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Abstract

We investigated the extent to which measures of retinal neuronal thickness capture
variability in the structural integrity of the brain in a large population-based cohort followed
from birth to midlife. Using data from the Dunedin Multidisciplinary Health and
Development Study (n=1037; analytic n=828, aged 45 years), we specifically tested for
associations between optical coherence tomography-measured retinal neuronal layers and
MRI-measured structural brain integrity. We found that Study members who had thinner
retinal neuronal layers had thinner average cortex, smaller total cortical surface area, smaller
subcortical grey matter volumes, larger volume of white matter hyperintensities as well as
older looking brains. This suggests that retinal neuronal thickness reflects differences in
midlife structural brain integrity consistent with accelerated cognitive decline and increased
risk for later dementia, further supporting the proposition that the retina may be a biomarker

of brain aging as early as midlife.

Keywords: optical coherence tomography, retina, Alzheimer’s, magnetic resonance imaging,

brain aging.
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1. Introduction

The retina has potential as a biomarker of brain health and cognitive functioning as well
as age-related neurodegenerative diseases, including Alzheimer’s disease (AD), because the
retina shares many similarities with the brain and can be easily, repeatedly, and non-
invasively imaged with high precision using technology which is already widely available
(Alber et al., 2020; Cheung et al., 2021, 2017; London et al., 2013). Diffuse cortical atrophy
occurs in normal ageing but is more pronounced in AD, beginning in the medial temporal
lobes in preclinical AD and gradually progressing throughout the brain (Eckerstrém et al.,
2018; Kulason et al., 2020; Pini et al., 2016). The neuropathological changes of AD begin
more than a decade prior to the onset of clinical symptoms, (Sperling et al., 2014) and
existing treatments for AD may be most effective in the earliest stages of the disease (Musiek
and Morris, 2021). Thus, biomarkers that can identify people with preclinical AD or at high
risk of developing AD, and that are able to be widely implemented for population screening,

are imperative to initiating treatments at the optimal stage, preserving quality of life.

The retinal ganglion cells send their axons across the retinal surface to form the optic
nerve, which projects posteriorly to targets in the brain (Chan et al., 2019; London et al.,
2013). Normal ageing is associated with gradual thinning of the optic nerve; in AD a more
profound loss of optic nerve axons can be found, in a diffuse and non-specific pattern,
(Hinton et al., 1986) and this can be detected in early stages as thinning of the retinal nerve
fibre layer (RNFL) and ganglion cell-inner plexiform layer (GC-IPL; Ge et al., 2021; Ikram
et al., 2012; Mejia-Vergara et al., 2020). There is also specific amyloid detectable in retinal
ganglion cell bodies and dendritic inputs, with some indication that the retina may be an early
site for amyloid formation (Hadoux et al., 2019; Koronyo et al., 2012). There is evidence that
subclinical retinal measures of optic nerve thinning occur in preclinical AD, and have been

associated with indicators including amyloid burden, (Asanad et al., 2020; Ko et al., 2018;
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Santos et al., 2018), genetic risk (Santos et al., 2018), and cognitive performance (Barrett-

Young et al., 2022; Ko et al., 2018).

A small number of studies have found associations between structural measurements of
the brain with retinal measurements, although these studies, with the exception of the UK
Biobank (Chua et al., 2021), have tended to involve older participants (> 65 years) or patients
with diagnosed AD (Casaletto et al., 2017; den Haan et al., 2019; Donix et al., 2021; Jorge et
al., 2020; Mejia-Vergara et al., 2021; Méndez-Gomez et al., 2018; Ong et al., 2015; Shi et al.,
2019; Uchida et al., 2020; Ueda et al., 2022). The maximum clinical utility of retinal imaging
in AD, however, is in the pre-diagnosis stages, before symptoms progress to the level where
daily living is affected and irreversible neurological damage has occurred. Retinal imaging,
being increasingly widely available even in primary care settings (e.g., optometry), as well as
being repeatable and non-invasive, offers an attractive screening option for preclinical AD.
Therefore, the question of interest is whether thinning of the retinal neuronal layers is
associated with risk-related alterations in structural brain integrity in the decades before an

AD diagnosis.

Recent studies have investigated these associations in cognitively unimpaired
individuals, finding associations between retinal layers including the RNFL and GC-IPL and
a number of structural brain measures, most commonly hippocampal volume (Chua et al.,
2021; Lopez-de-Equileta et al., 2022; Shi et al., 2020), but also the lingual gyrus (Shi et al.,
2020) and grey and white matter volumes (Chua et al., 2021). A recent study found
correlations between RNFL, GC-IPL, and other retinal thickness measures with a large
number of cortical thicknesses and volumes, in participants both with and without increased
familial and genetic risk for AD (Lépez-Cuenca et al., 2022). While most previous studies
focus on elderly individuals, the current study contributes to the growing literature on this
topic by examining a population-based sample of same-aged adults in midlife (aged 45 years

at assessment), thus allowing us to examine the natural variations in the population without
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the effects of age. Our study design enables a unique opportunity to investigate early
detectable changes in age-related neurological diseases in a sample currently free of AD

diagnoses.

We hypothesised that thinner RNFL and GC-IPL measured by optical coherence
tomography (OCT) would be associated with diminished structural brain integrity in midlife
as reflected by thinner average cortex, smaller cortical surface area, smaller subcortical grey
matter volumes and older looking brains as estimated using a machine learning-based
estimate of chronological age based on MRI-derived measures (Liem et al., 2017). We also
hypothesised that thinner RNFL and GC-IPL would be associated with a higher volume of

white matter hyperintensities, a commonly used clinical marker of AD risk.

2. Method

2.1 Participants

Participants were members of the Dunedin Multidisciplinary Health and Development
Study, a representative birth cohort (n = 1037; 91% of eligible births, 51.6% male) born
between 1 April 1972 and 31 March 1973 in Aotearoa New Zealand. The cohort represents
the full range of socioeconomic status in the general population of New Zealand and is
predominantly New Zealand European (Pakeha; 93%). The study design and participant
characteristics have been described extensively elsewhere (Poulton et al., 2015). Assessments
were carried out at birth and ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most recently
at age 45 (2017-2019), when 94% of the 997 living Study members participated. The
Dunedin Study was approved by the Health and Disability Ethics Committee, Ministry of

Health, New Zealand. Study members gave informed consent before participating.

2.2 Optical coherence tomography (OCT)
OCT measurements were taken at age 45, between April 2017 and April 2019. OCT

scans were performed in the morning by trained technicians using a spectral domain OCT
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machine (Cirrus HD-OCT, model 5000; Carl Zeiss Meditec). Mean peripapillary retinal
nerve fibre layer (RNFL) and mean macular ganglion cell-inner plexiform layer (GC-IPL)
thickness were calculated. RNFL thicknesses were generated on a 3.5mm circle from the
optic disc cube. GC-IPL was generated from macular cube scan. Trained graders checked all
scans for quality. Scans were removed from the final dataset due to insufficient OCT image
quality (e.g. signal strength below 6, scan not correctly positioned, or image artefacts). Seven
Study members were removed due to diseases affecting the retina (multiple sclerosis, retinitis
pigmentosa, brain tumours, diabetic laser pan-retinal photocoagulation, and an anomalous
optic nerve head). Another seven Study members were assessed by two ophthalmologists as
having glaucoma (Singh et al., 2022); glaucomatous eyes were removed from the dataset and
non-glaucomatous eyes were retained. When data from one eye were available, that eye was
used; when both eyes were available, an average of the measurements from both eyes was
used. Axial length was used as a covariate as it influences RNFL and GC-IPL thickness
measurements (Rock et al., 2014). Axial length was measured for right and left eyes using
Zeiss 0L Master (Germany). The machine was calibrated weekly, with room lighting set at

520 lux and no pupil dilation. Mean axial length was calculated from both eyes.

2.3 Magnetic resonance imaging (MRI)

Study members were scanned using a MAGNETOM Skyra 3T scanner (Siemens
Healthcare, Erlangen, Germany) equipped with a 64-channel head and neck coil (due to head
size constraints, seven participants were scanned with a 20-channel head/neck coil) at the
Pacific Radiology Group imaging centre in Dunedin, New Zealand, between August 2016
and April 2019. High resolution T1-weighted images, three-dimensional fluid-attenuated
inversion recovery (FLAIR) images, and a gradient echo field map were obtained. Structural
MRI data were analysed using the Human Connectome Project (HCP) minimal preprocessing
pipeline (Glasser et al., 2013). Outputs of the preprocessing pipeline were visually checked

for accurate surface generation by examining each participant’s myelin map, pial surface, and
b 9

7


https://doi.org/10.1101/2022.08.31.506114
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.506114; this version posted September 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

white matter boundaries. Study personnel who processed the MRI images were masked to
participants’ retinal measurements. Of the participants with available structural MRI data,
four were excluded due to major incidental findings or previous injuries (e.g. tumour or
extensive damage to brain or skull), nine due to missing FLAIR or field map scans, and one
due to poor surface mapping. Additionally, white matter hyperintensities measurements were
removed from the dataset for three SMs due to multiple sclerosis and 8 Study members due to

inaccurate labelling or low-quality data.

The brain Age Gap Estimate (brainAGE) is a score that represents the difference, or
gap, between a person’s chronological age and their estimated age based on multiple
measures of brain structure including cortical thickness, surface area, and volume of
subcortical grey matter, white matter, and cerebrospinal fluid (Liem et al., 2017). The
formation of this measure has been described previously (Elliott et al., 2019). White matter
hyperintensities (WMH) were identified and extracted from T1-weighted and FLAIR images
processed using UBO Detector, a cluster-based, fully-automated pipeline (Jiang et al., 2018).
Grey matter volumes were extracted for 10 subcortical structures using the FreeSurfer aseg

parcellation (https://surfer.nmr.mgh.harvard.edu/). Mean total cortical surface area and

average cortical thickness were estimated over 360 cortical areas in the HCP-Multi Modal

Parcellation version 1.0 (Glasser et al., 2016).

2.3.1 Image acquisition parameters. High resolution T1-weighted images were
obtained using an MP-RAGE sequence with the following parameters: TR = 2400 ms; TE =
1.98 ms; 208 sagittal slices; flip angle, 9°; FOV, 224 mm; matrix = 256x256; slice thickness
= 0.9 mm with no gap (voxel size 0.9x0.875x%0.875 mm); and total scan time = 6 min and 52
s. 3D fluid-attenuated inversion recovery (FLAIR) images were obtained with the following
parameters: TR = 8000 ms; TE = 399 ms; 160 sagittal slices; FOV = 240 mm; matrix =
232x256; slice thickness = 1.2 mm (voxel size 0.9%0.9x1.2 mm); and total scan time =5 min

and 38 s. Additionally, a gradient echo field map was acquired with the following parameters:
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TR =712 ms; TE =4.92 and 7.38 ms; 72 axial slices; FOV =200 mm; matrix = 100x100;

slice thickness = 2.0 mm (voxel size 2 mm isotropic); and total scan time = 2 min and 25 s.

2.3.2 Image processing. Structural MRI data were analyzed using the Human
Connectome Project (HCP) minimal preprocessing pipeline as extensively detailed elsewhere
(Glasser et al., 2013). Briefly, T1-weighted and FLAIR images were processed through the
PreFreeSurfer, FreeSurfer, and PostFreeSurfer pipelines. T1-weighted and FLAIR images
were corrected for readout distortion using the gradient echo field map, coregistered, brain-
extracted, and aligned together in the native T1 space using boundary-based registration
(Greve and Fischl, 2009). Images were then processed with a custom FreeSurfer recon-all
pipeline that is optimized for structural MRI with higher resolution than 1 mm isotropic.
Finally, recon-all output were converted into CIFTI format and registered to common

32k_FS_LR mesh using MSM-sulc (Robinson et al., 2014).

For each subject the mean cortical thickness and surface area were then extracted from
each of the 360 cortical areas in the HCP-MPP1.0 parcellation (Glasser et al., 2016).
Subcortical volumes were extracted separately using the automatic segmentation (“aseg”)
step of FreeSurfer version 6.0. FreeSurfer version 6.0 was used because the HCP FreeSurfer
pipeline was optimized for the cortical surface, resulting in lower-quality segmentation of
subcortical volumes in our dataset. Outputs of the minimal preprocessing pipeline were
visually checked for accurate surface generation by examining each subject’s myelin map,
pial surface, and white matter boundaries. Accuracy of subcortical segmentation was
confirmed by visual inspection of the "aseg" labels overlaid on the volumes. Of the 875 study
members for whom data were available, 4 were excluded due to major incidental findings or
previous injuries (e.g., large tumours or extensive damage to the brain/skull), 9 due to
missing FLAIR or field map scans, and 1 due to poor surface mapping, yielding 861 datasets

for analyses.
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To identify and extract the total volume of white matter hyperintensities (WMH), T1-
weighted and FLAIR images for each participant were processed with UBO Detector, a
cluster-based, fully-automated pipeline with high reliability in our data (test-retest ICC =
0.87,95% CI =[.73, .95]) and out of sample performance (Jiang et al., 2018). The resulting
WMH probability maps were thresholded at 0.7, which is the suggested standard. WMH
volume is measured in Montreal Neurological Institute (MNI) space, removing the influence
of differences in brain volume and intracranial volume on WMH volume. Because of the
potential for bias and false positives due to the thresholds and masks applied in UBO, the
resulting WMH maps for each participant were manually checked by two independent raters
to ensure that false detections did not substantially contribute to estimates of WMH volume.
Visual inspections were done blind to the participants’ cognitive status. Due to the tendency
of automated algorithms to mislabel regions surrounding the septum as white matter
hyperintensities, these regions were manually masked out, to further ensure the most accurate
grading possible. Of the 875 Study members for whom WMH data were available, 4 were
excluded due to major incidental findings or previous injuries (e.g., large tumors or extensive
damage to the brain/skull), 8 due to missing FLAIR scans, 3 due to diagnosis with multiple
sclerosis, and 8 due to inaccurate white matter labelling or low-quality MRI data, yielding

852 datasets for analyses.

2.4 Data analysis

Analyses were conducted in Stata/SE 17.0 between February and July 2022. First,
linear regression models were constructed where each retinal variable was entered as a
predictor of brainAGE (ICC for test-retest reliability = .81); next, mean RNFL and mean GC-
IPL were used to predict global structural measures (total cortical surface area, average
cortical thickness, and white matter hyperintensities volume; ICCs = .996, .94, and .87
respectively). White matter hyperintensities volume was log transformed as the data were
non-normal; all other variables met criteria for parametric testing without adjustment. Next,

10
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we used mean RNFL and mean GC-IPL to predict the grey matter volume (GMV) of 10
subcortical structures (mean ICC = .956). Finally, to explore the distribution patterns of
associations, parcel-wise analyses were conducted when statistically significant associations
were observed with global cortical surface area and average cortical thickness. In these post-
hoc analyses, we ran linear regressions using mean RNFL and mean GC-IPL to predict the
surface area and cortical thickness each of the 360 regions comprising the parcellation
scheme described above (Glasser et al., 2016; mean ICCs = .846 and .942 for parcel-wise
cortical thickness and surface area, respectively). As mean RNFL was not significantly
associated with average cortical thickness, parcel-wise analysis with mean RNFL was only
conducted with surface area. We corrected for multiple comparisons across the subcortical
and parcel-wise analyses performed using a false discovery rate (FDR) procedure (Benjamini
and Hochberg, 1995); for analyses with global variables we used an alpha level of .05. All
tests were two-sided. Sex and axial length were included as covariates in all analyses.
Analyses with regional subcortical structures were repeated controlling for total brain
volume, which tests relative size of a region rather than absolute size (Hariri, 2020). The
premise and analysis plan for this study was preregistered in December 2021
(https://dunedinstudy.otago.ac.nz/files/1639953449 Barrett-
Young_CP_OCT%20and%20MRI_revised_final.pdf). Analyses were checked for
reproducibility by an independent data analyst, who recreated the code by working from the

manuscript and applying it to a fresh dataset.

3 Results
Data collection of retinal and brain structural data was at 45 years of age, completed
between August 2016 and April 2019. The final dataset included those Study members with
both RNFL and MRI data available (n = 828, female n = 413 [49.9%], male n = 415 [50.1%)])
for analyses using RNFL variables, and those Study members with both GC-IPL and MRI
data available (n = 825, female n = 413 [50.1%], male n = 412 [49.9%]) for analyses using

11
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GC-IPL variables. See Figure 1 for diagram of retinal measures and Table 1 for descriptive

statistics of retinal and MRI measures.

3.1 Retinal predictors of brain age and cortical brain structure

Study members with thinner mean RNFL (B = -.119, p <.001) and thinner mean GC-
IPL (B=-.111, p =.001) had a larger brain age gap estimate (brainAGE; Liem et al., 2017)
after adjustment for sex and axial length, indicating an older looking brain (Figure 2). Study
members with thinner mean RNFL ( =.140, p <.001) and thinner mean GC-IPL (B =.095,
p <.001) had smaller total cortical surface area. Study members with thinner mean GC-IPL
(B=.072, p=.043) but not mean RNFL ( =.036, p =.328) had thinner average cortex.
Study members with thinner mean GC-IPL (B = -.071, p =.045) but not mean RNFL (§ = -

.068, p =.061) had a larger volume of white matter hyperintensities.

3.2 Retinal predictors of subcortical grey matter volume (GMV)

Study members with thinner mean RNFL and mean GC-IPL had smaller GMV of all
ten subcortical structures after false discovery rate correction, indicating that retinal thinning
corresponds to non-localised, rather than specific regional, subcortical GMV loss (Figure 3).
Adding total brain volume as a covariate attenuated the associations between some
subcortical GMVs and RNFL and GC-IPL, but associations remained significant between
both retinal variables and GMV of brain stem, cerebellum, hippocampus, pallidum, and

ventral DC; as well as between RNFL and GMV of the putamen and thalamus (Figure 3).

3.3 Exploratory parcel-wise analysis

Based on significant associations observed between RNFL and GC-IPL and total
cortical surface area, and GC-IPL and average cortical thickness, exploratory parcel-wise
analyses were conducted to determine whether the associations were largely distributed or
localised (Figure 4). Study members with thinner RNFL had lower surface area in 274 of 360

parcels after correction for multiple comparisons, which were widely distributed across the
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cortex. Study members with thinner GC-IPL had lower surface area in 112 parcels, again
widely distributed across the cortex. Study members with thinner GC-IPL had thinner cortex
in 5 parcels, which tended to be localised to the occipital and temporal lobes but were not

widely distributed across these lobes.

4 Discussion

We found that thinner retinal neuronal layers measured by OCT were associated with
suboptimal MRI-measured brain structure and integrity, in a sample of largely healthy
community-based middle aged people. Specifically, thinner RNFL and GC-IPL were
associated with diminished structural brain integrity in midlife, as well as lower total cortical
surface area and lower subcortical GMV and older looking brains. Study members with
thinner GC-IPL, but not RNFL, also had thinner average cortex and larger volume of white
matter hyperintensities. Exploratory analyses of parcel-wise surface area and thickness
revealed that associations with RNFL and GC-IPL were widely distributed across the cortex,
rather than regionally-specific. These findings provide supporting evidence that the retinal
neuronal layers reflect alterations found in midlife structural brain integrity associated with
later risk for AD, supporting the proposition that the retina may be a useful biomarker for
brain health as early as midlife, and that non-invasive retinal imaging using OCT may

potentially be useful to detect early preclinical disease.

An increasing number of studies have investigated whether retinal neuronal
measurements are associated with brain measurements at various stages of AD. The findings
are inconsistent, with some studies finding an association between retinal and brain
measurements (Jorge et al., 2020; Lépez-de-Eguileta et al., 2022; Mauschitz et al., 2022;
Mejia-Vergara et al., 2021; Méndez-Gomez et al., 2018; Mutlu et al., 2018, 2017; Shi et al.,
2020, 2019; Uchida et al., 2020), some finding no association (Casaletto et al., 2017; den

Haan et al., 2019), and others with inconclusive results (Donix et al., 2021). However,
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methodological differences may explain some of this inconsistency—systematic differences
between OCT or MRI devices across manufacturers and models, choice of parameters and
settings, and the wide range of measurements which can be acquired from each of these
technologies make comparison across studies difficult. In particular, some studies have
focused on the hippocampus as an a priori region of interest, while others have taken a more

global approach by assessing whole-brain, regional, or voxel-based measures.

One of the largest studies to investigate this question to date, the Singapore
Epidemiology of Eye Diseases Study, found that thinner GC-IPL was associated with
reduced total brain volume and GMV in two out of five lobes, but thinner RNFL was
associated with GMV in the temporal lobe only (Ong et al., 2015). This aligns with our
findings, where GC-IPL was associated with a larger number of MRI measurements than
RNFL, although different regions were evaluated in each study. Another large study found
that RNFL and GC-IPL thickness were associated with grey and white matter measurements
in the visual pathway, but not globally (Mutlu et al., 2018). This is somewhat contradictory to
our findings, which suggest a more global association pattern, but we note that when cortical
thickness was examined at the parcel-level, the largest associations with GC-IPL thickness
tended to be in the occipital and temporal lobe, including the visual cortex. A recent study
from the UK Biobank suggests that retinal measures are associated with smaller cortical and
hippocampal volume in a large middle-aged volunteer sample (Chua et al., 2021). However,
this sample is biased in favour of higher education, socioeconomic status, and lower levels of
adversity; our findings thus add to those of the UK Biobank by examining a more widely-

representative, population-based sample (Brayne and Moffitt, 2022).

Retinal imaging technologies have a huge potential as a biomarker and predictive tool
in preclinical AD, particularly with the development of artificial intelligence approaches (Ng
et al., 2021). There has been rapid development of hardware (e.g., cheaper, higher resolution,

and faster scanning speed OCT devices) and software (e.g. artificial intelligence algorithms),
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for retinal imaging. Recent advances have included reliable diagnosis of optic disease and
risk stratification of morbidity and mortality using artificial intelligence and deep learning
(Milea et al., 2020; Nusinovici et al., 2022). However, retinal thinning is not specific for AD
and may occur in ageing and in other neurodegenerative diseases. This study provides
evidence for links between at-risk patterns of structural brain integrity and retinal thinning in
midlife, decades before any AD diagnosis. The retina is likely to contain more numerous and
specific biomarkers of ageing and AD, such as vascular abnormalities, angiography, thinning
of other retinal layers that can be captured with emerging technologies such as hyperspectral
or amyloid imaging of the retina. Combining these retinal biomarkers and other risk factors to
predict risk could leverage an artificial intelligence or machine learning approach, to both

integrate and differentiate these risk factors for accelerated ageing and AD (Ng et al., 2021).

It is notable that between-subjects differences in both brain and retinal health were
evident in this sample of middle-aged participants who were all the same chronological age.
This suggests that anatomical changes typical of age-related diseases are detectable in
midlife, decades before any expected symptom onset or diagnosis. Structural brain
alterations, including white matter hyperintensities and older looking brains, have been
associated with cognitive decline from childhood to age 45 in the current sample (d’ Arbeloff
et al., 2019; Elliott et al., 2019), as has retinal thinning (Barrett-Young et al., 2022),
suggesting that neuropathological processes are associated with subclinical cognitive decline
decades before typical AD diagnosis. Accelerated thinning of the optic nerve in preclinical
AD could be anterograde, from RGC pathology in the inner retina (where the vascular tree is
sparse with low oxygen tensions (Casson et al., 2021) and amyloid deposits have been found
(Koronyo et al., 2012)), or retrograde, from loss of destination cells in the thalamus and other
brain targets of the optic nerve. Our study did not detect a closer association between

thalamus volume and retinal measures.
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We found that the pattern of subcortical associations was widely distributed. This is
notable because it could be hypothesised that retinal neuronal degeneration would be
primarily reflective of neurodegeneration in the areas which are most closely connected to the
retinal ganglion cells, i.e., the lateral geniculate nucleus or the occipital cortex. Alternatively,
it could be hypothesised that regions known to atrophy in AD may be preferentially targeted
by the same neuropathology as that affecting the retina, so associations could be expected
between such areas, e.g., the hippocampus, and retinal thickness. Such specific hypotheses
would, however, result in missing any broader patterns of associations. Although these
specific areas were associated with lower retinal thickness, our findings suggest that links
between the retina and the brain in midlife are not restricted to particular regions, but that
retinal neuronal measurements from OCT are instead reflective of overall brain integrity. In
addition, we found evidence of targeted associations in the hippocampus, cerebellum, and
ventral diencephalon that were independent of globally smaller total brain volume. Future
studies should thus consider whether global or regional effects are driving any associations
with retinal thickness, including whether global or region-specific effects discriminate

between neurodegenerative disorders.

Limitations of this study are that the analyses conducted were cross-sectional, as MRI
and OCT were conducted during the age 45 assessment. It is likely longitudinal studies with
repeated OCT and MRI measures are required to determine the nature of this association.
Furthermore, the sample is predominantly New Zealand European, so whether these findings
generalise to people of non-white ethnicities is unknown. We were unable to confirm a
diagnosis of preclinical AD in this cohort through established biomarkers, such as amyloid
beta (APso, AP42) or hyperphosphorylated tau. There are other explanations for associations
between retinal thinning and structural brain integrity which do not presuppose that a person
will develop AD, such as other neurodegeneative diseases, substance or alcohol abuse, or

traumatic brain injury. As this is a population-based cohort, we did not exclude any
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participants on the basis of health status, except for those with diseases directly affecting the

retinal layers or MRI brain measurements.

The overarching goal of this paper was to provide further evidence for the potential of
OCT as a clinically-useful screening tool for identifying preclinical disease in the
community, particularly those at risk of developing AD, and for monitoring disease
progression. These findings should inform applications to improve screening of AD risk at an
early stage of the disease and to ensure equitable access to such screening through the use of
existing retinal imaging technology. OCT technology is already widely available in eye
clinics, some primary care facilities, and most retail optometrists. Work is progressing on
using OCT images in artificial intelligence/machine learning applications for the diagnosis of
AD, and manufacturers of commercial ophthalmology imaging tools are likely to implement
models into their devices when evidence of efficacy is clear. Potential incorporation of
machine learning into OCT technology would widen the availability of retinal AD screening
to regional and marginalised populations, as well as establishing and expanding large and

validated normalised databases to which each individual can be compared.

In our population-based sample of middle-aged adults, we found that thinner retinal
neuronal layers (both mean RNFL and mean GC-1PL) were associated with alterations in
structural brain integrity associated with increased risk for later AD. These associations were
evident at the whole-brain, regional, and parcel levels, suggesting that RNFL and GC-IPL
reflect widespread patterns of at-risk brain structure, rather than preferentially in regions
involved in the visual pathway. These findings suggest that RNFL and GC-IPL may be
readily-measured indices of brain health, further supporting their possible adoption as

potential early biomarkers of later AD risk.
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Table
Table 1. Descriptive statistics

n M SD
Mean RNFL thickness (um) 863 92.83 9.31
Mean GC+IPL Thickness (um) 859 82.87 5.86
brainAGE (z score) 869 0.00 8.01
Cortical surface area (mm?)? 861 185472.12 16347.12
Cortical thickness (mm)?@ 861 2.56 .09
White matter hyperintensities*® 852 6.52 .80
Accumbens volume (mm?) 861 488.25 77.81
Amygdala volume (mm?3) 861 1739.80 204.71
Brain stem volume (mm?) 861 21775.42 2564.87
Caudate volume (mm?3) 861 3313.65 421.36
Cerebellum cortex volume, (mm?3) 861 60482.18 6250.09
Hippocampus volume (mm?) 861 4322.67 423.3
Pallidum volume (mm?3) 861 1976.91 215.94
Putamen volume (mm?) 861 4699.70 536.45
Thalamus volume (mm?3) 861 7785.12 797.95
Ventral diencephalon volume (mm?3) 861 4141.99 409.63

aWhole brain; Plog transformed.
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Figure 1. Retinal measurements of optic nerve structure. (A) Fundus photograph of a normal eye showing the areas scanned. (B) Ganglion cell-
inner plexiform layer (GC-1PL) map showing a normal pattern. The GC-IPL thickness used for analysis was the average across the donut shaped
area between the two ovals. (C) OCT cross-section through the fovea (indicated on main photo by dotted line), with automated segmentation
lines showing the GC-IPL layer thickness measurement (indicated by the white line). (D) The retinal nerve fibre layer (RNFL) map shows
thickest part of the nerve fibre layer close to the optic disc and at the superior and inferior poles. The thickness is calculated on a circle of 3.5mm
diameter (indicated by red line, and on main photo by dotted line). (E) The retinal cross section on the 3.5mm circle, showing automated
segmentation and the RNFL thickness measurement (indicated by white line). The RNFL thickness used for analysis was the average thickness

around the 3.5mm circle.
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Figure 2. Forest plot showing standardised effect sizes (beta coefficients with 95% confidence intervals) for the associations between retinal nerve
fibre layer (RNFL; blue circles) and ganglion cell-inner plexiform layer (GCL; pink squares) and whole brain variables. All models were adjusted for
sex and axial length. Number of observations for each analysis differs due to differing quality control criteria (brainAGE and RNFL n = 828; cortical
SA/CT and RNFL n = 821; WMH and RNFL n = 814; brainAGE and GC-IPL n = 825; cortical SA/CT and GC-IPL n = 818; WMH and GC-IPL n =
812. SA = surface area; CT = cortical thickness; WMH = white matter hyperintensities (log transformed)).
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Figure 3. Forest plot showing standardised effect sizes (beta coefficients with 95% confidence intervals) for the associations between retinal
nerve fibre layer (RNFL; blue circles) and ganglion cell-inner plexiform layer (GCL; pink squares) and grey matter volume of ten subcortical
regions. Closed shapes indicate model was adjusted for sex and axial length; open shapes indicate model was adjusted for total brain volume
as well as sex and axial length. A false discovery rate procedure was used to correct for multiple comparisons. Number of observations for
analyses with RNFL n = 821; GCL n = 818. Ventral DC = ventral diencephalon.
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Figure 4. Associations between retinal thickness and parcel-wise measures of cortical surface
area and thickness. (A) Retinal nerve fibre layer thickness and cortical surface area (n = 821);
(B) Ganglion cell-inner plexiform layer thickness and cortical surface area (n = 818); (C)
Ganglion cell-inner plexiform layer thickness and cortical thickness (n = 818). All models
were adjusted for sex and axial length. Coloured parcels represent standardised coefficients
with p < .05 after false discovery rate correction.
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