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Abstract

Liver fibrosis staging is clinically important for liver disease progression prediction. As the portal
tract fibrotic quantity and size in a liver biopsy correlate with the fibrosis stage, an accurate
analysis of portal tract regions is clinically critical. Manual annotations of portal tract regions,
however, are time-consuming and subject to large inter- and intra-observer variability. To address
such a challenge, we develop a Multiple Up-sampling and Spatial Attention guided UNet model
(MUSA-UNet) to segment liver portal tract regions in whole-slide images of liver tissue slides. To
enhance the segmentation performance, we propose to use depth-wise separable convolution,
the spatial attention mechanism, the residual connection, and multiple up-sampling paths in the
developed model. This study includes 53 histopathology whole slide images from patients who
received liver transplantation. In total, 6,012 patches derived from 30 images are used for our
deep learning model training and validation. The remaining 23 whole slide images are utilized for
the model testing. The average liver portal tract segmentation performance of the developed
MUSA-UNet is 0.94 (Precision), 0.85 (Recall), 0.89 (F1 Score), 0.89 (Accuracy), 0.80 (Jaccard
Index), and 0.91 (Fowlkes—Mallows Index), respectively. The clinical Scheuer fibrosis stage
presents a strong correlation with the resulting average portal tract fibrotic area (R=0.681,
p<0.001) and portal tract percentage (R=0.335, p=0.02) computed from the MUSA-UNet
segmentation results. In conclusion, our developed deep learning model MUSA-UNet can
accurately segment portal tract regions from whole-slide images of liver tissue biopsies,

presenting its promising potential to assist liver disease diagnosis in a computational manner.

Keywords: Deep learning; Image segmentation; Liver portal tract; Liver fibrosis staging; Attention

mechanism
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1. INTRODUCTION

Detection of early stage fibrosis in transplant liver biopsies is important for predicting disease
progression and guiding medical management!. Known as a strong predictor of liver disease
progression and mortality, liver fibrosis can be captured by multiple non-invasive medical imaging
techniques, such as computed tomography (CT), magnetic resonance elastography (MRE), and
transient elastography (TE)2. For accurate liver fibrosis staging, however, the histopathologic
examination of liver biopsy samples remains the “gold standard” for liver fibrosis assessment?.
Although numerous histopathological staging systems have been utilized for liver fibrosis
evaluation in current clinical practice, including Knodell, Metavir, Ishak, and Scheuer systems,
only manual reviews or semi-quantitative evaluations are conducted by these staging systems,

resulting in large inter- and intra-observer variability®®.

To reduce such variations, evaluation methods based on artificial intelligence (Al) algorithms,
such as random forests, K-nearest neighbors, and support vector machines, have been
developed to provide objective diagnostic tools for liver fibrosis staging®®. In contrast to these
conventional machine learning methods, deep learning has emerged as a powerful tool for diverse
biomedical image processing studies due to its great success across different image modalities®.
The family of deep learning methods originated from artificial neural networks that consist of
layers of computational nodes analogous to neurons in human brains'®!!, Deep Convolutional
Neural Networks (DCNNSs) are a class of deep learning methods where convolution filters in
different layers extract image features at different resolution levels!?. Unlike the traditional
machine learning methods, DCNNs require no manual feature engineering and can support
multiple imaging modalities, including CT*14, MRI?, and ultrasonography images'®>!. The

resulting image features and other clinical demographic information (e.g., gender and age) can
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be leveraged for an integrated prediction analysis by multiple fully connected layers attached to

the DCNN backbone.

Deep neural networks are also powerful Al tools for the semantic segmentation analysis of a large
spectrum of biomedical images. Although it used to be time-consuming for a DCNN model to
produce a pixel by pixel semantic segmentation map?’, Fully Convolutional Network (FCN)*® has
been developed to improve the processing speed. As a significant breakthrough allowing for an
efficient segmentation map generation, FCN has presented its high value for radiography,
ultrasonography, and histopathological image segmentation'®. As the deep learning technigues
evolve, Mask-RCNN? has been proposed to combine the FCN with the Faster R-CNN?! model.
Among other applications?>23, Mask-RCNN has been successfully applied to recover clumped
steatosis droplets in liver histopathological images?®*. Leveraging the FCN as a building block, the
UNet architecture?® and its extensions, in turn, have become the widely used deep learning
models for biomedical image segmentation analysis. Recently, two UNet models were cascaded
to solve a segmentation task where the first UNet cropped volumes of interest (VOIs) from full-
resolution 3D CT image volumes and the second UNet classified voxels within such VOIs?.
Additionally, two UNet architectures sharing the same encoder were built for the prediction of two
separate segmentation maps, one for cell nuclei and another for boundaries?’. The resulting two
segmentation maps were next synthesized for the final segmentation results. In another study on
human skin, the convolution layer sequences in the original UNet architecture were replaced with
dense-connected blocks to improve the segmentation performance with multiphoton microscopy
images of in vivo human skins at the expense of doubled convolution layer number?®. Furthermore,
residual connections to convolution layer sequences were also proposed to outperform the

original UNet with fluorescence microscopy, dermoscopy, endoscopy, and MR images®.
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Inspired by the promising deep learning performance, some studies have been carried out for
fibrosis analysis with liver whole-slide images (WSIs). Although a study used a pre-trained
AlexNet® to predict the liver fibrosis stage, its input images were acquired from second-harmonic
generation microscopy®. A modified UNet architecture was also utilized to detect portal tract
regions in mouse liver biopsy histopathology WSIs, but no comparison experimental result was
given, In our prior work!, we have manually delineated portal tract regions in liver biopsy images
and demonstrated that the resulting quantitative portal tract fibrotic percentage and average portal
tract area of portal tract regions are correlated with the liver fibrosis stage made by domain experts.
However, such results are subject to intra- and inter-observer variability due to the manual
annotation process®. Therefore, the development of fully automated and accurate segmentation

algorithms for liver portal tract regions is an essential step to improve the evaluation consistency.

In this study, we propose a novel UNet-based deep convolutional neural network that
automatically segments portal tract regions from high-resolution liver biopsy WSIs. To enhance
performance, we substitute the two cascaded convolution structures in the original UNet design
with a Residual Spatial Attention (RSA) processing block. Additionally, the output layer of our
developed network directly synthesizes up-sampling features from multiple image resolutions. By
such a Multiple Up-sampling Path (MUP) mechanism, the developed deep learning model
reduces the false-negative rate and generates smoother borders. The network is trained with
image patches and applied to liver biopsy WSIs. The resulting portal tract fibrotic percentage and
average portal tract fibrotic area computed by our method present a strong correlation with the
clinical Scheuer fibrosis stage. The performance of our approach is both qualitatively and

guantitatively compared with that of the widely used methods. To demonstrate the contribution
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Figure 1 Overall schema of our proposed model. (A) Tissue sections were fixed, embedded, stained,
and scanned for WSI generation. Resulting WSIs with human annotations are provided to our proposed
MUSA-UNet for portal tract segmentation and statistical analyses; (B) We present the structure of the
proposed RSA block that substitutes cascaded convolutional layers in the traditional UNet architecture. It
primarily consists of one Depth-wise Separable Convolution (DSC) block and one Spatial Attention (SA)
module connected by a residual network; (C) Our proposed deep learning neural network MUSA-UNet for
image segmentation concatenates features from all decoders. As there are multiple paths providing lower
resolution features from decoders to the output layer, such a Multiple Up-sampling Path (MUP) mechanism

alleviates the false negative problem noticeable in the original UNet model in our study.
from individual modules, we also conduct ablation experiments and present ablation study results.
Our method presents superior performance, suggesting its promising potential to assist clinical

diagnosis.

2. MATERIALS AND METHODS

We present the overall schema of the proposed study in Figure 1(A). Images in our dataset are
scanned with stained liver biopsy sections and utilized for training our proposed deep neural

network. With network prediction results and human annotations, we quantitatively evaluate the
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network performance by statistical analyses. The Emory University Institutional Review Board

approved these studies and waived the need for informed consent (IRB # CR002-IRB00055904).
2.1 Tissue preparation

A retrospective study at Emory University was conducted on liver biopsies from patients who had
undergone liver transplantation. Liver biopsy specimens were fixed in 10% buffered formalin and
embedded in paraffin. Histologic sections were cut at 5 ym and stained with Masson’s trichrome
and hematoxylin and eosin (H&E). All sections were staged histologically by pathologist visual
assessments using the criteria of Scheuer score, ranging from 0 to 4. Biopsy specimens that
pathologists could not stage due to either inadequate materials or documented fragmentations in
the final pathological report were excluded. Biopsy specimens presenting the material adequacy
are those that have a core length of at least 10 mm and at least 5 portal tracts. Trichrome-stained
sections were scanned by an Aperio ScanScope CS (Aperio Technologies Inc., Vista, CA). The
scanning was performed at 40x (i.e., 20x with 2x magnification doubler) with a numerical aperture

of 0.75, giving a 40x resolution of 0.25 um/pixel.

2.2 Deep neural network architecture

To make a full use of image information for segmentation, we have developed a Multiple Up-
sampling and Spatial Attention guided UNet model (MUSA-UNet) that leverages the UNet
architecture as the building block. The UNet architecture is known as a symmetric encoder-
decoder framework that can effectively differentiate foreground pixels from the background by
learning and incorporating local features from the higher resolution images and global information
from the lower resolution images®. However, we notice UNet demonstrates a noticeably high
false-negative rate by our experiments. To enhance model performance, we design two new

mechanisms to specifically address this problem.
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(1) We have developed a new Residual Spatial Attention (RSA) block to replace the sequence of
two convolution layers in the original UNet for enhanced network performance. We propose the
RSA block that consists of a residual network embedded with one Depth-wise Separable
Convolution (DSC) and one Spatial Attention (SA) module. The RSA block architecture is

presented in Figure 1(B). Specifically, the output of a RSA block can be formulated as follows:

RSA(x) = SA(DSC(x)) + x (1)

where x is the input feature array; SA(-) and DSC(-) are the spatial attention and the DSC

module, respectively.

A DSC module has been proposed to divide a regular convolution layer into a depth-wise and a
point-wise convolution layer for parameter number regulation3?23, It has been shown that the
performance of a DSC module is similar to that of the regular convolution layer in UNet
architecture34. We replace the regular convolution modules with DSC modules in our RSA model

to reduce model parameter number and accelerate training speed.

Additionally, we use SA modules to further improve network performance. Both SA and Channel
Attention (CA) modules are originally proposed as components of the Convolutional Block
Attention Module (CBAM)®, a lightweighted attention method. As the training and testing input
image sizes can be different, the CA module barely improves or even degrades the segmentation
performance in our tests. We, therefore, only leverage the SA module in our model. The output
of the SA module can be represented as SA(x) = Mg,(x) ® x, where ® denotes element-wise
multiplication, and Mg,(x) is the 2D spatial attention map. To enable the element-wise
multiplication, we broadcast the spatial attention map along the channel dimension to match the

tensor size. The spatial attention values are determined by the average- and max-pooled features
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across channels. Specifically, the average- and max-pooled features are concatenated and

convolved in a convolution layer:

Ms4(x) = o(f 77 ([AvgPool(x); MaxPool(x)])) (2)

where o(-) denotes the sigmoid function and f7*7(-) denotes a convolution operation with a

kernel size of 7x7.

We further use the residual connection to encapsulate the DSC and SA modules for direct
information forward-feeding and back-propagation paths in our proposed deep network. Originally
adopted to improve the image classification®®, residual connection block has shown its promising
efficacy for the biomedical image segmentation tasks?®3’. Given the original network is denoted
as H(x), its residual representation is H(x) + x. The residual connection in our proposed RSA

block can improve the network performance without extra convolution layers.

(2) The second primary method development contribution is that we concatenate features from
all decoders at different resolution levels as input to the output layer (i.e., orange arrows in Figure
1(C). In addition to features at the highest image level, the feature arrays in the lower image
resolutions are leveraged in our model by convolving with a 3x3 filter for feature dimension
reduction. The reduced features are resized to the highest image resolution by the bilinear
interpolation before they are concatenated at the output layer. In contrast to FCN utilizing features
from encoders®®, our proposed model uses features from decoders. This design enables the
output layer to make full use of multi-scale features and avoid the false negative problem with
only a negligible increase in the parameter number. As there are multiple signal paths that lower
resolution features from decoders can follow to reach the output layer in our model architecture,
such a Multiple Up-sampling Path (MUP) mechanism is an effective solution to remedy the false

negative problem observed in the UNet model in our study.
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The architecture of our developed MUSA-UNet model is presented in Figure 1(C). Specifically,
the MUSA-UNet consists of one input layer, four encoder-decoder pairs, and one output module.
The encoders gradually decrease the image resolution by max-pooling layers while the decoders
increase the image resolution by bilinear interpolation layers. In addition to the primary information
encoding and decoding path, there are skip connections between the encoder output and the
decoder input at each spatial resolution level. Therefore, there are two information sources
provided to each decoder, one from a lower resolution decoder and another from the encoder
output at the same resolution level. Note the feature representations from the lower resolution
decoder are up-sampled and convolved before they are concatenated with the encoder output
from the same resolution level. The outputs from distinct resolution levels are convolved and up-

sampled before they are concatenated as the input to the output module.

2.3 Model implementation

Due to the overwhelming size of histopathology WSIs and the limited Graphical Processing Unit
(GPU) memory size, deep learning models cannot be practically trained or tested on arbitrarily
large images to achieve seamless segmentation. Therefore, we divide each WSI into image

patches, apply trained models to individual patches, and assemble the patch-wise results.

A straight-forward partitioning strategy is to divide each WSI by a grid pattern. In that way, the
segmentation output image can be produced by patch-wise segmentation results in the same
spatial order of input image patches. However, the performance of this strategy could be
degraded by the image patch border effect. We notice the prediction results of the same region
in patches of varying sizes can be inconsistent, especially for those regions near patch borders.

As deep learning analyses heavily depend on convolution operations and produce output patches
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Figure 2 The patch partitioning strategy for seamless semantic segmentation in a large-scale image.
To predict target patches in dotted lines, we extend these image patches before they are provided to our
deep learning network for segmentation. The resulting segmentation output images are cropped back to

the original patch size before the segmentation map aggregation.
of the same size as the input patches, padding methods for convolutions on pixels close to image
borders are required®®. The prediction results of pixels near patch borders are subject to the

padded pixels and, therefore, can deviate from the ground truth.

To mitigate such image border effect, we have adopted a patch partitioning strategy that
supports a seamless semantic segmentation?®. Its overall schema is presented in Figure 2.
First, we divide an input WSI by a regular grid pattern. To predict a target image patch in the
grid, we extend its region scope before we provide it to our network MUSA-UNet for image
segmentation. In Figure 2, the image regions denoted by dotted lines are the target image
patches, while those in solid boundaries are extended counterparts. The margin for such an
image patch expansion is set in such a way that prediction results of the original image patches
are not influenced by padded pixels. After segmentation analysis by our deep learning network,

we only retain the segmentation result of the interior regions associated with the original image
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patch region and assemble such results for the whole-slide segmentation maps by their spatial

positions.

In the testing stage, only image patches with enough foreground tissue (i.e., foreground patches)
are expanded and provided to the trained network. Those with no significant tissue presence are
skipped for the segmentation analysis, and the corresponding pixels in the resulting segmentation
map are set to zero. For foreground patch recognition, we convert each image patch from the
RGB to HSV color space and count the number of foreground pixels with a saturation value larger
than 0.2. Those with more than 1% foreground pixels are considered as foreground patches. To
accelerate the testing speed, we reduce the image resolution by 16 times before the foreground

detection approach is applied in practice.

Note the strategy allows parallel computing on multiple GPUs. We implement codes in the Python
3.6 programming language and PyTorch 1.7.1 machine learning framework® and run programs
on two NVIDIA Tesla K80 GPUs. Balancing the tradeoff between network efficacy and
computational efficiency, we design five image resolution levels in our model, with 64, 128, 256,
512, and 1024 filters from the highest to the lowest level, respectively. The loss function is the
binary cross-entropy that can effectively reflect the pixel-wise difference between label and
prediction. The model is trained with the Adam optimization algorithm“° for 40 epochs. The initial
learning rate is set as 0.001 and the learning rate decay is 0.1 per ten epochs. In the testing stage,
each image patch has 1,000 x 1,000 pixels, with an extended margin width of 140 pixels. Thus,

each extended image patch has 1,280 x1,280 pixels by size.
2.4 Portal tract guided fibrosis quantification

As reported in our prior study?, portal tract fibrotic percentage (i.e., portal tract fibrosis%) and
average portal tract area derived from portal tract regions are correlated with Scheuer fibrosis

staging. In this study, the Aperio ImageScope Positive Pixel Count (PPC) algorithm (Aperio
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Figure 3 A typical portal tract segmentation result with a liver biopsy WSI. (A) Manual annotations
(i.e., ground truth) and deep learning results of portal tract regions by the MUSA-UNet deep neural network
are delineated in green and yellow, respectively; (B) Annotation and segmentation details are presented in
close-up views; (C) The model generated prediction probability maps are presented for the same

corresponding image regions.

Technologies Inc., Vista, CA) is applied to portal tract regions for quantification of the fibrous
component in each portal tract by blue hue in the Masson’s Trichrome stain. After the fibrous
components from the portal tract regions are measured by the PPC algorithm, the portal tract
fibrosis% and the average portal tract area are computed. The portal tract fibrosis% is calculated
as the proportion of the total fibrosis area in the total portal tract region area, while the average
portal tract area is computed by dividing the total portal tract area by the portal tract region number

in a slide. We further investigate the correlation of 1) Scheuer stage scores and average fibrosis
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areas; and 2) Scheuer stage scores and portal tract percentages (i.e., portal tract%), respectively.
The average fibrosis area is computed by dividing the total fibrosis area by the portal tract number
in a slide, while the portal tract% is the proportion of the total portal tract area in the total tissue
area in a slide. We compute the total tissue area by subtracting the background pixel number

from the total pixel number in an image.

2.5 Statistical analysis

In this study, statistical analyses are performed with Python3.6 and MATLAB R2021a (MathWorks
Inc., Natick, MA). Precision, recall, F1 score, accuracy, Jaccard index, and Fowlkes—Mallows
index are calculated. Correlations between variables are evaluated by linear regression and
Spearman correlation. The student’s t-test is used to determine the statistical significance of the
calculated Spearman correlation coefficients. A p-value less than significance level 0.05 is

considered significant.

3. RESULTS

3.1 Dataset and annotations

This study includes 53 liver biopsies from patients who received liver transplantation. Annotations
of the dataset are performed by two board-certified pathologists with Gl/Liver pathology expertise
(K.J. and A.B.F.). Biopsies are partitioned into training, validation, and testing dataset. Note all
biopsies for the training and validation are mutually exclusive from those for the testing. Of all
biopsies, 30 biopsies including 22 men and 8 women are used to generate image patches for
model training and validation, with a mean + standard deviation (S.D.) age of 54.5+6.9 years. We
programmatically load manually annotated portal tract contours, calculate their bounding boxes,
and divide them into patches of size 512x512 pixels. Additionally, we rotate image patches by 90,

180, and 270 degrees for training data augmentation. In total, we generate 6,012 image patches,
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Figure 4 Comparison of portal tract segmentation results of two biopsy tissue regions with and

without our partitioning strategy. (A) Ground truth portal tract contours are annotated by human experts;
(B) Portal tract segmentation results are presented when WSIs are simply divided into non-overlapping
patches with their borders in blue dashed lines. The resulting segmentation defect is highlighted by a yellow
arrow; (C) Portal tract segmentation results are demonstrated when the patch expansion partitioning
strategy is used. The solid blue lines in (B) represent the borders of the expanded patches. With the

expansion partitioning strategy, such negative border effects are successfully mitigated.
with 80% and 20% for training and validation, respectively. The remaining 23 biopsies WSIs are

allocated for testing, with 18 men and 5 women with a mean + S.D. age of 51.8+7.7 years.
3.2 Portal tract segmentation results

We present in Figure 3(A) a typical portal tract region segmentation result by our proposed MUSA-
UNet network. The model detected portal tract region borders are in yellow, while the ground truth
portal tract regions are manually delineated and indicated by green borders in Figure 3(B). Such
portal tract regions are automatically identified by binarization of the probability maps from our

network in Figure 3(C). By visual assessments, we notice that the predicted region contours are
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Figure 5 Qualitative comparison of deep learning models for normal liver portal tract segmentation.

We present typical segmentation results of four normal liver tract regions by (A) human annotations (i.e.,
ground truth), (B) our proposed MUSA-UNet model, (C) DeepLab V3, (D) UNet, and (E) FCN, respectively.

highly concordant with the corresponding ground truth regions, suggesting the effectiveness of
our proposed model. As detailed in the methods section, we divide each original WSI for testing
into a set of patches and process them separately. Due to this partitioning step, portal tract regions
close to image patch borders are subject to an image padding effect, resulting in inaccurate
segmentation results. We present in Figure 4 portal tract segmentation results of two typical
biopsy image regions divided with and without patch expansion partitioning strategy. We notice

inaccurate segmentation results (by yellow arrows) when images are divided directly (blue dashed
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c

Figure 6 Qualitative comparison of deep learning models for abnormal liver portal tract

segmentation. We present typical segmentation results of multiple abnormal liver tract regions by (A)
human annotations (i.e., ground truth), (B) our proposed MUSA-UNet model, (C) DeepLab V3, (D) UNet,
and (E) FCN, respectively. From top to bottom, we present abnormal portal tracts with (1) lymphoid
aggregate, (2) ductular proliferation with minimal collagen, (3) edema, mild inflammation, and ductular
proliferation, (4) features of acute cellular rejection, including mixed inflammatory infiltrate and ductitis, and

(5) portal vein herniation and moderate chronic inflammation,

lines). Due to the border effect, portal tract regions on patch borders tend to be missed by the
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Figure 7 Pixel-wise segmentation labels for quantitative evaluation. Ground truth and deep learning
segmentation results are represented by green and yellow contours. (A) TP is the class for pixels that are
correctly segmented as portal tract; (B) FP is the label for pixels that are falsely recognized as portal tract;
(C) FN is class for pixels that are missed as portal tract by mistake; (D) TN is the label for pixels that are

correctly recognized as non-portal tract.
model. By contrast, the expanded patches by the patch expansion partitioning strategy are
indicated by solid blue lines. This strategy substantially eliminates the segmentation errors by

adding additional image margins to make the inception fields more informative and consistent.
3.3 Deep learning model validation

In addition to qualitative assessments, we next validate our model quantitatively. We compare our
proposed MUSA-UNet model with three widely used approaches, i.e., FCN8, UNet®, and
DeepLab V3*. FCN and UNet have been widely applied to a large number of biomedical image
segmentation tasks®. The DeepLab V3 model is derived from the FCN model, but with an atrous
convolution*2, This change expands the convolution perception field for enhanced segmentation
accuracy without an increase in the parameter number. All the approaches are trained with the

same training parameters and dataset as our model. We present and compare typical normal
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Table 1 Quantitative performance comparison across the proposed MUSA-UNet model and other state-of-

the-art segmentation models by multiple evaluation metrics (mean + standard deviation).

Model Precision Recall F1 Score Accuracy Ji FMI

UNet 0.9429+0.0351 0.8063+0.1548 0.8582+0.1063 0.8659+0.0921 0.7645+0.1389 0.8995+0.0609

FCN 0.9580+0.0276 0.6880+0.2151 0.7761+0.1813 0.7978+0.0931 0.6636+0.2020 0.7795+0.1902
DeeplLabV3 0.9422+0.0297 0.8299+0.1327 0.87411+0.0844 0.8697+0.0925 0.7866+0.1183 0.9004+0.0893
MUSA-UNet 0.9400+0.0322 0.8465+0.1042 0.8857+0.0683 0.8894+0.0587 0.8005+0.0920 0.9144%0.0434

tissue segmentation results by these models in Figure 5. By visual comparisons, the segmentation
results from our MUSA-UNet are more concordant with the ground truth than other methods.
Additionally, we present and compare typical abnormal portal tract segmentation results in Figure
6. These abnormal portal tract types include portal tracts with (1) lymphoid aggregate, (2) ductular
proliferation with minimal collagen, (3) edema, mild inflammation, and ductular proliferation, (4)
features of acute cellular rejection, including mixed inflammatory infiltrate and ductitis, and (5)
portal vein herniation and moderate chronic inflammation. Compared with FCN and DeepLab V3,
our proposed MUSA-UNet demonstrates a better generalizability on abnormal portal tract

segmentation.

Additionally, we compare segmentation results from different models with the ground truth from
human annotations and quantitatively evaluate their performances. Compared to the ground truth,
each pixel in the segmentation map is labeled as one of the four classes, True Positive (TP),
False Positive (FP), False Negative (FN), and True Negative (TN). TP is the class for pixels that
are correctly segmented as portal tract; FP is the label for pixels that are falsely recognized as
portal tract; FN is the class for pixels that are missed as portal tract by mistake. Finally, TN is the

label for pixels that are correctly recognized as non-portal tract. These four classes of pixels are
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Figure 8 Quantitative comparison of deep learning models for liver portal tract segmentation. (A)
Paired sample t-tests between the MUSA-UNet and other three widely used models (i.e., FCN, UNet, and
DeeplLab V3) suggest a statistically significant performance difference with p-values<0.05 by Recall, F1
score, Accuracy, JI, and FMI; (B) Of all deep learning models for comparison, our proposed MUSA-UNet

achieves the best AUC with Receiver Operating Characteristic (ROC) curves.
illustrated in Figure 7. With these defined classes, we compute pixel-based evaluation metrics

(each ranging from 0 to 1), including Precision (P), Recall (R), F1 score (F1), Accuracy (A),

Jaccard index (J1), and Fowlkes—Mallows Index (FMI):
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We present in Table 1 quantitative evaluation results of all models for comparison with Precision,
Recall, F1 score, Accuracy, Jaccard index, and Fowlkes—Mallows Index. Although FCN has the
best performance by Precision (0.9580), other methods (i.e., UNet, DeepLab V3, and MUSA-
UNet) do not present significantly worse performances by paired sample t-tests with p-value 0.59,
0.30, and 0.29, respectively. By Recall, our MUSA-UNet demonstrates the best performance
(0.8465) and a statistically significant performance difference compared with UNet, FCN, and
DeepLab V3 with p-value 0.007, <0.001, and 0.03, respectively. By F1 score, our MUSA-UNet
achieves the best performance (0.8857) and presents a statistically significant performance
difference compared with UNet, FCN, and DeeplLab V3 with p-value 0.01, <0.001, and 0.03,
respectively. When assessed by Accuracy, our MUSA-UNet presents the best performance
(0.8894) and a statistically significant performance difference compared with UNet, FCN, and
DeepLab V3 with p-value 0.04, 0.002, and 0.04, respectively. By JI, MUSA-UNet has the best
performance (0.8005) and presents a statistically significant performance difference compared
with UNet, FCN, DeepLab V3 with p-value 0.01, <0.001, and 0.03, respectively. Our MUSA-UNet
presents the best performance by FMI (0.9144) and a statistically significant performance
difference compared with UNet, FCN, and DeeplLab V3 with p-value 0.03, <0.001, and 0.05,
respectively. We present the evaluation results in Figure 8(A) where evaluation performances of
deep learning models for comparison are demonstrated by all six metrics. Note that MUSA-UNet
presents fewer outliers than other methods, implying its strong stability. In Figure 8(B), we present
and compare the Receiver Operating Characteristic (ROC) curves of MUSA-UNet, UNet,
DeeplabV3, and FCN models, respectively. Of all these models, the proposed MUSA-UNet model

achieves the largest Area Under the Curve (i.e., AUC=0.91).
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Table 2 Quantitative model performance comparisons for the ablation study (mean + standard deviation).

Model Precision Recall F1 Score Accuracy Ji FMI

UNet 0.9429+0.0351 0.8063+0.1548 0.8582+0.1063 0.8659+0.0921 0.7645+0.1389 0.8995+0.0609

UNet+DSC+CBAM 0.9424+0.0523 0.7570+0.1856 0.8221+0.1330 0.8790+0.0672 0.7163+0.1648 0.8330+0.1119

UNet+DSC+CA 0.9570+0.0593 0.5296+0.2674 0.6326+0.2368 0.8603+0.0842 0.5038+0.2406 0.7966+0.1509

UNet+DSC+SA 0.9395+0.0433 0.8459+0.1776 0.8852+0.0863 0.8804+0.0738 0.7992+0.1012 0.9107+0.0471
UNet+RSA 0.9406+0.0303 0.8436+0.1092 0.8841+0.0752 0.8879+0.0644 0.7987+0.0971 0.9136+0.0461
UNet+MUP 0.9421+0.0358 0.8157+0.1304 0.8666+0.0834 0.8660+0.0903 0.7737+0.1157 0.8994+0.0609
MUSA-UNet

0.9400+0.0322 0.8465+0.1042 0.8857+0.0683 0.8894+0.0587 0.8005+0.0920 0.9144+0.0434
(U-Net+RSA+MUP)

3.4 Ablation study

To investigate the contribution of individual modules for portal tract segmentation, we carry out
ablation experiments and present the ablation study results in Table 2. Small Attention UNet
replaces convolution layers with two cascaded DSC modules and appends CBAM (CA+SA)
blocks to DSCs*3. Noticeably, model UNet+DSC+CBMA (i.e., SmaAt UNet) presents an inferior
performance to that of the UNet model for the portal tract segmentation task. To identify the
performance degradation reason, we remove either a SA or a CA module from the
UNet+DSC+CBMA separately. The experimental results suggest that the DSC+CA dramatically
decreases the performance while the DSC+SA improves Recall (0.8459), F1 score (0.8852),

Accuracy (0.8804), JI (0.7992), and FMI (0.9107). We thus propose a new RSA block by retaining
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Figure 9 Qualitative comparison of ablated models for liver portal tract segmentation. We illustrate

and visually compare typical tissue segmentation results of ablated UNet models (i.e., (A)
UNet+DSC+CBAM, (B) UNet+DSC+CA, (C) UNet+DSC+SA, (D) UNet+RSA, and (E) UNet+MUP) in green
and those of our proposed MUSA-UNet model in yellow.

only one DSC module and encapsulating the DSC and SA models in a residual connection
structure. In addition to an improved processing speed, the proposed RSA block achieves 0.8436,
0.8841, 0.8879, 0.7987, and 0.9136 by Recall, F1 score, Accuracy, JI, and FMI, respectively. The
paired sample t-test between DSC+SA and RSA block results in a p-value less than 0.001,
suggesting a comparable model performance of the proposed RSA block. To prove the

effectiveness of the MUP mechanism, we add it to the original UNet and achieve improved
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Figure 10 Multivariate correlation analysis across portal tract area, fibrosis area, and clinical staging

Scheuer
staging score

score. The four subplots present the correlation analysis results between Scheuer staging score and (A)
portal tract fibrotic percentage, (B) average portal tract area, (C) average fibrosis area, and (D) portal tract
percentage, respectively. In each subplot, results from linear regression (top-right) and Spearman
correlation (bottom-left) are presented to support the multivariate analysis. For Spearman correlation

results, larger correlation coefficients and lower p-values are indicated by darker colors and larger circles.

performance by Recall (0.8157), F1 score (0.8666), Accuracy (0.8860), JI (0.7737) and FMI

(0.8994).
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Table 3 Summary statistics for multiple portal tract measures (Mean * standard error; Range).

Measure Reviewer 1 Reviewer 2 MUSA-UNet
Portal Tract 51.06+3.61: 41.27+3.55: 42.97+3 .55
Fibrosis% 19.60 to 89.50 14.36 to 83.28 15.72 to 84.54
Average Portal 56,4688 628: 50,349+7,153: 49 ,688+8,000:
Tract Area (um?) 8,583 to 215,486 5,373 to 181,709 3,226 to 202,321
2254143 820: 21,761+3,748: 22,40624,090:

Average Fibrosis

Area (pm?) 1,618 to 83,115 1,268 to 80,599 1,207 to 91,188
2.02+0.40: 1.86+0.35: 1.89+0.38:
Portal Tract%
0.25 to 9.25 0.22 to 7.93 0.13 to 8.39

We present in Figure 9 typical segmentation results of four tissue regions by multiple ablated
models for comparison. By visual comparisons, the segmentation results from DSC+CA are the
worst as multiple portal tract regions are missing. This visual assessment conclusion agrees with
the quantification analysis results. Although the result difference between the UNet+RSA and
MUSA-UNet model is visually subtle, MUSA-UNet tends to produce smoother portal tract

boundaries due to the new MUP design.

3.5 Clinical correlation analysis

We investigate the correlation across measures of the portal tract area, the fibrosis area, and the
clinical staging score. In addition to the ground truth established by the primary reviewers
(reviewer 1: K.J., A.B.F.), a secondary board-certificated pathologist with Gl/Liver pathology
fellowship training (reviewer 2: N.S.) annotates portal tracts independently for this correlation
analysis. Figure 10 demonstrates the multivariate analysis results with the linear regression and
Spearman correlation. With manually delineated and MUSA-UNet predicted portal tract regions,

we compute multiple measures, including portal tract fibrosis%, average portal tract area, average
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Figure 11 Comparison of deep learning models for clinical support. By ANOVA test, we present the
significance of population mean difference across Scheuer staging groups with the portal tract percentage
derived from segmentation results of (A) MUSA-UNet, (B) FCN, (C) UNet, (D) DeepLab V3, respectively.

fibrosis area, and portal tract%. Additionally, we investigate and compare their correlations with
the clinical Scheuer staging score (mean + standard error: 0.85+0.23). The summary statistics for
these measures are presented in Table 3. By Spearman correlation analysis, average portal tract
area and portal tract fibrosis% derived from deep learning detected portal tract regions are
correlated with clinical Scheuer staging score (R=0.681; p<0.001 and R = 0.335; p=0.02,
respectively). When the MUSA-UNet derived measures are replaced with those from portal tract
regions annotated by reviewer 1 and reviewer 2, average portal tract areas present comparable
correlation relationships with clinical Scheuer staging score (i.e., R=0.680, p<0.001; and R =

0.574, p<0.001, respectively). With portal tract regions annotated by reviewer 1 and 2, the portal
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tract fibrosis% presents similar correlation relationships with clinical Scheuer staging score (i.e.,
R=0.437, p=0.002; and R = 0.326, p=0.016). Such comparable correlation results imply the good
concordance between portal tract regions recognized by our proposed deep learning model and
manual annotators. Figure 10 (A-B) demonstrates a strong correlation between human and deep
learning derived measures, including portal tract fibrosis% and average portal tract area.
Suggested by Figure 10 (C), the correlation between Scheuer staging score and average fibrosis
area from deep learning identified portal tract regions is comparable to that between Scheuer
staging score and average fibrosis area from human-annotated portal tract regions. By contrast,
the correlation between Scheuer staging score and portal tract% from deep learning identified
portal tract regions is stronger than that between Scheuer staging score and portal tract% from

human-annotated portal tract regions in Figure 10 (D).

Additionally, we demonstrate the differences in the clinical support between our proposed model
and other methods for comparison. In Figure 11, we plot portal tract percentage populations by
five Scheuer staging score groups, i.e., stage 0 to 4. Applied to the segmentation results from our
proposed MUSA-UNet model, the analysis of variance (ANOVA) test suggests a significant
difference in population means across staging groups with a p-value 1.44e-4. By contrast, p-
values with results from UNet, FCN, and DeeplLab V3 are 3.32e-4, 2.92e-2, and 7.70e-2,

respectively.

4. DISCUSSION

4.1 Deep learning model optimization

Leveraging the UNet architecture as a building block, we develop the MUSA-UNet model for liver
portal tract region segmentation with liver biopsy WSIs. To reduce the parameter number and
accelerate the model processing speed, we replace the regular convolution layers in UNet with

cascaded Depth-wise Separable Convolution (DSC) modules. By experiments, we notice UNet
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Table 4 Model comparison by parameter number and the average processing time cost for a 512x512

image patch. Processing time is based on the hardware setup described in our methods.

Model Parameter number Processing time (ms)

UNet 37,384,833 30.5

FCN 51,938,881 311
DeeplLab V3 58,625,857 39.9
MUSA-UNet 9,123,958 234

has a limited performance by Recall or JI. To further improve its performance, we include the
attention mechanism in our model. Inspired by SmaAt UNet*3, we first append a Convolutional
Block Attention Module (CBAM) to the cascaded DSC modules (i.e., UNet+DSC+CBAM), leading
to worse results. To investigate the cause of the model degradation, we change the original UNet
by appending Channel Attention (CA) and Spatial Attention (SA) modules (i.e., two components
in CBAM) to the cascaded DSC modules, respectively. The resulting UNet+DSC+CA model
presents a degraded segmentation performance, while the UNet+DSC+SA model demonstrates
an improved performance. Therefore, we only retain one DSC module, add a SA module, and
encapsulate them by a residual connection block to make it more effective for back-propagation.
This structure is defined as a Residual Spatial Attention (RSA) block. The resulting model (i.e.,
UNet+RSA) has fewer parameters, contributing to a better prediction performance and a faster

execution speed.

The UNet architecture tends to focus on features derived from the highest image resolution level.
By contrast, Fully Convolutional Networks (FCNs) only up-sample the output from the lowest
image resolution layer (e.g., the FCN-32s model)8. Enlightened by these facts, we address the

false-negative segmentation problem commonly seen around portal tract region boundaries by
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combining features from multiple image resolution levels for the probability map generation.
Therefore, our network has a Multiple Up-sampling Path (MUP) mechanism, as there are multiple
signal connections between lower resolution features from decoders and the output layer. By
experimental results, the concatenated use of features from the top three image resolution levels
significantly improves performance. Features from additional lower image resolution levels

marginally improve the model performance, but at the cost of the increased model complexity.

4.2 Deep learning model complexity

In our model design, DSC modules are used to decrease the model parameter number. We
present in Table 4 the parameter number and processing time cost of diverse models for
performance comparisons. Compared with our proposed MUSA-UNet, the original UNet model
has the same image resolution level number and the feature number in each level. The FCN
model and the DeepLab V3 model are constructed on the base of the ResNet101 backbone®. By
Table 4, the parameter numbers in the models without DSC modules (i.e., UNet, FCN, and
DeepLab V3) are one order of magnitude larger than that of MUSA-UNet. This large difference in
model parameter number has an important impact on the resulting processing speed. It takes
about two hours for UNet to complete training with a data epoch on our current hardware setup,
while the training time cost for the MUSA-UNet model is about 25 minutes. On average, it takes
23.4 ms for MUSA-UNet to predict a 512x512 image patch, promising to support an efficient

segmentation analysis for clinical settings.
4.3 Limitations and future work

Although our deep learning method is promising for automated segmentation of liver portal tracts
in liver biopsy WSis, there are some limitations to be addressed in the future. Our proposed RSA
block only retains the spatial attention module from the CBAM. We specifically exclude the

channel attention module as it tends to miss foreground when the foreground portion is limited in
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a given image patch. We hypothesize that these effects result from inappropriately chosen
hyperparameters of the channel attention module (e.g., the hidden layer size). In addition, our
current analysis on two-dimensional histopathology images of sampled tissue cuts is subject to
the sampling bias, as portal tracts have three-dimensional morphology in liver tissues. In the
future study, we will extend our analysis from two- to three-dimensional image space where portal
tract structures can be captured in three-dimensional image volumes composed with WSIs of
serial needle biopsy cuts. Finally, we plan to make our approach more generic to support a larger

set of disease investigations using biomedical images.

5. CONCLUSION

Motivated by reducing intra- and inter-observer variability in the manual annotation process, we
have developed an end-to-end deep-learning-based approach (MUSA-UNet) for portal tract
region segmentation in liver whole-slide histopathology images. The developed deep learning
model enables the production of seamless segmentation maps with accurate patch-wise
prediction results. Built upon the UNet architecture, the proposed network significantly improves
the portal tract segmentation efficiency and accuracy by the residual connection, the attention
mechanism, depth-wise separable convolution modules, and the multiple up-sampling path
mechanism. Our deep learning model is systematically validated and compared with widely used
deep learning methods both qualitatively and quantitatively. Additionally, we present the
effectiveness of our method by the correlation analysis with clinical staging scores. All
experimental results demonstrate the efficacy of our proposed approach and suggest its

promising clinical translational value for pathological review assistance.


https://doi.org/10.1101/2022.08.31.506101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.506101; this version posted September 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Data Availability Statement

Codes are available at Github repository: hitps:/github.com/jkonglab/Liver Portal Tract Segmentation

Conflict of Interest Statement

The authors have declared no conflicts of interest.

Acknowledgments

This research is supported in part by grants from National Institutes of Health 1U01CA242936,

and National Science Foundation ACI 1443054 and IIS 1350885.


https://github.com/jkonglab/Liver_Portal_Tract_Segmentation
https://doi.org/10.1101/2022.08.31.506101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.506101; this version posted September 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES

1. Jiang K, Mohammad MK, Dar WA, Kong J, Farris AB. Quantitative assessment of liver
fibrosis by digital image analysis reveals correlation with qualitative clinical fibrosis staging in
liver transplant patients. PLoS One. 2020;15(9):1-12.

2. Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Liver fibrosis: deep convolutional neural
network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images.
Radiology. 2018;287(1):146-155.

3. Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP. An appraisal of the
histopathological assessment of liver fibrosis. 2006;55(4):569-578.

4. Theise ND, Jia J, Sun Y, Wee A, You H. Progression and regression of fibrosis in viral
hepatitis in the treatment era: the Beijing classification. 2018;31(8):1191-1200.

5. YuY, Wang J, Ng CW, et al. Deep learning enables automated scoring of liver fibrosis
stages. Sc/ Rep. 2018;8(1):1-10.

6. Chen Y, Luo Y, Huang W, et al. Machine-learning-based classification of real-time

tissue elastography for hepatic fibrosis in patients with chronic hepatitis B. Comput Biol Med.
2017;89:18-23.

7. Stanciu SG, Xu S, Peng Q, et al. Experimenting liver fibrosis diagnostic by two photon
excitation microscopy and bag-of-features image classification. Sc/ Rep. 2014;4(1):1-12.

8. Xu S, Wang Y, Tai DCS, et al. gFibrosis: a fully-quantitative innovative method
incorporating histological features to facilitate accurate fibrosis scoring in animal model and
chronic hepatitis B patients. / Hepatol. 2014;61(2):260-269.

9. Zhou SK, Greenspan H, Davatzikos C, et al. A review of deep learning in medical
imaging: Imaging traits, technology trends, case studies with progress highlights, and future
promises. Proc IEEE. 2021;109:820-838.

10. Alom MZ, Taha TM, Yakopcic C, et al. A state-of-the-art survey on deep learning
theory and architectures. Electronics. 2019;8(3):292.

11. Lateef F, Ruichek Y. Survey on semantic segmentation using deep learning techniques.
Neurocomputing. 2019;338:321-348.
12. Rawat W, Wang Z. Deep convolutional neural networks for image classification: A

comprehensive review. Neural Comput. 2017;29(9):2352-2449.


https://doi.org/10.1101/2022.08.31.506101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.506101; this version posted September 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

13. Choi KJ, Jang JK, Lee SS, et al. Development and validation of a deep learning system
for staging liver fibrosis by using contrast agent-enhanced CT images in the liver. Radiology.
2018;289(3):688-697.

14. Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Deep learning for staging liver fibrosis
on CT: a pilot study. £ur Radiol. 2018;28(11):4578-4585.

15. Lee JH, Joo |, Kang TW, et al. Deep learning with ultrasonography: automated
classification of liver fibrosis using a deep convolutional neural network. Fur Radiol
2020;30(2):1264-1273.

16. Treacher A, Beauchamp D, Quadri B, et al. Deep learning convolutional neural networks
for the estimation of liver fibrosis severity from ultrasound texture. In: Comput Aided Diagn.
International Society for Optics and Photonics; 2019:109503E.

17. Ciresan D, Giusti A, Gambardella L, Schmidhuber J. Deep neural networks segment
neuronal membranes in electron microscopy images. Adv Neural Inf Process Syst.
2012;25:2843-2851.

18. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation.
In: Proc IEEE Conf Comput Vis Pattern Recognit. |EEE; 2015:3431-3440.

19. Bi L, Kim J, Kumar A, Fulham M, Feng D. Stacked fully convolutional networks with
multi-channel learning: application to medical image segmentation. Vis Comput.
2017;33(6):1061-1071.

20. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: Proc /EEE Int Conf Comput Vis.
IEEE; 2017:2961-2969.

21. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with
region proposal networks. Adv Neural Inf Process Syst. 2015;28:91-99.

22. Chiao J-Y, Chen K-Y, Liao KY-K, Hsieh P-H, Zhang G, Huang T-C. Detection and
classification the breast tumors wusing mask R-CNN on sonograms. Medicine.
2019;98(19):e15200.

23. Liu M, Dong J, Dong X, Yu H, Qi L. Segmentation of Lung Nodule in CT Images Based
on Mask R-CNN. In: /nt Conf Aware Sci Technol. |IEEE; 2018:1-6.

24. Guo X, Wang F, Teodoro G, Farris AB, Kong J. Liver steatosis segmentation with deep
learning methods. In: Proc IEEE Int Symp Biomed Imaging. |EEE; 2019:24-27.

25. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image
segmentation. In: M/CCA/. Springer; 2015:234-241.


https://doi.org/10.1101/2022.08.31.506101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.506101; this version posted September 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

26. Wang C, MacGillivray T, Macnaught G, Yang G, Newby D. A two-stage 3D Unet
framework for multi-class segmentation on full resolution image. arXiv. Preprint posted online
on April 12, 2018.

27. Zeng Z, Xie W, Zhang Y, Lu Y. RIC-Unet: An improved neural network based on Unet
for nuclei segmentation in histology images. /EEE Access. 2019;7:21420-21428.

28. Cai S, Tian Y, Lui H, Zeng H, Wu Y, Chen G. Dense-UNet: a novel multiphoton in vivo
cellular image segmentation model based on a convolutional neural network. Quant Imaging
Med Surg. 2020;10(6):1275.

29. Ibtehaz N, Rahman MS. MultiResUNet: Rethinking the U-Net architecture for
multimodal biomedical image segmentation. Neural Netw. 2020;121:74-87.

30. Krizhevsky A, Sutskever |, Hinton GE. ImageNet classification with deep convolutional
neural networks. Adv Neural Inf Process Syst. 2012;25:1097-1105.

31. Ramot Y, Deshpande A, Morello V, Michieli P, Shlomov T, Nyska A. Microscope-based
automated quantification of liver fibrosis in mice using a deep learning algorithm.
2021;49(5):1126-1133.

32. Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proc
IEEE Conf Comput Vis Pattern Recognit. |EEE; 2017:1251-1258.
33. Howard AG, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks

for mobile vision applications. arXiv. Preprint posted online on April 17, 2017.

34. Gadosey PK, Li Y, Agyekum EA, et al. SD-UNet: Stripping down u-net for segmentation
of biomedical images on platforms with low computational budgets. 2020;10(2):110.

35. Woo S, Park J, Lee J-Y, Kweon IS. CBAM: Convolutional block attention module. In:
Comput Vis ECCV. Springer; 2018:3-19.

36. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc
IEEE Conf Comput Vis Pattern Recognit. |EEE; 2016:770-778.

37. Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The Importance of Skip
Connections in Biomedical Image Segmentation. In: Carneiro G, Mateus D, Peter L, et al, eds.
Deep Learning and Data Labeling for Medical Applications. Cham: Springer International
Publishing; 2016:179-187.

38. Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning. arXiv.
Preprint posted online on March 23, 2016.

39. Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep
learning library. Adv Neural Inf Process Syst. 2019;32:8026-8037.


https://doi.org/10.1101/2022.08.31.506101
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.506101; this version posted September 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

40. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv. Preprint posted
online on December 22, 2014.

41. Chen L-C, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for
semantic image segmentation. arXiv. Preprint posted online on June 17, 2017.

42. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs.
IEEE Trans Pattern Anal Mach Intell. 2017;40(4):834-848.

43. Trebing K, Stanczyk T, Mehrkanoon S. SmaAt-UNet: Precipitation nowcasting using a
small attention-unet architecture. Pattern Recognit Lett. 2021;145:178-186.


https://doi.org/10.1101/2022.08.31.506101
http://creativecommons.org/licenses/by-nc-nd/4.0/

