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Abstract 
 
Genotype networks are sets of genotypes connected by small mutational changes that share the 

same phenotype. They facilitate evolutionary innovation by enabling the exploration of different 

neighborhoods in genotype space. Genotype networks, first suggested by theoretical models, have 
been empirically confirmed for proteins and RNAs. Comparative studies also support their 

existence for gene regulatory networks (GRNs), but direct experimental evidence is lacking. Here, 

we report the construction of three interconnected genotype networks of synthetic GRNs producing 

three distinct gene expression phenotypes in Escherichia coli. These genotype networks, 

composed of over twenty different synthetic GRNs, provide robustness in face of mutations while 

enabling transitions to innovative phenotypes. Through realistic mathematical modeling, we 

quantify robustness and evolvability for the complete genotype-phenotype map and link these 

features mechanistically to GRN motifs. Our work thereby exemplifies how GRN evolution along 

genotype networks might be driving evolutionary innovation. 
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Introduction 
 

A genotype network (also called neutral network) (Ahnert, 2017; Lipman et al., 1991; Maynard 

Smith, 1970; Schuster et al., 1994; Wagner, 2005; Wagner, 2012)  is a connected set of genotypes 

that produce the same phenotype. Within a genotype network, genotypes are directly connected 

to each other if they differ by a small mutational change. Genotype networks are thought to be a 

common organizational property of genotype spaces of biological systems at different levels. 
Ample empirical evidence for their existence supports this notion for RNAs (Bendixsen et al., 2019; 

Hayden et al., 2011; Schultes and Bartel, 2000), proteins (Baier et al., 2019; Bershtein et al., 2008; 

Bloom et al., 2007; Podgornaia and Laub, 2015; Zheng et al., 2019) and binding sites of regulatory 

proteins (Aguilar-Rodríguez et al., 2018; Anderson et al., 2015; Payne et al., 2018; Payne and 

Wagner, 2014). 

In contrast, genotype networks of gene regulatory networks (GRNs) have remained more 

recalcitrant to investigations. This is an important limitation because GRNs underlie fundamental 

behavioural and developmental processes (Alon, 2006; Ptashne and Gann, 2002), and because 

understanding the relation between a GRN and its biological function (phenotype) is a central area 

of investigation in modern biology (Karlebach and Shamir, 2008). Current empirical evidence for 

the existence and features of genotype networks of GRNs is indirect. It mainly comes from 

comparative studies showing that rewiring of GRNs during the course of evolution does not 

necessarily alter the resulting gene expression pattern (Ewe et al., 2020; Haag, 2014; Hinman and 

Davidson, 2007; Kiontke et al., 2007; Wotton et al., 2015). Indeed, extensive rewiring seems to be 
very common (Dalal and Johnson, 2017; Johnson, 2017; Nocedal et al., 2017). Complementary 

theoretical studies revealed that a large number of different GRNs can produce the same 

phenotype and that many of those GRNs are interconnected by small mutational changes (Aguirre 

et al., 2018; Ciliberti et al., 2007a; Ciliberti et al., 2007b; Cotterell and Sharpe, 2010). However, 

these theoretical studies used abstracted models of GRNs not supported by experimental data. 

Potential genotype networks for GRNs have three important implications. First, a genotype 

network of many GRNs can be traversed by making one mutational change at a time without losing 

the phenotype. Thus, a GRN is robust to those mutations that keep it on the same genotype 

network (Payne and Wagner, 2015). Second, a genotype network implies that the genotype can 

evolve while the phenotype is preserved. This is known as phenogenetic drift or system drift (True 

and Haag, 2001; Weiss and Fullerton, 2000), especially when referring to developmental GRNs. 

Thereby, genotype networks crucially contribute to evolutionary innovation (Payne and Wagner, 

2019; Wagner, 2005): different genotypes at different positions within the genotype network 
provide access to genotypes that are part of adjacent genotype networks featuring distinct 

phenotypes. Consequently, evolving on a genotype network facilitates the exploration of different 

mutational neighborhoods in genotype space, which may harbor different phenotypes (Jimenez et 

al., 2015; Schaerli et al., 2018). Third, in some cases, the same specific mutation can have different 
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effects depending on the genotype where it occurs: some GRNs, when mutated, retain their 

phenotype and thus are part of the same genotype networks; the same mutation introduced into 

other GRNs can lead to mutant GRNs with a distinct phenotype. This common phenomenon, in 

which the effect of a mutation depends on the genetic background, is known as epistasis (Domingo 

et al., 2019). 

Unfortunately, we still have very few experimentally accessible systems that allow us to 

understand comprehensively how GRNs map to their phenotypes, how they organize into 
genotype networks, and how these provide robustness to mutations and facilitate access to novel 

phenotypes (Crombach et al., 2016; Martchenko et al., 2007; Sorrells et al., 2015; Tsong et al., 

2006). To address this issue, here we turned to synthetic biology, which allows us to build GRNs 

by assembling well‐characterized parts that differ by small mutational changes. It also enables us 

to study GRNs without the common challenges and confounding factors associated with studying 

GRNs in situ, like unknown influence of the genetic background, high complexity and 

interconnectivity of the networks, and pleiotropy of their genes (Baier and Schaerli, 2021; Bayer, 

2010; Crocker and Ilsley, 2017; Schaerli et al., 2018). Specifically, we decided to build a large set 

of synthetic GRNs based on CRISPR interference (CRISPRi) (Santos-Moreno et al., 2020) using 

Escherichia coli (E. coli) cells as host. Our GRNs differ from each other by small mutational 

changes, thus potentially creating genotype networks. As a starting GRN, we chose a type 2 

incoherent feed-forward loop (IFFL-2) (Santos-Moreno and Schaerli, 2019b), which is commonly 

found in natural systems, including in developmental processes of multicellular organisms such as 
Drosophila blastoderm patterning (Jaeger, 2011). In response to a chemical concentration 

gradient, its phenotype can be a “stripe” of gene expression (low–high–low), analogous to the 

formation of spatiotemporal gene expression patterns guided by morphogen gradients during 

development (Rogers and Schier, 2011; Sagner and Briscoe, 2017). Overall, we report the 

construction and experimental exploration of three synthetic genotype networks, each composed 

of a group of interconnected GRNs and displaying a distinct phenotype, as well as the 

generalization to the complete genotype-phenotype map using mathematical modeling. 

 

 

Results 
 

A genotype network of GREEN-stripe GRNs 

We previously described a synthetic GRN with an IFFL-2 topology that governs the spatial 
patterning of a population of E. coli cells (Santos-Moreno et al., 2020). Our synthetic IFFL-2 

responds to a gradient of arabinose (Ara) and produces a stripe of green fluorescence (Fig. 1A). 

It consists of three nodes connected by repression interactions so that the input node (orange) 

represses both the intermediate (blue) and the third (green) nodes, and the intermediate represses 

the third node as well (Fig. 1A). The input node (orange) expression rises with increasing Ara 
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levels. The repression logic produces a concomitant decrease of expression in the intermediate 

node (blue); consequently, expression of the third node (green) is highest where combined levels 

of the other nodes is lowest, resulting in a stripe (peak) of gene expression at intermediate Ara 

concentration (Fig. 1A). In our GRN, this behavior can be easily monitored by fluorescence 

reporters present in each node: mKO2 (orange), mKate2 (red, here represented in blue for clarity) 

and sfGFP (green). More specifically, repression is based on CRISPR interference (CRISPRi). A 

repressing node produces single guide RNAs (sgRNAs) that recognize specific target binding site 
(bs) sequences downstream of the promoters in the node to be repressed. CRISPRi-based 

repression constitutes a versatile framework for synthetic GRN construction due to high 

programmability and orthogonality and low incremental burden (Santos-Moreno and Schaerli, 

2020; Santos-Moreno et al., 2020), and we can easily construct new GRN variants with a 

previously described modular cloning strategy (Santos-Moreno and Schaerli, 2019a).  

 

 

 
 
Fig. 1. Overview of three interlinked genotype networks of synthetic GRNs built in this study that 

produce distinct phenotypes for stripe formation: BLUE-stripe, GREEN-stripe, and non-functional. 

The different levels of organization are depicted. A. Details of the molecular implementation of one 

GRN (GRN 1.1 from Fig. 2), with the resulting GREEN-stripe phenotype schematically depicted 

below. Key to symbols: Bent arrows: promoters; squares: sgRNA binding sites; jagged rectangles: 

sgRNAs; crosses: csy4 recognition sites; semicircles: ribosome binding sites (RBSs); pointed 

rectangles: reporter genes; and T-s: transcriptional terminators. MarA, MarAn20 and RepA70 

denote orthogonal degradation tags. B. For a GRN topology, there might exist multiple interlinked 

GRN variants with different parameters that preserve the same phenotype (here shown as 

connected if they differ by a single parameter change, either qualitative or quantitative). C. We 
built several topologies (colored according to the phenotype) that connect within and between 

genotype networks. D. The topologies in (C) are part of larger genotype networks that share the 

same phenotype. Each node in the genotype networks represents one GRN topology with an edge 

between two nodes if topologies can be interconverted with a single mutational change. 
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To construct a synthetic genotype network, we applied two types of changes to GRNs (Fig. 
1B-C): qualitative ones, where interactions are gained or lost and thus the topology (i.e. the wiring) 

of the network changes, and quantitative ones, where the strengths of the regulatory interactions 

(i.e. the parameters) change (Crombach et al., 2016). Here, we modified topologies by adding or 

removing repression interactions. As for parameters, we modulated them in two ways: first, through 

the choice of three promoters (low, medium, high) that govern transcription of the nodes; and 

second, by employing four sgRNAs with different strengths. We also used two truncated versions 
(‘t4’, truncation of the four 5’ nucleotides) of the sgRNAs, which provides another way to tune 

repression strength (Santos-Moreno et al., 2020). We consider each of these modifications as a 

single mutation and quantify relations between quantitative and qualitative changes using 

mathematical models. 

Starting from the original GRN (Fig. 2, design 1.1), which produces a GREEN-stripe 

pattern in a gradient of Ara, we first introduced quantitative changes without modifying the GRN 

topology. Replacing sgRNA-1t4 with its full-length version to yield GRN 1.2 only slightly decreased 

the height of the stripe (Fig. 2, design 1.2). A significant increase in the strength of the blue node’s 

promoter in GRNs 1.3 and 1.4 resulted in stripes being asymmetric and shifted towards higher Ara 

concentrations (Fig. 2, designs 1.3 and 1.4). Thus, the quantitative modifications preserved the 

GREEN-stripe, but they affected the shape of the stripe. 

 Previous theoretical work suggested that other GRN topologies populate the same 

genotype network as our IFFL-2 (Arboleda-Rivera et al., 2022; Cotterell and Sharpe, 2010; 

Schaerli et al., 2014). To explore those, we next increased GRN complexity by adding one extra 
repression. Addition of sgRNA-4t4 or of the full-length version sgRNA-4 from the green node to 

the orange node indeed preserved the GREEN-stripe (Fig. 2, GRNs 2b.1 and 2b.2). Alternatively, 

we also added a new repression from the blue to the orange node (instead of green to orange) to 

produce yet a different topology, GRN 2a.1, also displaying a GREEN-stripe phenotype (Fig. 2). 

Overall, these GRNs demonstrate an uninterrupted genotype network: single (qualitative or 

quantitative) mutations connect the GRNs, such that distant GRNs are connected by intermediates 

that preserve the same common phenotype. 
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Fig. 2. A synthetic genotype network of GREEN-stripe (bottom) and BLUE-stripe (top) GRNs. 

Starting from a CRISPRi-based GREEN-stripe incoherent feed-forward loop (IFFL-2, design 1.1), 

we introduced quantitative (gray) or qualitative (black) changes to produce a genotype network of 

synthetic GREEN-stripe GRNs. Single changes enabled the transition from GREEN-stripe GRNs 

to BLUE-stripe GRNs. We then explored this BLUE genotype network through parameter (gray) or 

topology (black) changes, up to the GRN with the maximum number of repressions for a 3-node 
GRN without self-repression, GRN 4.1. Dashed lines represent the boundaries of the GREEN-

stripe and BLUE-stripe genotype networks. Each design is denoted with a unique code displayed 

in an ellipse (color-coded according to the phenotype), with the details of the design provided in 

the diagrams below. The GRN code denotes both the complexity (i.e. number of interactions) and 

the topology, as well as the specific implementation. A higher starting number of the GRN (e.g. 2 

vs. 1) reflects an increased complexity, while different topologies sharing the same complexity are 

denoted with different letters (e.g. 2a vs. 2b). Lastly, the final number (e.g. 2b.1 vs. 2b.2) 

distinguishes specific implementations within the same topology. Numbers by the repressions 

indicate the identity of the sgRNAs, while PH, PM and PL represent constitutive promoters 
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(BBa_J23100, BBa_J23102 and BBa_J23150, respectively). Small GRNs by the arrows display 

the changes (in red) between the connected GRNs: topology changes (T) or changes in the 

promoter strength (P) or in the identity of the sgRNAs (sg). The phenotype of each GRN was 

characterized in a microplate reader by determining the fluorescence of the three protein reporters 

(mKO2 (orange), sfGFP (green) and mKate2 (red, here depicted in blue for clarity)) as a function 

of arabinose (Ara) concentration. Data show the mean three biological replicates, with error bars 

depicting s.d. of normalized replicates (n=3). GRNs sharing a common topology are grouped with 
a colored background. The dashed arrow indicates transition towards another synthetic genotype 

network (that of oscillators, see Fig. 7).  

 

 

A genotype network of BLUE-stripe GRNs 

 

To explore a different genotype network, we noted that adding a repression from the green 

node to the blue node to the original GRN (1.1) makes the topology completely symmetrical. In 

this topology, either the green or the blue node can form a stripe, depending on the parameters. 

Adding the repression to two different GREEN-stripe GRNs (Fig. 2, GRNs 1.1, 1.4) inverted the 

roles of the two nodes, producing a BLUE-stripe, with the green node now decreasing with 

increasing Ara concentration (Fig. 2, GRNs 2c.1, 2c.2, 2c.4). A series of control GRNs confirmed 

that the GREEN- to BLUE-stripe transition is a consequence of the action of the sgRNA added, 

and not some spurious context-dependent effect (Fig. S1). Thus, a single mutation in some of the 
GRNs of the GREEN-stripe genotype network suffices to achieve a new phenotype, highlighting 

the potential of genotype networks for evolutionary innovation. 

 As already observed for the GREEN-stripe GRNs, quantitative changes in the promoter 

and/or the sgRNA strengths yielded new BLUE-stripe GRNs in an interlinked network (Fig. 2, 

GRNs 2c.1 to 2c.8). Many of these GRNs produce skewed BLUE-stripes, but one GRN shows a 

remarkable symmetry, both in the design and in the phenotype (Fig. 2, GRN 2c.5).  

To assess robustness of the BLUE-stripe genotype network to topological changes, we 

further increased complexity to five repression interactions. Adding a new sgRNA from green to 

orange node resulted in GRNs 3.1 to 3.3, all of which produce a BLUE-stripe (shifted to higher Ara 

concentrations; Fig. 2). Interestingly, this 5-repression BLUE-stripe producing topology can be 

accessed from a 4-repression topology with either a BLUE-stripe (2c.6 to 3.1 transition) or a 

GREEN-stripe (2b.1 to 3.3 transition). The 5-repression GRN 3.2 in turn served as the basis for 

building a GRN with six repressions between the three nodes – the theoretical maximum number 
of repressions for a 3-node GRN without self-repression (Fig. 2, GRN 4.1). This design produces 

a stripe similar to the other ones in its genotype network. In summary, we explored a genotype 

network of synthetic BLUE-stripe GRNs; these GRNs are connected not only among themselves, 

but also to the genotype network of the GREEN-stripe GRNs (Fig. 2). 
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Ensemble mathematical modeling predicts genotype-phenotype relations 

 

In our synthetic implementations, we explored a large set of functional GRNs (19 3-node 

GRNs) thanks to the versatility of CRISPRi. Yet, compared to the total number of 1’873’152 

possible implementations (42 topologies with 3 to 6 edges, each with 6 possible sgRNAs and 3 

promoter efficiencies), this set was too small to conclude quantitatively on robustness and 

evolvability of genotype networks for GRNs. In addition, some experimental findings required 
mechanistic interpretations, for example, why we always observed a BLUE-stripe whenever a 

repression from the green node to the blue node was present. We therefore developed mechanistic 

mathematical models to explore the full genotype space in silico on the one hand, and to analyze 

mechanisms and guide experimental design on the other hand. 

 

 
Fig. 3. Model overview and predictions. A. Model components and processes for the example 

of an IFFL-type 2 using generic sgRNAs 1-3 (inset). Arabinose induces expression of sgRNA-1 

(brown jagged rectangle), sgRNA-2 (red) and A (orange). sgRNA-1 and sgRNA-2 form complexes 

with dCas (brown), and A undergoes translation (mRNA-A) and maturation (A). sgRNA-3 (purple), 

B (blue) and C (green) are constitutively expressed (bent arrows). sgRNA-3 forms a complex with 
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dCas, and B and C are translated (mRNA-B, mRNA-C) and mature (B,C). sgRNA/dCas complexes 

can bind to their target sites (brown, red, and purple squares) and inhibit gene expression. RNAs 

are subjected to active degradation, proteins (A, B, C) to active degradation and dilution, and 

complexes to dilution. B, C. Independent model predictions (dashed lines) compared to 

experimental data (symbols, as in Fig. 2) for two example GRNs (see also Fig. S2). Models were 

adapted to account for the sgRNAs in the implemented GRNs. Error bars show s.d. based on error 

propagation, n=3 independent experiments. 
 

The models represent detailed interactions between Ara-controlled gene expression, 

sgRNA and fluorescent protein expression, dCas9-sgRNA interactions, CRISPRi-mediated control 

of gene expression, and component degradation or dilution, as illustrated in Fig. 3A for an IFFL-

type 2 GRN. To capture the experiments conducted in microplate readers realistically, we included 

simplified model components for microbial growth and fluorescent protein maturation into the 

dynamic (ordinary differential equation-based) models; the overall model structure allowed to 

specify all possible topologies and parametrizations (see Methods for details). For model 

calibration, we used experimental data for two-node GRNs with different sgRNAs (Santos-Moreno 

et al., 2020), and for a selection of three-node GRNs (Fig. S2). Importantly, we constrained 

parameters to map 1:1 to biological components, such that a specific sgRNA or promoter had the 

same value for, e.g., affinity constants, throughout all models (see Methods). In principle, this 

enables predictions for the entire genotype space of GRNs implementable with the synthetic parts 

used. 
The models faithfully predicted the experimentally observed behaviors of GRNs that 

differed in topologies or parts from those used in model calibration (i.e., the independent validation 

set), as shown in Fig. 3B,C and Fig. S2. In addition, the inferred sgRNA affinities were qualitatively 

consistent with measured repression strengths (Data S1). Overall, we conclude that the 

mathematical models are sufficiently realistic for comprehensive in silico analyses. 

 

 

Models enable a comprehensive analysis of robustness and evolvability 

 

To assess the global genotype-phenotype (GP) map, we predicted the behavior of all 

1’873’152 possible GRNs and established three phenotypes for stripe formation: BLUE-stripe, 

GREEN-stripe, and non-functional (NF; see Methods for definitions). For the genotypes, each 

parametrized model (i.e., representing a GRN) is a genotype and a single mutation amounts to a 
change in one parameter value. Note that such a parametric change may also alter the topology, 

for example, by effectively eliminating a repressive interaction. The summary in Fig. 4A shows that 

functional GRNs (GREEN- and BLUE-stripe GRNs) are relatively rare (77% NF, 11% BLUE-stripe 

and 11% GREEN-stripe), both in terms of topologies and of GRNs within a topology, consistent 
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with previous results for RNAs and proteins (Ahnert, 2017). In more detail, as suggested by our 

experimental data, mutual inhibition of green and blue nodes is required to enable a topology that 

shows both BLUE- and GREEN-stripe phenotypes. 

 

 
Fig. 4. Model-predicted robustness and evolvability. A. Network topologies (schemes as in 

Fig. 1) and their neighbor relations (grey lines indicating that GRNs in two topologies are reachable 

by a single mutation). Pie charts indicate fractions of GRNs (genotypes) with BLUE-stripe (blue), 
GREEN-stripe (green) and non-functional (NF; grey) phenotype per topology. B. Distributions of 

evolvability (number of phenotypes in the 1-neighborhood of a genotype) for genotypes with BLUE, 

GREEN, and NF phenotype (colors as in (A)). C. Example subgraph for the red-circled node with 

evolvability 3 and its direct neighbors (27 BLUE-, 1 GREEN-stripe and 14 NF, colors as in (A)). D. 
Transition frequencies (median, interquartile range in brackets) between indicated phenotypes 
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resulting from transitions between neighboring genotypes. E. Robustness (fraction of neighboring 

genotypes with the same phenotype as a given genotype) classified by type of perturbations 

(indicated by numbers in GRN diagram), namely changes of sgRNA type (1-6) and promoter 

strengths (7-8) for the respective interactions and nodes for GRNs with BLUE-stripe phenotype. F. 
Experimental test of a model prediction to convert a BLUE-stripe GRN to a GREEN-stripe GRN 

with the same topology; symbols as in Fig. 2. 

 
Surprisingly, we found that the BLUE-stripe, GREEN-stripe, and NF genotype networks 

were each composed of a single connected network (a strongly connected component in graph 

terms). Hence, it is possible for very different GRNs to establish the same phenotype and to reach 

any of these GRNs in single mutations without changing the phenotype. To analyze the GP map 

in more detail, we first determined genotype evolvability, defined as the number of phenotypes 

accessible from a GRN in a single mutation change (i.e., in the 1-neighborhood of a GRN in the 

genotype network) (Wagner, 2008). Most functional GRNs were adjacent to at least one GRN of 

all the other phenotypes, in contrast to the NF GRNs (Fig. 4B), indicating high evolvability of 

functional GRNs specifically. However, this adjacency does not imply that it is likely that a mutation 

will yield a new (specific) phenotype, for example, when this phenotype is rare in the neighborhood, 

as illustrated in Fig. 4C. We therefore analyzed possible transitions between phenotypes (Fig. 
4D). Entries on the diagonal show that NF GRNs are highly robust to mutations, and functional 

ones moderately robust. Transitions to a NF phenotype dominate for all GRNs, but switching 

between a BLUE- and GREEN-stripe has a substantial probability. To make these results more 
interpretable, we used random walks on the genotype network to determine the mutational path 

lengths for altering phenotypes (see Methods). Median path lengths were 2 for functional GRNs 

and 18 for NF GRNs (Fig. S3), representing a high evolutionary barrier to establish function, but 

high evolvability of function. Importantly, when we repeated the analysis with additional artificial 

inhibition and promoter strengths (see Methods) as a control, results were very similar (Fig. S4).  

To relate this analysis to our synthetic biology approach in more detail, we determined 

robustness to changes in GRN parts and interactions. Over all genotypes, phenotypes were most 

sensitive to alterations of promoter strengths for the blue and green nodes, and (in a bimodal 

manner) of sgRNA-mediated interactions between these two nodes (Fig. 4E and Fig. S3). To test 

these predictions, we asked how we could convert the phenotype of topologies that theoretically 

afford both functional phenotypes, but for which we experimentally observed only BLUE-stripes. 

Specifically, we used the models to predict modifications of GRNs in our experimentally 

implemented BLUE-stripe genotype network that yield a GREEN-stripe. The requirements to swap 
between the functional phenotypes mirrored the parameter sensitivities (Fig. 4E), namely promoter 

and inhibition strengths between the blue and green node. Similar to (Munteanu et al., 2014), we 

predicted that a stronger inhibition (higher sgRNA affinity) on the green node with the correct 

promoter efficiencies for both green and blue node was enough to alter the phenotypes. In 
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experiments, GRN 2c-P.1 indeed showed a phenotype switched to GREEN-stripe, as illustrated in 

Fig. 4F. Thus, our models provide global as well as detailed, experimentally actionable, analyses 

of GRN robustness and evolvability. 

 

 

Combining IFFL and mutual inhibition enhances evolvability 

 
To understand mechanisms in biological networks, a powerful approach is to focus on the 

topology, and specifically on network motifs, small sub-networks that are critical for function and 

reveal design principles (Alon, 2007). For example, they helped investigate robustness and (to a 

certain extent) evolvability of the gap gene patterning system of insects (Verd et al., 2019). 

However, a systematic analysis of GP maps in terms of topologies and motifs is non-trivial 

because, for example, here the number of GRNs per topology varies between 3’456 and 746’496. 
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Fig. 5. Mechanistic basis of robustness and evolvability. A. Average predicted phenotypic 

evolvability per topology (circles) over all neighboring genotypes (x-axis) vs only genotypes with 

the same, fixed topology (y-axis). Topologies were clustered (indicated by colors; k-means 

clustering with k=5). Circle sizes reflect numbers of repressive interactions in a topology and grey 

lines link adjacent topologies as in Fig. 4A. The dashed diagonal indicates equal evolvability with 

and without fixed topology. MIBC: mutual inhibition of nodes B (blue) and C (green). B. 
Quantification of robustness for the GREEN-stripe phenotype; results shown as in A, with the same 

coloring of clusters. C. Example for the effect of transitions between topologies (arrows: removal 
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of one inhibitory interaction) on average evolvability (E) and evolvability with fixed topology (EF) 

measured as in A. 

 

We propose to address this challenge by computing genotypic robustness and evolvability 

in two ways: (i) for the entire 1-neighborhood of each GRN and (ii) for only those neighbors of a 

GRN that have the same topology. The results for evolvability in Fig. 5A show a clear differentiation 

of topologies into five clusters (see also Supplementary Table 2). Topologies that are always non-
functional (evolvability of one with fixed topology) can only become functional when evolving 

(directly or indirectly) to topologies containing an IFFL. Evolvability increases further by 

incorporating a mutual inhibition (MI) of blue and green nodes, complementing our earlier 

observations. Importantly, these network motifs, and not GRN complexity (i.e. number of 

interactions) determine evolvability. 

Regarding robustness (Fig. 5B for the GREEN-stripe phenotype, and Fig. S2), functional 

GRNs – those with an IFFL – perform substantially better than the other GRNs. In contrast to 

evolvability, including the MI motif decreases robustness of a given functional phenotype, again 

not correlated with GRN complexity. This is consistent with a previously observed trade-off 

between genotypic evolvability and robustness (Payne et al., 2014), but apparently contradicts the 

finding that complexity aids robustness (Catalán et al., 2018), both derived from abstractly modeled 

GRNs. We argue that experimentally validated GRN models and their analysis via network motifs 

provide a more realistic and mechanistically interpretable view, as illustrated in Fig. 5C. 

 
 

Epistatic interactions within the BLUE-stripe genotype network 

 

A third aspect important for evolution is the existence and prevalence of epistatic 

interactions; small sample sizes make the latter difficult to estimate in vivo, but a recent analysis 

in yeast showed a prevalence of ~3% (Nguyen Ba et al., 2022). To relate to genotype networks, 

we focused on one type of epistasis, namely where two sequential changes (‘A’ and ‘B’) allow 

genotype network exploration without a phenotype loss, while the same changes in the reverse 

order (first ‘B’ then ‘A’) goes along with a loss of the phenotype after the first change (Fig. 6A). 

Our models predict median prevalences of ~4.5% for functional GRNs, and a lower one for non-

functional GRNs (~2.5%) (Fig. 6B). This is qualitatively consistent with prior experimental studies; 

it highlights again the need to differentiate between functional and non-functional phenotypes. 

In our synthetic GRNs, we also discovered that the order of the changes actually matters. 
We found an instance of epistasis in the transition from topology 2c to topology 3. Starting from 

GRN 2c.6, the addition of sgRNA-4 from green to orange node yielded the functional GRN 3.1, 

which could then be modified by replacing sgRNA-1t4 with its stronger repressing full-length 

version to produce GRN 3.2, also functional (Fig. 6C). However, the same changes in the reverse 
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order required traversing through a non-functional intermediate, GRN 2c-NF.1, implying that 

strengthening the repression from the orange to the green node was only tolerated if an opposing 

interaction was present. These findings underline the usefulness of combining synthetic GRNs and 

modeling to analyze genotype networks comprehensively. 

 

 

 
 

Fig. 6. Epistatic interactions. A. Schematic illustration of epistasis. Two consecutive changes ‘A’ 

and ‘B’ allow for a smooth ‘walk’ within the BLUE-stripe genotype network. However, the same 

changes in the reverse order transition through a GRN that is in the non-functional genotype 

network. B. Model-based estimation of epistasis incidence by sampling 5% of pairs of GREEN and 

BLUE, and 2% of NF GRNs within their corresponding genotype network. Circles: median; vertical 

lines: interquartile range. C. Experimental demonstration of epistasis. The transition from GRN 

2c.6 to 3.2 within the BLUE-stripe genotype network requires two changes in a specific order, via 

intermediate 3.1. The reverse order of changes involves a non-functional intermediate, 2c-NF.1. 

Grey arrows: parameter changes; black arrows: topology changes; red shading: connections from 
/ to non-functional GRNs. 

 

 

A genotype network of oscillating GRNs 

 

Finally, to evaluate if our findings on the existence of genotype networks translates to other 

definitions of phenotypes, we exploited prior theoretical work. It demonstrated that GRNs with 

topologies like GRN 2b.2 can produce temporal oscillations (Li et al., 2012; Panovska-Griffiths et 

al., 2013; Perez-Carrasco et al., 2018; Verd et al., 2019) – its topology actually contains that of the 

repressilator, a well-known molecular oscillator (Elowitz and Leibler, 2000). In addition, we 
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previously demonstrated that CRISPRi can be employed to build a repressilator – a circuit that we 

named the CRISPRlator (Santos-Moreno et al., 2020). 

Starting from GRN 2b.2, a single parameter change (a stronger promoter in the blue node) 

sufficed to produce an oscillatory phenotype, as assessed through a continuous characterization 

of the gene expression dynamics in a microfluidic device (Fig. 7, GRN 2-OS.1). The removal of 

sgRNA-1t4 did not abolish oscillations and indeed rendered the topology closer to that of the 

classical repressilator; substituting the reporters with ones better suited for our microscopy settings 
also preserved the oscillatory dynamics (Fig. 7, 1-OS.1 and 1-OS.2). Finally, the replacement of 

PBAD with a constitutive promoter (PH) recreated the previously reported CRISPRlator displaying 

highly regular oscillations (Fig. 7, 1-OS.3). Hence, a genotype network composed of synthetic 

GRNs that enables exploration of the genotype space without a phenotype loss, and facilitates 

innovation by providing access to novel phenotypes in their neighborhoods exists also for dynamic 

phenotypes. 

 

 
 

Fig. 7. A synthetic genotype network of oscillatory GRNs. Starting from the GREEN-stripe 

GRN 2b.2, a stronger promoter for the blue node leads to a GRN that displays oscillatory 

expression. Few changes suffice to transition to the CRISPRlator (Santos-Moreno et al., 2020), 

with all intermediates showing the oscillatory phenotype. Bacteria carrying the indicated GRNs 

were grown in continuous exponential phase in a microfluidic device and imaged every 10 min for 

up to two days. Oscillations are shown as kymographs: images of the microfluidic chamber (hosting 

~100 cells) are displayed in order in a timeline montage. Due to an overlap of mKO2 and mKate2 

in the same channel, red color for 2-OS.1 and 1-OS.1 (top) represents both mKO2 and mKate2, 
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while green corresponds to sfGFP. Different fluorescent reporters mCherry (red), mCitrine (yellow) 

and Cerulean (blue) allowed us to characterize the dynamics of all three nodes (1-OS.2 and 1-

OS.3; bottom). 

 

 

Discussion 
 

Synthetic biology has recently been used to address fundamental questions in molecular 

evolution of regulatory networks (Chau et al., 2012; Igler et al., 2018; Isalan et al., 2008; Lagator 

et al., 2017; Schaerli et al., 2018). Taking advantage of synthetic biology tools allowed us to assess 

several key features of GRN genotype networks experimentally and theoretically. We demonstrate 

that distinct synthetic GRNs can indeed be part of the same genotype network in which small 

mutational changes enable the smooth transition between any two GRNs without losing the target 

phenotype. On the other hand, genotypes very close in mutational distance can have distinct 

phenotypes, and genotypes in different positions of the genotype network can access different 

novel phenotypes. More specifically, our results conform to a ‘bowl of spaghetti’ metaphor known 

from the RNA world (Ahnert, 2017; Goldstein, 2008), but with subtle differences in the robustness 

and evolvability of GRN function. Both the connectedness of genotype networks and that they 

spread throughout the genotype space were proposed to be crucial for robustness and 

evolutionary innovation (Wagner, 2011). Our study provides experimental as well as theoretical 

evidence for it. Importantly, this is not restricted to stripe-forming GRNs. For example, our data 
suggests an evolutionary trajectory from a GREEN-stripe to an oscillatory GRN. 

Prior theoretical work on GRNs highlighted that the definition of mutations is crucial for the 

analysis of robustness and evolvability, but it used abstract concepts such as signal-integration 

logic (Payne et al., 2014). Here, quantitative changes involve mutations in DNA sequences 

encoding both cis-regulatory elements (promoters) and trans-regulatory factors (sgRNAs). The 

three constitutive promoters used in this study differ in 2 - 4 nucleotides. Mutations in trans involve 

a 4 nt difference between full-length or truncated sgRNAs or changing the DNA-binding part of the 

sgRNA (20 nt). Such small differences in cis- or trans-regulatory regions have been found to play 

a role in the evolution of natural networks (Wray, 2007). Qualitative changes between our GRNs 

involve the gain or loss of a sgRNA and its corresponding binding site. Comparative studies show 

that rewiring within transcriptional networks is common in natural systems, often facilitated by 

duplication events and subsequent diversification (Voordeckers et al., 2015). Our transitions in 

genotype space include duplications of a regulatory element (e.g., from GRN 1.4 to 2c.4: a new 
sgRNA-2 in the green node binds to the existing bs-2 in the blue node), binding site duplications 

(e.g., from GRN 2c.6 to 3.1: the existing sgRNA-4 in the green node binds to a new bs-4 in the 

orange node), and combinations of both (e.g., from GRN 1.1 to 2b.2: a new sgRNA-4 in the green 

node binds to a new bs-4 in the orange). Hence, our synthetic GRNs and their mathematical 
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models – while not representing individual mutations at the DNA level – incorporate realistic single 

mutational changes in evolutionary trajectories. 

Another critical aspect is the selection of phenotypes, and correspondingly the phenotypic 

space. Our GRNs displayed phenotypes – stripe formation in a gradient and oscillations – that are 

crucial for metazoan development of many organisms and body structures (Rogers and Schier, 

2011; Sagner and Briscoe, 2017). We used coarse-graining (e.g., BLUE-stripe, GREEN-stripe, 

and NF) to characterize these phenotypes. It is a justified simplification and common practice when 
studying the evolution of GRNs (Cotterell and Sharpe, 2010; Cotterell and Sharpe, 2013; 

Friedlander et al., 2017; Schaerli et al., 2018). However, because the underlying experimental and 

simulation data is quantitative, our coarse-graining is already a step towards a more realistic 

scenario than Boolean logic behaviors (Alon, 2007; Payne and Wagner, 2013). Correspondingly, 

GRNs in one of our genotype networks may display quantitatively different behaviors. In a natural 

system, many of these differences could be buffered downstream (Floc'hlay et al., 2021), while 

others might lead to different organismal features. Coarse-graining to only three phenotypes for 

stripe-forming GRNs, however, implied that we could not study phenotypic robustness and 

evolvability. They are suggested to exhibit subtle, yet important differences to their genotypic 

counterparts (Payne and Wagner, 2019) and could be addressed in future studies. 

We combined experiments and modeling to characterize the GP map of our synthetic 

GRNs realistically and comprehensively; neither of the two approaches alone could achieve this. 

It allowed us to link robustness and evolvability to small network motifs. Even when embedded in 

larger networks, motifs are necessary and sufficient for many network functions (Alon, 2007). For 
example, one of the best studied GRNs, the gap gene network in insects, comprises several genes 

that regulate each other by intricate repression motifs (among them IFFL-2) to produce stripes of 

gene expression that eventually establish anterior-posterior embryo segmentation (Wotton et al., 

2015). Comparative analysis in different dipteran insects provides strong evidence for system drift 

and evolution on a genotype network (Crombach et al., 2016; Jaeger, 2018; Wotton et al., 2015). 

Interestingly, Anopheles gambiae and Drosophila melanogaster have inverted stripe expression 

patterns of the gap genes giant (gt) and hunchback (hb) (Goltsev et al., 2004; Wotton et al., 2015). 

Given the potential for simple mutational changes to switch between GREEN- and BLUE-stripe in 

IFFL-2-based synthetic GRNs, our work provides possible evolutionary paths for this role-switching 

in dipteran gap GRNs. 

Similarly, the network topology of 2-OS.1 is known as AC-DC (Panovska-Griffiths et al., 

2013; Perez-Carrasco et al., 2018). It is involved in patterning the vertebrate neural tube (Balaskas 

et al., 2012) and in the Drosophila melanogaster gap gene network (Verd et al., 2019). Importantly, 
the AC-DC circuit may explain how segmentation of the developing embryo in long germ-band 

insects such as Drosophila, where all segments are determined simultaneously, could have 

evolved from short germ-band insects, where oscillations establish the segments sequentially 
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(Clark, 2017). Our synthetic GRNs illustrate that it is indeed straight forward to transition between 

stripe-forming and oscillatory networks. 

More generally, epistasis is studied extensively in different biological systems across 

scales (Domingo et al., 2019) because it profoundly hampers our understanding of how GRNs 

respond to mutations. So far, most work on the mechanistic causes of epistasis in GRNs has been 

purely computational (Azevedo et al., 2006; Cotterell and Sharpe, 2013; Gjuvsland et al., 2007; 

Omholt et al., 2000). These studies suggest that epistasis is common in GRNs and that it relies on 
nonlinear mechanisms of gene regulation, e.g. those generated by mutual repressions and 

feedbacks. Because experimental validation of these predictions is largely missing, mainly due to 

the high complexity of natural GRNs, our results underscore that small, mechanistically well-

understood synthetic GRNs are promising model systems to study mechanisms and prevalence 

of epistasis (New and Lehner, 2019; Schaerli et al., 2018). The epistatic relation between GRNs 

2c.6 and 3.2 also exemplifies how hybrid incompatibilities could arise: certain crossings between 

individuals carrying these GRNs could lead to GRNs without a stripe phenotype. This is consistent 

with system drift being an important source of hybrid incompatibilities that cause reproductive 

isolation (Johnson and Porter, 2000, 2001; Khatri and Goldstein, 2019). 

Overall, we demonstrated that building many synthetic counterparts of natural systems, 

combined with realistic mathematical models to explore complete GP maps, can provide us both 

with general principles and specific insights into GRN evolution and function. We therefore 

anticipate that synthetic biology will gain further relevance in deciphering the mechanisms of 

molecular evolution. 
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Methods 
 

GRN construction.  

 

Genes encoding sfGFP, mKO2, mKate2, mCherry, mCitrine, Cerulean, Csy4 and dCas9 were 

obtained as previously described (Santos-Moreno and Schaerli, 2019a; Santos-Moreno et al., 

2020). All reporters were fused to orthogonal degradation tags (Butzin and Mather, 2018), as 
follows: mKO2-MarA, sfGFP-MarAn20, RepA70-mKate2, mCherry-MarA, mCitrine-MarAn20, 

RepA70-Cerulean. Primers were purchased desalted from Microsynth or Sigma-Aldrich. The 

GRNs were constructed employing a previously described Gibson-based cloning framework that 

allows for the fast and modular cloning of synthetic gene networks (Santos-Moreno and Schaerli, 

2019a). Briefly, the method consists of two steps: step 1 involves Gibson assembly of 

transcriptional units into individual intermediate plasmids; in step 2, these plasmids are digested 

with restriction enzymes so that the resulting flanking regions contain overlaps that drive a second 

Gibson assembly into a single plasmid to yield the final GRN. For step 1, all DNA parts carried the 

same Prefix (CAGCCTGCGGTCCGG) and Suffix (TCGCTGGGACGCCCG) sequences for 

modular Gibson assembly using MODAL (Casini et al., 2014). Basically, forward and reverse 

primers annealing to Prefix and Suffix sequences, respectively, were used for PCRs that added 

unique linkers to the DNA parts. PCR amplifications were column-purified using the Monarch PCR 

& DNA Cleanup Kit (NEB), and assembled using NEBuilder HiFi DNA Assembly Master Mix (NEB, 

1 h 50° C) into backbones previously digested with corresponding restriction enzymes (NEB, 1 h 
37° C) to yield intermediate plasmids containing individual transcriptional units. In step 2, these 

intermediate plasmids were digested with enzyme sets yielding overlapping sequences, purified 

and assembled as described above. 1 µl of non-purified Gibson reaction was transformed into 50 

µl of electrocompetent NEB5α cells, and 2/5 of them were plated onto selective agar plates. 

Plasmids used in this study are listed in (Supplementary Table 1) and all sequences are provided 

in a supplementary file (Data S2).  

 

Microplate reader experiments.  

 

Gene expression of fluorescent reporters was used to assess synthetic GRN performance; 

fluorescence was measured in microplate readers (except for the microfluidic experiments in Fig. 
7). MK01 (Kogenaru and Tans, 2014) electrocompetent cells were transformed with a “constant” 

plasmid encoding proteins required for GRN function (namely dCas9 and Csy4) (Santos-Moreno 
and Schaerli, 2019a) as well as with a “variable” vector bearing AraC (when needed) and the 

CRISPRi GRN (see Supplementary Table 1). 2 ml of selective LB were inoculated with single 

colonies and incubated at 37° C for ~6 h with 200 rpm shaking; cells were pelleted at 4000 rcf and 

resuspended in selective EZ medium (Teknova) containing 0.4% glycerol. 120 µl of 0.05 OD600 
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bacterial suspensions were added per well on a 96-well CytoOne plate (Starlab), and 2.4 µl of L-

arabinose (Sigma) were added to yield the indicated concentrations. Plates were incubated at 37° 

C with double-orbital shaking in a Synergy H1 microplate reader (Biotek) running Gen5 3.04 

software. Fluorescence was determined after ~16 h with the following settings: mKO2: Ex. 542 

nm, Em. 571 nm; sfGPF: Ex. 479 nm, Em. 520 nm; mKate2: Ex. 588 nm, Em. 633 nm. 

Fluorescence levels were treated as follows: i) the fluorescence signal in a blank sample was 

subtracted, ii) the resulting value was divided by the absorbance at 600 nm to correct for 
differences in bacterial concentration, and finally iii) the bacterial auto-fluorescence of a strain with 

no reporter genes was subtracted. Subsequently, corrected fluorescence was normalized to a 

percentage scale by dividing all values of a given color by the highest value of that color. 

Normalized data were plotted in R (R Core Team, 2017) using RStudio 1.0.143 (running R 3.4.0). 

Source data are provided in a supplementary file (Data S3). 

 

Microfluidic experiments.  

 

MK01 (Kogenaru and Tans, 2014) electrocompetent cells were transformed with the constant 

plasmid pJ1996_v2 (Santos-Moreno and Schaerli, 2019a) and a variable plasmid encoding a 

CRISPRi GRN. Single colonies were used to inoculate 5 ml of selective LB, which were grown 

overnight at 37° C. Next morning, 3 ml of selective EZ containing 0.85 g l-1 Pluronic F-127 (Sigma) 

were inoculated with the overnight preculture in a 1:100 ratio and grown for 3-4 h at 37° C. Cells 

were centrifuged for 10 min at 4000 rcf and resuspended in ~10 µl of the supernatant to obtain a 
dense suspension, which was loaded into the PDMS microfluidics device. Cells were grown in a 

continuous culture inside microfluidic chambers (dimensions: 1.2 µm x 12 µm x 60 µm, h x w x l, 

purchased from Wunderlichips) (Santos-Moreno et al., 2020) for 2 days with a constant 0.5 ml h-1 

supply of fresh medium (selective EZ plus 0.85 g l-1 Pluronic F-127) and removal of waste and 

excess of bacteria, powered by an AL-300 pump (World Precision Instruments). For GRNs 2-OS.1, 

1-OS.1 and 1-OS.2 the overnight and the subsequent 1:100 incubations contained 0.2% Ara, while 

0.0001% Ara (for 2-OS.1) or 0.2% Ara (for 1-OS.1 and 1-OS.2) were used in the medium for the 

microfluidic experiment. For 1-OS.3, which lacks the PBAD promoter, no Ara was used in any of the 

media. Imaging was performed using a Leica DMi8 microscope and a Leica DFC9000 GT camera 

controlled by the Leica Application Suite X 3.4.2.18368, with the following settings: Cerulean: Ex. 

440 nm 10% 50 ms, Em. 457-483 nm; mCitrine: Ex. 510 nm 10% 50 ms, Em. 520-550 nm; 

mCherry: Ex. 550 nm 20% 200 ms, Em. 600-670 nm; sfGFP: Ex. 470 nm 30% 200 ms, Em. 507-

543 nm; mKO2 and mKate2 (indistinguishable): Ex. 550 nm 30% 200 ms, Em. 520-550 nm. Images 
were acquired every 10 min with LAS X software, and analyzed using Fiji (Schindelin et al., 2012) 

for montage. Normalized data were plotted in R (R Core Team, 2017) using RStudio 1.0.143 (R 

3.4.0). 
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Mathematical modeling, overview. 

 
We developed an ensemble of mechanistic mathematical models that capture in detail level the 

biology of the transcription/translation/fluorescent maturation of various 2-node and 3-node GRNs. 

A model can be automatically generated depending on the GRN we want to simulate. Below, we 

decompose the model into its two core structures and assumptions. Next, we continue with 

additional functions we utilize to account for cell growth in the experiments.  
 

Modeling the dynamics of sgRNAs. 

 

The production rate of the sgRNA(s) depends on having either an inducible promoter (by 

arabinose) or a constitutively expressed promoter. The orange node (see Fig. 3) is always induced 

by arabinose; the other two nodes (green and blue) have a constitutively expressed promoter. We 

also considered in our model the leakage of sgRNA(s) by the inducible promoter. The sgRNA(s) 

can bind reversibly to the catalytically-dead mutant dCas, which forms a complex sgRNA:dCas. In 

turn, the sgRNA:dCas complex can bind reversibly and inhibit, via its target sequence on the 

promoter (DNA), the respective gene expression, forming a sgRNA:dCas:DNA complex. We 

assume that RNAases act on degrading the sgRNA(s), whereas the complexes are affected by 

the dilution rate, m (see below for details on dilution). These biomolecular processes are described 

as chemical reactions. 

 
Two chemical reactions represent the induction by arabinose and the leakage that specific 

promoter has 
Arabinose

isgRNA→  

leakage

isgRNA→  

and one chemical reaction depicts the case of the constitutive promoter:  

isgRNA→ , 

where the number of sgRNAs that is available is indicated with i and j, taking values from one to 
three based on the three reporter protein-coding genes that exist in the GRNs. RNA degradation 

(denoted by the empty symbol) as well as complex formation with dCas and DNA are modeled as: 

isgRNA →∅  

      :i idCas sgRNA dCas sgRNA+ ↔  

:   : :i j i jdCas sgRNA DNA dCas sgRNA DNA+ ↔  

: :    i j jdCas sgRNA DNA DNA→ . 
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Since the plasmid containing dCas is constitutively expressed, the total concentration of dCas is 

conserved. The total promoter concentration (DNAj) is also conserved. These assumptions lead to 

the algebraic equations (using square brackets to denote concentrations): 

[ ] [ ] [ ]
,

  :   : :total i i j
i i j

dCas dCas dCas sgRNA dCas sgRNA DNA = + +  ∑ ∑  

, : :total j j i jDNA DNA dCas sgRNA DNA     = +      .   

By using mass action kinetics (except for inducible promoters and dilution, see below), we 

transform the above chemical reactions and assumptions into a system of ordinary differential 

equations (ODEs): 

( )

˙
[ ]   [ ]

i

i
sgRNA RNA iAra

d sgRNA f b d sgRNA
dt

⋅= + −  

[ ]
˙

[ ]  
i

i
sgRNA j RNA i

sgRNA k Dd NA d s
d

gRNA
t

 ⋅ ⋅= −   

[ ] [ ]

[ ] [ ] [ ]

˙
[ : ]   : :

:   :   :

ds dsd

ds dsd

i
f i r i j

i r i f i j

d dCas sgRNA k dCas sgRNA k dCas sgRNA DNA

m dCas sgRNA k dCas sgRNA k dCas sgRNA DN
dt

A

⋅ ⋅ + ⋅

 ⋅ ⋅ ⋅ ⋅  

 =  

− − −

 

[ ]
˙

: :
  :   : :

  : :

dsd dsd

i j
f i j r i j

i j

dCas sgRNA DNA
k dCas sgRNA DNA k dCas sgRNA DNA

m dCas sgR

d

NA DNA
dt

 ⋅ ⋅  

 ⋅  

    = ⋅ − 

−

 

Depending on whether the sgRNA is expressed by an inducible or a constitutive promoter, we use 

either the first or the second ODE. If there is an inducible promoter, then promoter leakage is 

constant, 
isgRNAb . Production and degradation kinetic constants are 

isgRNAk  and dRNA ; the binding 

and unbinding constants of sgRNA-dCas and sgRNA-dCas-DNA complexes are 
dsfk ,

dsr k  and  

dsdfk ,
dsdr k , respectively. 

In addition, we assume a Hill function for promoter induction by arabinose (Ara): 

( ) ( )isgRNA
2 total, j sgRNAAra

f   [DNA ] 1  b
 i

n

n n
m

Ara k
Ara K

⋅ ⋅= −
+

⋅ , 

where n is the Hill coefficient, Km is the affinity constant and k2 is the production constant. 

 
Dynamics of reporter protein coding genes. 

 

Similar to the production rate of sgRNAs, the mRNA production of the three reporters used in this 

study depends either on the activity of an inducible promoter or on a constitutive promoter 

(expression of orange node via arabinose induction, green and blue node via constitutive 
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promoter). mRNA translation produces protein PIj, which matures to the final fluorescent reporter 

(Pj). mRNA is degraded by the same rate as the degradation of sgRNAs. However, the reporter 

proteins (immature and fluorescent) undergo active degradation (which depends on the reporter) 

and dilution (see growth model section). The chemical reactions that summarize the expression of 

the reporter proteins are: 
Arabinose

jmRNA→  

leakage

jmRNA→  

jmRNA→  

   jmRNA →∅  

       j j jmRNA mRNA PI→ +  

    jPI →∅  

       j jPI P→  

    jP →∅ . 

Again, we differentiate between arabinose-inducible and constitutive promoters and account for 

leakage. By assuming mass-action kinetics, the ODE system is: 

( )mRNA

˙

Ara

[ ]
 

j
j

j
mRNA RNA j

d mRNA
f b d m

dt
RNA ⋅  = + −  

[ ]
˙

[ ]
j

j
mRNA j RNA i

mRNA
k D

d
NA d mRN

d
A

t
 = ⋅− ⋅  

[ ]
˙

[     ( )]
j j j

i jPI PI j PI j
d PI k mRNA m PI

t
m P

d
d I ⋅ ⋅ − ⋅   = − +   

( )
˙

[ ]   
j j

i
PI j PI j

d P m PI m d P
dt

   ⋅ ⋅   = − +  

Kinetic constants of production, degradation and promoter leakage are 
jmRNAk , dRNA  and 

isgRNAb

. Translation, maturation and active degradation constants are 
jPIk , 

jPIm  and 
jPId  respectively. In 

addition, ( )mRNAAra
f

j

 is the same function as above, but for mRNAj: 

 ( ) ( )jmRNA
2 total, j mRNAAra

f   [DNA ] 1  b  
 j

n

n n
m

Ara k
Ara K

−⋅=
+

⋅ ⋅ . 

 
Growth model. 
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We represent the cell population growth during the microplate experiment, G(t), by a superposition 

of three generalized logistic functions. This approach allows capturing events such as diauxic shifts 

in which growth slows down due to limited nutrient availability. Specifically: 

( )
( )4 5

3
2

1 1
1

3

 
1  

k k

k

t pk pk

pG t p
p e−= ⋅

= +
+

∑ . 

In our model, the dilution rate m is the derivative of ( )G t  with parameters estimated from the 

appropriate data (see Data S1). The rest of the experimental data was used for independent model 

validation. 

 

Promoter efficiencies. 

 

The PH (BBa_J23100) and PM (BBa_J23102) promoters that were used for building some of the 

synthetic GRNs are from a standard collection recovered from a library screen (Anderson et al., 

2010). Therefore, in our modelling process we used the measured strength 1 and 0.86, 

respectively. Concerning the PL (BBa_J23150) promoter, we found discrepancies between 

previously determined promoter strengths (Davis et al., 2011; Kelly et al., 2009) and our estimates, 

possibly due to context dependent effects on gene expression (Karamasioti et al., 2017). 

Specifically, we identified common promoters (BBA_J23102, BBA_J23116, BBA_J23113) in the 

dataset from Kelly et al. and the Anderson collection. Using linear regression, we predicted the 

promoter efficiency of the PL we would have observed if it had been measured in the Anderson 

collection. With the same procedure, we compared the Davis dataset and the Anderson collection 

(common promoters: BBA_J23101, BBA_J23113). For the two comparisons, we predicted for the 

PL promoter a relative strength of 0.3 and 0.2, respectively. However, from our estimation we 
predicted that the strength was 0.75. Given that we have the additional control analysis which 

contains the relative strengths identified by (Davis et al., 2011; Kelly et al., 2009), we continued 

with our estimated strength when comparing to the experimental data. 

 

Translation of mRNA induced by arabinose. 

 

The expression of the orange node (reporter protein: mKO2) is induced by arabinose, controlling 

the expression of the mKO2 mRNA, which then translates into the immature protein of mKO2. 

When calibrating the mathematical models we noticed non-linearities in the arabinose response, 

although we used the MK01 strain (Kogenaru and Tans, 2014). A possible explanation (Megerle 

et al., 2008) is the difference in the number of transporters per cell in the population; cells can 

accumulate sufficient arabinose (or not) to overcome the internal threshold concentration for gene 

activation. We tackled this observation phenomenologically by making the translation constant 

dependent on the concentration of arabinose, independent of the modeled topologies. 
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Scaling parameters and measurement models. 

 

To map the model output (PA, PB, PC) to the microplate reader experiments, we included three 

scaling factors (for the three fluorescent reporters) in the optimization procedure (Data S1). Given 

that the experiment for each reporter was performed with the same settings, we assumed three 

measurement models. We performed linear regression on the variance (s.d.) as a function of 
average fluorescent signal per reporter. We used the following models per reporter, with its 

average fluorescent signal x (Fig. S5):  

10350, 7 04
( ) 0.13 1250, 7 04 2.5 05

3.375 04, 2.5 05

x e
GFP x x e x e

e x e

< +
= ⋅ + + ≤ ≤ +
 + > +

, 

899, 600
2( ) 0.08 419, 6 03 2 04

2 03, 2 04

x
mKO x x e x e

e x e

<
= ⋅ + + ≤ ≤ +
 + > +

, and 

43, 500
2( )

0.03 23, 500
x

mKate x
x x

<
=  ⋅ + ≥

. 

 

Definition of a stripe. 

 

To characterize a GRN as a stripe-forming one, initially we normalized the simulated data. We 

divided each reporter model output (PA, PB, PC) at 900 min for the different arabinose 

concentrations by the maximum observed for each reporter (at 900 min for the same arabinose 

concentrations). Next, we identified the node that reached maximum peak (i.e. a value of 1) when 

the other two were at the minimum. To accept or reject a stripe (even if a node was identified), we 
set a threshold of 6% increase and decrease, concerning the average of two lower and two higher 

arabinose induction levels with respect to the maximum point. Therefore, a functional (BLUE- or 

GREEN-stripe) phenotype should on average at the two lowest and two highest arabinose 

concentrations have at least an increase of 6% and a decrease of 6%. We designated all other 

phenotypes as non-functional. 

 

Mutational change in GRNs. 

 

Within the modeling framework, we represent each GRN as an 8-length vector. The first six 

elements of the vector represent the positions of an inhibition, similar to Fig. 4E (or absence, 

represented with 0). In the genotype networks, we define one mutational change as the 1-

Hamming distance between any one changes in the 8-length vectors (ie 1-neighborhood). 
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Genotype maps of synthetic GRNs. 

 

We created genotype maps by finding all the possible combinations of the modular parts at our 

disposal (i.e. qualitative and quantitative changes) and evaluating them for observing a non-

functional or functional phenotype. A single set of parameters (that best minimizes the objective 

function) was used for all the forward simulations. Specifically, we had: 1) four different promoter 

efficiencies (the PL,PM,PH and the 0 case) with two available promoter positions (green and blue 
node), 2) six sgRNAs, and 3) 42 topologies with a minimum of three and a maximum of six 

inhibitions. Therefore, for each topology the total number of GRNs is: 

 ( )
2  E

ET p s= ⋅ , 

where p is the total number of promoter efficiencies, s is the total number of sgRNAs, and E 

depends on the number of total inhibitions a specific topology has. For the control analysis with 

artificial parameter values (a regular grid in parameter space), the number of modular parts 

consisted of: 1) five evenly spaced (from 0 to 1) promoter efficiencies with two available promoter 

positions (green and blue node), 2) five sgRNAs with evenly spaced kinetic dissociation constants 

(from 5 to 45 nM), and 3) 42 topologies. 

 
Connectivity of genotype networks. 

 

A connected component of an undirected graph is the maximal set of nodes such that each pair of 

nodes is connected by a path (Wilson, 2009). To evaluate the connectivity for the genotype 

networks, we utilized the command components from the igraph package (Csárdi and Nepusz, 

2006) in Rstudio (RStudio Team, 2020). It uses either a simple breadth-first search or two 

consecutive depth-first searches. 

 

Robustness per perturbation. 

 

As in (Catalán et al., 2018),  we measured the fraction of neighbors that maintain the same 

phenotype per perturbation (i.e. changes in sgRNAs or in promoter efficiencies), termed here as 

robustness per perturbation (or neutrality, see (Catalán et al., 2018)). We randomly sampled 1% 

of GRNs per functional phenotypes (2000 GRNs) and 0.1% of non-functional phenotype (2000 
GRNs) and evaluated all their neighbors (which accounts for ~4.5% of the total possible GRNs).  

 

Random walks. 

 

To determine the path length for alternating phenotypes (GREEN-stripe, BLUE-stripe and NF 

phenotypes), we randomly selected 5% GRNs per functional phenotype and 2% for the non-

functional one (~10700 GRNs with BLUE-stripe and GREEN-stripe, and 28903 GRNs for NF). 
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From these starting GRNs, the algorithm proceeded by uniform random selection of a GRN from 

the set of neighboring GRNs. We stopped the walk upon a change in phenotype or when the 

maximum number of steps (50 for functional phenotypes, 300 for NF) was reached. We used the 

built-in command random_walk from the igraph package (Csárdi and Nepusz, 2006) in Rstudio 

(RStudio Team, 2020).   

 

Prevalence of epistasis. 

 

To measure the occurrence of epistasis within our genotype networks we sampled again 5% GRNs 

per functional phenotype and 2% for the non-functional one. Our goal was for each sampled GRN 

to evaluate if it is part of an orthogonal network of GRNs, in which only one of the direct neighbors 

will differ in the phenotype. We did this by evaluating the 1- and 2-Hamming distance 

neighborhoods of the sampled GRN. 
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