

1 Title: An automated BIDS-App for brain segmentation of human fetal functional MRI data

2 Short title: Automated fetal fMRI brain segmentation

3

4 Authors: Emily S. Nichols^{1,2}, Susana Correa³, Peter Van Dyken^{3,4}, Jason Kai^{4,5}, Tristan Kuehn^{4,5},

5 Sandrine de Ribaupierre^{2,3,5,6,7,8}, Emma G. Duerden^{1,2,5,†}, Ali R. Khan^{2,4,5,†}

6

7 Affiliations:

8 ¹Faculty of Education, Western University, Canada

9 ²Western Institute for Neuroscience, Western University, Canada

10 ³Neuroscience program, Schulich School of Medicine & Dentistry, Western University, Canada

11 ⁴Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University,
12 Canada

13 ⁵Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, Canada

14 ⁶Biomedical Engineering, Western University, Canada

15 ⁷Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University,
16 Canada

17 ⁸Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University,
18 Canada

19 [†]These authors contributed equally

20

21 Corresponding author:

22 Emily S. Nichols, PhD

23 Applied Psychology

24 Faculty of Education

25 Room 1131, 1137 Western Rd

26 London, Ontario N6G 1G7

27

28

29 **Abstract**

30 Fetal functional magnetic resonance imaging (fMRI) offers critical insight into the developing
31 brain and could aid in predicting developmental outcomes. As the fetal brain is surrounded by
32 heterogeneous tissue, it is not possible to use adult- or child-based segmentation toolboxes.
33 Manually-segmented masks can be used to extract the fetal brain; however, this comes at
34 significant time costs. Here, we present a new BIDS App for masking fetal fMRI, *funcmasker-*
35 *flex*, that overcomes these issues with a robust 3D convolutional neural network (U-net)
36 architecture implemented in an extensible and transparent Snakemake workflow. Open-access
37 fetal fMRI data with manual brain masks from 159 fetuses (1103 total volumes) were used for
38 training and testing the U-net model. We also tested generalizability of the model using 82
39 locally acquired functional scans from 19 fetuses, which included over 2300 manually
40 segmented volumes. Dice metrics were used to compare performance of *funcmasker-flex* to the
41 ground truth manually segmented volumes, and segmentations were consistently robust (all
42 Dice metrics ≥ 0.74). The tool is freely available and can be applied to any BIDS dataset
43 containing fetal bold sequences. *Funcmasker-flex* reduces the need for manual segmentation,
44 even when applied to novel fetal functional datasets, resulting in significant time-cost savings
45 for performing fetal fMRI analysis.

46

47 **Keywords:** fetal fMRI, segmentation, brain extraction, U-net

48

49 **1. Introduction**

50 Over the last 2 decades, research in fetal MRI protocols has increasingly been used to
51 non-invasively study the functional, metabolic and structural origins of the fetal brain *in vivo*
52 (Huisman et al., 2002; Prayer et al., 2004; Rousseau et al., 2006; Thomason et al., 2013, 2015;
53 Wheelock et al., 2019). Improved methods to study the fetal brain *in vivo* makes it possible to
54 understand not only how typical, healthy brain development occurs and predicts later cognitive
55 and motor outcomes, but also allows us to study atypical development (Arroyo et al., 2019;
56 Rajagopalan et al., 2021). As fetal functional MRI is becoming more common, there has been an
57 increase in demand for automatic preprocessing and analysis software; while there is an
58 abundance of neuroimaging analysis software for infant, child, and adults, there is currently a
59 dearth of fetus-specific tools, making the process of preprocessing fetal neuroimaging data,
60 especially functional MRI, quite difficult and time-consuming.

61 One of the most complicated steps in the fetal preprocessing pipeline is brain extraction
62 from the echo-planar imaging (EPI) sequences, the process of isolating the brain within the
63 image, creating a “mask” and stripping away the skull and surrounding tissue laying outside of
64 the identified region. In pediatric and adult samples this step is straightforward; numerous tools
65 have been developed, with algorithms relying heavily on identifying the dark cerebrospinal fluid
66 that separates the brain from the skull (Kalavathi & Prasath, 2016). As the fetal brain does not
67 have clear boundaries separating it from the surrounding tissue, such algorithms are not
68 feasible for brain extraction in this population, and fail to accurately segment the brain from
69 tissues such as the placenta and the mother’s organs. The lack of brain extraction tools creates
70 a major roadblock for fetal fMRI analysis.

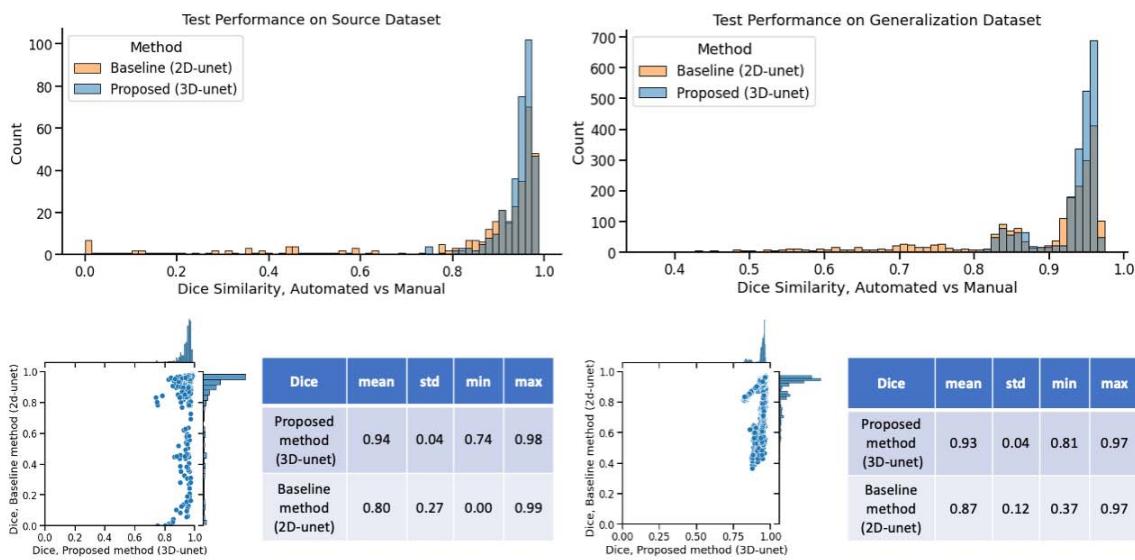
71 In the past, brain extraction of fetal fMRI data was performed by manually (Thomason
72 et al., 2014, 2015) or semi-automatically (Thomason et al., 2013; van den Heuvel et al., 2018)
73 segmenting the brain from the surrounding tissue. As fMRI data generally consists of many
74 acquisitions of multi-slice, 3D volumes, manual and semi-automatic segmentation can take over
75 30 hours per scan, a time-cost that is incredibly prohibitive for fetal researchers. Recently,
76 Rutherford et al. (Rutherford et al., 2021) demonstrated the feasibility of an automated
77 approach, using manual whole-brain segmentations to train a U-net convolutional neural
78 network (CNN). Although this approach provides significant time-cost savings, it uses 2D
79 convolutions on 2D slices, potentially hindering performance and generalization to new
80 datasets. For example, Dice similarity coefficients of the overlap between manual
81 segmentations and automated brain masks correlated significantly with gestational age,
82 performing better in older fetuses. Thus, there remains a need for robust masking tools that
83 perform well on fMRI data obtained in a range of participants.

84 Here, we present *funcmasker-flex*, a new BIDS App for masking fetal fMRI that
85 overcomes the complexities of fetal fMRI brain masking with a robust 3D CNN architecture and
86 is implemented in an extensible and transparent Snakemake workflow. Using locally acquired
87 fetal fMRI data while also leveraging the large open dataset provided by Rutherford and
88 colleagues, we provide an open-source fetal brain segmentation tool that performs well on
89 data from a range of gestational ages and acquisition sites.

90 **2. Results**

91 **2.1 Model performance**

92 Performance of the baseline method (2D U-net) (1) and the proposed method (3D U-
93 net) are shown in Fig. 1, comparing the distribution of Dice metrics on the training and
94 generalization datasets. Funcmasker-flex segmentations were consistently robust (all Dice
95 metrics ≥ 0.74), while the baseline method produced segmentations with substantial errors
96 (Dice < 0.6) in 4% of the source dataset volumes, and in 11% (238 volumes) of the
97 generalization dataset volumes. In un-labelled data, visual quality control similarly
98 demonstrated no observable errors in the funcmasker-flex outputs.



99

100 *Fig. 1.* Comparison between the baseline 2D U-net model and the proposed 3D U-net model.
101 Left, Dice similarity coefficients between manual masks and model performance when tested
102 on the testing data of the source dataset, as well as distribution of Dice scores and descriptive
103 statistics. Right, Dice similarity coefficients between manual masks and model performance

104 when tested on the generalization dataset, as well as distribution of Dice scores and descriptive
105 statistics.

106

107 *2.2 Comparison to 2D CNN model*

108 When comparing performance on the test dataset, *funcmasker-flex* performed
109 significantly better than the baseline 2D U-net model, $V = 28,882, p < .001$. When comparing
110 performance on the generalization dataset, *funcmasker-flex* again performed significantly
111 better than the baseline 2D U-net model, $V = 705,528, p < .001$.

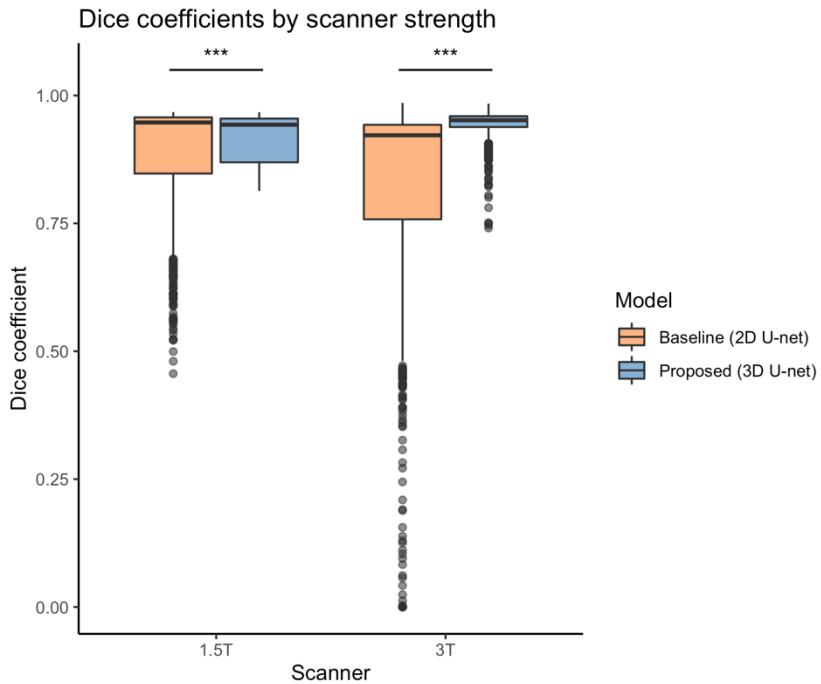
112 *2.3 Performance based on scanner strength (1.5T versus 3T)*

113 Dice similarity coefficients by scanner strength for each model are shown in Fig. 2.

114 Linear mixed effects analysis showed a significant main effect of model ($F(4,890.2) = 749.43, p <$
115 $.001$) and a significant model X scanner strength interaction ($F(4,890.2) = 300.96, p < .001$).

116 Estimated marginal means revealed that at each scanner strength, the proposed 3D U-net
117 model performed significantly better than the baseline model (all $p < .001$), whereas there was
118 no statistical difference between the 1.5T and 3T scanners within or between models (all $p >$
119 $.05$).

120



121

122 *Fig. 2. Dice coefficients by scanner strength for baseline and proposed models.*

123

124 *2.4 Correlation between Dice similarity coefficients and gestational age*

125 Linear mixed effects analysis showed a significant main effect of model ($F(4,890.1) = 57.84, p < .001$) and a significant model X scanner strength interaction ($F(4,890.1) = 33.31, p < .001$). As shown in Fig. 3, there was no relationship between gestational age and dice coefficients in the proposed 3D U-net model, whereas the baseline 2D U-net model showed a positive relationship, with Dice similarity coefficients being higher at later gestational ages.



130

131 *Fig. 3.* Dice coefficients by gestational age for baseline and proposed models.

132

133 3. Discussion

134 In this work, we present *funcmasker-flex*, an automated brain masking tool for fetal
135 fMRI. Because standard brain extraction tools (e.g., BET by FSL) are not capable of delineating
136 the fetal brain within the surrounding tissue, conducting analyses on fetal fMRI, in general,
137 resulted in spending hundreds of hours manually segmenting the brain in each volume, a
138 significant burden for researchers. To address this issue, we used a large set of manually-
139 segmented fMRI volumes, we trained a 3D CNN to create a robust model to detect the brain
140 within the surrounding tissue. Importantly, this model performed with high accuracy on an
141 untrained dataset collected on a different scanner, demonstrating its generalizability.

142 When comparing *funcmasker-flex*'s performance on a new, untrained dataset to the
143 gold standard manual tracing of the same data, we found high levels of similarity as measured

144 by Dice similarity coefficients. That is, there was a high overlap in the spatial distribution of
145 masks generated automatically by *funcmasker-flex* and the manual tracing. While manually
146 segmenting the fetal brain in a single EPI volume took trained tracers approximately 17
147 minutes, automated segmentation took 1 minute and did not require a researcher to be
148 present except to run the command, providing significant time-cost savings. A previous 2D CNN
149 model (Rutherford et al., 2021) performed significantly less accurately on the untrained data,
150 with Dice similarity coefficients ranging from .37 to .97. While this model still provides huge
151 savings in terms of time spent manually segmenting the brain, it requires a large amount of
152 manual correction to fill in missing segments of the mask.

153 We took several steps to make this tool easy to access, install, and use. First, the
154 documentation and corresponding code is hosted on GitHub
155 (<https://github.com/khanlab/funcmasker-flex>) and are open access. The pipeline was written in
156 an extensible and transparent Snakemake workflow. It is also easy to install on any Linux
157 machine with the command “*pip install funcmasker-flex*”, and will download any required
158 dependencies, including containers (when the --use-singularity option is applied), when it is
159 executed. It can be executed with a single command, and will work on any BIDS-formatted fetal
160 fMRI dataset. If the user prefers not to download the entire package, it can also be run as a
161 container, and example usage is provided in the documentation. The output also follows the
162 BIDS naming convention, which means that it can easily be fed into other BIDS-dependent tools
163 such as *fMRIPrep* (Esteban et al., 2019).

164 This study builds on previous work showing the feasibility of using CNNs in segmenting
165 biomedical images (Isensee et al., 2021; Rutherford et al., 2021). Specifically, segmentation was

166 performed using *nnU-Net*, a deep learning based method that automatically configures itself
167 (Isensee et al., 2021). This framework showed a high degree of accuracy when segmenting
168 several types of biomedical images, including the heart, liver, and kidneys. Building upon the
169 *nnU-Net* framework allowed us to create a tool specific to the fetal brain, making use of open-
170 source scientific tools.

171 We also build upon previous work showing the feasibility of CNNs in segmenting the
172 fetal brain (Rutherford et al., 2021). This previous tool used a 2D CNN to mask 2D slices of fMRI
173 data; while it performed well on some volumes in the untrained data, the overall Dice similarity
174 coefficients of the overlap between manual and automated segmentations was low. Rutherford
175 and colleagues showed a significant positive correlation with model performance and
176 gestational age, suggesting that its generalizability may be limited to older fetuses. By using a
177 3D CNN, *funcmasker-flex* takes into account spatial boundaries between slices of a single EPI
178 volume, improving performance as well as generalizability. Indeed, we did not see a significant
179 correlation between model performance and age.

180 Although performance measures were generally high, there are several limitations to
181 the tool that must be discussed. First, despite the robustness of *funcmasker-flex* in masking
182 fetal brain volumes, visual inspection for quality control is still required. This is true however for
183 all brain extraction methods; the output of tools such as FSL's *BET* (Smith, 2002) and AFNI's
184 *3dSkullStrip* must be inspected for accuracy. It is also unclear how far the generalizability of
185 *funcmasker-flex* can extend, for example to variations in strength of the scanner, although it
186 performed equally well on data collected at 1.5T and 3T.

187 In summary, *funcmasker-flex* is a new tool that provides fast and robust brain masking
188 of fetal fMRI data that requires no expertise, generalizes well, and will work on any fetal fMRI
189 data in BIDS format. It is freely available and easy to use. It eliminates the burden of manual
190 segmentation, and by reducing the time it takes to segment a fetal brain volume from roughly
191 37 hours to minutes, it removes a severe roadblock to performing fetal fMRI.

192 **4. Materials and Methods**

193 This research includes data from a cross-sectional study conducted at Western
194 University as well as the openly-available dataset Rutherford et al. (Rutherford et al., 2021)
195 (obtained from OpenNeuro, dataset identifier: ds003090). The Rutherford dataset (WS/YU)
196 contains two cohorts, one from Wayne State University (WSU) and one from Yale University
197 (YU). The study at Western University was approved by the Western University Research Ethics
198 Board and all caregivers gave written informed consent. The WSU and YU studies were
199 approved by the corresponding institutional ethics boards, and all caregivers gave written
200 informed consent. An overview of the study cohorts is given in Table 1.

201

Table 1. Characteristics of each fetal cohort

Cohort	Unique Individuals	Individuals with longitudinal data	Ages scanned (weeks gestational age)	Number of individual BOLD 4D scans	Number of 3D volumes per scan $M \pm SD$ (min, max)	Analyses
Western cohort	8	0	33 – 38	19	110 \pm 0 (110, 110)	Primary
WS/YU cohort	159	22	24 – 39	181	6.06 \pm 2.17 (2, 13)	Secondary

202

203 4.1 Participants

204 4.1.1 Western cohort

205 This cohort consisted of cross-sectional data from the third trimester. Between October

206 2018 and March 2020, 11 pregnant women were recruited for scanning at 33 – 38 weeks

207 gestational age. Usable data were available for eight of the 11 participants. Inclusion criteria

208 were singleton pregnancy and maternal age ≥ 18 years. Exclusion criteria were contraindication

209 to safely undergoing non-contrast MRI, weight/body habitus that would prevent a successful

210 MRI, suspected congenital anomalies, and concomitant substance use.

211 4.1.2 WS/YU cohort

212 This cohort consisted of longitudinal data from the second and third trimester. Data

213 from 159 fetuses were available, and 22 had second time points. Fetuses ranged in gestational

214 age from 24 – 39 weeks. Inclusion criteria were singleton pregnancy, maternal age ≥ 18 years,

215 no complications, and no contraindications for MRI.

216 4.2 Magnetic Resonance Imaging

217 4.2.1 Western cohort

218 Fetal imaging data were acquired using either a 3T GE Discovery scanner (Milwaukee,
219 Wisconsin, USA) and 32-channel torso coil at the Translational Imaging Research Facility
220 (Robarts Research Institute, Western University, London, Canada; $n = 5$) or a 1.5T GE scanner
221 with a GEM posterior and anterior array coil (London Health Sciences Center, London, Canada;
222 $n = 6$). A minimum of one and a maximum of three blood oxygen level-dependent (BOLD) fMRI
223 (TR: 2 s, TE: 45-60 ms [3T] / 60 ms [1.5T], flip angle 70°, voxel size 3.75x3.75x4 mm³, 22 slices,
224 110 volumes) were acquired in each fetus.

225 4.2.2 WS/YU cohort

226 WSU fetal fMRI data were acquired on a 3T Siemens Verio scanner (Erlangen, Germany)
227 using an abdominal 4-Channel Flex Coil. Functional images were acquired using an echo-planar
228 sequence (TR = 2000 ms, TE = 30 ms, slice thickness = 4 mm, 360 volumes). Multi-echo resting-
229 state sequences were also collected in a portion of these subjects (TR/ TEs: 2000/18,34,50). The
230 Yale University cohort contains ten fetuses scanned twice longitudinally (gestational ages 30-36
231 weeks, M=32.7, SD=1.9). The YU data were acquired on a 3T Siemens Skyra scanner using a 32-
232 channel abdominal coil (TR: 2 s, TE: 30 ms, slice thickness = 3 mm, 32 slices, 150 volumes). A
233 subset of volumes from each acquisition were made available (Table 1).

234 4.3 Manual brain segmentation

235 For the Western cohort, manual brain segmentation of 2,090 volumes was performed
236 on raw EPI scans using *FSLeyes* (McCarthy, 2021; Smith et al., 2004) by four tracers trained to
237 identify the fetal brain, with each tracer segmenting an independent set of brains.

238 Segmentation took approximately 17 minutes per volume, and each scan had 110 volumes,
239 leading to a total of 31.2 hours spent performing manual tracing per fetal fMRI scan. For the
240 WS/YU cohort, manual brain segmentation was performed using BrainSuite software (Shattuck
241 & Leahy, 2002).

242 *4.4 U-Net architecture*

243 Training and inference was carried out using nnU-net (Isensee et al., 2021), a framework
244 that automatically configures a U-net network architecture for a new task based on basic
245 dataset properties, and has been shown to outperform specialized pipelines in a range of
246 segmentation tasks.

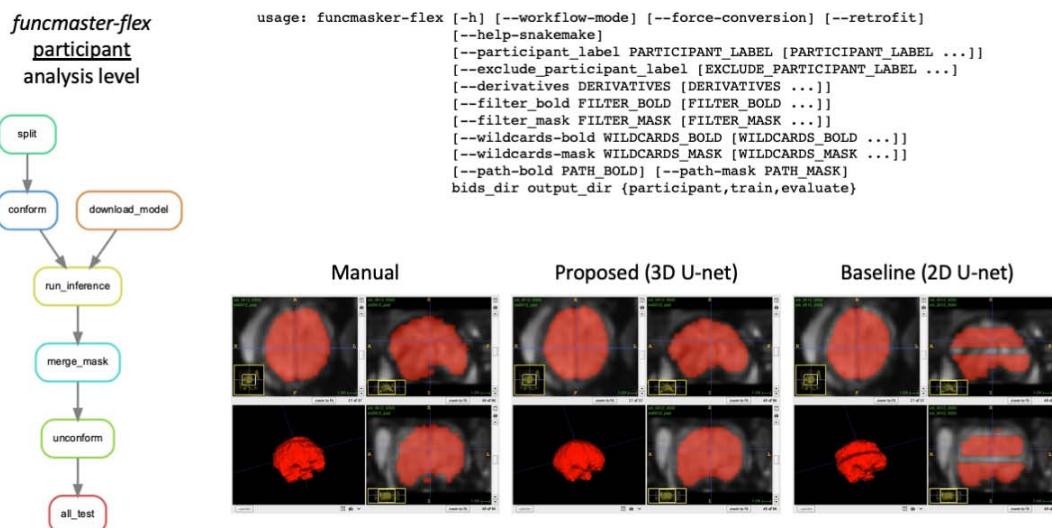
247 *4.5 Model training*

248 Workflows for training, testing, and evaluating fetal segmentation were built using
249 Snakebids, a tool that allows Snakemake workflows to easily parse and create BIDS datasets
250 and to function as BIDS Apps (Khan & Haast, 2021). Fetal fMRI data from the WS/YU cohort (1)
251 was used for training and testing the nnU-net model, using the functional scans acquired using
252 an echo-planar imaging (EPI) sequence from 112 fetuses for training, and 48 fetuses for testing.
253 We used the same training and test splits as Rutherford et al, as these were made available in
254 the code. The nnU-net 3D full-res model was trained using 5-fold cross-validation for 500
255 epochs using the automatically-configured parameters, and required approximately 24 hours
256 for each fold when running on NVIDIA T4 GPUs. Inference does not require GPU-acceleration,
257 and was implemented using models from all 5 folds, along with test-time augmentation, to
258 provide a single prediction for each volume. Post-processing by nnU-net (including retention of
259 the largest connected component) was disabled. The command-line interface, along with

260 visualization of the participant-level (inference) workflow is shown in Fig. 4. The workflows can
261 be applied to any BIDS dataset containing fetal EPI sequences and performs the appropriate
262 resampling and padding for running inference, returning 4D binary masks for each EPI run in
263 BIDS-Derivatives naming standards, and in the same space as the original bold datasets.

264 *4.6 Evaluation*

265 We also tested generalizability of the model using 19 locally acquired functional scans
266 from 8 fetuses (gestational age range=33-38 weeks, M=36.46, SD=0.98), which included 2,090
267 manually segmented 3D volume



268
269 *Fig. 4. Left, visualization of the participant-level (inference) workflow. Top right, the command-
270 line interface. Bottom right, example of a single volume mask created by manual tracing, the
271 proposed 3D U-net model, and the baseline 2D U-net model.*

272

273 *4.7 Model comparison*

274 Dice metrics were used to compare performance of the baseline 2D U-net approach (1)
275 and the proposed 3D nnU-net approach as implemented in *funcmasker-flex* to the ground truth
276 manually segmented volumes. A paired Wilcoxon signed-rank test was performed to determine
277 whether the distributions of Dice similarity coefficients for each model statistically differed.

278 *Performance based on scanner strength (1.5T versus 3T)*

279 To determine whether scanner strength affected the accuracy of both the baseline 2D
280 U-net and proposed 3D nnU-net approach, we examined Dice similarity coefficients across the
281 two models. Linear mixed effects models were constructed with dice as the dependent
282 variable, model (baseline/proposed) and scanner strength (1.5T/3T) as categorical variables and
283 a model X scanner strength interaction. Participant was included as a random effect.

284 *Correlation between Dice similarity coefficients and gestational age*

285 To determine whether performance was affected by gestational age, we examined Dice
286 similarity coefficients across ages in each model. Linear mixed effects models were constructed
287 with dice as the dependent variable, model as a categorical factor, gestational age as a
288 continuous factor, and a model X gestational age interaction. Participant was included as a
289 random effect.

290

291

292 **Acknowledgements:** The authors would like to thank the women who participated in these
293 studies. We also thank the researchers at WS/YU for making their data and code available. We
294 thank Megan Mueller, Sarah Abu Al-Saoud, Tajveer Ubhi, and Alissa Papadopolous for their
295 assistance with manually tracing the fetal MRI data, and David Reese for his assistance in
296 collecting the fetal MRI data.

297

298 **Funding:** The funding for this research was provided by the Canadian Institutes of Health
299 Research, the Molly Towell Perinatal Health Foundation and the Canada First Research
300 Excellence Fund by BrainsCAN.

301

302 **Competing interests:** The authors declare no competing interests.

303 Arroyo, M. S., Hopkin, R. J., Nagaraj, U. D., Kline-Fath, B., & Venkatesan, C. (2019). Fetal brain
304 MRI findings and neonatal outcome of common diagnosis at a tertiary care center. *Journal*
305 *of Perinatology*, 39(8), 1072–1077. <https://doi.org/10.1038/s41372-019-0407-9>

306 Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D.,
307 Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack,
308 R. A., & Gorgolewski, K. J. (2019). fMRIprep: a robust preprocessing pipeline for functional
309 MRI. *Nature Methods*, 16(1), 111–116. <https://doi.org/10.1038/s41592-018-0235-4>

310 Huisman, T. A. G. M., Martin, E., Kubik-Huch, R., & Marinsek, B. (2002). Fetal magnetic
311 resonance imaging of the brain: Technical considerations and normal brain development.
312 *European Radiology*, 12(8), 1941–1951. <https://doi.org/10.1007/s00330-001-1209-x>

313 Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-
314 configuring method for deep learning-based biomedical image segmentation. *Nature*
315 *Methods*, 18(2), 203–211. <https://doi.org/10.1038/s41592-020-01008-z>

316 Kalavathi, P., & Prasath, V. B. S. (2016). Methods on Skull Stripping of MRI Head Scan Images—a
317 Review. *Journal of Digital Imaging*, 29(3), 365–379. <https://doi.org/10.1007/s10278-015-9847-8>

318 Khan, A., & Haast, R. (2021). *Snakebids - BIDS integration into snakemake workflows*.
319 <https://doi.org/10.5281/ZENODO.4488249>

320 McCarthy, P. (2021). *FSLeyes*. <https://doi.org/10.5281/ZENODO.5576035>

322 Prayer, D., Brugger, P. C., & Prayer, L. (2004). Fetal MRI: techniques and protocols. *Pediatric*
323 *Radiology*, 34(9), 685–693. <https://doi.org/10.1007/s00247-004-1246-0>

324 Rajagopalan, V., Deoni, S., Panigrahy, A., & Thomason, M. E. (2021). Is fetal MRI ready for
325 neuroimaging prime time? An examination of progress and remaining areas for
326 development. *Developmental Cognitive Neuroscience*, 51, 100999.
327 <https://doi.org/10.1016/j.dcn.2021.100999>

328 Rousseau, F., Glenn, O. A., lordanova, B., Rodriguez-Carranza, C., Vigneron, D. B., Barkovich, J.
329 A., & Studholme, C. (2006). Registration-Based Approach for Reconstruction of High-
330 Resolution In Utero Fetal MR Brain Images. *Academic Radiology*, 13(9), 1072–1081.
331 <https://doi.org/10.1016/j.acra.2006.05.003>

332 Rutherford, S., Sturmfels, P., Angstadt, M., Hect, J., Wiens, J., van den Heuvel, M. I., Scheinost,
333 D., Sripada, C., & Thomason, M. (2021). Automated Brain Masking of Fetal Functional MRI
334 with Open Data. *Neuroinformatics*. <https://doi.org/10.1007/s12021-021-09528-5>

335 Shattuck, D. W., & Leahy, R. M. (2002). BrainSuite: an automated cortical surface identification
336 tool. *Medical Image Analysis*, 6(2), 129–142. [https://doi.org/10.1016/s1361-8415\(02\)00054-3](https://doi.org/10.1016/s1361-8415(02)00054-3)

337

338 Smith, S. M. (2002). Fast robust automated brain extraction. *Human Brain Mapping*, 17(3), 143–
339 155. <https://doi.org/10.1002/hbm.10062>

340 Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg,
341 H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J.,
342 Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in
343 functional and structural MR image analysis and implementation as FSL. *NeuroImage*, 23
344 *Suppl 1*, S208-19. <https://doi.org/10.1016/j.neuroimage.2004.07.051>

345 Thomason, M. E., Brown, J. A., Dassanayake, M. T., Shastri, R., Marusak, H. A., Hernandez-
346 Andrade, E., Yeo, L., Mody, S., Berman, S., Hassan, S. S., & Romero, R. (2014). Intrinsic
347 functional brain architecture derived from graph theoretical analysis in the human fetus.
348 *PLoS ONE*, 9(5), 1–10. <https://doi.org/10.1371/journal.pone.0094423>

349 Thomason, M. E., Dassanayake, M. T., Shen, S., Katkuri, Y., Alexis, M., Anderson, A. L., Yeo, L.,
350 Mody, S., Hernandez-Andrade, E., Hassan, S. S., Studholme, C., Jeong, J. W., & Romero, R.
351 (2013). Cross-hemispheric functional connectivity in the human fetal brain. *Science
352 Translational Medicine*, 5(173). <https://doi.org/10.1126/scitranslmed.3004978>

353 Thomason, M. E., Grove, L. E., Lozon, T. A., Vila, A. M., Ye, Y., Nye, M. J., Manning, J. H., Pappas,
354 A., Hernandez-Andrade, E., Yeo, L., Mody, S., Berman, S., Hassan, S. S., & Romero, R.
355 (2015). Age-related increases in long-range connectivity in fetal functional neural
356 connectivity networks in utero. *Developmental Cognitive Neuroscience*, 11, 96–104.
357 <https://doi.org/10.1016/j.dcn.2014.09.001>

358 van den Heuvel, M. I., Turk, E., Manning, J. H., Hect, J., Hernandez-Andrade, E., Hassan, S. S.,
359 Romero, R., van den Heuvel, M. P., & Thomason, M. E. (2018). Hubs in the human fetal
360 brain network. *Developmental Cognitive Neuroscience*, 30(February), 108–115.
361 <https://doi.org/10.1016/j.dcn.2018.02.001>

362 Wheelock, M. D., Hect, J. L., Hernandez-Andrade, E., Hassan, S. S., Romero, R., Eggebrecht, A. T.,
363 & Thomason, M. E. (2019). Sex differences in functional connectivity during fetal brain
364 development. *Developmental Cognitive Neuroscience*, 36(May 2018), 100632.
365 <https://doi.org/10.1016/j.dcn.2019.100632>

366