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Advances in omics technologies have allowed spatially resolved molecular profiling
of single cells, providing a window not only into the diversity and distribution of
cell types within a tissue, but also into the effects of interactions between cells in
shaping the transcriptional landscape. Cells send chemical and mechanical signals
which are received by other cells, where they can subsequently initiate context-
specific gene regulatory responses. These interactions and their responses shape
the individual molecular phenotype of a cell in a given microenvironment. RNAs
or proteins measured in individual cells together with the cells’ spatial distribu-
tion provide invaluable information about these mechanisms and the regulation of
genes beyond processes occurring independently in each individual cell. “SpaCeNet”
is a method designed to elucidate both the intracellular molecular networks (how
molecular variables affect each other within the cell) and the intercellular molecular
networks (how cells affect molecular variables in their neighbors). This is achieved
by estimating conditional independence relations between captured variables within
individual cells and by disentangling these from conditional independence relations
between variables of different cells. A python implementation of SpaCeNet is pub-
licly available at https://github.com/sschrod/SpaCeNet.
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1 Introduction

Measurements of spatially resolved RNA or protein expression patterns open unprecedented
opportunities to study questions in areas such as developmental biology and pathophysiology,
where interactions between cells are known to influence a wide range of processes. Methods such
as “spatial transcriptomics” [1] and Slide-Seq [2] used molecular barcoding to count mRNAs
aggregated in small regions and integrated those with images to produce a transcript map. A
drawback of these early methods was that mRNAs from multiple cells in a small region could
contribute to the observed signal, masking differences between cells and cell-cell interactions.
Subsequent barcoding techniques substantially improved resolution, such as Slide-Seq [3] and
Slide-SeqV2 [4] with a resolution of ∼ 10µm, as well as, most recently, Seq-Scope [5] and
Stereo-Seq [6] with a resolution of ∼ 0.5µm. In situ hybridization or sequencing methods
can measure the expression of many genes with single-cell resolution (and even subcellular
resolution) [7, 8, 9, 10], but these methods require complex instrumentation and long imaging
times. Three-dimensional intact tissue sequencing in single cells has been achieved by STARmap
(spatially-resolved transcript amplicon readout mapping) [11], which is capable of measuring
simultaneously the expression of about 1000 genes at single-cell resolution in a three-dimensional
thick tissue section. Although spatial omics technologies are in their infancy, the launch of
commercial products such as the 10X Genomics Visium platform has led to increased interest
in methods that will allow the analysis, interpretation and exploration of data generated [12,
13, 14, 15, 16, 17].

Cells organize themselves spatially within tissues and organisms in order to carry out specific
functions. This organization is orchestrated via signals that include physical interactions via
cell-cell contact, chemical signals, and exosome-mediated transfer of RNAs between cells. Each
cell’s individual phenotype together with its location in space relative to other cells captures
information about this process. For instance, genes encoding chemokines (chemoattractant cy-
tokines that facilitate intercellular communication) are first transcribed and then translated
before the respective proteins pass through the cell membrane into the extracellular domain
where they recruit leukocytes. When these signals are received by the leukocytes, they initiate
signaling cascades that finally induce a molecular response leading the cells to adapt their in-
dividual molecular phenotype and alter their behavior. While such interactions are known to
be essential for many biological processes [18], there are no well-established statistical methods
to investigate the relationships between spatial organization, gene or protein expression, and
cellular phenotype. There are first approaches to infer cellular interactions from spatial omics,
although they differ substantially with respect to semantics, modelling approaches, and overall
objectives. In seminal work [13], Arnol et al. proposed Spatial Variance Component Analysis
(SVCA) to decompose the expression of individual genes into spatial and non-spatial contribu-
tions, namely into cell intrinsic effects, general environmental effects, and cell-cell interaction
effects. SVCA is motivated by Gaussian processes and models gene/protein expression inde-
pendently of each other. Thus, it does not capture complex multivariate relationships between
genes [13], but detects individual genes which are involved in cell-cell interactions. Another ap-
proach is Node-Centric Expression Modeling (NECM) [19]. NECM uses a graph neural network
to predict cells’ observed gene expression vector from respective cell type label and niche, with
the latter resembling cell-cell communication in terms of statistical dependencies between cells.
As such, NECM identifies cell-type couplings. However, it does not identify gene pairs involved
in cellular interactions. This was addressed by COMMunication analysis by Optimal Transport
(COMMOT) using the framework of optimal transport to account for the competition among
ligand and receptor species, while taking into account the spatial distances between cells [20], by
Mixture of Experts for Spatial Signaling genes Identification (MESSI) considering an additional
cell neighbourhood to infer intra-cellular responses [21], and by Multiview Intercellular SpaTial
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modeling framework (MISTY) using an aggregated direct neighbourhood to resolve spatial ef-
fects [22]. However, rigorous statistical models to infer complex cellular interdependencies from
spatially distributed molecular data are still missing.

The statistical inference of correlation-based molecular networks from high-dimensional omics
data is based on the assumption that coordinated expression in a cell might provide insight
into processes that are activated or inactivated in different phenotypes. Early attempts used
pairwise measures of gene-gene coexpression such as mutual exclusivity, Pearson’s and Spear-
man’s correlations and identified network edges between genes based on a correlation threshold
[23, 24]. Such measures of coexpression can provide insight into active biological mechanisms,
but they are vulnerable to identifying spurious associations [25]. These associations can be the
consequence of indirect dependencies that cannot be resolved if pairwise relationships between
molecular variables are considered only in isolation from all other molecular variables. This
stimulated research in high-dimensional statistics, specifically in Probabilistic Graphical Models
(PGMs). PGMs resolve the dependency structure of molecular variables and, thus, disentangle
direct from indirect associations. This is even possible in high-dimensional settings, where the
number of variables is larger than the number of observations. The main concept underlying
PGMs is conditional independence. Two variables X and Y are considered as conditionally
independent (given all remaining variables), if X does not provide any additional information
about Y that is not already covered by the remaining variables. Thus, although X and Y might
be pairwise correlated, they can still be conditionally independent; the pairwise correlation
could be just the consequence of X’s and Y ’s indirect relationship mediated via other variables
and not due to a direct relationship [26]. This powerful concept made PGMs one of the favored
approaches to resolve molecular networks from molecular data [24] and, importantly, they can
be straightforwardly extended to account for complex single-cell and multi-omics data [27, 28].
It is nevertheless noteworthy that PGMs are undirected graphical models and do not resolve
causal relationships, although, intriguingly, lower bounds on causal effects can be provided [29].

Spatial Cellular Networks from omics data (SpaCeNet) is a method for analyzing patterns of
correlation in spatial transcriptomics data by extending the concept of conditional independence
to spatially distributed information, facilitating reconstruction of both the intracellular and the
intercellular interaction networks with single-cell spatial resolution. SpaCeNet was developed
to address the diversity of cellular interactions and the various length scales over which they
occur. SpaCeNet introduces flexible interaction potentials in combination with appropriate
regularization strategies to allow this diversity in cellular state, tissue organisation and spatial
communication to be handled effectively. We validate SpaCeNet in extensive simulation studies
and illustrate its capacity to augment exploratory data analysis of spatial transcriptomics data
from the mouse visual cortex and the Drosophila blastoderm.

2 Results

2.1 SpaCeNet infers cell-cell interactions from spatial omics data

SpaCeNet concept The individual molecular phenotype of a cell is shaped by its microen-
vironment and the underlying processes are diverse, comprising the exchange of signals via
direct physical contact or via signalling molecules. Throughout the article, we will refer to any
process with which cells affect each others molecular appearance simply as cell-cell or cellular
“interactions”. Spatial Transcriptomics (ST) involves measuring cellular phenotypes along with
cells’ location in space, providing information about such processes and serving as a valuable
resource to study cell-cell interactions. To develop SpaCeNet, we require single-cell resolved
ST data (single-cell profiles + cellular positions) such that cells can be described as interacting
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units. In recent years, such data have become increasingly available via both multiplexing and
barcoding techniques [11, 5, 6].

Key to SpaCeNet is a statistically sound approach that uses probabilistic graphical models
(PGMs) to decompose the observed cellular profiles into contributions arising from ordinary
cellular variability and contributions from cellular interactions. Formally, SpaCeNet decomposes
each cell’s observed molecular profile into (i) a baseline contribution corresponding to the cell’s
molecular profile in isolation (Figure 1A) and (ii) a residual contribution attributed to its
interaction with other cells (Figure 1B and C). Importantly, this decomposition uses a model
parametrization such that vanishing parameters encode conditional independence statements,
namely intracellular and intercellular spatial conditional independence (SCI) relationships as
introduced in the following and as summarized in Suppl. Figure S1.

PGMs are graphical models in which nodes represent variables assumed to be distributed ac-
cording to a probabilistic model and edges between nodes represent conditional dependence
between them, where the conditioning is on the remaining nodes in the network. The absence
of edges in a PGM defines a set of Conditional Independence (CI) relations corresponding to
direct pairwise independence between variables: for two variables X and Y that are CI, any
association between X and Y observed in the data can be attributed to indirect effects of other
variables in the system. Conversely, if X and Y are not CI, i.e., there is an edge between the
two, this dependence is not mediated by other variables in the system. As such, PGMs iden-
tify and remove potential erroneous (false-positive; indirect) associations. This makes PGMs
versatile tools to infer gene-association networks, as repeatedly shown in the literature [24, 25].

Here, we develop a similar framework to model intracellular and intercellular CI relations in ST
data. We estimate SCI between variable Xa (gene X in cell a) and variable Y b (gene Y in a
neighboring cell b) keeping all other variables in the data fixed; similar to CI, by conditioning
on all variables except for Xa and Y b, we can study the direct dependence of Xa on Y b and
vice versa. As such, SpaCeNet disentangles (1) direct from indirect relationships of variables
in individual cells, and (2) direct from indirect relationships between molecular variables in
different cells. A direct consequence of both is that each cell’s environmental adaptation in its
spatial context can be estimated distinctly from its molecular phenotype in isolation. Since
we are interested in sample estimates of cellular interaction patterns, SpaCeNet infers SCI
simultaneously across all pairs of cells in a ST dataset.

SpaCeNet infers both short and long-range cell-cell interactions while taking into account
the molecular diversity of cells SpaCeNet encodes intercellular SCI relationships via interac-
tion potentials mediating the association strength between molecular variables across cells in a
distance dependent manner. We denote the interaction potential between Xa (gene X in cell
a) and Y b (gene Y in cell b) at distance rab as ρXY (rab). Since ρXY (rab) depends only on the
distance rab between two cells, the intercellular potential between genes X and Y takes the same
functional form across all modeled cells and, moreover, vanishing potentials ρXY (rab) imply that
Xa and Y b are SCI across all cells a and b. One might ask whether such a one-function-fits-all
approach is appropriate to model complex cellular communication between molecularly diverse
cells, considering that even related cell types, such as T-cells and B-cells, fulfill very different
tasks and are expected to send and receive very different signals. As briefly illustrated, SpaCe-
Net can encode such diverse cell-cell communication patterns taking into account the individual
cell’s molecular phenotype without requiring a priori specification of involved cell types, vari-
ables, and interaction mechanisms. Assuming all variables except Xa and Y b to be fixed, Xa

depends on Y b via the regression formula Xa = µX − 1
ωXX

ρXY (rab)(Y b − µY ) + ϵ (this can be
also seen by marginalizing the full density Eq. (1) over all variables except Xa and Y b). Thus,
the effect that molecular variable Y b in cell b exerts on Xa in cell a via cell-cell interaction is
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Figure 1: SpaCeNet concept and how it applies to different cellular contexts. Figure A
shows a schematic picture of two isolated cells a and b which are infinitely separated
(distance r → ∞). In this case, respective cellular profiles with expression levels
illustrated in blue and red are modeled by a multivariate normal distribution with
mean expression µ and covariance Σ. The latter encodes the complex co-expression
pattern of different RNAs/proteins and facilitates a description of molecularly diverse
cells. Figure B shows for comparison a scenario of two neighboring cells, where the
cells affect each other; the molecular phenotype changes compared to Figure A as
a consequence of the different cellular context. This molecular adaptation of cell a
(analogously for cell b) is modeled by a shifted mean expression vector µ+∆µa(Xb, r),
where the molecular adaptation depends on the molecular phenotype of cell b and the
cell-cell distance r. The molecular adaptation is parametrized by interaction potentials
which directly provide estimates of spatial gene-gene dependencies between gene i and
j. Figure C sketches the more complex scenario of a set of interacting cells. As such,
the expression of cell a is affected by all surrounding cells in a distance-dependent
way, as illustrated by thin and bold dotted lines for long- and short-range interactions,
respectively. One should note that the mean expression of cell a now depends on the
molecular phenotype of all other cells X\a as well as all respective cell-cell distances
summarized in R.

directly related to the individual molecular profile of cell b, which means that the molecular
phenotype of a cell determines how it communicates with other cells. One should also note
that SpaCeNet infers the ρXY (r) without assuming a particular functional dependence on rab

via series expansion in powers of 1/rab. This series expansion is motivated by the fact that
infinitely separated cells cannot communicate through the release or absorbance of particular
signaling molecules and the drop in concentration of these molecules with distance suggests that
ρXY (rab) should vanish for rab → ∞.

To show that SpaCeNet can reconstruct diverse cell-cell interactions, we performed four illustra-
tive simulations shown in Figure 2a to d, where we simulated radial dependencies corresponding
to long-distance interactions (such as via paracrine signaling, Figure 2a and b), short-distance
interactions (such as via cell-cell contact) using an exponentially decreasing potential with short
range (Figure 2c), and an interaction where the potential first grows with rab, peaks at average
distances, and then goes to zero for large rab (Figure 2d). The precise radial dependencies are
provided in the caption of Figure 2. In principle, SpaCeNet can model interaction potentials
to arbitrary orders in 1/rab. We present the corresponding radial dependencies estimated via
SpaCeNet for expansions up to order (1/rab)L for L = 1 (solid lines), L = 3 (dashed lines),
and L = 10 (dotted lines). As expected, the approximation of the true underlying interaction
improves with increasing L. However, increasing the order in 1/rab results in higher model

5

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2024. ; https://doi.org/10.1101/2022.09.01.506219doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.506219
http://creativecommons.org/licenses/by/4.0/


complexity, which in turn comes at the cost of additional parameters, increasing the risk of
overfitting and computational burden.
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Figure 2: SpaCeNet can reconstruct diverse cellular interaction patterns. Figures
a to d show different potentials used to simulate data in red in dependence of the
distance between cells rab. Potentials inferred by SpaCeNet are shown for three
different expansion orders: L = 1 (black solid lines), L = 3 (black dashed lines),
and L = 10 (black dotted lines), illustrating that with higher order, increasingly
complex cellular interactions can be reconstructed. The corresponding ground-truth
potentials (red lines) are (a) a standard decreasing potential corresponding to the
second-order term in the series expansion, ρ(rab) = (1 − exp(−rab/r0))2(r0/rab)2

with r0 = 1/10, (b) a long-range exponential potential ρ(rab) = exp(−5 rab), (c)
a short-range exponential potential ρ(rab) = exp(−20 rab), and (d) a potential
ρ(rab) = 10 (1 − exp(−rab/2)) (1 − exp(−1/(5rab)2)) which increases for small rab

and then decreases again. The corresponding densities of the pairwise distances rab

are shown as histograms in the background of the figures with the respective y-axis
depicted at the figures’ right axis. For more details about data simulation see Suppl.
Sect. 1.

SpaCeNet recovers inter-and intracellular interactions from in silico generated tissues We
systematically evaluated SpaCeNet’s capacity to reconstruct intra- and intercellular networks
defined in terms of SCI relationships. To this end, we generated in silico tissues from the full
probability density Eq. (1) and tested if the ground truth intra- and intercellular network edges
are correctly recovered (see also Suppl. Section 2). Since cellular interactions occur at various
length scales, we performed three different studies involving (1) long-range interactions, (2)
medium-range interactions, (3) short-range interactions, and (4) a mixture of long-, medium-
and short-range interactions. For each study, we simulated a total of n · S ∈ {103, 104, 105}
cells, where n is the number of cells per ST slide and S ∈ {1, 10, 100} the number of ST slides.
Performance was assessed using the area under the precision recall curve (AUPRC) and the
area under the receiver operating characteristic curve (AUROC) (see Suppl. Table S1).

In our first simulation study we used an exponentially decreasing interaction potential ρij(rab) =
∆ρij · exp(−ϕijrab) with a comparatively large range of 1/ϕij = 1/5. Suppl. Figure S4A gives
AUPRC versus n · S to recover the correct intracellular networks (the intracellular precision
matrix Ω, left figure) and the intercellular interaction networks (the cell-cell interaction pa-
rameters ∆ρ, right figure). We find that SpaCeNet is capable of reconstructing intracellular
networks across the full range of simulated cells, n · S, with a median AUROC larger than
∼ 0.85 throughout all settings. Edge recovery of cell-cell interactions was achieved with a me-
dian AUPRC ranging from 0.28 for n = 103 and S = 1 (blue) to 0.92 for n = 103 and S = 100.
It is worth noting that edge recovery for both the intra- and intercellular networks was slightly
better if cells are distributed across measurements, as seen by comparison of the AUPRC for
n = 103 and S = 1 (blue), for n = 100 and S = 10 (orange), and for n = 10 and S = 100
(green), that all share the same total number of cells n · S = 103. This trend also persisted
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for n · S = 104. We also tested the same class of potentials with medium range 1/ϕij = 1/10
(Suppl. Figure S4B) and short range 1/ϕij = 1/20 (Suppl. Figure S4C). The results were sim-
ilar to the first simulation study. The edge recovery in terms of AUPRC improved with an
increasing number of cells n · S, the more so when cells were distributed across multiple sam-
ples S. Finally, we studied how diverse cell-cell interactions impair model inference (Suppl.
Figure S4D). For this, we repeated the previous simulations, but created flexible potentials
ρij(rab) = ∆ρij exp(−ϕijrab) with ϕij ∼ Unif(5, 20) and ∆ρij ∼ Unif(−1, 1) between molecular
variables i and j that differ with respect to interaction range and strength. For illustration
purposes, these different potential ranges are shown in Suppl. Figure S2 for ϕij = 5 (solid line),
ϕij = 10 (dashed line), and ϕij = 20 (dotted line). In summary, we found that SpaCeNet
achieves an edge-recovery performance that is almost as good as in the more controlled setting
of the previous simulation studies, in particular when the total number of cells n ·S is increased.
An exemplary SpaCeNet model obtained in this study together with its ground truth is shown
in Suppl. Figure S3 for two different model regularization parameters β. Results considering
AUROC for all four simulation studies are shown in Suppl. Figure S4, supporting our previous
findings.

To further illustrate the relevance of distance dependent interactions, we compared SpaCeNet
to two alternative approaches, namely an ordinary spatial correlation and its naive partial
extension implemented as follows. For each individual cell i and gene j, we summed up the
expression of the top K nearest neighbors, yielding an additional set of “regional expression
variables”. Then, we correlated the cell’s expression of gene j with the regional expression of gene
k for all j and k, yielding a matrix of correlation coefficients. The performance evaluation shown
in Suppl. Figure S5 and Suppl. Table S2 contrasts the performance of this naive correlation
based approach for K = 1, 5, 10, 20, 50 with SpaCeNet. We observe that, first, overall this
approach cannot compete with SpaCeNet and, second, that its performance depends on K,
with long-range interactions typically better captured by large K (simulation A) and short
range interaction better captured for small K. In contrast, SpaCeNet dynamically adjusts for
the interaction range and does not require any a priori specification of interacting neighbors.
As a further benchmark, we included an extension of the naive spatial correlation measure to a
partial correlation measure. Let j′ denote the regional expression variable which represents the
expression of gene j of the top K neighbors. A remedy to estimate spatial associations between
genes j and k has to take into account that both might also correlate to each other within
individual cells. Therefore, we decided to calculate partial correlations between variables j and
k′ conditioning on j′ and k. Performance analysis of this additional baseline strongly supports
our finding that SpaCeNet, as a dynamic approach that intrinsically infers complex distance
dependencies, is much more suited to infer cell-cell interactions (Suppl. Figure S6 and Suppl.
Table S3).

SpaCeNet recovers intra- and intercellular interactions from in silico tissues generated via
mechanistic modeling Former simulations illustrate that SpaCeNet can reliably recover SCI
relationships. Next, we aimed to verify SpaCeNet in more realistic settings. Tanevski et al. [22]
used a comprehensive in silico tissue model to mimic the interactions of different cell types
through ligand binding and subsequent signaling events. They generated two in silico tis-
sues with pre-specified cell-cell interactions between four cell types, capturing interactions of
29 molecular species including 5 ligands, 5 receptors, and 19 intracellular signaling proteins.
The authors suggested Multiview Intercellular SpaTial modeling framework (MISTy) to derive
importance scores for each pair of markers to infer intracellular and intercellular molecular
interactions. We followed their work and considered an intracellular interaction as correct if
there is a direct interaction between the markers in the model’s networks and an intercellular
interaction as correct if one of the markers is responsible for a ligand production and the other
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Table 1: Performance in terms of AUPRC to recover intra- (left) and intercellular (right) in-
teractions from in silico tissues generated via mechanistic modeling for MISTy and
SpaCeNet.

AUPRC (intracellular) MISTy SpaCeNet
Tissue 1 0.21 0.58
Tissue 2 0.19 0.54

Tissue 1+2 0.21 0.50

AUPRC (intercellular) MISTy SpaCeNet
Tissue 1 0.07 0.21
Tissue 2 0.06 0.22

Tissue 1+2 0.07 0.22

one is activated by it [22]. Respective results in terms of AUPRC are summarized in Table 1 for
MISTy and SpaCeNet. To evaluate SpaCeNet’s performance, we restricted ourselves to leading
order potentials to ensure comparability. We observe that SpaCeNet consistently outperformed
MISTy with respect to both the recovery of intra- and intercellular interactions. This is also
supported by a respective analysis considering AUROC (Suppl. Table S4). One should note
that MISTy does not disentangle direct from indirect relationships. As a consequence, most
false positive interactions derived by MISTy might be the result of indirect or higher-order
interactions [22].

2.2 SpaCeNet resolves molecular mechanisms involved in cellular interactions in
the mouse visual cortex

In the following, we present an example analysis using SpaCeNet for spatial transcriptomics
data from the mouse visual cortex generated by STARmap [11]. STARmap labels and amplifies
cellular RNAs. These amplicons are then transferred to a hydrogel while lipids and proteins are
removed. The hydrogel is optically transparent and can be sequentially imaged through multiple
cycles with a low probability of errors and miscodings. STARmap measurements of the mouse
visual cortex were downloaded from https://www.starmapresources.org/data. The data consist
of measurements for 28 RNAs in ∼30,000 cells together with their respective locations in a
0.1 × 1.4 × 1.7 mm3 tissue section.

We used SpaCeNet to estimate a global, intracellular network (the precision matrix Ω) and a
network of spatial molecular interactions (the spatial interaction parameters ∆ρ(·)), where we
set L = 3 and split the data into four equally sized batches of which three served for model
building and one for model validation and hyper-parameter calibration (Suppl. Figure S7). We
tuned α, β ∈ [10−5, 10] on a 4 × 4 grid that was refined 6 times (Suppl. Figure S8) and selected
the best set of hyper-parameters based on the highest validation pseudo-log-likelihood. A final
model was estimated using the full data set.

For the intracellular precision matrix Ω we obtained a complete matrix with weights summarized
in Suppl. File 1. For the spatial interactions ∆ρ(·), SpaCeNet selected a set of 134 out of 406
possible spatial associations (Suppl. Figure S9, Suppl. File 1). We ranked edges according

to ∆ρij = ||∆ρ
(·)
ij ||2 =

√∑
l ∆ρ

(l)
ij

2
, for which the greatest edge weight was between myelin

basic protein gene (Mbp) and FMS-related receptor tyrosine kinase 1 (Flt1 ) with ∆ρMbp, Flt1 =
0.328 and the leading-order contribution ∆ρ

(1)
Mbp, Flt1 = 0.327. Negative/positive values of ∆ρ

(l)
ij

correspond to positive/negative spatial associations in analogy to the definition of the precision
matrix Ω.

First, we verified the absolute residuals between the observed data matrix X and its SpaCeNet
reconstruction X̂ using either (a) the intracellular edges only (∆ρ(·) = 0), or (b) the full model
(see also Suppl. Sect. 2). The results corresponding to this analysis are shown in Figure 3a and
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b, respectively. We observed that the spatial associations improve model building substantially,
as illustrated by the band of large residuals in the upper left quadrant for both Flt1 and Mbp
(Figure 3a and d), that were reduced substantially via the spatial interactions (Figure 3b and
e). Figure 3c and f show the corresponding contributions from the spatial interactions ∆ρ(·).

The connection between Mbp and Flt1 was interesting for a number of reasons. Myelin basic
protein is the second most abundant protein, after proteolipid protein, of the myelin membrane
in the central nervous system (CNS), making up approximately 30% of the total protein of
myelin [30] and Mbp mutants lack compact myelin in the CNS [31]. Myelin surrounds nerve cell
axons to insulate them and to increase the conduction of electric impulses [32]. Demyelinating
diseases of the CNS, of which multiple sclerosis (MS) is the most common, are characterized by
damaged myelin sheaths [33]. Flt1 encodes a member of the vascular endothelial growth factor
receptor (VEGFR) family. VEGFRs mediate diverse cellular communication signals controlling
developmental processes, such as neurogenesis or gliogenesis [34]. VEGFRs recognize vascular
endothelial growth factors (VEGFs), whose expression has been shown to be upregulated in
both acute and chronic MS plaques [35]. Our SpaCeNet model resolves that Flt1 levels are
negatively associated with Mbp levels in neighboring cells. A possible interpretation is that
cells expressing Flt1 accumulate in the spatial vicinity of cells which lack Mbp. This would be
in line with the observation that VEGF-A (which is recognized by Flt1) promotes migration
of oligodendrocyte precursor cells (OPCs) in a concentration-dependent manner [36], as shown
by anti-Flk-1 (not by anti-Flt-1) receptor-blocking antibody. Moreover, it was shown in the
medulla oblongata of the adult mouse that OPCs contribute to focal remyelination and that
VEGF signaling might be required for their proliferation [37]. It has been long known that
oligodendrocytes are the myelinating cells of the CNS derived from OPCs [38], therefore our
finding could be a hint that Flt1 mediates signals necessary to guide myelinating cells such
as OPCs and mature oligodendrocytes to axons that lack myelin. Interestingly, in a study by
Vaquie et al. [39], injured axons were shown to communicate with Schwann cells to trigger the
formation of actin spheres. These spheres constrict the axons, leading to their fragmentation
and faster removal of debris after injury. This process was shown to be controlled by VEGFR1
activity, and can be acquired by oligodendrocytes through enforced expression of VEGFR1 [39].

It should be noted that SpaCeNet models are associative, not causal. Thus, we can not elucidate
whether decreased Mbp levels imply increased Flt1 in neighboring cells or if increased Flt1 levels
imply decreased Mbp in neighboring cells. Moreover, since only a selected set of 28 genes was
spatially assessed by STARmap in a thick tissue section, and since numerous signaling steps
may be involved in establishing this relationship, the underlying mechanisms remain to be fully
elucidated.

The spatial association Flt1 -Mbp was followed in strength by Ctgf -Gja1, Ctgf -Pcp4, and Reln-
Sst associations. Connective tissue growth factor (Ctgf ), also known as Cellular Communication
Network Factor 2 (Ccn2 ), belongs to the CCN family. CCN proteins are a family of extracellular
matrix proteins involved in intercellular signaling [40]. We obtained ∆ρCtgf, Gja1 = 0.103, with
leading-order contribution ∆ρ

(1)
Ctgf, Gja1 = 0.1023. Ctgf has been reported to facilitate gap

junction intercellular communication in chondrocytes through up-regulation of connexin 43
(Gja1 ) expression [41]. Purkinje Cell Protein 4 (Pcp4) regulates calmodulin activity and might
contribute to neuronal differentiation through the activation of calmodulin-dependent kinase
signaling pathways [42]. The Ctgf -Pcp4 potential was estimated with ∆ρCtgf, Pcp4 = 0.083
and ∆ρ

(1)
Ctgf, Pcp4 = 0.0831; we are not aware of a mechanism that might explain the spatial

association observed between Ctgf and Pcp4. This association was followed by Reln (Reelin) -
Sst (Somatostatin) with parameters ∆ρReln, Sst = 0.083 and ∆ρ

(1)
Reln, Sst = 0.0780. The gene Reln

encodes a secreted extracellular matrix protein that might play a role in cell-cell interactions
critical for cell positioning. Somatostatin affects transmission rates of neurons in the CNS and
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cell proliferation. GABAeric cortical interneurons can be delineated to 95% by the markers
Pv, Sst (co-expressed with Reelin), Reelin (without Sst), and Vip [43]. The medial ganglionic
eminence gives rise to the population of interneurons that co-express Reelin and Somatostatin,
while the caudal ganglionic eminence gives rise to interneurons that express Somatostatin but
lack Reelin [43]. The observed spatial Reln-Sst association could be a hint that the distribution
of these two populations is spatially well organized and not random.

SpaCeNet assumes multivariate normality. To further ensure that the derived results are robust
and to explore the extent to which they are biased by data preprocessing, we repeated the former
analysis but used log-transformed data instead. Log-transformed data are believed to make data
more normally distributed, but are also prone to inflating the variance for lowly expressed genes
[44]. Thus, it is not a priori clear whether SpaCeNet can better deal with data on a natural
scale or on log scale. Respective top edges obtained by SpaCeNet are summarized in Suppl.
Table S5, illustrating that the top hits are still recovered with confidence, although the ordering
slightly changed; among the top genes, the pairs Mbp-Flt1, Ctgf-Gja1, and Ctgf-Pcp4 were
confirmed. The pair Sst-Pvalb newly appeared among the top hits, which might be attributed
to spatial delineation of Parvalbumin-positive (Pvalb+) and Somatostatin-positive (Sst+) cells.
As a final consistency check, we explored the potential role of redundant variables and how they
potentially compromise model inference. For this purpose, we replaced Mbp in the data matrix
by two noisy copies of itself and repeated our analysis with results shown in Suppl. Table S5.
We observed that the edges to Mbp are still robustly established, but edge strength was lowered
by a factor of approximately two. This is in line with recent findings in mixed graphical models
[45].

Comparative analysis of spatial associations using pair-wise and partial spatial correlations:
For comparison and illustration purposes, we performed the ordinary pair-wise spatial corre-
lation analysis outlined above on the mouse visual cortex data, selecting K = 5 in line with
[13]. The largest absolute spatial correlation value between different genes was observed for
the pair Mbp-Flt1 with r̄Mbp, Flt1 = 0.82, which was also the top hit in the SpaCeNet analy-
sis. However, we observed the opposite sign for the association; SpaCeNet suggests a negative,
while this analysis suggests a positive association. To further resolve this contradictory result,
we compared the estimated pair-wise spatial correlation matrix with an ordinary correlation
matrix derived across all single-cell profiles (see Suppl. Figures S10A and S11A), respectively.
Comparison of both matrices reveals a strong coincidence with differences distributed as shown
in Suppl. Figures S10 and Suppl. Figure S11.

Given the high similarity between both, we hypothesized the presence of strong auto-correlations
between neighboring cells, meaning that high spatial correlations are just the consequence of
similar expression patterns in adjacent cells. For the pair Mbp-Flt1, the ordinary correlation
analysis revealed a correlation coefficient of 0.87, supporting this hypothesis for this specific
case.

To explore if such spatial auto-correlations deteriorate estimates of spatial associations, we
applied additionally the outlined spatial partial correlation measure with K = 5. Table 2
compares the estimated spatial partial associations with the results of SpaCeNet for the outlined
top pairs. Both approaches now suggest a negative association for all four pairs. Moreover,
the relative association strength is very similar with Mbp-Flt1 being the strongest association,
and Ctgf -Pcp4 and Reln-Sst having similar association strengths. The pair Ctgf -Gja1 shows a
relatively weak association in contrast to the SpaCeNet analysis. One should note, however, that
previous analysis was based on a nearest neighbor estimate of gene expression, ignoring potential
complex radial dependencies, and did not explore the full capacity of PGMs to disentangle direct
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Figure 3: Spatial interactions improve on goodness of fit. The figures show absolute
prediction residuals for spatially associated genes Mbp (top row) and Flt1 (bottom
row) in the mouse visual cortex data from [11] with respect to their position in space.
The left column (Figures A and C) shows the absolute residuals between the ground
truth data and the predictions based on the intracellular model parameters only,
|X − X̂Ω|. The middle column Figures B and E display the residuals if both intra-
and intercellular interactions are considered, |X − X̂Ω,∆ρ|. The right column Figures
C and F show the contributions from spatial interactions only, |X̂Ω,∆ρ − X̂Ω|.

from indirect relationships by considering all molecular variables simultaneously, which might
explain the observed differences. Interestingly, ranking from highest to lowest absolute spatial
partial correlations also yielded the pair Mbp-Flt1 as top hit, suggesting that disentangling the
intra- from inter-cellular correlations might be one of the main ingredients necessary to identify
the most interesting spatial associations.

Table 2: Estimated spatial partial correlations versus the association strength determined by
SpaCeNet for the four top-ranked associations discussed in the main text. Here, jk′

corresponds to spatial partial correlations between variable j and k′ conditioning on
j′ and k. An analoguous definition holds for j′k and the respective average is given
by 1

2(j′k + jk′). SpaCeNet’s leading order association strength is given by ∆ρ(1) with
positive signs corresponding to negative associations in line with the definition of the
precision matrix of ordinary GGMs.

jk′ j′k 1
2(j′k + jk′) ∆ρ(1)

Flt1 - Mbp -0.560 -0.557 -0.558 0.327
Ctgf - Gja1 -0.118 -0.119 -0.119 0.102
Ctgf - Pcp4 -0.227 -0.234 -0.231 0.083
Reln - Sst -0.174 -0.205 -0.190 0.078

2.3 SpaCeNet infers spatial gene-gene association patterns in the Drosophila
blastoderm from low-resolution spatial omics

The previous analysis used data generated by STARmap [11], an in-situ sequencing technology
for dense measurements at single-cell resolution, which, however, is limited in throughput.
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In contrast, omics readouts together with spatial information (the transcriptome in a given
spatially defined region of a specimen) have become more and more available. Here, we illustrate
that SpaCeNet augments their analysis, even though the data do not resolve single cells.

The Berkeley Drosophila Transcription Network Project used a registration technique that uses
image-based data from hundreds of Drosophila blastoderm embryos, each co-stained for a ref-
erence gene and one gene out of a preselected gene set, to generate a virtual Drosophila embryo
[46]. We retrieved these virtual embryo data consisting of 84 genes whose expression levels were
measured at 3039 embryonic locations from http://bimsbstatic.mdc-berlin.de/rajewsky/DVEX/.
We then used SpaCeNet to estimate the intracellular network (the precision matrix Ω) and the
network of spatial molecular interactions (∆ρ(·)) for L = 3. We performed a hyper-parameter
grid search, where we trained the model on 70% of the data and validated it on the remaining
30% (Suppl. Figure S12 and S13). The best set of hyper-parameters was selected based on
the highest validation pseudo-log-likelihood and was used to fit a final model on the full data
(Suppl. File 2). The intracellular network Ω is a full matrix and so there is a rich dependency
structure among variables not related to their spatial context. The spatial-interaction network,
∆ρ(·), in contrast, is sparse with 238 out of 3570 possible interactions (Suppl. Figure S14). Note
that the spatial molecular interactions improved the goodness-of-fit on validation data and thus
also the generalizability of the model, which highlights the need to include spatial interactions.

Figure 4 contrasts the expression of the gene pairs sna-twi, ems-noc and Dfd-lok, that showed
the highest spatial association in the SpaCeNet analysis with ∆ρtwi, sna = 0.0368, ∆ρems, noc =
0.0306, and ∆ρDfd, lok = 0.0211. We observed twi and sna to be active in the same spatial
regions, which is consistent with both the positive spatial association suggested by SpaCeNet
in leading order (∆ρ

(1)
twi, sna = −0.0361) and with the joint activation of twi and sna in the

differentiation of the Drosophila mesoderm in localized (ventral) regions of early embryos [47]. In
contrast, the genes ems and noc (for which SpaCeNet estimated a negative spatial association at
leading order (∆ρ

(1)
ems, noc = 0.0301)) are active in adjacent but different areas of the Drosophila

embryo. A similar observation can be made for the genes Dfd and lok, for which SpaCeNet also
estimated a negative leading-order association (∆ρ

(1)
Dfd, lok = 0.0210). To further explore the

robustness of former results with respect to pre-processing biases, we re-performed our analysis
but additionally applied a log-transformation (Suppl. Table S6). Again, these analyses support
the robustness of SpaCeNet as almost all leading edges coincide between both approaches.

SpaCeNet as an inferential tool to predict spatial gene expression in the Drosophila blas-
toderm SpaCeNet infers a joint density function describing spatially distributed, potentially
high-dimensional molecular features. Thus, it can be also utilized as an inferential tool, predict-
ing gene expression of a cell given its cellular context. For illustration purposes, consider the
gene Kr that encodes the Krüppel protein, a transcriptional repressor expressed in the center
of the embryo during the cellular blastoderm stage [48]. First, we predicted Kr expression in a
leave-one-position-out approach that provides levels of Kr based on a cell’s environment. The
ground truth is shown in Suppl. Figure S15A and the corresponding predictions in Suppl. Figure
S15B. We found that an accordingly trained SpaCeNet model can predict each cell’s individual
expression, given its location in space (mean squared error (MSE) = 4.36 · 10−3). However,
slight deviations were observed in the highlighted region (red arrow). Next, we tested whether
this discrepancy could be resolved by specifying a priori the expression levels of the remaining
genes at the position of interest (Suppl. Figure S15C). This reduced the MSE to 2.88 · 10−3,
and the highlighted region better agrees with the ground truth, as can be seen by comparing
Suppl. Figure S15A to C.
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sna

twi

(a) ∆ρ
(1)
twi, sna = −0.036

ems

noc

(b) ∆ρ
(1)
ems, noc = 0.030

Dfd

lok

(c) ∆ρ
(1)
Dfd, lok = 0.021

Figure 4: Visualization of genes with strong spatial associations in the Drosophila
blastoderm as identified by SpaCeNet. Figures show gene expression levels of
the top ranked gene pairs as identified by SpaCeNet with sna and twi in Figures
A and B, ems and noc in Figures C and D, and Dfd and lok in Figures E and F,
respectively. The genes sna and twi (Figures A and B) are expressed in the same
areas in concordance with ∆ρ

(1)
twi, sna = −0.036 as inferred by SpaCeNet. Genes ems

and noc (Figures C and D) are expressed in adjacent but different areas, which is
consistent with the inferred SpaCeNet association ∆ρ

(1)
ems, noc = 0.030. This also holds

true for the gene pair Dfd and lok (Figures E and F), which are also expressed in
adjacent but different areas, consistent with ∆ρ

(1)
Dfd, lok = 0.021. For all illustrations,

the three-dimensional spatial coordinates were projected into a two-dimensional plane
using a principal component analysis.

SpaCeNet analysis of high-throughput spatial transcriptomics Finally, we illustrate that
SpaCeNet can deal with high-throughput data, capturing hundreds or even thousands of vari-
ables and measurements for tens of thousands of cells. In [49], the mouse organogenesis spa-
tiotemporal transcriptomic atlas (MOSTA) was generated, which provides gene-expression maps
with single-cell resolution of mouse organogenesis. We downloaded pre-processed data of the
coronal hemibrain section, capturing in total measurements of 56,731 individual cells together
with spatial locations1. We further filtered the gene space to genes which are at least expressed
in 30% (Mosta A) and 10% of cells (Mosta B), yielding 315 and 1741 genes, respectively. We
then applied SpaCeNet to each of these datasets (using L = 1 for computational efficiency),
and performed a grid search for model selection. The best model was selected based on smallest
Akaike Information Criterion (AIC). The top spatial associations are summarized in Suppl.
Table S7 for. The total computation time for the final model was approximately 30 and 150
minutes, respectively, computed on a single A100 GPU, highlighting that SpaCeNet is compu-
tationally highly efficient. We want to highlight that model findings might be affected by low
sequencing depths, challenging SpaCeNet’s model assumptions. However, despite this limita-
tion given by the data, we want to discuss the findings. For both datasets Mosta A and B, the
top hits predominantly showed a positive spatial association (∆ρij < 0). For instance, among
the top 5 hits in both analysis, we observed the gene pairs Mt1-Mt2 and Mobp-Mbp. Mt1 and
Mt2 are both melatonin receptors. Interestingly, analyses in adult rat brain showed differences
in the distribution of MT1 and MT2 proteins, and the labeling often appeared complementary
in regions displaying both receptors [50]. The positive spatial association observed by SpaCeNet
would be in line with this finding; a high expression of MT1 in a cell implies a high expres-
sion of MT2 in its neighbors and vice versa. Myelin-associated oligodendrocytic basic protein

1https://ftp.cngb.org/pub/SciRAID/stomics/STDS0000058/Cell_bin_matrix/Mouse_brain_Adult_GEM_
CellBin.tsv.gz
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(Mobp) is a myelin constituent exlusively expressed by oligodendrocytes [51] and shares phys-
iochemical and biological properties with Mbp. Both were expressed in similar regions (Suppl.
Figure S17), but were shown to differ with respect to localization and expression timing [51],
with Mobp occurring significantly later than Mbp at the late stages of myelination. Finally,
considering negative spatial associations, we detected a strong connection between Apoe and
Ptgds. Prostaglandin-H2 D-isomerase is an enzyme encoded by the Ptgds gene. Prostaglandins
are key players in neuroinflammatory and neurodegenerative diseases [52]. Apolipoprotein E
(Apoe) influences various biological processes, and both the Apoe gene and its encoded proteins
hold promise as targets for therapies against Alzheimer disease (AD) [53]. In summary, even in
scenarios where SpaCeNet’s model assumptions are challenged, it suggests promising findings
for further analyses.

3 Discussion

SpaCeNet is a network inference method that determines intracellular correlation networks and
cell-cell associations from spatial molecular data. SpaCeNet is based on probabilistic graphi-
cal modeling and extends the concept of conditional independence (CI) by spatial information
through estimating spatial conditional independencies (SCI). These intracellular and intercellu-
lar SCI relationships encode information about how molecular variables affect each other across
space. We verified SpaCeNet in comprehensive simulation studies and demonstrated the in-
formation that SpaCeNet can extract from spatial transcriptomics data in two example data
sets: an expression map of the mouse visual cortex and a virtual RNA map of the Drosophila
blastoderm. The analysis of the mouse visual cortex allowed us to generate hypotheses about
the spatial organization of cell populations, such as Flt1 -mediated signals which could be in-
volved in the recruitment of myelinating cells towards axons which lack myelin basic protein
(Mbp). The analysis of the Drosophila blastoderm showed that SpaCeNet can also yield insights
if data do not have cellular resolution. In the latter case, SpaCeNet resolved spatial association
patterns between molecular variables, as observed between the gene-pairs twi-sna and ems-noc.

Modern spatial transcriptomics techniques are capable of measuring RNA transcript levels with
single-cell resolution in a three-dimensional space. Many molecular processes that take place
within and between cells, such as translation to protein, possible post-translational modifica-
tions, and subsequent signaling cascades comprising secretion of molecules and their recognition
by other cells, are not directly measured by these technologies. Although laboratory methods
under development, such as single-cell proteomics and metabolomics [54, 55] or single-cell epige-
netic or chromatin confirmation measurements may one day bridge this gap, at present one can
only infer such associations with appropriate analytical methods. SpaCeNet is an important
first step in inferring complex, multi-omic, intracellular and intercellular association networks
that takes advantage of high-dimensional omics data and spatial information. The present im-
plementation of SpaCeNet uses single-cell spatial transcriptomics data and so can only infer
associations between RNA expression levels within and, more importantly, between different
cells – without knowledge about any potentially complex intermediate processes. SpaCeNet is
based on a robust Gaussian graphical model framework based on partial correlations, which can
scale to the increasingly large and complex spatial multi-omics data sets that new laboratory
technologies provide. Importantly, hidden variables can prohibit the inference of direct rela-
tionships. If they remain hidden, we are not able to infer their role in mediating dependencies,
potentially leading to erroneous direct associations. However, with new technologies capturing
more and more molecular variables, methods such as SpaCeNet might be key to identify the
direct statistical dependencies in favor of those mediated by other variables. In this context,
it is also worth mentioning that SpaCeNet’s current implementation is limited to modeling

14

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2024. ; https://doi.org/10.1101/2022.09.01.506219doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.506219
http://creativecommons.org/licenses/by/4.0/


continuous variables. While many omics measurements such as gene expression levels can be
reasonably modeled as continuous, this is not the case for all genomic readouts, and variables
such as mutation status and chromatin accessibility might be better described as categorical
variables. SpaCeNet could be easily adapted to include those using mixed graphical modeling
suggested by [56]. As is generally the case for correlation-based methods, SpaCeNet does not
identify causal interactions, although lower bounds on causal effects can be derived from ob-
servational data [29], and techniques such as directed acyclic graphs and respective equivalence
classes may be adapted to SCI relationships, which we intend to explore in the future.

Nevertheless, SpaCeNet represents an important step forward in the analysis of spatial expres-
sion data, allowing us to move from a simple atlas of expression values and cell types to models
that capture complex patterns of interactions that allow tissues to function and guide cellular
growth, development, and disease processes. As new experimental techniques deliver larger and
more complex multi-omics data combined with higher resolution information on the location
of individual cells, techniques like SpaCeNet will become increasingly important for integrating
spatial and biological contexts.

4 Materials and Methods

4.1 Data structure

SpaCeNet is designed to model continuous, potentially high-dimensional molecular variables
(e.g., gene-expression levels) which are measured together with spatial information. Formally,
denote the molecular variables as Xi with i = 1, . . . , p and let X = [x1, . . . , xn]⊤ ∈ Rn×p

be a data matrix with n measurements (molecular profiles) in its rows. Then each of these
measurements xa is annotated with a position ra of cell a in space. Throughout the section, we
identify the xa as molecular profiles of individual cells and ra with the respective point-position
in space.

4.2 Concept

SpaCeNet considers the observed spatially distributed molecular profiles of single cells within
a statistical model which decomposes the observed gene expression into two components (see
Figure 1). The first contribution accounts for the statistical diversity of isolated cells, meaning
that we assume that the molecular profiles of individual cells follow a p-dimensional multivariate
normal distribution, X ∼ N(µ, Σ) with mean profiles µ and covariance Σ (see Figure 1A). Note
that this is a reasonable assumption if data are approximate normal or if they are transformed
accordingly (e.g., via non-paranormal transformations) [57, 58]. The second contribution ac-
counts for the fact that cells are not isolated but observed in a complex environment where
cells can interact with each other (see Figure 1B and C). This effect is encoded as shifts of the
distribution’s mean profiles µ and the amount by which the individual profiles are shifted de-
pends on the molecular phenotypes of the surrounding cells and their distances, as schematically
illustrated for two interacting cells in Figure 1B and for multiple cells in 1C. The functional
dependence of these shifts on the neighbor’s gene expression and distance is not a priori clear.
Key to SpaCeNet is a parameterization which accounts for diverse distance dependencies and
which can be straightforwardly interpreted in terms of conditional independence relationships,
as outlined in the following.
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4.3 Spatial conditional independence

Estimates of Conditional Independence (CI) relationships are key to the inference of molecular
networks, as they allow the disentanglement of direct and indirect statistical relationships and
as such reduce the number of false positive associations [25]. If the spatial context is ignored, CI
between variables Xi and Xj given all remaining variables can be expressed as Xi ⊥ Xj |{rest},
where “rest” is the set of all variables in X except Xi and Xj . We extend this language to
intracellular and intercellular spatial conditional independence (SCI) relationships:

• Intracellular SCI relations between variables Xa
i and Xa

j measured within one cell a are
expressed as Xa

i ⊥ Xa
j |{rest} with the term “rest” referring to all other variables of cell a

and to all variables of all other cells.

• Intercellular SCI relations between variables Xa
i and Xb

j measured in different cells a and
b, conditioned on all remaining variables, are denoted as Xa

i ⊥ Xb
j |{rest} with a ̸= b,

where “rest” refers to all variables of cell a except Xa
i , all variables of cell b except Xb

j ,
and all variables of all remaining cells.

Thus, such as CI is designed to distinguish direct from indirect relationships between molecular
variables, SCI relationships are designed to do so for the intra- and intercellular relationships
between molecular variables.

4.4 Full probability density

Gaussian Graphical Models (GGMs) are PGMs which assume multivariate normally distributed
data. The model parameters of GGMs are collected in the precision matrix Ω = (ωij), which
directly parameterizes CI relationships; ωij = 0 if and only if there is CI between variables i and
j given all other variables. In the following, we will develop a joint probability density which
directly encodes SCI relationships. Specifically, we assume that data follow an np-dimensional
multivariate normal distribution with precision matrix Λ, where the entries in Λ capture both
intracellular and intercellular SCI relations. The full probability density of SpaCeNet is

ffull(X|R) =
√

det Λ
(2π)np

exp
{

−1
2(ξ − m)⊤Λ(ξ − m)

}
, (1)

where we stack the individual cells’ profiles xa ∈ Rp, a = 1, . . . , n, vertically in ξ = vec(X⊤)
and use a global, location-agnostic mean vector µ for all xa such that m = 1n ⊗ µ =
(µ1, . . . , µp, µ1, . . . , µp, . . . )⊤. All pairwise cell-cell distances are collected in a matrix R =
(rab) ∈ Rn×n, where rab = rba denotes the Euclidean distance between cells a and b. The
space-agnostic conditional independence (CI) relations for gene expression levels of a single cell
a can be recovered from Eq. (1) by marginalizing over all variables of all other cells b ̸= a.

Next, we decompose the precision matrix Λ ∈ Rnp×np into

Λ = Λwithin + Λbetween (2)

with a matrix for intracellular (within-cell) associations

Λwithin = In ⊗ Ω =


Ω 0p×p · · · 0p×p

0p×p Ω
...

... . . . 0p×p

0p×p · · · 0p×p Ω

 (3)
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and a matrix for intercellular (between-cell) associations

Λbetween =


0p×p Λ12

between · · · Λ1n
between

Λ21
between 0p×p

...
... . . . Λ(n−1)n

between
Λn1

between · · · Λn(n−1)
between 0p×p

 . (4)

Due to the parametrization of Λwithin in Eq. (3), the same precision matrix Ω = (ωij) ∈ Rp×p

parametrizes the within-cell associations for all cells, where ωij = 0 corresponds to intracellular
SCI between Xi and Xj . The conventional (space-agnostic) GGM is recovered for Λbetween =
0np×np.

We further assume that the intercellular association of gene i in any cell a with gene j in any
other cell b is described by some function of the cells’ Euclidean distance rab. We denote this
radial cell-cell interaction potential by ρij(rab) and write Λab

between =
(
ρij(rab)

)
∈ Rp×p, which

we require to be symmetric with respect to both i ↔ j and a ↔ b. The (np × np)-dimensional
precision matrix Λ is required to be positive definite for ffull to be a valid probability density.

4.5 Cell-cell interaction potentials

From the definition of the probability density function, Eq. (1), we see that

Xa
i ⊥ Xb

j |{rest} with a ̸= b ⇔ ρij(rab) = 0, (5)

where the set “rest” refers to all variables of cell a except Xa
i , all variables of cell b except

Xb
j , and all variables of all other cells. Thus, all intercellular SCI relations are encoded in the

set of p(p + 1)/2 independent functions ρij(r) = ρji(r). To ensure that cells that are infinitely
separated do not interact, we require ρij(r) = 0 for r → ∞. To approximate the potential
ρij(r), we use a power-series in (1 − e−r/r0) r0

r ,

ρ∗
ij(r) =

L∑
l=1

∆ρ
(l)
ij

(
1 − e−r/r0

)l
(

r0
r

)l

, (6)

where l is the order in the series expansion and ∆ρ(l) = (∆ρ
(l)
ij ) ∈ Rp×p the corresponding

coefficient matrix. The latter matrices are required to be symmetric, ∆ρ
(l)
ij = ∆ρ

(l)
ji . This leads

to an approximation for the intercellular precision matrix Λbetween given by

Λ∗
between =

L∑
l=1

Θ(l) ⊗ ∆ρ(l) , (7)

with

Θ(l)
ab = Θ(l)

ba =

0 for a = b,

(1 − e−rab/r0)l
(

r0
rab

)l
else.

(8)

The coefficients ∆ρ
(l)
ij are model parameters which are estimated using a regularized pseudo-

log-likelihood, as outlined below. The expansion (6) naturally fulfills limr→∞ ρ∗
ij(r) = 0 and

limr→0 ρ∗
ij(r) = cij with constants cij = ∑L

l=1 ∆ρ
(l)
ij . Note, an expansion in (1 − e−r/r0) r0

r has
the advantage that terms do not diverge for r → 0, which is in contrast to an expansion in 1/r.
Thus, the factor (1−e−r/r0) smooths the divergence and the amount of smoothing is determined
by the additional parameter r0.
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4.6 Pseudo-log-likelihood

The precision matrix Λ is of size np × np, which makes a naive maximum-likelihood-based
estimate (using, for example, a gradient descent) intractable for reasonably large p and n. We
address this issue by using a pseudo-log-likelihood approach [59, 56], which is a computationally
efficient and consistent estimator formed by products of all the conditional distributions. Let
X\a denote all gene expression levels in all cells except cell a, and xa

\j denote all gene expression
levels in cell a except gene j. We consider the conditional density

fc(xa
j |R, X\a, xa

\j) =
√

ωjj

2π
exp

{
− 1

2ωjj

(
xa

j − µj + 1
ωjj

×

 p∑
k ̸=j

ωjk(xa
k − µk) +

n∑
b=1

L∑
l=1

p∑
k=1

(Θ(l)
ab ∆ρ

(l)
jk )(xb

k − µk)

)2}
, (9)

obtained from the full density given in Eq. (1). This yields the pseudo-log-likelihood

ℓ(Ω, ∆ρ(·), µ) =
n∑

a=1

p∑
j=1

log
(
fc(xa

j |R, X\a, xa
\j)
)

. (10)

4.7 Regularization:

Parameter regularization has been repeatedly shown to improve the inference of GGMs using
approaches such as node-wise lasso regression [60], the graphical lasso [61], or covariance shrink-
age [62]. This is particularly the case if the number of variables exceeds or is of the same order
of magnitude as the number of measurements [25]. For S independent measurements (spatial
transcriptomics slides), the full, regularized pseudo-log-likelihood-based optimization problem
of SpaCeNet is given by

minimize
Ω,∆ρ(·),µ

{
−

S∑
s=1

ℓs(Ω, ∆ρ(·), µ) + nS

α
∑
i<j

|ωij | + β
∑
i≤j

√√√√ L∑
l=1

(
∆ρ

(l)
ij

)2
} . (11)

Eq. (11) penalizes the off-diagonal elements of the intracellular precision matrix Ω via L1
regularization [63]. The intercellular interactions are regularized via group-lasso terms [64],
where the group contains the coefficients of the spatial interactions at different orders l =
1, . . . , L of the series expansion. This regularization has the advantage that sparseness is induced
simultaneously across all orders in the expansion, so we induce sparseness in the potentials ρij

and not just in the different orders of its expansion. The hyper-parameters α and β calibrate
the regularization strength of the intracellular and intercellular associations, respectively. In
our analysis, we standardized the expression data prior to model learning to ensure comparable
penalization of the variables.

4.8 Implementation:

Eq. (11) is a convex optimization problem with lasso and group-lasso regularization terms,
which can be efficiently solved via proximal gradient descent [65]. SpaCeNet uses a proximal
gradient descent with Nesterov acceleration [66, 67]. The optimization terminates when the loss
in Eq. (11) improves less than a user-specified threshold. The computational requirements for
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training a SpaCeNet depend on the number of considered cells and genes. For example, training
SpaCeNet on a Nvidia A100 GPU takes around one minute for the Drosophila data (3.039 cells
and 84 genes), less than two minutes on the StarMap data (33.598 cells and 28 genes), around
30 minutes on the Mosta data with more than 30% non-zero entries (56.731 cells and 315 genes)
and around 150 minutes on the Mosta data with more than 10% non-zero entries (56.731 cells
and 1741 genes).

5 Supplementary Data

Supplementary Data are available online.
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