bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506373; this version posted September 2, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Environmental feedback drives oxidative stress response heterogeneity in
bacterial populations

Divya Choudhary!, Valentine Lagage', Kevin Foster-?, Stephan Uphoff!*
"Department of Biochemistry, University of Oxford, UK

2Department of Zoology, University of Oxford, UK

*Correspondence to: stephan.uphoff@bioch.ox.ac.uk

ABSTRACT

Induction of phenotypic heterogeneity is a ubiquitous consequence of bacterial stress responses. It is commonly
postulated that isogenic cells exploit stochastic molecular fluctuations to generate phenotypic heterogeneity as a
population survival strategy (termed bet-hedging). However, it is also possible that each cell attempts to maximise
its own chances of survival. In that case, the apparent heterogeneity could either be caused by inevitable molecular
noise or by underlying deterministic mechanisms which have escaped observation. Here, we investigated the
sources and consequences of gene expression heterogeneity in the response of Escherichia coli cells to hydrogen
peroxide (H>O») stress. A machine-learning model accurately predicted the variable responses of individual cells
growing in structured populations, indicating that the phenotypic heterogeneity has a deterministic origin. The
model further showed that spatio-temporal dynamics in H,O» concentration were dictated by the H,O, scavenging
capacity and morphology of cells in the local environment. Hence, oxidative stress response fluctuations were in
fact the result of a precise and rapid feedback between each cell and its immediate environment. Although single
cells optimise their individual responses, the formation of short-range H,O, gradients by their scavenging
activities increases stress tolerance at the population level and leads to spatial variation in mutation rates.

INTRODUCTION

Bacteria rely on sensory and gene regulatory systems to respond to changes in the conditions of their immediate
environment. These systems generate predictable changes in the average gene expression level of cell populations,
but the stochastic nature of the underlying molecular processes leads to heterogeneity in the responses between
individual cells. Consequently, even cells that experience identical environmental conditions exhibit unpredictable
variation in their phenotypes (Spudich & Koshland, 1976). Genes associated with stress responses show
particularly high levels of variation (Silander et al., 2012). One explanation is that phenotypic heterogeneity can
be beneficial when adverse conditions threaten the survival of a clonal bacterial population (el Meouche et al.,
2016; Gefen & Balaban, 2009; Veening, Stewart, et al., 2008; Vincent & Uphoff, 2020); such a bet-hedging
strategy can increase the survival probability of the population even though most cells do not maximise their
individual fitness (Veening, Smits, et al., 2008). Another explanation for the ubiquity of phenotypic heterogeneity
during stress is that gene expression is inherently noisy (Elowitz et al., 2002; Golding et al., 2005; Pedraza & van
Oudenaarden, 2005; Rosenfeld et al., 2005; Silander et al., 2012). According to theory, there is a fundamental
trade-off between the speed and the accuracy of a gene regulatory response (Lan et al., 2012). When the speed of
gene induction is crucial for survival, noise in the response amplitude may be inevitable. For example, oxidative
stress caused by exposure to reactive oxygen species (ROS) is rapidly lethal (Barshishat et al., 2018; Imlay, 2013;
Ma & Eaton, 1992). Thus, genes of ROS scavenging enzymes (e.g. catalase and peroxidase) are induced in
Escherichia coli cells within minutes after induction of oxidative stress (Aslund et al., 1999; Lagage et al., 2022).
It would thus be expected that these genes exhibit particularly noisy expression, and this was indeed observed in
several studies with different types of ROS treatments (de Martino et al., 2016; Lagage et al., 2022; Mitosch et
al., 2017; Patange et al., 2018). However, whether phenotypic variation during oxidative stress is truly the result
of unavoidable molecular fluctuations, a population bet-hedging strategy, or caused by other factors is unknown.

Besides uncertainty about the functional consequences of phenotypic heterogeneity, its molecular origins are also
complex and incompletely understood. Heterogeneity in gene expression at a single-cell level is generally
attributed to the stochastic activation and binding of transcription factors(Uphoff et al., 2016), the synthesis of
mRNAs and proteins in bursts(Golding et al., 2005), the random partitioning of molecules between sister cells
during cell division(Huh & Paulsson, 2011), and changes in gene copy number over the course of DNA replication
(M. Wang et al., 2019). These processes lead to variable abundances of proteins even when the average expression
rates are constant across cells. Besides instantaneous responses to current conditions, cells also maintain memory
of past conditions (Mathis & Ackermann, 2016; Veening, Stewart, et al., 2008; Wolf et al., 2008). The duration
of memory is generally set by the cell growth rate, which overall determines the balance between the production
and dilution of molecules as cells elongate and divide (Kiviet et al., 2014; Sampaio et al., 2022). Because stress
conditions affect growth rates, complex feedback arises between the stress level and gene expression dynamics.
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Variation in cell growth and morphology can also affect the influx, dilution, and reaction-diffusion dynamics of
stressor molecules such as ROS (Lapinska et al., 2022; Ojkic et al., 2022; Sampaio et al., 2022). Furthermore,
cells in a population can interact and modulate their environment in response to stress (Dal Co et al., 2020; Snoussi
et al., 2018; van Gestel et al., 2021). As such, it is notoriously difficult to disentangle the primary stochastic
sources of phenotypic heterogeneity from secondary deterministic effects. This has been exemplified in studies
that revisited the phage lysogenic switch and discovered that its apparent stochastic behaviour can at least partly
be explained by previously unobserved deterministic processes of the host cell (Golding, 2018; Snijder &
Pelkmans, 2011; St-Pierre & Endy, 2008).

Hydrogen peroxide (H»0O>) is a major ROS that is generated as a by-product of aerobic metabolism under various
stresses (Chiang & Schellhorn, 2012; Kohanski et al., 2010; Sen & Imlay, 2021). In addition, bacteria can be
exposed to H>O» in the environment, for example, from host defences or competing bacterial species (Dong et al.,
2015; Imlay, 2019; Passo & Weiss, 1984). Reaction of H,O» with iron leads to the formation of hydroxyl radicals
that damage DNA and other essential biomolecules (Chiang & Schellhorn, 2012; Gruber et al., 2022; Lagage et
al., 2022; Sen & Imlay, 2021). The transcription factor OxyR senses an overabundance of H,O, by oxidation and
formation of a disulphide bond, and subsequently induces the genes of H,O, scavenging enzymes (Aslund et al.,
1999; Mishra & Imlay, 2012; Sen & Imlay, 2021). Oxidised OxyR also induces the glutaredoxin GrxA, which
reduces OxyR and thereby enables deactivation of the response (Dubbs & Mongkolsuk, 2012). H,O, permeates
the bacterial cell envelope (Seaver & Imlay, 2001), implying that a higher density of cells that actively scavenge
H,0, increases the survival of individual cells and by extension the stress tolerance at the population level
(Cochran et al., 2000; Ma & Eaton, 1992; Raval et al., 2021).

Overall, these considerations suggest that variability in the responses of bacteria to oxidative stress cannot merely
be explained by fundamental gene expression noise but that cellular interactions and growth dynamics could also
play an important role. Bacteria may maximise their individual fitness at a single-cell level or exploit phenotypic
heterogeneity to improve the chances of population survival. Here, we devised a strategy to pinpoint sources and
consequences of oxidative stress response heterogeneity by analysing E.coli cells that are growing in structured
populations.

RESULTS

Micro-scale spatial gradient of the H20: stress response in structured cell populations

We used the “mother machine” microfluidic device for single-cell fluorescence imaging under constant growth
conditions (P. Wang et al., 2010). The device consisted of an array of 25 pm long and 1.2 pum wide growth trenches
that open to a perpendicular channel with constant medium flow [Figure 1A]. Each trench contained 7 + 2 cells
with an average length of 2.6 + 0.7 um per cell (+ std) [Figure S1A]. We used a strain with a transcriptional
reporter for the OxyR response on a low copy-number plasmid (PgrxA4-CFP) (Zaslaver et al., 2006). A
constitutively expressed Prnar-mKate2 fluorescent protein served as a cytoplasmic label for automated cell
segmentation and detection of cell division events. After a period of unperturbed growth, the growth medium flow
was changed to medium containing 100 uM H,O,. Cells activated the oxyR response after a delay of 12.4 + 2.1
min following the onset of treatment. Pgrx4-CFP expression peaked after 38 + 10.8 min and subsequently
stabilised at a lower steady-state expression level that was sustained by the constant flow of fresh medium with
H,0O; into the growth trenches [Figure 1B]. Other transcriptional reporters regulated by OxyR, PkatG-CFP and
PahpC-CFP, showed qualitatively similar expression dynamics [Figure S1B-D]. Treatment with 100 pM H>0,
also caused an instantaneous drop in the rate of cell elongation [Figure 1C]. However, following OxyR activation,
cell elongation recovered to pre-treatment rates, indicating complete adaptation to 100 uM H>0O,.

The magnitude of the oxidative stress response was highly variable across all cells present in the microfluidic
trenches [Figure 1D, S1B]. The mother machine device is popular for studies of cellular heterogeneity because
the environmental conditions are believed to be so uniform that any phenotypic variation can be attributed to
intracellular noise sources. However, this assumption is rarely tested rigorously. Here, we noticed that cells at the
open end of the trenches exhibited higher OxyR reporter expression compared to cells located at the closed end
during H,O; treatment [Figure 1A-B, D, Movie S1]. By analysing cells according to their position in the trenches,
we found that the average magnitude of the OxyR response decreased from the open to the closed end of the
trench. The effect of H,O» treatment on cell elongation was also reduced with increasing distance from the open
end [Figure 1C]. These observations revealed that the oxidative stress response is very sensitive to a cell’s local
environment, wherein the stress level decays on a scale of a few micrometres away from the source of treatment.
To test the relevance of this steep gradient in bacterial microcolonies, we applied 10 mM H,O; treatment (higher
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concentration than microfluidics to account for cell density dependent protection effect) onto a colony grown on
agarose pads and observed a higher PgrxA-CFP response along the edge of the colony compared to the interior
[Figure 1E-F].

Machine learning model predicts single-cell responses to H20>

Although a cell’s position in a trench accounted for a part of the observed phenotypic heterogeneity, we found
that the magnitude of the stress response was variable even between individual cells located at the same position
in the trenches, such as the “mother cells" positioned at the closed ends [Figure 1G-H]. The magnitude of the
initial response peak shortly after treatment showed even higher cell-to-cell variation than the fluctuations of the
response during steady-state [Figure S1E]. Notably, the initial delay time of the response was much more uniform
across mother cells, whereas the time to reach the expression peak was variable and correlated with the peak
response magnitude of each cell (Pearson’s R = 0.399, p = 10-'%) [Figure 11-J]. This indicates that while cells can
reliably sense the onset of H>O, stress and respond rapidly, the response magnitude depends on an unidentified
factor that varies substantially between cells.

This heterogeneity could be caused by a variety of mechanisms, including molecular stochasticity in the specific
regulatory circuits or general gene expression machinery (Golding et al., 2005; Uphoff et al., 2016), cell-to-cell
variation in growth or morphology(Lapinska et al., 2022; Ojkic et al., 2022; Sampaio et al., 2022) , variable cell-
to-cell interactions (Dal Co et al., 2020; Snoussi et al., 2018; van Gestel et al., 2021), or differences in the local
environment of cells (Snoussi et al., 2018; van Vliet et al., 2018). To pinpoint the mechanisms, we designed a
machine learning model using random forest regression [Figure 2A]. We computed 126 features based on the
time-series data of cell size, shape, and growth rates for each mother cell as well as the other cells present in the
same trench (Table S1). The model was trained to predict the peak intensity values of the PgrxA-CFP reporter
after the onset of H,O; treatment from 80% of the observed mother cells and tested on the remaining 20% of
mother cells (790, unseen during model training). The model predicted the magnitude of the oxidative stress
response for individual cells with a mean accuracy of ~70% [Figure 2B, Table S2]. This was surprising as the
model did not include any features based on the Pgrx4-CFP signal itself. The apparent noisiness of the stress
response is therefore not a consequence of unpredictable molecular fluctuations but has a deterministic origin.
Another curious aspect of the model was that it was able to predict Pgrx4-CFP responses for cells treated with a
range of H>O; concentrations (37.5 — 100 uM) although the concentration itself was unknown to the model. Hence,
the features extracted from cell growth characteristics and morphology were sufficient to deduce the underlying
H,0O; concentration [Figure S2B, Table S3, S4].

Our machine learning approach eased the way to pinpoint the sources of cellular heterogeneity. The features that
contributed the most to the predictive power (~66%) of the model related to the characteristics of what we term
“barrier cells”, i.e. the cells located between the mother cell and the open end of each trench [Figure 2C]. The
strongest features accounting for ~53.5% of the total predictive power were (i) the cumulative length of the barrier
cells in a trench, and (ii) the combined surface area-to-volume ratio of all the barrier cells in a trench. In fact, a
model that contained only features of the barrier cells and no features of the mother cell was still able to predict
mother cell responses with high accuracy [Figure S2A]. Hence, it appears that an individual cell’s stress response
magnitude does not depend on its own characteristics or location but can be accurately predicted from the number
and morphology of its neighbours.

Variation in the spatial structure of the micro-environment causes oxidative stress response heterogeneity

To understand the apparent role of cell-to-cell interactions in the oxidative stress response, we designed a
microfluidic experiment with a variable number of cells per trench at the time of treatment (5 £ 2 cells) [Figure
S3A], instead of filling all growth trenches completely. Under these conditions, the magnitude of the oxidative
stress response of the mother cells became even more variable [Figure S3B-C]. PgrxA4-CFP intensities of mother
cells decreased when an increasing number of barrier cells was present, suggesting that these are protecting the
mother cell from H>O, [Figure 3A-B]. The number of barrier cells fluctuates as cells divide and are pushed out of
the open end of the trenches. Although the cell-average reporter expression was stable during constant H,O»
treatment, individual mother cells showed dynamic fluctuations at steady-state [Figure 3C]. Cross-correlation
analysis showed that these expression fluctuations were negatively correlated with the variation in the number of
barrier cells in the same trench [Figure 3D, S4]. The negative cross-correlation peaked at a lag time of 4.5 £ 1.5
min, showing that fluctuations in the number of barrier cells preceded changes in PgrxA-CFP expression. Hence,
the OxyR response is exquisitely sensitive and rapidly responds to very subtle changes in a cell’s micro-
environment, such as the division or disappearance of a single cell in the vicinity. Based on calibration experiments
with different H,O» concentrations [Figure SSA-B], we inferred the local extracellular HO, concentration from
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the PgrxA-CFP intensity of a cell. This showed an exponential decrease of HO, concentration from the open end
of the trench and each barrier cell decreased the local H>O concentration by 32.3 &+ 4.6% [Figure S5C].

The response variation persisted even when restricting the analysis to mother cells with a fixed number of barrier
cells, especially when that number was small [Figure 3E]. This indicates that variation in the characteristics of the
barrier cells also propagates to the mother cell, whereas such variation averages out when the number of barrier
cells is larger. Indeed, the Machine Learning model pointed at the surface area-to-volume ratio of the barrier cells
as an important feature that determines mother cell responses besides the total length of the barrier cells. To test
this directly, we reasoned that an increased number of barrier cells at a constant cumulative volume would result
in a larger total surface area-to-volume ratio. As predicted, we found that the PgrxA-CFP magnitude decreased
with the surface area-to-volume ratio of barrier cells while their cumulative volume was kept constant [Figure
3F]. Therefore, fluctuations in the number, size, and morphology of neighbouring cells define an individual cell’s
dynamic response to H>O». Notably, the basal expression of PgrxA4-CFP without H>O, treatment was more uniform
across cells and unaffected by any variation in barrier cells [Figure S5D].

Intracellular scavenging enzymes create a local HO: gradient

To explore how barrier cells create an exponential H>O; gradient, we used microfluidic chips in which the trenches
were only partially filled with cells. The outermost cells in each growth trench exhibited the same level of stress
response irrespective of their distance from the open end, showing that the geometry of the trenches itself does
not restrict H>O, diffusion [Figure 3A, 4A]. However, widening the growth trenches from 1.2 um to 1.4 pm
reduced both the barrier effect [Figure 4B] and cell-to-cell variation [Figure S6], showing that a decrease in cell
density permits a higher and more uniform H,O; flux. In principle, this effect could be caused by the cell mass
passively blocking H,O, diffusion, or by active degradation of H,O, by the barrier cells.

The latter mechanism is likely considering that H>O> is rapidly scavenged by catalase which is induced by the
OxyR response. The Damkoéhler number (a dimensionless quantity that relates the reaction rate to the rate of
diffusion) is ~4-103 for the ratio of the catalase scavenging rate (5.4-10* s, (Mishra & Imlay, 2012)) to the
diffusion of H,O> across the E. coli cell envelope (1.6:10” m/s, (Seaver & Imlay, 2001)). Hence, the scavenging
rate is limited by the diffusion into cells, coherent with our finding that the protective effect of the barrier cells
was determined to a large extent by their surface area. To experimentally verify the contribution of H,O,
scavenging towards the creation of an exponential stress gradient, we loaded trenches with a mix of a AoxyR strain
and a wild-type strain with Pgrx4-CFP reporter [Figure 4D]. AoxyR cells can scavenge endogenously produced
H>0, but cannot induce catalase and other oxidative stress response genes. Indeed, the gradient in Pgrx4-CFP
reporter intensity was disrupted and wild-type cells positioned behind AoxyR cells showed elevated stress
responses [Figure 4C-D, S8A, Movie S2]. In contrast, wild-type cells had a marked protective effect on AoxyR
cells, consistent with bulk culture measurements (Ma & Eaton, 1992). On their own, AoxyR cells were unable to
grow during 100 uM H»O, treatment [Figure S7, Movie S3]. The presence of wild-type cells acting as a barrier
rescued the growth of AoxyR cells until the wild-type cells exited the trench [Movie S4-5]. Bacterial colonies
where wild-type strain with Pgrx4-CFP reporter was mixed with the AoxyR strain exhibited a higher and more
uniform stress response from the edge to the interior than in a clonal wild-type colony [Figure S§B-D].

Barrier cells obtain high H>O> tolerance via gradual adaptation

Variation in the local H,O, concentration determined divergent cell fates after H,O, treatment [Figure SA]. A 1-
hour pulse with 500 uM H»O, concentration stalled the growth of 99% of mother cells [Figure SB]. We found that
13% of mother cells subsequently recovered growth and these individuals were protected by more barrier cells
than those that irreversibly stopped growth [Figure 5B]. Furthermore, the delay before the surviving cells started
to regrow after treatment removal was variable and negatively correlated with the number of barrier cells [Figure
5A, C]. Elongation rates of the outermost cells in the trenches revealed that >50 pM H,O> led to growth inhibition
in the absence of cellular cross-protection [Figure S9]. The onset of 100 uM H,O, treatment completely halted
the growth and division of the ~1- 2 outermost barrier cells per trench, while the cells in the interior of the trenches
only transiently slowed in growth and quickly recovered unperturbed elongation and division rates despite
ongoing H»O, treatment [Figure 1C]. This raises the question of how the barrier is first replenished and then able
to withstand apparently lethal concentrations of H,O; to provide continuous protection for the cells in the interior.
After the initial demise of the outermost cells, the surviving interior cells divide and push live progeny towards
the stress source and thereby replace the barrier cells that had been killed by the sudden onset of treatment.
Therefore, rather than being exposed suddenly, barrier cells are able to adapt to a gradual increase in H>O,
concentration. Such gradual adaptation is known to enhance survival of higher stress levels (Imlay, 2008; Lagage
et al., 2022; Rodriguez-Rojas et al., 2020). To confirm this “priming” effect underlies the high stress tolerance of
the barrier cells, we applied a gradual increase of HO» concentration reaching up to 500 pM over 18 minutes
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[Figure 5A], which greatly increased the fraction of cells that recovered growth after H,O, removal, compared to
sudden treatment with 500 uM H»O» [Figure 5B].

To understand the spatio-temporal dynamics of adaptation, we tracked individual cells as they moved from birth
at the closed end of the trench until they exited the open end [Figure 6A]. Pgxr4-CFP expression increased rapidly
over time as cells traverse the spatial H,O» gradient [Figure 6B, S10]. This is caused by two effects; first, the
exponential increase in H,O, concentration along the length of the trench, and second, the increasing speed of
movement as cells are pushed by exponentially growing cells located deeper in the trench. The speed varies
between cells due to fluctuations in elongation rates and the number of cells per trench [Figure 6C]. Cells that had
the same number of barrier cells and moved faster to the trench opening showed a steeper response than slower
moving cells [Figure 6D]. This effect was not seen in untreated conditions [Figure S11]. When mobile cells
experience a gradient of H>O, in space and time, successful adaptation requires that the induction rate of
scavenging enzymes matches the increasing influx of H,O». Indeed, movement speed and the response induction
rate were correlated in individual cells (Pearson correlation coefficients = 0.76) [Figure 6E]. Next, in order to
isolate the effect of the spatial gradient on the response induction rate, we analysed cells that moved with similar
speed. In this case, cells with fewer barrier cells had a higher response induction rate because they experience a
steeper spatial H,O, gradient [Figure 6F]. Together, the multiplicative effects of accelerated movement and
increasing stress gradient lead to a rapid induction of the response as cells are pushed towards the trench opening.

Rapid response to environmental fluctuations overwrites cellular memory

In principle, a cell’s gene expression level is shaped by its immediate response to the current local environment
as well as its memory of past stress exposure (Mathis & Ackermann, 2016). We thus explored if response
heterogeneity can be traced back to a cell’s lineage history. Cytoplasmic proteins are randomly equipartitioned at
cell division, so the CFP reporter intensities of sister cells were closely correlated immediately after birth [Figure
S12A]. However, the intensity of the cell located closer to the open end of the trench quickly diverged from the
sister [Figure 6F, S12B]. Specifically, the intensity difference between the two sisters increased exponentially
over time because the cell closer to the open end of the trench experiences a higher H>O, concentration and itself
acts as a barrier for the cell located below. This effect was much less pronounced for sisters born with a larger
number of barrier cells because they move more slowly in a shallower H,O, gradient. Hence, any stress response
memory is erased quickly for cells that move rapidly up the H>O, gradient at the open end of the trenches, whereas
cells at the closed end experience more uniform conditions and could therefore maintain memory across
generations.

To test this, we quantified the difference in CFP reporter intensities between adjacent cells that were either related
as sisters (separated 1 generation before), cousins (2 generations separated), or not related (>2 generation
separated). There was less variation in the responses between sister pairs than between cousins or distantly related
cell pairs [Figure 6G, SI3A]. As predicted, sisters and cousins became more correlated with increasing number
of barrier cells [Figure 6G, Figure S13B]. Therefore, although oxidative stress response memory can in principle
persist over generations when the environment is constant, changing environmental conditions dictate the
instantaneous response level and effectively overwrite cell lineage memory. When H,O» treatment was stopped,
reporter intensities started to drop quickly and decayed exponentially with a half-life that matched the cell
doubling time [Figure S14A-B]. The PgrxA-CFP decay rate was variable across cells but closely correlated with
the growth rate, which explained the observed cell-to-cell variation in the response deactivation [Figure 6H].

Spatial gradients in H>O: lead to cellular heterogeneity in mutagenesis

Because ROS can generate mutagenic DNA damage, we reasoned that spatial and temporal fluctuations in ROS
concentrations may lead to mutational heterogeneity across cells in a population. It has been shown that variation
in the timing (Uphoff, 2016; Vincent & Uphoff, 2021) or magnitude of a stress response (Pribis et al., 2019) can
cause cell-to-cell variation in mutation rates, but potential effects of spatial stress gradients on mutagenesis have
not been explored. We previously reported that H,O» treatment causes a burst of mutations prior to induction of
the oxidative stress response in E. coli (Lagage et al., 2022). Here, we used the same approach with a MutL-
mY Pet fusion (which forms foci at sites of DNA mismatches) to monitor the occurrence of DNA replication errors
in single cells (Robert et al., 2018; Uphoff, 2018). Cells showed a burst of DNA replication errors immediately
after the onset of treatment [Figure 7A-B], and the magnitude of this burst decreased steeply with increasing
number of barrier cells [Figure 7C]. There was no spatial gradient in mutagenesis for cells growing in wider
trenches [Figure 7C], consistent with the uniform stress response observed under these conditions. Furthermore,
bacterial colonies with 10 mM H>O» treatment exhibited a higher frequency of DNA mismatch foci along the edge
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of the colony compared to the interior [Movie S6]. Therefore, mutational heterogeneity can arise from local
cellular interactions that generate spatial variation in stress level between cells.

DISCUSSION

The presence of phenotypic heterogeneity within bacterial populations has been well documented. However, the
exact sources and functional consequences of the heterogeneity are generally still difficult to pinpoint. One can
distinguish three possible scenarios: (i) The heterogeneity serves a functional purpose for the fitness of the
population. Bacteria can utilise stochastic molecular processes to randomise their behaviour as a bet-hedging
strategy, such that at least a fraction of cells is well adapted to unpredictable environmental changes. (ii) The
heterogeneity does not have any functional benefit itself but reflects the limited accuracy by which bacteria can
sense their environment and regulate responses due to unavoidable biochemical noise. For example, bacteria may
prioritise the speed of a response at the cost of accuracy. (iii) Individual cells maximise their own fitness accurately
and the population heterogeneity is driven by an underlying deterministic process that remains hidden or appears
random because it has not been thoroughly characterised yet. These scenarios are not necessarily exclusive, and a
part of the apparent heterogeneity may also stem from non-biological measurement noise.

Studies on the oxidative stress response in bacteria have revealed characteristics that partially support each of
these contrasting models (Cochran et al., 2000; de Martino et al., 2016; Hong et al., 2020; Patange et al., 2018;
Sampaio et al., 2022). To resolve this uncertainty, we characterized the spatio-temporal behaviour of single E.
coli cells growing in defined structured populations under a constant treatment of H,O,. We observed micrometer-
scale spatial gradients of the stress response across cells in the population. Furthermore, individual cells at fixed
positions in the population exhibited substantial fluctuations in gene expression. Machine learning analysis
complemented with microfluidic experiments not only showed that the response fluctuations had a largely
deterministic origin but the approach also eased the screening of a large number of features of single cells and
their micro-environment to understand the underlying mechanism. Contrary to the apparent noisiness of the
response, individual cells in fact tune their gene expression extremely precisely to the local H,O, concentration.
Induction of scavenging enzymes generates steep spatial HoO, gradients, with each cell contributing to a ~30%
reduction of H»>O; in its vicinity. Temporal variation in H»O, concentrations result from subtle changes in the
scavenging capacity and surface area of cells. Ultimately, seemingly random fluctuations in stress response
expression are dictated by tight feedback between a cell and its local environment.

The accuracy of the oxidative stress response is likely based on the rapid uptake of H,O, together with its high
reactivity and specificity towards OxyR (Lee et al., 2004). Induction of scavenging enzymes and GrxA reductase
lowers the intracellular H>O» concentration and deactivates OxyR in a negative feedback loop, which increases
response speed and accuracy in general (Alon, 2007). The formation of short-range ROS gradients protects
bacteria residing in communities such as biofilms, and may also reflect the potential utility of these molecules for
local cell-to-cell communication (D’ Autréaux & Toledano, 2007; Erttmann & Gekara, 2019). Because oxidative
stress is mutagenic, gradients in H>O, concentration cause spatial variation in the frequency of DNA replication
errors across cells. Therefore, local environmental heterogeneity can diversify mutation rates among cells growing
in a structured population. Indeed, our observation that H,O»-induced mutation rates decrease with increasing cell
density matches results obtained in liquid bulk culture (KraSovec et al., 2014, 2017).

Although our results overall support scenario (iii) that individual cells optimise their own oxidative stress response
according to the ROS levels in their immediate environment, this strategy also leads to benefits at the population
level as predicted by scenario (i). Sudden exposure to high H,O, concentrations kills cells on the outside of a
dense population, but the initial H>O, gradient created by these cells allows the survivors in the interior to regrow
and replenish the gradient for continuous protection. Therefore, the spatial gradient also has a temporal effect by
allowing cells to traverse a gradual increase in stress level and obtain high tolerance via the priming effect.

We expect our combination of single-cell imaging and machine-learning to be generally applicable towards
understanding sources of heterogeneity and its effects on stress adaptation from single cells to populations.
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Figure 1: Spatial gradient in oxidative stress response: (A) Snapshot of E. coli cells with transcriptional
reporter PgrxA-CFP in growth trenches after 3 hours of 100 uM H»O, treatment. (B) PgrxA4-CFP intensities with
continuous 100 uM H,O, treatment added at time 0 min (shaded area) averaged across cells at specific positions
in the growth trench (black line: mother cells at closed end; red line: cells at open end, 3 experimental repeats).
(C) Mean log elongation rate for cells at different positions in the growth trench with 100 pM H,0O, treatment
added at 0 min (black line: mother cells at closed end; red line: cells at open end, 3 experimental repeats). (D)
Distribution of PgrxA-CFP intensities of cells with different number of barrier cells computed for 3 to 6 hours
after start of 100 uM H»O, treatment (black line: mother cells at closed end; red line: cells at open end)
(~180,000 data points for steady state histograms, 3 experimental repeats). (E) Histograms of Pgrx4-CFP
intensity for cells at different positions in a microcolony after 30 min of 10 mM H»O» treatment. (F) Pgrx4-CFP
snapshots of a microcolony under 10 mM H>O» treatment (Time post treatment annotated in the figures). (G)
Kymograph of one growth trench with Pgrx4-CFP intensities and lineage tracing of cells over time with 100 pM
H>0; treatment added at time 0 min. (H) PgrxA-CFP intensities of individual mother cells over time (example
cells highlighted in colour). (I) Temporal variation of the oxidative stress response across mother cells.
Coefficient of Variation (CV, standard deviation/mean) of the response induction time after 100 uM H>O,
treatment (time until Pgrx4A-CFP > 1480 a.u.) and the time to reach the PgrxA-CFP peak intensity. CV was
computed for all mother cells in a single experiment and collated for different repeats. (bar chart represents the
mean and standard deviation, **** p<0.0001, 3 experimental repeats). (J) Correlation between PgrxA-CFP peak
amplitude and peak time (each dot represents one mother cell) (~3200 cells, 3 experimental repeats). Orange
line represents the linear regression fit with R? =0.399.
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Figure 2: Machine learning predicts single cell response heterogeneity: (A) A random forest machine
learning model predicts Pgrx4-CFP peak intensities of ~789 mother cells (orange). It uses features that describe
the phenotypic characteristics of the mother cell (magenta) and the other cells in the local environment of each
trench (barrier cells, green). (B) Pgrx4-CFP peak predicted by the model plotted against the experimentally
measured Pgrx4-CFP peak (each dot represents one mother cell) (data in Table S2). (C) Feature importance
plots show the relative contribution of the 126 input features to the predictive power of the model (feature
names in Table S1). Barrier cell features (green) are more important than the mother cell features (pink). The
two most important features are highlighted and account for 53.5% of the predictive power.
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Figure 3: Variation in the spatial structure of the micro-environment explains response fluctuations: (A)
Snapshot of PgrxA-CFP under 100 uM H>O» treatment for growth trenches with variable number of cells
(mother cells marked with yellow arrow, outermost cells with red arrow). (B) PgrxA-CFP peak intensity
amplitude under 100 uM H>O, treatment plotted against the average number of barrier cells around the time of
treatment (£ 9 min; each dot represents one mother cell) (~3250 cells, 3 experimental repeats). (C) Example
time-traces of PgrxA-CFP intensity (orange) for mother cells and the number of barrier cells in the same trench
(green) with 100 uM H,O; treatment added at 0 min (shaded area). Curves were smoothed using a moving mean
filter with 45 min window. (D) Mean temporal cross correlation for PgrxA-CFP of mother cells against the
number of barrier cells per trench (example time traces shown in panel C), when mean Pgrx4-CFP intensity has
reached steady-state from 2 hours after start of 100 uM H>O, treatment until end of experiment (~11 hours)
(~950 cells, 2 experimental repeats). Minima is represented by the orange diamond. (E) Coefficient of Variation
for PgrxA-CFP intensity of mother cells with different number of barrier cells (CV: std/mean was computed for
all mother cells in a single experiment, error bars represent std across experiments). (F) PgrxA4-CFP intensity for
cells with the same total area of barrier cells (18, 15 or 12 units) plotted against the cumulative surface area to
volume ratio of the barrier cells (3 experimental repeats).
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Figure 4: Intracellular scavenging enzymes create short-range local H.O: gradients: (A) Mean Pgrx4-CFP
intensity for outermost cells in growth trenches (marked by red arrows in Figure 3A with total number of cells
per trench ranging from 1 to 6). 100 uM H>O, treatment added at 0 min (shaded area) (4 experimental repeats).
(B) PgrxA-CFP mean intensities for trenches with widths of 1.2 pm (solid lines) and 1.4 pm (dashed lines) for
cells with 0 (red), 3 (blue) and 6 (black) barrier cells (3 experimental repeats each). (C) Snapshot of merged
PgrxA-CFP (cyan) and mKate2 cell marker (red) intensity for trenches with a mix of WT and AoxyR strain
under 100 uM H>O, treatment (AoxyR cells marked with arrow). (D) Mean Pgrx4-CFP intensity for WT mother
cells in growth trenches containing a mix of barrier cells with at least one AoxyR cell or purely WT barrier cells
(~1600 mother cells, 3 experimental repeats, error bars represent 25" and 75" percentile, ** p<0.01).
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Figure 5: Local environmental variation determines divergent cell fates after H.O: treatment: (A)
Individual mother cell length traces with gradual increase in H>O, concentration from 25 uM to 100 uM to 500
UM (shaded area), followed by recovery without treatment. (B) Proportion of mother cells that recover growth
within ~11 hours after the removal of 500 uM H,O, treatment that was applied in a single step (pink) or
gradually (green, as illustrated in panel A) plotted against number of barrier cells at the time of treatment (=3
experimental repeats each; line plot with mean and standard deviation). (C) Time of regrowth of mother cells
after gradual 500 uM H,O, treatment (as illustrated in panel A) plotted against number of barrier cells at the
time of treatment. (~300 cells; boxplot with median, 25% and 75" percentile; *p<0.05, ** p<0.01, *** p<0.001).
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Figure 6: Spatio-temporal response dynamics overwrite cell lineage-associated memory: (A) Pgrx4-CFP
intensities for a representative mother cell and its progeny that move towards the opening of the growth trench.
100 uM H,O; treatment added at 0 min (shaded area). (B) Effect of cell movement on Pgrx4-CFP expression in
a spatial H>O» gradient: Mean increase in PgrxA-CFP intensity (APgrxA) over time when the population
response has reached steady-state (from 2 hours after start of 100 pM H,O, treatment until end of experiment
~11 hours). Each curve represents cells moving towards the trench opening from a different starting position
(black line: mother cells at closed end; red line: cells at open end) (3 experimental repeats). (C) Effect of cell
position in the growth trench on the movement speed: Each curve shows the mean movement Ax towards the
trench opening of cells with different starting position (black line: mother cells at closed end; red line: cells at
open end) (3 experimental repeats). (D) Response induction rate depends on the cell movement speed: Each
point represents the total increase in Pgrx4-CFP and total movement of a single cell traced for 45 min. Colours
represent the starting position according to the number of barrier cells (~2800 total number of cells, 3
experimental repeats). (E) Response induction rate depends on cell position in the growth trench: Relative
increase in PgrxA-CFP per distance for cells that move 7 + 0.2 pm in 45 min. Number of barrier cells represents
the starting position ( ~200 total number of cells, 3 experimental repeat, *** p<0.001, **** p<0.0001 ). (F)
Responses of sister cells diverge over time: Pgrx4-CFP intensity difference between sister cells (S1 and S2)
followed for 30 minutes post division when the response has reached steady-state. Intensity differences were
normalised by the intensity of the cell they arose from. Number of barrier cells represents the starting position at
the time of cell division (~5400 pairs, 3 experimental repeats). (G) Effect of cell position on response memory:
Pearson’s correlation coefficient for Pgrx4-CFP intensities of adjacent cell pairs with variable number of barrier
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cells, related as sisters (S, solid), cousins (C, dash-dotted) or not related (NR, dotted) (3 experimental repeats).
(H) Heterogeneous growth rates explain variability in the deactivation rate of the response: (i) Pgrx4-CFP
intensity (thick lines) and cell lengths (thin lines) of 2 representative mother cells (black and orange plots
respectively) after removal of 500 uM H,O; at time 0 min, showing that faster growth leads to a faster decay.
(i1) Correlation between PgrxA-CFP intensity decay (dImean/dt) and cell growth rate (dArea/dt) after removal of
500 uM H,0; (~1000 mother cells).
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Figure 7: Spatial heterogeneity in H20:2 concentration causes cell-to-cell variation in mutagenesis: (A)
Kymograph of one growth trench with PgrxA-CFP intensities under 100 uM H,O, treatment added at time 0
min. Blue crosses represent MutL-mYPet mismatch foci. (B) Mean rate of DNA mismatch foci (per cell per
minute, blue) and Pgrx4-CFP mean intensity (black) for all cells in the growth trenches (3 experimental
repeats). (C) Dependence of the mismatch rate on cell position: Amplitude of the DNA mismatch rate peak for
cells with different number of barrier cells under 100 uM H0O, treatment for growth in 1.2 pm (blue) and 1.4
um (orange) wide trenches (3 experimental repeats each).
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