). Age-related increases in long-range connectivity in fetal functional neural
356 connectivity networks in utero. Developmental Cognitive Neuroscience, 11, 96—104.
357 https://doi.org/10.1016/j.dcn.2014.09.001

358 vanden Heuvel, M. I., Turk, E., Manning, J. H., Hect, J., Hernandez-Andrade, E., Hassan, S. S.,

359 Romero, R., van den Heuvel, M. P., & Thomason, M. E. (2018). Hubs in the human fetal
360 brain network. Developmental Cognitive Neuroscience, 30(February), 108-115.
361 https://doi.org/10.1016/j.dcn.2018.02.001

362 Wheelock, M. D., Hect, J. L., Hernandez-Andrade, E., Hassan, S. S., Romero, R., Eggebrecht, A. T,

363 & Thomason, M. E. (2019). Sex differences in functional connectivity during fetal brain
364 development. Developmental Cognitive Neuroscience, 36(May 2018), 100632.
365 https://doi.org/10.1016/j.dcn.2019.100632

366


https://doi.org/10.1101/2022.09.02.506391
http://creativecommons.org/licenses/by/4.0/

