

1 A comparative 'omics' approach for prediction of candidate

2 *Strongyloides stercoralis* diagnostic coproantigens

3

4

5 Tegwen Marlais^{1*}, Jack Bickford-Smith¹, Carlos Talavera-López², Hai Le¹, Fatima Chowdhury¹, Michael
6 A. Miles¹

7 ¹Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine,
8 London, UK

9 ²Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany

10 *Corresponding Author

11 E-mail: Tegwen.marlais@lshtm.ac.uk

12

13

14

15

16

17

18

19

20

21

22 Abstract

23 Human infection with the intestinal nematode *Strongyloides stercoralis* is persistent unless
24 effectively treated, and potentially fatal in immunosuppressed individuals. Epidemiological data are
25 lacking due to inadequate diagnosis. A rapid antigen detection test is a priority for population
26 surveillance, validating cure after treatment, and for screening prior to immunosuppression. We
27 analysed open access 'omics' data sets and used online predictors to identify *S. stercoralis* proteins
28 that are likely to be present in infected stool, *Strongyloides*-specific, and antigenic. Transcriptomic
29 data from gut and non-gut dwelling life cycle stages of *S. stercoralis* revealed 328 proteins that are
30 differentially expressed. *Strongyloides ratti* proteomic data for excreted and secreted (E/S) proteins
31 were matched to *S. stercoralis*, giving 1,057 orthologues. Five parasitism-associated protein families
32 (SCP/TAPS, prolyl oligopeptidase, transthyretin-like, aspartic peptidase, acetylcholinesterase) were
33 compared phylogenetically between *S. stercoralis* and outgroups, and proteins with least homology
34 to the outgroups were selected. Proteins that overlapped between the transcriptomic and
35 proteomic datasets were analysed by multiple sequence alignment, epitope prediction and 3D
36 structure modelling to reveal *S. stercoralis* candidate peptide/protein coproantigens. We describe 22
37 candidates from seven genes, across all five protein families for further investigation as potential *S.*
38 *stercoralis* diagnostic coproantigens, identified using open access data and freely-available protein
39 analysis tools. This powerful approach can be applied to many parasitic infections with 'omic' data to
40 accelerate development of specific diagnostic assays for laboratory or point-of-care field application.

41

42

43

44

45 **Author summary**

46 The worm *Strongyloides stercoralis* causes infectious disease in people throughout tropical and sub-
47 tropical regions, leading to an extensive reduction in quality of life and even death. Millions of
48 people are at risk of infection with this parasite and improved diagnostic and control methods and
49 technologies are urgently required. Currently, most diagnosis is carried out through methods
50 involving visual inspection of patient's faeces, which has a number of drawbacks, particularly its poor
51 sensitivity. This paper presents a new method to develop improved diagnostic tests for *S. stercoralis*,
52 by computational analysis of publicly available gene and protein sequences to predict proteins that
53 may be detectable in faeces. This would enable the development of rapid diagnostic tests in the
54 form of lateral flows or dipsticks, with better predictive ability and fewer drawbacks than current
55 diagnostic methods. A number of potential proteins, predicted to have all the desired characteristics
56 for use in such tests were found through the new method and have been presented in this paper.
57 With validation, new diagnostic tests for *S. stercoralis* could be developed from these results and the
58 computational approach could be used to target other parasitic diseases.

59 **Introduction**

60 The intestinal nematode *Strongyloides stercoralis* is a soil transmitted helminth (STH) prevalent in
61 faecally-contaminated, humid soils in tropical and sub-tropical regions. Strongyloidiasis is estimated
62 to affect up to 40% of people in many endemic regions [1, 2]. Infection occurs when infective third
63 stage (L3) larvae penetrate the skin. The parasitic adult female resides in the epithelium of the
64 duodenum where it feeds on host tissue. Although clinical signs may be mild or non-specific, long
65 term infection by *Strongyloides* can have significant impact on quality of life and child development
66 and progress to severe and fatal disease [3-5].
67 *S. stercoralis* is unusual among human parasitic nematodes in that it can complete its life cycle
68 within the host, thus sustaining infection for decades if untreated [6-8]. During reduced immune

69 competence due to immunosuppression, such as corticosteroid treatment of co-morbidities, or
70 HTLV-1 co-infection, very large numbers of larvae may undergo this autoinfective cycle, causing
71 hyperinfection or disseminated strongyloidiasis, both with a high fatality rate [9-11]. This
72 autoinfective lifecycle means that infections will fully re-establish if worms are not completely
73 cleared from the host during treatment. Diagnosis of strongyloidiasis and validation of cure after
74 treatment are therefore imperative.

75 Treatment with the first-line drug ivermectin has a reported efficacy of between 57% and 100%.
76 However, accurate determination of cure depends on follow-up and the diagnostic method used [8,
77 10, 12]. Albendazole and mebendazole, used to treat infection with other STH are less effective or
78 ineffective against *Strongyloides* [13-15]. Moxidectin has shown effectiveness against *S. stercoralis*,
79 that is equivalent to ivermectin, in early trials and continues to be developed [16, 17].

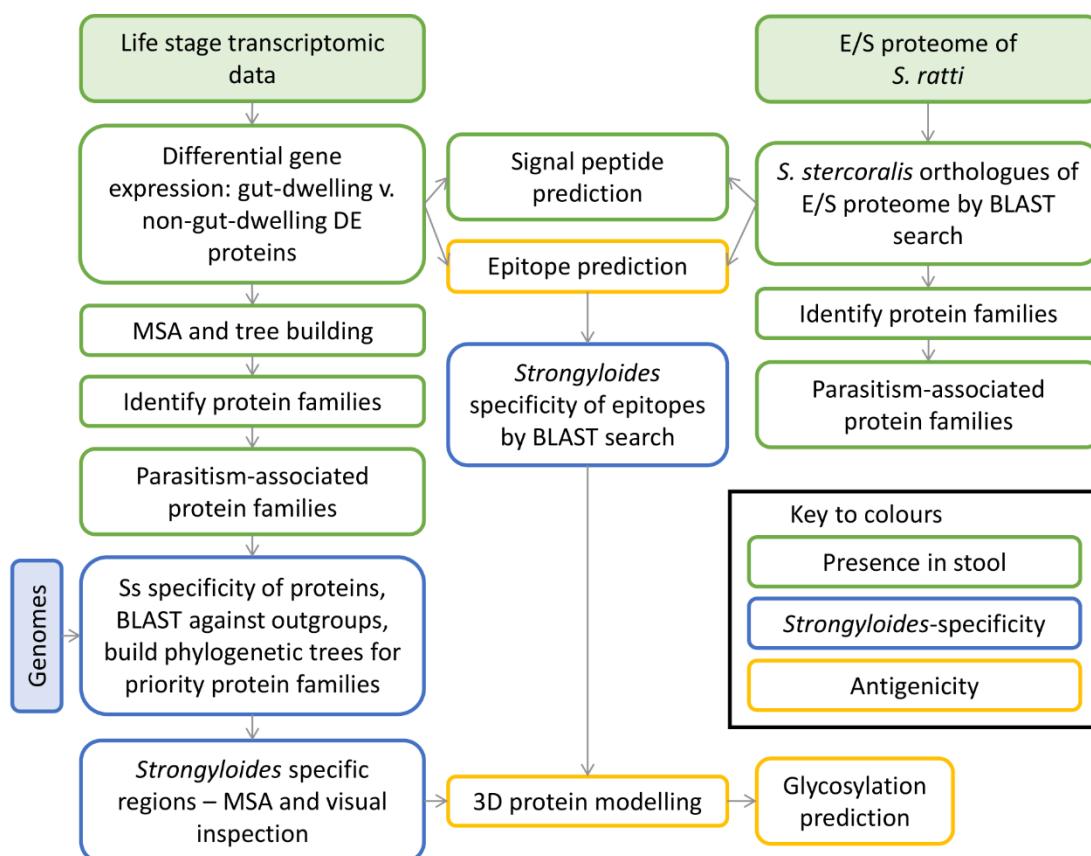
80 Diagnosis of strongyloidiasis can be made by microscopy using agar plate culture [18], Baermann
81 funnel or spontaneous sedimentation, all of which isolate larvae from fresh stool [19, 20]. qPCR on
82 extracted stool DNA is used in research and highly resourced laboratories, and improves sensitivity
83 over microscopy [21-24]. However, sensitivity may be reduced by inadequate DNA extraction [25],
84 low stool volume used in testing (as little as 0.1 g compared to 1 gram or more used for culture or
85 larval concentration methods), and irregular larval excretion [12]. Serology, detecting antibodies to
86 either whole worm or recombinant antigens NIE and SsIR, has sensitivity of 70-98% and high
87 specificity [26] but can only distinguish cure months to years after effective treatment [27-29].
88 Therefore, there is a need for a rapid diagnostic test (RDT) that can be used for screening as well as
89 for confirmation of cure. An antigen-based assay would fulfil this need, because it may achieve high
90 sensitivity and specificity and test for active infection. Pilots of such assays have shown proof of
91 principle under research conditions using antibodies against *Strongyloides ratti* and *Strongyloides*
92 *venezuelensis* somatic or excretory/secretory (E/S) antigens [30-32]. However, identification of

93 specific *S. stercoralis* protein antigens would enable production of standardised diagnostic tests on a
94 large scale.

95 The wealth of 'omic' data now available in the public domain, coupled with online protein analysis
96 tools, enables a computational approach to antigen discovery. This concept was termed reverse
97 vaccinology when used in vaccine candidate discovery [33]. The approach begins with genomic
98 analysis, as opposed to biochemical or serological methods and it also has significant potential in
99 diagnostic antigen discovery. It has the advantages of not requiring culture of the organism and of
100 revealing antigens that may be less abundant or difficult to purify *in vitro*. Incorporation of
101 transcriptomic data can inform candidate gene/protein selection in parasites with multiple life
102 stages, such as *S. stercoralis* [33].

103 Our approach was facilitated by the publication of the genomes of *S. stercoralis* and three related
104 *Strongyloides* species [34]. Here, we have applied a series of computational analyses to open access
105 transcriptomic, genomic and proteomic data from *Strongyloides* species and other helminths. We
106 have used common bioinformatic tools, to identify *Strongyloides* protein antigens that may be
107 diagnostic targets detectable in human stool, using a coproantigen capture RDT.

108 **Methods**


109 **Data sources**

110 This study used data obtained from public databases, primarily Wormbase ParaSite, a resource for
111 parasitic worm genomics curated by the Sanger Institute and the EMBL European Bioinformatics
112 Institute. Full details of data sources are listed in Supporting Information file S1.

113 *S. stercoralis* transcript sequences identified by the prefix 'SSTP' can be obtained via UniProtKB
114 (www.uniprot.org) or WormBase ParaSite (WBPS: www.parasite.wormbase.org).

115 **Overview of method**

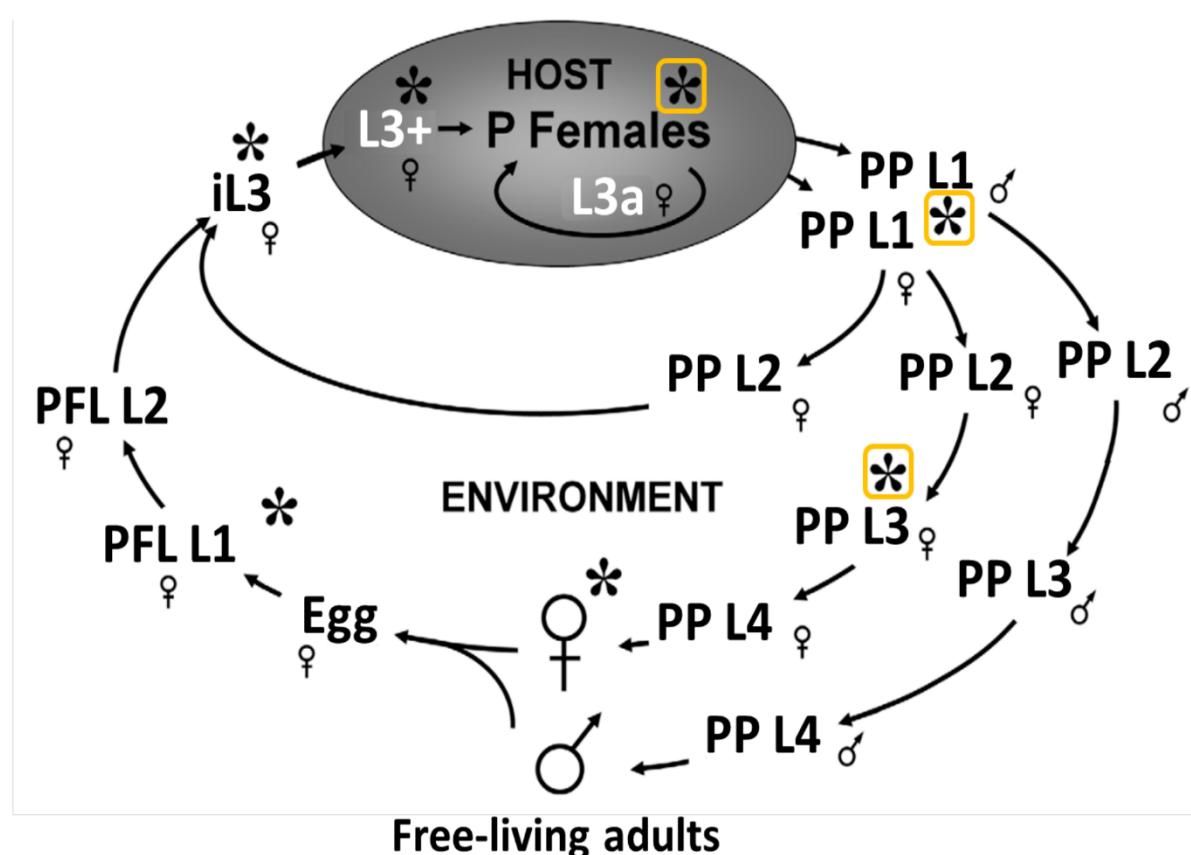
116 Three criteria were applied for candidate antigen selection: presence in infected stool; specificity to
117 *Strongyloides* and/or *S. stercoralis*; antigenicity, to facilitate raising sensitive antibodies. Datasets
118 and computational analyses used to make this selection are detailed in Figure 1.

119

120 **Figure 1. Schematic of the method for identifying coproantigens of *Strongyloides stercoralis* using**
121 **'omic' data and computational analyses.**

122 Filled shapes represent datasets, colours represent analyses against three characteristics of a
123 candidate coproantigen. E/S, excreted and secreted; MSA, multiple sequence alignment; Ss,
124 *Strongyloides stercoralis*; BLAST, basic local alignment search tool; DE, differentially expressed.

125


126 **Evidence for the presence of candidate coproantigens in stool**

127 Analysis of the *Strongyloides* genomes by Hunt et al. (2016) [35] was used to identify protein families
128 associated with parasitism. Five parasitism-associated protein families ('priority protein families')
129 were then our focus for identifying coproantigens: sperm-coating-proteins/Tpx-1/Ag5/PR-1/Sc7

130 (SCP/TAPS), transthyretin-like (TTL), acetylcholinesterase (AChE), prolyl oligopeptidase (POP) and
131 aspartic peptidases.

132

133 Transcriptomics
134 To reveal candidate coproantigens, we used transcriptomic data from Stoltzfus *et al.* (2012) [36],
135 which analysed transcriptomes of 7 life stages of *S. stercoralis* (Figure 2). RNA data were
136 downloaded from the National Centre for Biotechnology Information (NCBI) Sequence Read Archive
137 (SRA), with triplicate reads from each stage. We grouped these data by life stage and by presence or
138 absence within the host gut, thus representing stages excreting or secreting antigens into human
139 stool (Figure 2).

140

141 **Figure 2. *S. stercoralis* life stages.**

142 Asterisks indicate life stages for which transcriptomic data were obtained by Stoltzfus *et al.* (2012).

143 We grouped these transcriptomic data by presence in the host gut, (boxed asterisks) and outside the

144 host gut. P Females, parasitic females; PP, post parasitic; FL, Free-living; PFL, post free-living; L1,
145 stage 1 larva; L3, stage 3 larva; iL3, infectious third stage larva; L3+, tissue-migrating larva; L3a,
146 autoinfective L3. Figure modified from Stoltzfus *et al.* (2012) [36] under a CC BY license. Accession
147 numbers are given for NCBI SRA for the triplicate reads in Supporting Information S1 Table.

148

149 We calculated relative abundance of transcripts using RSEM [37] and bowtie2 [38] and subsequently
150 separated RNA data from the 4 non-gut-dwelling stages and 3 gut-dwelling stages into two groups.
151 Differential gene expression between the two groups was analysed using ebseq in RSEM. We
152 selected genes that were differentially expressed with 100% confidence, in either direction, between
153 gut-dwelling and non-gut-dwelling life stages.

154 Differentially expressed protein family identification
155 ClustalW [39] was used to perform multiple alignment of the differentially expressed (DE) genes and
156 to produce a phylogenetic tree, which was annotated with iTOL [40]. The tree, labelled only with *S.*
157 *stercoralis* gene accession numbers, facilitated grouping of the DE genes into protein/gene families
158 but protein identities remained unknown at this stage.

159 DE proteins were firstly identified by submitting amino acid sequences of selected clusters on the
160 tree to three domain-finding tools: Delta BLAST [41], InterPro [42] and ExPASy Prosite [43, 44] and a
161 consensus of all three used to obtain probable protein identity. Secondly, DE protein sequences
162 were submitted to BlastKOALA [45]. BlastKOALA protein identities were considered alongside
163 previous consensus or used alone if there was no identity from three domain-finding tools.

164 Excretory/secretory proteomics
165 Source of proteomic data
166 Soblik *et al.* (2011) [46] submitted excretory/secretory (E/S) material of *S. ratti* parasitic females to
167 mass spectrometry and identified the constituent proteins. In their presentation of the *Strongyloides*
168 *ratti* genome, Hunt *et al.* (2016) [34] re-analysed the spectral data and obtained protein identities
169 from corresponding genomic data of *S. ratti*. We acquired the list of parasitic female E/S proteins,
170 with *S. ratti* genome accession numbers and protein identities, from Supplementary Table 19 of

171 Hunt *et al.* (2016) [34] and subsequently obtained the corresponding amino acid sequences from the
172 *S. ratti* protein file (WBPS v8) using samtools [47].

173 ***S. stercoralis* orthologues to the *S. ratti* excretory/secretory proteome**

174 At the time of this study, there were no E/S proteomic data available for *S. stercoralis*. Therefore, we
175 obtained *S. stercoralis* orthologues of the *S. ratti* E/S proteins, by searching the *S. ratti* E/S proteins
176 against a custom blast+ database consisting of the *S. stercoralis* protein file (WBPS v8), using blastp
177 with word size 2 and e-value -50. *S. stercoralis* hits, in the form of accession numbers, were
178 extracted from the resulting table and duplicated hits removed. Corresponding *S. stercoralis* amino
179 acid sequences were extracted from the *S. stercoralis* protein file using samtools. VENNY 2.1 [48]
180 was used to reveal the *S. stercoralis* accession numbers that occurred in both the DE proteins and
181 the E/S orthologues. All the E/S orthologues were submitted to BlastKOALA as before, to obtain
182 protein family identities, as well as matching them with the protein identities reported for the
183 original *S. ratti* E/S proteins, by Hunt *et al.* (2016) [34]. Separately, differential gene expression data
184 from analysis of the Stoltzfus *et al.* (2012) [36] dataset were extracted for the E/S orthologues that
185 occurred in both datasets.

186 Signal peptide prediction for evidence that a protein is secreted was performed on the *S. stercoralis*
187 DE proteins and E/S orthologues using SignalP 4.1 [49].

188 **Specificity of candidate coproantigens to *Strongyloides***

189 We used phylogenetic comparison to indicate *S. stercoralis* proteins with least homology to those of
190 other relevant species, followed by multiple sequence alignment to identify exact regions of
191 specificity.

192 A custom blast+ database was created from the genome-derived proteomes of selected outgroup
193 species (Table 1). The outgroups were selected to represent parasitic and non-parasitic nematodes,
194 as well as trematodes, cestodes and human. Human protein/coding sequence (CDS) data were

195 provided by the Human Genome Project at the Wellcome Trust Sanger Institute and was obtained

196 from Ensembl. Accession numbers for all data are available in Supporting Information file S1.

197

198

199 **Table 1. Outgroup species used for phylogenetic comparison to *S. stercoralis*.**

Species	Rationale for selection
1 <i>Ancylostoma duodenale</i>	Hookworm, prevalent nematode of humans
2 <i>Ascaris lumbricoides</i>	Prevalent nematode of humans
3 <i>Caenorhabditis elegans</i>	Free-living nematode and model organism
4 <i>Clonorchis sinensis</i>	Trematode of humans
5 <i>Enterobius vermicularis</i>	Prevalent nematode of humans
6 <i>Homo sapiens</i>	Human, present in all samples
7 <i>Necator americanus</i>	Hookworm, prevalent nematode of humans
8 <i>Onchocerca volvulus</i>	Non-gut nematode of humans
9 <i>Parastrengyloides trichosuri</i>	Relative of <i>S. stercoralis</i> , facultative parasite of opossums
10 <i>Strongyloides ratti</i>	Close relative of <i>S. stercoralis</i> , serological cross-reactivity with <i>S. stercoralis</i> [50]
11 <i>Strongyloides venezuelensis</i>	Close relative of <i>S. stercoralis</i>
12 <i>Strongyloides papillosum</i>	Close relative of <i>S. stercoralis</i>
13 <i>Syphacia muris</i>	Nematode of mice and rats, serological cross-reactivity with <i>Strongyloides</i> in experimental animal infection [51]
14 <i>Taenia solium</i>	Cestode of humans
15 <i>Trichuris trichiura</i>	Prevalent nematode of humans

200

201 Specificity of differentially expressed proteins to *S. stercoralis*
202 Specificity of DE proteins to *Strongyloides* was assessed by their clustering in a phylogenetic tree
203 after alignment with orthologues from the outgroups. The *S. stercoralis* DE proteins that resulted
204 from the transcriptomic comparison were searched as separate protein families, against the custom
205 outgroup database with blast+ criteria: word size 2 and e-value of -5 or -10, as appropriate, to obtain
206 about 100 to 1,000 hits (S2 Table). In cases where there were very few DE proteins in a particular
207 family, the DE protein(s) were also searched against a custom database consisting of only *S.*
208 *stercoralis* genome-derived proteins (S2 Table). This was intended to increase the number of *S.*
209 *stercoralis* proteins to enable species-specific clusters to be revealed on phylogenetic trees.

210 Protein hits from each outgroup, and the additional *S. stercoralis* hits where appropriate, were
211 aligned with their respective original blast queries by multiple sequence alignment (MSA) using
212 ClustalW, and phylogenetic trees were constructed. Trees were annotated with iTOL [40] to show
213 proteins from each outgroup species in a different colour. *S. stercoralis* proteins which formed a
214 distinct cluster, or clusters, on each phylogenetic tree were viewed in MSA along with the most and
215 least similar proteins from each of the outgroups on that tree. These ClustalW alignments were
216 analysed by eye for *Strongyloides* and *S. stercoralis*-specific regions which were submitted to BLASTP
217 search against the NCBI nr, and Nematoda (taxid: 6231) databases, as relevant, to validate their
218 specificity.

219 Antigenic potential of candidate coproantigens

220 Epitope prediction
221 BepiPred 1.0 [52] and bcepred [53] were used to predict epitopes within the DE proteins and E/S
222 proteome orthologues. A BepiPred threshold of 1.3 (range -4 to 4) was selected for maximum
223 specificity of 96%, with corresponding 13% sensitivity, of predicted epitopes in order to minimise the
224 chance of false positive predictions. Minimum length was 9 amino acids with no maximum. In the
225 differentially expressed proteins, longer sequences with an overall very high epitope score were
226 allowed to contain small regions scoring below 1.3.

227 Bcepred criteria were based on the reported highest accuracy of 58.7% which was achieved using a
228 threshold of 2.38 for the average score of four amino acid properties: hydrophobicity, flexibility,
229 polarity and exposed surface. In addition to BepiPred 1.0 and Bcepred, we also used BepiPred
230 version 2.0 [54] for certain candidate antigens. This version became available only after the majority
231 of the analysis and offered improved prediction of conformational epitopes. BepiPred 2.0 was used
232 with the same epitope length criteria and an epitope score threshold of 0.55 (range 0 to 1) which
233 provided specificity of 81.7% and sensitivity of 29.2% on epitope predictions.

234 Outputs from the two prediction tools were compared, initially for proteins present in both outputs.
235 The predicted epitope regions of these proteins were then examined for sequence overlap. Prior to

236 selection as candidate antigens, predicted epitopes were assessed for their specificity to
237 *Strongyloides*. Sequences were searched using BLASTP against the NCBI non-redundant (nr)
238 database. The “expect threshold” in BLASTP was increased if no results were obtained with default
239 parameters. BLASTP output was examined by eye for the sequence identity and biological relevance,
240 i.e. likelihood of presence in a human stool sample.

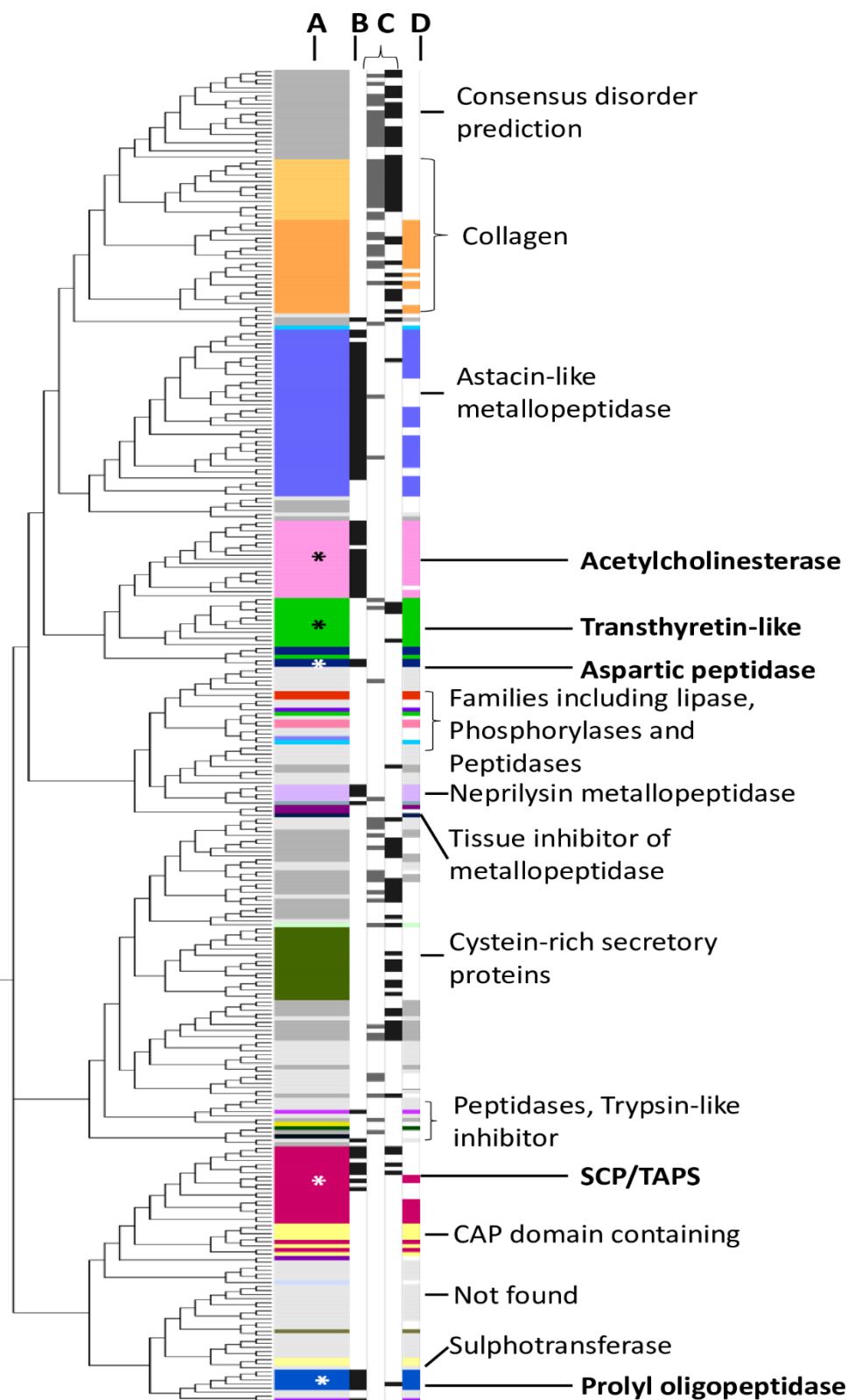
241 3D modelling
242 Selected proteins of interest containing predicted epitopes, *Strongyloides*-specific regions, and in a
243 priority protein family, were submitted to Phyre2 [55] for 3D structure modelling against known
244 crystal structures, using the intensive mode. UCSF Chimera [56] was used to visualise and annotate
245 3D models to highlight specific sequences of interest on the model.

246 Glycosylation prediction
247 N-linked glycosylation was predicted with NetNGlyc [57] to account for the potential of a glycan to
248 obscure protein antigen regions, or conversely to contribute to antigenicity. The prediction tool
249 identified asparagine (N) residues with a high probability of being glycosylated via their amide
250 nitrogen. Prediction was based on the motif N-X-S/T, where X is any residue except proline (P), and
251 along with the presence of a signal peptide or trans-membrane domain on that protein, this
252 indicates that potential glycosylation sites are likely to be glycosylated. Intracellular, intramembrane
253 regions, or signal peptides of a protein are unlikely to be glycosylated. If present, a glycosylation site
254 close to a candidate antigen region on the 3D protein could indicate that the protein is less likely to
255 be accessible to antibodies in a capture assay and therefore a lower priority candidate, pending *in*
256 *vitro* screening.

257

258 **Results**

259 **Priority protein families**


260 Hunt *et al.* (2016) [35] identified seven protein families associated with *Strongyloides* parasitism. For
261 our coproantigen search, we focused on 5 of these, namely: sperm coating protein/Tpx-1/Ag5/PR-
262 1/Sc7 (SCP/TAPS), transthyretin-like (TTL), acetylcholinesterase (AChE), prolyl oligopeptidase (POP)
263 and aspartic peptidases.

264 **Differential gene expression in gut life stages**

265 Of a total of 13,098 *S. stercoralis* genes identified in RNA-seq data by Stoltzfus *et al.* (2012) [36] we
266 found 328 which we were 100% confident of differential expression between gut-dwelling and non-
267 gut-dwelling life stages according to our groupings (Figure 3). Of these, 198 (60.4%) contained a
268 signal peptide. Of the 328 DE genes, 203 were expressed more in gut-dwelling life stages than non-
269 gut, including some or all of the proteins in the 5 priority protein families analysed here. These were
270 therefore the focus of our coproantigen search (Figure 3 and S3 file). Twenty eight protein families
271 were identified among the differentially expressed (DE) proteins, accounting for 193 (58.8%) of the
272 proteins, with the remainder either not identified (22%) or given a disorder prediction (19.2%),
273 indicating that they do not have a fixed conformation and are difficult to assign to a particular
274 function or family (Figure 3).

275

276

277

278 **Figure 3. *S. stercoralis* proteins differentially expressed between gut-dwelling and non-gut-
279 dwelling life stages.**

280 The total range of DE proteins is included for comparison. Proteins are grouped by similarity and

281 families are identified. Any protein family with less than 2 BLAST hits present not labelled. Colours
282 refer to features or families; the 5 priority protein families analysed (SCP/TAPS; TTL; AChE; aspartic
283 peptidases, and POP) are labelled with an asterisk. Labels indicate layers representing: A, the 328 *S.*
284 *stercoralis* DE proteins; B, proteins orthologous to *S. ratti* E/S proteins; C, proteins containing
285 epitopes predicted by BcePred (left) and BepiPred (right); D, the 203 proteins that were DE in gut-
286 dwelling life stages.

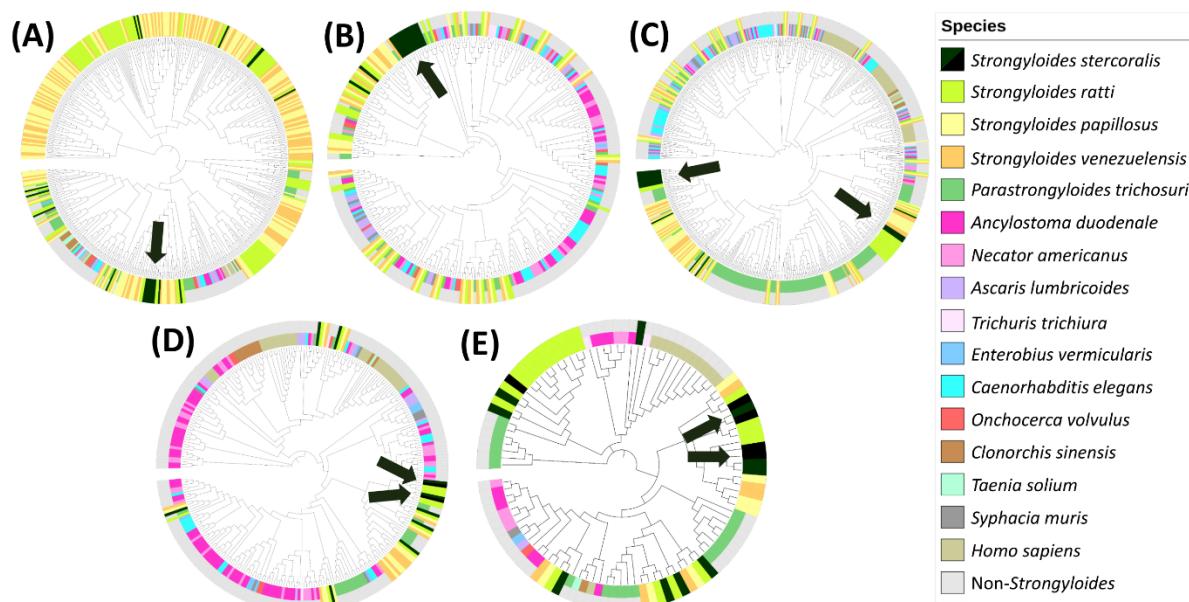
287

288

289 **Excretory/secretory proteome**

290 In the absence of a *S. stercoralis* excretory/secretory (E/S) proteome, we identified 1,057 *S.*
291 *stercoralis* proteins that had high homology to the 584 proteins in the published E/S proteome of *S.*
292 *ratti* [34], of which 325 (30.7%) contained signal peptides. Original *S. ratti* E/S proteins were given as
293 582 accession numbers, however two were found to have alternative isoforms which are also
294 included here. Multiple sequence alignment indicated that 550 (94.2%) of the 584 *S. ratti* E/S
295 proteins had a *S. stercoralis* orthologue at the selected similarity level (e-value 1E-50) and that 284
296 (51.6%) of these had multiple homologues in *S. stercoralis* (S4 file).

297 To identify possible *S. stercoralis* E/S proteins among those differentially expressed in the host gut,
298 we compared the 1,057 *S. stercoralis* orthologues with the 328 identified by transcriptomic data as
299 DE in gut-dwelling life stages of *S. ratti*. Seventy seven (23.5%) proteins were shared between both
300 data sets, of which 58 (28.6%) were shared between the 203 gut-stage DE proteins and the E/S
301 orthologues.


302 To investigate gene expression of the E/S orthologues, we extracted data for the 1,057 *S. stercoralis*
303 proteins from RSEM analysis of the entire 13,098 active *S. stercoralis* genes. Protein families were
304 assigned by a combination of BlastKOALA, which identified 537 (50.8%) of the E/S orthologues, and
305 the *S. ratti* protein identifications provided by Hunt *et al.* (2016) [34] (S5 file). Relevant proteins were
306 assigned to the five ‘priority protein families’ (Figure 3).

307 **Predicted epitopes**
308 Within the 328 confidently identified DE *S. strongyloides* proteins, BepiPred and bcepred jointly
309 predicted epitopes in 104 proteins, 78 and 62 proteins respectively, with 36 proteins containing
310 epitopes predicted by both tools (Figure 3 and S3 file). Within the 78 proteins, BepiPred predicted
311 125 epitopes, and within 62 proteins bcepred predicted 108 epitopes (S6 file). Fifty six epitopes
312 contained overlap or identity between the two prediction tools (S6 file). Predicted epitopes ranged
313 from 9 residues to entire proteins of up to 651 amino acids (aa) with BepiPred, and 8 to 66 aa with
314 bcepred. These regions were given greater scrutiny in the context of species specificity and antibody
315 accessibility.

316 *S. stercoralis* orthologues (n = 1,057) of the *S. ratti* E/S proteome were also submitted to BepiPred
317 and bcepred which predicted 747 and 62 epitope regions respectively, in a total of 324 of the
318 proteins. These ranged from 9 to 99 residues and contained 49 epitope sequences that overlapped,
319 originating from 40 proteins (S6 file).

320

321 ***S. stercoralis*-specific candidates identified by phylogenetic comparisons**
322 The five *S. stercoralis* protein families linked to parasitism and among the DE proteins were analysed
323 for *S. stercoralis* genus or species-specificity. Separate BLAST searches of each protein family against
324 15 outgroups revealed the *S. stercoralis* proteins most likely to contain specific regions (Figure 4).

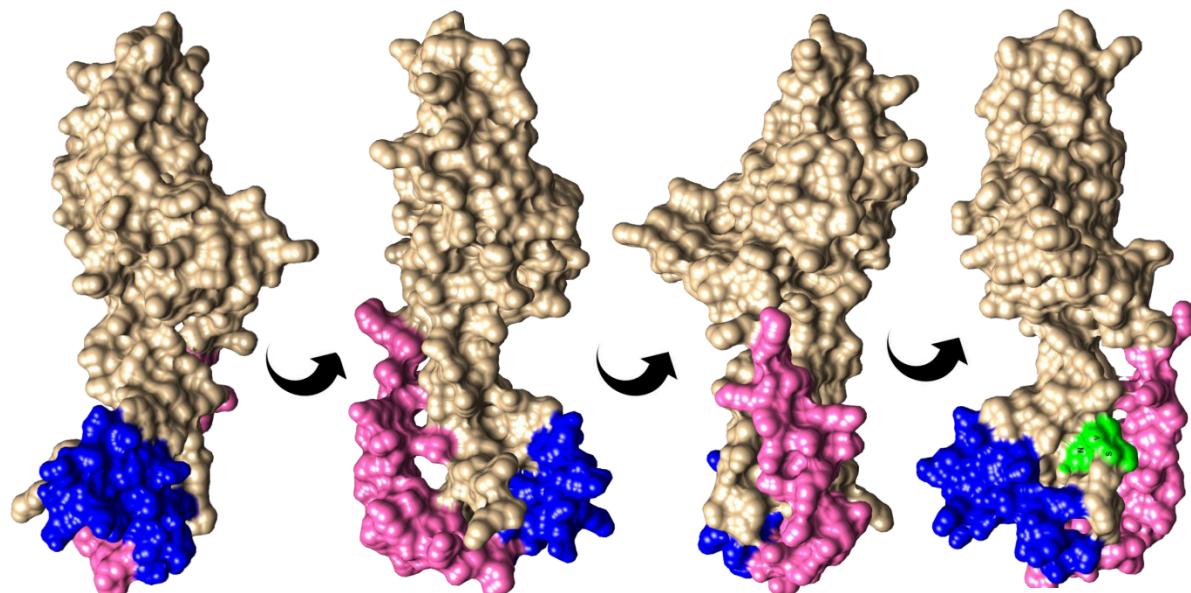
325

326

327 **Figure 4. Phylogenetic alignment of *S. stercoralis* high priority family proteins with other *S. stercoralis* proteins and outgroups.**

329 Proteins of the five high priority families of *S. stercoralis* (dark green), from the differentially
330 expressed dataset, in phylogenetic alignment with BLAST hits from *S. stercoralis* itself (black) and
331 outgroups (other colours). Colours reaching the outer edge represent *Strongyloides* species, whereas
332 shorter colour bands are non-*Strongyloides* outgroups. (A) SCP/TAPS, (B) transthyretin-like (TTL), (C)
333 acetylcholinesterase (AChE), (D) aspartic peptidase, (E) prolyl oligopeptidase (POP). Arrows indicate
334 clusters of *S. stercoralis* proteins containing species-specific regions; derived from both gut- and non-
335 gut-dwelling differential expression data, augmenting detection of lack of species specificity.

336

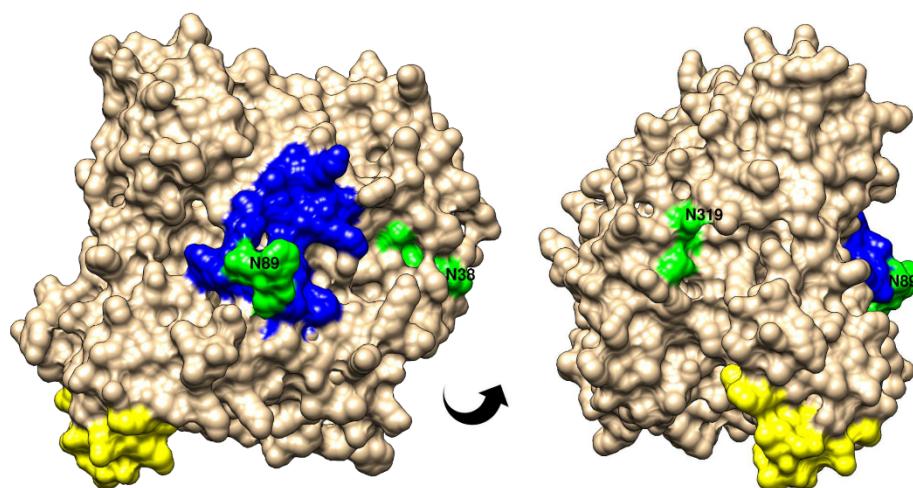

337 *S. stercoralis* proteins from the clusters identified in the phylogenetic trees were examined in
338 alignment with outgroup representative homologues with the most and least similarity. From the
339 alignments, the *S. stercoralis* regions with least homology to outgroups were selected as candidate
340 antigens. In some cases these included the entire protein. Results of this analysis are detailed below
341 by protein family.

342 SCP/TAPS coproantigen candidates
343 Twenty one differentially expressed proteins were identified as definite (n = 19) or possible (n = 2)
344 members of the SCP/TAPS protein family (Figure 3 and S3 file). The two ‘possible’ SCP/TAPS proteins
345 clustered separately among CAP-domain proteins (Figure 3) and were therefore not included as
346 definite members of this protein family. In phylogenetic analysis following alignment against
347 outgroup genomes, seven of the 19 SCP/TAPS proteins formed a cluster of higher *S. stercoralis*
348 specificity (Figure 4A, arrowed) (SSTP_0001008500, 8600, 8700, 8900, 0000511800, 512000,
349 513400). Multiple sequence alignment (MSA) and BLAST searching showed that these SCP/TAPS
350 proteins contained several regions of apparent *S. stercoralis* species specificity, however, most were
351 more highly expressed in non-gut life stages, such as tissue-migrating larvae. In total 8 of the 19
352 were expressed more in gut-dwelling life stages. Therefore SCP/TAPS from outside the cluster (in
353 Figure 4A) were also viewed in MSA. A species-specific region was identified in gut-stage DE protein,
354 SSTP_0000990000, consisting of a large 381 aa sequence of this protein which is upregulated in the
355 parasitic female life stage (Table 2).

356

357 Transthyretin-like coproantigen candidates
358 Fourteen (14) TTL proteins were differentially expressed between gut and non-gut-dwelling life
359 stages with 100% confidence, all of which were expressed more in gut-dwelling life stages, almost
360 exclusively in parasitic female worms (Figure 3 and S3 file). Twelve of these proteins grouped as a
361 cluster while the other 2 were more similar to other protein families or features (Figure 3). When
362 aligned against homologous proteins from the outgroup species, 11 TTL proteins clustered together
363 (Figure 4B, arrowed). All 14 TTL proteins were inspected visually in sequence alignment with
364 selected outgroup proteins and five (SSTP_0000700800, 700900, 1222000, 0485800, 1133200)
365 showed greater specificity to *S. stercoralis* and low sequence similarity to any of the outgroup
366 homologues. However, when many of the possible *Strongyloides*-specific regions were BLAST
367 searched separately, they were not sufficiently specific to be used as coproantigens. In particular,

368 the search revealed that the amino acid sequence VTCDGKPL in protein SSTP_0000485800 is
369 conserved across many nematode genera and should therefore be avoided in any candidate antigen.
370 Two of the TTL proteins did contain one or more regions of *Strongyloides* species or genus
371 specificity, giving a total of 6 TTL candidate coproantigens (Table 2).
372 In addition to high *Strongyloides*-specificity across its whole sequence of 177aa, TTL protein
373 SSTP_0000700800 also contained predicted epitopes. To investigate the position of these, the
374 protein was 3D modelled to a template generated from TTR-52 protein of *C. elegans* (PDB accession:
375 3UAF) (Figure 5). This model aligned to 89 residues (aa 2-90; 50% of the sequence) with 99.9%
376 confidence. This protein contained a predicted glycosylation site at position N165 and, although not
377 predicted to have a signal peptide, it was indicated as an 'extracellular or secreted' protein in
378 UniProt [58] and is a known E/S protein family, therefore it is more likely to be glycosylated.



379
380 **Figure 5. A transthyretin-like (TTL) protein of *S. stercoralis* in rotated view showing surface-
381 exposed epitope regions and N-linked glycosylation sites**
382 Accession number SSTP_0000700800. Blue, BepiPred predicted epitope aa's 124-143; pink, bcepred
383 predicted epitope aa's 99-123; green, predicted N-linked glycosylation site at N165 in the motif NVS.

384 The bcepred epitope (pink) extends to residue 141 but has been shortened to show the BepiPred
385 epitope (blue), which overlaps with it.

386 Acetylcholinesterase (AChE) coproantigen candidates
387 Nineteen AChE proteins were in the DE dataset, of which 18 were expressed higher in gut-dwelling
388 stages, particularly in parasitic female worms (Figure 3). The other AChE protein was highly
389 expressed in infectious and tissue-migrating larvae (S3 file). All 19 proteins formed a cluster when
390 compared with other DE protein families, indicating greater sequence similarity. The 19 proteins
391 were then aligned with BLAST hits from outgroup species and most grouped into two distinct
392 clusters in the corresponding phylogenetic tree, one cluster of 4 *S. stercoralis* proteins, the other of
393 10 (Figure 4C, arrowed), all of which were DE in gut-dwelling life stages. The cluster of 4 consisted of
394 SSTP_0000274700, 671000, 638700 and 670800, all of which contained several regions of potential
395 *S. stercoralis* specificity by visual inspection of the alignment. Equally, the 10 proteins within the
396 other cluster contained multiple regions of possible *Strongyloides* specificity which were then
397 analysed by BLAST to confirm this specificity. For AChE, 10 candidate antigens originated from 2
398 proteins: SSTP_0000274700 and 509400 (Table 2).

399 From the larger cluster in Figure 4C, one of the sources of candidate antigens, AChE protein
400 SSTP_0000509400 was modelled with 100% confidence to 6 templates that jointly covered aa's 17-
401 551 (95%) with about 30% sequence identity. Peptides with potential *S. stercoralis* species-specific
402 sequences were annotated on the model to view their surface exposure (Figure 6). BepiPred 1.0 and
403 bcepred both failed to identify epitopes in this protein. However, BepiPred 2.0 did predict epitope
404 regions, with moderate specificity and surface exposure. This AChE protein contained multiple
405 potential glycosylation sites, three of which, at positions 38, 89 and 319, were predicted with high
406 confidence on this known glycoprotein (Figure 6).

407

408 **Figure 6. *S. stercoralis* acetylcholinesterase in rotated views showing surface-exposed epitope**
409 **regions and N-linked glycosylation sites.** Accession number SSTP_0000509400. Predicted features
410 indicated in colour: blue, BepiPred 2.0 predicted epitope at residues 85-103; and yellow at 390-411;
411 green, predicted N-linked glycosylation sites at N38 (NVT), N89 (NFS) and N319 (NLT). The site at
412 N89 is within the blue epitope sequence.

413 Aspartic peptidase coproantigen candidates
414 Only 4 aspartic peptidases appeared in the DE proteins, all of which were expressed more in gut-
415 dwelling life stages. Two of these were less reliably identified in this protein family so the other two
416 (SSTP_0000164500 and 164700), with very high expression levels in parasitic female worms and
417 both orthologues of E/S proteins, were analysed for *S. stercoralis* specificity. An additional 9
418 homologous proteins from *S. stercoralis* itself were included and all 11 proteins were then compared
419 with the outgroups (Figure 4D, arrowed). The two DE proteins had low sequence similarity with each
420 other. However, BLAST searching indicated that most of the possible species-specific regions lacked
421 *Strongyloides* specificity and only one suitable peptide was identified from SSTP_0000164500 (Table
422 2). 3D modelling of this protein could not be achieved with any reliability and was thus not used for
423 epitope selection. There were no predicted epitopes in either of the DE aspartic peptidases.

424

425 Prolyl oligopeptidase (POP) coproantigen candidates
426 The 5 differentially expressed POP proteins, all very highly expressed in parasitic females, were
427 combined with a further 10 *S. stercoralis* homologues. In the phylogenetic tree, all 5 clustered with
428 other *Strongyloides* proteins and away from non-*Strongyloides* outgroups (Figure 4E). Four of the DE
429 proteins (SSTP_0000289100, 1108800, 1108500, 1019400) had higher species-specificity, clustering
430 with other *S. stercoralis* homologues (Figure 4E, arrowed). One of these 4 proteins,
431 SSTP_0000289100 contained two Bepipred epitopes and was very highly expressed in parasitic
432 females, as well as being in the E/S orthologues (Figure 3 and S3 file). However, the epitope regions
433 had moderate sequence identity to other nematodes, a *Staphylococcus* species and to *Plasmodium*
434 *vivax*, suggesting widespread conservation. Therefore, these peptides were not considered
435 sufficiently specific to *Strongyloides*.

436 Analysis of the POP proteins in multiple sequence alignment and subsequent search for similar
437 proteins using BLASTP against NCBI nr and Nematoda databases, revealed several regions of high
438 specificity to *S. stercoralis* in one of the DE proteins (SSTP_0001108800) (Table 2). Amino acid motifs
439 conserved across genera, and therefore not *Strongyloides* specific, were removed from the
440 sequences originally selected from the MSA, these included: DKLEN, KTDSK, RNAH and DIFAFI.

441

442 **Summary of candidate coproantigens**

443 Table 2 presents selected candidate coproantigen protein regions that satisfy the criteria of being
444 present in stool, specific to *Strongyloides* or *S. stercoralis*, and being antigenic. The full amino acid
445 sequences of all candidate antigens are given in FASTA format in file S7.

446 **Table 2. Candidate coproantigens of *S. stercoralis* based on upregulation in parasitism, amino acid sequence specificity to *Strongyloides* or *S. stercoralis*,**

447 and containing a predicted epitope. Gene accession numbers can be found in WormBase ParaSite or UniProtKB. Amino acid sequences are given in file S7.

448 PF: parasitic female, E/S: excretory/secretory.

Protein family	Gene	Residues	Length	Peptide is specific to <i>Strongyloides</i>	Protein is upregulated in gut-dwelling life stages	Protein contains signal peptide	Protein occurs in E/S orthologues	Protein contains predicted epitope, surface exposed
SCP/TAPS	SSTP_0000990000	363-743	381	Yes	Yes- in PF	No	No	No
Transthyretin-like (TTL)	SSTP_0000700800	1-177	177	Yes	Yes- in PF	No	No	Yes
	SSTP_0001222000	22-50	29	Yes	Yes- in PF	Yes	No	Yes
		51-86	36	Yes				
		65-159	95	Yes				
		87-116	30	Yes				
		125-160	36	Yes				
Acetylcholinesterase (AChE)	SSTP_0000274700	17-43	27	Yes	Yes- in PF	Yes	Yes	No
		63-104	42	Yes				
		187-207	21	Yes				
		243-266	24	Yes				
		268-306	39	Yes				
		308-328	21	Yes				
		372-451	80	Yes				
		551-607	57	Yes				
	SSTP_0000509400	85-103	19	Yes	Yes- in PF	Yes	Yes	Yes
		390-411	22	Yes				
Aspartic peptidase	SSTP_0000164500	107-140	34	Yes	Yes- in PF	Yes	Yes	No
Prolyl oligopeptidase (POP)	SSTP_0001108800	221-266	46	Yes	Yes- in PF	No	Yes	No
		384-421	38	Yes				
		422-507	86	Yes				
		741-779	39	Yes				

449 Discussion

450 The paucity of data on *S. stercoralis* infection prevalence and its low profile compared with the other
451 STH species are largely due to inadequate diagnostics and lack of a single gold standard. While
452 serology has the highest sensitivity for active disease, it is unsuitable for monitoring treatment
453 outcome or defining cure in a timely manner [27, 59]. Incomplete cure and reinfection post-
454 treatment may occur [8, 60, 61]. Therefore, we aimed to identify specific diagnostic targets from the
455 nematode that could be captured by a rapid antigen detection test on stool samples. Such
456 coproantigen assays are commercially available for *Giardia* and *Cryptosporidium* and have been
457 developed for a wide range of human and animal parasites including *Ascaris* [62], *Fasciola* [63],
458 *Echinococcus* [64], *Strongyloides ratti* [32], *S. venezuelensis* [30], *Opisthorcis* [65], *Toxocara* [66] and
459 *Entamoeba histolytica* [67], among others. These assays employ either somatic, E/S material, or
460 known antigens as targets.

461 We used open access data sources, published literature and freely-accessible online protein analysis
462 tools to shortlist candidate antigens, based on the three criteria: presence in infected stool;
463 *Strongyloides* or *S. stercoralis* specificity, and antigenicity. A similar study by Culma (2021)
464 investigated cellular location, antigenicity and allergenicity, among other features, in the *S.*
465 *stercoralis* proteome to identify potential vaccine and diagnostic targets [68]. Here, we focused on
466 proteins that were differentially expressed between gut-dwelling and non-gut-dwelling life stages of
467 *S. stercoralis*, according to RNA-seq data [36]. Seven protein families have been identified by other
468 studies as expanded in the genomes of parasitic nematodes, and upregulated in parasitic life stages
469 [35]. Studies of the *Ancylostoma* hookworm E/S proteome and *S. venezuelensis* somatic larval
470 proteome detected some of the same families (SCP/TAPS, proteases and TTL) indicating likely
471 presence in stool [69, 70]. To identify coproantigen diagnostic targets, we have performed a detailed
472 analysis of 5 of the 7 parasitism-associated protein families. We also identified *S. stercoralis*
473 orthologues of the *S. ratti* E/S proteome [34, 46].

474 We found an overlap of 77 proteins (5.9% of the total) between DE proteins and E/S orthologues.
475 This limited overlap may reflect post-transcriptional control of expression [34]. Thus, grouping
476 together transcriptomic data of life stages with different gene expression profiles may have limited
477 our resolution of stage-specific coproantigens. E/S proteomics are an alternative starting point for
478 coproantigen discovery. However, when we viewed gene expression data for all the E/S orthologues,
479 no single life stage accounted for all the parasitic female E/S proteome. Although the *S. stercoralis*
480 E/S orthologues broadly represented the *S. ratti* E/S proteome dataset, there were 1,057 compared
481 to the original *S. ratti* 550 dataset. Therefore, differential gene expression between species is also
482 likely to be a complicating factor and ultimately, the E/S proteome of the species of interest would
483 be most suitable for coproantigen discovery. However, shared epitopes between these closely
484 related species still warrant the use of all available data [50].

485 **Priority protein families and species specificity**
486 Phylogenetic trees of *S. stercoralis* DE proteins and their homologues from a selection of outgroups
487 focused our analysis on individual proteins from the priority protein families. These proteins were
488 more likely to contain species- or genus-specific regions.

489 SCP/TAPS
490 The first of the priority protein families analysed here, SCP/TAPS, is among the CAP domain-
491 containing proteins and is proposed to have a role in modulating the host immune response [35].
492 Here, we identified 21 SCP/TAPS proteins and 6 additional CAP-domain-containing proteins among
493 the DE proteins. Many of the species-specific proteins or regions in this protein family, were highly
494 expressed in tissue migrating larvae, rather than gut-dwelling life stages, therefore, only one protein
495 expressed in adult female worms was the source of candidate antigens. This protein family has been
496 studied in other parasitic nematodes, particularly the hookworms *Ancylostoma caninum*,
497 *Ancylostoma ceylanicum* and *Necator americanus*, in which they are numerous. Multiple of these
498 SCP/TAPS proteins have been demonstrated to be antigenic and recognised by anti-E/S antisera,
499 showing that they do possess at least two of the characteristics predicted by this pathway.

500 Transthyretin-like proteins
501 Transthyretin-like proteins are a nematode-specific protein family and are known to be in E/S
502 material of many species [71]. Two TTL proteins were sources of candidate coproantigens in the
503 present study, both of which were expressed highly in the parasitic female worm and very little in
504 other life stages. Neither of these DE proteins were among the E/S orthologues, however other TTL
505 proteins were, and were expressed highly across multiple life stages. In addition, a TTL protein has
506 been identified as a potential vaccine or diagnostic candidate through a similar bioinformatic
507 pipeline, adding to the evidence for this protein family as a source of diagnostic targets [68]. The
508 exact function of TTL proteins remains unknown in animal parasitic nematodes, but evidence from
509 plant parasites suggests a role in subduing the immune response to favour worm survival [72].

510 Acetylcholinesterase
511 Secreted AChE has a possible role in enabling certain parasitic helminths to evade host expulsion
512 mechanisms from mucosal surfaces [35, 73]. The transcriptomic and E/S proteomic data strongly
513 supported this, with AChE family proteins in the E/S orthologues being expressed almost exclusively
514 in the parasitic female life stage (S5 file). Secreted AChE differs from the neuromuscular protein in
515 structure, gene family and substrate, being less specific to acetylcholine [73]. We found moderate
516 homology between the predicted epitope regions of a *S. stercoralis* AChE and other nematode
517 species. We identified candidate antigens in two AChE proteins. One of the candidate antigen
518 proteins (SSTP_0000274700), contained 8 regions of *Strongyloides* specificity, when less specific
519 regions were excluded, comprising over 50% of the full length 607 aa protein.

520 Aspartic peptidase
521 The aspartic peptidase family of enzymes is named for the creation of the active site from aspartic
522 acid residues. Very few aspartic peptidases were DE, but had high expression in parasitic females
523 and homologues to *S. ratti* E/S proteins. Aspartic peptidases play a role in haemoglobin digestion in
524 other parasitic helminths, therefore secretion may be linked to feeding within the host gut
525 epithelium where the adult worm resides [74, 75]. We identified a single candidate antigen from the
526 few examined aspartic peptidases which had considerable homology to aspartic proteases from

527 other *Strongyloides* species, but little to any other relevant species, whereas the full protein had
528 high homology to multiple relevant nematode species including hookworm.

529 Prolyl oligopeptidase
530 Five POP family proteins were DE between gut and non-gut dwelling life stages. All 5 were very
531 highly expressed in parasitic females where they may be involved in defending against the host
532 immune and parasite expulsion response. In the trematode *Schistosoma mansoni*, POP enzymes
533 have been found to cleave peptide hormones and neuropeptides [76]. Inhibiting POP activity in *S.*
534 *ratti* lead to immobility in a concentration-dependent manner, even in *in vitro* conditions, indicating
535 that this protein family is also vital to worm survival [46]. Only one of the 5 POP proteins contained
536 regions of sufficient *Strongyloides* specificity for consideration as a coproantigen.

537 In addition to the shorter, specific sequences listed here, there is broader potential to express whole
538 recombinant proteins such as those indicating higher *Strongyloides* specificity, in order to raise
539 polyclonal antibodies for screening. Alternatively, specific monoclonal antibodies could be
540 developed against these whole proteins and again, screened for *Strongyloides* specificity, as
541 conducted by Abduhaleem et al. (2019) with a monoclonal antibody raised against *S. ratti* somatic
542 antigens [77].

543 **Epitope prediction**

544 We performed epitope prediction on the DE proteins and E/S proteome homologues using two open
545 access online tools, which yielded many predicted epitope peptides. An alternative to this would be
546 to scan the entire genome for epitopes, a method applied to vaccine candidate discovery [78]. The
547 challenge faced by this approach is the complexity of conformational epitopes compared with linear
548 peptide epitopes. Antibodies frequently bind to conformational epitopes formed by the 3D structure
549 of the antigen, which therefore cannot easily be detected by sequence analysis alone [54].

550 The availability of 3D protein models can assist with selecting conformational epitopes by modelling
551 a sequence onto the structure of a homologous protein and revealing adjacent amino acids on the
552 surface of the protein [79]. Models do not necessarily have high sequence identity to the query

553 sequence but this does not decrease the confidence in the model. Confidence in 3D models of >90%
554 indicates that the protein adopts the overall folds of the model but may differ from the native
555 protein in surface loops [55], thus this method is not guaranteed, but provides a good indication for
556 selecting candidate antigens. *Ab initio*-modelled regions, where the sequence was not covered by
557 the model, have very poor accuracy and should therefore be interpreted with caution and not used
558 as the sole basis for selecting conformational epitopes. The field of 3D structure modelling has been
559 progressed in leaps by the use of machine learning [80, 81].

560 We saw differences in predicted epitopes between the computational versus 'by eye' approach to
561 selecting epitope regions. The DE protein dataset contained longer predicted epitopes due to the
562 decision, where relevant, to extend predicted epitopes across a short region of lower epitope score
563 whereas the computational selection worked only on the exact score threshold and would not join
564 two adjacent high scoring regions.

565 Glycoprotein antigens were not considered in this study, apart from the presence of potential N-
566 linked glycosylation sites on candidate protein antigens. Glycans form existing species-specific, highly
567 antigenic diagnostic antigens, including CCA and CAA of *Schistosoma mansoni* and *Schistosoma*
568 genus trematodes respectively [82], and LAM of *Mycobacterium tuberculosis* [83]. They have also
569 been implicated in lysate seroantigen of *S. stercoralis* [84]. In helminths, glycan structures may not
570 only be species-specific, but also life-stage specific [85]. Glycans may obscure some of the protein
571 epitopes predicted here, particularly in the secreted AChE which is highly glycosylated. This is to be
572 expected as glycans form many of the host-parasite interactions [85]. In addition, secreted candidate
573 antigens may also contain O-linked glycans, via oxygen atoms of serine or threonine, which are not
574 easily predicted. Although we have excluded potential glycan epitopes, they could be accounted for
575 to some extent by expressing antigens of interest, ideally in a closely-related system, potentially *C.*
576 *elegans* or even *Strongyloides* itself [86]. As an alternative, glycans could be excluded altogether by

577 synthesising peptides or expressing recombinant proteins in bacteria, thus focusing the antigen
578 search purely on proteins, as we have done here.

579 **Limitations and future work**

580 We have described a methodological approach to discovery of diagnostic antigens. The process is
581 predictive, based on computational analyses of 'omic' data. Predictions rely on the integrity of data
582 sources, efficacy of software, and correct use of cut-off values at multiple stages of analysis.
583 WormBase ParaSite, the source of most of the sequences used, is a curated database, regularly
584 updated with high quality additional data and regarded as predominantly reliable. Thus, large-scale
585 sequencing errors that might affect our use software, such as antigen prediction or BLAST analysis,
586 are rare. Single nucleotide and small-scale sequencing errors are unlikely to affect results of the
587 predictive pathways. With the E value cut-off used to select matching proteins by BLAST analysis,
588 some proteins returned multiple hits. This may be due to paralogs or reflect an E value that is too
589 lenient. Even in the latter case, over-inclusion of proteins at this stage, pared down by downstream
590 analysis, is preferable to rejection of candidates. Proof of candidate antigen validity requires follow-
591 up experimental laboratory research, which can reveal whether constraints and cut-off values have
592 been too strict or too lenient.

593 Another limitation is prediction of antigens that are present in the stool. In our pipeline, a protein
594 being excreted or secreted by a gut-dwelling stage of the parasite has been used as a proxy for
595 presence in the stool. This rests on the assumption that the protein passes through the gut, is
596 present in the stool in sufficient quantity and with antigenic properties unchanged by digestion or
597 denaturation. As *S. stercoralis* establishes and matures in the small intestine, E/S proteins will not be
598 subject to the denaturation and enzymatic degradation in the stomach but may be affected by
599 enzymes in the small intestine. However, post-parasitic larvae, which hatch from eggs laid in the
600 intestine, migrate through the small and large intestine, and can be found in faeces, so any E/S
601 proteins produced by these stages, especially lower down in the intestinal tract, are less likely to be

602 affected by host processes. The validity of these assumptions can be investigated by analysis of
603 infected stool.

604 A further consideration is the focus of the approach on differentially expressed proteins and certain
605 parasitism-associated protein families. There is rationale to targeting proteins with these
606 characteristics, because they are proven to be expressed at higher levels in the relevant life cycle
607 stages, are likely to be excreted or secreted and species or genus-specific due to adaptive radiation
608 and protein family expansion. The focus on these groups limits the scope of an 'omic' approach,
609 however, proteins that do not belong to one of these two groups might still have the characteristics
610 of a candidate coproantigen. The approach presented here can therefore be applied to other
611 helminth infections, but may be complimented by an expanded approach that uses whole genomic
612 or proteomic data without focussing on parasitism-associated protein families or life stages, with the
613 results of the two methods being used in conjunction.

614 Other potential proteins for coproantigen detection assays include: enolase, common to
615 *Schistosoma japonicum* [87], *Echinostoma* and *Fasciola* [88], *Onchocerca* [89] and *Trichuris* [90], as
616 well as in among *S. stercoralis* E/S orthologous proteins reported here and with constitutive high
617 expression across all life stages (S5 file); protein 14-3-3 from E/S and somatic extract of *Strongyloides*
618 [91, 92], *Ascaris* [93], *Schistosoma* and *Ancylostoma* [70]. In addition, collagen, which forms some
619 80% of the outer cuticle of the nematode and was prominent among the DE proteins [94]. As an
620 antigen, collagen would have to be carefully analysed for species specificity and the influence of
621 glycosylation on its availability to capture antibodies [95]. A summary of E/S proteomic studies was
622 presented by Ditgen *et al.* (2014) [96], and analysis of *S. venezuelensis* somatic proteins was made by
623 Fonseca *et al.* (2019) [69] which may inform further antigen searches. Vaccine candidates for *S.*
624 *stercoralis*: sodium potassium ATPase (SsEAT), tropomyosin, and a galectin (LEC-5) [97, 98] may also
625 generate effective antibodies for antigen capture, if the relevant antigens are detectable in stool.

626

627 The most immediate work arising from this research is to validate the 'omic' pathway via wet
628 laboratory analyses, specifically proteomic methods to detect and assess the antigenicity of proteins
629 present in stool. Production of predicted candidates followed by antigenic testing could also be used
630 to investigate the results of the 'omic' pathway as well as for development of lateral flow design for
631 successful peptides. Results could be used to inform and refine results from the 'omic' pipeline,
632 however, well-characterised stool sample collections are required to pursue diagnostic
633 development.

634 Antigenic diversity must be considered, due to geographic differences between nematode strains
635 [99]. This has impacted on diagnosis and vaccination for other parasitic infections [100, 101].
636 Diversity can be readily investigated by amplifying and sequencing the genes of interest from a wide
637 geographic range of samples. For *S. stercoralis*, this is especially required, because the reference
638 genome strain PV001 originates from a dog infection with UDP (University of Pennsylvania dog)
639 strain [102].

640 Conclusion

641 We have presented a detailed analysis of *S. stercoralis* proteins, leading to the selection of diagnostic
642 coproantigens. We have identified multiple *S. stercoralis* candidate protein antigen sequences with
643 evidence for their specificity to *Strongyloides* or *S. stercoralis* from phylogenetic and sequence
644 comparison with relevant other species. Evidence supporting their presence in infected stool was
645 assessed by belonging to parasitism-associated protein families, upregulation in gut-dwelling life
646 stages, presence in E/S material of other helminths, and being among *S. stercoralis* orthologues of
647 the *S. ratti* E/S proteome. Antigenicity was predicted using epitope prediction tools and 3D structure
648 modelling. Peptides or whole proteins analysed and presented here form a selection of promising
649 candidates for raising antibodies against and capturing *S. stercoralis* antigen in stool, with potential
650 adaptation to prototype point-of-care rapid diagnostic tests.

651 Conflict of Interest

652 *The authors declare that the research was conducted in the absence of any commercial or financial
653 relationships that could be construed as a potential conflict of interest.*

654

655 Author Contributions

656 Conceived and designed the study: MAM, TM, CTL. Carried out the study: TM, CTL, JB-S, HL, FC.
657 Wrote the manuscript: TM. Reviewed and edited the manuscript: MAM, JB-S, CTL.

658 Acknowledgements

659 We thank Dr Andrew Falconar for useful discussions and advice during this project.
660 Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the
661 University of California, San Francisco (supported by NIGMS P41-GM103311).
662 TM was funded by the Sir Halley Stewart Trust (<http://www.sirhalleystewart.org.uk/>). The views
663 expressed within this report are those of the authors and not necessarily those of the Trust. TM was
664 additionally supported by the John Henry Memorial Fund (UK Charity number: 1118007).

665

666 References

667 1. Schär F, Trostdorf U, Giardina F, Khieu V, Muth S, Marti H, et al. *Strongyloides stercoralis:*
668 global distribution and risk factors. PLoS Negl Trop Dis. 2013; 7(7):e2288.
669 <https://doi.org/10.1371/journal.pntd.0002288>

670 2. Forrer A, Khieu V, Schar F, Vounatsou P, Chammartin F, Marti H, et al. *Strongyloides*
671 *stercoralis* and hookworm co-infection: spatial distribution and determinants in Preah Vihear
672 Province, Cambodia. Parasit Vectors. 2018; 11(1):33. <https://doi.org/10.1186/s13071-017-2604-8>

673 3. Buonfrate D, Baldissera M, Abrescia F, Bassetti M, Caramaschi G, Giobbia M, et al.
674 Epidemiology of *Strongyloides stercoralis* in northern Italy: results of a multicentre case-control
675 study, February 2013 to July 2014. Euro Surveill. 2016; 21(31). <https://doi.org/10.2807/1560-7917.es.2016.21.31.30310>

677 4. Becker SL, Sieto B, Silue KD, Adjossan L, Kone S, Hatz C, et al. Diagnosis, clinical features, and
678 self-reported morbidity of *Strongyloides stercoralis* and hookworm infection in a co-endemic setting.
679 PLoS Negl Trop Dis. 2011; 5(8):e1292. <https://doi.org/10.1371/journal.pntd.0001292>

680 5. Minciullo PL, Cascio A, Gangemi S. Association between urticaria and nematode infections.
681 Allergy Asthma Proc. 2018; 39(2):86-95. <https://doi.org/10.2500/aap.2018.38.4104>

682 6. Abrescia FF, Falda A, Caramaschi G, Scalzini A, Gobbi F, Angheben A, et al. Reemergence of
683 strongyloidiasis, northern Italy. Emerg Infect Dis. 2009; 15(9):1531-3.
684 <https://doi.org/10.3201/eid1509.090191>

685 7. Atkins NS, Lindo JF, Lee MG, Conway DJ, Bailey JW, Robinson RD, et al. Humoral responses in
686 human strongyloidiasis: correlations with infection chronicity. Trans R Soc Trop Med Hyg. 1997;
687 91(5):609-13.

688 8. Repetto SA, Ruybal P, Batalla E, López C, Fridman V, Sierra M, et al. Strongyloidiasis outside
689 endemic areas: long-term parasitological and clinical follow-up after ivermectin treatment. Clin
690 Infect Dis. 2018:cix1069-cix. <https://doi.org/10.1093/cid/cix1069>

691 9. Buonfrate D, Requena-Mendez A, Angheben A, Munoz J, Gobbi F, Van Den Ende J, et al.
692 Severe strongyloidiasis: a systematic review of case reports. BMC Infect Dis. 2013; 13:78.
693 <https://doi.org/10.1186/1471-2334-13-78>

694 10. Luvira V, Watthanakulpanich D, Pittisuttithum P. Management of *Strongyloides stercoralis*: a
695 puzzling parasite. Int Health. 2014; 6(4):273-81. <https://doi.org/10.1093/inthealth/ihu058>

696 11. Tefé-Silva C, R. Machado E, Faccioli LH, Ramos S. Hyperinfection syndrome in
697 strongyloidiasis. *Curr Top Trop Med* 2012.

698 12. Schär F, Hattendorf J, Khieu V, Muth S, Char MC, Marti HP, et al. *Strongyloides stercoralis*
699 larvae excretion patterns before and after treatment. *Parasitology*. 2014; 141(7):892-7.
700 <https://doi.org/10.1017/s0031182013002345>

701 13. Henriquez-Camacho C, Gotuzzo E, Echevarria J, White AC, Jr., Terashima A, Samalvides F, et
702 al. Ivermectin versus albendazole or thiabendazole for *Strongyloides stercoralis* infection. *Cochrane*
703 *Database Syst Rev*. 2016(1):Cd007745. <https://doi.org/10.1002/14651858.CD007745.pub3>

704 14. Marti H, Haji HJ, Savioli L, Chwya HM, Mgeni AF, Ameir JS, et al. A comparative trial of a
705 single-dose ivermectin versus three days of albendazole for treatment of *Strongyloides stercoralis*
706 and other soil-transmitted helminth infections in children. *Am J Trop Med Hyg*. 1996; 55(5):477-81.

707 15. Palmeirim MS, Hurlmann E, Knopp S, Speich B, Belizario V, Jr., Joseph SA, et al. Efficacy and
708 safety of co-administered ivermectin plus albendazole for treating soil-transmitted helminths: a
709 systematic review, meta-analysis and individual patient data analysis. *PLoS Negl Trop Dis*. 2018;
710 12(4):e0006458. <https://doi.org/10.1371/journal.pntd.0006458>

711 16. Barda B, Sayasone S, Phongluxa K, Xayavong S, Keoduangs K, Odermatt P, et al. Efficacy of
712 moxidectin versus ivermectin against *Strongyloides stercoralis* infections: a randomized controlled
713 non-inferiority trial. *Clin Infect Dis*. 2017. <https://doi.org/10.1093/cid/cix278>

714 17. Buchter V, Hofmann D, Häberli C, Keiser J. Characterization of moxidectin against
715 *Strongyloides ratti*: *in vitro* and *in vivo* activity and pharmacokinetics in the rat model. *ACS Infect Dis*.
716 2021; 7(5):1069-76. <https://doi.org/10.1021/acsinfecdis.0c00435>

717 18. Koga K, Kasuya S, Khamboonruang C, Sukhavat K, Ieda M, Takatsuka N, et al. A modified agar
718 plate method for detection of *Strongyloides stercoralis*. *Am J Trop Med Hyg*. 1991; 45(4):518-21.

719 19. Lopez M, Morales ML, Konana M, Hoyer P, Pineda-Reyes R, White AC, Jr., et al. Kato-Katz
720 and Lumbrieras rapid sedimentation test to evaluate helminth prevalence in the setting of a school-

721 based deworming program. *Pathog Glob Health*. 2016; 110(3):130-4.

722 <https://doi.org/10.1080/20477724.2016.1187361>

723 20. Tello R, Terashima A, Marcos LA, Machicado J, Canales M, Gotuzzo E. Highly effective and

724 inexpensive parasitological technique for diagnosis of intestinal parasites in developing countries:

725 Spontaneous sedimentation technique in tube. *Int J Parasitol*. 2012; 16(6):e414-e6.

726 <https://doi.org/10.1016/j.ijid.2011.12.017>

727 21. Becker SL, Piralsoody N, Kramme S, Marti H, Silue KD, Panning M, et al. Real-time PCR for

728 detection of *Strongyloides stercoralis* in human stool samples from Cote d'Ivoire: diagnostic

729 accuracy, inter-laboratory comparison and patterns of hookworm co-infection. *Acta Trop*. 2015;

730 150:210-7. <https://doi.org/10.1016/j.actatropica.2015.07.019>

731 22. Incani RN, Ferrer E, Hoek D, Ramak R, Roelfsema J, Mughini-Gras L, et al. Diagnosis of

732 intestinal parasites in a rural community of Venezuela: advantages and disadvantages of using

733 microscopy or RT-PCR. *Acta Trop*. 2016. <https://doi.org/10.1016/j.actatropica.2016.12.014>

734 23. Meurs L, Polderman AM, Vinkeles Melchers NV, Brienen EA, Verweij JJ, Groosjohan B, et al.

735 Diagnosing polyparasitism in a high-prevalence setting in Beira, Mozambique: detection of intestinal

736 parasites in fecal samples by microscopy and real-time PCR. *PLoS Negl Trop Dis*. 2017;

737 11(1):e0005310. <https://doi.org/10.1371/journal.pntd.0005310>

738 24. Repetto SA, Ruybal P, Solana ME, Lopez C, Berini CA, Alba Soto CD, et al. Comparison

739 between PCR and larvae visualization methods for diagnosis of *Strongyloides stercoralis* out of

740 endemic area: a proposed algorithm. *Acta Trop*. 2016; 157:169-77.

741 <https://doi.org/10.1016/j.actatropica.2016.02.004>

742 25. Repetto SA, Alba Soto CD, Cazorla SI, Tayeldin ML, Cuello S, Lasala MB, et al. An improved

743 DNA isolation technique for PCR detection of *Strongyloides stercoralis* in stool samples. *Acta Trop*.

744 2013; 126(2):110-4. <https://doi.org/10.1016/j.actatropica.2013.02.003>

745 26. Buonfrate D, Formenti F, Perandin F, Bisoffi Z. Novel approaches to the diagnosis of
746 *Strongyloides stercoralis* infection. Clin Microbiol Infect. 2015.
747 <https://doi.org/10.1016/j.cmi.2015.04.001>

748 27. Buonfrate D, Sequi M, Mejia R, Cimino RO, Krolewiecki AJ, Albonico M, et al. Accuracy of five
749 serologic tests for the follow up of *Strongyloides stercoralis* infection. PLoS Negl Trop Dis. 2015;
750 9(2):e0003491. <https://doi.org/10.1371/journal.pntd.0003491>

751 28. Lindo JF, Atkins NS, Lee MG, Robinson RD, Bundy DA. Parasite-specific serum IgG following
752 successful treatment of endemic strongyloidiasis using ivermectin. Trans R Soc Trop Med Hyg. 1996;
753 90(6):702-3.

754 29. Vargas P, Krolewiecki AJ, Echazú A, Juarez M, Cajal P, Gil JF, et al. Serologic monitoring of
755 public health interventions against *Strongyloides stercoralis*. Am J Trop Med Hyg. 2017; 97(1):166-
756 72. <https://doi.org/10.4269/ajtmh.16-0857>

757 30. Goncalves AL, Silva CV, Ueta MT, Costa-Cruz JM. A new faecal antigen detection system for
758 *Strongyloides venezuelensis* diagnosis in immunosuppressed rats. Exp Parasitol. 2010; 125(4):338-41.
759 <https://doi.org/10.1016/j.exppara.2010.02.015>

760 31. Nageswaran C, Craig PS, Devaney E. Coproantigen detection in rats experimentally infected
761 with *Strongyloides ratti*. Parasitology. 1994; 108 (Pt 3):335-42.

762 32. Sykes AM, McCarthy JS. A coproantigen diagnostic test for *Strongyloides* infection. PLoS Negl
763 Trop Dis. 2011; 5(2):e955. <https://doi.org/10.1371/journal.pntd.0000955>

764 33. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000; 3(5):445-50.

765 34. Hunt VL, Tsai IJ, Coghlan A, Reid AJ, Holroyd N, Foth BJ, et al. The genomic basis of parasitism
766 in the *Strongyloides* clade of nematodes. Nat Genet. 2016. <https://doi.org/10.1038/ng.3495>

767 35. Hunt VL, Tsai IJ, Selkirk ME, Viney M. The genome of *Strongyloides* spp. gives insights into
768 protein families with a putative role in nematode parasitism. Parasitology. 2016:1-16.
769 <https://doi.org/10.1017/s0031182016001554>

770 36. Stoltzfus JD, Minot S, Berriman M, Nolan TJ, Lok JB. RNAseq analysis of the parasitic
771 nematode *Strongyloides stercoralis* reveals divergent regulation of canonical dauer pathways. PLoS
772 Negl Trop Dis. 2012; 6(10):e1854. <https://doi.org/10.1371/journal.pntd.0001854>

773 37. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without
774 a reference genome. BMC Bioinformatics. 2011; 12:323. <https://doi.org/10.1186/1471-2105-12-323>

775 38. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of
776 short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25.
777 <https://doi.org/10.1186/gb-2009-10-3-r25>

778 39. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive
779 multiple sequence alignment through sequence weighting, position-specific gap penalties and
780 weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673-80.

781 40. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and
782 annotation of phylogenetic and other trees. Nucleic Acids Res. 2016; 44(W1):W242-5.
783 <https://doi.org/10.1093/nar/gkw290>

784 41. Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL. Domain enhanced
785 lookup time accelerated BLAST. Biol Direct. 2012; 7:12. <https://doi.org/10.1186/1745-6150-7-12>

786 42. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. InterPro: the
787 integrative protein signature database. Nucleic Acids Res. 2009; 37(Database issue):D211-5.
788 <https://doi.org/10.1093/nar/gkn785>

789 43. Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, et al.
790 PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids
791 Res. 2010; 38(Database issue):D161-6. <https://doi.org/10.1093/nar/gkp885>

792 44. Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, et al. New and continuing
793 developments at PROSITE. Nucleic Acids Res. 2013; 41(Database issue):D344-7.
794 <https://doi.org/10.1093/nar/gks1067>

795 45. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource
796 for gene and protein annotation. Nucleic Acids Res. 2016; 44(D1):D457-62.
797 <https://doi.org/10.1093/nar/gkv1070>

798 46. Soblik H, Younis AE, Mitreva M, Renard BY, Kirchner M, Geisinger F, et al. Life cycle stage-
799 resolved proteomic analysis of the excretome/secretome from *Strongyloides ratti*—identification of
800 stage-specific proteases. Mol Cell Proteomics. 2011; 10(12):M111.010157.
801 <https://doi.org/https://doi.org/10.1074/mcp.M111.010157>

802 47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
803 Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078-9.
804 <https://doi.org/10.1093/bioinformatics/btp352>

805 48. Oliveros JC. Venny. An interactive tool for comparing lists with Venn's diagrams. 2007-2015.
806 Available from: <http://bioinfogp.cnb.csic.es/tools/venny/index.html>.

807 49. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides
808 from transmembrane regions. Nat Methods. 2011; 8(10):785-6.
809 <https://doi.org/10.1038/nmeth.1701>

810 50. Eamudomkarn C, Sithithaworn P, Sithithaworn J, Kaewkes S, Sripa B, Itoh M. Comparative
811 evaluation of *Strongyloides ratti* and *S. stercoralis* larval antigen for diagnosis of strongyloidiasis in an
812 endemic area of opisthorchiasis. Parasitol Res. 2015. <https://doi.org/10.1007/s00436-015-4458-3>

813 51. Sousa JE, Carvalho EF, Levenhagen MA, Faria LS, Goncalves-Pires Mdo R, Costa-Cruz JM.
814 Serological cross-reactivity between *Strongyloides venezuelensis* and *Syphacia muris* in Wistar rats
815 (*Rattus norvegicus*). Parasitol Int. 2016; 65(2):137-45. <https://doi.org/10.1016/j.parint.2015.11.005>

816 52. Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes.
817 Immunome Res. 2006; 2:2. <https://doi.org/10.1186/1745-7580-2-2>

818 53. Saha S, Raghava GPS, editors. BcePred: prediction of continuous B-cell epitopes in antigenic
819 sequences using physico-chemical properties. Artificial Immune Systems; 2004; Berlin, Heidelberg:
820 Springer Berlin Heidelberg.

821 54. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-
822 cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017; 45(W1):W24-W9.
823 <https://doi.org/10.1093/nar/gkx346>

824 55. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein
825 modeling, prediction and analysis. Nat Protoc. 2015; 10(6):845-58.
826 <https://doi.org/10.1038/nprot.2015.053>

827 56. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF
828 Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;
829 25(13):1605-12. <https://doi.org/10.1002/jcc.20084>

830 57. Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the
831 correlation to protein function. Pac Symp Biocomput. 2002:310-22.

832 58. The UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res.
833 2021; 49(D1):D480-D9. <https://doi.org/10.1093/nar/gkaa1100>

834 59. Bisoffi Z, Buonfrate D, Sequi M, Mejia R, Cimino RO, Krolewiecki AJ, et al. Diagnostic accuracy
835 of five serologic tests for *Strongyloides stercoralis* infection. PLoS Negl Trop Dis. 2014; 8(1):e2640.
836 <https://doi.org/10.1371/journal.pntd.0002640>

837 60. Khieu V, Hattendorf J, Schar F, Marti H, Char MC, Muth S, et al. *Strongyloides stercoralis*
838 infection and re-infection in a cohort of children in Cambodia. Parasitol Int. 2014; 63(5):708-12.
839 <https://doi.org/10.1016/j.parint.2014.06.001>

840 61. Forrer A, Khieu V, Schindler C, Schar F, Marti H, Char MC, et al. Ivermectin treatment and
841 sanitation effectively reduce *Strongyloides stercoralis* infection risk in rural communities in
842 Cambodia. PLoS Negl Trop Dis. 2016; 10(8):e0004909.
843 <https://doi.org/10.1371/journal.pntd.0004909>

844 62. Lagatie O, Verheyen A, Van Hoof K, Lauwers D, Odiere MR, Vlaminck J, et al. Detection of
845 *Ascaris lumbricoides* infection by ABA-1 coproantigen ELISA. PLoS Negl Trop Dis. 2020;
846 14(10):e0008807. <https://doi.org/10.1371/journal.pntd.0008807>

847 63. Sarkari B, Khabisi SA. Immunodiagnosis of human fascioliasis: an update of concepts and
848 performances of the serological assays. *J Clin Diagn Res.* 2017; 11(6):Oe05-oe10.
849 <https://doi.org/10.7860/jcdr/2017/26066.10086>

850 64. Morel N, Lassabe G, Elola S, Bondad M, Herrera S, Mari C, et al. A monoclonal antibody-
851 based copro-ELISA kit for canine echinococcosis to support the PAHO effort for hydatid disease
852 control in South America. *PLoS Negl Trop Dis.* 2013; 7(1):e1967.
853 <https://doi.org/10.1371/journal.pntd.0001967>

854 65. Teimoori S, Arimatsu Y, Laha T, Kaewkes S, Sereerak P, Sripa M, et al. Chicken IgY-based
855 coproantigen capture ELISA for diagnosis of human opisthorchiasis. *Parasitol Int.* 2016.
856 <https://doi.org/10.1016/j.parint.2015.10.011>

857 66. Elsemore DA, Geng J, Cote J, Hanna R, Lucio-Forster A, Bowman DD. Enzyme-linked
858 immunoassays for coproantigen detection of *Ancylostoma caninum* and *Toxocara canis* in
859 dogs and *Toxocara cati* in cats. *J Vet Diagn Invest.* 2017; 29(5):645-53.
860 <https://doi.org/10.1177/1040638717706098>

861 67. Haque R, Kress K, Wood S, Jackson TF, Lyerly D, Wilkins T, et al. Diagnosis of pathogenic
862 *Entamoeba histolytica* infection using a stool ELISA based on monoclonal antibodies to the
863 galactose-specific adhesin. *J Infect Dis.* 1993; 167(1):247-9.

864 68. Culma MF. *Strongyloides stercoralis* proteome: A reverse approach to the identification of
865 potential immunogenic candidates. *Microb Pathog.* 2021; 152:104545.
866 <https://doi.org/10.1016/j.micpath.2020.104545>

867 69. Fonseca PDM, Corral MA, Cosenza-Contreras M, Meisel D, Melo GB, Antunes MMS, et al.
868 Shotgun proteomics of *Strongyloides venezuelensis* infective third stage larvae: Insights into host-
869 parasite interaction and novel targets for diagnostics. *Mol Biochem Parasitol.* 2019; 235:111249.
870 <https://doi.org/10.1016/j.molbiopara.2019.111249>

871 70. Mulvenna J, Hamilton B, Nagaraj SH, Smyth D, Loukas A, Gorman JJ. Proteomics analysis of
872 the excretory/secretory component of the blood-feeding stage of the hookworm, *Ancylostoma*
873 *caninum*. Mol Cell Proteomics. 2009; 8(1):109-21. <https://doi.org/10.1074/mcp.M800206-MCP200>

874 71. Saverwyns H, Visser A, Van Durme J, Power D, Morgado I, Kennedy MW, et al. Analysis of the
875 transthyretin-like (TTL) gene family in *Ostertagia ostertagi* – Comparison with other strongylid
876 nematodes and *Caenorhabditis elegans*. Int J Parasitol. 2008; 38(13):1545-56.
877 <https://doi.org/https://doi.org/10.1016/j.ijpara.2008.04.004>

878 72. Lin B, Zhuo K, Chen S, Hu L, Sun L, Wang X, et al. A novel nematode effector suppresses plant
879 immunity by activating host reactive oxygen species-scavenging system. New Phytol. 2016;
880 209(3):1159-73. <https://doi.org/10.1111/nph.13701>

881 73. Selkirk ME, Lazari O, Matthews JB. Functional genomics of nematode acetylcholinesterases.
882 Parasitology. 2005; 131(S1):S3-S18. <https://doi.org/10.1017/S0031182005008206>

883 74. Brindley PJ, Kalinna BH, Wong JYM, Bogitsh BJ, King LT, Smyth DJ, et al. Proteolysis of human
884 hemoglobin by schistosome cathepsin D. Mol Biochem Parasitol. 2001; 112(1):103-12.
885 [https://doi.org/https://doi.org/10.1016/S0166-6851\(00\)00351-0](https://doi.org/https://doi.org/10.1016/S0166-6851(00)00351-0)

886 75. Rebello KM, McKerrow JH, Mota EM, O'Donoghue AJ, Neves-Ferreira AGC. Activity profiling
887 of peptidases in *Angiostrongylus costaricensis* first-stage larvae and adult worms. PLoS Negl Trop Dis.
888 2018; 12(10):e0006923. <https://doi.org/10.1371/journal.pntd.0006923>

889 76. Fajtová P, Štefanić S, Hradilek M, Dvořák J, Vondrášek J, Jílková A, et al. Prolyl oligopeptidase
890 from the blood fluke *Schistosoma mansoni*: from functional analysis to anti-schistosomal inhibitors.
891 PLoS Negl Trop Dis. 2015; 9(6):e0003827. <https://doi.org/10.1371/journal.pntd.0003827>

892 77. Abduhaleem N, Mamuda A, Mustapha T, Majid RA, Lung LTT, Unyah NZ. Evaluation of
893 monoclonal mntibody (IgG2bMAb) for detection of coproantigen from experimentally infected rats
894 with *Strongyloides ratti*. Annu Res Rev Biol. 2019; 32(2):1-9.
895 <https://doi.org/https://doi.org/10.9734/arrb/2019/v32i230082>

896 78. Goodswen SJ, Kennedy PJ, Ellis JT. Vacceed: a high-throughput in silico vaccine candidate
897 discovery pipeline for eukaryotic pathogens based on reverse vaccinology. *Bioinformatics*. 2014;
898 30(16):2381-3. <https://doi.org/10.1093/bioinformatics/btu300>

899 79. Russi RC, Bourdin E, Garcia MI, Veautre CMI. *In silico* prediction of T- and B-cell epitopes in
900 PmpD: first step towards to the design of a *Chlamydia trachomatis* vaccine. *Biomed J*. 2018;
901 41(2):109-17. <https://doi.org/10.1016/j.bj.2018.04.007>

902 80. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate
903 prediction of protein structures and interactions using a three-track neural network. *Science*. 2021;
904 373(6557):871-6. <https://doi.org/10.1126/science.abj8754>

905 81. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate
906 protein structure prediction with AlphaFold. *Nature*. 2021; 596(7873):583-9.
907 <https://doi.org/10.1038/s41586-021-03819-2>

908 82. Corstjens PL, De Dood CJ, Kornelis D, Fat EM, Wilson RA, Kariuki TM, et al. Tools for
909 diagnosis, monitoring and screening of *Schistosoma* infections utilizing lateral-flow based assays and
910 upconverting phosphor labels. *Parasitology*. 2014; 141(14):1841-55.
911 <https://doi.org/10.1017/s0031182014000626>

912 83. Lawn SD. Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-
913 associated tuberculosis: a state of the art review. *BMC Infect Dis*. 2012; 12:103.
914 <https://doi.org/10.1186/1471-2334-12-103>

915 84. Ines EJ, Silva ML, Souza JN, Teixeira MC, Soares NM. The role of glycosylated epitopes in the
916 serodiagnosis of *Strongyloides stercoralis* infection. *Diagn Microbiol Infect Dis*. 2013; 76(1):31-5.
917 <https://doi.org/10.1016/j.diagmicrobio.2013.01.016>

918 85. Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite
919 interactions. *Mol Biochem Parasitol*. 2017; 215:47-57.
920 <https://doi.org/10.1016/j.molbiopara.2016.12.001>

921 86. Lok JB, Shao H, Massey HC, Li X. Transgenesis in *Strongyloides* and related parasitic
922 nematodes: historical perspectives, current functional genomic applications and progress towards
923 gene disruption and editing. *Parasitology*. 2016;1-16. <https://doi.org/10.1017/s0031182016000391>

924 87. Gao H, Xiao D, Song L, Zhang W, Shen S, Yin X, et al. Assessment of the diagnostic efficacy of
925 enolase as an indication of active infection of *Schistosoma japonicum*. *Parasitol Res*. 2016;
926 115(1):151-64. <https://doi.org/10.1007/s00436-015-4730-6>

927 88. Marcilla A, Treliis M, Cortes A, Sotillo J, Cantalapiedra F, Minguez MT, et al. Extracellular
928 vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in
929 intestinal host cells. *PLoS One*. 2012; 7(9):e45974. <https://doi.org/10.1371/journal.pone.0045974>

930 89. Eberle R, Brattig NW, Trusch M, Schluter H, Achukwi MD, Eisenbarth A, et al. Isolation,
931 identification and functional profile of excretory-secretory peptides from *Onchocerca ochengi*. *Acta
932 Trop*. 2015; 142:156-66. <https://doi.org/10.1016/j.actatropica.2014.11.015>

933 90. Liu Z, Kelleher A, Tabb S, Wei J, Pollet J, Hotez PJ, et al. Identification, characterization, and
934 structure of Tm16 from *Trichuris muris*. *J Parasitol Res*. 2017; 2017:4342789.
935 <https://doi.org/10.1155/2017/4342789>

936 91. Rodpai R, Intapan PM, Thanchomnang T, Sanpool O, Janwan P, Laummaunwai P, et al.
937 Identification of antigenic proteins in *Strongyloides stercoralis* by proteomic analysis. *Parasitol Res*.
938 2017. <https://doi.org/10.1007/s00436-017-5443-9>

939 92. Marcilla A, Sotillo J, Perez-Garcia A, Igual-Adell R, Valero ML, Sanchez-Pino MM, et al.
940 Proteomic analysis of *Strongyloides stercoralis* L3 larvae. *Parasitology*. 2010; 137(10):1577-83.
941 <https://doi.org/10.1017/s0031182010000314>

942 93. Wang T, Van Steendam K, Dhaenens M, Vlaminck J, Deforce D, Jex AR, et al. Proteomic
943 analysis of the excretory-secretory products from larval stages of *Ascaris suum* reveals high
944 abundance of glycosyl hydrolases. *PLoS Negl Trop Dis*. 2013; 7(10):e2467.
945 <https://doi.org/10.1371/journal.pntd.0002467>

946 94. Kingston IB. Nematode collagen genes. *Parasitol Today*. 1991; 7(1):11-5.

947 95. Blaxter ML, Page AP, Rudin W, Maizels RM. Nematode surface coats: Actively evading
948 immunity. *Parasitol Today*. 1992; 8(7):243-7. [https://doi.org/https://doi.org/10.1016/0169-4758\(92\)90126-M](https://doi.org/https://doi.org/10.1016/0169-4758(92)90126-M)

950 96. Ditgen D, Anandarajah EM, Meissner KA, Brattig N, Wrenger C, Liebau E. Harnessing the
951 helminth secretome for therapeutic immunomodulators. *Biomed Res Int*. 2014; 2014:964350.
952 <https://doi.org/10.1155/2014/964350>

953 97. Abraham D, Hess JA, Mejia R, Nolan TJ, Lok JB, Lustigman S, et al. Immunization with the
954 recombinant antigen Ss-IR induces protective immunity to infection with *Strongyloides stercoralis* in
955 mice. *Vaccine*. 2011; 29(45):8134-40. <https://doi.org/10.1016/j.vaccine.2011.08.030>

956 98. Kerepesi LA, Keiser PB, Nolan TJ, Schad GA, Abraham D, Nutman TB. DNA immunization with
957 Na⁺-K⁺ ATPase (Sseat-6) induces protective immunity to larval *Strongyloides stercoralis* in mice.
958 *Infect Immun*. 2005; 73(4):2298-305. <https://doi.org/10.1128/iai.73.4.2298-2305.2005>

959 99. Qiang S, Bin Z, Shu-hua X, Zheng F, Hotez P, Hawdon JM. Variation between ASP-1 molecules
960 from *Ancylostoma caninum* in China and the United States. *J Parasitol*. 2000; 86(1):181-5.
961 [https://doi.org/10.1645/0022-3395\(2000\)086\[0181:vbamfa\]2.0.co;2](https://doi.org/10.1645/0022-3395(2000)086[0181:vbamfa]2.0.co;2)

962 100. Bhattacharyya T, Boelaert M, Miles MA. Comparison of visceral leishmaniasis diagnostic
963 antigens in African and Asian *Leishmania donovani* reveals extensive diversity and region-specific
964 polymorphisms. *PLoS Negl Trop Dis*. 2013; 7(2):e2057.
965 <https://doi.org/10.1371/journal.pntd.0002057>

966 101. Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, et al. Genetic diversity and
967 protective efficacy of the RTS,S/AS01 malaria vaccine. *N Engl J Med*. 2015; 373(21):2025-37.
968 <https://doi.org/10.1056/NEJMoa1505819>

969 102. Jaleta TG, Zhou S, Bemm FM, Schär F, Khieu V, Muth S, et al. Different but overlapping
970 populations of *Strongyloides stercoralis* in dogs and humans—Dogs as a possible source for zoonotic
971 strongyloidiasis. *PLoS Negl Trop Dis*. 2017; 11(8):e0005752.
972 <https://doi.org/10.1371/journal.pntd.0005752>

973

974 **Supporting information**

975 **S1 Table. Data sources used.** CDS: coding sequence.

976 **S2 Table: Number of outgroup protein hits for *S. stercoralis* protein families from the differentially
977 expressed (DE) dataset.**

978 **S3 file: *S. stercoralis* genes (n=328) differentially expressed in gut-dwelling (dark blue) versus non-
979 gut-dwelling (light blue) life stages of the nematode with those containing predicted epitopes
980 indicated.** Transcriptomic data from Stoltzfus *et al.* (2012), gut and non-gut groupings and
981 differential analysis from the present study. Gene accession numbers (starting SSTP) are given for
982 WormBase ParaSite or UniProtKB and life stage transcriptomic data accession numbers (starting
983 ERR) for NCBI SRA. Expression levels are in normalized read counts where red is high and white is
984 low.

985 **S4 file: BLAST results: *S. stercoralis* orthologues of the *S. ratti* E/S proteome.** *S. ratti* E/S proteomic
986 data from Hunt *et al.* (2016) was BLAST searched against the *S. stercoralis* genome-derived
987 proteome using blast+ with e-value 1e-50

988 **S5 file: *S. stercoralis* orthologues of *S. ratti* E/S proteomic data.** *S. ratti* E/S proteins (from Hunt et
989 al., 2016) were searched against a custom blast+ database consisting of the *S. stercoralis* genome-
990 derived proteome (from WBPS v8) to obtain homologues.

991 E-value -50 and word size 2 were used to perform the search. Protein identities are given for the
992 original *S. ratti* proteins (from Hunt et al., 2016) and the BLAST KOALA results from this study along
993 with corresponding KEGG orthology. Gene expression in normalised read count is from analysis of
994 data from different life stages of *S. stercoralis* (obtained from Stoltzfus *et al.*, (2012)). Overlap is
995 indicated with proteins which were also differentially expressed (DE) with 100% certainty between
996 gut-dwelling and non-gut-dwelling life stages, as determined for this study. Proteins containing

997 predicted epitopes according to two tools: BepiPred 1.0 and bcepred are indicated as well as
998 proteins predicted by SignalP to contain a signal peptide. Accession numbers starting ERR refer to
999 RNA-seq data in NCBI SRA and those starting SSTP are *S. stercoralis* gene transcripts which may be
1000 found in UniProt or WormBase ParaSite.
1001 Life-stage abbreviations are explained in the manuscript text.
1002 **S6 file: Predicted epitopes in *S. stercoralis* proteins using BepiPred and bcepred.** ES: Orthologues of
1003 *S. ratti* E/S proteome. DE: Differentially expressed proteins between gut-dwelling and non-gut-
1004 dwelling life stages.
1005 **S7 file: Candidate coproantigen sequences in fasta format.** FASTA headers are in the format:
1006 accession number, start aa, end aa.
1007

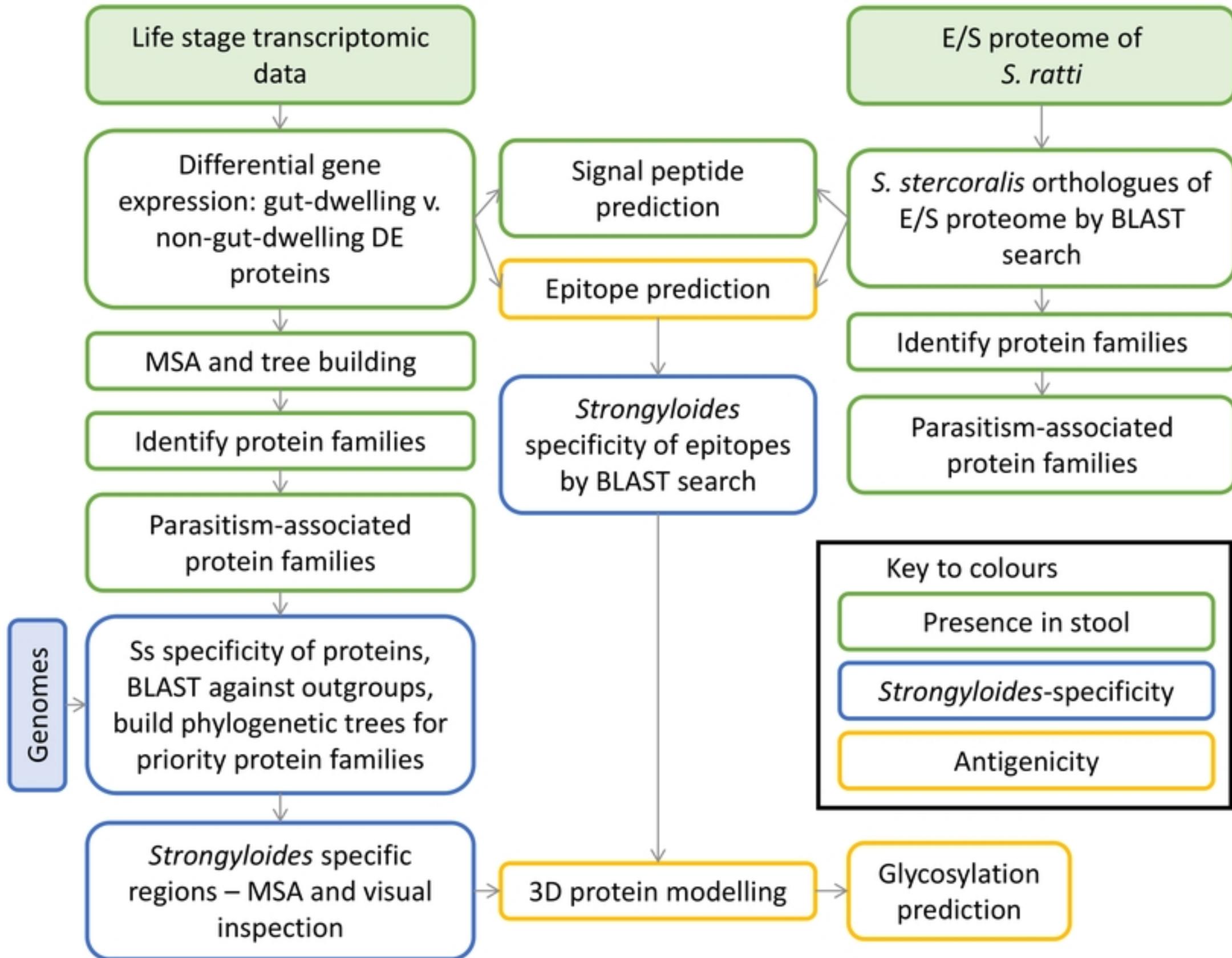


Figure 1

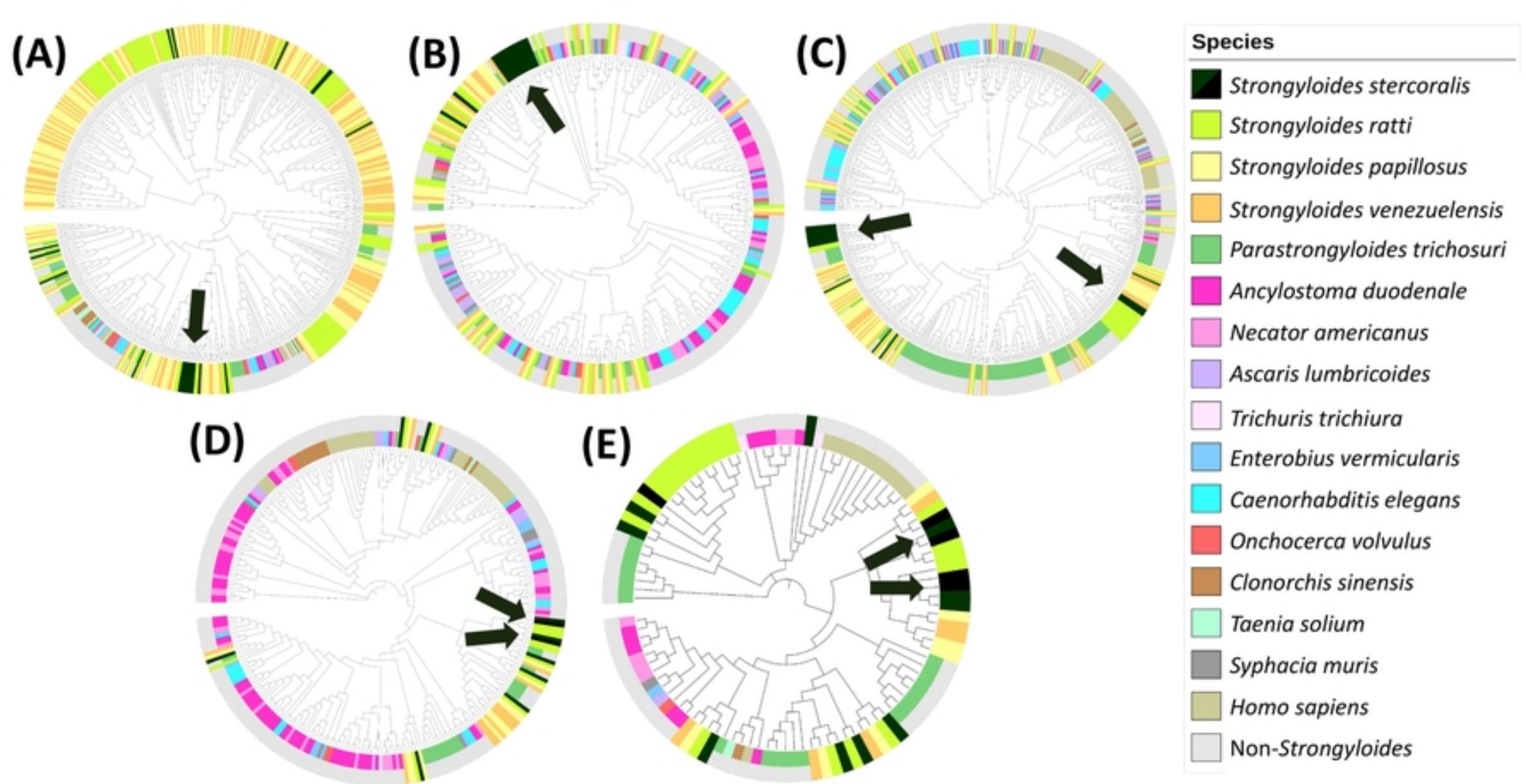


Figure 4

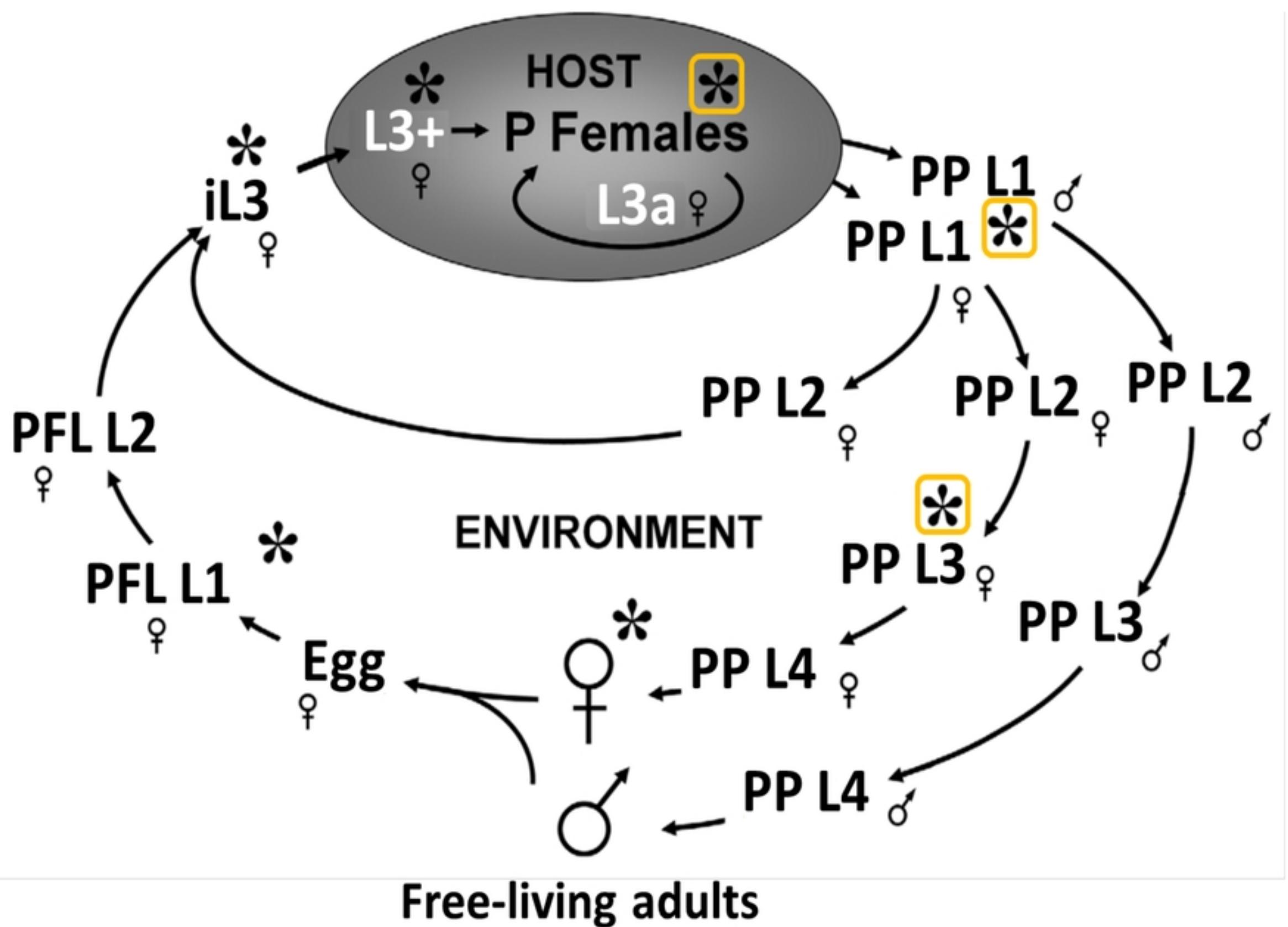


Figure 2

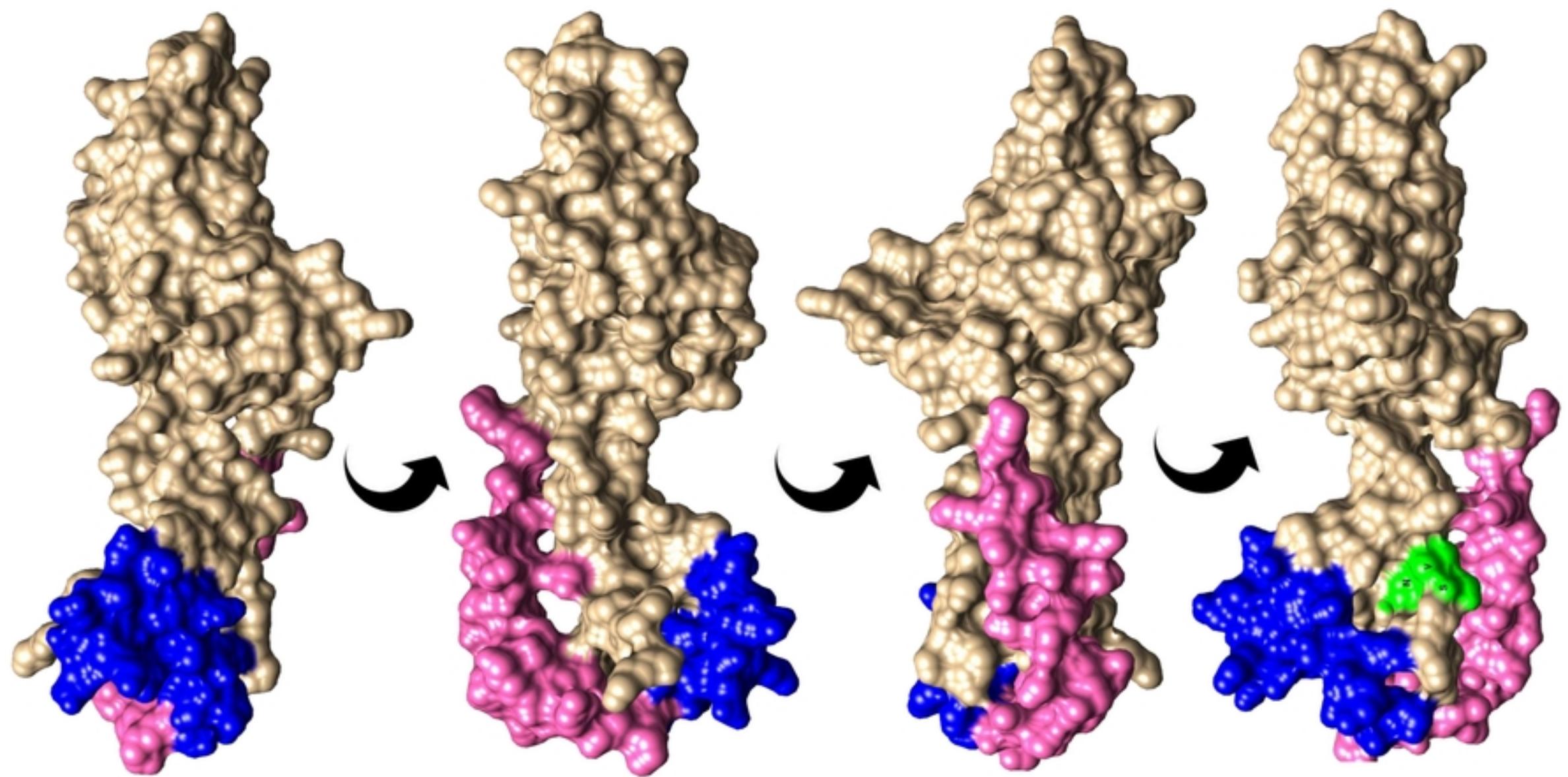


Figure 5

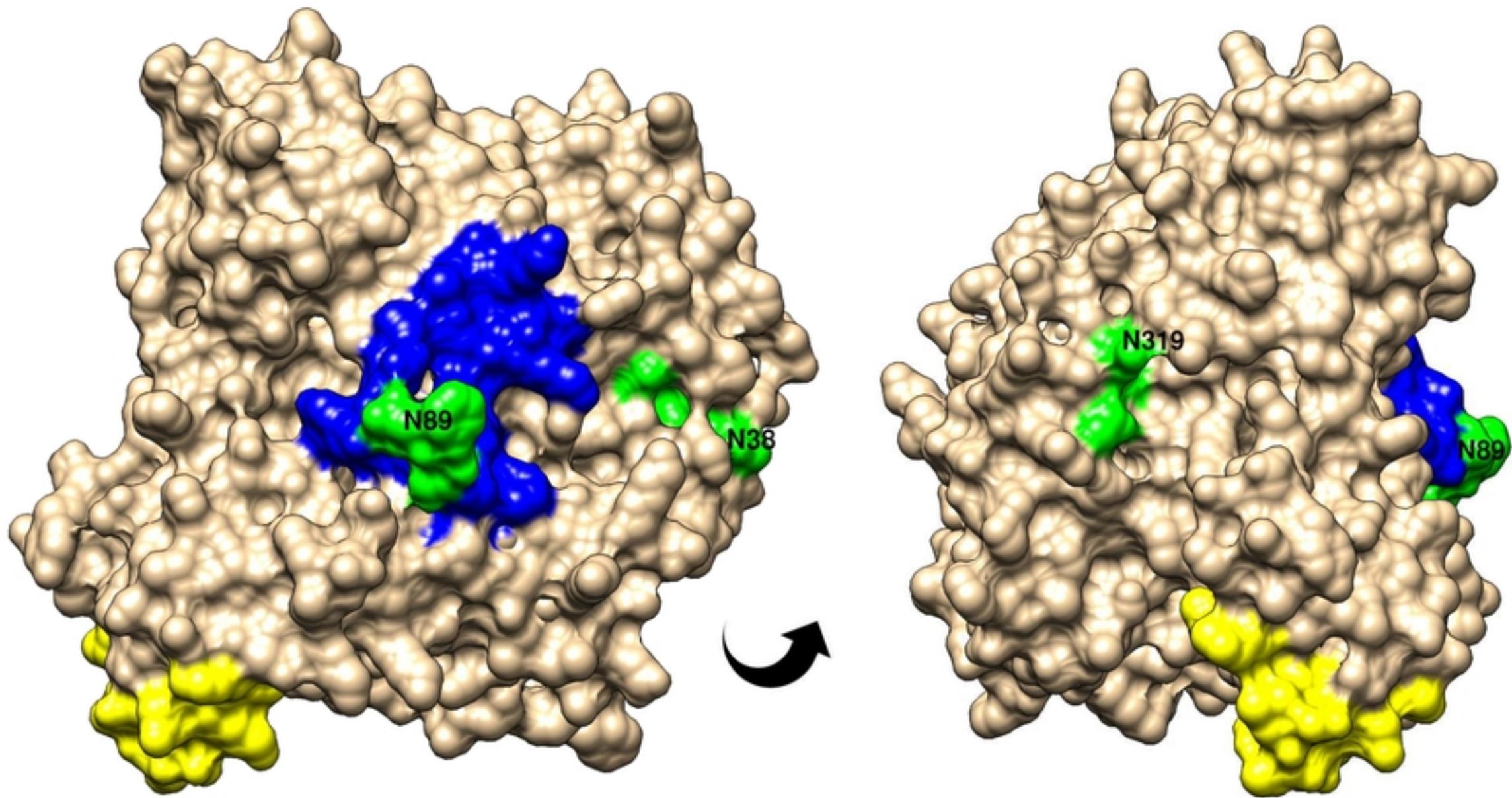


Figure 6

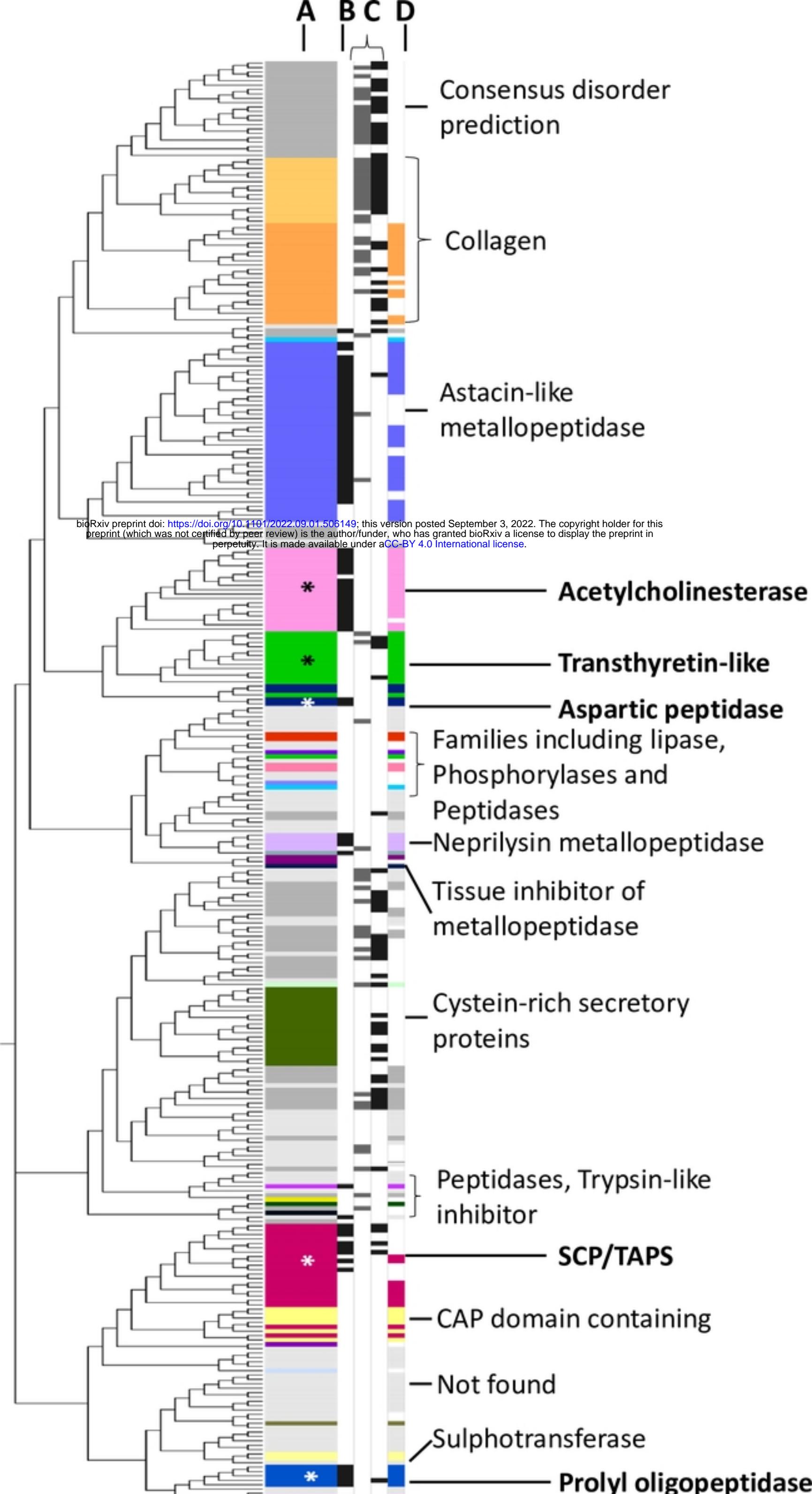


Figure 3