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Abstract 

We investigated the extent to which measures of retinal neuronal thickness capture 

variability in the structural integrity of the brain in a large population-based cohort followed 

from birth to midlife. Using data from the Dunedin Multidisciplinary Health and 

Development Study (n=1037; analytic n=828, aged 45 years), we specifically tested for 

associations between optical coherence tomography-measured retinal neuronal layers and 

MRI-measured structural brain integrity. We found that Study members who had thinner 

retinal neuronal layers had thinner average cortex, smaller total cortical surface area, smaller 

subcortical grey matter volumes, larger volume of white matter hyperintensities as well as 

older looking brains. This suggests that retinal neuronal thickness reflects differences in 

midlife structural brain integrity consistent with accelerated cognitive decline and increased 

risk for later dementia, further supporting the proposition that the retina may be a biomarker 

of brain aging as early as midlife. 

 

Keywords: optical coherence tomography, retina, Alzheimer’s, magnetic resonance imaging, 

brain aging. 
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1. Introduction 

The retina has potential as a biomarker of brain health and cognitive functioning as well 

as age-related neurodegenerative diseases, including Alzheimer’s disease (AD), because the 

retina shares many similarities with the brain and can be easily, repeatedly, and non-

invasively imaged with high precision using technology which is already widely available 

(Alber et al., 2020; Cheung et al., 2021, 2017; London et al., 2013). Diffuse cortical atrophy 

occurs in normal ageing but is more pronounced in AD, beginning in the medial temporal 

lobes in preclinical AD and gradually progressing throughout the brain (Eckerström et al., 

2018; Kulason et al., 2020; Pini et al., 2016). The neuropathological changes of AD begin 

more than a decade prior to the onset of clinical symptoms, (Sperling et al., 2014) and 

existing treatments for AD may be most effective in the earliest stages of the disease (Musiek 

and Morris, 2021). Thus, biomarkers that can identify people with preclinical AD or at high 

risk of developing AD, and that are able to be widely implemented for population screening, 

are imperative to initiating treatments at the optimal stage, preserving quality of life.  

The retinal ganglion cells send their axons across the retinal surface to form the optic 

nerve, which projects posteriorly to targets in the brain (Chan et al., 2019; London et al., 

2013). Normal ageing is associated with gradual thinning of the optic nerve; in AD a more 

profound loss of optic nerve axons can be found, in a diffuse and non-specific pattern, 

(Hinton et al., 1986) and this can be detected in early stages as thinning of the retinal nerve 

fibre layer (RNFL) and ganglion cell-inner plexiform layer (GC-IPL; Ge et al., 2021; Ikram 

et al., 2012; Mejia-Vergara et al., 2020). There is also specific amyloid detectable in retinal 

ganglion cell bodies and dendritic inputs, with some indication that the retina may be an early 

site for amyloid formation (Hadoux et al., 2019; Koronyo et al., 2012). There is evidence that 

subclinical retinal measures of optic nerve thinning occur in preclinical AD, and have been 

associated with indicators including amyloid burden, (Asanad et al., 2020; Ko et al., 2018; 
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Santos et al., 2018), genetic risk (Santos et al., 2018), and cognitive performance (Barrett-

Young et al., 2022; Ko et al., 2018). 

A small number of studies have found associations between structural measurements of 

the brain with retinal measurements, although these studies, with the exception of the UK 

Biobank (Chua et al., 2021), have tended to involve older participants (≥ 65 years) or patients 

with diagnosed AD (Casaletto et al., 2017; den Haan et al., 2019; Donix et al., 2021; Jorge et 

al., 2020; Mejia-Vergara et al., 2021; Méndez-Gómez et al., 2018; Ong et al., 2015; Shi et al., 

2019; Uchida et al., 2020; Ueda et al., 2022). The maximum clinical utility of retinal imaging 

in AD, however, is in the pre-diagnosis stages, before symptoms progress to the level where 

daily living is affected and irreversible neurological damage has occurred. Retinal imaging, 

being increasingly widely available even in primary care settings (e.g., optometry), as well as 

being repeatable and non-invasive, offers an attractive screening option for preclinical AD. 

Therefore, the question of interest is whether thinning of the retinal neuronal layers is 

associated with risk-related alterations in structural brain integrity in the decades before an 

AD diagnosis.  

Recent studies have investigated these associations in cognitively unimpaired 

individuals, finding associations between retinal layers including the RNFL and GC-IPL and 

a number of structural brain measures, most commonly hippocampal volume (Chua et al., 

2021; López-de-Eguileta et al., 2022; Shi et al., 2020), but also the lingual gyrus (Shi et al., 

2020) and grey and white matter volumes (Chua et al., 2021). A recent study found 

correlations between RNFL, GC-IPL, and other retinal thickness measures with a large 

number of cortical thicknesses and volumes, in participants both with and without increased 

familial and genetic risk for AD (López-Cuenca et al., 2022). While most previous studies 

focus on elderly individuals, the current study contributes to the growing literature on this 

topic by examining a population-based sample of same-aged adults in midlife (aged 45 years 

at assessment), thus allowing us to examine the natural variations in the population without 
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the effects of age. Our study design enables a unique opportunity to investigate early 

detectable changes in age-related neurological diseases in a sample currently free of AD 

diagnoses.  

We hypothesised that thinner RNFL and GC-IPL measured by optical coherence 

tomography (OCT) would be associated with diminished structural brain integrity in midlife 

as reflected by thinner average cortex, smaller cortical surface area, smaller subcortical grey 

matter volumes and older looking brains as estimated using a machine learning-based 

estimate of chronological age based on MRI-derived measures (Liem et al., 2017). We also 

hypothesised that thinner RNFL and GC-IPL would be associated with a higher volume of 

white matter hyperintensities, a commonly used clinical marker of AD risk. 

2. Method 

2.1 Participants 

Participants were members of the Dunedin Multidisciplinary Health and Development 

Study, a representative birth cohort (n = 1037; 91% of eligible births, 51.6% male) born 

between 1 April 1972 and 31 March 1973 in Aotearoa New Zealand. The cohort represents 

the full range of socioeconomic status in the general population of New Zealand and is 

predominantly New Zealand European (Pākehā; 93%). The study design and participant 

characteristics have been described extensively elsewhere (Poulton et al., 2015). Assessments 

were carried out at birth and ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most recently 

at age 45 (2017-2019), when 94% of the 997 living Study members participated. The 

Dunedin Study was approved by the Health and Disability Ethics Committee, Ministry of 

Health, New Zealand. Study members gave informed consent before participating. 

2.2 Optical coherence tomography (OCT) 

OCT measurements were taken at age 45, between April 2017 and April 2019. OCT 

scans were performed in the morning by trained technicians using a spectral domain OCT 
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machine (Cirrus HD-OCT, model 5000; Carl Zeiss Meditec). Mean peripapillary retinal 

nerve fibre layer (RNFL) and mean macular ganglion cell-inner plexiform layer (GC-IPL) 

thickness were calculated. RNFL thicknesses were generated on a 3.5mm circle from the 

optic disc cube. GC-IPL was generated from macular cube scan. Trained graders checked all 

scans for quality. Scans were removed from the final dataset due to insufficient OCT image 

quality (e.g. signal strength below 6, scan not correctly positioned, or image artefacts). Seven 

Study members were removed due to diseases affecting the retina (multiple sclerosis, retinitis 

pigmentosa, brain tumours, diabetic laser pan-retinal photocoagulation, and an anomalous 

optic nerve head). Another seven Study members were assessed by two ophthalmologists as 

having glaucoma (Singh et al., 2022); glaucomatous eyes were removed from the dataset and 

non-glaucomatous eyes were retained. When data from one eye were available, that eye was 

used; when both eyes were available, an average of the measurements from both eyes was 

used. Axial length was used as a covariate as it influences RNFL and GC-IPL thickness 

measurements (Röck et al., 2014). Axial length was measured for right and left eyes using 

Zeiss IOL Master (Germany). The machine was calibrated weekly, with room lighting set at 

520 lux and no pupil dilation. Mean axial length was calculated from both eyes.  

2.3 Magnetic resonance imaging (MRI) 

Study members were scanned using a MAGNETOM Skyra 3T scanner (Siemens 

Healthcare, Erlangen, Germany) equipped with a 64-channel head and neck coil (due to head 

size constraints, seven participants were scanned with a 20-channel head/neck coil) at the 

Pacific Radiology Group imaging centre in Dunedin, New Zealand, between August 2016 

and April 2019. High resolution T1-weighted images, three-dimensional fluid-attenuated 

inversion recovery (FLAIR) images, and a gradient echo field map were obtained. Structural 

MRI data were analysed using the Human Connectome Project (HCP) minimal preprocessing 

pipeline (Glasser et al., 2013). Outputs of the preprocessing pipeline were visually checked 

for accurate surface generation by examining each participant’s myelin map, pial surface, and 
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white matter boundaries. Study personnel who processed the MRI images were masked to 

participants’ retinal measurements. Of the participants with available structural MRI data, 

four were excluded due to major incidental findings or previous injuries (e.g. tumour or 

extensive damage to brain or skull), nine due to missing FLAIR or field map scans, and one 

due to poor surface mapping. Additionally, white matter hyperintensities measurements were 

removed from the dataset for three SMs due to multiple sclerosis and 8 Study members due to 

inaccurate labelling or low-quality data. 

The brain Age Gap Estimate (brainAGE) is a score that represents the difference, or 

gap, between a person’s chronological age and their estimated age based on multiple 

measures of brain structure including cortical thickness, surface area, and volume of 

subcortical grey matter, white matter, and cerebrospinal fluid (Liem et al., 2017). The 

formation of this measure has been described previously (Elliott et al., 2019). White matter 

hyperintensities (WMH) were identified and extracted from T1-weighted and FLAIR images 

processed using UBO Detector, a cluster-based, fully-automated pipeline (Jiang et al., 2018). 

Grey matter volumes were extracted for 10 subcortical structures using the FreeSurfer aseg 

parcellation (https://surfer.nmr.mgh.harvard.edu/). Mean total cortical surface area and 

average cortical thickness were estimated over 360 cortical areas in the HCP-Multi Modal 

Parcellation version 1.0 (Glasser et al., 2016). 

2.3.1 Image acquisition parameters. High resolution T1-weighted images were 

obtained using an MP-RAGE sequence with the following parameters: TR = 2400 ms; TE = 

1.98 ms; 208 sagittal slices; flip angle, 9°; FOV, 224 mm; matrix = 256×256; slice thickness 

= 0.9 mm with no gap (voxel size 0.9×0.875×0.875 mm); and total scan time = 6 min and 52 

s. 3D fluid-attenuated inversion recovery (FLAIR) images were obtained with the following 

parameters: TR = 8000 ms; TE = 399 ms; 160 sagittal slices; FOV = 240 mm; matrix = 

232×256; slice thickness = 1.2 mm (voxel size 0.9×0.9×1.2 mm); and total scan time = 5 min 

and 38 s. Additionally, a gradient echo field map was acquired with the following parameters: 
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TR = 712 ms; TE = 4.92 and 7.38 ms; 72 axial slices; FOV = 200 mm; matrix = 100×100; 

slice thickness = 2.0 mm (voxel size 2 mm isotropic); and total scan time = 2 min and 25 s. 

2.3.2 Image processing. Structural MRI data were analyzed using the Human 

Connectome Project (HCP) minimal preprocessing pipeline as extensively detailed elsewhere 

(Glasser et al., 2013). Briefly, T1-weighted and FLAIR images were processed through the 

PreFreeSurfer, FreeSurfer, and PostFreeSurfer pipelines. T1-weighted and FLAIR images 

were corrected for readout distortion using the gradient echo field map, coregistered, brain-

extracted, and aligned together in the native T1 space using boundary-based registration 

(Greve and Fischl, 2009). Images were then processed with a custom FreeSurfer recon-all 

pipeline that is optimized for structural MRI with higher resolution than 1 mm isotropic. 

Finally, recon-all output were converted into CIFTI format and registered to common 

32k_FS_LR mesh using MSM-sulc (Robinson et al., 2014). 

For each subject the mean cortical thickness and surface area were then extracted from 

each of the 360 cortical areas in the HCP-MPP1.0 parcellation (Glasser et al., 2016). 

Subcortical volumes were extracted separately using the automatic segmentation (“aseg”) 

step of FreeSurfer version 6.0. FreeSurfer version 6.0 was used because the HCP FreeSurfer 

pipeline was optimized for the cortical surface, resulting in lower-quality segmentation of 

subcortical volumes in our dataset. Outputs of the minimal preprocessing pipeline were 

visually checked for accurate surface generation by examining each subject’s myelin map, 

pial surface, and white matter boundaries. Accuracy of subcortical segmentation was 

confirmed by visual inspection of the "aseg" labels overlaid on the volumes. Of the 875 study 

members for whom data were available, 4 were excluded due to major incidental findings or 

previous injuries (e.g., large tumours or extensive damage to the brain/skull), 9 due to 

missing FLAIR or field map scans, and 1 due to poor surface mapping, yielding 861 datasets 

for analyses. 
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To identify and extract the total volume of white matter hyperintensities (WMH), T1-

weighted and FLAIR images for each participant were processed with UBO Detector, a 

cluster-based, fully-automated pipeline with high reliability in our data (test-retest ICC = 

0.87, 95% CI = [.73, .95]) and out of sample performance (Jiang et al., 2018). The resulting 

WMH probability maps were thresholded at 0.7, which is the suggested standard. WMH 

volume is measured in Montreal Neurological Institute (MNI) space, removing the influence 

of differences in brain volume and intracranial volume on WMH volume. Because of the 

potential for bias and false positives due to the thresholds and masks applied in UBO, the 

resulting WMH maps for each participant were manually checked by two independent raters 

to ensure that false detections did not substantially contribute to estimates of WMH volume. 

Visual inspections were done blind to the participants’ cognitive status. Due to the tendency 

of automated algorithms to mislabel regions surrounding the septum as white matter 

hyperintensities, these regions were manually masked out, to further ensure the most accurate 

grading possible. Of the 875 Study members for whom WMH data were available, 4 were 

excluded due to major incidental findings or previous injuries (e.g., large tumors or extensive 

damage to the brain/skull), 8 due to missing FLAIR scans, 3 due to diagnosis with multiple 

sclerosis, and 8 due to inaccurate white matter labelling or low-quality MRI data, yielding 

852 datasets for analyses. 

2.4 Data analysis 

Analyses were conducted in Stata/SE 17.0 between February and July 2022. First, 

linear regression models were constructed where each retinal variable was entered as a 

predictor of brainAGE (ICC for test-retest reliability = .81); next, mean RNFL and mean GC-

IPL were used to predict global structural measures (total cortical surface area, average 

cortical thickness, and white matter hyperintensities volume; ICCs = .996, .94, and .87 

respectively). White matter hyperintensities volume was log transformed as the data were 

non-normal; all other variables met criteria for parametric testing without adjustment. Next, 
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we used mean RNFL and mean GC-IPL to predict the grey matter volume (GMV) of 10 

subcortical structures (mean ICC = .956). Finally, to explore the distribution patterns of 

associations, parcel-wise analyses were conducted when statistically significant associations 

were observed with global cortical surface area and average cortical thickness. In these post-

hoc analyses, we ran linear regressions using mean RNFL and mean GC-IPL to predict the 

surface area and cortical thickness each of the 360 regions comprising the parcellation 

scheme described above (Glasser et al., 2016; mean ICCs = .846 and .942 for parcel-wise 

cortical thickness and surface area, respectively). As mean RNFL was not significantly 

associated with average cortical thickness, parcel-wise analysis with mean RNFL was only 

conducted with surface area. We corrected for multiple comparisons across the subcortical 

and parcel-wise analyses performed using a false discovery rate (FDR) procedure (Benjamini 

and Hochberg, 1995); for analyses with global variables we used an alpha level of .05. All 

tests were two-sided. Sex and axial length were included as covariates in all analyses. 

Analyses with regional subcortical structures were repeated controlling for total brain 

volume, which tests relative size of a region rather than absolute size (Hariri, 2020). The 

premise and analysis plan for this study was preregistered in December 2021 

(https://dunedinstudy.otago.ac.nz/files/1639953449_Barrett-

Young_CP_OCT%20and%20MRI_revised_final.pdf). Analyses were checked for 

reproducibility by an independent data analyst, who recreated the code by working from the 

manuscript and applying it to a fresh dataset.  

3 Results 

Data collection of retinal and brain structural data was at 45 years of age, completed 

between August 2016 and April 2019. The final dataset included those Study members with 

both RNFL and MRI data available (n = 828, female n = 413 [49.9%], male n = 415 [50.1%]) 

for analyses using RNFL variables, and those Study members with both GC-IPL and MRI 

data available (n = 825, female n = 413 [50.1%], male n = 412 [49.9%]) for analyses using 
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GC-IPL variables. See Figure 1 for diagram of retinal measures and Table 1 for descriptive 

statistics of retinal and MRI measures. 

3.1 Retinal predictors of brain age and cortical brain structure 

Study members with thinner mean RNFL (β = -.119, p < .001) and thinner mean GC-

IPL (β = -.111, p = .001) had a larger brain age gap estimate (brainAGE; Liem et al., 2017) 

after adjustment for sex and axial length, indicating an older looking brain (Figure 2). Study 

members with thinner mean RNFL (β = .140, p < .001) and thinner mean GC-IPL (β = .095, 

p < .001) had smaller total cortical surface area. Study members with thinner mean GC-IPL 

(β = .072, p = .043) but not mean RNFL (β = .036, p = .328) had thinner average cortex. 

Study members with thinner mean GC-IPL (β = -.071, p =.045) but not mean RNFL (β = -

.068, p = .061) had a larger volume of white matter hyperintensities. 

3.2 Retinal predictors of subcortical grey matter volume (GMV) 

Study members with thinner mean RNFL and mean GC-IPL had smaller GMV of all 

ten subcortical structures after false discovery rate correction, indicating that retinal thinning 

corresponds to non-localised, rather than specific regional, subcortical GMV loss (Figure 3). 

Adding total brain volume as a covariate attenuated the associations between some 

subcortical GMVs and RNFL and GC-IPL, but associations remained significant between 

both retinal variables and GMV of brain stem, cerebellum, hippocampus, pallidum, and 

ventral DC; as well as between RNFL and GMV of the putamen and thalamus (Figure 3).  

3.3 Exploratory parcel-wise analysis 

Based on significant associations observed between RNFL and GC-IPL and total 

cortical surface area, and GC-IPL and average cortical thickness, exploratory parcel-wise 

analyses were conducted to determine whether the associations were largely distributed or 

localised (Figure 4). Study members with thinner RNFL had lower surface area in 274 of 360 

parcels after correction for multiple comparisons, which were widely distributed across the 
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cortex. Study members with thinner GC-IPL had lower surface area in 112 parcels, again 

widely distributed across the cortex. Study members with thinner GC-IPL had thinner cortex 

in 5 parcels, which tended to be localised to the occipital and temporal lobes but were not 

widely distributed across these lobes.  

4 Discussion 

We found that thinner retinal neuronal layers measured by OCT were associated with 

suboptimal MRI-measured brain structure and integrity, in a sample of largely healthy 

community-based middle aged people. Specifically, thinner RNFL and GC-IPL were 

associated with diminished structural brain integrity in midlife, as well as lower total cortical 

surface area and lower subcortical GMV and older looking brains. Study members with 

thinner GC-IPL, but not RNFL, also had thinner average cortex and larger volume of white 

matter hyperintensities. Exploratory analyses of parcel-wise surface area and thickness 

revealed that associations with RNFL and GC-IPL were widely distributed across the cortex, 

rather than regionally-specific. These findings provide supporting evidence that the retinal 

neuronal layers reflect alterations found in midlife structural brain integrity associated with 

later risk for AD, supporting the proposition that the retina may be a useful biomarker for 

brain health as early as midlife, and that non-invasive retinal imaging using OCT may 

potentially be useful to detect early preclinical disease.  

An increasing number of studies have investigated whether retinal neuronal 

measurements are associated with brain measurements at various stages of AD. The findings 

are inconsistent, with some studies finding an association between retinal and brain 

measurements (Jorge et al., 2020; López-de-Eguileta et al., 2022; Mauschitz et al., 2022; 

Mejia-Vergara et al., 2021; Méndez-Gómez et al., 2018; Mutlu et al., 2018, 2017; Shi et al., 

2020, 2019; Uchida et al., 2020), some finding no association (Casaletto et al., 2017; den 

Haan et al., 2019), and others with inconclusive results (Donix et al., 2021). However, 
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methodological differences may explain some of this inconsistency—systematic differences 

between OCT or MRI devices across manufacturers and models, choice of parameters and 

settings, and the wide range of measurements which can be acquired from each of these 

technologies make comparison across studies difficult. In particular, some studies have 

focused on the hippocampus as an a priori region of interest, while others have taken a more 

global approach by assessing whole-brain, regional, or voxel-based measures.  

One of the largest studies to investigate this question to date, the Singapore 

Epidemiology of Eye Diseases Study, found that thinner GC-IPL was associated with 

reduced total brain volume and GMV in two out of five lobes, but thinner RNFL was 

associated with GMV in the temporal lobe only (Ong et al., 2015). This aligns with our 

findings, where GC-IPL was associated with a larger number of MRI measurements than 

RNFL, although different regions were evaluated in each study. Another large study found 

that RNFL and GC-IPL thickness were associated with grey and white matter measurements 

in the visual pathway, but not globally (Mutlu et al., 2018). This is somewhat contradictory to 

our findings, which suggest a more global association pattern, but we note that when cortical 

thickness was examined at the parcel-level, the largest associations with GC-IPL thickness 

tended to be in the occipital and temporal lobe, including the visual cortex. A recent study 

from the UK Biobank suggests that retinal measures are associated with smaller cortical and 

hippocampal volume in a large middle-aged volunteer sample (Chua et al., 2021). However, 

this sample is biased in favour of higher education, socioeconomic status, and lower levels of 

adversity; our findings thus add to those of the UK Biobank by examining a more widely-

representative, population-based sample (Brayne and Moffitt, 2022). 

Retinal imaging technologies have a huge potential as a biomarker and predictive tool 

in preclinical AD, particularly with the development of artificial intelligence approaches (Ng 

et al., 2021). There has been rapid development of hardware (e.g., cheaper, higher resolution, 

and faster scanning speed OCT devices) and software (e.g. artificial intelligence algorithms), 
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for retinal imaging. Recent advances have included reliable diagnosis of optic disease and 

risk stratification of morbidity and mortality using artificial intelligence and deep learning 

(Milea et al., 2020; Nusinovici et al., 2022). However, retinal thinning is not specific for AD 

and may occur in ageing and in other neurodegenerative diseases. This study provides 

evidence for links between at-risk patterns of structural brain integrity and retinal thinning in 

midlife, decades before any AD diagnosis. The retina is likely to contain more numerous and 

specific biomarkers of ageing and AD, such as vascular abnormalities, angiography, thinning 

of other retinal layers that can be captured with emerging technologies such as hyperspectral 

or amyloid imaging of the retina. Combining these retinal biomarkers and other risk factors to 

predict risk could leverage an artificial intelligence or machine learning approach, to both 

integrate and differentiate these risk factors for accelerated ageing and AD (Ng et al., 2021). 

It is notable that between-subjects differences in both brain and retinal health were 

evident in this sample of middle-aged participants who were all the same chronological age. 

This suggests that anatomical changes typical of age-related diseases are detectable in 

midlife, decades before any expected symptom onset or diagnosis. Structural brain 

alterations, including white matter hyperintensities and older looking brains, have been 

associated with cognitive decline from childhood to age 45 in the current sample (d’Arbeloff 

et al., 2019; Elliott et al., 2019), as has retinal thinning (Barrett-Young et al., 2022), 

suggesting that neuropathological processes are associated with subclinical cognitive decline 

decades before typical AD diagnosis. Accelerated thinning of the optic nerve in preclinical 

AD could be anterograde, from RGC pathology in the inner retina (where the vascular tree is 

sparse with low oxygen tensions (Casson et al., 2021) and amyloid deposits have been found 

(Koronyo et al., 2012)), or retrograde, from loss of destination cells in the thalamus and other 

brain targets of the optic nerve. Our study did not detect a closer association between 

thalamus volume and retinal measures. 
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We found that the pattern of subcortical associations was widely distributed. This is 

notable because it could be hypothesised that retinal neuronal degeneration would be 

primarily reflective of neurodegeneration in the areas which are most closely connected to the 

retinal ganglion cells, i.e., the lateral geniculate nucleus or the occipital cortex. Alternatively, 

it could be hypothesised that regions known to atrophy in AD may be preferentially targeted 

by the same neuropathology as that affecting the retina, so associations could be expected 

between such areas, e.g., the hippocampus, and retinal thickness. Such specific hypotheses 

would, however, result in missing any broader patterns of associations. Although these 

specific areas were associated with lower retinal thickness, our findings suggest that links 

between the retina and the brain in midlife are not restricted to particular regions, but that 

retinal neuronal measurements from OCT are instead reflective of overall brain integrity. In 

addition, we found evidence of targeted associations in the hippocampus, cerebellum, and 

ventral diencephalon that were independent of globally smaller total brain volume. Future 

studies should thus consider whether global or regional effects are driving any associations 

with retinal thickness, including whether global or region-specific effects discriminate 

between neurodegenerative disorders.  

Limitations of this study are that the analyses conducted were cross-sectional, as MRI 

and OCT were conducted during the age 45 assessment. It is likely longitudinal studies with 

repeated OCT and MRI measures are required to determine the nature of this association. 

Furthermore, the sample is predominantly New Zealand European, so whether these findings 

generalise to people of non-white ethnicities is unknown. We were unable to confirm a 

diagnosis of preclinical AD in this cohort through established biomarkers, such as amyloid 

beta (Aβ40, Aβ42) or hyperphosphorylated tau. There are other explanations for associations 

between retinal thinning and structural brain integrity which do not presuppose that a person 

will develop AD, such as other neurodegeneative diseases, substance or alcohol abuse, or 

traumatic brain injury. As this is a population-based cohort, we did not exclude any 
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participants on the basis of health status, except for those with diseases directly affecting the 

retinal layers or MRI brain measurements.  

The overarching goal of this paper was to provide further evidence for the potential of 

OCT as a clinically-useful screening tool for identifying preclinical disease in the 

community, particularly those at risk of developing AD, and for monitoring disease 

progression. These findings should inform applications to improve screening of AD risk at an 

early stage of the disease and to ensure equitable access to such screening through the use of 

existing retinal imaging technology. OCT technology is already widely available in eye 

clinics, some primary care facilities, and most retail optometrists. Work is progressing on 

using OCT images in artificial intelligence/machine learning applications for the diagnosis of 

AD, and manufacturers of commercial ophthalmology imaging tools are likely to implement 

models into their devices when evidence of efficacy is clear. Potential incorporation of 

machine learning into OCT technology would widen the availability of retinal AD screening 

to regional and marginalised populations, as well as establishing and expanding large and 

validated normalised databases to which each individual can be compared. 

In our population-based sample of middle-aged adults, we found that thinner retinal 

neuronal layers (both mean RNFL and mean GC-IPL) were associated with alterations in 

structural brain integrity associated with increased risk for later AD. These associations were 

evident at the whole-brain, regional, and parcel levels, suggesting that RNFL and GC-IPL 

reflect widespread patterns of at-risk brain structure, rather than preferentially in regions 

involved in the visual pathway. These findings suggest that RNFL and GC-IPL may be 

readily-measured indices of brain health, further supporting their possible adoption as 

potential early biomarkers of later AD risk. 
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Table 

Table 1. Descriptive statistics 

 
n  M  SD 

Mean RNFL thickness (µm) 863 92.83 9.31 

Mean GC+IPL Thickness (µm) 859 82.87 5.86 

brainAGE (z score) 869 0.00 8.01 

Cortical surface area (mm2)a 861 185472.12 16347.12 

Cortical thickness (mm)a 861 2.56 .09 

White matter hyperintensitiesa,b 852 6.52 .80 

Accumbens volume (mm3) 861 488.25 77.81 

Amygdala volume (mm3) 861 1739.80 204.71 

Brain stem volume (mm3) 861 21775.42 2564.87 

Caudate volume (mm3) 861 3313.65 421.36 

Cerebellum cortex volume, (mm3) 861 60482.18 6250.09 

Hippocampus volume (mm3) 861 4322.67 423.3 

Pallidum volume (mm3) 861 1976.91 215.94 

Putamen volume (mm3) 861 4699.70 536.45 

Thalamus volume (mm3) 861 7785.12 797.95 

Ventral diencephalon volume (mm3) 861 4141.99 409.63 
aWhole brain; blog transformed.  
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Figures 

 

Figure 1. Retinal measurements of optic nerve structure. (A) Fundus photograph of a normal eye showing the areas scanned. (B) Ganglion cell-

inner plexiform layer (GC-IPL) map showing a normal pattern. The GC-IPL thickness used for analysis was the average across the donut shaped 

area between the two ovals. (C) OCT cross-section through the fovea (indicated on main photo by dotted line), with automated segmentation 

lines showing the GC-IPL layer thickness measurement (indicated by the white line). (D) The retinal nerve fibre layer (RNFL) map shows 

thickest part of the nerve fibre layer close to the optic disc and at the superior and inferior poles. The thickness is calculated on a circle of 3.5mm 

diameter (indicated by red line, and on main photo by dotted line). (E) The retinal cross section on the 3.5mm circle, showing automated 

segmentation and the RNFL thickness measurement (indicated by white line). The RNFL thickness used for analysis was the average thickness 

around the 3.5mm circle.  
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6  

 

  

Figure 2. Forest plot showing standardised effect sizes (beta coefficients with 95% confidence intervals) for the associations between retinal nerve 

fibre layer (RNFL; blue circles) and ganglion cell-inner plexiform layer (GCL; pink squares) and whole brain variables. All models were adjusted for 

sex and axial length. Number of observations for each analysis differs due to differing quality control criteria (brainAGE and RNFL n = 828; cortical 

SA/CT and RNFL n = 821; WMH and RNFL n = 814; brainAGE and GC-IPL n = 825; cortical SA/CT and GC-IPL n = 818; WMH and GC-IPL n = 

812. SA = surface area; CT = cortical thickness; WMH = white matter hyperintensities (log transformed)). 
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Figure 3. Forest plot showing standardised effect sizes (beta coefficients with 95% confidence intervals) for the associations between retinal 

nerve fibre layer (RNFL; blue circles) and ganglion cell-inner plexiform layer (GCL; pink squares) and grey matter volume of ten subcortical 

regions. Closed shapes indicate model was adjusted for sex and axial length; open shapes indicate model was adjusted for total brain volume 

as well as sex and axial length. A false discovery rate procedure was used to correct for multiple comparisons. Number of observations for 

analyses with RNFL n = 821; GCL n = 818. Ventral DC = ventral diencephalon. 
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Figure 4. Associations between retinal thickness and parcel-wise measures of cortical surface 

area and thickness. (A) Retinal nerve fibre layer thickness and cortical surface area (n = 821); 

(B) Ganglion cell-inner plexiform layer thickness and cortical surface area (n = 818); (C) 

Ganglion cell-inner plexiform layer thickness and cortical thickness (n = 818). All models 

were adjusted for sex and axial length. Coloured parcels represent standardised coefficients 

with p < .05 after false discovery rate correction.  
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