

1   **Cleavage of 14-3-3 $\epsilon$  by the enteroviral 3C protease dampens RIG-I mediated antiviral  
2   signaling**

3

4   Daniel D.T. Andrews<sup>1,2</sup>, Yasir Mohamud<sup>4,5</sup>, Marli Vlok<sup>1,2</sup>, Dorssa Akbari Bani<sup>1,2</sup>, Brenna N.  
5   Hay<sup>1,2,3</sup>, Leonard J. Foster<sup>1,3</sup>, Honglin Luo<sup>4,5</sup>, Christopher M. Overall<sup>1,2,6,7</sup>, Eric Jan<sup>1,2,\*</sup>

6

7   <sup>1</sup>Department of Biochemistry and Molecular Biology, University of British Columbia,  
8   Vancouver, BC, Canada

9   <sup>2</sup>Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada

10   <sup>3</sup>Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada

11   <sup>4</sup>Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver,  
12   BC, Canada

13   <sup>5</sup>Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada

14   <sup>6</sup>Department of Oral Biological and Medical Sciences, University of British Columbia,  
15   Vancouver, BC, Canada

16   <sup>7</sup>Centre for Blood Research, University of British Columbia, Vancouver, Canada

17

18   \*Corresponding Author: [ej@mail.ubc.ca](mailto:ej@mail.ubc.ca)

19     **Abstract**

20           Viruses have evolved diverse strategies to evade the host innate immune response and  
21        promote infection. The RIG-I-like-receptors RIG-I and MDA5 (RLRs) are antiviral factors that  
22        sense viral RNA and signal downstream *via* mitochondrial antiviral-signaling protein (MAVS) to  
23        activate type I interferon (IFN) expression. 14-3-3 $\epsilon$  is a key component of the RIG-I translocon  
24        complex that interacts with MAVS at the mitochondrial membrane; however, the exact role of  
25        14-3-3 $\epsilon$  in this pathway is not well understood. In this study, we demonstrate that 14-3-3 $\epsilon$  is a  
26        direct substrate of both the poliovirus and coxsackievirus B3 (CVB3) 3C proteases (3C<sup>pro</sup>), and  
27        that it is cleaved at Q236 $\downarrow$ G237, resulting in the generation of N- and C-terminal fragments of  
28        27.0 and 2.1 kDa, respectively. Expression of the N-terminal cleavage fragment in cells reduces  
29        *IFNB* mRNA production during poly(I:C) stimulation, thus suggesting an antagonistic effect in  
30        the presence of the endogenous 14-3-3 $\epsilon$  protein. The N-terminal 14-3-3 $\epsilon$  fragment does not  
31        interact with RIG-I in co-immunoprecipitation assays, nor can it facilitate RIG-I translocation to  
32        the mitochondria. Probing the intrinsically disordered C-terminal region identifies key residues  
33        responsible for RIG-I signaling. Finally, overexpression of the N-terminal fragment promotes  
34        CVB3 infection and influenza A virus (H1N1) RNA production and reduces *IFNB* mRNA  
35        production during infection. The strategic enterovirus 3C<sup>pro</sup>-mediated cleavage of 14-3-3 $\epsilon$   
36        antagonizes RIG-I signaling by disrupting critical interactions within the RIG-I translocon  
37        complex, thus contributing to evasion of the host antiviral response.

38 **Author Summary**

39 Host antiviral factors work to sense virus infection through various mechanisms, including a  
40 complex signaling pathway known as the RIG-I like receptor (RLR) pathway. This pathway  
41 drives the production of antiviral molecules known as interferons, which are necessary to  
42 establish an antiviral state in the cellular environment. Key to this antiviral signaling pathway is  
43 the small chaperone protein 14-3-3 $\epsilon$ , which facilitates the delivery of a viral sensor protein, RIG-  
44 I, to the mitochondria. In this study, we show that the enteroviral 3C protease cleaves 14-3-3 $\epsilon$   
45 during infection, rendering it incapable of facilitating this antiviral response. We also find that  
46 the cleavage fragment inhibits RIG-I signaling and promotes virus infection. Our findings reveal  
47 a novel viral strategy that restricts the antiviral host response and provides insights into the  
48 mechanisms underlying 14-3-3 $\epsilon$  function in RIG-I antiviral signaling.

49 **Introduction**

50 In response to viral infections, mammalian cells have evolved several distinct  
51 mechanisms to sense and respond to the presence of a virus. Sensing of exogenous genetic  
52 material, proteins, and other viral markers through these mechanisms in part triggers an  
53 enhanced antiviral state in the cell, characterized by expression of interferons (IFNs) and,  
54 subsequently, interferon-stimulated genes (ISGs) that restrict infection [1]. In an ‘arms race’  
55 between virus and host, viruses must counter these mechanisms and as such, have evolved  
56 intricate evasion mechanisms, such as the capping of viral genetic material to mimic cellular  
57 DNA, sequestering of the replication complex to shield the viral particles from detection and the  
58 proteolytic processing of cellular antiviral proteins [2–5].

59 Mammalian cells sense RNA virus infections through membrane-associated toll-like  
60 receptors and cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) including  
61 RIG-I (which senses short double-stranded RNAs (dsRNA)), melanoma differentiation-  
62 associated protein 5 (MDA5, which senses long dsRNAs) and laboratory of genetics and  
63 physiology 2 (LGP2, which acts as a regulator for other RLRs) [6–8]. In general, RLRs are  
64 activated upon the detection of viral dsRNA and RNAs containing a 5' triphosphate moiety but  
65 no methyl cap, though MDA5 can also detect foreign RNAs lacking 5' triphosphates [1]. Upon  
66 detection of viral RNA, RIG-I and MDA5 undergo conformational changes from a “closed” to  
67 “open” conformation [9]. The “closed” conformation prohibits access to the Caspase Activation  
68 and Recruitment Domains (CARD), while the “open” conformation exposes them. Access to the  
69 CARDs is dependent on several factors, such as ubiquitination of RIG-I with K63-polyubiquitin  
70 chains and the association of RIG-I with chaperone proteins such as tripartite motif containing 25  
71 (TRIM25) and 14-3-3 $\epsilon$  [10,11]. These interactions enable the CARDs of RIG-I to associate with

72 the CARDs of mitochondrial antiviral-signaling protein (MAVS), which serves as an essential  
73 step in the RLR pathway [12]. MAVS activation via the CARDs then triggers a downstream  
74 cascade that drives type 1 IFN production [6,13]. Notably, the activation of these pathways is  
75 virus-specific, with either RIG-I or MDA5 acting as the primary sensor for a given virus during  
76 infection [14].

77 A subset of 14-3-3 proteins play key roles in the RIG-I and MDA-5 signaling pathways.

78 The 14-3-3 family of proteins consists of seven unique isoforms:  $\beta$ ,  $\gamma$ ,  $\epsilon$ ,  $\zeta$ ,  $\eta$ ,  $\sigma$ , and  $\tau$ , that  
79 function as regulatory molecules in cellular pathways such as cell death and apoptosis, cell cycle  
80 regulation, and the cellular antiviral response [15–21]. 14-3-3 proteins adopt a conserved  $\alpha$ -  
81 helical fold, in which a binding groove recognizes phosphorylated serine or threonine residues  
82 within an RSXpSXP or RXXXpSXP motif [16,22]. 14-3-3 interactions regulate protein function  
83 by inducing a conformational change, sequestering or relocating the target protein, or acting as  
84 a molecular scaffold [23,24]. The primary difference between the various 14-3-3 proteins lies in  
85 the variable C-terminal region, the function of which is poorly understood. Liu *et al* [11]  
86 identified 14-3-3 $\epsilon$  as a key interaction partner of RIG-I during activation, demonstrating that 14-  
87 3-3 $\epsilon$  binding is necessary for the translocation of RIG-I to the mitochondria, which is an essential  
88 step in its interaction with and activation of MAVS. In addition to RIG-I interactions with 14-3-  
89 3 $\epsilon$  and TRIM25 [10], UFL1-mediated ufmylation is a key step in RIG-I translocation [25]. In a  
90 comparable manner, highlighting the specificity of 14-3-3 proteins, 14-3-3 $\eta$  promotes MDA5  
91 activation and translocation in HCV-infected cells [15].

92 Several viruses have evolved countermeasures to this pathway, highlighting the  
93 importance of RLRs and 14-3-3 proteins in the cellular antiviral response. The NS3 protein of  
94 dengue and Zika virus contains a phosphomimic domain that binds to and sequesters 14-3-3 $\epsilon$ ,

95 antagonizing the RIG-I response and promoting viral replication [20,26]. The influenza A virus  
96 NS1 protein similarly interacts with 14-3-3 $\epsilon$  and disrupts RIG-I translocation to the mitochondria  
97 [27]. Epstein-Barr virus, Kaposi sarcoma-associated herpesvirus, and human cytomegalovirus all  
98 encode ubiquitin deconjugases that interact with 14-3-3 proteins to drive TRIM25 aggregation  
99 and inactivation, promoting infection and inhibiting IFN production [28]. Despite being a key  
100 RIG-I regulatory factor that is targeted by several distinct viral families, the exact role of 14-3-3 $\epsilon$   
101 in RIG-I translocation has not been fully elucidated.

102 In this study, we showed that 14-3-3 $\epsilon$  is cleaved during poliovirus and coxsackievirus B3  
103 (CVB3) infection, and that it is a direct target of the enteroviral 3C protease (3C<sup>pro</sup>) with  
104 cleavage occurring between amino acids Q236 $\downarrow$ G237 of 14-3-3 $\epsilon$ . We demonstrated that  
105 expression of the N-terminal cleavage fragment of 14-3-3 $\epsilon$  (“3CN”) blocks RIG-I-mediated  
106 *IFNB* transcription. Further, we showed that 14-3-3 $\epsilon$  3CN cannot interact with RIG-I, and  
107 thereby disrupts the translocation of the RIG-I complex to the mitochondria. Finally, we revealed  
108 that the expression of 14-3-3 $\epsilon$  3CN promotes productive infection and restricts *IFNB* production  
109 during virus infection. These results reveal a novel strategy by which enteroviruses restrict and  
110 evade the host innate immune response.

111 **Results**

112 **Cleavage of 14-3-3 $\epsilon$  in poliovirus and CVB3 infected cells**

113 We previously used Terminal Amine Isotopic Labeling of Substrates (TAILS) to identify  
114 host proteins that are cleaved by the enteroviral 3C<sup>pro</sup> [3,4,29,30]. Mining this TAILS dataset [3]  
115 to investigate substrates of poliovirus 3C<sup>pro</sup>, we identified the high-confidence neo-N-termini  
116 peptide <sup>237</sup>GDGEEQNKEA from human 14-3-3 $\epsilon$  (**Fig 1A**), a known chaperone protein and key  
117 regulator of the RIG-I activation pathway [11]. Consistent with the preferred Q↓G (P1↓P1')  
118 specificity of 3C<sup>pro</sup> [31], the TAILS-identified cleavage site in 14-3-3 $\epsilon$  is between Q236↓G237,  
119 prompting us to further investigate the functional role of cleavage of this protein.

120 First, we sought to determine whether 14-3-3 $\epsilon$  is cleaved during virus infection. We  
121 infected HeLa cells with poliovirus and probed for 14-3-3 $\epsilon$  by immunoblotting. A lower  
122 molecular weight product of 14-3-3 $\epsilon$  cleavage product was observed 5-hours post-infection  
123 (h.p.i.) (**Fig 1B**). The predicted cleavage event between Q236↓G237 would result in two protein  
124 fragments, an N- and C-terminal fragment of ~27.0 and ~2.1 kDa respectively. To determine  
125 whether cleavage is specific to poliovirus or if it is a general strategy employed during  
126 enterovirus infection, we monitored the state of 14-3-3 $\epsilon$  in CVB3-infected HeLa cells. Like that  
127 observed in poliovirus-infected cells, a cleavage product of 14-3-3 $\epsilon$  was observed in CVB3-  
128 infected cells (**Fig 1C**), suggesting a common viral cleavage strategy employed by enteroviruses.

129 We next examined whether other 14-3-3 family members are cleaved during infection.  
130 14-3-3 $\sigma$ ,  $\beta$ , and  $\tau$  were also cleaved to varying extents during poliovirus infection (**Fig 1B**).  
131 Similar to 14-3-3 $\epsilon$ , cleavage fragments of 14-3-3 $\sigma$  and  $\tau$  were detected as early as 5 h.p.i, while  
132 14-3-3 $\sigma$  was cleaved to completion by 7 h.p.i. By contrast, no detectable 14-3-3 $\eta$  cleavage

133 products were detected during infection. These results indicated that 14-3-3 proteins are  
134 differentially targeted in poliovirus-infected cells.

135 **Endogenous 14-3-3 $\epsilon$  is cleaved directly by poliovirus 3C<sup>pro</sup>**

136 14-3-3 $\epsilon$  is a known substrate of caspase-3 during apoptosis and apoptosis can be induced  
137 at late stages of poliovirus infection [21,32,33]. To determine whether 14-3-3 $\epsilon$  is targeted by  
138 caspases in poliovirus-infected cells, we pre-treated cells with zVAD-FMK, a pan-caspase  
139 inhibitor, and subsequently infected the cells with poliovirus for 7 hours. As expected, poly  
140 (ADP-ribose) polymerase (PARP), a known substrate of caspase-3, was cleaved in poliovirus-  
141 infected cells, but was not cleaved in the presence of zVAD-FMK (**Fig 2A**). By contrast, 14-3-3 $\epsilon$   
142 cleavage was still detected in infected, zVAD-FMK-treated cells, thus indicating that 14-3-3 $\epsilon$  is  
143 not cleaved by caspases in poliovirus-infected cells.

144 To determine whether 14-3-3 $\epsilon$  is a direct substrate of 3C<sup>pro</sup>, we performed an *in vitro*  
145 cleavage assay using HeLa cell lysates incubated with either purified, recombinant wild type  
146 (WT) or catalytically inactive (C174A) poliovirus 3C<sup>pro</sup>. As expected, a cleavage fragment of 14-  
147 3-3 $\epsilon$ , ~27 kDa, was detected in reactions containing purified wild type, but not the mutant  
148 C147A 3C<sup>pro</sup> (**Fig 2B**). The ~27.0 kDa mass of the cleavage fragment was similar to that  
149 observed in poliovirus-infected cells (**Fig 1B, 2B**).

150 The N-terminomics TAILS analysis identified cleavage of 14-3-3 $\epsilon$  between Q236 $\downarrow$ G237.  
151 To confirm this, we generated GFP-tagged 14-3-3 $\epsilon$  expression constructs expressing either the  
152 wild type 14-3-3 $\epsilon$ , or a non-cleavable construct containing a glutamine to alanine mutation at the  
153 P1 site (GFP-14-3-3 $\epsilon$ (Q236A)). We transfected the wild type or GFP-14-3-3 $\epsilon$ (Q236A) constructs  
154 into HeLa cells and then infected the cells with poliovirus. Supporting our earlier observations, a  
155 cleavage product was detected in poliovirus-infected cells expressing the wild type construct, but

156 not expressing the mutant GFP-14-3-3 $\epsilon$ (Q236A) (**Fig 2C**). In summary, these results  
157 demonstrated that 14-3-3 $\epsilon$  is a direct substrate of poliovirus 3C<sup>pro</sup> and that cleavage occurs at the  
158 Q236 $\downarrow$ G237 site.

### 159 **Effects of the 14-3-3 $\epsilon$ N-terminal cleavage product on cell viability**

160 A previous report showed that 14-3-3 $\epsilon$  is targeted by caspase-3, which then leads to the  
161 release of BCL2-associated agonist of cell death to promote apoptosis [21]. Interestingly, the  
162 caspase-3-mediated cleavage site occurs at D238, just two amino acids downstream of the Q236  
163 cleavage site of 3C<sup>pro</sup>, and the caspase-induced N-terminal fragment plays a pro-apoptotic role  
164 [21]. To determine whether the expression of these N-terminal cleavage fragments of 14-3-3 $\epsilon$   
165 have effects on cell viability, we generated a set of expression constructs containing a myc  
166 epitope tag at the N-terminal. Alongside the wild type (“WT”), we generated constructs that  
167 terminated at either Q236 (“3CN”) or D238 (“CaspN”) to mimic that of a stable cleavage  
168 fragment (**Fig 3A**). Following transfection, we first assessed, by immunoblotting, caspase  
169 activity *via* PARP cleavage (**Fig S1A**) [34]. In all cases, the expression of the tagged 14-3-3 $\epsilon$   
170 proteins did not lead to detectable cleavage or loss of full-length PARP (**Fig. S1A**). Furthermore,  
171 overexpression of these 14-3-3 $\epsilon$  proteins did not affect cell viability (**Fig. S1B**). Collectively,  
172 these results demonstrated that expression of the truncated 14-3-3 $\epsilon$  protein fragments does not  
173 activate caspases nor induce cell death in A549 cells.

### 174 **N-terminal 14-3-3 $\epsilon$ dampens *IFNB* mRNA production**

175 14-3-3 $\epsilon$  is a key component of the RIG-I translocon complex, serving as a chaperone to  
176 promote RIG-I signaling and activate the downstream interferon response [25]. We hypothesized  
177 that cleavage of 14-3-3 $\epsilon$  by 3C<sup>pro</sup> and the resulting N-terminal fragment disrupts RIG-I signaling.  
178 We first determined whether endogenous 14-3-3 $\epsilon$  is necessary for *IFNB* mRNA production in

179 A549 cells by transfecting an siRNA targeting the 3' UTR of the *YWHAE* transcript.  
180 Transfection of the 14-3-3 $\epsilon$  siRNA in A549 cells resulted in significant knockdown of the  
181 endogenous protein by immunoblotting (**Fig 3B**, inset). To activate the RLR pathway, we  
182 transfected A549 cells with the dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) and  
183 then measured *IFNB* mRNA levels by RT-qPCR. Transfection of poly(I:C) in the presence of a  
184 control siRNA targeting firefly luciferase (siCon) resulted in an ~800-fold increase in *IFNB*  
185 mRNA levels compared to untreated cells, confirming the activation of the RLR pathway. By  
186 contrast, poly(I:C) treatment with an siRNA targeting *YWHAE* significantly reduced the amount  
187 of *IFNB* mRNA produced, demonstrating the requirement of 14-3-3 $\epsilon$  in RLR pathway activation  
188 as previously reported (**Fig 3B**) [11].

189 Utilizing an siRNA targeting the 3' UTR of the *YWHAE* transcript allows for exogenous  
190 expression of N-terminal 14-3-3 $\epsilon$  fragments and their effects on the RLR signaling pathway.  
191 Specifically, myc-tagged wild-type, 3CN, and CaspN 14-3-3 $\epsilon$  were stably expressed in both  
192 control cells and cells depleted of endogenous 14-3-3 $\epsilon$  by siRNA treatment (**Fig 3C**). While the  
193 knockdown of 14-3-3 $\epsilon$  reduced the production of *IFNB* mRNA (**Fig 3B**), we observed a  
194 moderate rescue of *IFNB* levels in cells transfected with the wild-type 14-3-3 $\epsilon$  construct (**Fig**  
195 **3D**). By contrast, in si14-3-3 $\epsilon$ -treated cells, expression of both 3CN and CaspN 14-3-3 $\epsilon$  failed to  
196 rescue *IFNB* mRNA production, indicating that the N-terminal 14-3-3 $\epsilon$  cleavage fragments  
197 cannot support RLR signaling (**Fig 3D**).

198 Interestingly, in cells treated with control siRNA, expression of the 3CN and CaspN 14-  
199 3-3 $\epsilon$  constructs resulted in a markedly lower *IFNB* fold change relative to that of wild-type 14-3-  
200 3 $\epsilon$ -transfected cells, suggesting that the overexpression of the N-terminal 14-3-3 $\epsilon$  cleavage  
201 fragments antagonizes RLR signaling, even in the presence of endogenous 14-3-3 $\epsilon$  (**Fig 3D**). To

202 investigate this further, we transfected increasing amounts of each expression construct in A549  
203 cells followed by poly(I:C) stimulation (**Fig. 3E, 3F**). Overexpression of both 3CN and CaspN  
204 14-3-3 $\epsilon$  resulted in a significant decrease in *IFNB* production in a dose-dependent manner (**Fig**  
205 **3F**). To further confirm this observation, we monitored RLR signaling using an A549 cell line  
206 engineered to express an interferon stimulated response element (5xISRE)-luciferase reporter.  
207 Overexpression of 3CN 14-3-3 $\epsilon$  reduced relative luciferase activity compared to the wild type  
208 14-3-3 $\epsilon$ , providing further confirmation that expression of the N-terminal 14-3-3 $\epsilon$  cleavage  
209 products can antagonize RLR signaling in A549 cells (**Fig 3G**).

210 The 14-3-3 $\epsilon$ -containing translocon complex signals upstream of MAVS, which  
211 subsequently activates TANK binding kinase (TBK1) phosphorylation [35]. To determine the  
212 effects of our 3CN 14-3-3 $\epsilon$  expression in RLR signaling, we monitored TBK1 phosphorylation  
213 (p-TBK1) by immunoblotting. As expected, poly(I:C) treatment resulted in an increase in p-  
214 TBK1 levels in cells transfected with wild-type 14-3-3 $\epsilon$ , indicating activation of the RLR  
215 signaling pathway (**Fig 3H**). By contrast, cells expressing 3CN 14-3-3 $\epsilon$  led to a notable loss of  
216 TBK1 phosphorylation, indicating that expression of 3CN 14-3-3 $\epsilon$  dampens the RLR signaling  
217 pathway upstream of TBK1 phosphorylation. In summary, these results demonstrate that the  
218 truncated, N-terminal fragment derived from 3C<sup>pro</sup>-mediated cleavage of 14-3-3 $\epsilon$  can act in a  
219 dominant negative manner to block RLR signaling.

220 **Key residues in the C-terminal tail of 14-3-3 $\epsilon$  for RIG-I signaling**

221 Our results indicated that cleavage of 14-3-3 $\epsilon$  by 3C<sup>pro</sup> results in the generation of a  
222 truncated N-terminal cleavage fragment that antagonizes RLR signaling. These results also  
223 suggested that the C-terminal residues of 14-3-3 $\epsilon$  may have an important role in RLR signaling.  
224 The C-terminal tail is highly variable among the 14-3-3 family proteins and is predicted to be

225 flexible and disordered [36]. While highly variable between 14-3-3 protein family members, the  
226 C-terminus of 14-3-3 $\epsilon$  is 100% conserved among mammals and the 3C<sup>pro</sup>-induced QG cleavage  
227 site is 100% conserved (**Fig S2A, S2B**). To date, a complete crystal structure of 14-3-3 $\epsilon$   
228 resolving the C-terminal tail has yet to be determined. It has been proposed that charged residues  
229 in the C-terminal tail may regulate 14-3-3 function by interacting with the phospho-binding  
230 pocket of 14-3-3 proteins [36–38], though the detailed functions of the C-terminal tail of 14-3-3  
231 proteins are not fully understood. Modeling of the structure of the C-terminal domain of 14-3-3 $\epsilon$   
232 using RoseTTA fold [39] *in silico* predicted a short, alpha-helical fold (**Fig. 4A**).

233 To determine residues within the C-terminal region of 14-3-3 $\epsilon$  that may be required for  
234 RLR signaling, we used a scanning alanine mutagenesis approach, systematically mutating three  
235 consecutive residues to alanine from G237 to Q255 (**Fig 4B**). We overexpressed alanine-mutated  
236 14-3-3 $\epsilon$  in A549 cells (**Fig 4C**) treated with either a control siRNA or si14-3-3 $\epsilon$  to address the  
237 direct effects of C-terminal 14-3-3 $\epsilon$  mutations on RLR signaling. As expected, poly(I:C)  
238 treatment increased *IFNB* mRNA levels in siCon-treated cells transfected with the wild-type 14-  
239 3-3 $\epsilon$  construct (**Fig 4D**). Similarly, overexpression of 14-3-3 $\epsilon$  mutants (A1-A4) resulted in an  
240 increase in *IFNB* mRNA levels similar to wild-type 14-3-3 $\epsilon$ , suggesting that these residues are  
241 not critical for RLR signaling. By contrast, transfection of the 14-3-3 $\epsilon$  A5 mutant led to reduced  
242 *IFNB* mRNA levels compared to wild-type 14-3-3 $\epsilon$  expression in poly(I:C)-stimulated cells. We  
243 next determined the effects of these 14-3-3 $\epsilon$  mutants in cells depleted of endogenous 14-3-3 $\epsilon$  by  
244 siRNA treatment. Expression of 14-3-3 $\epsilon$  mutants (A1-A4) in the presence of si14-3-3 $\epsilon$  exhibited  
245 a similar fold change to that of the wild-type 14-3-3 $\epsilon$  expressing cells. Transfection of the 14-3-  
246 3 $\epsilon$  A5 mutant construct in si14-3-3 $\epsilon$ -treated cells did not fully rescue *IFNB* mRNA production

247 (Fig 4D). These results suggested that residues 251-253 (E251, D252, E253) of 14-3-3 $\epsilon$  are  
248 important for RLR signaling.

249 **N-terminal 14-3-3 $\epsilon$  disrupts the RIG-I translocon**

250 Our results showed that overexpression of the 3CN construct disrupted the RLR signaling  
251 pathway upstream of TBK1 phosphorylation (Fig 3H). We next determined whether the  
252 expression of 3CN 14-3-3 $\epsilon$  blocks RIG-I translocation to the MAVS at the mitochondria. To  
253 address this, we co-transfected FLAG-RIG-I and either the myc-tagged wild-type or 3CN 14-3-  
254 3 $\epsilon$  constructs in 293T cells, and then monitored RIG-I localization in the mitochondrial and  
255 cytoplasmic fractions by immunoblotting. Confirming membrane fractionation, the  
256 mitochondrial marker voltage-dependent anion-selective channel protein 1 (VDAC1) and the  
257 cytoplasmic  $\beta$ -actin were enriched in their respective subcellular compartments (Fig 5A).

258 Consistent with previous reports [11], poly(I:C) treatment of cells expressing the wild-type 14-3-  
259 3 $\epsilon$  construct resulted in an enrichment of FLAG-RIG-I in the mitochondrial fraction. Conversely,  
260 expression of 3CN 14-3-3 $\epsilon$  caused a loss of enrichment of FLAG-RIG-I in the mitochondrial  
261 fraction (Fig 5A). Quantification of the immunoblots confirmed that the amount of FLAG-RIG-I  
262 localized to the mitochondria was decreased in cells expressing 3CN 14-3-3 $\epsilon$  (Fig 5B). These  
263 results indicated that expression of 3CN 14-3-3 $\epsilon$  blocks signaling at or upstream of the RIG-I  
264 translocation step.

265 The RIG-I translocon complex involves several multi-protein interactions that contain at  
266 least 14-3-3 $\epsilon$ , TRIM25, UFL1 and RIG-I [10,11,25]. To determine whether 3CN 14-3-3 $\epsilon$  can  
267 interact with RIG-I in poly(I:C)-stimulated cells, we performed co-immunoprecipitation assays  
268 in cells expressing FLAG-RIG-I and either the myc-tagged wild-type or 3CN 14-3-3 $\epsilon$  proteins  
269 (Fig 5C). Expression of tagged RIG-I and the wild-type 14-3-3 $\epsilon$  in poly(I:C)-stimulated cells

270 resulted in a detectable interaction between the two proteins (**Fig 5C**). Specifically, poly(I:C)  
271 stimulated cells displayed an enrichment of FLAG-RIG-I co-precipitating with the myc-tagged  
272 wild-type 14-3-3 $\epsilon$ . In the reciprocal immunoprecipitation, the wild-type 14-3-3 $\epsilon$  protein co-  
273 precipitated with FLAG-RIG-I. Conversely, the 3CN 14-3-3 $\epsilon$  protein failed to co-precipitate with  
274 FLAG-RIG-I in poly(I:C) stimulated cells (**Fig 5C**). Together, these results indicated that the N-  
275 terminal 14-3-3 $\epsilon$  cleavage protein cannot interact with RIG-I in poly(I:C)-stimulated cells.

## 276 **N-terminal 14-3-3 $\epsilon$ cleavage fragment modulates virus infection**

277 We next addressed whether the N-terminal 14-3-3 $\epsilon$  cleavage fragment can modulate virus  
278 infection, notably CVB3 and influenza A virus (IAV, H1N1 strain) infections. IAV induces a  
279 strong interferon response, while CVB3 targets several factors within the RIG-I signaling  
280 pathway [14,40]. First, we investigated the role of 14-3-3 $\epsilon$  in CVB3 infection. Depleting  
281 endogenous 14-3-3 $\epsilon$  resulted in a ~2 log fold decrease in viral titer, indicating a pro-viral role for  
282 14-3-3 $\epsilon$  in CVB3 infection (**Fig 6A**). We then investigated whether 14-3-3 $\epsilon$  contributes to IAV  
283 infection. Depletion of 14-3-3 $\epsilon$  in A549 cells resulted in a significant decrease in IAV RNA  
284 accumulation (**Fig 6B**). Depleting 14-3-3 $\epsilon$  also significantly reduced viral nucleocapsid protein  
285 expression (**Fig 6C**). These results indicated that, like CVB3, 14-3-3 $\epsilon$  is required to promote  
286 productive IAV infection.

287 To determine whether overexpression of the 3CN 14-3-3 $\epsilon$  affected CVB3 infection, and  
288 whether preventing cleavage was detrimental, we transfected cells with either the wild-type,  
289 3CN, or the cleavage resistant 14-3-3 $\epsilon$ (Q236A) constructs. A549 cells were infected with CVB3  
290 at an MOI of 0.01 for 24 hours, then plaque assays were performed to determine viral yield.  
291 There was no difference in CVB3 viral titers in cells transfected with 14-3-3 $\epsilon$ (Q236A) compared  
292 to that of the wild-type 14-3-3 $\epsilon$  construct (**Fig. 6D**). Interestingly, transfection with the 3CN 14-

293 3-3 $\epsilon$  construct increased viral yield compared to the wild-type 14-3-3 $\epsilon$  transfected cells (**Fig 6D**),  
294 suggesting a pro-viral role of the N-terminal 14-3-3 $\epsilon$  cleavage fragment.

295 We then examined the effects of expressing the wild-type or 3CN 14-3-3 $\epsilon$  in IAV-  
296 infected cells. We infected cells with IAV at an MOI of 0.1 and measured both *IFNB* and viral  
297 RNA levels at 6 and 24 hours post infection by qRT-PCR. Viral RNA levels were similar in cells  
298 transfected with either construct (**Fig 6E**). However, cells transfected with the 3CN 14-3-3 $\epsilon$   
299 construct led to reduced *IFNB* mRNA levels compared to that transfected the wild-type 14-3-3 $\epsilon$   
300 construct (**Fig 6F**), consistent with dampening of the RIG-I signaling by the N-terminal 14-3-3 $\epsilon$   
301 cleavage protein. These results indicate that expression of the 3CN 14-3-3 $\epsilon$  promotes CVB3  
302 infection and reduces both IAV- and poly(I:C)-stimulated RLR signaling.

303 **Discussion**

304 The RIG-I signaling pathway is a critical first-line host defense in detecting RNA virus  
305 infection and activating the antiviral interferon response [41]. Highlighting the importance of this  
306 pathway are the diverse viral mechanisms that target RLR signaling to restrict interferon  
307 production [18,20,27,28]. 14-3-3 $\epsilon$  is a key factor in the RIG-I translocon complex that signals to  
308 MAVS, however, the exact role of 14-3-3 $\epsilon$  in the translocon complex is not well understood  
309 [11]. In this study, we identified 14-3-3 $\epsilon$  as a direct target of enterovirus 3C<sup>pro</sup>, which cleaves  
310 between Q236 and G237, thus providing insights into the key regions of 14-3-3 $\epsilon$  important for  
311 RIG-I signaling. Expression of a 3C<sup>pro</sup>-mediated N-terminal 3CN 14-3-3 $\epsilon$  cleavage fragment  
312 antagonizes RIG-I signaling in a dominant-negative manner and is unable to interact with RIG-I.  
313 We further mapped key residues in the C-terminal region of 14-3-3 $\epsilon$  that are important for RIG-I  
314 signaling, thus providing a mechanistic rationale for cleavage by 3C<sup>pro</sup> and release of the C-  
315 terminal tail. Finally, we showed that the overexpression of the N-terminal fragment promoted  
316 CVB3 infection, supporting a pro-viral role for 14-3-3 $\epsilon$  cleavage and the N-terminal fragment  
317 itself. We propose that strategic cleavage of 14-3-3 $\epsilon$  by enterovirus 3C<sup>pro</sup> contributes to evasion  
318 of the host antiviral RIG-I signaling pathway and promoting infection.

319 How does the 3C<sup>pro</sup>-mediated cleavage of 14-3-3 $\epsilon$  disrupt and antagonize RIG-I  
320 signaling? 14-3-3 $\epsilon$ , along with RIG-I and TRIM25, form a translocon complex that plays a  
321 critical role in signalling from RIG-I to MAVS at the mitochondrial membrane [10,11].  
322 Recently, it has been shown that 14-3-3 $\epsilon$  is also ubiquitylated by UFL1 during RIG-I signalling, a  
323 further requirement for translocon formation and translocation [25]. Indeed, post-translational  
324 modifications of RIG-I, MDA5 and their interaction partners play prominent roles in 14-3-3 $\epsilon$   
325 activation and regulation of RLR signalling [16]. The dynamics and interplay of these factors are

326 not fully understood. The N-terminal regions of 14-3-3 $\epsilon$  family members contain dimerization  
327 sites that mediate homo- or hetero-dimerization with itself or other 14-3-3 proteins, as well as a  
328 binding groove that facilitates binding to phosphorylated substrates [16,36]; however, previous  
329 studies have shown that 14-3-3 $\epsilon$  likely binds to RIG-I in a phosphorylation-independent manner  
330 [11], suggesting that 14-3-3 $\epsilon$  may interact with RIG-I via an atypical manner or indirectly via  
331 other translocon complex proteins. Although the truncated N-terminal fragment does not bind to  
332 FLAG-RIG-I (**Fig 5B**), it is possible that it may also disrupt other interactions within the  
333 translocon complex, such as with TRIM25 and UFL1, or some combination of these. Our results  
334 also point to some key acidic residues of the C-terminus that potentially promote RIG-I signaling  
335 (**Fig 4D**), thus providing a mechanistic explanation as to why cleavage by 3C<sup>pro</sup> after Q236 may  
336 be strategic to block signaling activity.

337 As the C-terminus of 14-3-3 $\epsilon$  is poorly characterized [36], it remains to be determined  
338 how the loss of amino acids 251-253 of 14-3-3 $\epsilon$  may abolish functionality. Notably, it has been  
339 proposed that the disordered C-terminal region of 14-3-3 proteins may act in an autoinhibitory  
340 manner; Truong et al [42] proposed that the C-terminal region was responsible for preventing  
341 promiscuity and fine-tuning specific protein-protein interactions. It follows that truncation of the  
342 C-terminal tail by the enterovirus 3C<sup>pro</sup> may alter the interactions between 14-3-3 $\epsilon$  and its ligands  
343 and disrupt downstream signaling pathways. It is possible that truncation of 14-3-3 $\epsilon$  by  
344 enterovirus 3C<sup>pro</sup> does not result in a loss-of-function of 14-3-3 $\epsilon$  activity, but rather that the N-  
345 terminal fragment is endowed to bind to other cellular proteins. Intriguingly, although our study  
346 showed that the N-terminal 14-3-3 $\epsilon$  cleavage product cannot interact with RIG-I, expression of  
347 the N-terminal 14-3-3 $\epsilon$  can promote CVB3 infection, thus pointing to a role in a specific step in  
348 the viral life cycle (**Fig 6**). Moreover, depletion studies revealed a critical role of 14-3-3 $\epsilon$  in

349 CVB3 infection, thus further indicating a prominent role of the cleavage product(s) of 14-3-3 $\epsilon$  in  
350 promoting infection. Future studies revealing the interactome of the N-terminal 14-3-3 $\epsilon$  cleavage  
351 fragment should provide insights into this mechanism.

352 In enterovirus infections, several proteins in the RLR signaling pathway are cleaved  
353 and/or degraded such as RIG-I [40], MDA5, and MAVS [43]. As such, although 14-3-3 $\epsilon$  may  
354 not be cleaved to completion during infection (**Fig 1B**), enteroviruses target multiple factors to  
355 ensure disabling the RLR signaling pathway. Interestingly, our results strongly suggest that the  
356 N-terminal 14-3-3 $\epsilon$  cleavage fragment acts in a dominant manner to block RIG-I signaling (**Fig**  
357 **3, 6**). However, our results also showed that depletion of endogenous 14-3-3 $\epsilon$  is detrimental to  
358 CVB3 and IAV infection (**Fig 6**), which may suggest that the full-length 14-3-3 $\epsilon$  protein may  
359 retain pro-viral roles. Given that 14-3-3 $\epsilon$  normally acts as a chaperone protein for a wide range of  
360 signaling pathways and critical interactions with other proteins, it is reasonable to assume that  
361 depleting 14-3-3 $\epsilon$  would disrupt other cellular functions in such a way that restricts viral  
362 replication. Alternatively, as discussed above, the N-terminal 14-3-3 $\epsilon$  cleavage product may have  
363 other roles in the viral life cycle in promoting infection.

364 Our results showed that 14-3-3 $\epsilon$  is necessary for IAV H1N1 infection (**Fig 6**). This result  
365 is in contrast with previous findings that showed that depleting 14-3-3 $\epsilon$  promotes IAV infection  
366 [27]. We note that our experimental conditions differed from the established literature; Tam *et al*  
367 [27] performed their knockdown experiments using a modified virus with a deletion of the NS1  
368 effector domain (ED) and using a higher MOI. Furthermore, Ayllon *et al* [44] speculated that the  
369 NS1 ED was responsible for shielding dsRNA from detection by PRRs such as RIG-I; as such,  
370 we cannot rule out that the deletion of the NS1 ED may mask critical interactions of RIG-I with  
371 14-3-3 $\epsilon$ .

372 Targeting host cellular proteins by virally encoded proteases is an effective viral strategy  
373 to modulate host processes and evade antiviral responses [3–5,45]. In enterovirus infection,  
374 targeting 14-3-3 $\epsilon$  as well as several other factors in the RLR-signaling pathway are critical for  
375 productive infection and points to the importance of ensuring evasion of this pathway. It will be  
376 of interest to examine the roles of other 14-3-3 proteins that are cleaved under enterovirus  
377 infection. The recent advances in N-terminomics to identify host targets of viral proteases [3–  
378 5,45], both *in vitro* and in virus-infected cells, will provide insights into other antiviral factors  
379 that must be counteracted to promote virus infection.

380 **Materials and Methods**

381 **Contact for reagent and resource sharing**

382 Further information and requests for resources and reagents can be directed to Eric Jan

383 ([ej@mail.ubc.ca](mailto:ej@mail.ubc.ca)).

384 **Cells and viruses**

385 293T and A549 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM, Gibco

386 12100-046) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37°C.

387 A549 cells were kindly provided by Dr. Robert Hancock (University of British Columbia).

388 Poliovirus (Mahoney type 1 strain; accession NC\_002058.3) was generated from a

389 pT7pGemPolio infectious clone. Poliovirus and coxsackievirus B3 stocks were propagated and

390 titered in HeLa cells. Influenza A virus (H1N1) strain A/California/07/2009 was obtained from

391 ATCC (VR-1894), propagated in MDCK cells, and titered with hemagglutination assay (Novus,

392 Cat no. NBP3-05281). Sendai virus (Cantell strain) was obtained from Charles River (Mat.

393 10100774).

394 **Plasmids and transfections**

395 GFP and myc-tagged 14-3-3 $\epsilon$  were generated as follows: a G-block containing the full-length 14-

396 3-3 $\epsilon$  protein (IDT) was cloned into pEGFP-C1 (Addgene #2487) using XhoI and BamHI

397 restriction sites. To generate truncated mutants via site-directed mutagenesis, the following

398 primers were used: 5'-CTCGAGCTATGGATGATCGAGAGGATCTG-3' (for 5' end

399 amplification of all constructs), 5'-GGATCCTTACTGCATGTCTGAAGTCCATAG-3' (3CN)

400 and 5'-GCTCTTCTTAGTCACCTGCATGTCTGAAGT-3' (CaspN). To swap the GFP tag

401 with a myc tag, a double-stranded oligo (5'-

402 GCTAGCGCCGCCATGGTGGAGCAAAAGCTCATTCTGAAGAGGACTTGAGATCT-3')

403 was subcloned into the pEGFP-C1 plasmid using restriction sites NheI and BglII. To generate  
404 scanning alanine mutants, DNA fragments containing the desired mutations were synthesized  
405 and subcloned into the parent vector (myc-WT 14-3-3 $\epsilon$ ) using XhoI and BamHI restriction sites.

406 All DNA transfections were performed using Lipofectamine 2000 according to  
407 manufacturer protocol (ThermoFisher, 11668019). Briefly, cells were seeded 24 hours before  
408 transfection to allow adherence. Transfection took place in antibiotic-free DMEM supplemented  
409 with 10% fetal bovine serum. All transfections were conducted for 16-24 hours prior to  
410 experimentation. For siRNA transfections, knockdowns were performed using DharmaFECT 1  
411 (Dharmacon, T-2001-03) and a custom siRNA duplex (sense: 5'-  
412 CAUCUAAGAGAGAGGUUAUU-3'; antisense: 5'-UUAACCUCUCUUAGAUGUU-3')  
413 according to manufacturer protocol. When applicable, cells were transfected with 10  $\mu$ g/mL  
414 polyinosinic:polycytidylic acid (poly(I:C); Invivogen).

415 **Virus infections**

416 For poliovirus, coxsackievirus B3, and Sendai virus, virus was incubated with cells at the  
417 indicated MOI for 1 hour in DMEM + 1% penicillin/streptomycin at 37°C. After adsorption,  
418 media was replaced with complete DMEM (1X DMEM, 10% fetal bovine serum, 1%  
419 penicillin/streptomycin) and incubated for the designated time. For infections in the presence of  
420 zVAD-FMK (RD Systems, FMK001), zVAD-FMK was added to a final concentration of 50  $\mu$ M  
421 16 hours prior to infection and virus-containing media was supplemented with 50  $\mu$ M zVAD-  
422 FMK for the duration of infection.

423 For Influenza A virus infections, cells were infected with H1N1 at the indicated MOI in viral  
424 growth medium (1X DMEM, 1% penicillin/streptomycin, 0.2% BSA, 25 mM HEPES pH 7.4,  
425 0.5  $\mu$ g/mL TPCK-treated trypsin) for 6 or 24 hours.

426 **Proteomic datasets**

427 The TAILS dataset used for hypothesis generation was previously established and described in  
428 Jagdeo *et al* [3], and is publicly available in the ProteomeXchange Consortium  
429 (proteomecentral.proteomexchange.org) database under the accession number PXD008718.

430 **Immunoblot analysis**

431 Equal amounts of protein were resolved on an SDS-PAGE gel and subsequently transferred onto  
432 a polyvinylidene difluoride (PVDF; Millipore) membrane. Primary antibodies used were as  
433 follows: 1:2000  $\alpha$ -Tubulin (ab4074); 1:1000 14-3-3 $\epsilon$  (CST #9635); 1:1000 14-3-3 sampler kit  
434 (CST #9769T); 1:1000 RIG-I (CST #3743); 1:2000 c-Myc antibody (Thermo MA1-980); 1:2000  
435 myc tag antibody (Bethyl A190-105A); 1:2000 FLAG M2 (Millipore F1804); 1:1000 VDAC1  
436 (ab15895); 1:1000 TBK1/NAK (CST #3504); 1:1000 phospho-TBK1/NAK (CST #5483);  
437 1:1000 hnRNP M (sc-134360); 1:3000 VP1 (Dako); 1:1000 H1N1 Nucleocapsid (ab104870);  
438 1:1000  $\beta$ -Actin (ab8224); 1:1000 PARP (CST #9542); 1:2000 GFP (Roche 11814460001).

439 **In vitro cleavage assay**

440 *In vitro* cleavage assays were performed as described [4]. Briefly, lysates were resuspended in  
441 cleavage assay buffer (20 mM HEPES, 150 mM KoAC, 1 mM DTT) in the presence of protease  
442 inhibitors (ThermoFisher, cat. no. 78440). Lysates were incubated with wild type or catalytically  
443 inactive poliovirus 3C<sup>pro</sup> (C147A) and the reaction was quenched after the indicated time using  
444 SDS-PAGE loading buffer.

445 **RT-qPCR**

446 RT-qPCR was performed using total cellular cDNA. Briefly, cells were harvested in 1 mL Trizol  
447 (ThermoFisher, 15596018) and total cellular RNA was isolated according to manufacturer  
448 protocol. RT-qPCR was performed using NEB Luna<sup>®</sup> Universal One-Step RT-qPCR Kit

449 (#E3005L) using 20 ng total RNA. The following primers were used for analysis: GAPDH (5'-  
450 GGTGGTCTCCTCTGACTTCAACA-3', 5'-GTTGCTGTAGCCAAATCGTTG-3'), IFNB  
451 (5'-TAGCACTGGCTGGAATGAGA-3', 5'-TCCTTGGCCTTCAGGTAATG-3'), NA (H1N1  
452 viral RNA; 5'- CCGCCATGGGTGTCTTC-3', 5'- TCCCTTACTCCGTTGCTCCATC-3').

453 **Trypan Blue Exclusion**

454 Following transfection, cells were collected and gently washed with sterile PBS prior to  
455 resuspension. Cells were then diluted 1:1 with Trypan Blue stain and the number of cells stained  
456 were counted using a Countess™ 3 Automated Cell Counter (ThermoFisher).

457 **Membrane fractionation**

458 Cell lysates were separated into cytosolic or mitochondrial fractions using the BioVision  
459 Mitochondria/Cytosol Fractionation Kit (BioVision #K256) according to manufacturer protocol.  
460 Briefly, cells were lysed by passing cells through a 25g needle 25-30 times. Unbroken cells and  
461 nuclei were cleared by centrifugation at 700g until no pellet was observed. The samples were  
462 then spun at 10,000g and the supernatant was saved as the cytosolic fraction. The remaining  
463 pellet was resuspended in mitochondria extraction buffer as the mitochondrial fraction.

464 **Co-Immunoprecipitation**

465 Cells were lysed in lysis buffer containing 1% Triton-X, 150 mM NaCl and 1X HALT protease  
466 inhibitors (ThermoFisher #78429) on ice for 20 minutes before clarification. 500  $\mu$ g-1 mg of cell  
467 lysate was then incubated with 1:100 w/w myc tag antibody (Bethyl A190-105A) or anti-FLAG  
468 M2 (Millipore F1804) overnight at 4C. The next day, Pierce© Protein A/G Magnetic Beads  
469 (ThermoFisher, 88802) were pre-washed with lysis buffer and added to the lysate/antibody  
470 mixture for 2 hours at 4C. Beads were then separated using a magnetic stand and washed twice  
471 with ice-cold lysis buffer (NaCl adjusted to 300 mM) and twice with ice-cold dH<sub>2</sub>O. Antibody-

472 bound protein was then eluted from the agarose beads using sample buffer at room temperature  
473 for 10 minutes.

474 **Plaque Assay**

475 Plaque assays were performed as follows: a confluent monolayer of 293T cells were infected  
476 with a dilution series ( $10^{-1}$  to  $10^{-7}$ ) of virus absorbed in a minimum volume of serum-free media  
477 for 1 hour. Inoculum was subsequently removed and the monolayer overlaid with 1%  
478 methylcellulose in DMEM for 72 hours. The overlay was then discarded and the cells were  
479 stained for 15 minutes at room temperature in 1% crystal violet (w/v) and 50% methanol (v/v).

480 **Statistical analysis**

481 All graphs and statistical analyses were created using GraphPad Prism 9.0. \* =  $p > 0.05$ ; \*\* =  
482  $p > 0.005$ ; \*\*\* =  $p > 0.0005$ ; \*\*\*\* =  $p > 0.00005$ . For RT-qPCR data, error bars represent +/- 95%  
483 confidence interval; for all other statistical analyses, error bars represent the standard deviation  
484 of at least  $n=3$  biological replicates.

485 **Acknowledgements**

486 The authors thank members of the Jan lab for helpful input and discussion. The authors thank Dr.  
487 Robert Hancock (UBC) for A549 cells and Dr. Sean Workman (University of Regina) for  
488 computational modeling and help with statistical analysis. This study was supported by the  
489 Canadian Institutes of Health Research (E.J: PJT-156351, H.L: PJT-173318, C.M.O: FDN-  
490 148408) and a NSERC Discovery Grant (E.J: RGPIN-2017-04515, H.L: RGPIN-2022-02979).  
491 D.D.T.A. was supported by a National Sciences and Engineering Research Council (NSERC)  
492 Doctoral Postgraduate Scholarship and a UBC Four-Year Fellowship.

493 **Author Contributions**

494 Conceptualization: D.D.T.A, Y.M, H.L, C.M.O, E.J; Investigation: D.D.T.A, Y.M, M.V, D.A.B,  
495 B.N.H, E.J.; Formal Analysis: D.D.T.A, E.J.; Methodology: D.D.T.A, Y.M, H.L, C.M.O, E.J;  
496 Validation: D.D.T.A, Y.M; Supervision: L.J.F, H.L., C.M.O, E.J.; Writing-original draft:  
497 D.D.T.A, E.J; Writing-review and editing: D.D.T.A, Y.M, M.V, D.A.B, B.N.H, L.J.F, H.L,  
498 C.M.O, E.J; Funding Acquisition: L.J.F, H.L, C.M.O, E.J.

499 **References**

500 1. Iwasaki A. A Virological View of Innate Immune Recognition. *Annu Rev Microbiol.*  
501 2012;66: 177–196. doi:10.1146/annurev-micro-092611-150203

502 2. Beachboard DC, Horner SM. Innate Immune Evasion Strategies of DNA and RNA  
503 Viruses. *Curr Opin Microbiol.* 2016;32: 119. doi:10.1016/J.MIB.2016.05.015

504 3. Jagdeo JM, Dufour A, Klein T, Solis N, Kleifeld O, Kizhakkedathu J, et al. N-  
505 Terminomics TAILS identifies host cell substrates of poliovirus and coxsackievirus B3 3C  
506 proteinases that modulate virus infection. *J Virol.* 2018; JVI.02211-17.  
507 doi:10.1128/JVI.02211-17

508 4. Jagdeo JM, Dufour A, Fung G, Luo H, Kleifeld O, Overall CM, et al. Heterogeneous  
509 Nuclear Ribonucleoprotein M Facilitates Enterovirus Infection. *J Virol.* 2015;89: 7064–  
510 7078. doi:10.1128/JVI.02977-14

511 5. Pablos I, Machado Y, de Jesus HCR, Mohamud Y, Kappelhoff R, Lindskog C, et al.  
512 Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CLpro  
513 substrate degradome. *Cell Rep.* 2021;37: 109892. doi:10.1016/J.CELREP.2021.109892

514 6. Rehwinkel J, Gack MU. RIG-I-like Receptors: Their Regulation and Roles in RNA  
515 Sensing. *Nat Rev Immunol.* 2020;20: 537–551. doi:10.1038/s41577-020-0288-3

516 7. Hartmann G. Nucleic Acid Immunity. *Adv Immunol.* 2017;133: 121–169.  
517 doi:10.1016/BS.AI.2016.11.001

518 8. Goubau D, Deddouche S, Reis e Sousa C. Cytosolic Sensing of Viruses. *Immunity.*  
519 2013;38: 855–869. doi:10.1016/J.IMMUNI.2013.05.007

520 9. Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, et al. Structural  
521 basis for the activation of innate immune pattern-recognition receptor RIG-I by viral  
522 RNA. *Cell*. 2011;147: 423–435. doi:10.1016/J.CELL.2011.09.039

523 10. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3  
524 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. *Nature*. 2007;446: 916–  
525 920. doi:10.1038/nature05732

526 11. Liu HM, Loo Y-M, Horner SM, Zornetzer GA, Katze MG, Gale M. The Mitochondrial  
527 Targeting Chaperone 14-3-3 $\epsilon$  Regulates a RIG-I Translocon that Mediates Membrane  
528 Association and Innate Antiviral Immunity. *Cell Host Microbe*. 2012;11: 528–537.  
529 doi:10.1016/j.chom.2012.04.006

530 12. Wu B, Hur S. How RIG-I like receptors activate MAVS. *Curr Opin Virol*. 2015;12: 91.  
531 doi:10.1016/J.COVIRO.2015.04.004

532 13. Loo YM, Gale M. Immune Signaling by RIG-I-like Receptors. *Immunity*. 2011;34: 692.  
533 doi:10.1016/J.IMUMNI.2011.05.003

534 14. Baum A, García-Sastre A. Differential recognition of viral RNA by RIG-I. *Virulence*.  
535 2011;2: 166. doi:10.4161/VIRU.2.2.15481

536 15. Lin JP, Fan YK, Liu HM. The 14-3-3 $\eta$  chaperone protein promotes antiviral innate  
537 immunity via facilitating MDA5 oligomerization and intracellular redistribution. *PLoS*  
538 *Pathog*. 2019;15: 1–19. doi:10.1371/journal.ppat.1007582

539 16. Pennington K, Chan T, Torres M, Andersen J. The dynamic and stress-adaptive signaling  
540 hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein–protein  
541 interactions. *Oncogene*. 2018;37: 5587–5604. doi:10.1038/s41388-018-0348-3

542 17. Dalal SN, Yaffe MB, DeCaprio JA. 14-3-3 Family Members Act Coordinately to Regulate  
543 Mitotic Progression. 2004;3: 670–675. doi:10.4161/CC.3.5.856

544 18. Chan YK, Gack MU. A phosphomimetic-based mechanism of dengue virus to antagonize  
545 innate immunity. *Nat Immunol.* 2016;17: 523–530. doi:10.1038/ni.3393

546 19. Liu X, Ma Y, Voss K, van Gent M, Chan YK, Gack MU, et al. The herpesvirus accessory  
547 protein γ134.5 facilitates viral replication by disabling mitochondrial translocation of  
548 RIG-I. *PLoS Pathog.* 2021;17. doi:10.1371/JOURNAL.PPAT.1009446

549 20. Riedl W, Acharya D, Lee JH, Liu G, Serman T, Chiang C, et al. Zika Virus NS3 Mimics a  
550 Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate  
551 Immunity. *Cell Host Microbe.* 2019;26: 493-503.e6. doi:10.1016/j.chom.2019.09.012

552 21. Won J, Kim DY, La M, Kim D, Meadows GG, Joe CO. Cleavage of 14-3-3 protein by  
553 caspase-3 facilitates bad interaction with Bcl-x(L) during apoptosis. *Journal of Biological  
554 Chemistry.* 2003;278: 19347–19351. doi:10.1074/jbc.M213098200

555 22. Johnson C, Crowther S, Stafford MJ, Campbell DG, Toth R, MacKintosh C.  
556 Bioinformatic and experimental survey of 14-3-3-binding sites. *Biochemical Journal.*  
557 2010;427: 69. doi:10.1042/BJ20091834

558 23. Bridges D, Moorhead GBG. 14-3-3 proteins: a number of functions for a numbered  
559 protein. *Science's STKE : signal transduction knowledge environment.* American  
560 Association for the Advancement of Science; 2005. pp. re10–re10.  
561 doi:10.1126/stke.2962005re10

562 24. Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson C V., Grossmann JG, et al.  
563 Structural basis for protein-protein interactions in the 14-3-3 protein family. *Proc Natl  
564 Acad Sci U S A.* 2006;103: 17237–17242. doi:10.1073/pnas.0605779103

565 25. Snider DL, Park M, Murphy KA, Beachboard DC, Horner SM. Signaling from the RNA  
566 sensor RIG-I is regulated by ufmylation. *Proceedings of the National Academy of  
567 Sciences*. 2022;119. doi:10.1073/pnas.2119531119

568 26. Chan YK, Gack MU. A phosphomimetic-based mechanism of dengue virus to antagonize  
569 innate immunity. *Nat Immunol*. 2016;17: 523–530. doi:10.1038/ni.3393

570 27. Tam E-H, Liu Y-C, Woung C-H, Liu HM, Wu G-H, Wu C-C, et al. Role of the Chaperone  
571 Protein 14-3-3 $\epsilon$  in the Regulation of Influenza A Virus-Activated Beta Interferon. *J Virol*.  
572 2021;95. doi:10.1128/JVI.00231-21

573 28. Gupta S, Ylä-Anttila P, Sandalova T, Sun R, Achour A, Masucci MG. 14-3-3 Scaffold  
574 Proteins Mediate the Inactivation of TRIM25 and Inhibition of the Type I Interferon  
575 Response by Herpesvirus Deconjugases. *PLoS Pathog*. 2019;15.  
576 doi:10.1371/JOURNAL.PPAT.1008146

577 29. Kleifeld O, Doucet A, Prudova A, Auf Dem Keller U, Gioia M, Kizhakkedathu JN, et al.  
578 Identifying and quantifying proteolytic events and the natural N terminome by terminal  
579 amine isotopic labeling of substrates. *Nat Protoc*. 2011;6: 1578–1611.  
580 doi:10.1038/nprot.2011.382

581 30. Kleifeld O, Doucet A, Auf Dem Keller U, Prudova A, Schilling O, Kainthan RK, et al.  
582 Isotopic labeling of terminal amines in complex samples identifies protein N-termini and  
583 protease cleavage products. *Nat Biotechnol*. 2010;28: 281–288. doi:10.1038/nbt.1611

584 31. Hanecak R, Semler BL, Anderson CW, Wimmer E. Proteolytic processing of poliovirus  
585 polypeptides: Antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs.  
586 *Proc Natl Acad Sci U S A*. 1982;79: 3973–3977. doi:10.1073/pnas.79.13.3973

587 32. Blondel B, Autret A, Brisac C, Martin-Latil S, Mousson L, Pelletier I, et al. Apoptotic  
588 signaling cascades operating in poliovirus-infected cells. *Frontiers in Bioscience*. 2009;14:  
589 2181–2192. doi:10.2741/3370

590 33. Tolskaya EA, Romanova LI, Kolesnikova MS, Ivannikova TA, Smirnova EA, Raikhlin  
591 NT, et al. Apoptosis-inducing and apoptosis-preventing functions of poliovirus. *J Virol*.  
592 1995;69: 1181–1189. doi:10.1128/jvi.69.2.1181-1189.1995

593 34. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, et al. Role of  
594 poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. *Caspase 3-resistant PARP*  
595 mutant increases rates of apoptosis in transfected cells. *Journal of Biological Chemistry*.  
596 1999;274: 22932–22940. doi:10.1074/jbc.274.33.22932

597 35. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. IKK $\epsilon$   
598 and TBK1 are essential components of the IRF3 signaling pathway. *Nature Immunology*  
599 2003 4:5. 2003;4: 491–496. doi:10.1038/ni921

600 36. Gardino AK, Smerdon SJ, Yaffe MB. Structural determinants of 14-3-3 binding  
601 specificities and regulation of subcellular localization of 14-3-3-ligand complexes: A  
602 comparison of the X-ray crystal structures of all human 14-3-3 isoforms. *Semin Cancer  
603 Biol*. 2006;16: 173–182. doi:10.1016/J.SEMCANCER.2006.03.007

604 37. Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson C V., Grossmann JG, et al.  
605 Structural basis for protein-protein interactions in the 14-3-3 protein family. *Proc Natl  
606 Acad Sci U S A*. 2006;103: 17237–17242. doi:10.1073/PNAS.0605779103

607 38. Wilkert EW, Grant RA, Artim SC, Yaffe MB. A Structural Basis for 14-3-3 $\sigma$  Functional  
608 Specificity,. *Journal of Biological Chemistry*. 2005;280: 18891–18898.  
609 doi:10.1074/JBC.M500982200

610 39. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate  
611 prediction of protein structures and interactions using a three-track neural network.  
612 Science (1979). 2021;373: 871–876. doi:10.1126/SCIENCE.ABJ8754/

613 40. Barral PM, Sarkar D, Fisher PB, Racaniello VR. RIG-I is cleaved during picornavirus  
614 infection. Virology. 2009;391: 171–176. doi:10.1016/J.VIROL.2009.06.045

615 41. Rehwinkel J, Gack MU. RIG-I-like receptors: their regulation and roles in RNA sensing.  
616 Nat Rev Immunol. 2020;20: 537–551. doi:10.1038/s41577-020-0288-3

617 42. Truong AB, Masters SC, Yang H, Fu H. Role of the 14-3-3 C-terminal loop in ligand  
618 interaction. Proteins: Structure, Function and Genetics. 2002;49: 321–325.  
619 doi:10.1002/PROT.10210

620 43. Feng Q, Langereis MA, Lork M, Nguyen M, Hato S V., Lanke K, et al. Enterovirus 2A  
621 pro Targets MDA5 and MAVS in Infected Cells . J Virol. 2014;88: 3369–3378.  
622 doi:10.1128/JVI.02712-13/

623 44. Ayllon J, Russell RJ, García-Sastre A, Hale BG. Contribution of NS1 Effector Domain  
624 Dimerization to Influenza A Virus Replication and Virulence. J Virol. 2012;86: 13095.  
625 doi:10.1128/JVI.02237-12

626 45. Saeed M, Kapell S, Hertz NT, Wu X, Bell K, Ashbrook AW, et al. Defining the  
627 proteolytic landscape during enterovirus infection. PLoS Pathog. 2020;16: e1008927.  
628 doi:10.1371/JOURNAL.PPAT.1008927

629

630

631 **Figure Legends**

632 **Figure 1. Cleavage of 14-3-3 family members in poliovirus and coxsackievirus B3 infection**

633 (A) High-confidence 14-3-3 $\epsilon$  cleavage peptide identified via TAILS analysis. The TAILS  
634 peptide was identified *via* mass spectrometry analysis with the upstream P4-P1 and downstream  
635 P1`-P4` sites indicated. Log<sub>2</sub> H/L ratio was determined across three independent experiments  
636 (infected cells – heavy, mock – light). (B) Representative immunoblot of poliovirus-infected cell  
637 lysates (MOI = 10) infected for the indicated time point. 20  $\mu$ g total lysate was separated on a  
638 12% SDS-PAGE gel. (C) Representative immunoblot of CVB3-infected cell lysates (MOI = 10)  
639 infected for the indicated time point. 20  $\mu$ g total lysate was separated on a 12% SDS-PAGE gel.  
640 “cp” = cleavage product.

641 **Figure 2. 14-3-3 $\epsilon$  is cleaved by poliovirus 3C<sup>pro</sup>**

642 (A) Representative immunoblot of poliovirus-infected HeLa cells in the presence or absence of  
643 zVAD-FMK at 7 hours post infection (MOI = 10). (B) Representative immunoblot of an *in vitro*  
644 cleavage assay performed in HeLa cell lysates. 1  $\mu$ g clarified cell lysate was incubated with  
645 either wild type (WT) or catalytically inactive (C147A) purified recombinant 3C<sup>pro</sup> (100 ng/ $\mu$ L  
646 final concentration). (C) Representative immunoblot of poliovirus-infected HeLa cell lysates  
647 transfected with either the 14-3-3 $\epsilon$  GFP-WT or the cleavage-resistant mutant, GFP-14-3-3 $\epsilon$   
648 (Q236A) (MOI = 10). “cp” = cleavage product.

649 **Figure 3. N-terminal 14-3-3 $\epsilon$  dampens RLR-stimulated *IFNB* mRNA production**

650 (A) Schematic of 14-3-3 $\epsilon$  expression constructs. Wild type (“WT”) contains the N-terminal  $\alpha$ -  
651 helical region (grey) and the C-terminal tail (red). Inset: amino acids flanking the 3C<sup>pro</sup> cleavage  
652 site (Q236) and the caspase-3 cleavage site (D238). “3CN” = 3C<sup>pro</sup> N-terminal cleavage product  
653 (middle); “CaspN” = caspase-3 N-terminal cleavage product (bottom). (B) RT-qPCR of *IFNB*

654 mRNA from cells treated with either siCon or si14-3-3 $\epsilon$  for 24 hours and poly(I:C) for 6 hours.

655 Expression levels were normalized internally to *GAPDH* and fold changes are relative to

656 unstimulated control samples. Inset: immunoblot representation of lysates treated with siCon or

657 si14-3-3 $\epsilon$  for 24 hours. \* = p<0.05 (p=0.0179). (C) Immunoblot analysis of A549 cells treated

658 with either siCon or si14-3-3 $\epsilon$  for 24 hours and transiently transfected with the indicated DNA

659 for a further 24 hours. (D) RT-qPCR of *IFNB* mRNA from cells treated with either siCon or

660 si14-3-3 $\epsilon$  for 24 hours, the indicated DNA for a further 24 hours, and poly(I:C) for 6 hours.

661 Expression levels were normalized internally to *GAPDH* and fold changes are relative to

662 unstimulated control samples. \* = p<0.05; \*\* = p<0.005 compared to siCon equivalent (WT,

663 p=0.0418; 3CN, p=0.0011; CaspN, p=0.0014). (E) Immunoblot analysis of A549 cells

664 transfected with an increasing dose of either WT or 3CN 14-3-3 $\epsilon$  overexpression constructs (100

665 ng or 500 ng) for 24 hours. (F) RT-qPCR of *IFNB* mRNA from cells transiently transfected with

666 the indicated DNA for 24 hours and poly(I:C) for 6 hours. Expression levels were normalized

667 internally to *GAPDH* and fold changes are relative to unstimulated control samples. \* = p<0.05,

668 \*\*\* = p<0.0005 compared to the wild type control (3CN, p=0.0002; CaspN, p=0.0123). (G)

669 Luciferase assay of cells transfected with the indicated DNA for 24 hours and transfected with

670 poly(I:C) for 24 hours. Luminescence detected is the Lucia luciferase protein under the control

671 of an ISG54 promoter and 5xISRE. \* = p<0.05 relative to WT control (3CN, p=0.00802). (H)

672 Immunoblot analysis of A549 cells transfected with either WT or 3CN 14-3-3 $\epsilon$  constructs for 24

673 hours and transfected with poly(I:C) for 6 hours. All statistical analyses were performed in

674 GraphPad Prism 9.0; n=3.

675 **Figure 4. Key residues in the C-terminal region of 14-3-3 $\epsilon$  for RIG-I signaling**

676 (A) *In silico* 3D structural model of 14-3-3 $\epsilon$  generated using RoseTTA fold and existing crystal  
677 structures (PDB: 6EIH). The 14-3-3 $\epsilon$  3C<sup>pro</sup> cleavage site is indicated (Q236) and the C-terminal  
678 fragment is shown in red. (B) Scanning alanine mutagenesis of the 14-3-3 $\epsilon$  C-terminus. G237-  
679 Q255 were sequentially mutated in codon triplets; mutations indicated in red. (C) Representative  
680 immunoblot of the scanning alanine mutants indicated in B. Cells were transfected with the  
681 indicated construct for 24 hours. (D) RT-qPCR of *IFNB* mRNA from cells treated with either  
682 siCon or si14-3-3 $\epsilon$  for 24 hours, the indicated DNA for a further 24 hours, and poly(I:C) for 6  
683 hours. Expression levels were normalized internally to *GAPDH* and fold changes are relative to  
684 unstimulated control samples. All statistical analyses were performed in GraphPad Prism 9.0;  
685 n=3.

686 **Figure 5. N-terminal 14-3-3 $\epsilon$  overexpression disrupts the RIG-I translocon**

687 (A) Immunoblot of myc-14-3-3 $\epsilon$ , FLAG-RIG-I, VDAC1, and  $\beta$ -actin before and after subcellular  
688 membrane fractionation. Cell lysates were transiently transfected with FLAG-RIG-I and either  
689 myc-tagged WT or 3CN 14-3-3 $\epsilon$ , constructs for 24 hours, then transfected with poly(I:C) for 6  
690 hours. Lysates were subjected to membrane fractionation and analyzed via Western blot. TCL =  
691 total cell lysate; 5% input. (B) Quantification of FLAG and VDAC1 band intensity in  
692 mitochondrial fraction of (A). Bands were quantified using ImageJ and FLAG band intensity was  
693 normalized to VDAC1 band intensity (n=2). \* = p<0.05; p=0.0313. (C) Co-immunoprecipitation  
694 assay of cells transiently transfected with FLAG-RIG-I and either myc-tagged wild-type (WT) or  
695 3CN 14-3-3 $\epsilon$  constructs for 24 hours, then transfected with poly(I:C) for 6 hours. Lysates were  
696 incubated with either myc or FLAG antibody as bait and precipitated using magnetic protein G  
697 agarose; 2.5% input. Representative blots are shown from at least three independent experiments.

698 **Figure 6. N-terminal 14-3-3 $\epsilon$  modulates CVB3 and IAV infection**

699 (A) Viral yield of CVB3-infected A549 cells (MOI=0.01, 24 hours) that were transfected with  
700 the indicated siRNAs. Cells were transfected with siRNAs for 48 hours prior to infection. Viral  
701 titers were determined (pfu/mL) via plaque assay; n=3, n.s. = not significant (p=0.0753). (B) RT-  
702 qPCR analysis of IAV viral RNA from cells transfected with either siCon or si14-3-3 $\epsilon$  for 24  
703 hours and subsequently infected with IAV for 24 hours (MOI = 0.01). \*\*\* = p<0.00005  
704 compared to siCon (p=1.01x10<sup>-7</sup>). (C) Immunoblot analysis of A549 cells transfected with either  
705 siCon or si14-3-3 $\epsilon$  for 24 hours and infected with IAV for 24 hours (MOI = 0.01). (D) Viral  
706 yield of CVB3-infected HeLa cells (MOI 0.01, 24 hours) transfected with either the wild-type  
707 (WT), 3CN, or cleavage-resistant mutant 14-3-3 $\epsilon$  (Q236A) overexpression constructs. Cells were  
708 infected with CVB3 (MOI 0.01) for 24 hours and viral yield was measured by plaque assay  
709 (pfu/mL). n=4. (E, F) RT-qPCR analysis of viral RNA (E) and *IFNB* (F) RNA from A549 cells  
710 transfected with either wild-type or 3CN 14-3-3 $\epsilon$  constructs for 24 hours, and subsequently  
711 infected with IAV (MOI =0.01) for the indicated time points. Expression levels were normalized  
712 internally to *GAPDH* and fold changes are relative to uninfected control samples. \* = p<0.05;  
713 n=7.

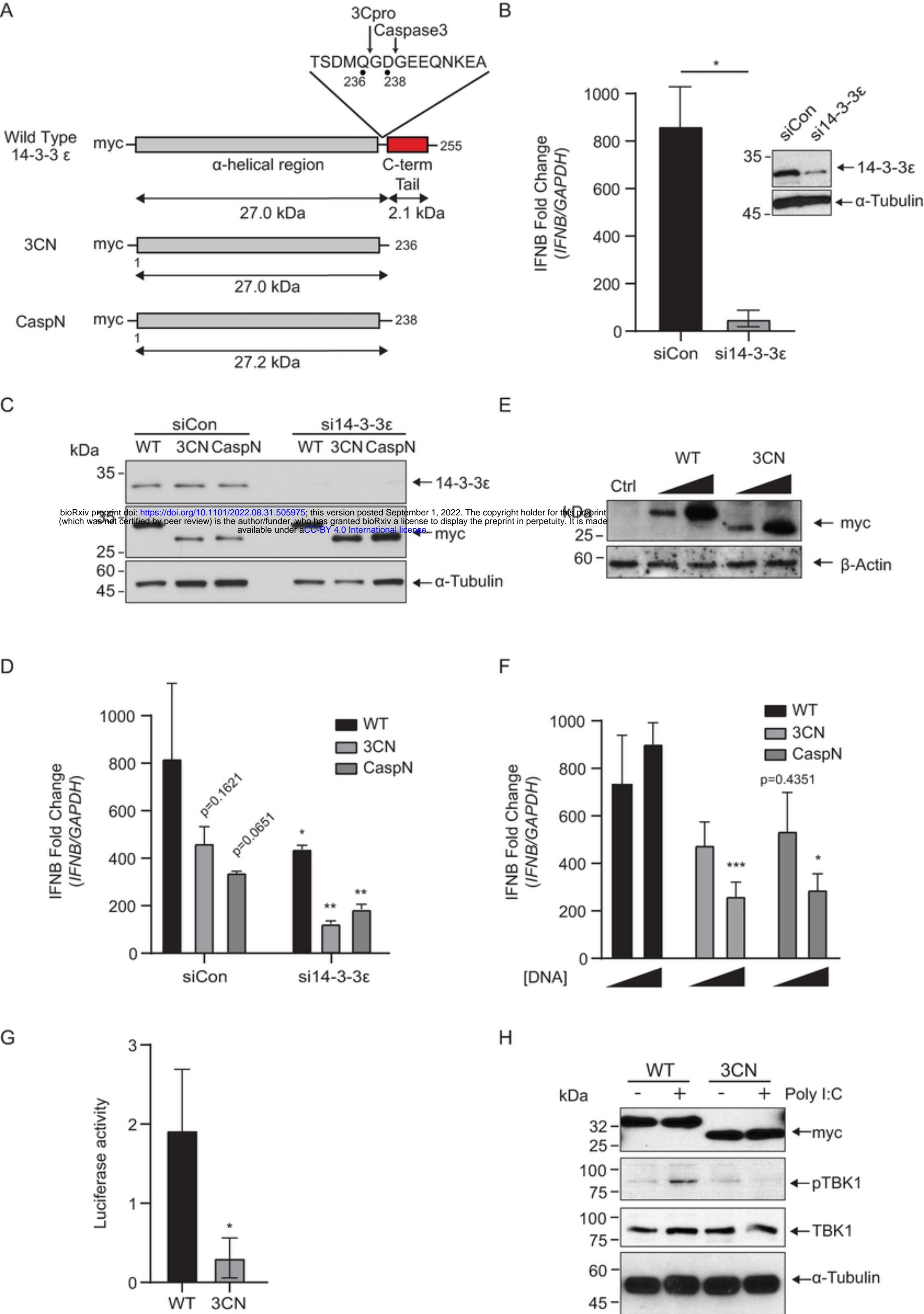
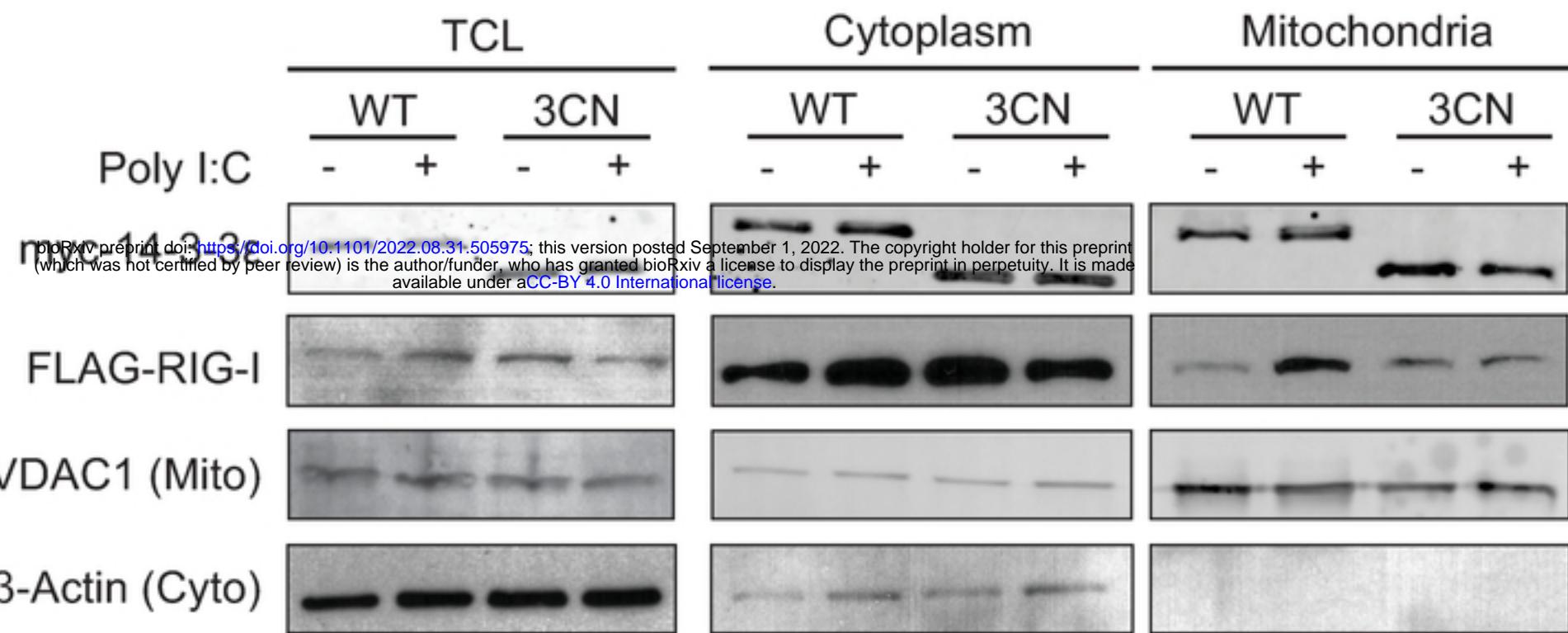
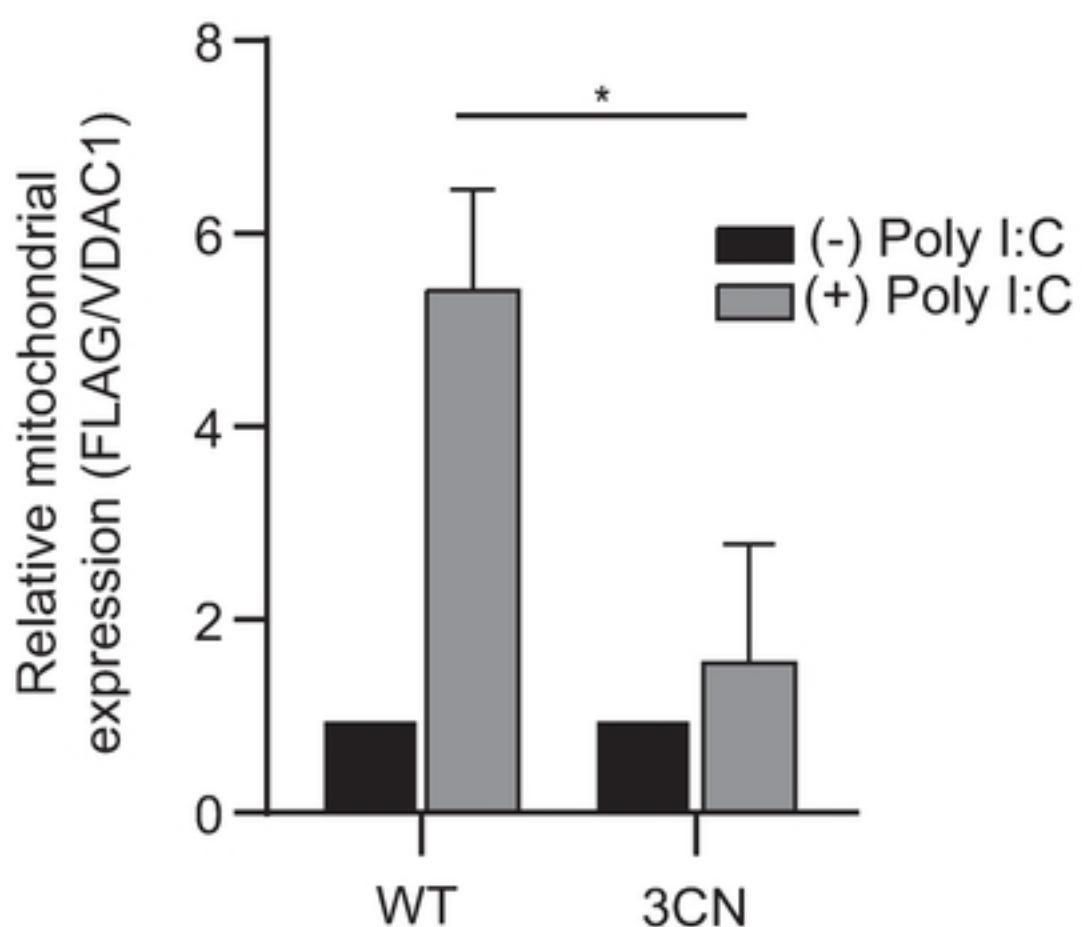





Figure 3

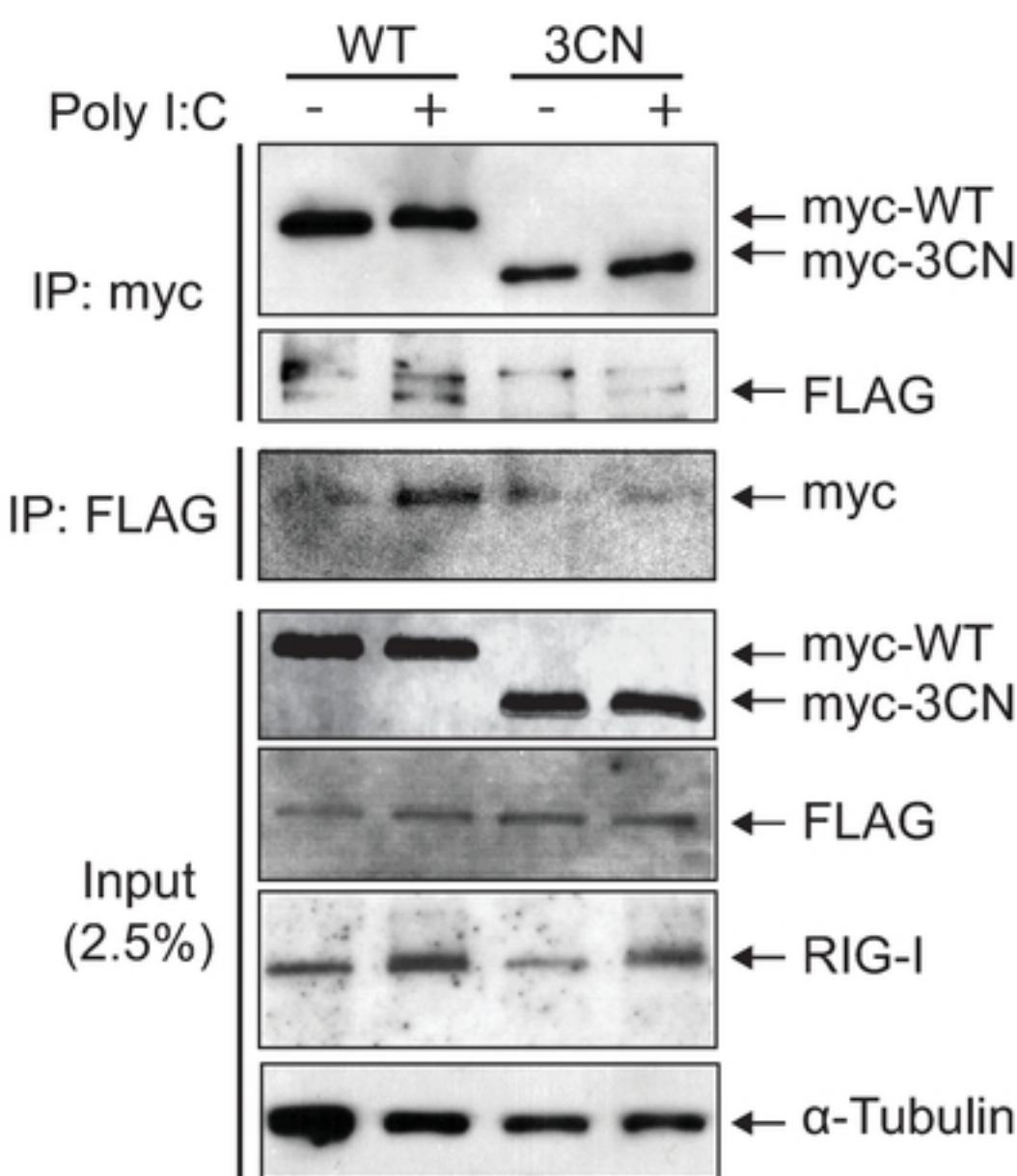
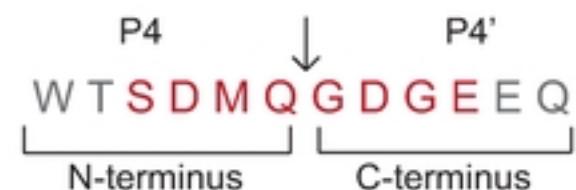
A

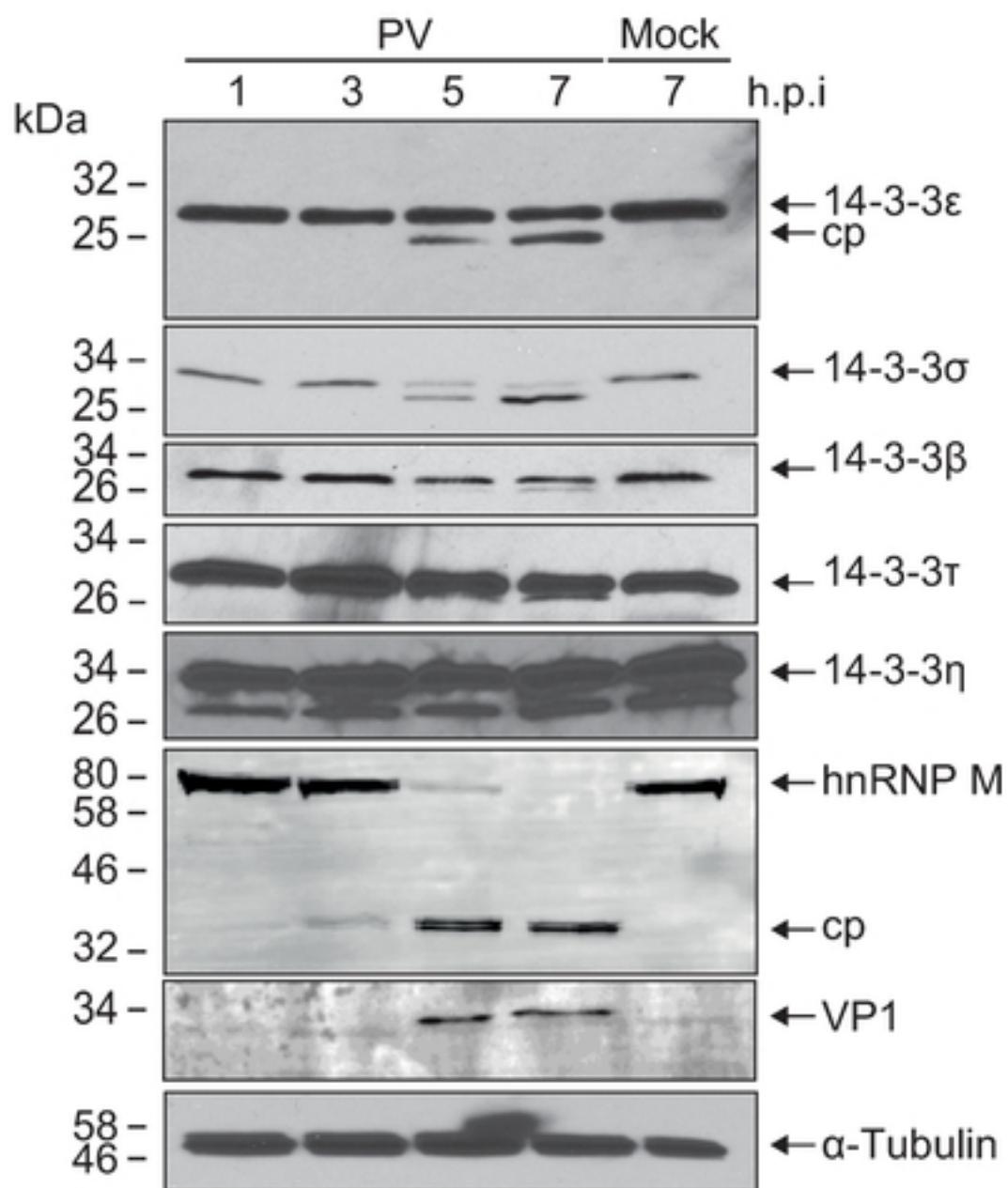


B



C



Figure 5

A

| Protein                | Gene  | P4-P1 | TAILS Peptide       | Log2 H/L Ratio   |
|------------------------|-------|-------|---------------------|------------------|
| 14-3-3 protein epsilon | YWHAE | SDMQ  | GDGEEQNKEALQDVEDENQ | 7.97, 5.87, 7.88 |



B



C

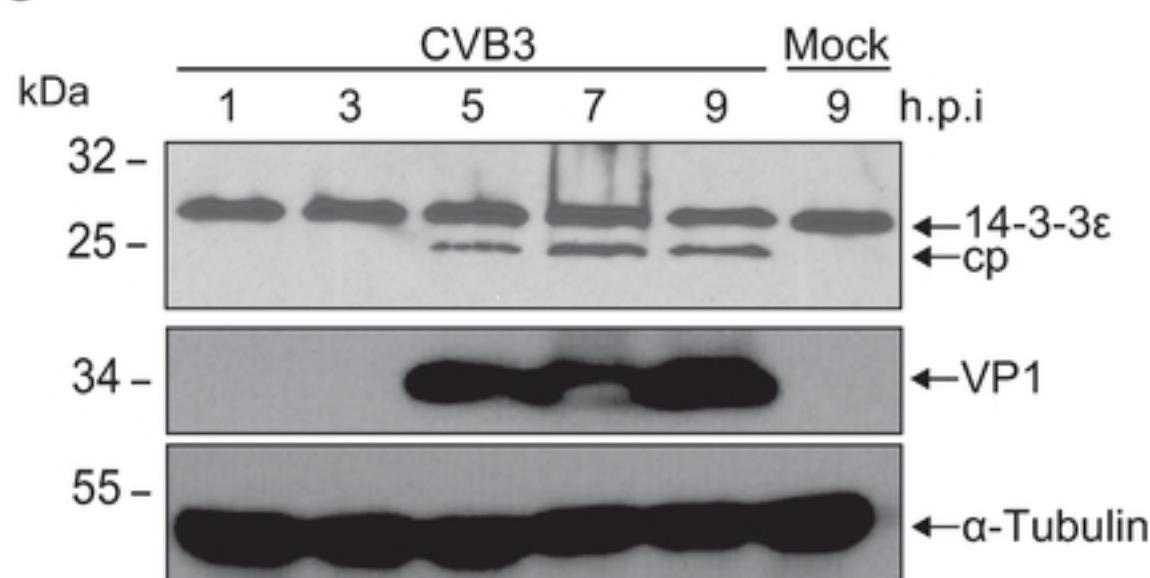
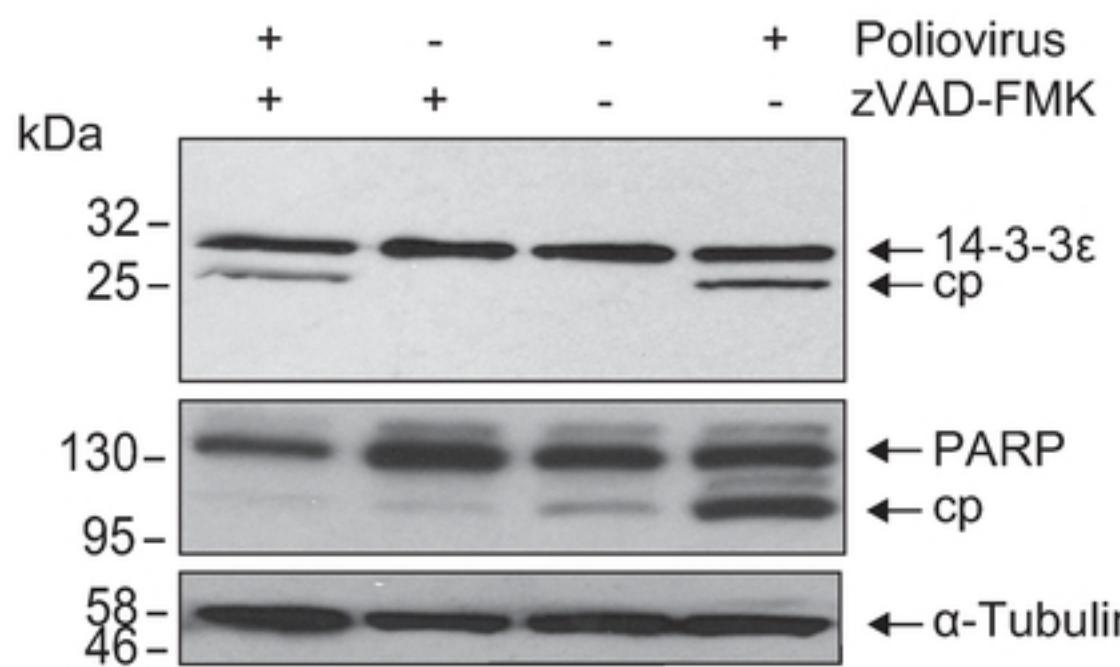
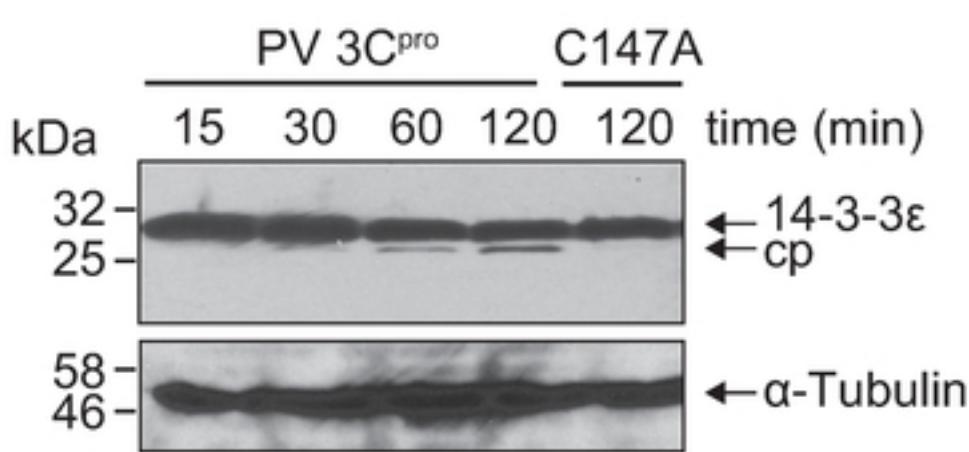





Figure 1

A



B



C

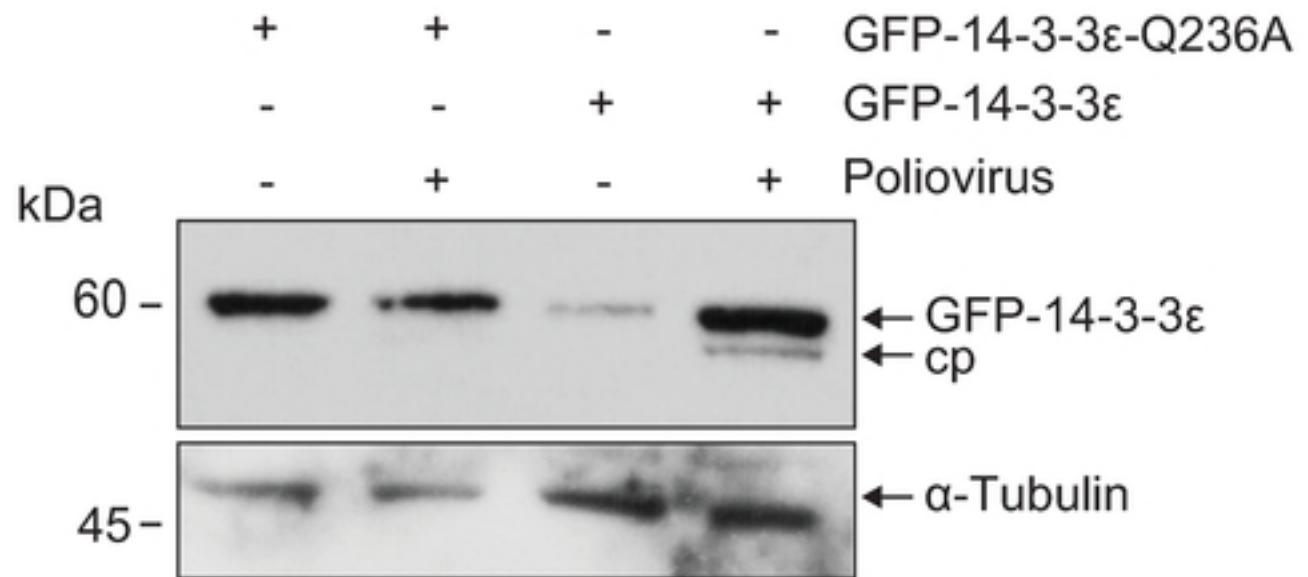



Figure 2

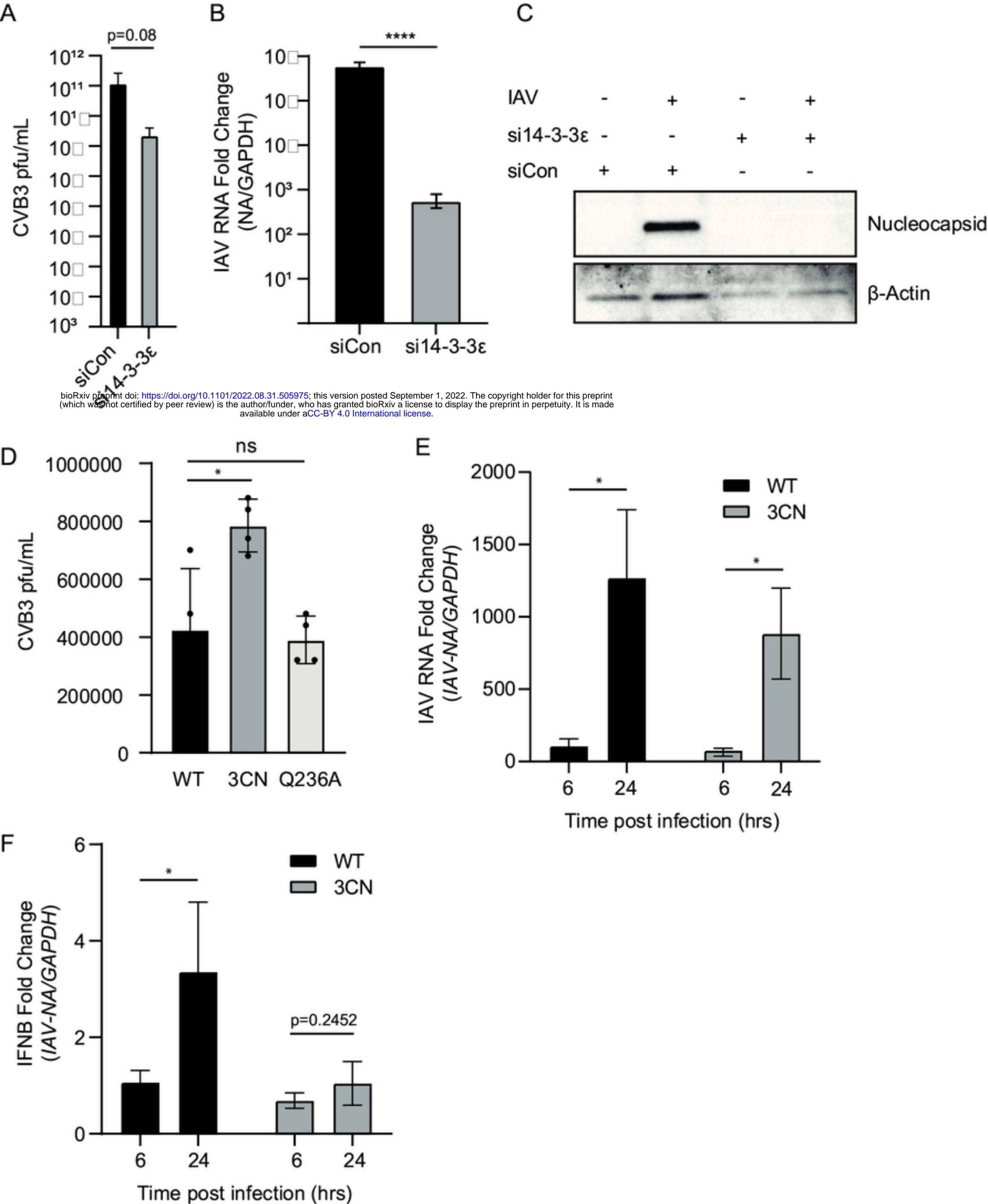
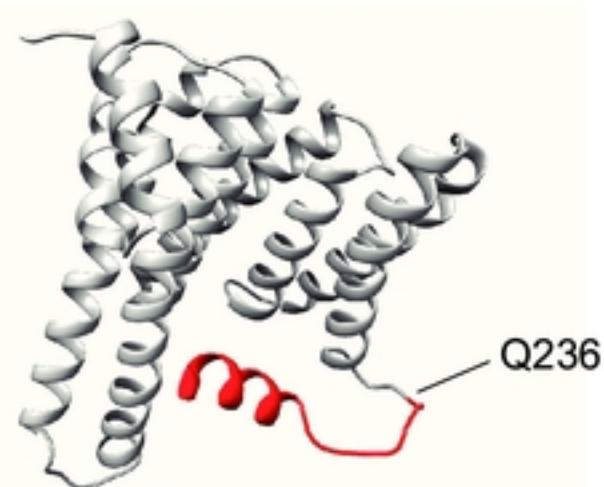
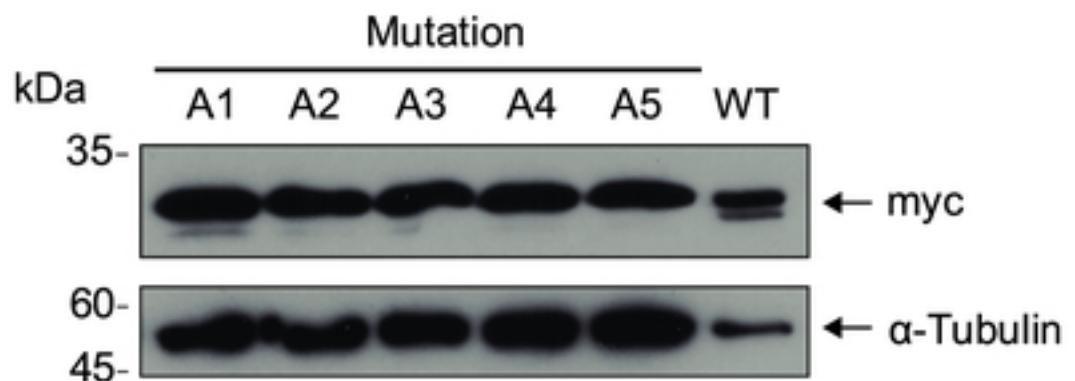




Figure 6


A



B

| Mutation  | 14-3-3 $\epsilon$ C-Terminus |
|-----------|------------------------------|
| Wild Type | GEEQNKEALQDVEDENQ            |
| A1        | <b>AAA</b> QNKEALQDVEDENQ    |
| A2        | GEE <b>AAA</b> EALQDVEDENQ   |
| A3        | GEEQN <b>AAA</b> QDVEDENQ    |
| A4        | GEEQNKEAL <b>AAA</b> EDENQ   |
| A5        | GEEQNKEALQDV <b>AAA</b> NQ   |

C



D

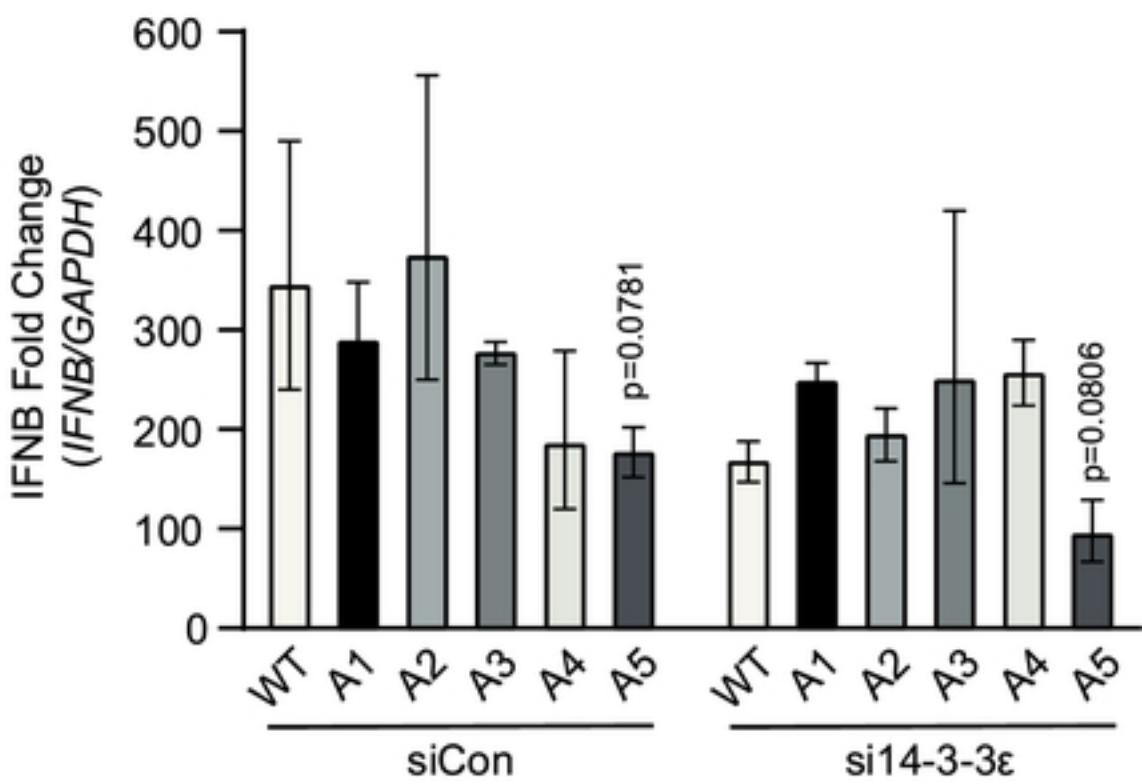



Figure 4