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Reliable prediction of free energy changes upon amino acidic substitutions (AAGs) is crucial to investigate their impact on
protein stability and protein-protein interaction. Moreover, advances in experimental mutational scans allow high-through-
put studies thanks to sophisticated multiplex techniques. On the other hand, genomics initiatives provide a large amount
of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computa-
tional field should keep the same pace and provide new tools for fast and accurate high-throughput calculations of AAGs.
In this context, the Rosetta modeling suite implements effective approaches to predict the change in the folding free energy
in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes.
Their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols
for AAG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cum-
bersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free en-
ergy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Ro-
settaDDGPrediction assists with checking whether the runs are completed successfully aggregates raw data for multiple
variants, and generates publication-ready graphics. We showed the potential of the tool in selected case studies, including
variants of unknown significance found in children who developed cancer, proteins with known experimental unfolding
AAGs values, interactions between target proteins and a disordered functional motif, and phospho-mimetic variants. Ro-
settaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https:/github.com/ELE-
LAB/RosettaDDGPrediction.
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Therefore, molecular modeling approaches must keep

Introduction the same pace and continue developing toward high-
throughput applications.
Predicting the impact of amino acid substitutions in a A convenient and quantitative manner for assessing the
protein or at a protein-protein interface is becoming impact of amino acid substitutions related to coding var-
more and more relevant as high-throughput sequencing iants is based on estimating the changes in Gibbs free en-
data reveal a high rate of sequence polymorphisms of un- ergy of folding/unfolding or binding. In this context, sev-
known functional significance in protein-coding regions', eral computational approaches based on the analysis of
In this context, multiplex-based assays provide a massive protein structures are available to predict free energy
amount of data that can be complemented by structural changes upon mutation (AAGs) in protein structures 7o
studies on the effects of protein variants “*. Further- These measurements can be used to classify the effect of
more, saturation mutagenesis is experimentally very ac- disease-related variants on protein structural stability
cessible thanks to the advances in multiplex technologies. and, consequently, alterations of the cellular level or
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propensity to aggregation or proteasomal degradation
1718 along with functional effects due to local changes in
gle interactions with other proteins or biomolecules 19-
Rosetta provides a variety of protocols to estimate
changes in free energy in terms of binding and fold-
ing/unfolding BIL121622 Most of these protocols estimate
the change in free energy as an average over the free en-
ergy changes calculated in an ensemble of paired wild-
type/mutated structures.

Rosetta protocols for the prediction of free energy
changes upon mutation are characterized by three fea-
tures: (i) the sampling method employed to generate the
structural ensemble, (ii) the energy function used to
quantify the free energy associated with each structure,
and (iii) the degree of flexibility allowed in the structure
to accommodate the mutation. Currently, three state-of-
the-art strategies are available in Rosetta to estimate the
change in either folding or binding free energy upon mu-
tation. The first one, presented by Park and coworkers !

and referred to as cartddg, is designed to work on mon-
omeric proteins. It depends on sampling in Cartesian
space (as opposed to internal dihedrals sampling), the
ref2015 Rosetta energy function (Cartesian space ver-
sion), and small local backbone movements allowed in a
three-residue window around the mutation site, together
with side-chains movements within a 6 A radius from the
mutation site. The second protocol, cartddg2020, repre-
sents an updated variant of cartddg ®

The third protocol, developed by Barlow and cowork-
ers'' and named here flexddg, deals with estimating the
changes in binding free energy upon mutation in a pro-
tein complex. It uses the “backrub” sampling method B
which aims to recapitulate local backbone motions ob-
served in crystal lattices. The flexddg protocol seems to
perform better with the talaris2014 energy " function.
This protocol for binding free energies relies on a local
sampling of backbone and side chains for residues within
an 8 A radius from the mutation, followed by global opti-
mization of the side chains

Rosetta is a feature-rich software suite under active de-
velopment, backed by a sizable community of users, and
built over roughly 20 years. Running these protocols di-
rectly with Rosetta requires an extensive computational
background and prior exposure to several Rosetta fea-
tures. These requirements may discourage users with a
more biology-oriented skillset, despite the benefit that
accurate predictions of free energy changes upon muta-
tions may bring to their research. Furthermore, Rosetta
protocols for AAG prediction are designed to be run con-
sidering one mutation at a time exclusively, making high-
throughput screenings cumbersome to set up. We re-
cently faced a similar challenge with implementing high-
throughput scans based on the FoldX free energy func-
tion and making them parallelizable, more easily ap-
proachable, and applicable to structural ensembles. This
led to the development of MutateX 3, FoldX, however, is
known to suffer from limitations due to backbone stiff-
ness during the sampling * and often low accuracy in
predicting mutations with stabilizing effects on stability,
even though most prediction methods are biased
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towards destabilizing mutations 25 Rosetta-based cal-

culations could offer a valuable complement to the AAG
estimates currently accessible with MutateX. Thus, we
developed RosettaDDGPrediction, a Python wrapper to
perform Rosetta-based protocols for AAG prediction. Ro-
settaDDGPrediction’s outputs can also be converted to a
format compatible with the MutateX plotting system, al-
lowing for an expanded visualization toolkit. Here, we il-
lustrate the applications and limits of the approach to
four different cases of study, covering both methodologi-
cal and biological applications. At first, we focused on the
comparison with experimentally determined unfolding
AAG values (Case Study 1) and the influence of using Al-
phaFold2 models as starting structures (Case Study 2).
Then, we showed two examples of applications of biolog-
ical interest to study protein-protein interactions and
post-translational modifications (Case Study 3) and to as-
sess the functional impact of mutations identified by
whole genome sequencing to address cancer predisposi-
tion (Case Study 4).

Results
Overview of the package

RosettaDDGPrediction is a pure Python package provid-
ing a uniform and easily accessible command-line inter-
face to flexddg, cartddg, and cartddg2020 protocols for
the calculation of free energy changes upon mutation. It
is devised to help users unfamiliar with the Rosetta suite
perform mutational scans and collect, aggregate, and vis-
ualize data from those scans in an intuitive fashion. In Ro-
settaDDGPrediction, a “protocol” is intended as a set of
Rosetta runs and Python-based processing steps, which
takes as inputs the three-dimensional structure of the
protein of interest and a list of mutations to be performed,
finally returning the predicted free energy changes asso-
ciated with each input mutation. The flexddg protocol
consists of only one call to the rosetta_scripts executable
for each mutation, which performs all the necessary cal-
culations as defined by Barlow and coworkers 1%. On the
other hand, the cartddg protocol first energetically re-
laxes the input structure by using the Rosetta relax pro-
gram to generate an ensemble of relaxed conformations,
followed by the selection of the most suitable one. Finally,
it uses the cartesian_ddg application to relax the structure
further and perform the free energy calculations.
cartddg2020 protocols represent updated versions of the
original cartddg protocols. Here, the relaxation is per-
formed by a Rosetta script passed to the rosetta_scripts
executable, and then cartesian_ddg is run on the lowest
energy structure produced by the relaxation. It is worth
noting that the relaxation procedure produces only one
structure, as per the original files provided with the work
first describing the cartddg2020 protocol 8. However, if
the user decides to produce several relaxed structures,
the most suitable one (according to user-selected crite-
ria) will then be passed to cartesian_ddg. The standard
protocols are described in specific YAML files provided
with the package. With these files, expert users can still
tap into the full potential of the Rosetta interface by
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Figure 1. The RosettaDDGPrediction workflow and schematized plot types. The first step consists in running the rosetta_ddg_run executable to
obtain the predicted AAG values for the changes in folding free energy (for monomeric proteins) or binding free energy (for protein complexes). Then,
rosetta_ddg_check can be used to ensure that all runs have been completed successfully. Data aggregation can then be performed with ro-
setta_ddg_aggregate, and aggregate data can finally be visualized in different ways (heatmaps, bar plots, swarm plots) using rosetta_ddg_plot.

providing virtually any Rosetta-compatible option to the
executables used by each protocol.
RosettaDDGPrediction consists of four main executables
(rosetta_ddg_run, rosetta_ddg_check_run, rosetta_ddg_ag-
gregate, rosetta_ddg_plot) performing different tasks
(Figure 1). Their behavior is controlled by a set of config-
uration files, which can be fully customized to fine-tune
the parameters of each protocol, aggregation options, and
plot aesthetics.

rosetta_ddg_run is the executable responsible for running
a Rosetta protocol to predict free energy changes upon
mutation over a set of selected mutations. Given a protein
structure in PDB format and a set of mutations, it gener-
ates all the data structures and configuration files to per-
form several runs in parallel, making them straightfor-
ward to perform and making the most of modern many-
cores computing infrastructures. rosetta_ddg_run can op-
timize the workload distribution over the available re-
sources to ensure efficient scheduling of the runs, thanks
to the Dask Python package operating under the hood. ro-
setta_ddg_run easily handles multi-step protocols, requir-
ing sequential Rosetta calls and possibly processing the
output data between the steps. For example, for the afore-
mentioned cartddg and cartddg2020 protocols, ro-
setta_ddg_run takes care of both Rosetta calls and the pro-
cessing steps.

Once the runs are completed, users can perform a sanity
check on the calculations using rosetta_ddg_check run,
which identifies problematic runs by scraping the Rosetta
output files. If the runs have been completed successfully,
rosetta_ddg_aggregate can aggregate raw data from the
large numbers of collected mutation runs into easily read-
able table files. These aggregate files contain, together
with the calculated differences in free energy, additional
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information about each mutation, the Rosetta energy
function used, and the number of structures generated in
the final ensemble of structures. rosetta_ddg_aggregate
also allows generating aggregate outputs compatible with
the MutateX plotting system. Indeed, MutateX offers addi-
tional visualization tools, including density plots, logo
plots, distribution plots, and summary tables that can be
easily navigated 23.

Finally, rosetta_ddg_plot provides plotting utilities to ex-
plore the aggregated data through several visualization
types, such as one-dimensional or two-dimensional
heatmaps. The latter is particularly convenient when a
saturation mutagenesis scan is run on a set of positions.
The contribution of each term of the energy function to
the final AAG values may be visualized as a stacked bar
plot, where positive and negative contributions add up on
the corresponding semiaxes. Finally, since all protocols
implemented so far in RosettaDDGPrediction determine
the AAG value associated with a mutation by averaging
over the values produced by an ensemble of structures,
the user may want to visualize the distribution of such
values to investigate the source of potential outliers that
may bias the average. In this case, a swarm plot displaying
such values as separate data points is a very insightful
overview provided by rosetta_ddg_plot.

To guide the user on the number of cores and time re-
quired for calculation, depending on the RosettaDDGPre-
diction protocol, energy function, and protein size, we re-
port the results for different saturation scans in Table 1.
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Case study 1 - prediction of changes in folding free en-
ergy upon mutations and comparison with experimental
values from the ThermoMut database

To illustrate the performance of the ref2015 energy func-
tion, we performed folding free energy calculations with
both the cartddg (Figure 2) and the cartddg2020 (Figure
$1) protocols and compared them to experimentally de-
termined unfolding AAG values. The following section il-
lustrates, as an example, our findings when using the
cartddg protocol. We downloaded the entire ThermoMut
database *° (ThermoMutDB) and selected four proteins
as detailed in the Methods. In particular, we selected two
bacterial enzymes with respectively 117 and 597 muta-
tions, i.e., Enterobacteria phage T4 Endolysin, ENLYS
(UniProt ID: P00720), and Staphylococcus aureus Ther-
monuclease, NUC (P00644). In addition, we performed
the calculations on two human proteins of interest in
health and disease, i.e, TP53 (P04637) and FKBP1A
(P62942) with respectively 45 and 68 mutations with
structural coverage. The secondary structure definition
of the proteins was obtained from PDBe %7 and each po-
sition was annotated as either a-helix, -sheet, or loop in
the wild-type structures. This case study aims at investi-
gating the relationship between experimental and pre-
dicted values, per-mutation, when the data from all four
proteins are pooled, allowing us to achieve better statis-
tical power than considering each protein separately.

Table 1. Examples of performances of RosettaDDGPrediction
for different protein sizes, the number of cores, and protocols
applied. In the case of complexes the ‘Protein size’ column includes
two values, i.e., one value for each protein/peptide in the complex.
The one marked with a * is the one for which the saturation mutational
scan was carried out. Calculations were run on servers equipped with
either dual Xeon 6142 processors or dual Xeon 6242 processors.

Each processor features 32 cores. The estimate refers to calculations
done with Rosetta version 3.12.

Protein size Number Protocol Time
of cores (hours)

120 16 cartddg (ref2015) 33
250 24 cartddg (ref2015) 67
250 8 cartddg (talaris2014) 89
340 16 cartddg (ref2015) 160
340 16 cartddg (talaris2014) 70
340 1 relax 16
600 1 relax 40
900 1 relax 65
120;17* 40 flexddg (talaris2014) 67

To understand the agreement between the experimen-
tally determined and the predicted stability, we per-
formed a preliminary data exploration. Interestingly,
data points from the experimental and prediction dataset
are similarly distributed (Figure 2A), as corroborated by
the Kolmogorov-Smirnov test (p=0.21).
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We then tried to investigate the relationship between
predicted and experimental data using a simple linear re-
gression model, with the assumption that a perfect agree-
ment between the experimental and predicted values
would have an intercept of 0 and a coefficient of 1. The
regression line has an intercept of 0.81 and a slope of
0.719 (Figure 2B). The variance of the linear model (02)
is 3.95, and the model produces an R? of 0.44, a Pearson
correlation coefficient of 0.66, and a mean absolute error
between the predicted and experimental AAGs (MAE) of
1.39. The residuals plot for this model shows how the
poor R® value is at least partially due to systematic bias
(Figure S2). This illustrates that a linear model does not
completely explain the variance in the data we observed.
To better understand this behavior, we tried to fit the
data using a Generalized Additive Model (GAM) (Figure
2D). The resulting model has a roughly linear behavior in
the ~0-5 kcal/mol range but becomes less so at lower or
larger AAG values. Similarly, the confidence interval is
very narrow in the linear regime interval, and it is wider
for larger and smaller AAG values, for which we have
fewer data points. This observation is in alignment with
Hgie et al. 28, who found that AAG predictions made with
ref2015 and the cartesian2020 protocol in 29 proteins
correlated with altered protein functions for AAG > 4.5
kcal/mol, but the severity of the impact did not increase
remarkably beyond this point. We then assessed the im-
pact of the secondary structure on the performance of the
prediction by building a simple linear model for each of
the secondary structure groups, divided into a-helices, -
sheets, and coil (Figure 2C). In fact, residues involved in
structured regions are more likely to be part of the pro-
tein core, less flexible, and more sensitive to mutation
with respect to solvent-accessible unstructured loops.
The data points in the a-helices and (3-sheets are reason-
ably well correlated with Pearson correlation coefficients
of 0.70 (slope=0.68, 6°=3.63, R°=0.49, MAE between pre-
dictions and experiments = 1.53) and 0.69, respectively
(slope=0.99, 02=4-.98, R2=0.49, MAE between predictions
and experiments = 1.38), while the correlation of the loop
residues is 0.57 (slope=0.45, 6°=1.99, R*=0.33, MAE be-
tween predictions and experiments = 1.22), illustrating
that the prediction is less consistent for unstructured re-
gions. In this dataset, we noticed several outliers in which
amino acid substitutions are predicted to have a large de-
stabilizing impact, while the experiments find the variant
to be neutral or mildly destabilizing. The experimental
findings mostly align with the expectation that substitu-
tions in flexible loops have mild effects on stability, alt-
hough some loop substitutions may extend or create sec-
ondary structure elements, for example, as a result of
substitutions from proline %% The difference witnessed in
this dataset is likely due to the fact that Rosetta allows
some local main chain flexibility which may not be
enough to represent the conformational variability that
disordered regions experience in solution. We noticed
similar behavior in applying FoldX, which we could miti-
gate with the usage of ensembles of structures generated,
for example, by molecular dynamics simulations 212330 1t
should be noted that the a-helix mutations dataset also
contains outliers. This dataset, however, has an overall
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better correlation with the experimental dataset, and the
coefficient of its regression line is closer to 1. This sug-

gests that changes in loops are more difficult to predict.
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Figure 2. Comparison of changes in structural stability predicted
with the ref2015 cartddg protocol and experiments

(A) Distribution of the predicted and experimental stability changes in
kcal/mol. (B) Scatterplot of the AAG values predicted by the ref2015
cartddg protocol and experimental values for the corresponding muta-
tions. The blue line indicates a perfect correspondence between the var-
iables. The green line is the fitted simple linear model. The model has
an intercept 0f0.81, a slopeof 0.72, a variance (02) of 3.95, and a R2 of
0.44, a Pearson’s Correlation Coefficient 0f0.66, and a Mean Absolute
Error between the predicted and experimental AAGs (MAE) 0f1.39. (C)
Scatterplots dividing the data by the wild-type secondary structure of the
mutated position. The blue line indicates a perfect correspondence be-
tween the variables for each plot. The green line is the fitted simple lin-
ear model. Here, it is evident how the structured sections have a better
correlation when compared to coils. This is likely due to the flexibility of
the unstructured sections. a-helices: Pearson’s correlation coeffi-
cient=0.70, slope=0.68, 02=3.63, R2=0.49, MAE=1.53. B-sheets: Pear-
son’s correlation coefficient=0.69, slope=0.99, 02=4.98, R2=0.49,
MAE=1.38. Coil: Pearson’s correlation coefficient=0.57, slope=0.45,
02=1.99, R2=0.33, MAE=1.22. (D) Generalized additive model (GAM)
modeling the response variable, the experimental AAG value, to a pre-
dictive variable, the predicted AAG value, by estimating a smooth func-
tion, smooth (Predict). The smooth function has an effective degree of
freedom of 6.5, quantifying the complexity of the line. The confidence
interval is sufficiently narrow in the AAG interval 0-5 kcal/mol to indicate
that a linear relationship is present in this interval. (E) Confusion matrix
where the experimental values are annotated as the reference values.
The threshold used to define the classes is a AAG of < -1 kcal/mol for
stabilizing mutations, -1 < AAG < 1 kcal/mol for neutral mutations and
AAG > 1 kcal/mol for destabilizing mutations. The resulting accuracy is
0.74.

We then checked how good the performance of the pre-
dictions was when classifying mutations into destabiliz-
ing, neutral, and stabilizing. We did so by classifying all
mutations causing stability changes above 1 kcal/mol as
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destabilizing, all mutations causing stability changes be-
tween 1 kcal/mol and -1 kcal/mol as neutral, and all mu-
tations causing stability changes below -1 kcal/mol as
stabilizing 816 and constructing a confusion matrix (Fig-
ure 2E). This confusion matrix yields an accuracy of 0.74.
Where the accuracy in prediction is best for the destabi-
lizing class (0.76), with high sensitivity (0.83), while the
accuracy of the stabilizing class is only 0.56, with a sen-
sitivity of 0.17, indicating that the destabilizing class is
more likely to be correctly identified as compared to the
stabilizing class. The neutral class has a similar perfor-
mance to the destabilizing class (Table S1). In conclu-
sion, this case study shows a good linear correlation be-
tween predicted and experimental values, especially in
the 0-5 kcal/mol range; for larger and smaller values,
while the trend is generally conserved, the relationship
between the predicted and experimental values is less di-
rect. We also show how predictions are more reliable for
structured regions of the protein while correlation values
are lower for unstructured regions. We performed the
same analyses on the dataset obtained using the carte-
sian2020 protocol, which showed similar trends overall
(Figure S1).

Case study 2 - prediction of changes in binding free en-
ergy for protein-short linear motifs (SLiMs) interactions

Within the protein-protein interaction landscape, intrin-
sically disordered proteins, or regions (IDPs, i.e., proteins
that lack a defined tertiary structure or IDRs) have been
proved to play an essential role in different biological
events. IDP and IDRs include functional motifs known as
Short Linear Motifs (SLiMs) that are important for the
binding between IDPs and their target proteins 33 An
example is the LC3 Interacting Region (LIR), i.e., a class
of SLiMs involved in selective autophagy ** One of the
main features for regulating LIR binding to proteins of
the LC3 family is through post-translational modifica-
tions (PTMs), especially through phosphorylation )
Here, we aim to show an application of the flexddg proto-
col to capture the changes in binding free energy upon
phosphorylation or mutations in the core region of LIR-
containing proteins.

First, we selected two examples of experimentally char-
acterized phospho-regulated LIRs for which the struc-
tures were available on the Protein Data Bank, i.e.,
FUNDC1 in complex with LC3B (PDB entry, 2N9X 35) and
PIK3C3 in complex with GABARAP (PDB entry, 6HOG *%).
Experimental data on these two complexes through Iso-
thermal Titration Calorimetry (ITC) and peptide arrays
are available for these complexes, including the effects of
phosphorylations or phospho-mimicking mutations 3537,
We applied the flexddg protocol with the talaris2014 Ro-
setta energy function to investigate the effects of single
and multiple phospho-mimetic mutations at the known
phosphosites (see the Material and Methods section)
since Rosetta does not currently provide parameters for
phosphorylated residues. The results are described in de-
tail below and reported in Figure 3.

FUNDC1 is a mitophagy receptor that mediates the selec-
tive removal of damaged or superfluous mitochondria. It
contains a canonical LIR (core region, 18-YEVL-21),
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which is necessary for the interaction with LC3 and, thus,
for its role in mitophagy 3 FUNDC1 presents three ex-
perimentally validated phosphosites in or in the sur-
roundings of its LIR motif: S13,S17, and Y18 (Figure 3A).
Isothermal Titration Calorimetry (ITC) experiments with
different FUNDC1 LIR peptides and LC3B reported a Kd
of 0.40 = 0.06uM for the wild-type variant. Phosphoryla-
tion at the S13 site resulted only in a slight decrease of
the LC3B affinity (Kd= 0.60 + 0.05uM) with respect to the
wild type, while the phosphorylation of the Y18 site
caused an approximately 5-fold increase in the Kd of in-
teraction with LC3B (Kd= 1.72 + 0.30uM). This increase
is slightly augmented if both phosphorylations are com-
bined (Kd= 2.00 + 0.37uM) 3 Additionally, another work
reported that phosphorylation of the S17 site increases
the binding affinity with LC3B by approximately three
folds *” . The flexddg protocol predicted the S13D and
S13E substitutions to have neutral effects on the binding,
in agreement with the experimental results (i.e., average
AAG < 0.25 kcal/mol).
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Figure 3. Prediction of changes in binding free energy using
the flexddg protocol for protein interactions mediated by Short
Linear Motifs. (A) FUNDC1 LIR peptide (blue) in complex with
LC3B (gray) in the structure associated with the PDB entry 2N9X.
The S13, Y18, and S17 phosphosites are shown as sticks and col-
ored in yellow. (B) We report the predicted binding AAGs for the
single and double phosphomimetic mutations for the FUNDC1 LIR
phosphosites for which experimental data are available for compar-
ison. (C) PIK3C3 LIR peptide (blue) in complex with GABARAP
(gray) in the structure associated with the PDB entry 6HOG. The
S244 and S249 phosphosites are shown as sticks and colored in
yellow, while the residues for binding to the GABARAP HP1 and
HP2 pockets are shown as red and blue sticks, respectively. (D)
We report the predicted binding AAGs for single and double phos-
phomimetic mutations, along with mutations to alanine in the core
motif of the PIK3C3 LIR, for which experimental data are available
for comparison.

However, the average AAGs for the S17E and S17D muta-
tions are also low, suggesting that, in this other case, the
prediction cannot capture the changes in the binding af-
finity observed experimentally (Figure 3A). This is also
the case for the phospho-mimetic mutations at the site
Y18, whereas the combined effect of phospho-mimetic
mutations at S13 and Y18 sites resulted in negative AAG
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values, suggesting a stabilizing effect as observed exper-
imentally (Figure 3B). Nevertheless, we also observed
that the standard deviation is very high for these predic-
tions, not allowing for quantitative conclusions.

The second protein of interest, PIK3C3, is a class III phos-
phoinositide 3-kinase enzyme of the PtdIns3K complexes
(class III phosphatydylinositol 3-kinase complexes I and
II) involved in the initiation of autophagy.

PIK3C3 presents a canonical F-type LIR (250-FELV-253)
required for the interaction with GABARAP and
GABARAPL1*®. The effect of phosphorylations at S244
and S249 was assessed with ITC. In these experiments,
the substitution of both the phosphosites with glutamate
caused a 17-fold increase in GABARAP binding compared
to the wild-type variant (Kd= 49.5 + 3.9 uM). Moreover,
peptide array experiments showed an increase in the
binding affinity of the LIR peptide with all the LC3 family
members for the phosphomimetic S249E variant .

To assess the potential of the flexddg protocol in captur-
ing the effects induced by the phosphorylations of the
PIK3C3 LIR, we modeled the S249E variant and a variant
including phosphomimetic mutations at both the S44 and
S249 sites (i.e., S244E_S249E, Figure 3C). We also tested
the effect of the S249D substitution as a possible phos-
phomimetic variant, even if no experimental data are
available for this mutation. We can observe that using
S$249D as a phosphomimetic variant does not provide the
same result as introducing a glutamate (Figure 3D). This
supports the notion that aspartate and glutamate cannot
be always used as phosphomimetics in an interchangea-
ble manner. The S249E variant seems to have a slightly
stabilizing effect on the binding (average AAG= -0.59
kcal/mol) and, in general, values of AAG lower than 0
across the 35 independent runs (Figure 3D). This is in
partial agreement with the peptide array results men-
tioned above. The double mutant variant S244E_S249E
does not seem to increase the binding to the extent ex-
pected from the ITC data, suggesting that the flexddg pro-
tocol cannot be widely used to address multiple amino
acid substitution. Indeed, the AAG values predicted for
the S244E_S249E variant are similar to the ones of the
single amino acid substitutions.

Furthermore, we evaluated if the flexddg protocol could
provide insights on the effects of mutations in SLiMs
where PTMs are not involved. In the case of LIRs, the in-
teraction between an LIR-containing protein and an LC3
family member is mainly driven by two residues of the
LIR motif, which are in position 1 and 4 of the core motif
and that bind to the Hydrophobic Pocket 1 (HP1) and the
Hydrophobic pocket 2 (HP2) residues of the LC3 protein,
respectively **. Thus, we tested the capability of the
flexddg protocol with the talaris2014 energy function to
predict the impact of the known detrimental mutations
F250A (residue for interaction with HP1 pocket) and
V253A (HP2 pocket) of PIK3C in complex with GABARAP
(PDB entry, 6HOG 38). As expected, the flexddg protocol
could predict the destabilizing effect of these mutations
on the binding with GABARAP with predicted average
AAG values of 2.096 kcal/mol for F250A and 0.695
kcal/mol for V253A (Figure 3D). The main effect is trig-
gered by the mutation of the residue for the binding to
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the HP1 pocket, in agreement with what is known from (i.e., stabilizing mutations) and the reliable prediction of
structural studies on LIR-LC3 protein interactions **, effects induced by phosphorylation with the usage of
Overall, these applications illustrate the potential and phosphomimetic mutations only.

some of the limitations of the RosettaDDGPrediction
workflow, where two main challenges are the prediction
of effects that are related to increased binding affinity
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Figure 4. Comparison of experimental and predicted AAGs using p53 as a case study. AAG values were predicted using Rosetta version 3.12
withthe ref2015 and talaris2014 scoring functions, and the cartddg and cartddg2020 protocols (referred to as “c2020” in the figure). We used the X-
ray structure (PDB entry 2XWR) and a model from the AlphaFold2 database for the residues 91-289 of p53 as initial structures, using our default
number of runs (three) or ten runs (these are referred to as “R10”). (A) Experimental vs. predicted AAG values. (B) Pearson’s correlation coefficient
between experimental and predicted values. (C) Mean Absolute Error (MAE) between experimental and predicted values. (D) Receiver operator
characteristic (ROC) curve. The classification for this curve was done by considering the changes of free energy values reported in ThermoMutDB
as ground truth, using 1.2 kcal/mol as AAG cut-off to distinguish between destabilizing and non-destabilizing mutations (see Methods). The same

criterion was used for the predicted mutations.

Case study 3 - influence of the source of initial struc-
tures for the calculations

The advent of AlphaFold has revolutionized molecular
modeling and structural biology 39, resulting in models of
3D structures of proteins with resolutions comparable to
those achievable with experimental approaches. Cur-
rently, the AlphaFold database contains over 360.000
predicted protein structures of 21 model organisms 49,
providing a rich source of structures for in silico muta-
tional scans as the ones that can be performed by MutateX
or RosettaDDGPrediction. Here, we carried out an inves-
tigation to evaluate the influence of using a model based
on AlphaFold2 with respect to a good resolution X-ray
structure of the same protein. For this goal, we used as a
case study the DNA binding domain (DBD) of p53, for
which experimental data are also available on 31 mutant
variants from ThermoMutDB 26, We evaluated the agree-
ment between our calculated and experimentally availa-
ble data, using the same parameters and energy func-
tions, either the cartddg or cartddg2020 protocol, and the
two different starting structures. We have also included
in the comparison a variant of cartddg in which we in-
creased the numbers of runs per mutation up to ten, to
determine whether it would improve our results. As the
final AAG depends on the values obtained by the single
runs (even though it is calculated differently in the
cartddg and cartddg2020 protocols - see above), we ex-
pect that increasing the number of samples might lead to
better converged final AAG values if using just three runs
is insufficient. We have measured the agreement through
several metrics, such as the Pearson correlation coeffi-
cient, MAE, and a ROC curve.

We performed most of our comparison considering runs
performed with the cartddg protocol. Therefore, in this
section, we will be referring to them unless stated other-
wise.

We obtained a similar pattern when comparing predic-
tions and experiments using the experimental structure
and the Alphafold2 model (Figure 4A) with a positive lin-
ear correlation, as quantified by Pearson's correlation co-
efficient (Figure 4B). The highest Pearson’s correlation
coefficient obtained was 0.79 using the scoring function
talaris2014 with the AlphaFold2 model and ten runs (Fig-
ure 4B), although all runs, including the ones using the
cartddg2020 protocol, achieved a correlation in the 0.57-
0.79 range. Values ranging from 0.74 to 0.79 were ob-
tained by all runs using the X-ray structure and by tala-
ris2014 with AlphaFold2 using three or ten runs. Using
ref2015 with the AlphaFold2 model led to a slightly worse
correlation of 0.57, for three runs and 0.68 for ten runs.
The runs with ref2015 energy function and the cartddg
protocol (X-ray structure) using ten runs, had the small-
est Mean Absolute Error (MAE) of 0.90 kcal/mol (Figure
4C), meaning that it had the lowest average distance
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between predicted and target values among the different
tested methods. It was closely followed by talaris2014
with the AlphaFold2 structure using three and ten cycles
with 0.92 and 0.91, respectively. The rest of the combina-
tions had a MAE between 0.95 and 1.28.

Considering the ROC curve, we considered experimental
free energy changes from ThermoMutDB as ground truth
and partitioned our dataset into destabilizing and non-
destabilizing mutations depending on whether our pre-
diction or ground truth had AAG >= 1.2 kcal/mol. The best
area under the curve (AUC) was achieved by using the
scoring function ref2015 using the cartdgg protocol and
the X-ray structure, yielding a value of 0.97 (Figure 4D).
In general, the different scoring functions and structures
behaved similarly.
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Figure 5. Trimmed AlphaFold structures of the FA (Fanconi Ane-
mia) proteins selected for the case study 4.

Cartoon representation of (A) FANCAg7.1441, (B) FANCli.1279, (C)
FANCE12.534, (D) FANCF2.369, (E) FANCG12.616 and (F) FANCL1.375. The
proteins are colored according to the AlphaFold2 pLDDT score: very low
(yellow, pLDDT > 50), low (orange, 50 < pLDDT < 70), confident (light
blue, 70 < pLDDT < 90), and very high (blue, pLDDT > 90). The Ca of
the residues found mutated in pediatric cancer patients are shown as
spheres and labeled.
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We did not appreciate great differences in the perfor-
mance of our predictions when using the experimental X-
ray structure or the AlphaFold2 model, with the only ex-
ception of using the ref2015 energy function and the
cartddg protocol with the AlphaFold2 model, which had a
lower correlation and ROC AUC with respect to the other
cases. Increasing the number of runs also slightly im-
proved the performance, but with the trade-off of a con-
siderably increased computing time. Finally, we obtained
mixed results when comparing the ref2015 X-ray three-
cycles run performed using cartddg with the correspond-
ing cartddg2020 run. We did not see any appreciable im-
provement when using cartddg2020 on the X-ray struc-
ture, as the cartddg2020 run has a slightly lower correla-
tion (0.74 vs. 0.76), higher MAE (1.25 vs. 0.99 kcal/mol),
and lower AUC (0.95 vs. 0.97) considering the experi-
mental data. Nonetheless, using cartddg2020 with the Al-
phaFold2 model rescued the subpar performance of
ref2015 in this case, as all its performance measures are
more similar to those of the other cases.

It should be noted that the DNA binding domain in the
p53 AlphaFold2 model, ranging from residues 91 to 289,
features a good per-residue confidence score (pLDDT)
score, mostly above 70, meaning that more tests on mod-
els or regions with lower quality should be carried out to
determine whether our findings can be generalized.

Case study 4 - variants predisposing to childhood cancer

In a recent study, 198 samples from different childhood
cancer types were analyzed with regard to germline vari-
ation and cancer predisposition 41. Among these, different
variants of unknown significance (VUS) have been found
with a frequency of < 1 % in the healthy population. Ap-
proximately 20% of the patients investigated had VUS in
DNA repair pathway genes. In addition, we carried out
new analyses on a larger dataset accounting for more
than 500 germline samples from Danish children. The se-
lection criteria for the proteins and the variants included
in the study are described in detail in the Material and
Methods and in Figure S3. We retained 14 proteins, i.e.,
ERCC4, BLM, FANCA, FANCE, FANCF, FANCG, FANCI,
FANCL, MLH1, MSH2, MSH6, NBN, RAD51C, and RFWD3
for structure-based calculations of the changes in folding
AAGs for the VUS. All these genes are either classified as
tumor suppressor genes in the COSMIC Cancer Gene Cen-
sus v96 42 or from literature for FANCI#3 and RAD51C*4.

Since mutations in tumor suppressor genes are gener-
ally causing loss-of-function in cancer*®, we were inter-
ested in identifying VUS that have a destabilizing effect
on the protein structure and thus result in positive pre-
dicted AAG values upon mutation. These variants could
be relevant to investigate further in terms of genomic al-
terations predisposing to cancer. To this aim, we retained
the variants for which we had structural coverage with
AlphaFold2 and high confidence scores (Table S2) for a
total of 150 variants analyzed (Figure 5-7). According to
searches in ClinVar+647, some of the variants were already
annotated as benign or likely benign but not related to
childhood cancer. On the other hand, only T1131A in
FANCA was found as pathogenic. The remaining were not
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deposited in ClinVar or annotated as unknown signifi-
cance or with conflicting evidence, emphasizing the im-
portance of additional analyses to understand the effects
at the protein level.

In this example, we applied the cartddg2020 protocol,
which considers the AAG value referring to the mutant
structure with the lowest total energy. We retained, as
predicted destabilizing, the variants with AAG values > 1
kcal/mol (see Methods) and confirmed destabilizing by
calculations with MutateX (Table S3, Table 2). Indeed,
the foldX5 energy function, which is applied in the Mu-
tateX protocol, is effective in capturing loss-of-function
mutations*8. Of note, the pathogenic variant T1131A is
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Figure 6. Trimmed AlphaFold structures of the of the DNA mis-
match repair proteins selected for the case study 4. Cartoon rep-
resentation of (A) MLH11.341 and MLH1s01-756, (B) MSH21.934 and (C)
MSH6362-1360. The proteins are colored according to the AlphaFold2
pLDDT score: very low (yellow, pLDDT > 50), low (orange, 50 < pLDDT
< 70), confident (light blue, 70 < pLDDT < 90), and very high (blue,
pLDDT > 90). The Ca of the residues found mutated in pediatric cancer
patients are shown as spheres and labeled.

not predicted to destabilize the structure of FANCA by
both Rosetta and FoldX calculations (Table S3). We hy-
pothesize that the detrimental effects triggered by this
variant could be due to other properties such as impaired
activity, interactions, or post-translational modifications
at the cellular level. Experimental studies at the cellular
level confirm that the T1131A substitution does not affect
the protein levels, in agreement with a neutral effect on
the folding AAGs 49 and that the phenotype reflects a
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Figure 7. Trimmed AlphaFold structures of the proteins promoting
the double-strand break (DBS) repair (RAD51C, RFWD3, ERCC4,
NBN) and RECQ helicase (BLM) selected for proteins used for the
case study 4. Cartoon representation of (A) RAD51Cis3s0 (B)
RFWD3234.774 (C) ERCC412.914 (D) BLM365.1290 and (E) NBN1.749. The pro-
teins are colored according to the AlphaFold2 pLDDT score: very low
(yellow, pLDDT > 50), low (orange, 50 < pLDDT < 70), confident (light
blue, 70 < pLDDT < 90), and very high (blue, pLDDT > 90). The Ca of
the residues found mutated in pediatric cancer patients are shown as
spheres and labeled.

functional impairment that has a mild impact on MMC
drug sensitivity and the monoubiquitinating of another
protein 4950. T1131A could be further investigated using
our recently proposed multi-layered structural frame-
work for variant annotations in proteins 202151,

We also observed that one variant annotated as benign in
ClinVar (i.e., L605F FANCI) has predicted changes in fold-
ing AAG higher than 3 kcal/mol and is, therefore, classi-
fied as destabilizing for the structural stability by our
analysis. The variant has been characterized at the cellu-
lar level, showing decreased protein levels when com-
pared to the wild-type, which confirms our prediction>2.
On the other hand, the variant P55L (predicted folding
AAG < 2.0 kcal/mol) was expressed at the same level as
the wild-type. In addition, other benign variants accord-
ing to ClinVar classification have been found in the range
of 1-2 kcal/mol (Table 2). This observation suggests that
variants for which the predicted changes in stability are
within 1-3 kcal/mol should be further investigated to
evaluate if they could result in neutral effects at the cellu-
lar level. In the case of MSH2, for example, it has been
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shown that a predicted destabilization of more than 3
kcal/mol is sufficient to cause cellular degradation of the
protein 3.

According to the results in Table2 and the observation
above, if we consider folding AAG values higher than 3
kcal/mol, our analyses suggest a number of VUS that
could predispose to loss-of-function through destabiliza-
tion of the protein structure and have a high REVEL score
which further support their possible pathogenic impact
(i.e, A797T in BLM, [706T in ERCC4, W410C and F603S in
FANCA, L329P in FANCF, V180G in MLH1, V606F in
MSH2, G1072D in MSH6). Of note, the mutation L329P in
FANCE has been suggested to disrupt the stability of the
catalytic module of the protein in a previous structural
study 54.

Discussion

We developed RosettaDDGPrediction moved by the need
to provide easy and scalable access to Rosetta-based ap-
proaches to predict free energy changes in proteins upon
mutations. RosettaDDGPrediction takes care of the whole
process by performing a large number of AAG predictions
in an efficient and scalable manner, making a high-
throughput calculations with Rosetta accessible, which is
helpful for both extensive mutational scans and struc-
tured benchmarks.

RosettaDDGPrediction is, to our knowledge, the first
wrapper devised to integrate state-of-the-art Rosetta-
based protocols for the predictions of free energy changes
upon mutation under a uniform framework.
Furthermore, the software checks the success of the runs,
aggregates the data in CSV tables that are easy to mine
and generates visual reports. As these steps are inde-
pendent, the aggregation and visualization tools can be
used on different datasets. In addition, we support addi-
tional output formats compatible with the MutateX plot-
ting scheme 23. At the same time, raw or aggregated data
can be easily manipulated externally. RosettaDDGPredic-
tion also devotes particular attention to ensuring tech-
nical reproducibility by being controlled through config-
uration files. Further developments of RosettaDDGPre-
diction will focus on integrating its functionalities within
MutateX, to provide a method-agostic container to per-
form and collect high-throughput mutational scans in a
reproducible, automatized, and sustainable manner.

In this context, the performances of RosettaDDGPredic-
tion and MutateX are only as good as those of the Rosetta-
and FoldX-based methods that they incorporate. Indeed,
Rosetta-based protocols implemented so far rely on dif-
ferent sampling methods to obtain models of the mutant
variant structures and on scoring the resulting structures
via knowledge-based energy functions to predict changes
in the folding and binding free energy upon mutation 1655,
However, more rigorous strategies are available to pre-
dict both the effect of mutations on the folding free energy
and the binding free energyl456-58. For example, ap-
proaches leveraging enhanced sampling along reaction
coordinates designed to study binding and unbinding
events are available 5277,
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Table 2. Summary of predicted AAGs for Variants of Unknown Significance in childhood cancer. ‘NA’ indicates ‘Not Available’. We did not report
RAD51C and FANCL in the table since all the variants analyzed here for these proteins were predicted with neutral effects for stability.

VARIANT CLINVAR Predicted REVEL
Folding AAG
(kcal/mol)

BLM - L788I Conflicting interpretations of pathogenicity 2.233 0.503
BLM - A797T Entry N.A. 3.045 0.893
BLM - K846T Uncertain significance 1.227 0.136
BLM - Y1024C Uncertain significance 1.776 0.590
ERCC4 - R267C Uncertain significance 1.495 0.470
ERCC4 - P379S Conflicting interpretations of pathogenicity 2.051 0.526
ERCC4 - R576T Uncertain significance 1.012 0.274
ERCC4 - 1706T Conflicting interpretations of pathogenicity 3.242 0.609
ERCC4 - E875G Benign/Likely benign 2.049 0.292
FANCA - F276l Entry N.A. 1.922 0.160
FANCA - W410C Entry N.A. 4.169 0.622
FANCA - F603S Uncertain significance 6.111 0.631
FANCA - A746S Benign/Likely benign 1.696 0.374
FANCA - P1086L Entry N.A. 1.012 0.775
FANCE - A104P Entry N.A. 5.691 0.319
FANCE -L326W Uncertain significance 1.620 0.154
FANCE - M437T Conflicting interpretations of pathogenicity 1.930 0.134
FANCF - L329P Uncertain significance 8.170 0.417
FANCF - Y287C Uncertain significance 2.732 0.195
FANCF - Y274C Uncertain significance 3.526 0.193
FANCF- L129V Uncertain significance 1.086 0.069
FANCF - L80V Entry N.A. 2.001 0.104
FANCG - P545T Entry N.A. 1.918 0.465
FANCG - R513Q Conflicting interpretations of pathogenicity 1.110 0.016
FANCI - P55L Benign 1.854 0.221
FANCI - 1275T Uncertain significance 3.041 0.22
FANCI - M363T Entry N.A. 2.593 0.242
FANCI - P471R Uncertain significance 1.730 0.837
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FANCI - M525V Conflicting interpretations of pathogenicity 2.137 0.487
FANCI - L605F Benign/Likely benign 3.773 0.238
FANCI - C742S Benign 1.084 0.075
FANCI - Y923C Uncertain significance 3.806 0.391
MLH1 - P285S Uncertain significance 1.373 0.838
MLH1 - K618E Benign/Likely benign 1.296 0.874
MLH1 - V180G Uncertain significance 3.847 0.91
MSH2 - N127S Benign 2172 0.741
MSH2 - L128V Conflicting interpretations of pathogenicity 2.309 0.613
MSH2 - L513V Uncertain significance 2.595 0.829
MSH2 - I1577T Likely benign 2.067 0.928
MSH2 - V606F Entry N.A. 5.096 0.889
MSH2 - 1770V Conflicting interpretations of pathogenicity 1.043 0.417
MSHS6 - L396V Benign 1.369 0.322
MSH6 - S503C Entry N.A. 1.288 0.413
MSHS6 - V878A Benign 2.073 0.155
MSH6 - G1072D Uncertain significance 6.349 0.623
MSHS6 - V1253E Uncertain significance 2.986 0.952
NBN - D95N Conflicting interpretations of pathogenicity 1.448 0.583
NBN - 171V Conflicting interpretations of pathogenicity 1.133 0.398
RFWD3 - Q577H Entry N.A. 1.469 0.162

The time and computational resources needed by these
methods still prevent their usage for investigations going
beyond a few mutations. In these contexts, which include,
for instance, saturation mutagenesis scans, Rosetta- and
FoldX-based protocols represent a good trade-off be-
tween accuracy and speed.

Nevertheless, Rosetta still presents a challenge when
non-canonical residue types are considered. Indeed,
while most non-canonical amino acids are supported,
mutations to phosphorylated residues cannot be per-
formed in either protocol to predict free energy changes.
For this reason, including strategies circumventing this
issue would greatly expand the application of Ro-
settaDDGPrediction.

Furthermore, a milestone in structural bioinformatics has
been reached lately, with the release of AlphaFold2 and
its outstanding performance in the CASP14 challenge 3°.
Originally developed to solve the long-standing protein
folding problem, AlphaFold2 has already seen many spin-
off studies to assess its potential ¢2-66, So far, evidence
suggests that AlphaFold2 cannot effectively predict
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changes in folding free energy upon mutation 67769

However, more studies are needed to explore this possi-
bility fully.

Our wrappers have been devised to be inherently exten-
sible. As stated above, a long-term perspective may in-
clude transforming them into a more general platform for
structure-based methods to predict free energy changes
upon mutation based on freely accessible, open-source
software. This will also allow us to support other energy
functions or schemes for free energy calculations.

The efforts of centralizing the development of software
for in-silico deep mutational scans using free energy func-
tions will help to move a step forward toward a unified
framework for high-throughput structure-based calcula-
tions of free energy changes upon mutation.

12


https://doi.org/10.1101/2022.09.02.506350
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.02.506350; this version posted September 4, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Methods
Case Study 1

The ThermoMut database 26 was downloaded on April 22,
2022, as a JSON file. We then processed the database fol-
lowing four main steps: (i) For each reported protein, we
retained only the entries including single mutations with
an experimental value of AAG discarding entries with
multiple mutations with a combined AAG; (ii) we re-
versed the sign of all the AAG values to fit the sign pro-
vided by the outputs of RosettaDDGPrediction, (iii) we re-
tained information on pH values and experimental meth-
ods as metadata and (iv) we removed protein entries for
which less than ten mutations were reported. Upon pro-
cessing, we identified 133 proteins. We then searched for
three-dimensional structures available for each protein
in the Protein Data Bank. In this step, we retained
matches that covered at least one mutation of interest.
We retained only protein structures in their free state
(i.e., not in a complex with other interactors) for a total of
121 target proteins, effectively removing twelve proteins
where no structure or free state was found. We then se-
lected two enzymes that included a large number of
amino acid substitutions with structural coverage (i.e.,
ENLYS and NUC as represented by the PDB structures
1P7S70 and 1EYO 7%, and two human proteins of interest
in health and disease (p53 and FKB1A as represented by
the PDB structures 2XWR 72 and 2PPN 73 as case studies
for this work. All are used as simplistic monomeric struc-
tures and chosen based on the coverage, quality, and lack
of interactors. The experimental values obtained in an
acidic or alkaline experimental setting (pH < 6 and pH >
8) were excluded, as the ref2015 Rosetta energy function
(Cartesian space version) is simulating an environment at
pH7.

This leaves 845 observations across the four proteins for
pH values 6, 7, and 8 and three methodologies, two chem-
ically denaturant-induced protein unfolding experi-
mental protocols, guanidine hydrochloride (GdnHCI),
Urea Denaturation (Urea), and one thermal denaturation
protocol (Thermal). We modeled the experimental and
predicted values using a simple linear model, analyzed
the contribution of secondary structures, and built a gen-
eralized additive model, thereby defining the limitations
of the model. Furthermore, we constructed a confusion
matrix based on the thresholds AAG < -1 kcal/mol for the
stabilizing group, -1 kcal/mol > AAG < 1 kcal/mol for the
neutral group, and AAG > 1 kcal/mol for the destabilizing
group. Calculations were carried out with Rosetta 3.12.

Case Study 2

We started from the phospho-regulated LIRs reported in
our previous review article 3¢ and other literature search,
and, for each of them, we verified if a complex with one of
the LC3/GABARAP family members was available to use
as starting structure for the mutational scan. We retained
for the analyses the following complexes: LC3B:FUNCD1
(PDB entry 2N9X 35) and GABARAP:PIK3C3 (PDB entry
6HOG 38).
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We reconstructed missing coordinates in the structures
using MODELLER version 10.174.

We used the flexddg protocol, as implemented in Ro-
settaDDGPrediction, with the talaris2014 energy function
and Rosetta 3.12. Rosetta Energy Units (REUs) were con-
verted to kcal/mol with the conversion factors provided
for this energy function 6. We modeled the phosphory-
lated residues using phosphomimetic mutations to aspar-
tic acid and glutamic acid for each phosphosite, and in-
cluded also tryptophan for phospho-tyrosine to identify
possible effects due to steric hindrance. In the calcula-
tions, we used 35 000 backrub trials and an absolute
score threshold for minimization convergence of 1 REUs.
We generated an ensemble of 35 structures for each mu-
tant variant and calculated the average AAGs and the
standard deviation among the individual binding free en-
ergies.

Case Study 3

We retrieved experimental AAG values from point muta-
tions of the p53 DNA-binding domain from the online da-
tabase ThermoMutDB. Since ThermoMutDB stores AAGu
values, they were converted to AAGt by changing the sign
to make them easily comparable with Rosetta output val-
ues. A total of 31 mutations were selected, and when mul-
tiple experimental values were reported for the same var-
iant, the average of their AAGswas used.

We used two different structures. The first one consists of
the X-ray crystallography of the PDB entry 2XWR, with a
resolution of 1.68 A, which covers the DNA-binding do-
main from residues 91 to 289 and includes the Zinc ion.
The water molecules were removed using PyMOL
[http://www.pymol.org/pymol]. We also used the model
from the AlphaFold2 database, which was trimmed to
cover the same residues as the experimental X-ray struc-
ture, from 91 to 289. The missing zinc ion was added us-
ing PyMOL, identifying its coordinates by rigid body su-
perimposition with the original structure. Before, we ver-
ified that the residues which coordinate the zinc ion
(C176,H179,C238, C242) had a good alignment and sim-
ilar rotamer position between the two structures.

For the AAG predictions, we mostly used the cartddg pro-
tocol with the ref2015 and talaris2014 scoring functions,
each with three and ten sampling runs and Rosetta 3.12.
We also used the cartddg2020 protocol on both struc-
tures, but only using the ref2015 scoring function and
three runs.

The performance was measured by Pearson’s correlation
coefficient, mean absolute error, and area under the curve
(AUC) of the ROC curve. For the ROC curve, we used a
threshold of 1.2 kcal/mol for the ThermoMutDB averaged
values, meaning that mutations associated with a free en-
ergy change higher than 1.2 kcal/mol were considered
destabilizing, according to the threshold selection pro-
posed for p53 in our previous study 20. In comparison,
mutations associated with a free energy change lower
than the threshold were classified as non-destabilizing.
The mean absolute error was calculated using the follow-
ing equation:
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Here, y; are the experimental values and y, " the pre-
dicted values.

Case Study 4

We retrieved VUS in childhood cancer from a previous
study 41. In addition, we analyzed a dataset including 566
samples from Danish children with different cancer types
and Whole Genome Sequencing data. The sequencing
data have been processed with a pipeline based on Sen-
tieon using the build 38 (GATK resource bundle for hg38)
as reference genome. Reads were aligned with BWA-MEM
to the reference genome, and duplicate reads were re-
moved. Reads were realigned around indels, and we ap-
plied Base Quality Score Recalibration together with the
Haplotyper algorithm for variant calling (equivalent to
the GATK Haplotype 5. Then, as suggested by GATK best
practices, we used Variant Quality Score Recalibration,
which is an advanced filtering technique used on the var-
iant call set that models the technical profile of variants in
a training set using machine learning and filters out po-
tential artifacts from the callset. The filtered variants
were uploaded to an in-house mySQL database where we
linked them with information about genomic context
(ENSEMBL v95), ENSEMBL consequences, deleterious-
ness-scores (CADD 1.6, REVEL, SIFT, PolyPhen) and vari-
ant frequency in the healthy population (GnomAD v3)
based on their genomic position and alternate allele. In
particular, we annotated the REVEL score 7¢ associated
with the genomic mutation by using the publicly available
dataset of precomputed scores, by matching genomic co-
ordinates, annotated transcript for the mutation and al-
ternate nucleotide. We could not annotate a REVEL score
for four of the identified variants, most likely as they were
not missense. Two of them caused early translation ter-
mination by introducing a stop codon in our reference
BRCA2 transcript (13:g.32337185A>T and
13:2.32398489A>T, corresponding to p.Lys944* and
p.Lys3326* at protein level).The other two
(2:2.47607407G>A and 2:2.47607446G>A, correspond-
ing to p.Arg923GIln and p.Gly936Asp in MSH2 at protein
level for our reference transcript) were annotated as both
missense and nonsense-mediated decay in our dataset,
meaning they are annotated as nonsense-mediated decay
for atleast some of the MSH2 transcripts, and this is prob-
ably the reason they were not available in the REVEL da-
tabase.

We retained, as VUS to investigate, those variants located
in the coding regions and found with a frequency lower
than 1% in GnomAD v3 (build 38) as a proxy for a healthy
population. This threshold has been selected according to
the guidelines for VUS studies 77. An illustration of the
workflow for analyzing the sequencing data is provided
in Figure S2.

We searched each variant in the selected 14 genes for the
study in ClinVar 4647 and retrieved annotations on them
to verify if they are VUS, variants with conflicting
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evidence, or not reported yet in the database. To select
the proteins and variants that can be investigated with
RosettaDDGPrediction, we then searched in the Al-
phaFold2 database 40 for the corresponding protein struc-
tures and retained those that had structural coverage for
the variants in regions with high confidence (pLDDT >
70). Cases in which the pLDDT score is low but located in
loops that connect structured regions of folded domains
were also retained for analyses. These regions are often
very flexible in a protein structure, and it is thus expected
that they could have a lower pLDDT score. The selected
target proteins and corresponding variants are reported
in Table S2. We analyzed 14 proteins and 132 variants in
total.

We excluded mutations either not covered by our
trimmed models or derived from an isoform different
from the one available in the AlphaFold2 database. Con-
cerning MSH2, we did not analyze G936D since our iso-
form had 934 residues, while R293Q refers to the
AO0A2R8YG02_HUMAN isoform 78. In the case of MSH6,
T1125M was removed since derived from the
A0A494COM1_HUMAN transcript 78. Furthermore, the
following seven variants found in FANCL were also disre-
garded: S356N, S356N, G322V, F257C, T2294, 1199V, and
V181l These variants were generated from FANCL iso-
form 2 (ENST00000402135.8, Q9NW38-2, 380aa), which
did not match the AlphaFold model for FANCL
(ENST00000233741.9, Q9NW38, 375aa).
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