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Abstract

One hurdle in the development of zebrafish models of human disease is the presence of multiple zebrafish orthologs
resulting from whole genome duplication in teleosts. Mutations in Inositol polyphosphate 5-phosphatase K
(INPP5K) lead to a syndrome characterized by variable presentation of intellectual disability, brain abnormalities,
cataracts, muscle disease, and short stature. INPP5K is a phosphatase acting at position 5 of phosphoinositides to
control their homeostasis and is involved in insulin signaling, cytoskeletal regulation, and protein trafficking.
Previously, our group and others have replicated the human phenotypes in zebrafish knockdown models by targeting
both INPP5K orthologs inpp5ka and inpp5kb. Here, we show that inpp5ka is the more closely related orthologue to
human INPP5K. While both inppSka and inpp5kb mRNA expression levels follow a similar trend in the developing
head, eyes, and tail, inpp5ka is much more abundantly expressed in these tissues than inpp5kb. In situ hybridization
revealed a similar trend, also showing unique localization of inpp5kb in the pineal gland indicating different
transcriptional regulation. We also found that inpp5kb has lost its catalytic activity against its preferred substrate,
Ptding(4,5)P,. Since most human mutations are missense changes disrupting phosphatase activity, we propose that
loss of inppSka alone can be targeted to recapitulate the human presentation. In addition, we show that the function
of inpp5kb has diverged from inpp5Ska and may play anovel role in the zebrafish.
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Introduction

Inositol polyphosphate 5-phosphatase K (INPP5K [MIM:607875]) is a highly conserved phosphatase that
participates in the regulation of phosphoinositide (PI) signaling. Also referred to as skeletal muscle and kidney-
enriched inositol phosphatase (SKIP), INPP5K is highly expressed in the brain, eyes, and muscles during
development and adulthood (Gurung et al., 2003; ljuin et al., 2000). In humans, homozygous or compound
heterozygous mutations in INPP5K have been causally linked to a form of congenital muscular dystrophy with
cataracts and intellectual disability (MIM: 617404) also associated with short stature, and microcephaly with
considerable variability in the age of onset and early presentations (D’Amico et al., 2020; Hathazi et al., 2021;
Osborn et al., 2017; Wiessner et al., 2017; Yousaf et al., 2017). Similarities have been noted with Marinesco-
Sjdgren syndrome (MIM: 248800), a form of myopathy also associated with congenital cataracts, short stature, and
cerebellar ataxia (Krieger et al., 2013; Senderek et al., 2005).

Pls are a category of lipid molecules that play crucia roles in signal transduction, ion channel regulation,
cellular migration, membrane trafficking, vesicle transport, and many other processes (Balla, 2013; Paolo and
Camilli, 2006; Raghu et a., 2019). The seven unique members of this group are distinguished by their patterns of
phosphorylation of the phosphorylated inositol head (Ptdins), which can occur at one or more of three positions (-3,
-4, or -5). Production of PIsisregulated by an array of kinases and phosphatases (Balla, 2013). INPP5K hydrolyzes
the D-5 position of the inositol ring in both Ptdins(4,5)P, and Ptdins(3,4,5)P;, with highest activity for Ptdins(4,5)P,
(Davies et a., 2015; ljuin et al., 2000; Vandeput et al., 2006). INPP5K is largely localized to the endoplasmic
reticulum (ER) (Dong et al., 2018; Gurung et al., 2003) but can translocate to membrane ruffles as part of a complex
with the glucose regulated protein GRP78/BiP to negatively regulate insulin receptor signaling via
phosphatidylinositol-3-kinase (PI3K) (ljuin and Takenawa, 2003; ljuin et al., 2015, 2016a, 2016b).

Multiple zebrafish (Danio rerio) models of INPP5K loss of function have been generated using morpholino
oligonucleotides (MOs) targeting both paralogs, inpp5Ska and inpp5Skb (Hathazi et al., 2021; Osborn et a., 2017,
Wiessner et al., 2017). However, when the genes were targeted independently, knockdown of inpp5ka was sufficient
to yield phenotypes typical of neurological and muscular disorders, such as microphthalmia, microcephaly,
shortened body, reduced touch-evoked motility and myopathy. In contrast, inpp5kb M Os produced a mild phenotype
in a small subset of morphants (Osborn et al., 2017). In addition, we found inpp5ka expression to be 16-fold higher
than inpp5kb in zebrafish embryos at 2 days post fertilization (dpf) (Osborn et al., 2017). These findings suggested
that inpp5ka may be the most conserved human paralog and inpp5kb function may have diverged.

Due to a genome duplication event in teleost fish, about 30% of zebrafish genes have a paralog (Howe et al.,
2013), but duplicated genes often acquire differential expression and function (Postlethwait et al., 1998; Ravi and
Venkatesh, 2018). In this study we sought to better characterize expression patterns and function of inpp5ka and
inpp5kb to understand whether they diverged and support the development of better models of INPP5K mutations in
humans. We show that both inpp5ka and inpp5kb have a dynamic developmental expression in the eyes, head, and
tail, also finding that despite being expressed at lower levels, inpp5kb is specifically enriched in the pineal gland.
Inpp5kb lost the majority of its phosphatase activity for Ptding(4,5)P, which is the preferred substrate for INPP5K
(ljuin et a., 2000). Together, these data indicate that inpp5ka is the closest ortholog to INPP5K and suggest a unique
role for inpp5kb within the zebrafish.

M ethods

Animal Care

Maintenance and husbandry of zebrafish (Danio rerio) breeders and larvae were performed following protocols
approved by the Ingtitutional Animal Care and Use Committee of the George Washington University and Rutgers
University. All animals were from the AB background.

Protein alignments

QIAGEN CLC Sequence Viewer 8 was used to align the sequencesfor all transcripts. Percent identities between the
human INPP5K (NP_057616.2), zebrafish InppSka (NP_001082962.2), and | nppSkb (XP_021335020.1) were
calculated using EMBOSS Needle (Madeira et a., 2022).

Quantitative PCR (gPCR) analysis
Samples were collected a 1, 2, 3, 4 and 5 dpf. Whole zebrafish embryos and larvae or micro-dissected tissue from
eyes, head, and tails were pooled and RNA was extracted using the ReliaPrep RNA Miniprep System kit (Promega,
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Madison, WI). RNA was treated with DNase | (New England Biolabs, Ipswich, MA) and complementary DNA
(cDNA) was synthesized using the iScript cDNA Synthesis kit (Bio-Rad, Hercules, CA). 600 ng of cDNA per
sample were analyzed via gPCR using the SsoFast EvaGreen Supermix (Bio-Rad, Hercules, CA) on a Bio-Rad
CFX384 Touch Real Time PCR System. All reactions were run with 3 technical replicates and repeated on at least 3
biological replicates. Sequences for custom primers for inpp5ka and inpp5kb and housekeeping controls elongation
factor 1 alpha eefla and riboprotein L13 rpl 13 are available upon request.

Whole-mount in situ hybridization (1SH)

Full length inpp5ka (NM_001089493.1) and inpp5kb (XM_021479345.1) cDNAs were cloned into the pCS2+
plasmid (Addgene, Watertown, MA). Digoxygenin-labeled sense and antisense probes were synthesized from the
linearized plasmids using the DIG RNA Labeling Kit (SP6/T7) (Roche/MilliporeSigma, Burlington, MA). Whole-
mount |1 SH was performed as previously described (Yan et al., 2009).

Phosphatase assay

Full length inpp5ka (NM_001089493.1) and inpp5kb (XM_021479345.1) cDNASs were generated by gene synthesis
and cloned into the pGEX-1 to generate GST-fusion proteins (Genewiz/Azenta Life Sciences, South Plainfield, NJ).
GST-human INPP5K and GST were used as positive and negative controls respectively (Weissner et ., 2017).
Constructs were transformed into BL21 DE3 pLysS, induced with 100uM IPTG overnight and harvested by
centrifugation. Cells were lysed in assay buffer (50 mM Tris-HCI [pH 7.5], 150 mM NaCl, 10 mM MgCl,) plus 1%
Triton X-100, EDTA-free protease inhibitors (Roche Diagnostics) and turbonuclease (Sigma). GST fusion proteins
were affinity purified over Gluthione Sepharose 4B (GE Healthcare). After extensive washing, aliquots of beads
were run on Coomassie gels to determine the abundance of full-length fusion proteins. Beads bearing equal amounts
of fusion proteins were incubated in assay buffer containing 135 uM Ptdins(4,5)P.diC8 or Ptding(3,4,5)P;diC8,
including control wells with no enzyme or no substrate lipid, and incubated for 1h at 37C. Free phosphate was
measured using the Malachite Green assay kit (Echelon Biosciences). Results of three independent experiments
were presented as mean + standard deviation. To minimize variability between purifications, all constructs were
freshly prepared and purified in parallel for each experiment.
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124  Results
125  Zebrafish and human INPP5K protein alignments
126 To determine whether inppSka and inpp5kb lead to functionally divergent proteins, we first analyzed their

127  protein sequence. Protein sequence alignment of INPP5K (NP_057616.2), InppSka (NP_001082962.2), and I npp5kb
128  (XP_021335020.1) (Fig. 1) reveaed 42.6% and 38.5% identity between the human orthologue and Inpp5ka and
129 Inpp5kb respectively, while the zebrafish proteins showed 56% identity with each other. Inpp5Skb has an additional
130 48 amino acid N-terminal sequence that was not present in either InppSka or INPP5K.
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132 Figure 1. Protein alignment of INPP5K, I npp5ka and I npp5kb highlighting conserved amino acids required
133 for phosphatase activity. The start and end of the catalytic domain in the human protein are marked with arrows.
134  Amino acids required for phosphatase activity have been denoted with asterisks (*). Arrowheads indicate residues
135  that are altered by missense variants in humans.

136
137  Divergent expression and localization of INPP5K orthologsin zebrafish larva
138 Analysis of inpp5ka and inppskb mMRNA obtained from whole zebrafish embryos had shown higher expression

139  of inpp5ka (Osborn et a., 2017). We used qPCR to define expression patterns throughout the first five days of
140  development. We found that inppSka (NM_001089493.1) was consistently expressed much more abundantly than
141 inppSkb (XM_021479345.1) (Fig. 2A). The developmental expression trend was similar for inpp5ka and inpp5kb.
142 Both genes had relatively low levels of expression at 1- and 2-dpf, but gene expression peaked at 4 dpf, where we
143 saw a 3.2-fold difference between the two paralogs. Gene expression started decreasing in the following day (Fig.
144  2A, Fold change relative to 1dpf inpp5Skb. inppSka: 2dpf 11.1+1.5, 3dpf 51.9+0.4, 4dpf 112.1+3.6, 5dpf 84.9+5.7;
145 inpp5kb: 2dpf 2.1+0.1, 3dpf 9.0+2.3, 4dpf 35.5+3.9, 5dpf 23.6+2.5. p>0.0001 at 3, 4, and 5 dpf).

146

147 Loss of INPP5K in humans affects the muscle, brain, and eyes and knockdown of inpp5ka in zebrafish larvae
148 resulted in morphological abnormalities in the eyes and skeletal muscle (Hathazi et a., 2021; Osborn et al., 2017,
149  Wiessner et al., 2017). We dissected the heads, eyes, and tails of developing larvae for tissue-specific expression
150 anaysis (Fig. 2B). This revealed that, while inpp5Ska was consistently expressed at higher levels, both paralogs
151 exhibit the greatest expression in the eyes and head. inpp5Ska and inpp5Skb showed 4.7- and 4.4-fold higher
152 expression in the eyes respectively when compared to the whole-body at 4 dpf. The head revealed a 2.4-fold
153 difference in inpp5ka and a 6.1-fold difference in inpp5kb compared to the whole-body expression (Fig. 2C-D, Fold
154  change relative to 1dpf inppSkb. inppbka: 3dpf head 145.2+19.3, eyes 80.4+31.6; 4dpf head 271.2+41.5, eyes
155  528.1+129.8; 5dpf 218.5+2.7, eyes 653.1499.6. inpp5kb: 3dpf head 30.4+3.4, eyes 28.6+4.4; 4dpf head
156  217.3t128.8, eyes 157.7+8.4; 5dpf head 85.8+7.9, eyes 276.9+40.6).
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157
158 Figure 2. inpp5ka and inpp5kb mRNAs differ in expression in zebrafish larvae. A. Gene expression determined

159 by gPCR. inpp5ka is more highly expressed in whole body lysates through 5 dpf. B. Larval tissues were excised

160  fromtheeye, head, and tail for localized gene expression analysis. C-D. Expression for both inpp5ka (C) and

161 inpp5kb (D) islow in the tail and increases in the eyes and brain. By 5 dpf, both are most highly expressed in the
162 eyes. Values are averages + SEM. * p< 0.05, ** p < 0.01, *** p < 0.001

163

164 To determine whether the expression patterns were consistent, we conducted in-situ hybridization on whole-
165 mount larvae at 3 dpf. inppSka antisense probing reflected the results of our previous gene expression assays.
166  inppbka mMRNA was most abundant in the head and eyes, with lower expression in thetail (Fig. 3A-C). As expected,
167  inpp5kb antisense targeting revealed moderate expression throughout the head and eyes (Fig. 3D-E). However, in
168  contrast with inpp5Ska, inppskb was abundantly expressed in the pineal gland (Fig. 3F), a neuroendocrine organ
169  which responds to light and plays arole in circadian rhythm (Cahill, 1996; Livne et al., 2016; Vatine et a., 2011).
170  Thesefindings indicate that in addition to lower expression, inpp5kb also diverged in its expression pattern.

inpp5ka antisense

inpp5ka sense

D
. inpp5kb antisense
E
‘ inpp5kb sense
171

172 Figure 3. inppbka and inppSkb mRNAs differ in localization in zebrafish larvae. A-C. In situ hybridizationin 3
173 dpf larvae shows that inpp5Ska mMRNA is highly expressed throughout the head and eyes. Scale bars: 500umin A,
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174 100um in C. D-F. inpp5kb expression is concentrated to the pineal gland. The pineal gland isindicated by the black
175 arrow.

176
177  Divergencein phosphatase activity of human and zebr afish orthologs of INPP5K
178 To evaluate the preservation of the Pl phosphatase activity in the zebrafish isoforms, we conducted a malachite

179 phosphatase assay to examine the activity of INPP5K and the two zebrafish Inpp5k isoforms against the preferred
180  substrate Ptdins(4,5)P, (Fig. 4A). We found that zebrafish InppSka and human INPP5K were both highly active
181 against Ptsins(4,5)P,. This activity was specific, as illustrated by the lack of phosphatase activity against PIPs.
182 However, compared to Inpp5ka, Inpp5kb was nearly inactive against Ptdins(4,5)P,. Inpp5ka yielded 409 pmol of
183 free phosphate vs 20pmol for Inpp5kb, indicating that InppSka had a 20-fold higher activity compared to |npp5Skb
184  (Fig. 4B).
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186  Figure4. Inpp5ka and Inpp5kb exhibit different phosphatase activity. A. Phosphatase activity of human

187 INPP5K, Inpp5ka and Inpp5kb in malachite assay. Human INPP5K and Inpp5Ska demonstrate high activity for the
188 P1(4,5)P, substrate. PIP; did not elicit activity from any isoform. B. Inpp5kais more significantly active against

189 diC8PI(4,5)P, compared to Inpp5kb. Values are averages + SEM. *** p < 0.001 following t-test.

190

191 The INPP5K protein is primarily composed of a 5-phosphatase domain between amino acids 16-318 and a
192 SKITCH domain between amino acids 321-448. Most found mutations in humans are missense and have been
193 shown to reduce or ablate phosphatase activity (Osborn et a., 2017; Wiessner et al., 2017). We wondered whether
194  thelossin activity in Inpp5kb could be caused by changes in amino acids identified to be critical for the catalytic
195 activity of INPP5K. Basing this analysis on the available crystal structures of other Type Il inositol phosphate 5-
196  phosphatases, INPP5B and SYNJ1 (Paesmans et al., 2020; Trésaugues et al., 2014), we found that all sites were
197  conserved in InppSka and InppSkb and there were no major changes that could explain differences in activity
198  (asterisksin Fig. 1). We also assessed whether residues known to be affected by pathogenic variants in patients were
199  conserved in Inpp5kb, and these amino acids were al maintained (arrowheads in Fig. 1) (D’Amico et a., 2020;
200  Osborn et a., 2017; Hathazi et al., 2021, Wiessner et al., 2017; Yousaf et al., 2017). Thus, possible changes on
201 known residues do not explain the difference in function between Inpp5ka and Inpp5kb.
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202
203 Discussion
204 INPP5K mutations in humans cause a distinct neurodevelopmental syndrome with variable presentation of

205 intellectual disability, cataracts, short stature, and muscle disease (D’Amico et a., 2020; Osborn et al., 2017;
206  Wiessner et al., 2017; Yousef et al., 2017). Multiple zebrafish models have been developed to study inpp5k function
207 using morpholino oligonucleotides either blocking translation or knocking down mRNA expression (Hathazi et al.,
208 2021; Osborn et al., 2017, Wiessner et al., 2017). However, the presence of duplicated inpp5k genes, inpp5Ska and
209 inpp5kb, in zebrafish complicates the development of both candidate loss- and gain-of-function mutations since both
210  zebrafish orthologs may need to be targeted. Initial functional data from our previous studies had shown that
211 inpp5ka knockdown alone was sufficient to replicate the findings in the double gene knockdown (Osborn et al.,
212 2017). In this study, we show that inpp5ka and inpp5kb have diverged in expression levels, patterns and function
213 following teleost whole genome duplication (WGD). inpp5ka, rather than inppSkb, maintains a higher sequence
214  identity to human INPP5K, suggesting that genetic removal of this gene may be sufficient to recapitul ate the human
215 mutation.

216 Polyploidization by WGD is a significant driver of evolution (Postlethwait et al., 1998; Sémon and Wolfe,
217  2007). During the period of re-diploidization that follows a WGD event, most redundant genes are eliminated via
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218  genomic rearrangements and mutations causing one duplicated copy to become a pseudogene. However, a
219  duplicated gene may be preserved and gradually diverge in expression patterns and/or function during evolution
220  leading to gene adaptation through sub-functionalization or neo-functionalization of one of the duplicated genes
221 (Kassahn et a., 2009; Sémon and Wolfe, 2007). While inpp5ka is broadly and highly expressed throughout the
222 zebrafish larvae, inpp5kb is significantly less expressed. Additionally, we found that Inpp5kb exhibits minimal
223 phosphatase activity against the traditional substrate of INPP5K, Ptdins(4,5)P, (ljuin et al., 2000; Vandeput et al.,
224 2006). While both paralogs are most abundant in the head, the visualization of expression achieved by in-situ
225 hybridization reveals that the expression of inpp5kb is specifically enriched in the pineal gland. The pineal gland is
226  thought to be the master regulator for circadian rhythm in vertebrates. Melatonin is the key circadian hormone
227  secreted by the pineal gland in zebrafish (Cahill, 1996) and is thought to play arole in locomotor activity (Livne et
228 al., 2016), as well in the timing of reproduction and feeding (Piccinetti et al., 2013). It will be interesting in the
229 future to determine whether Inpp5kb isinvolved in pineal functions independently of its phosphatase activity.

230 In humans, much of the pathology resulting from mutations within INPP5K have been attributed to the
231 dysregulation of phosphoinositide homeostasis (Hathazi et al., 2021; McGrath et a., 2020; Osborn et al., 2017;
232 Wiessner et al., 2017). Most known mutations in INPP5K are missense variants occurring in the catalytic
233 phosphatase domain reducing or ablating conversion of Ptdins(4,5)P,to Ptding(4)P (Osborn et al., 2017; Wiessner et
234 4dl., 2017). In the muscle, INPP5K is involved in insulin signaling through the PI3K/Akt/mTOR pathway (Ijuin and
235 Takenawa, 2015; ljuin et al., 2015), but recent studies in a muscle-specific Inpp5k mouse knock-out line also
236  determined that abnormal accumulation of Ptding(4,5)P, led to a severe disruption in lysosome recycling (McGrath
237 et d., 2020). Interestingly, lysosome enlargement and autophagy inhibition found in the Inpp5k-deficient muscle
238  were not dependent of Akt/mTOR signaling, suggesting an independent additional role for Ptding(4,5)P, in muscle
239 maintenance in the autophagic lysosome reformation pathway (McGrath et a., 2020). In addition, increased levels
240  of D3-phosphoglycerate dehydrogenase (PHGDH) have been found in fibroblasts obtained from individuals with
241 INPP5K phosphatase mutations, indicating further metabolic disruptions (Hathazi et al., 2021). Overall, we propose
242 that targeting the phosphatase domain in Inpp5Ska would lead to areliable model for INPP5K mutations in humans.
243

244 Whether Inpp5kb evolved to perform a different function in the pineal gland and how it lost its phosphatase
245 activity in the zebrafish remains to be studied.
246
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