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Reliable prediction of free energy changes upon amino acidic substitutions (ΔΔGs) is crucial to investigate their impact on 
protein stability and protein-protein interaction. Moreover, advances in experimental mutational scans allow high-through-
put studies thanks to sophisticated multiplex techniques. On the other hand, genomics initiatives provide a large amount 
of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computa-
tional field should keep the same pace and provide new tools for fast and accurate high-throughput calculations of ΔΔGs. 
In this context, the Rosetta modeling suite implements effective approaches to predict the change in the folding free energy 
in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. 
Their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols 
for ΔΔG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cum-
bersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free en-
ergy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Ro-
settaDDGPrediction assists with checking whether the runs are completed successfully aggregates raw data for multiple 
variants, and generates publication-ready graphics. We showed the potential of the tool in selected case studies, including 
variants of unknown significance found in children who developed cancer, proteins with known experimental unfolding 
ΔΔGs values, interactions between target proteins and a disordered functional motif, and phospho-mimetic variants. Ro-
settaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELE-
LAB/RosettaDDGPrediction.  
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Introduction 
	

Predicting the impact of amino acid substitutions in a 
protein or at a protein-protein interface is becoming 
more and more relevant as high-throughput sequencing 
data reveal a high rate of sequence polymorphisms of un-
known functional significance in protein-coding regions1. 
In this context, multiplex-based assays provide a massive 
amount of data that can be complemented by structural 
studies on the effects of protein variants 2–6. Further-
more, saturation mutagenesis is experimentally very ac-
cessible thanks to the advances in multiplex technologies. 

Therefore, molecular modeling approaches must keep 
the same pace and continue developing toward high-
throughput applications.  
A convenient and quantitative manner for assessing the 
impact of amino acid substitutions related to coding var-
iants is based on estimating the changes in Gibbs free en-
ergy of folding/unfolding or binding. In this context, sev-
eral computational approaches based on the analysis of 
protein structures are available to predict free energy 
changes upon mutation (ΔΔGs) in protein structures 7–16. 
These measurements can be used to classify the effect of 
disease-related variants on protein structural stability 
and, consequently, alterations of the cellular level or 
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propensity to aggregation or proteasomal degradation 
17,18,  along with functional effects due to local changes in 
the interactions with other proteins or biomolecules 19–
21.  
Rosetta provides a variety of protocols to estimate 
changes in free energy in terms of binding and fold-
ing/unfolding 8,11,12,16,22. Most of these protocols estimate 
the change in free energy as an average over the free en-
ergy changes calculated in an ensemble of paired wild-
type/mutated structures.  
Rosetta protocols for the prediction of free energy 
changes upon mutation are characterized by three fea-
tures: (i) the sampling method employed to generate the 
structural ensemble, (ii) the energy function used to 
quantify the free energy associated with each structure, 
and (iii) the degree of flexibility allowed in the structure 
to accommodate the mutation. Currently, three state-of-
the-art strategies are available in Rosetta to estimate the 
change in either folding or binding free energy upon mu-
tation. The first one, presented by Park and coworkers  16 
and referred to as cartddg, is designed to work on mon-
omeric proteins. It depends on sampling in Cartesian 
space (as opposed to internal dihedrals sampling), the 
ref2015 Rosetta energy function (Cartesian space ver-
sion), and small local backbone movements allowed in a 
three-residue window around the mutation site, together 
with side-chains movements within a 6 Å radius from the 
mutation site. The second protocol, cartddg2020, repre-
sents an updated variant of cartddg 8.  
The third protocol, developed by Barlow and cowork-
ers11 and named here flexddg, deals with estimating the 
changes in binding free energy upon mutation in a pro-
tein complex. It uses the “backrub” sampling method 13, 
which aims to recapitulate local backbone motions ob-
served in crystal lattices. The flexddg protocol seems to 
perform better with the talaris2014 energy 11 function. 
This protocol	 for	binding	 free	energies	relies	on	a	 local	
sampling	of	backbone	and	side	chains	for	residues	within	
an	8	Å	radius	from	the	mutation,	followed	by	global	opti-
mization	of	the	side	chains	
Rosetta is a feature-rich software suite under active de-
velopment, backed by a sizable community of users, and 
built over roughly 20 years. Running these protocols di-
rectly with Rosetta requires an extensive computational 
background and prior exposure to several Rosetta fea-
tures. These requirements may discourage users with a 
more biology-oriented skillset, despite the benefit that 
accurate predictions of free energy changes upon muta-
tions may bring to their research. Furthermore, Rosetta 
protocols for ΔΔG prediction are designed to be run con-
sidering one mutation at a time exclusively, making high-
throughput screenings cumbersome to set up. We re-
cently faced a similar challenge with implementing high-
throughput scans based on the FoldX free energy func-
tion and making them parallelizable, more easily ap-
proachable, and applicable to structural ensembles. This 
led to the development of MutateX 23. FoldX, however, is 
known to suffer from limitations due to backbone stiff-
ness during the sampling 24  and often low accuracy in 
predicting mutations with stabilizing effects on stability, 
even though most prediction methods are biased 

towards destabilizing mutations 24,25. Rosetta-based cal-
culations could offer a valuable complement to the ΔΔG 
estimates currently accessible with MutateX. Thus, we 
developed RosettaDDGPrediction, a Python wrapper to 
perform Rosetta-based protocols for ΔΔG prediction. Ro-
settaDDGPrediction’s outputs can also be converted to a 
format compatible with the MutateX plotting system, al-
lowing for an expanded visualization toolkit. Here, we il-
lustrate the applications and limits of the approach to 
four different cases of study, covering both methodologi-
cal and biological applications. At first, we focused on the 
comparison with experimentally determined unfolding 
ΔΔG values (Case Study 1) and the influence of using Al-
phaFold2 models as starting structures (Case Study 2). 
Then, we showed two examples of applications of biolog-
ical interest to study protein-protein interactions and 
post-translational modifications (Case Study 3) and to as-
sess the functional impact of mutations identified by 
whole genome sequencing to address cancer predisposi-
tion (Case Study 4).  
Results 
	

Overview of the package 
	

RosettaDDGPrediction	is	a	pure	Python	package	provid-
ing	a	uniform	and	easily	accessible	command-line	inter-
face	 to	 flexddg,	 cartddg,	 and	 cartddg2020	 protocols	 for	
the	calculation	of	free	energy	changes	upon	mutation.	It	
is	devised	to	help	users	unfamiliar	with	the	Rosetta	suite	
perform	mutational	scans	and	collect,	aggregate,	and	vis-
ualize	data	from	those	scans	in	an	intuitive	fashion.	In	Ro-
settaDDGPrediction,	 a	 “protocol”	 is	 intended	as	a	 set	of	
Rosetta	runs	and	Python-based	processing	steps,	which	
takes	 as	 inputs	 the	 three-dimensional	 structure	 of	 the	
protein	of	interest	and	a	list	of	mutations	to	be	performed,	
finally	returning	the	predicted	free	energy	changes	asso-
ciated	 with	 each	 input	 mutation.	 The	 flexddg	 protocol	
consists	of	only	one	call	to	the	rosetta_scripts	executable	
for	each	mutation,	which	performs	all	the	necessary	cal-
culations	as	defined	by	Barlow	and	coworkers	11.	On	the	
other	 hand,	 the	 cartddg	 protocol	 first	 energetically	 re-
laxes	the	input	structure	by	using	the	Rosetta	relax	pro-
gram	to	generate	an	ensemble	of	relaxed	conformations,	
followed	by	the	selection	of	the	most	suitable	one.	Finally,	
it	uses	the	cartesian_ddg	application	to	relax	the	structure	
further	 and	 perform	 the	 free	 energy	 calculations.	
cartddg2020	protocols	represent	updated	versions	of	the	
original	 cartddg	 protocols.	 Here,	 the	 relaxation	 is	 per-
formed	by	a	Rosetta	script	passed	 to	 the	rosetta_scripts	
executable,	and	then	cartesian_ddg	 is	run	on	the	 lowest	
energy	structure	produced	by	the	relaxation.	It	is	worth	
noting	that	 the	relaxation	procedure	produces	only	one	
structure,	as	per	the	original	files	provided	with	the	work	
first	describing	 the	cartddg2020	 protocol	 8.	However,	 if	
the	 user	 decides	 to	 produce	 several	 relaxed	 structures,	
the	most	 suitable	one	 (according	 to	user-selected	crite-
ria)	will	 then	be	passed	 to	 cartesian_ddg.	 The	 standard	
protocols	 are	described	 in	 specific	YAML	 files	provided	
with	the	package.	With	these	files,	expert	users	can	still	
tap	 into	 the	 full	 potential	 of	 the	 Rosetta	 interface	 by	
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providing	virtually	any	Rosetta-compatible	option	to	the	
executables	used	by	each	protocol.		
RosettaDDGPrediction	consists	of	four	main	executables	
(rosetta_ddg_run,	rosetta_ddg_check_run,	rosetta_ddg_ag-
gregate,	 rosetta_ddg_plot)	 performing	 different	 tasks	
(Figure	1).	Their	behavior	is	controlled	by	a	set	of	config-
uration	files,	which	can	be	fully	customized	to	fine-tune	
the	parameters	of	each	protocol,	aggregation	options,	and	
plot	aesthetics.	
rosetta_ddg_run	is	the	executable	responsible	for	running	
a	Rosetta	protocol	 to	predict	 free	energy	changes	upon	
mutation	over	a	set	of	selected	mutations.	Given	a	protein	
structure	in	PDB	format	and	a	set	of	mutations,	it	gener-
ates	all	the	data	structures	and	configuration	files	to	per-
form	 several	 runs	 in	 parallel,	making	 them	 straightfor-
ward	to	perform	and	making	the	most	of	modern	many-
cores	computing	infrastructures.	rosetta_ddg_run	can	op-
timize	 the	workload	 distribution	 over	 the	 available	 re-
sources	to	ensure	efficient	scheduling	of	the	runs,	thanks	
to	the	Dask	Python	package	operating	under	the	hood.	ro-
setta_ddg_run	easily	handles	multi-step	protocols,	requir-
ing	sequential	Rosetta	calls	and	possibly	processing	the	
output	data	between	the	steps.	For	example,	for	the	afore-
mentioned	 cartddg	 and	 cartddg2020	 protocols,	 ro-
setta_ddg_run	takes	care	of	both	Rosetta	calls	and	the	pro-
cessing	steps.		
Once	the	runs	are	completed,	users	can	perform	a	sanity	
check	 on	 the	 calculations	 using	 rosetta_ddg_check_run,	
which	identifies	problematic	runs	by	scraping	the	Rosetta	
output	files.	If	the	runs	have	been	completed	successfully,	
rosetta_ddg_aggregate	 can	aggregate	 raw	data	 from	 the	
large	numbers	of	collected	mutation	runs	into	easily	read-
able	 table	 files.	 These	 aggregate	 files	 contain,	 together	
with	the	calculated	differences	in	free	energy,	additional	

information	 about	 each	 mutation,	 the	 Rosetta	 energy	
function	used,	and	the	number	of	structures	generated	in	
the	 final	 ensemble	 of	 structures.	 rosetta_ddg_aggregate	
also	allows	generating	aggregate	outputs	compatible	with	
the	MutateX	plotting	system.	Indeed,	MutateX	offers	addi-
tional	 visualization	 tools,	 including	 density	 plots,	 logo	
plots,	distribution	plots,	and	summary	tables	that	can	be	
easily	navigated	23.	
Finally,	rosetta_ddg_plot	provides	plotting	utilities	to	ex-
plore	 the	aggregated	data	 through	 several	 visualization	
types,	 such	 as	 one-dimensional	 or	 two-dimensional	
heatmaps.	 The	 latter	 is	 particularly	 convenient	when	 a	
saturation	mutagenesis	scan	is	run	on	a	set	of	positions.	
The	contribution	of	each	term	of	the	energy	function	to	
the	 final	ΔΔG	values	may	be	visualized	as	a	stacked	bar	
plot,	where	positive	and	negative	contributions	add	up	on	
the	 corresponding	 semiaxes.	 Finally,	 since	 all	 protocols	
implemented	so	far	in	RosettaDDGPrediction	determine	
the	ΔΔG	value	associated	with	a	mutation	by	averaging	
over	the	values	produced	by	an	ensemble	of	structures,	
the	user	may	want	 to	 visualize	 the	distribution	of	 such	
values	to	investigate	the	source	of	potential	outliers	that	
may	bias	the	average.	In	this	case,	a	swarm	plot	displaying	
such	 values	 as	 separate	 data	 points	 is	 a	 very	 insightful	
overview	provided	by	rosetta_ddg_plot.	
To	guide	 the	user	on	 the	number	of	 cores	and	 time	 re-
quired	for	calculation,	depending	on	the	RosettaDDGPre-
diction	protocol,	energy	function,	and	protein	size,	we	re-
port	the	results	for	different	saturation	scans	in	Table	1.	
	
 
 
 

 
Figure 1. The RosettaDDGPrediction workflow and schematized plot types.	The first step consists in running the rosetta_ddg_run executable to 
obtain the predicted ΔΔG values for the changes in folding free energy (for monomeric proteins) or binding free energy (for protein complexes). Then, 
rosetta_ddg_check can be used to ensure that all runs have been completed successfully. Data aggregation can then be performed with ro-
setta_ddg_aggregate, and aggregate data can finally be visualized in different ways (heatmaps, bar plots, swarm plots) using rosetta_ddg_plot. 
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Case study 1 - prediction of changes in folding free en-
ergy upon mutations and comparison with experimental 
values from the ThermoMut database 
	

To illustrate the performance of the ref2015 energy func-
tion, we performed folding free energy calculations with 
both the cartddg (Figure 2) and the cartddg2020 (Figure 
S1) protocols and compared them to experimentally de-
termined unfolding ΔΔG values. The following section il-
lustrates, as an example, our findings when using the 
cartddg protocol. We downloaded the entire ThermoMut 
database 26 (ThermoMutDB)  and selected four proteins 
as detailed in the Methods. In particular, we selected two 
bacterial enzymes with respectively 117 and 597 muta-
tions, i.e., Enterobacteria phage T4 Endolysin, ENLYS 
(UniProt ID: P00720), and Staphylococcus aureus Ther-
monuclease, NUC (P00644). In addition, we performed 
the calculations on two human proteins of interest in 
health and disease, i.e., TP53 (P04637) and FKBP1A 
(P62942) with respectively 45 and 68 mutations with 
structural coverage. The secondary structure definition 
of the proteins was obtained from PDBe 27, and each po-
sition was annotated as either ɑ-helix, β-sheet, or loop in 
the wild-type structures. This case study aims at investi-
gating the relationship between experimental and pre-
dicted values, per-mutation, when the data from all four 
proteins are pooled, allowing us to achieve better statis-
tical power than considering each protein separately. 

Protein size Number 
of cores 

Protocol Time 
(hours) 

120 16 cartddg (ref2015) 33 

250 24  cartddg (ref2015) 67 

250 8 cartddg (talaris2014) 89 

340 16 cartddg (ref2015) 160 

340 16 cartddg (talaris2014) 70 

340 1 relax 16 

600 1 relax 40 

900 1 relax 65 

120;17* 40 flexddg (talaris2014) 67 

 
To understand the agreement between the experimen-
tally determined and the predicted stability, we per-
formed a preliminary data exploration. Interestingly, 
data points from the experimental and prediction dataset 
are similarly distributed (Figure 2A), as corroborated by 
the Kolmogorov-Smirnov test (p=0.21). 

We then tried to investigate the relationship between 
predicted and experimental data using a simple linear re-
gression model, with the assumption that a perfect agree-
ment between the experimental and predicted values 
would have an intercept of 0 and a coefficient of 1. The 
regression line has an intercept of 0.81 and a slope of 
0.719 (Figure 2B). The variance of the linear model (σ2) 
is 3.95, and the model produces an R2 of 0.44, a Pearson 
correlation coefficient of 0.66, and a mean absolute error 
between the predicted and experimental ΔΔGs (MAE) of 
1.39. The residuals plot for this model shows how the 
poor R2 value is at least partially due to systematic bias 
(Figure S2). This illustrates that a linear model does not 
completely explain the variance in the data we observed. 
To better understand this behavior, we tried to fit the 
data using a Generalized Additive Model (GAM) (Figure 
2D). The resulting model has a roughly linear behavior in 
the ~0-5 kcal/mol range but becomes less so at lower or 
larger ΔΔG values. Similarly, the confidence interval is 
very narrow in the linear regime interval, and it is wider 
for larger and smaller ΔΔG values, for which we have 
fewer data points. This observation is in alignment with 
Høie et al. 28, who found that ΔΔG predictions made with 
ref2015 and the cartesian2020 protocol in 29 proteins 
correlated with altered protein functions for ΔΔG > 4.5 
kcal/mol, but the severity of the impact did not increase 
remarkably beyond this point.  We then assessed the im-
pact of the secondary structure on the performance of the 
prediction by building a simple linear model for each of 
the secondary structure groups, divided into ɑ-helices, β-
sheets, and coil (Figure 2C). In fact, residues involved in 
structured regions are more likely to be part of the pro-
tein core, less flexible, and more sensitive to mutation 
with respect to solvent-accessible unstructured loops. 
The data points in the ɑ-helices and β-sheets are reason-
ably well correlated with Pearson correlation coefficients 
of 0.70 (slope=0.68, σ2=3.63, R2=0.49, MAE between pre-
dictions and experiments = 1.53) and 0.69, respectively 
(slope=0.99, σ2=4.98, R2=0.49, MAE between predictions 
and experiments = 1.38), while the correlation of the loop 
residues is 0.57 (slope=0.45, σ2=1.99, R2=0.33, MAE be-
tween predictions and experiments = 1.22), illustrating 
that the prediction is less consistent for unstructured re-
gions. In this dataset, we noticed several outliers in which 
amino acid substitutions are predicted to have a large de-
stabilizing impact, while the experiments find the variant 
to be neutral or mildly destabilizing. The experimental 
findings mostly align with the expectation that substitu-
tions in flexible loops have mild effects on stability, alt-
hough some loop substitutions may extend or create sec-
ondary structure elements, for example, as a result of 
substitutions from proline 29. The difference witnessed in 
this dataset is likely due to the fact that Rosetta allows 
some local main chain flexibility which may not be 
enough to represent the conformational variability that 
disordered regions experience in solution. We noticed 
similar behavior in applying FoldX, which we could miti-
gate with the usage of ensembles of structures generated, 
for example, by molecular dynamics simulations 21,23,30. It 
should be noted that the ɑ-helix mutations dataset also 
contains outliers. This dataset, however, has an overall 

Table 1. Examples of performances of RosettaDDGPrediction 
for different protein sizes, the number of cores, and protocols 
applied. In the case of complexes the ‘Protein size’ column includes 
two values, i.e., one value for each protein/peptide in the complex. 
The one marked with a * is the one for which the saturation mutational 
scan was carried out. Calculations were run on servers equipped with 
either dual Xeon 6142 processors or dual Xeon 6242 processors. 
Each processor features 32 cores. The estimate refers to calculations 
done with Rosetta version 3.12.  
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better correlation with the experimental dataset, and the 
coefficient of its regression line is closer to 1. This sug-
gests that changes in loops are more difficult to predict.  

 
 

We then checked how good the performance of the pre-
dictions was when classifying mutations into destabiliz-
ing, neutral, and stabilizing. We did so by classifying all 
mutations causing stability changes above 1 kcal/mol as 

destabilizing, all mutations causing stability changes be-
tween 1 kcal/mol and -1 kcal/mol as neutral, and all mu-
tations causing stability changes below -1 kcal/mol as 
stabilizing 8,16  and constructing a confusion matrix (Fig-
ure 2E). This confusion matrix yields an accuracy of 0.74.  Where the accuracy in prediction is best for the destabi-
lizing class (0.76), with high sensitivity (0.83), while the 
accuracy of the stabilizing class is only 0.56, with a sen-
sitivity of 0.17, indicating that the destabilizing class is 
more likely to be correctly identified as compared to the 
stabilizing class. The neutral class has a similar perfor-
mance to the destabilizing class (Table S1). In conclu-
sion, this case study shows a good linear correlation be-
tween predicted and experimental values, especially in 
the 0-5 kcal/mol range; for larger and smaller values, 
while the trend is generally conserved, the relationship 
between the predicted and experimental values is less di-
rect. We also show how predictions are more reliable for 
structured regions of the protein while correlation values 
are lower for unstructured regions. We performed the 
same analyses on the dataset obtained using the carte-
sian2020 protocol, which showed similar trends overall 
(Figure S1).  
	
Case study 2 – prediction of changes in binding free en-
ergy for protein-short linear motifs (SLiMs) interactions  
	

Within the protein-protein interaction landscape, intrin-
sically disordered proteins, or regions (IDPs, i.e., proteins 
that lack a defined tertiary structure or IDRs) have been 
proved to play an essential role in different biological 
events. IDP and IDRs include functional motifs known as 
Short Linear Motifs (SLiMs) that are important for the 
binding between IDPs and their target proteins 31–33. An 
example is the LC3 Interacting Region (LIR), i.e., a class 
of SLiMs involved in selective autophagy 34. One of the 
main features for regulating LIR binding to proteins of 
the LC3 family is through post-translational modifica-
tions (PTMs), especially through phosphorylation 34. 
Here, we aim to show an application of the flexddg proto-
col to capture the changes in binding free energy upon 
phosphorylation or mutations in the core region of LIR-
containing proteins.  
First, we selected two examples of experimentally char-
acterized phospho-regulated LIRs for which the struc-
tures were available on the Protein Data Bank, i.e., 
FUNDC1 in complex with LC3B (PDB entry, 2N9X 35) and 
PIK3C3 in complex with GABARAP (PDB entry, 6HOG 36). 
Experimental data on these two complexes through Iso-
thermal Titration Calorimetry (ITC) and peptide arrays 
are available for these complexes, including the effects of 
phosphorylations or phospho-mimicking mutations 35–37. 
We applied the flexddg protocol with the talaris2014 Ro-
setta energy function to investigate the effects of single 
and multiple phospho-mimetic mutations at the known 
phosphosites (see the Material and Methods section) 
since Rosetta does not currently provide parameters for 
phosphorylated residues. The results are described in de-
tail below and reported in Figure 3. 
FUNDC1 is a mitophagy receptor that mediates the selec-
tive removal of damaged or superfluous mitochondria. It 
contains a canonical LIR (core region, 18-YEVL-21), 

Figure 2. Comparison of changes in structural stability predicted 
with the ref2015 cartddg protocol and experiments 
(A) Distribution of the predicted and experimental stability changes in 
kcal/mol. (B) Scatterplot of the ΔΔG values predicted by the ref2015 
cartddg protocol and experimental values for the corresponding muta-
tions. The blue line indicates a perfect correspondence between the var-
iables. The green line is the fitted simple linear model. The model has 
an intercept of0.81, a slopeof 0.72, a variance (σ2) of 3.95, and a R2 of 
0.44, a Pearson’s Correlation Coefficient of0.66, and a Mean Absolute 
Error between the predicted and experimental ΔΔGs (MAE) of1.39. (C) 
Scatterplots dividing the data by the wild-type secondary structure of the 
mutated position. The blue line indicates a perfect correspondence be-
tween the variables for each plot. The green line is the fitted simple lin-
ear model. Here, it is evident how the structured sections have a better 
correlation when compared to coils. This is likely due to the flexibility of 
the unstructured sections. ɑ-helices: Pearson’s correlation coeffi-
cient=0.70, slope=0.68, σ2=3.63, R2=0.49, MAE=1.53. β-sheets: Pear-
son’s correlation coefficient=0.69, slope=0.99, σ2=4.98, R2=0.49, 
MAE=1.38. Coil: Pearson’s correlation coefficient=0.57, slope=0.45, 
σ2=1.99, R2=0.33, MAE=1.22. (D) Generalized additive model (GAM) 
modeling the response variable, the experimental ΔΔG value, to a pre-
dictive variable, the predicted ΔΔG value, by estimating a smooth func-
tion, smooth (Predict). The smooth function has an effective degree of 
freedom of 6.5, quantifying the complexity of the line. The confidence 
interval is sufficiently narrow in the ΔΔG interval 0-5 kcal/mol to indicate 
that a linear relationship is present in this interval. (E) Confusion matrix 
where the experimental values are annotated as the reference values. 
The threshold used to define the classes is a ΔΔG of < -1 kcal/mol for 
stabilizing mutations, -1 < ΔΔG < 1 kcal/mol for neutral mutations and 
ΔΔG > 1 kcal/mol for destabilizing mutations. The resulting accuracy is 
0.74. 
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which is necessary for the interaction with LC3 and, thus, 
for its role in mitophagy 35. FUNDC1 presents three ex-
perimentally validated phosphosites in or in the sur-
roundings of its LIR motif: S13, S17, and Y18 (Figure 3A). 
Isothermal Titration Calorimetry (ITC) experiments with 
different FUNDC1 LIR peptides and LC3B reported a Kd 
of 0.40 ± 0.06μM for the wild-type variant. Phosphoryla-
tion at the S13 site resulted only in a slight decrease of 
the LC3B affinity (Kd= 0.60 ± 0.05μM) with respect to the 
wild type, while the phosphorylation of the Y18 site 
caused an approximately 5-fold increase in the Kd of in-
teraction with LC3B (Kd= 1.72 ± 0.30μM). This increase 
is slightly augmented if both phosphorylations are com-
bined (Kd= 2.00 ± 0.37μM) 35. Additionally, another work 
reported that phosphorylation of the S17 site increases 
the binding affinity with LC3B by approximately three 
folds 37 . The flexddg protocol predicted the S13D and 
S13E substitutions to have neutral effects on the binding, 
in agreement with the experimental results (i.e., average 
ΔΔG < 0.25 kcal/mol). 

However, the average ΔΔGs for the S17E and S17D muta-
tions are also low, suggesting that, in this other case, the 
prediction cannot capture the changes in the binding af-
finity observed experimentally (Figure 3A). This is also 
the case for the phospho-mimetic mutations at the site 
Y18, whereas the combined effect of phospho-mimetic 
mutations at S13 and Y18 sites resulted in negative ΔΔG 

values, suggesting a stabilizing effect as observed exper-
imentally (Figure 3B). Nevertheless, we also observed 
that the standard deviation is very high for these predic-
tions, not allowing for quantitative conclusions.  
The second protein of interest, PIK3C3, is a class III phos-
phoinositide 3-kinase enzyme of the PtdIns3K complexes 
(class III phosphatydylinositol 3-kinase complexes I and 
II) involved in the initiation of autophagy. 
PIK3C3 presents a canonical F-type LIR (250-FELV-253) 
required for the interaction with GABARAP and 
GABARAPL136. The effect of phosphorylations at S244 
and S249 was assessed with ITC. In these experiments, 
the substitution of both the phosphosites with glutamate 
caused a 17-fold increase in GABARAP binding compared 
to the wild-type variant (Kd= 49.5 ± 3.9 μM). Moreover, 
peptide array experiments showed an increase in the 
binding affinity of the LIR peptide with all the LC3 family 
members for the phosphomimetic S249E variant 36.  
To assess the potential of the flexddg protocol in captur-
ing the effects induced by the phosphorylations of the 
PIK3C3 LIR, we modeled the S249E variant and a variant 
including phosphomimetic mutations at both the S44 and 
S249 sites (i.e., S244E_S249E, Figure 3C). We also tested 
the effect of the S249D substitution as a possible phos-
phomimetic variant, even if no experimental data are 
available for this mutation. We can observe that using 
S249D as a phosphomimetic variant does not provide the 
same result as introducing a glutamate (Figure 3D). This 
supports the notion that aspartate and glutamate cannot 
be always used as phosphomimetics in an interchangea-
ble manner. The S249E variant seems to have a slightly 
stabilizing effect on the binding (average ΔΔG= -0.59 
kcal/mol) and, in general, values of ΔΔG lower than 0 
across the 35 independent runs (Figure 3D). This is in 
partial agreement with the peptide array results men-
tioned above. The double mutant variant S244E_S249E 
does not seem to increase the binding to the extent ex-
pected from the ITC data, suggesting that the flexddg pro-
tocol cannot be widely used to address multiple amino 
acid substitution. Indeed, the ΔΔG values predicted for 
the S244E_S249E variant are similar to the ones of the 
single amino acid substitutions.  
Furthermore, we evaluated if the flexddg protocol could 
provide insights on the effects of mutations in SLiMs 
where PTMs are not involved. In the case of LIRs, the in-
teraction between an LIR-containing protein and an LC3 
family member is mainly driven by two residues of the 
LIR motif, which are in position 1 and 4 of the core motif 
and that bind to the Hydrophobic Pocket 1 (HP1) and the 
Hydrophobic pocket 2 (HP2) residues of the LC3 protein, 
respectively 34. Thus, we tested the capability of the 
flexddg protocol with the talaris2014 energy function to 
predict the impact of the known detrimental mutations 
F250A (residue for interaction with HP1 pocket) and 
V253A (HP2 pocket) of PIK3C in complex with GABARAP 
(PDB entry, 6HOG 38). As expected, the flexddg protocol 
could predict the destabilizing effect of these mutations 
on the binding with GABARAP with predicted average 
ΔΔG values of 2.096 kcal/mol for F250A and 0.695 
kcal/mol for V253A (Figure 3D). The main effect is trig-
gered by the mutation of the residue for the binding to 

Figure 3.  Prediction of changes in binding free energy using 
the flexddg protocol for protein interactions mediated by Short 
Linear Motifs. (A) FUNDC1 LIR peptide (blue) in complex with 
LC3B (gray) in the structure associated with the PDB entry 2N9X. 
The S13, Y18, and S17 phosphosites are shown as sticks and col-
ored in yellow. (B) We report the predicted binding ΔΔGs for the 
single and double phosphomimetic mutations for the FUNDC1 LIR 
phosphosites for which experimental data are available for compar-
ison. (C) PIK3C3 LIR peptide (blue) in complex with GABARAP 
(gray) in the structure associated with the PDB entry 6HOG. The 
S244 and S249 phosphosites are shown as sticks and colored in 
yellow, while the residues for binding to the GABARAP HP1 and 
HP2 pockets are shown as red and blue sticks, respectively. (D) 
We report the predicted binding ΔΔGs for single and double phos-
phomimetic mutations, along with mutations to alanine in the core 
motif of the PIK3C3 LIR, for which experimental data are available 
for comparison. 
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the HP1 pocket, in agreement with what is known from 
structural studies on LIR-LC3 protein interactions 34.  
Overall, these applications illustrate the potential and 
some of the limitations of the RosettaDDGPrediction 
workflow, where two main challenges are the prediction 
of effects that are related to increased binding affinity 

(i.e., stabilizing mutations) and the reliable prediction of 
effects induced by phosphorylation with the usage of 
phosphomimetic mutations only.  
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Case study 3 – influence	of	the	source	of	initial	struc-
tures	for	the	calculations	
 
The	 advent	 of	 AlphaFold	 has	 revolutionized	 molecular	
modeling	and	structural	biology	39,	resulting	in	models	of	
3D	structures	of	proteins	with	resolutions	comparable	to	
those	 achievable	 with	 experimental	 approaches.	 Cur-
rently,	 the	 AlphaFold	 database	 contains	 over	 360.000	
predicted	 protein	 structures	 of	 21	model	 organisms	 40,	
providing	a	 rich	source	of	 structures	 for	 in	silico	muta-
tional	scans	as	the	ones	that	can	be	performed	by	MutateX	
or	RosettaDDGPrediction.	Here,	we	carried	out	an	inves-
tigation	to	evaluate	the	influence	of	using	a	model	based	
on	 AlphaFold2	with	 respect	 to	 a	 good	 resolution	 X-ray	
structure	of	the	same	protein.	For	this	goal,	we	used	as	a	
case	 study	 the	 DNA	 binding	 domain	 (DBD)	 of	 p53,	 for	
which	experimental	data	are	also	available	on	31	mutant	
variants	from	ThermoMutDB	26.	We	evaluated	the	agree-
ment	between	our	calculated	and	experimentally	availa-
ble	 data,	 using	 the	 same	 parameters	 and	 energy	 func-
tions,	either	the	cartddg	or	cartddg2020	protocol,	and	the	
two	different	starting	structures.	We	have	also	included	
in	 the	 comparison	a	 variant	of	cartddg	 in	which	we	 in-
creased	the	numbers	of	runs	per	mutation	up	to	ten,	 to	
determine	whether	it	would	improve	our	results.	As	the	
final	ΔΔG	depends	on	 the	values	obtained	by	 the	single	
runs	 (even	 though	 it	 is	 calculated	 differently	 in	 the	
cartddg	and	cartddg2020	protocols	-	see	above),	we	ex-
pect	that	increasing	the	number	of	samples	might	lead	to	
better	converged	final	ΔΔG	values	if	using	just	three	runs	
is	insufficient.	We	have	measured	the	agreement	through	
several	metrics,	 such	 as	 the	 Pearson	 correlation	 coeffi-
cient,	MAE,	and	a	ROC	curve.	
We	performed	most	of	our	comparison	considering	runs	
performed	with	 the	cartddg	 protocol.	Therefore,	 in	 this	
section,	we	will	be	referring	to	them	unless	stated	other-
wise.	
We	obtained	a	 similar	pattern	when	comparing	predic-
tions	and	experiments	using	the	experimental	structure	
and	the	Alphafold2	model	(Figure	4A)	with	a	positive	lin-
ear	correlation,	as	quantified	by	Pearson's	correlation	co-
efficient	 (Figure	4B).	The	highest	Pearson’s	correlation	
coefficient	obtained	was	0.79	using	the	scoring	function	
talaris2014	with	the	AlphaFold2	model	and	ten	runs	(Fig-
ure	4B),	although	all	runs,	 including	the	ones	using	the	
cartddg2020	protocol,	achieved	a	correlation	in	the	0.57-
0.79	 range.	 Values	 ranging	 from	 0.74	 to	 0.79	were	 ob-
tained	by	all	runs	using	the	X-ray	structure	and	by	tala-
ris2014	with	AlphaFold2	using	 three	or	 ten	 runs.	Using	
ref2015	with	the	AlphaFold2	model	led	to	a	slightly	worse	
correlation	of	0.57,	for	three	runs	and	0.68	for	ten	runs.		
The	 runs	with	ref2015	energy	 function	and	 the	cartddg	
protocol	(X-ray	structure)	using	ten	runs,	had	the	small-
est	Mean	Absolute	Error	(MAE)	of	0.90	kcal/mol	(Figure	
4C),	 meaning	 that	 it	 had	 the	 lowest	 average	 distance	

between	predicted	and	target	values	among	the	different	
tested	 methods.	 It	 was	 closely	 followed	 by	 talaris2014	
with	the	AlphaFold2	structure	using	three	and	ten	cycles	
with	0.92	and	0.91,	respectively.	The	rest	of	the	combina-
tions	had	a	MAE	between	0.95	and	1.28.		
Considering	the	ROC	curve,	we	considered	experimental	
free	energy	changes	from	ThermoMutDB	as	ground	truth	
and	partitioned	our	 dataset	 into	 destabilizing	 and	non-
destabilizing	mutations	depending	on	whether	our	pre-
diction	or	ground	truth	had	ΔΔG	>=	1.2	kcal/mol.	The	best	
area	 under	 the	 curve	 (AUC)	was	 achieved	 by	 using	 the	
scoring	function	ref2015	using	the	cartdgg	protocol	and	
the	X-ray	structure,	yielding	a	value	of	0.97	(Figure	4D).	
In	general,	the	different	scoring	functions	and	structures	
behaved	similarly.		
	

Figure 4.  Comparison of experimental and predicted ΔΔGs using p53 as a case study.	ΔΔG values were predicted using Rosetta version 3.12 
withthe ref2015 and talaris2014 scoring functions, and the cartddg and cartddg2020 protocols (referred to as “c2020” in the figure). We used the X-
ray structure (PDB entry 2XWR) and a model from the AlphaFold2 database for the residues 91-289 of p53 as initial structures, using our default 
number of runs (three) or ten runs (these are referred to as “R10”). (A) Experimental vs. predicted ΔΔG values. (B) Pearson’s correlation coefficient 
between experimental and predicted values. (C) Mean Absolute Error (MAE) between experimental and predicted values. (D) Receiver operator 
characteristic (ROC) curve. The classification for this curve was done by considering the changes of free energy values reported in ThermoMutDB 
as ground truth, using 1.2 kcal/mol as ΔΔG cut-off to distinguish between destabilizing and non-destabilizing mutations (see Methods). The same 
criterion was used for the predicted mutations. 

Figure 5.  Trimmed AlphaFold structures of the FA (Fanconi Ane-
mia) proteins selected for the case study 4. 
Cartoon representation of (A) FANCA37-1441, (B) FANCI1-1279, (C) 
FANCE12-534, (D) FANCF2-369, (E) FANCG12-616 and (F) FANCL1-375. The 
proteins are colored according to the AlphaFold2 pLDDT score: very low 
(yellow, pLDDT > 50), low (orange, 50 < pLDDT < 70), confident (light 
blue, 70 < pLDDT < 90), and very high (blue, pLDDT > 90). The Cɑ of 
the residues found mutated in pediatric cancer patients are shown as 
spheres and labeled.  
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We	 did	 not	 appreciate	 great	 differences	 in	 the	 perfor-
mance	of	our	predictions	when	using	the	experimental	X-
ray	structure	or	the	AlphaFold2	model,	with	the	only	ex-
ception	 of	 using	 the	 ref2015	 energy	 function	 and	 the	
cartddg	protocol	with	the	AlphaFold2	model,	which	had	a	
lower	correlation	and	ROC	AUC	with	respect	to	the	other	
cases.	 Increasing	 the	 number	 of	 runs	 also	 slightly	 im-
proved	the	performance,	but	with	the	trade-off	of	a	con-
siderably	increased	computing	time.	Finally,	we	obtained	
mixed	results	when	comparing	the	ref2015	X-ray	three-
cycles	run	performed	using	cartddg	with	the	correspond-
ing	cartddg2020	run.	We	did	not	see	any	appreciable	im-
provement	when	using	cartddg2020	on	the	X-ray	struc-
ture,	as	the	cartddg2020	run	has	a	slightly	lower	correla-
tion	(0.74	vs.	0.76),	higher	MAE	(1.25	vs.	0.99	kcal/mol),	
and	 lower	 AUC	 (0.95	 vs.	 0.97)	 considering	 the	 experi-
mental	data.	Nonetheless,	using	cartddg2020	with	the	Al-
phaFold2	 model	 rescued	 the	 subpar	 performance	 of	
ref2015	in	this	case,	as	all	its	performance	measures	are	
more	similar	to	those	of	the	other	cases.	
It	 should	be	noted	 that	 the	DNA	binding	domain	 in	 the	
p53	AlphaFold2	model,	ranging	from	residues	91	to	289,	
features	 a	 good	 per-residue	 confidence	 score	 (pLDDT)	
score,	mostly	above	70,	meaning	that	more	tests	on	mod-
els	or	regions	with	lower	quality	should	be	carried	out	to	
determine	whether	our	findings	can	be	generalized.	
	
Case study 4 – variants predisposing to childhood cancer 
 

In	a	recent	study,	198	samples	from	different	childhood	
cancer	types	were	analyzed	with	regard	to	germline	vari-
ation	and	cancer	predisposition	41.	Among	these,	different	
variants	of	unknown	significance	(VUS)	have	been	found	
with	a	frequency	of	<	1	%	in	the	healthy	population.	Ap-
proximately	20%	of	the	patients	investigated	had	VUS	in	
DNA	 repair	 pathway	 genes.	 In	 addition,	we	 carried	 out	
new	 analyses	 on	 a	 larger	 dataset	 accounting	 for	 more	
than	500	germline	samples	from	Danish	children.	The	se-
lection	criteria	for	the	proteins	and	the	variants	included	
in	 the	 study	are	described	 in	detail	 in	 the	Material	 and	
Methods	and	in	Figure	S3.	We	retained	14	proteins,	i.e.,	
ERCC4,	 BLM,	 FANCA,	 FANCE,	 FANCF,	 FANCG,	 FANCI,	
FANCL,	MLH1,	MSH2,	MSH6,	NBN,	RAD51C,	and	RFWD3	
for	structure-based	calculations	of	the	changes	in	folding	
ΔΔGs	for	the	VUS.	All	these	genes	are	either	classified	as	
tumor	suppressor	genes	in	the	COSMIC	Cancer	Gene	Cen-
sus	v96	42	or	from	literature	for	FANCI43	and	RAD51C44. 
Since mutations in tumor suppressor genes are gener-
ally causing loss-of-function in cancer45, we were inter-
ested in identifying VUS that have a destabilizing effect 
on the protein structure and thus result in positive pre-
dicted ΔΔG	values	upon	mutation.	These	variants	could	
be	relevant	to	investigate	further	in	terms	of	genomic	al-
terations	predisposing	to	cancer.	To	this	aim,	we	retained	
the	variants	 for	which	we	had	structural	 coverage	with	
AlphaFold2	and	high	confidence	scores	(Table	S2)	for	a	
total	of	150	variants	analyzed	(Figure	5-7).	According	to	
searches	in	ClinVar46,47,	some	of	the	variants	were	already	
annotated	as	benign	or	 likely	benign	but	not	 related	 to	
childhood	 cancer.	 On	 the	 other	 hand,	 only	 T1131A	 in	
FANCA	was	found	as	pathogenic.	The	remaining	were	not	

deposited	 in	 ClinVar	 or	 annotated	 as	 unknown	 signifi-
cance	or	with	conflicting	evidence,	emphasizing	the	 im-
portance	of	additional	analyses	to	understand	the	effects	
at	the	protein	level.	
In	 this	 example,	 we	 applied	 the	 cartddg2020	 protocol,	
which	 considers	 the	ΔΔG	 value	 referring	 to	 the	mutant	
structure	with	 the	 lowest	 total	 energy.	We	 retained,	 as	
predicted	destabilizing,	the	variants	with	ΔΔG	values	>	1	
kcal/mol	 (see	Methods)	and	confirmed	destabilizing	by	
calculations	with	MutateX	 (Table	S3,	Table	2).	 Indeed,	
the	 foldX5	 energy	 function,	which	 is	 applied	 in	 the	Mu-
tateX	 protocol,	 is	 effective	 in	 capturing	 loss-of-function	
mutations48.	 Of	 note,	 the	 pathogenic	 variant	 T1131A	 is	

not	 predicted	 to	 destabilize	 the	 structure	 of	 FANCA	 by	
both	Rosetta	and	FoldX	calculations	(Table	S3).	We	hy-
pothesize	 that	 the	 detrimental	 effects	 triggered	 by	 this	
variant	could	be	due	to	other	properties	such	as	impaired	
activity,	interactions,	or	post-translational	modifications	
at	the	cellular	level.	Experimental	studies	at	the	cellular	
level	confirm	that	the	T1131A	substitution	does	not	affect	
the	protein	levels,	in	agreement	with	a	neutral	effect	on	
the	 folding	 ΔΔGs	 49	 and	 that	 the	 phenotype	 reflects	 a	

Figure 6.  Trimmed AlphaFold structures of the of the DNA mis-
match repair proteins selected for the case study 4. Cartoon	rep-
resentation	 of	 (A)	 MLH11-341	 and	 MLH1501-756,	 (B)	 MSH21-934	 and	 (C)	
MSH6362-1360.	 The	 proteins	 are	 colored	 according	 to	 the	 AlphaFold2	
pLDDT	score:	very	low	(yellow,	pLDDT	>	50),	low	(orange,	50	<	pLDDT	
<	 70),	 confident	 (light	 blue,	 70	 <	 pLDDT	<	 90),	 and	 very	 high	 (blue,	
pLDDT	>	90).	The	Cɑ	of	the	residues	found	mutated	in	pediatric	cancer	
patients	are	shown	as	spheres	and	labeled. 
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functional	 impairment	 that	 has	 a	mild	 impact	 on	MMC	
drug	 sensitivity	 and	 the	monoubiquitinating	 of	 another	
protein	49,50.	T1131A	could	be	further	investigated	using	
our	 recently	 proposed	 multi-layered	 structural	 frame-
work	for	variant	annotations	in	proteins	20,21,51.		
We	also	observed	that	one	variant	annotated	as	benign	in	
ClinVar	(i.e.,	L605F	FANCI)	has	predicted	changes	in	fold-
ing	ΔΔG	higher	than	3	kcal/mol	and	is,	therefore,	classi-
fied	 as	 destabilizing	 for	 the	 structural	 stability	 by	 our	
analysis.	The	variant	has	been	characterized	at	the	cellu-
lar	 level,	 showing	 decreased	 protein	 levels	 when	 com-
pared	to	the	wild-type,	which	confirms	our	prediction52.	
On	 the	 other	 hand,	 the	 variant	 P55L	 (predicted	 folding	
ΔΔG	<	2.0	kcal/mol)	was	expressed	at	the	same	level	as	
the	wild-type.	In	addition,	other	benign	variants	accord-
ing	to	ClinVar	classification	have	been	found	in	the	range	
of	1-2	kcal/mol	(Table	2).	This	observation	suggests	that	
variants	for	which	the	predicted	changes	in	stability	are	
within	 1-3	 kcal/mol	 should	 be	 further	 investigated	 to	
evaluate	if	they	could	result	in	neutral	effects	at	the	cellu-
lar	 level.	 In	 the	 case	 of	MSH2,	 for	 example,	 it	 has	 been	

shown	 that	 a	 predicted	 destabilization	 of	 more	 than	 3	
kcal/mol	is	sufficient	to	cause	cellular	degradation	of	the	
protein	53.	
According	 to	 the	results	 in	Table2	 and	 the	observation	
above,	 if	we	 consider	 folding	ΔΔG	values	higher	 than	3	
kcal/mol,	 our	 analyses	 suggest	 a	 number	 of	 VUS	 that	
could	predispose	to	loss-of-function	through	destabiliza-
tion	of	the	protein	structure	and	have	a	high	REVEL	score	
which	 further	support	 their	possible	pathogenic	 impact	
(i.e.,	A797T	in	BLM,	I706T	in	ERCC4,	W410C	and	F603S	in	
FANCA,	 L329P	 in	 FANCF,	 V180G	 in	 MLH1,	 V606F	 in	
MSH2,	G1072D	in	MSH6).	Of	note,	the	mutation	L329P	in	
FANCE	has	been	suggested	to	disrupt	the	stability	of	the	
catalytic	module	of	 the	protein	 in	 a	previous	 structural	
study	54.	
	

Discussion 
	

We	developed	RosettaDDGPrediction	moved	by	the	need	
to	provide	easy	and	scalable	access	to	Rosetta-based	ap-
proaches	to	predict	free	energy	changes	in	proteins	upon	
mutations.	RosettaDDGPrediction	takes	care	of	the	whole	
process	by	performing	a	large	number	of	ΔΔG	predictions	
in	 an	 efficient	 and	 scalable	 manner,	 making	 a	 high-
throughput	calculations	with	Rosetta	accessible,	which	is	
helpful	 for	 both	 extensive	 mutational	 scans	 and	 struc-
tured	benchmarks.		
RosettaDDGPrediction	 is,	 to	 our	 knowledge,	 the	 first	
wrapper	 devised	 to	 integrate	 state-of-the-art	 Rosetta-
based	protocols	for	the	predictions	of	free	energy	changes	
upon	mutation	under	a	uniform	framework.	
Furthermore,	the	software	checks	the	success	of	the	runs,	
aggregates	 the	data	 in	CSV	 tables	 that	are	easy	 to	mine	
and	 generates	 visual	 reports.	 As	 these	 steps	 are	 inde-
pendent,	 the	aggregation	and	visualization	 tools	 can	be	
used	on	different	datasets.	In	addition,	we	support	addi-
tional	output	formats	compatible	with	the	MutateX	plot-
ting	scheme	23.	At	the	same	time,	raw	or	aggregated	data	
can	be	easily	manipulated	externally.	RosettaDDGPredic-
tion	 also	 devotes	 particular	 attention	 to	 ensuring	 tech-
nical	reproducibility	by	being	controlled	through	config-
uration	 files.	 Further	 developments	 of	 RosettaDDGPre-
diction	will	focus	on	integrating	its	functionalities	within	
MutateX,	 to	provide	a	method-agostic	 container	 to	per-
form	and	collect	high-throughput	mutational	 scans	 in	a	
reproducible,	automatized,	and	sustainable	manner.	
In	 this	 context,	 the	performances	of	RosettaDDGPredic-
tion	and	MutateX	are	only	as	good	as	those	of	the	Rosetta-	
and	FoldX-based	methods	that	they	incorporate.	Indeed,	
Rosetta-based	protocols	implemented	so	far	rely	on	dif-
ferent	sampling	methods	to	obtain	models	of	the	mutant	
variant	structures	and	on	scoring	the	resulting	structures	
via	knowledge-based	energy	functions	to	predict	changes	
in	the	folding	and	binding	free	energy	upon	mutation	16,55.	
However,	more	rigorous	strategies	are	available	to	pre-
dict	both	the	effect	of	mutations	on	the	folding	free	energy	
and	 the	 binding	 free	 energy14,56–58.	 For	 example,	 ap-
proaches	 leveraging	 enhanced	 sampling	 along	 reaction	
coordinates	 designed	 to	 study	 binding	 and	 unbinding	
events	are	available	59–61.		
	

Figure 7.  Trimmed AlphaFold structures of the proteins promoting 
the double-strand break (DBS) repair (RAD51C, RFWD3, ERCC4, 
NBN) and RECQ helicase (BLM) selected for proteins used for the 
case study 4. Cartoon representation of (A) RAD51C13-350 (B) 
RFWD3284-774 (C) ERCC412-914 (D) BLM368-1290 and (E) NBN1-749. The pro-
teins are colored according to the AlphaFold2 pLDDT score: very low 
(yellow, pLDDT > 50), low (orange, 50 < pLDDT < 70), confident (light 
blue, 70 < pLDDT < 90), and very high (blue, pLDDT > 90). The Cɑ of 
the residues found mutated in pediatric cancer patients are shown as 
spheres and labeled. 
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VARIANT CLINVAR  Predicted 

Folding ΔΔG 
(kcal/mol) 

REVEL 

BLM - L788I Conflicting interpretations of pathogenicity 2.233 0.503 

BLM - A797T Entry N.A. 3.045 0.893 

BLM - K846T Uncertain significance 1.227 0.136 

BLM - Y1024C Uncertain significance 1.776 0.590 

ERCC4 - R267C Uncertain significance 1.495 0.470 

ERCC4 - P379S Conflicting interpretations of pathogenicity 2.051 0.526 

ERCC4 - R576T Uncertain significance 1.012 0.274 

ERCC4 - I706T  Conflicting interpretations of pathogenicity 3.242 0.609 

ERCC4 - E875G Benign/Likely benign 2.049 0.292 

FANCA - F276I Entry N.A. 1.922 0.160 

FANCA - W410C Entry N.A. 4.169 0.622 

FANCA - F603S Uncertain significance 6.111 0.631 

FANCA - A746S Benign/Likely benign 1.696 0.374 

FANCA - P1086L Entry N.A. 1.012 0.775 

FANCE - A104P Entry N.A. 5.691 0.319 

FANCE -L326W Uncertain significance 1.620 0.154 

FANCE - M437T Conflicting interpretations of pathogenicity 1.930 0.134 

FANCF - L329P Uncertain significance 8.170 0.417 

FANCF - Y287C Uncertain significance 2.732 0.195 

FANCF - Y274C Uncertain significance 3.526 0.193 

FANCF- L129V Uncertain significance 1.086 0.069 

FANCF - L80V Entry N.A. 2.001 0.104 

FANCG - P545T Entry N.A. 1.918 0.465 

FANCG - R513Q Conflicting interpretations of pathogenicity 1.110 0.016 
 

FANCI - P55L Benign 1.854 0.221 

FANCI - I275T Uncertain significance 3.041 0.22 

FANCI - M363T Entry N.A. 2.593 0.242 

FANCI - P471R Uncertain significance 1.730 0.837 

Table 2. Summary of predicted ΔΔGs for Variants of Unknown Significance in childhood cancer. ‘NA’ indicates ‘Not Available’. We did not report 
RAD51C and FANCL in the table since all the variants analyzed here for these proteins were predicted with neutral effects for stability.  
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FANCI - M525V Conflicting interpretations of pathogenicity 2.137 0.487 

FANCI - L605F Benign/Likely benign 3.773 0.238 

FANCI - C742S Benign 1.084 0.075 

FANCI - Y923C Uncertain significance 3.806 0.391 

MLH1 - P285S Uncertain significance 1.373 0.838 

 MLH1 - K618E Benign/Likely benign 1.296 0.874 

MLH1 - V180G Uncertain significance 3.847 0.91 

MSH2 - N127S Benign 2.172 0.741 

MSH2 - L128V Conflicting interpretations of pathogenicity 2.309 0.613 

MSH2 - L513V Uncertain significance 2.595 0.829 

MSH2 - I577T Likely benign 2.067 0.928 

MSH2 - V606F Entry N.A. 5.096 0.889 

MSH2 - I770V Conflicting interpretations of pathogenicity 1.043 0.417 

MSH6 - L396V Benign 1.369 0.322 

MSH6 - S503C Entry N.A. 1.288 0.413 

MSH6 - V878A Benign 2.073 0.155 

MSH6 - G1072D Uncertain significance 6.349 0.623 

MSH6 - V1253E Uncertain significance 2.986 0.952 

NBN - D95N Conflicting interpretations of pathogenicity 1.448 0.583 

NBN - I171V Conflicting interpretations of pathogenicity 1.133 0.398 

RFWD3 - Q577H Entry N.A. 1.469 0.162 

	
	

The	time	and	computational	resources	needed	by	these	
methods	still	prevent	their	usage	for	investigations	going	
beyond	a	few	mutations.	In	these	contexts,	which	include,	
for	instance,	saturation	mutagenesis	scans,	Rosetta-	and	
FoldX-based	 protocols	 represent	 a	 good	 trade-off	 be-
tween	accuracy	and	speed.		
Nevertheless,	 Rosetta	 still	 presents	 a	 challenge	 when	
non-canonical	 residue	 types	 are	 considered.	 Indeed,	
while	 most	 non-canonical	 amino	 acids	 are	 supported,	
mutations	 to	 phosphorylated	 residues	 cannot	 be	 per-
formed	in	either	protocol	to	predict	free	energy	changes.	
For	 this	 reason,	 including	 strategies	 circumventing	 this	
issue	 would	 greatly	 expand	 the	 application	 of	 Ro-
settaDDGPrediction.	
Furthermore,	a	milestone	in	structural	bioinformatics	has	
been	reached	lately,	with	the	release	of	AlphaFold2	and	
its	outstanding	performance	in	the	CASP14	challenge	39.	
Originally	 developed	 to	 solve	 the	 long-standing	protein	
folding	problem,	AlphaFold2	has	already	seen	many	spin-
off	 studies	 to	assess	 its	potential	 	 62–66.	 So	 far,	 evidence	
suggests	 that	 AlphaFold2	 cannot	 effectively	 predict	

changes	 in	 folding	 free	 energy	 upon	mutation	 	 	 67–69 .	
However,	more	studies	are	needed	to	explore	this	possi-
bility	fully.		
Our	wrappers	have	been	devised	to	be	inherently	exten-
sible.	 As	 stated	 above,	 a	 long-term	perspective	may	 in-
clude	transforming	them	into	a	more	general	platform	for	
structure-based	methods	to	predict	free	energy	changes	
upon	mutation	 based	 on	 freely	 accessible,	 open-source	
software.	This	will	also	allow	us	to	support	other	energy	
functions	or	schemes	for	free	energy	calculations.		
The	efforts	of	 centralizing	 the	development	of	 software	
for	in-silico	deep	mutational	scans	using	free	energy	func-
tions	will	help	to	move	a	step	forward	toward	a	unified	
framework	for	high-throughput	structure-based	calcula-
tions	of	free	energy	changes	upon	mutation.	
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Methods 
	

Case	Study	1		
 

The	ThermoMut	database	26	was	downloaded	on	April	22,	
2022,	as	a	JSON	file.	We	then	processed	the	database	fol-
lowing	four	main	steps:	(i)	For	each	reported	protein,	we	
retained	only	the	entries	including	single	mutations	with	
an	 experimental	 value	 of	 ΔΔG	 discarding	 entries	 with	
multiple	 mutations	 with	 a	 combined	 ΔΔG;	 (ii)	 we	 re-
versed	the	sign	of	all	the	ΔΔG	values	to	fit	the	sign	pro-
vided	by	the	outputs	of	RosettaDDGPrediction,	(iii)	we	re-
tained	information	on	pH	values	and	experimental	meth-
ods	as	metadata	and	(iv)	we	removed	protein	entries	for	
which	less	than	ten	mutations	were	reported.	Upon	pro-
cessing,	we	identified	133	proteins.	We	then	searched	for	
three-dimensional	 structures	 available	 for	 each	 protein	
in	 the	 Protein	 Data	 Bank.	 In	 this	 step,	 we	 retained	
matches	 that	 covered	 at	 least	 one	mutation	 of	 interest.	
We	 retained	 only	 protein	 structures	 in	 their	 free	 state	
(i.e.,	not	in	a	complex	with	other	interactors)	for	a	total	of	
121	target	proteins,	effectively	removing	twelve	proteins	
where	no	structure	or	free	state	was	found.	We	then	se-
lected	 two	 enzymes	 that	 included	 a	 large	 number	 of	
amino	 acid	 substitutions	 with	 structural	 coverage	 (i.e.,	
ENLYS	 and	 NUC	 as	 represented	 by	 the	 PDB	 structures	
1P7S70		and	1EY0	71,	and	two	human	proteins	of	interest	
in	health	and	disease	(p53	and	FKB1A	as	represented	by	
the	PDB	structures	2XWR	72	and	2PPN	73		as	case	studies	
for	this	work.	All	are	used	as	simplistic	monomeric	struc-
tures	and	chosen	based	on	the	coverage,	quality,	and	lack	
of	 interactors.	 The	 experimental	 values	 obtained	 in	 an	
acidic	or	alkaline	experimental	setting	(pH	<	6	and	pH	>	
8)	were	excluded,	as	the	ref2015	Rosetta	energy	function	
(Cartesian	space	version)	is	simulating	an	environment	at	
pH	7.		
This	leaves	845	observations	across	the	four	proteins	for	
pH	values	6,	7,	and	8	and	three	methodologies,	two	chem-
ically	 denaturant-induced	 protein	 unfolding	 experi-
mental	 protocols,	 guanidine	 hydrochloride	 (GdnHCl),	
Urea	Denaturation	(Urea),	and	one	thermal	denaturation	
protocol	 (Thermal).	We	modeled	 the	 experimental	 and	
predicted	 values	 using	 a	 simple	 linear	model,	 analyzed	
the	contribution	of	secondary	structures,	and	built	a	gen-
eralized	additive	model,	thereby	defining	the	limitations	
of	 the	model.	 Furthermore,	we	 constructed	a	 confusion	
matrix	based	on	the	thresholds	ΔΔG	<	-1	kcal/mol	for	the	
stabilizing	group,	-1	kcal/mol	>	ΔΔG	<	1	kcal/mol	for	the	
neutral	group,	and	ΔΔG	>	1	kcal/mol	for	the	destabilizing	
group.	Calculations	were	carried	out	with	Rosetta	3.12.	
	

Case	Study	2 
	

We	started	from	the	phospho-regulated	LIRs	reported	in	
our	previous	review	article	34	and	other	literature	search,	
and,	for	each	of	them,	we	verified	if	a	complex	with	one	of	
the	LC3/GABARAP	family	members	was	available	to	use	
as	starting	structure	for	the	mutational	scan.	We	retained	
for	the	analyses	the	following	complexes:	LC3B:FUNCD1	
(PDB	entry	2N9X	 35)	 and	GABARAP:PIK3C3	 (PDB	entry	
6HOG	38).	

We	reconstructed	missing	coordinates	 in	 the	structures	
using	MODELLER	version	10.174.	
We	 used	 the	 flexddg	 protocol,	 as	 implemented	 in	 Ro-
settaDDGPrediction,	with	the	talaris2014	energy	function	
and	Rosetta	3.12.	Rosetta	Energy	Units	(REUs)	were	con-
verted	to	kcal/mol	with	the	conversion	factors	provided	
for	this	energy	function	16.	We	modeled	the	phosphory-
lated	residues	using	phosphomimetic	mutations	to	aspar-
tic	acid	and	glutamic	acid	 for	each	phosphosite,	and	 in-
cluded	also	tryptophan	for	phospho-tyrosine	to	identify	
possible	 effects	 due	 to	 steric	 hindrance.	 In	 the	 calcula-
tions,	 we	 used	 35	 000	 backrub	 trials	 and	 an	 absolute	
score	threshold	for	minimization	convergence	of	1	REUs.	
We	generated	an	ensemble	of	35	structures	for	each	mu-
tant	 variant	 and	 calculated	 the	 average	 ΔΔGs	 and	 the	
standard	deviation	among	the	individual	binding	free	en-
ergies.	
	
Case	Study	3 
	
We	retrieved	experimental	ΔΔG	values	from	point	muta-
tions	of	the	p53	DNA-binding	domain	from	the	online	da-
tabase	ThermoMutDB.	Since	ThermoMutDB	stores	ΔΔGu	
values,	they	were	converted	to	ΔΔGf	by	changing	the	sign	
to	make	them	easily	comparable	with	Rosetta	output	val-
ues.	A	total	of	31	mutations	were	selected,	and	when	mul-
tiple	experimental	values	were	reported	for	the	same	var-
iant,	the	average	of	their	ΔΔGf	was	used.	
We	used	two	different	structures.	The	first	one	consists	of	
the	X-ray	crystallography	of	the	PDB	entry	2XWR,	with	a	
resolution	of	1.68	Å,	which	covers	 the	DNA-binding	do-
main	from	residues	91	to	289	and	includes	the	Zinc	ion.	
The	 water	 molecules	 were	 removed	 using	 PyMOL	
[http://www.pymol.org/pymol].	We	also	used	the	model	
from	 the	 AlphaFold2	 database,	 which	 was	 trimmed	 to	
cover	the	same	residues	as	the	experimental	X-ray	struc-
ture,	from	91	to	289.	The	missing	zinc	ion	was	added	us-
ing	PyMOL,	identifying	its	coordinates	by	rigid	body	su-
perimposition	with	the	original	structure.	Before,	we	ver-
ified	 that	 the	 residues	 which	 coordinate	 the	 zinc	 ion	
(C176,	H179,	C238,	C242)	had	a	good	alignment	and	sim-
ilar	rotamer	position	between	the	two	structures.	
For	the	ΔΔG	predictions,	we	mostly	used	the	cartddg	pro-
tocol	with	the	ref2015	and	talaris2014	scoring	functions,	
each	with	three	and	ten	sampling	runs	and	Rosetta	3.12.	
We	 also	 used	 the	 cartddg2020	 protocol	 on	 both	 struc-
tures,	 but	 only	 using	 the	 ref2015	 scoring	 function	 and	
three	runs.	
The	performance	was	measured	by	Pearson’s	correlation	
coefficient,	mean	absolute	error,	and	area	under	the	curve	
(AUC)	 of	 the	ROC	 curve.	 For	 the	ROC	 curve,	we	 used	 a	
threshold	of	1.2	kcal/mol	for	the	ThermoMutDB	averaged	
values,	meaning	that	mutations	associated	with	a	free	en-
ergy	 change	 higher	 than	 1.2	 kcal/mol	were	 considered	
destabilizing,	 according	 to	 the	 threshold	 selection	 pro-
posed	 for	 p53	 in	 our	 previous	 study	 20.	 In	 comparison,	
mutations	 associated	 with	 a	 free	 energy	 change	 lower	
than	 the	 threshold	were	 classified	 as	 non-destabilizing.	
The	mean	absolute	error	was	calculated	using	the	follow-
ing	equation:	
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Here, yi are the experimental values and 𝑦&* ^ the pre-
dicted values. 
	

Case	Study	4	
	

We	 retrieved	VUS	 in	 childhood	 cancer	 from	 a	 previous	
study	41.	In	addition,	we	analyzed	a	dataset	including	566	
samples	from	Danish	children	with	different	cancer	types	
and	 Whole	 Genome	 Sequencing	 data.	 The	 sequencing	
data	have	been	processed	with	a	pipeline	based	on	Sen-
tieon using	the	build	38	(GATK	resource	bundle	for	hg38)	
as	reference	genome.	Reads	were	aligned	with	BWA-MEM	
to	 the	 reference	 genome,	 and	 duplicate	 reads	were	 re-
moved.	Reads	were	realigned	around	indels,	and	we	ap-
plied	Base	Quality	Score	Recalibration	together	with	the	
Haplotyper	 algorithm	 for	 variant	 calling	 (equivalent	 to	
the	GATK	Haplotype	75. Then,	as	suggested	by	GATK	best	
practices,	 we	 used	 Variant	 Quality	 Score	 Recalibration,	
which	is	an	advanced	filtering	technique	used	on	the	var-
iant	call	set	that	models	the	technical	profile	of	variants	in	
a	training	set	using	machine	learning	and	filters	out	po-
tential	 artifacts	 from	 the	 callset.	 The	 filtered	 variants	
were	uploaded	to	an	in-house	mySQL	database	where	we	
linked	 them	 with	 information	 about	 genomic	 context	
(ENSEMBL	 v95),	 ENSEMBL	 consequences,	 deleterious-
ness-scores	(CADD	1.6,	REVEL,	SIFT,	PolyPhen)	and	vari-
ant	 frequency	 in	 the	 healthy	 population	 (GnomAD	 v3)	
based	on	 their	genomic	position	and	alternate	allele.	 In	
particular,	we	 annotated	 the	REVEL	 score	 76	 associated	
with	the	genomic	mutation	by	using	the	publicly	available	
dataset	of	precomputed	scores,	by	matching	genomic	co-
ordinates,	annotated	transcript	for	the	mutation	and	al-
ternate	nucleotide.	We	could	not	annotate	a	REVEL	score	
for	four	of	the	identified	variants,	most	likely	as	they	were	
not	missense.	Two	of	them	caused	early	translation	ter-
mination	 by	 introducing	 a	 stop	 codon	 in	 our	 reference	
BRCA2	 transcript	 (13:g.32337185A>T	 and	
13:g.32398489A>T,	 corresponding	 to	 p.Lys944*	 	 and	
p.Lys3326*	 at	 protein	 level).The	 other	 two	
(2:g.47607407G>A	 and	 2:g.47607446G>A,	 correspond-
ing	to	p.Arg923Gln	and	p.Gly936Asp	in	MSH2	at	protein	
level	for	our	reference	transcript)	were	annotated	as	both	
missense	 and	 nonsense-mediated	 decay	 in	 our	 dataset,	
meaning	they	are	annotated	as	nonsense-mediated	decay	
for	at	least	some	of	the	MSH2	transcripts,	and	this	is	prob-
ably	the	reason	they	were	not	available	in	the	REVEL	da-
tabase.		
We	retained,	as	VUS	to	investigate,	those	variants	located	
in	the	coding	regions	and	found	with	a	frequency	lower	
than	1%	in	GnomAD	v3	(build	38)		as	a	proxy	for	a	healthy	
population.	This	threshold	has	been	selected	according	to	
the	 guidelines	 for	 VUS	 studies	 77.	 An	 illustration	 of	 the	
workflow	for	analyzing	the	sequencing	data	is	provided	
in	Figure	S2.		
We	searched	each	variant	in	the	selected	14	genes	for	the	
study	in	ClinVar	46,47	and	retrieved	annotations	on	them	
to	 verify	 if	 they	 are	 VUS,	 variants	 with	 conflicting	

evidence,	or	not	reported	yet	 in	 the	database.	To	select	
the	proteins	 and	variants	 that	 can	be	 investigated	with	
RosettaDDGPrediction,	 we	 then	 searched	 in	 the	 Al-
phaFold2	database	40	for	the	corresponding	protein	struc-
tures	and	retained	those	that	had	structural	coverage	for	
the	 variants	 in	 regions	with	 high	 confidence	 (pLDDT	 >	
70).	Cases	in	which	the	pLDDT	score	is	low	but	located	in	
loops	that	connect	structured	regions	of	folded	domains	
were	also	retained	for	analyses.	These	regions	are	often	
very	flexible	in	a	protein	structure,	and	it	is	thus	expected	
that	they	could	have	a	lower	pLDDT	score.	The	selected	
target	proteins	and	corresponding	variants	are	reported	
in	Table	S2.	We	analyzed	14	proteins	and	132	variants	in	
total.		
We	 excluded	 mutations	 either	 not	 covered	 by	 our	
trimmed	 models	 or	 derived	 from	 an	 isoform	 different	
from	the	one	available	in	the	AlphaFold2	database.	Con-
cerning	MSH2,	we	did	not	analyze	G936D	since	our	iso-
form	 had	 934	 residues,	 while	 R293Q	 refers	 to	 the	
A0A2R8YG02_HUMAN	 isoform	 78.	 In	 the	 case	 of	MSH6,	
T1125M	 was	 removed	 since	 derived	 from	 the	
A0A494C0M1_HUMAN	 transcript	 78.	 Furthermore,	 the	
following	seven	variants	found	in	FANCL	were	also	disre-
garded:	S356N,	S356N,	G322V,	F257C,	T229A,	I199V,	and	
V181I.	These	variants	were	generated	 from	FANCL	 iso-
form	2	(ENST00000402135.8,	Q9NW38-2,	380aa),	which	
did	 not	 match	 the	 AlphaFold	 model	 for	 FANCL	
(ENST00000233741.9,	Q9NW38,	375aa).	
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