

1 **Title**

2 Mapping mitonuclear epistasis using a novel recombinant yeast population

3

4 **Authors and Affiliations**

5 Tuc H.M. Nguyen^{1,3}, Austen Tinz-Burdick¹, Meghan Lenhardt¹, Margaret Geertz¹,
6 Franchesca Ramirez¹, Mark Schwartz¹, Michael Toledano¹, Brooke Bonney¹, Benjamin
7 Gaebler¹, Weiwei Liu¹, John F. Wolters¹, Ken Chiu², Anthony C. Fiumera¹, Heather L.
8 Fiumera^{1*}

9

10 ¹Department of Biological Sciences, Binghamton University, Binghamton, NY USA

11 ²Department of Computer Sciences, Binghamton University, Binghamton, NY USA

12 ³ Current address: Department of Biological Sciences, New York University, New York,
13 NY USA

14

15 * Corresponding Author

16 Heather L. Fiumera (hfiumera@binghamton.edu)

17 Department of Biological Sciences

18 Binghamton University

19 Binghamton, NY 13902

20

21 **Abstract**

22 Natural genetic variation in mitochondrial and nuclear genomes can influence
23 phenotypes by perturbing coadapted mitonuclear interactions. Mitonuclear epistasis, i.e.
24 non-additive phenotype effects of interacting mitochondrial and nuclear alleles, is
25 emerging as a general feature in eukaryotes, yet very few mitonuclear loci have been
26 identified. Here, we present a novel advanced intercrossed population of *S. cerevisiae*
27 yeasts, called the Mitonuclear Recombinant Collection (MNRC), designed explicitly for
28 detecting mitonuclear loci contributing to complex traits, and use this population to map
29 the genetic basis to mtDNA loss. In yeast, spontaneous deletions within mtDNAs lead to
30 the *petite* phenotype that heralded mitochondrial research. We show that in natural
31 populations, rates of *petite* formation are variable and influenced by genetic variation in

32 nuclear, mtDNAs and mitonuclear interactions. We then mapped nuclear and
33 mitonuclear alleles contributing mtDNA stability using the MNRC by integrating
34 mitonuclear epistasis into a genome-wide association model. We found that associated
35 mitonuclear loci play roles in mitotic growth most likely responding to retrograde signals
36 from mitochondria, while associated nuclear loci with main effects are involved in
37 genome replication. We observed a positive correlation between growth rates and *petite*
38 frequencies, suggesting a fitness tradeoff between mitotic growth and mtDNA stability.
39 We also found that mtDNA stability was influenced by a mobile mitochondrial GC-
40 cluster that is expanding in certain populations of yeast and that selection for nuclear
41 alleles that stabilize mtDNA may be rapidly occurring. The MNRC provides a powerful
42 tool for identifying mitonuclear interacting loci that will help us to better understand
43 genotype-phenotype relationships and coevolutionary trajectories.

44

45 **Author Summary**

46 Genetic variation in mitochondrial and nuclear genomes can perturb mitonuclear
47 interactions and lead to phenotypic differences between individuals and populations.
48 Despite their importance to most complex traits, it has been difficult to identify the
49 interacting loci. Here, we created a novel population of yeast designed explicitly for
50 mapping mitonuclear loci contributing to complex traits and used this population to map
51 genes influencing the stability of mitochondrial DNA (mtDNA). We found that
52 mitonuclear interacting loci were involved in mitotic growth while non-interacting loci
53 were involved in genome replication. We also found evidence that selection for
54 mitonuclear loci that stabilize mtDNAs occurs rapidly. This work provides insight into
55 mechanisms underlying maintenance of mtDNAs. The mapping population presented
56 here is an important new resource that will help to understand genotype/phenotype
57 relationships and coevolutionary trajectories.

58

59 **Background**

60 Interactions between mitochondrial and nuclear genomes are essential for the
61 mitochondrial functions that power eukaryotic life. Mitonuclear interactions can be direct,
62 as physical contacts between mitochondrial and nuclear genes and their products are

63 needed for mitochondrial DNA (mtDNA) replication and maintenance, transcription,
64 translation, assembly and function of mitochondrially encoded components of oxidative
65 phosphorylation (OXPHOS) complexes [1]. Mitonuclear interactions can also be
66 indirect, though anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-
67 nucleus) signaling where metabolites, biochemicals or RNAs direct gene expression in
68 response to metabolic needs or environmental stressors [2, 3]. Genetic variation in
69 natural systems can alter the efficiencies of these interactions leading to phenotypic
70 differences between individuals and populations. Mitonuclear epistasis, defined as the
71 non-additive phenotypic effects of interacting mitochondrial and nuclear allele pairs, has
72 been demonstrated across Eukarya, including vertebrates [4-6], invertebrates [7-12],
73 plants [13] and fungi [14-20]. In humans, allelic variation in mitonuclear interactions
74 contributes to human diseases [21-25]. Identification of important mitonuclear loci will
75 provide insight into evolutionary and coevolutionary processes and facilitate
76 mitochondrial disease prediction and treatments.

77 Selection for mitonuclear interactions could contribute to speciation [26, 27].
78 Because of the large interest in uncovering speciation loci, strategies to identify
79 mitonuclear epistasis often focus on analyzing mitonuclear incompatibilities in
80 interspecific and inter-population hybrids or in mitonuclear hybrids where nuclear
81 genomes from one population are paired with the mtDNAs from another. Sometimes
82 candidate genes for these incompatibilities can be revealed through deductive
83 reasoning. For example, in crosses between populations of *Tigriopus californicus* where
84 mtDNA inheritance was controlled, F2 hybrids showed mitonuclear-specific OXPHOS
85 enzyme activities and mtDNA copy number differences, prompting investigations into
86 mitochondrially encoded electron transport proteins and the mtRNA polymerase [28,
87 29]. In *Drosophila*, a mtDNA from *D. simulans* paired with a nuclear genome from *D.*
88 *melanogaster* resulted in mitonuclear genotype with impaired development and
89 reproductive fitness [30]. Fortunately for mapping purposes, the mtDNA sequences in
90 this mitonuclear panel had very few polymorphisms, enabling the causative alleles
91 behind this incompatibility (a mitochondrially encoded tRNA and a nuclear encoded
92 tRNA synthetase) to be identified [31].

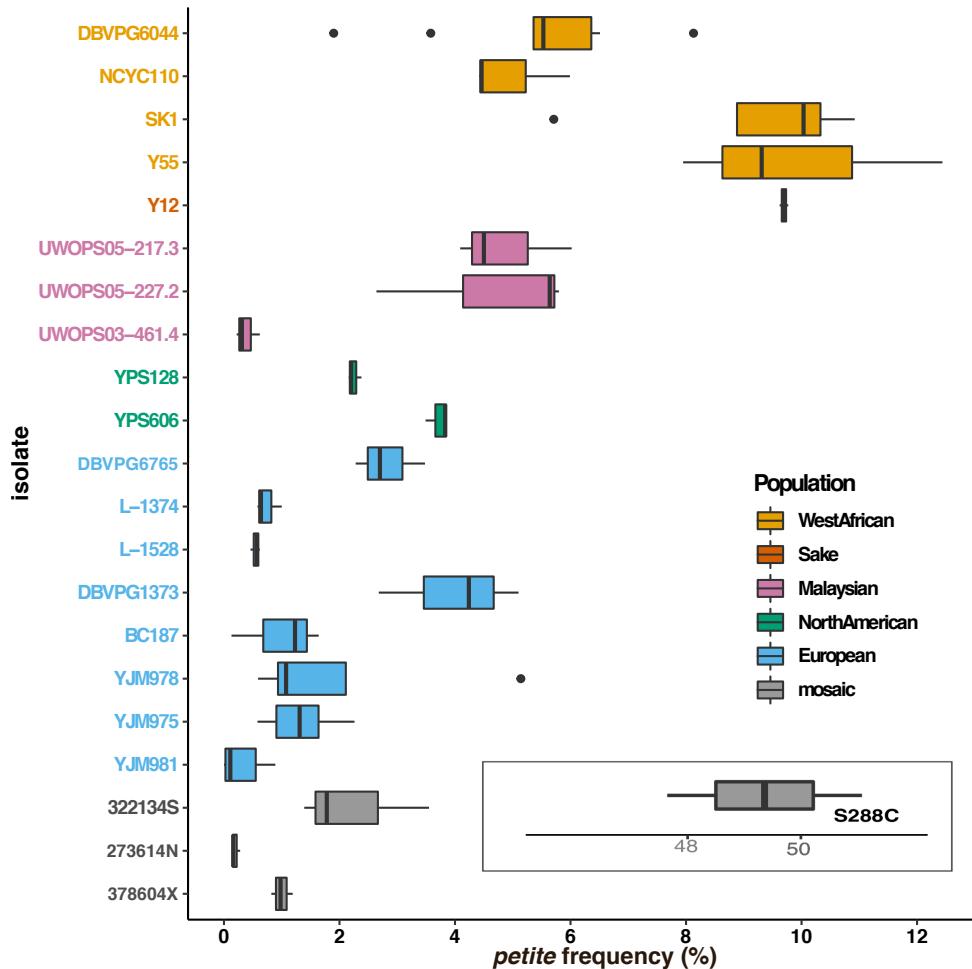
93 Genetic approaches can also be used to reveal mitonuclear epistatic loci.
94 Chromosomal replacements in interspecific *Saccharomyces* yeast hybrids, followed by
95 plasmid library screening, allowed the identification of mitonuclear incompatibilities
96 between nuclear genes encoding intron splicing factors from one species and their
97 mitochondrially-encoded targets in the other [17, 32, 33]. Quantitative trait loci (QTL)
98 mapping approaches using genotype/phenotype associations of recombinant progeny
99 containing different mtDNAs have also been used to seek intraspecific mitonuclear
100 incompatibilities [34-37]. Analysis of meiotic segregants following forced polyploidy
101 enabled the detection of QTLs for interspecific mitonuclear incompatibilities contributing
102 to sterility barriers in *Saccharomyces* [38]. Due to the low resolution of QTL mapping,
103 specific loci were not identified, but in some cases, regions of mitonuclear genomic
104 interest were implicated. Other approaches to uncovering mitonuclear epistatic loci
105 include differential expression analysis [5, 39-41] and experimental evolution [42, 43].
106 Because relatively few genetic backgrounds are used for these mapping approaches,
107 even if single gene pairs are identified, it is not clear if these approaches will reveal a
108 general picture of mitonuclear epistasis or lineage specific idiosyncrasies.

109 Mitonuclear epistasis could explain over 30% of the phenotypic variances
110 observed in a panel of *S. cerevisiae* yeasts consisting of 225 unique mitonuclear
111 genotypes [15]. In the current study, our goal was to map naturally occurring alleles
112 leading to mitonuclear epistasis in this yeast population. Detecting mitonuclear epistatic
113 loci (or any $g \times g$ interaction) using association approaches is challenging due to low
114 allele frequencies, the large number of tests required to detect pairwise epistasis and
115 the potential for the environment to affect genetic interactions [44-46]. To overcome
116 some of these challenges, we created a recombinant population of *S. cerevisiae*
117 designed explicitly to detect mitonuclear epistasis through association testing. We used
118 controlled and random matings with 25 natural yeast isolates to create a multiparent
119 advanced intercross population in order to reduce effects of the known population
120 structure in yeast [47] and allow for finer mapping resolution. We controlled the mtDNA
121 inheritance in the recombinant collection such that strains shared a single mitotype, and
122 then replaced this mitotype with two different mtDNAs resulting in a collection of nuclear
123 genotypes paired with three different mitotypes. This should increase power to detect

124 mitonuclear interactions across the full mapping population and to detect nuclear effects
125 within a given mitotype. Mitonuclear interactions could thus be integrated into
126 phenotype/genotype association models to detect loci contributing to complex traits.

127 We focused on mapping alleles contributing the stability of the mitochondrial
128 genome, a complex trait controlled by many nuclear loci [48-52]. Large scale deletions
129 within mtDNAs are a common form of mtDNA instability, leading to mitochondrial
130 heteroplasmies (defined as having more than one mitotype present) and deterioration of
131 organismal health [53-57]. *Saccharomyces* yeasts do not tolerate mtDNA
132 heteroplasmies and will fix for a single mitotype after just a few mitotic divisions [58].
133 Yeast cells containing these spontaneous mtDNA deletions can grow via fermentation
134 and will form small, *petite*, colonies in comparison to the larger *grande* colonies formed
135 by respiring cells, making it possible to quantify rates of mtDNA deletions [59].
136 Laboratory strains have accumulated multiple genetic variants leading to increased
137 *petite* frequencies [51]. We reasoned that natural genetic variation would lead to
138 differences in *petite* frequencies among wild isolates of *S. cerevisiae* through
139 mitonuclear epistasis and that our recombinant population would enable the
140 identification mitonuclear epistatic loci.

141 Here, we show that mtDNA stability in *S. cerevisiae* populations is influenced by
142 mitonuclear epistasis and by independent effects of both nuclear and mitochondrial
143 genomes. We describe the construction of the Mitonuclear Recombinant Collection, and
144 how we were able to use this to detect nuclear loci that participate in the mtDNA stability
145 through main (independent) effects and mitonuclear interactions. The epistatic loci
146 identified revealed that growth rates influence the stability of mtDNAs. The mitonuclear
147 recombinant collection provides a new tool for identifying mitonuclear loci that are
148 important in nature.

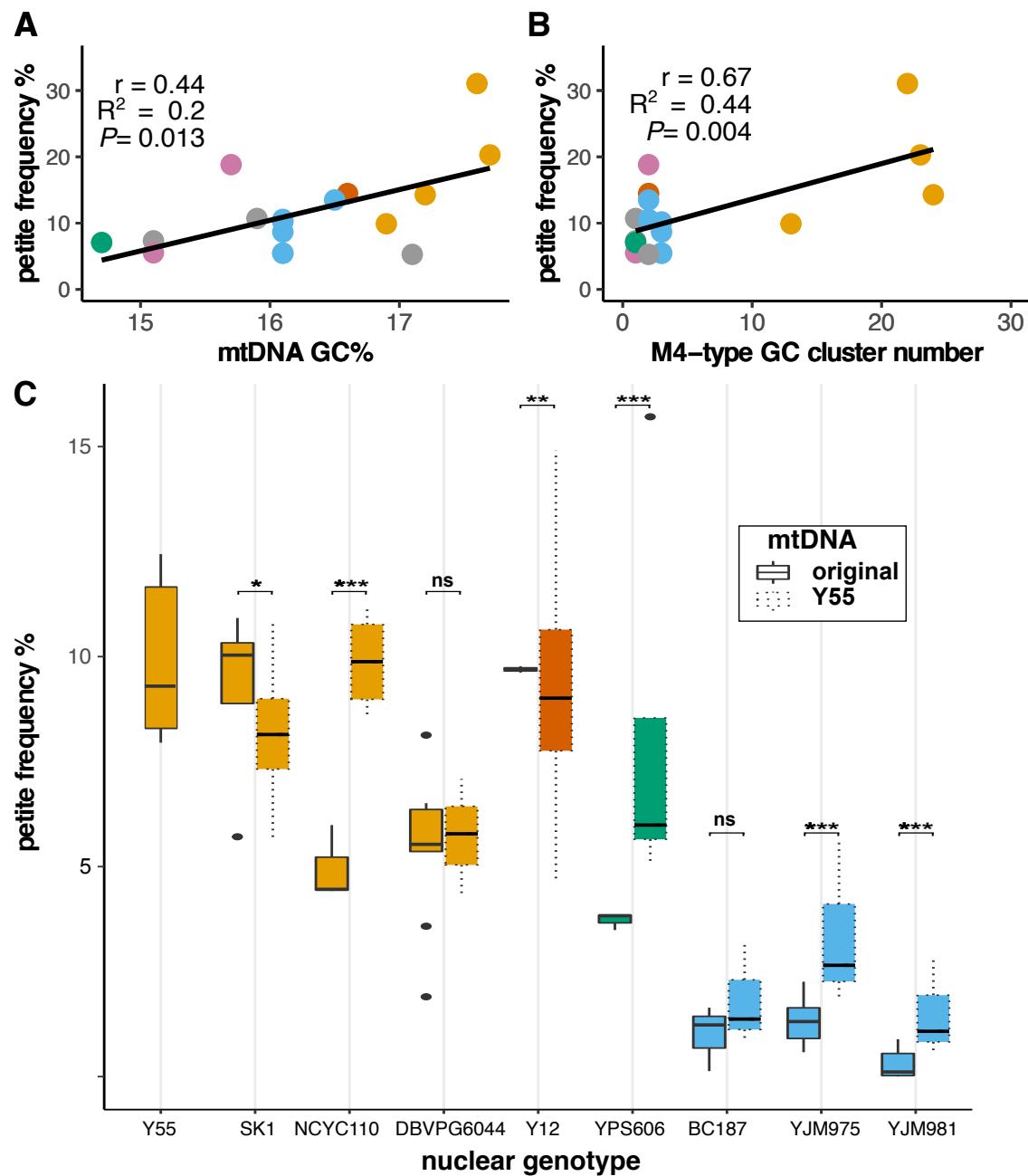

149

150 **Results**

151

152 *mtDNA stability is a quantitative trait influenced by mitochondrial GC clusters and*
153 *mitonuclear interactions.*

154 Given the mechanistic complexities of mtDNA replication and maintenance, we
155 hypothesized that standing genetic variation would contribute to differences in mtDNA
156 stability. To test this, we examined the frequencies of spontaneous *petite* colony
157 formation in 21 isolates of *S. cerevisiae* (Figure 1, Table S1). Rates of mtDNA deletions
158 in these isolates ranged from 0.3 to 9.9%. All 21 isolates had lower *petite* frequencies
159 than S288c, a widely used laboratory strain known to harbor nuclear variants that
160 promote exceptionally high rates of *petite* formations [51]. Within the wild isolates,
161 genetic variation within and between broadly-defined ancestral populations contributed
162 to differences in the rates of mtDNA loss ($P < 0.001$ for strain and population, Table S2).
163 Strains with Wine/European or mosaic origins had the lowest rates of *petite* formation,
164 while strains with West African or Sake/Asian origins had the highest.


165

166 **Figure 1. Genetic variation contributes to petite frequency.** Boxplots showing petite
167 frequencies (total *petite* colonies/total CFU *100) are presented for haploid derivatives
168 of 21 wild *S. cerevisiae* isolates and the reference strain, S288c. Strains are colored by

169 broad population identities from [47, 60, 61] as indicated in the key. The *petite*
170 frequency for the reference strain is offset for scaling purposes. *Petite* frequencies differ
171 between populations and between strains within populations (ANOVA, **Table S2**).
172

173 The differences in *petite* formation rate between wild isolates could be due to
174 genetic variation in mtDNAs, nuclear genomes and/or mitonuclear interactions. To
175 examine the independent effects of different mitotypes on mtDNA stability, we
176 introduced 18 different mtDNAs into a common nuclear background and assayed rates
177 of mtDNA deletions. In these iso-nuclear strains, *petite* frequencies ranged from 5.5 to
178 31.0 due to differences in mitotypes (ANOVA, $P<0.001$, **Table S3**). To determine if
179 *petite* formation correlated with any particular mitochondrial feature, we analyzed the
180 mtDNAs for their length, intron content, GC% and GC-cluster content (**Table S4**). The
181 GC-rich regions of yeast mtDNAs are predominantly due to short (~30-40 bp) mobile
182 GC-rich palindromic sequences called GC-clusters that interrupt long intergenic AT-rich
183 sequences [62, 63]. GC content and GC cluster numbers were tightly correlated ($r =$
184 0.95, $P<0.001$), and both were correlated with the total length of mtDNAs ($r = 0.59$,
185 $P=0.001$ and $r=0.70$, $P<0.001$, respectively). *Petite* frequencies, however, did not
186 correlate with the total length of mtDNAs ($r=0.12$, $P=0.63$) nor the total lengths of intron
187 sequences ($r=-0.09$, $P=0.72$). Thus, it is likely that GC rich regions play an important
188 role in mtDNA stability. In fact, we found that *petite* frequencies correlated with overall
189 GC% of mtDNAs (Pearson's $r=0.59$, $P=0.013$, **Fig 2A**) but not the total numbers of GC
190 clusters ($r=0.44$, $P=0.07$), mtDNA length ($r=0.12$, $P=0.63$) nor total length of intron
191 sequences ($r=-0.09$, $P=0.72$). A presumed mechanism for *petite* formation is illegitimate
192 recombination in mitochondrial GC clusters [59, 64, 65]. To see if any particular type of
193 GC cluster could explain mtDNA instabilities, we sorted the GC clusters into 9 classes
194 described by sequence homologies [66]. We found that the M4 GC-cluster class, but no
195 other, correlated with *petite* frequencies ($r=0.67$, $P=0.004$, **Fig 2B**). This particular
196 cluster appears to be expanding in the mtDNAs of strains with West African lineages
197 [67] and explain the observed correlation.

198
199

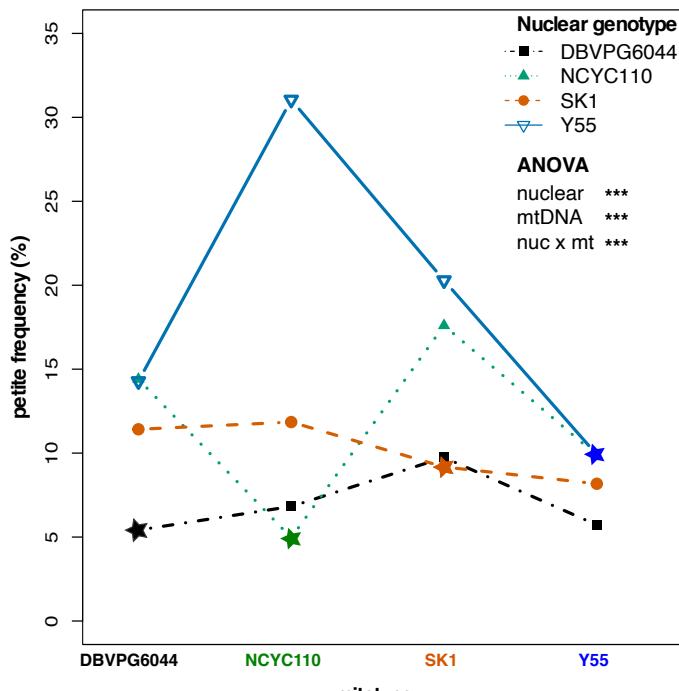
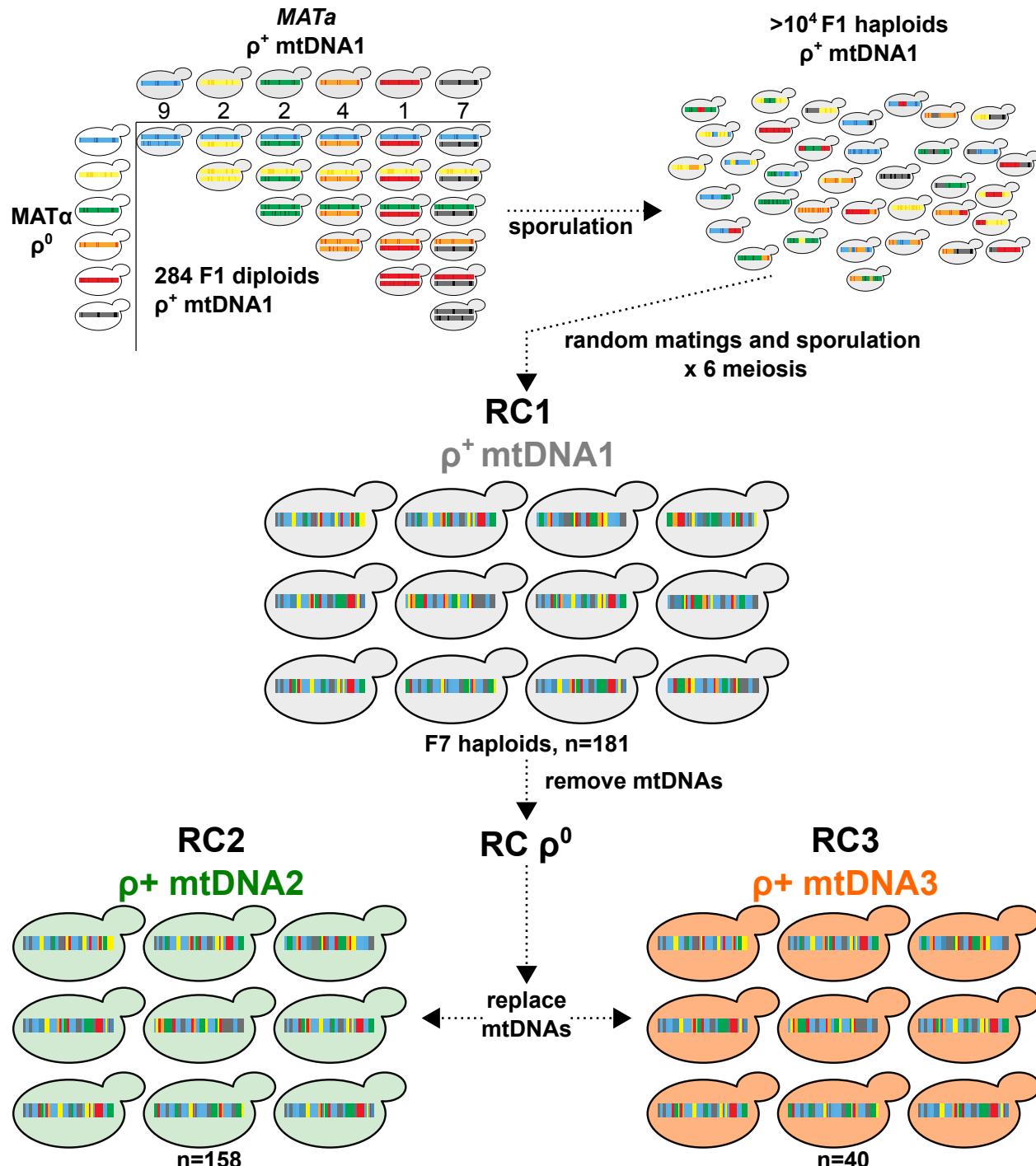


Figure 2. Mitochondrial GC-content influences stability of mtDNAs. Petite frequencies of iso-nuclear strains (containing the nuclear genome from strain Y55) correlate with **A.** total GC% of mtDNAs and **B.** the numbers of M4-type GC clusters. Pearson's correlation coefficient (r), coefficient of determination (R^2) and P -value significance are shown. **C.** Petite frequencies for strains containing original (solid outlines) or the GC-cluster rich mtDNA from Y55 (dotted outlines) are shown as box and whisker plots. Colors indicate nuclear genotype population as described in **Fig 1**. Significance of individual ANOVAs comparing the original and synthetic mitonuclear genotypes are shown. * $P < 0.05$, ** $P \leq 0.005$, *** $P \leq 0.001$.

212 GC clusters, however, do not solely control rates of *petite* formation. When a
213 mtDNA from the West African strain with the highest *petite* frequency was introduced
214 into different nuclear backgrounds, *petite* frequencies were increased in 4 of 8 nuclear
215 backgrounds tested and decreased in 2 of them (**Fig 2C**). This is consistent with both
216 nuclear and mitonuclear effects. Nuclear backgrounds from Wine/European origins
217 maintained relatively low *petite* frequencies even when harboring this GC-cluster rich
218 mtDNA, indicating that nuclear genotypes largely control mtDNA stability, at least for
219 these strains.

220 Some of the synthetic mitonuclear combinations led to even higher *petite*
221 frequencies than observed in the original isolates suggesting that mitonuclear
222 interactions also play a role in mtDNA stability. To formally test for mitonuclear effects
223 on mtDNA stability, we examined *petite* frequencies in 16 mitonuclear cybrids created
224 by exchanging mtDNAs between 4 strains with West African lineages (4 nuclear x 4
225 mtDNAs). A two-way ANOVA showed that mtDNA stability was influenced by nuclear
226 genotypes, mitotypes, and mitonuclear interactions ($P<0.001$ for each term, **Table S5**),
227 where certain mitonuclear combinations showed very large increases in the rates of
228 *petite* formation (**Fig 3**). Within these strains, the original mitonuclear genotypes had
229 lower *petite* frequencies than any of their synthetic mitonuclear combination (**Fig S1**).
230 Given the recent expansion of the destabilizing M4 clusters within the West African
231 strains, this observation suggests that selection for mitonuclear interactions that
232 stabilize mtDNAs has occurred quickly in ways that are strain-specific.

233
234



235
236 **Fig 3. Coadapted mitonuclear interactions stabilize mtDNAs.** Petite frequencies for
237 strains containing 4 nuclear and 4 mtDNA backgrounds are shown as an interaction
238 plot. Colored lines connect a nuclear genotype paired with different mitotypes. The
239 original mitonuclear genotype combination is starred. The nonparallel lines indicate
240 mitonuclear epistasis. ANOVA revealed highly significant nuclear, mtDNA, and
241 mitonuclear genotypes contributions (Table S5). *** $P \leq 0.001$.
242

243 *Creation of a Mitonuclear Recombinant Collection for association studies*

244 Mitonuclear interactions explain a significant proportion of phenotypic variances in *S.*
245 *cerevisiae* yeasts and involve numerous, as yet unmapped, loci [14, 15, 68]. We sought
246 a general genome-wide mapping approach that would facilitate the mapping of both the
247 nuclear and mitonuclear loci underlying complex traits such as mtDNA stability. We
248 created a multiparent recombinant collection of *S. cerevisiae* strains specifically
249 designed for association mapping of nuclear and mitonuclear loci (called the
250 Mitonuclear Recombinant Collection, or MNRC) (Fig 4). To do this, we first replaced the
251 mtDNAs in 25 wild divergent yeast isolates such that each contained an identical
252 mitotype, and then mated them to create each possible heterozygous diploid. The
253 diploids were sporulated and ~10,000 haploid F1 haploid progeny were isolated and
254 then randomly mated. F1 diploids were then isolated and sporulated. The process was
255 repeated for a total of 7 rounds of meiosis. A collection of 181 F7 haploids (named

256 Recombinant Collection 1 (RC1) were isolated and fully sequenced. The mtDNAs from
257 RC1 strains were removed (creating RC ρ^0) and replaced with two additional mtDNAs
258 via karyogamy-deficient matings, creating populations RC2 and RC3. The GC cluster
259 content of the mtDNAs in the MNRC are classified as low (117 clusters in RC2),
260 medium (137 in RC1), or high (203 in RC3).

262

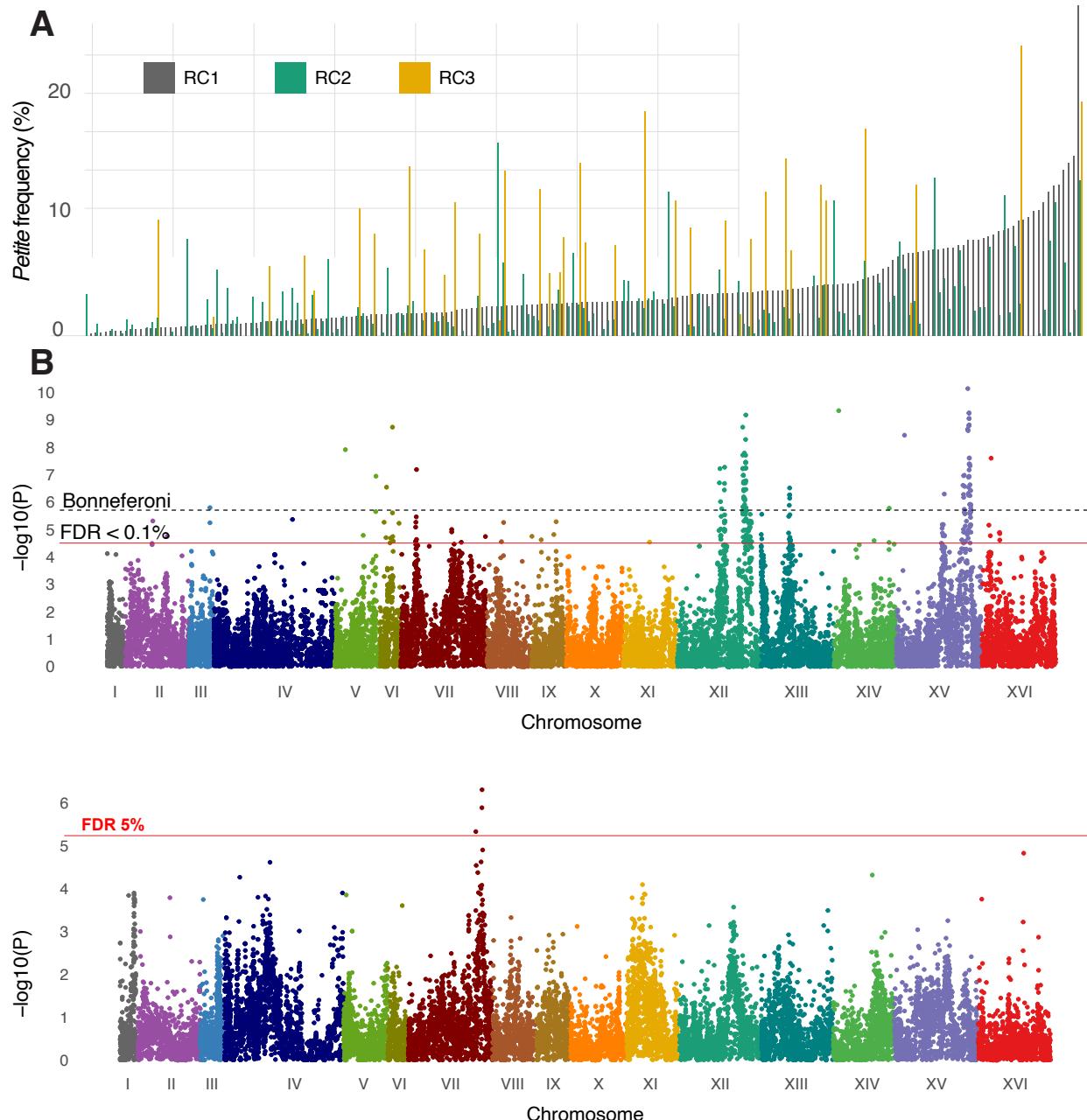
263 **Figure 4. A Mitonuclear Recombinant Collection designed for association**
264 **mapping.** 25 unique genetic backgrounds of *S. cerevisiae* fixed for a single mitotype
265 were systematically crossed to create each possible F1 heterozygous diploid with
266 identical mtDNAs (284 total). The numbers of unique genotypes from each parental
267 ancestral background are indicated; blue (Wine/European); yellow (Malaysian); green
268 (North American); orange (West African); black (mosaic). The F1 diploids were
269 sporulated and F1 recombinant haploid progeny isolated. Following 6 rounds of random
270 matings, haploid F7 progeny were isolated to create RC1. The mtDNAs from RC1 were
271 removed (RC1^{p0}) and replaced with 2 different mtDNAs, creating RC2 and RC3. The
272 mtDNAs in RC1, 2, and 3 are from the wild isolates 273614N, YPS606, and NCYC110,
273 respectively.

274

275 To generate SNPs tables for association testing, RC1 strains were sequenced to
276 ~40x coverage. Paired-end reads were aligned to the *S. cerevisiae* reference genome
277 and the locations of nuclear SNPs and small indels were extracted from each alignment.
278 Polymorphic sites were filtered by removing telomeric regions and SNPs/indels with low
279 allele frequencies (MAF <5%). Following filtering, 24,955 biallelic sites across the 16
280 yeast chromosomes with an average of ~2200 SNPs/chromosome were available for
281 association testing. Chromosomal polymorphic data are summarized in **Table S6**. Our
282 read alignments and subsequent analyses did not account for chromosomal
283 rearrangements, such as copy number variants, translocations and inversions, that
284 would map to similar locations of the reference genome nor genomic regions absent in
285 the reference strain.

286 We validated that this novel recombinant population could be used for simple
287 association studies. Strains from RC1 were phenotyped for growth on copper sulfate
288 and an association test was performed to identify SNP variants associated with copper
289 tolerance. A single peak on Chr. 8 coincided with a region containing *CUP1*, the copper
290 binding metallothionein (**Fig S2**). Variation at this locus is known to lead to high copper
291 tolerances found in Wine/European isolates [69] and has previously been identified
292 through association studies using wild isolates [47, 70]. Thus, the recombinant
293 collection produced here is successful for association studies despite a relatively low
294 number of parental strains.

295


296 *Nuclear and mitonuclear associations for mtDNA stability*

297 To map nuclear and mitonuclear associations, *petite* frequencies were collected for
298 each strain in RC1, RC2 and RC3. In RC1, the *petite* frequencies ranged from 0.0% to
299 27.7% forming a continuum, as would be expected for a complex trait involving
300 numerous loci (**Fig 5A**). The same rank orderings were not observed in RC2 or RC3,
301 revealing the influences of mitonuclear interactions. RC3, containing the GC cluster rich
302 mtDNA, had a higher average *petite* frequency than RC1 or RC2 (**Fig S3**).

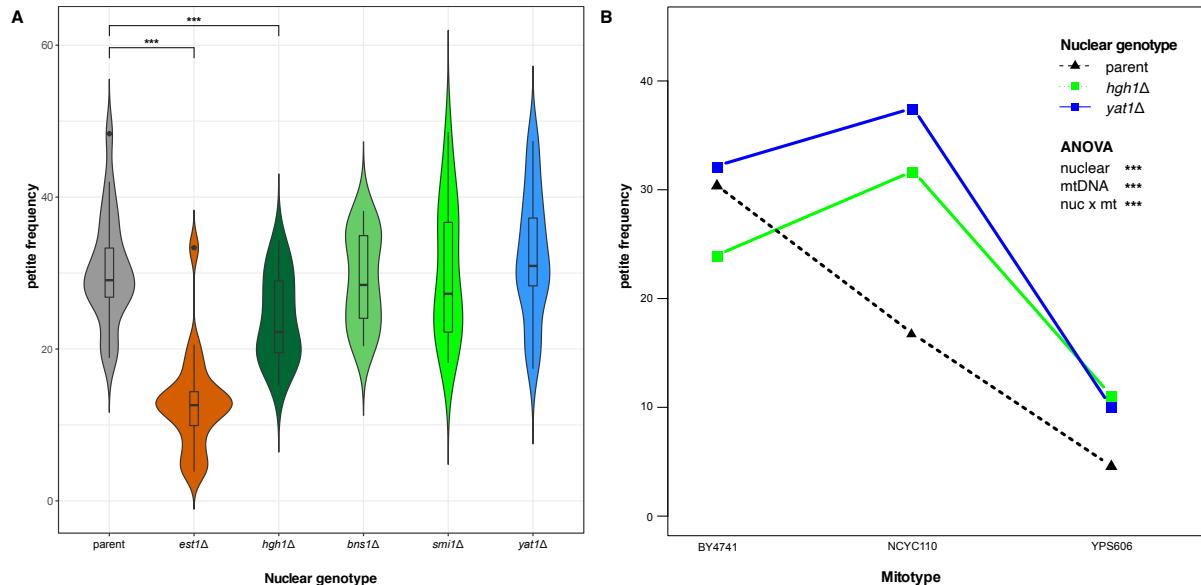
303 In theory, the recombinant genomes and fixed mitotypes of the RC strains should
304 reduce effects of population structure, improve statistical power while using a smaller
305 number of samples, limit false positives, and control for mitonuclear interactions. We
306 performed association testing to identify nuclear loci that had both a main effect and
307 interacted with the mtDNA to influence mtDNA stability. Mating types, auxotrophic
308 markers and residual population structure as determined by principal component
309 analyses were included as covariates (see METHODS). The significance profiles of
310 associations for nuclear variants that were independent (*nuclear SNP*, **Fig 5B**) and
311 dependent on mitotype (*nuclear SNP* \times *mtDNA*, **Fig 5C**) were different, providing
312 confidence that the association model is able to detect nuclear features that are unique
313 to either main or epistatic effects.

314 Nuclear SNPs whose effects were independent of mitotype resulted in stronger
315 associations than mtDNA-dependent alleles. This is not surprising given that
316 independent contributions of nuclear genotypes influence growth phenotypes to a
317 greater extent than mitonuclear interactions [14, 15, 68]. At a false discovery rate (FDR)
318 $< 0.1\%$ (Q-value = 0.001), we observed 130 mtDNA-independent associated SNPs
319 located within or 250 bp upstream of coding sequences (**Table S7**). In comparison, at
320 FDR $< 5\%$ (Q-value = 0.05), there were 3 mtDNA-dependent associated SNPs (**Table**
321 **S8**). Strong nuclear effects could mask mitonuclear interactions. We identified the
322 alleles with the strongest effects by calculating the effect size of each SNP with
323 mitotype-independent associations as the difference between the average *petite*
324 frequencies of each allele weighted by its frequency in the recombinant collections
325 (**Table S9**). This revealed that the highest effect size was attributed to a SNP on Chr.
326 15 predicting a G50D missense mutation in *MIP1*, the mitochondrial DNA polymerase
327 required for replication and maintenance of mtDNA. To improve power of detecting

328 mitonuclear associations, we repeated the analysis including the *MIP1* SNPs as
329 covariates. This removed the mitotype-independent associations on Chr. 15 and
330 increased the numbers of significant mitonuclear associations from 3 to 27 without
331 changing the overall association profiles (**Fig S4, Table S8**).

332
333 **Figure 5. Nuclear SNPs associate with mtDNA stability through main effects and**
334 **mitonuclear interactions.** A. *Petite* frequency is a quantitative trait influenced by
335 natural genetic variation. *Petite* frequencies for strains from RC1 (gray) were rank
336 ordered from lowest to highest. The *petite* frequencies for strains from RC2 (green) and
337 RC3 (gold) are plotted next to isonuclear strains from RC1. B. Manhattan plots show

338 main effect nuclear SNPs associated with *petite* frequencies in ways that were
339 independent of mtDNA and **C.** nuclear SNPs whose association is dependent on
340 mitotype (ie. mitonuclear). The different plot profiles indicate that the main effect nuclear
341 SNPs are different than those involved with mitonuclear interactions. FDR thresholds at
342 0.1% ($P < 4.1 \times 10^{-5}$) for nuclear associations and 5.0% ($P < 1.2 \times 10^{-5}$) for mitonuclear
343 associations and a conservative Bonferroni threshold ($P < 2.0 \times 10^{-6}$) are shown.
344

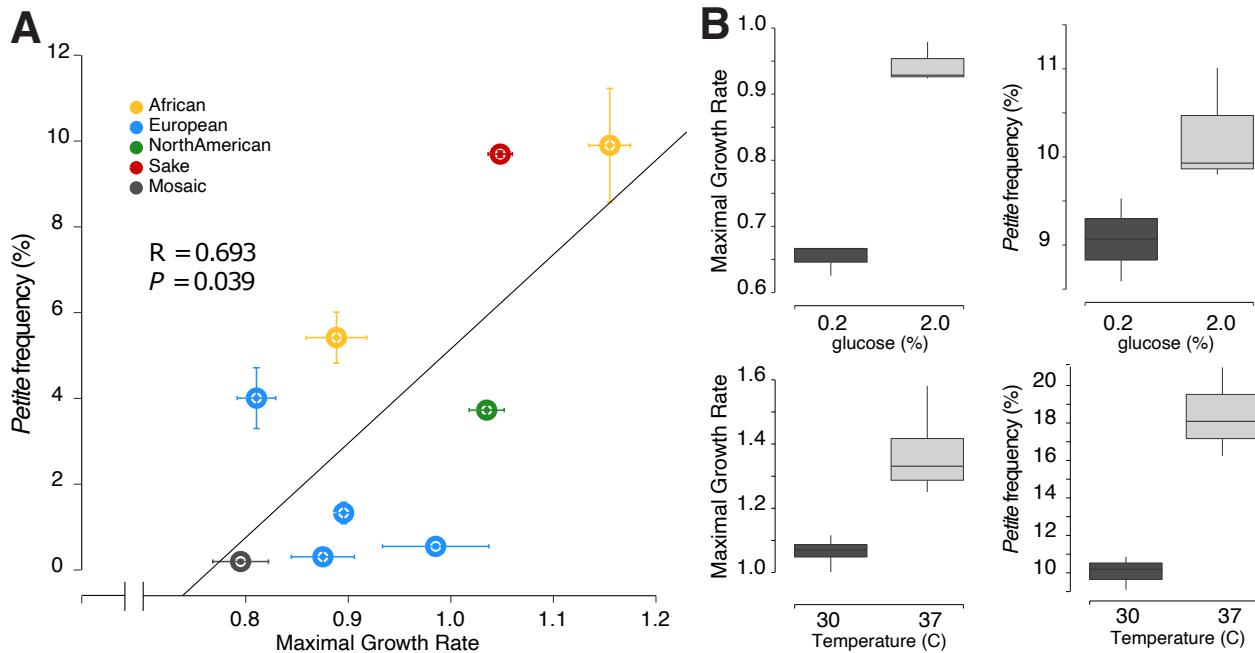

345 *Mitonuclear associations: mitotic growth signaling pathways*

346 The 27 mitonuclear SNP associations corresponded to 21 unique genes, including 11 in
347 a QTL on Chr. 7 (**Table S8**). Within this QTL, the three strongest associations
348 corresponded to SNPs near the coding start sites of the genes *HGH1* and *SMI1* and an
349 in-frame deletion within *BNS1*. Interestingly, mitochondrial activities have not been
350 shown for these genes. A second QTL on Chr. 1 contained a SNP upstream of *YAT1*.
351 To verify the involvement of these genes in mitonuclear interactions affecting mtDNA
352 stability, we first looked at how removing each gene influenced *petite* frequencies. In the
353 parental background of the *S. cerevisiae* knockout collection (BY4741) and with the
354 BY4741 mitotype, the null mutant *hgh1Δ* lowered rates of *petite* formation while null
355 mutants *bns1Δ*, *smi1Δ* and *yat1Δ* showed no significant effect (**Fig 6A**). We next
356 introduced two different mitotypes (the GC cluster-rich mitotype NCYC110 used in RC3
357 and the GC cluster-poor mitotype YPS606 used in RC2) into the parental and deletion
358 strains and measured *petite* frequencies. Mitonuclear interactions were readily
359 observed; the GC-rich mitotype led to higher *petite* frequencies in the *hgh1Δ* and *yat1Δ*
360 deletion strains, whereas the same mitotype led to a lower *petite* frequency in the
361 parental background (**Fig 6B**). Two-way ANOVAs showed significant mitonuclear
362 interactions when comparing the parental strain to each deletion strain with each
363 mtDNA comparison (**Table S10**). Similar mitonuclear effects were also observed for
364 *bns1Δ* and *smi1Δ* when compared to the parental background (**Fig S5, Table S11**).
365 While the high *petite* frequency of the parental strain complicates the interpretation of
366 these assays, the differential responses provide strong evidence that the association
367 model was successful in identifying genes that influence mtDNA stability through
368 mitonuclear epistatic interactions.

369

370

371
372
373


374
375 **Figure 6. Mitonuclear interactions influencing mtDNA stability include *HGH1* and**
376 ***YAT1*. A.** Petite frequencies for strains lacking genes with mitotype-independent (*est1* Δ)
377 and mitonuclear associations (*hgh1* Δ , *bns1* Δ , *smi1* Δ and *yat1* Δ) are shown as boxes in
378 violin plots. Significant differences between the parental and each deletion strain are
379 shown. * $P<0.05$, ** $P\leq 0.005$, *** $P\leq 0.001$. **B.** Petite frequencies of *hgh1* Δ and *yat1* Δ
380 strains depend on mitotype. Colored lines connect each nuclear genotype paired with
381 different mtDNAs. Non-parallel lines indicate that mitotypes influence mtDNA stability
382 through mitonuclear interactions. Comparisons of the parental and each deletion strain
383 with any 2 different mtDNAs showed highly significant mitonuclear interactions ($P<0.001$
384 for each comparison, **Table S10**). Mitotype BY4741 is the parental mtDNA in the yeast
385 deletion collection. Mitotypes NCYC110 and YPS606 were used in RC3 and RC2,
386 respectively. A minimum of 20 replicates for all petite assays were performed.

387
388 We then tested if the mitonuclear associations could be explained by differences
389 in gene expression. mRNAs were extracted from a subset of 18 strains from the RC2
390 and RC3 collections containing GC-cluster poor and rich mitotypes, respectively. We
391 attempted to control for *MIP1* alleles and the 2 most common SNP haplotypes for
392 mitonuclear candidate genes on Chr. 12 (containing *HGH1*, *BNS1*, and *SMI1*) and Chr.
393 1 (containing *YAT1*). Across the subset of RC2 and RC3 strains containing alternate
394 mitonuclear haplotypes with each *MIP1* allele, *YAT1* SNPs (Chr. 1) were in complete LD
395 with the associated SNPs on Chr. 12 and are thus considered together. Expression of
396 *HGH1* showed a modest positive correlation with petite frequencies ($r=0.43$, $P=0.08$)

397 (Fig S6). Expression of *MIP1*, *YAT1*, *BNS1* and *SMI1* showed slight but non-significant
398 positive correlations (Fig S6). In these strains, mitotypes did not influence expression of
399 the mitonuclear candidate genes nor on the expression of the mtDNA polymerase, *MIP1*
400 (Table S12). The expression of *MIP1* was, however, influenced by the haplotype of the
401 Chr. 12/1 QTLs (Fig S7A while expression of *BNS1* was influenced by *MIP1* alleles (Fig
402 S7B, Table S12). *BNS1* and *YAT1* expression showed *MIP1* haplotype x mitonuclear
403 haplotype effects. Interestingly, the higher expression in these genes were observed in
404 strains containing the *MIP1* alleles that led to a high *petite* frequency. These data
405 suggest that the genotypes of *MIP1* and the mitonuclear candidate genes may influence
406 the expression of each other to affect mtDNA stability.

407 The mitonuclear candidate genes, *YAT1*, *HGH1*, *BNS1*, and *SMI1* are broadly
408 connected to mitotic growth. To investigate a potential relationship between mitotic
409 growth and mtDNA stability, we compared the growth rates of wild yeast isolates and
410 their *petite* frequencies and found that the faster growing strains were more likely to lose
411 their mtDNAs (Fig 7A). Increasing growth rates by changing glucose availability or
412 temperature also led to an increase in *petite* frequencies (Fig 7B). This suggests a
413 fitness tradeoff between rapid cell growth and deletions of mtDNA. We also noted that
414 increase in *petite* frequencies of the West African strains with synthetic mitonuclear
415 genotypes (Fig S1) coincided with an increase in growth rates (Fig S8). Selection for
416 mitonuclear interactions that stabilize mtDNAs may act by lowering overall growth.

417

419 **Figure 7. Rapid mitotic growth increases rates of mtDNA loss. A.** Growth rates of
420 wild isolates and spontaneous *petite* formation are positively correlated. Maximal growth
421 rates (from [14]) of strains grown in conditions used for *petite* assays were plotted
422 against rates of spontaneous *petite* formation. **B.** Growth rates and *petite* frequencies
423 increased as a result of increased glucose concentration or temperature. Assays were
424 performed on Sake strain Y12 (NCYC3605) a minimum of three times. Growth rates are
425 reported as mOD/min.

426
427 *Mitotype-independent associations: mtDNA polymerase and a G-quadruplex stabilizing*
428 *protein*

429
430 In addition to identifying mitonuclear loci, our model identified 301 SNP whose
431 associations were independent of mitotype. Of these, 130 SNPs were located within
432 250 bp upstream of coding sequences for 86 unique genes (**Table S7**). Gene Ontology
433 (GO) analyses revealed enrichments in mitochondrially-targeted genes (27 genes),
434 genes involved in mitochondrial organization (9 genes) and homeostatic processes (10
435 genes) (**Table S13**). Sixteen of the associated genes generate non-respiratory
436 phenotypes when deleted from the genome [49, 71-73]. In all, 33 (38.4%) of the
437 mitotype-independent associations have known mitochondrial activities.

438 A large number of the associated SNPs occurred within QTLs on chromosomes
439 12, 13 and 15 (**Fig 5B**) and were likely associated through linkage. To help identify
440 causative loci, effect sizes for each SNP were calculated as the difference between the

441 average *petite* frequencies of each allele weighted by its frequency in the recombinant
442 collections (**Table S9**). The highest effect size was attributed to a SNP on Chr. 15
443 predicting a G50D missense mutation in *MIP1*, the mitochondrial DNA polymerase
444 required for replication and maintenance of mtDNA. Associations for two additional
445 *MIP1* missense variants (T540M and H541N) were also significant. High effect sizes
446 were also seen in associated SNPs in genes flanking *MIP1*, including *FRT1* and
447 *PDR10*, and essential genes *KRE5* and *ALA1*. Deletions of *FRT1* or *PDR10* did not
448 significantly alter *petite* frequencies suggesting that these associations are the result of
449 linkage to *MIP1* (**Fig S9**).

450 Thirty-two associated genes were located within two QTLs on Chr. 12. Here, the
451 largest effect size was for a putative missense variant (L13I) in *EST1* (**Table S9**),
452 encoding a telomerase accessory protein that helps to stabilize of G-quadruplex
453 structures in telomeres during certain stages of the cell cycle [74]. We found that a
454 deletion of *EST1* significantly reduced *petite* frequencies as compared to the parental
455 strain in the yeast knockout collection (**Fig 6A**) while a deletion of *TOP3*, a candidate
456 gene tightly linked to *EST1*, did not (**Fig S9**). This suggests that *EST1* variants likely
457 drive the associations in this QTL. A second QTL on Chr. 12 contained associations for
458 5 genes with known mitochondrial functions. *ILV5* is a nonspecific mtDNA binding
459 protein involved in the packaging of mtDNA into nucleoids and is required for mtDNA
460 stability [75]. *NAM2*, a mitochondrial tRNA synthetase [76], and *SSQ1*, a mitochondrial
461 chaperone [77], are required for growth via mitochondrial respiration. We found that a
462 deletion of *MDM30*, a component of the ubiquitin ligase complex involved in
463 mitochondrial morphology and turnover [72], lowered *petite* frequencies while a deletion
464 of *ATG33*, a protein involved in mitochondrial mitophagy (KANKI *et al.* 2009), had no
465 effect (**Fig S9**). A single QTL on Chr. 13 contained associations for 6 genes, four of
466 which encode mitochondrial targeted proteins. *COX14* and *SAM37*, and *SOV1* are
467 required for mitochondrial respiration [49, 71, 72] and *RNA14* is essential for growth.
468 Deletions of a 5th gene, *CSM3*, did not significantly alter *petite* frequencies (**Fig S9**).
469

470 **Discussion**

471 **Mitonuclear Recombinant Collection**

472 We created a multiparent advanced intercross population (Mitonuclear Recombinant
473 Collection or MNRC) to identify mitonuclear interactions driven by allelic variation in *S.*
474 *cerevisiae* yeasts through association testing. The MNRC incorporates the genetic
475 variation from 25 wild isolates into ~200 fully sequenced recombinant strains. These
476 strains were paired with three different mitotypes, enabling the detection of mitonuclear
477 interactions via genome-wide association tests. Using the MNRC, we were able to
478 identify loci contributing to mtDNA stability through independent (main) effects and
479 mitonuclear interactions.

480 The MNRC was designed to help overcome many of the challenges of detecting
481 epistatic interactions. Multiple rounds of random mating should lower existing LD
482 created by the strong population structure in *S. cerevisiae* [47, 61] and reduce the
483 numbers of strains needed for association testing. The MNRC strains are haploid,
484 eliminating dominance effects. Because novel mtDNAs created through mitochondrial
485 recombination may produce unexplained phenotypic variances [19, 68], mtDNA
486 inheritance was controlled. By specifically pairing each mitotype with the nuclear
487 recombinants, the power to detect specific mitonuclear loci was increased.
488 Environments can easily be controlled in yeast, eliminating unexplained variances due
489 to mtDNA x nuclear x environment interactions. We showed that the MNRC can
490 successfully detect nuclear alleles that contribute to phenotypes through independent
491 (main) or epistatic (mitonuclear) effects.

492

493 **Loci affecting mtDNA stability**

494 ***Mitonuclear interactions***

495 Our model found epistatic associations for SNPs in four genes (*HGH1*, *SMI1*, *BNS1*,
496 and *YAT1*) that are broadly related to mitotic growth. We confirmed these associations
497 by showing that mitotypes influence *petite* frequencies differently in null mutations of
498 each gene as compared to a wild type genetic background. *YAT1* encodes a
499 mitochondrial outer membrane protein that participates in mitochondrial metabolism by
500 importing the acyl groups that enter the Krebs cycle for energy production [78, 79].
501 Industrial yeast strains have likely adapted to high levels of toxic aldehydes produced
502 during ethanol production by increasing *YAT1* copy numbers [80]. The Yat1 protein is

503 phosphorylated [81], suggesting that its activity is regulated through cell signaling.
504 *HGH1* encodes a translation factor chaperone involved in protein synthesis that is
505 activated in response to DNA damage [82] [83]. The molecular function of *SMI1* is
506 unknown, but it is thought to be a member of the cell signaling pathway that regulates
507 cell wall biosynthesis during mitotic growth [84]. Null mutations of *SMI1* have reduced
508 respiratory growth [85], suggesting its activity influences mitochondrial function. During
509 mitosis, *BNS1* participates in the signaling network directing the exit from anaphase
510 [86]. A high-quality mitochondrial proteomics screen found the Bns1 protein in the
511 mitochondrial matrix [87]. Possibly, these genes are involved in mitonuclear epistasis by
512 changing growth parameters in response to retrograde signals produced by
513 mitochondria with damaged mtDNAs. We expect this to be a general trend. Dominant
514 mutations that suppressed the low growth phenotype of strains with mitochondrial
515 ribosomal protein defects also led to higher *petite* frequencies [88].

516 Mitotic growth also linked mitonuclear epistasis and mtDNA stability when
517 exchanging mtDNAs between strains from West African lineages. This strain grouping
518 had higher *petite* frequencies (**Fig 1**) and growth rates (**Fig 7**) than most other strains.
519 When mtDNAs were exchanged between West African isolates, strains with original,
520 coadapted mitonuclear genome combinations had lower *petite* frequencies (**Fig 3**) and
521 mitotic growth rates (**Fig S8**) than strains harboring introduced, non-coadapted,
522 mtDNAs. This suggests that selection for mtDNA-stabilizing mitonuclear alleles is rapid
523 and may come at the cost of lowering overall growth rates and may even dictate an
524 upper limit for optimal growth. It is interesting to note that mtDNA instability is a hallmark
525 of fast growing human cancer cells [89]. Experimental evolutions aimed at altering
526 growth rates may be one way to demonstrate this potential fitness tradeoff. In yeast
527 cells exposed to oxidative stress agents, partial deletions within mtDNAs may initially be
528 under genetic control, as a way to quickly reduce endogenous ROS levels by preventing
529 OXPHOS [52]. We found that growth rates and *petite* frequencies were increased by
530 altering environmental conditions. It is possible the increased OXPHOS requirements of
531 rapidly dividing cells may also stimulate this retrograde signaling activity, resulting in
532 higher rates of mtDNA deletions.

533 In constant environments, there should be rapid selection for variants providing
534 optimal growth rates. This selection may occur more often in yeast where cells are likely
535 to experience singular environments over a generation time. There is some evidence for
536 this. When grown in media attempting to emulate natural habitats, we previously
537 showed that coadapted mitonuclear genome combinations had higher growth rates [15].
538 Because there is a wide landscape of potential alleles involved in growth, different
539 coadapted mitonuclear loci may evolve rapidly in different populations. In yeast, this
540 could be important in maintaining allelic variation across the species. It will be
541 interesting to see whether growth is a general feature of mitonuclear loci contributing to
542 phenotypes other than mtDNA stability. Given that mitochondria are central to
543 maintaining cellular homeostasis, this may be likely.

544

545 **Main effects**

546 Loci with main effects for mtDNA stability detected by our model interact with mtDNA
547 through non-specific binding. In the MNRC, missense alleles of the mtDNA
548 polymerase, *MIP1*, had the strongest effects on *petite* frequencies. It is well
549 documented that the *MIP1* allele in the yeast reference strain, and other experimentally
550 derived variants, lead to a decrease in mtDNA stability [51, 90, 91]. Our work suggests
551 that naturally occurring variants contribute to basal differences in mtDNA stability in
552 populations. Low expression of the mammalian homolog, PolG, leads to the
553 accumulation of mtDNA deletions [92, 93]. Consistent with this, we found that
554 expression of *MIP1* was lower in strains with the low *petite* frequency alleles and
555 positively correlated with *petite* frequencies (**Fig S6, S7**), although not to statistical
556 significance. Interestingly, *MIP1* expression was dependent on the genotypes of the
557 mitonuclear associated genes, and *BNS1* expression was dependent on the genotype
558 of *MIP1* (**Table S12**). From this data, it can't be deduced whether cells alter *MIP1*
559 expression in response to growth differences caused by genotypes of mitonuclear loci
560 or if expression of mitonuclear genes is regulated by Mip1 levels. Significant
561 mitonuclear genotype x *MIP1* genotype interactions influenced the expression of the
562 mitonuclear associated genes *BNS1* and *YAT1* (**Table S12**) and suggest that higher
563 order interactions are involved in mtDNA stabilities.

564 We also found that *EST1* variants associated with mtDNA stability independently
565 of mitotype and that its deletion altered *petite* frequencies. Est1 maintains telomerase at
566 the linear ends of nuclear chromosomes [94, 95] by stabilizing G-quadruplex secondary
567 structures in the DNA [96]. G-quadruplexes play a role in stabilizing human mtDNAs
568 and can cause mtDNA polymerase to stall [97]. The GC-clusters in yeast mtDNAs likely
569 form secondary structures [63] though it is not known whether these form typical G-
570 quad structures or whether they act to stabilize mtDNAs. While Est1 is normally
571 targeted to the nucleus, a proteomics experiment found that Est1 coimmunoprecipitated
572 with mitochondrial ribosomes just prior to cell division (in G2 phase) [98]. It is plausible
573 that Est1 plays dual roles in nuclear and mitochondrial genome maintenance. Another
574 non-specific mtDNA binding protein identified by our association model (but not verified
575 here) was *ILV5*, a mitochondrial nucleoid associated protein that was previously shown
576 to influence mtDNA stability [99].

577 While higher GC content typically stabilizes DNAs, we found that mtDNAs with
578 the highest GC-content were the least stable (**Fig 2A**). This is consistent with the
579 observation that *petite* frequency differences between different yeast species correlates
580 with their GC-cluster content [100]. Within *S. cerevisiae*, the M4 family of GC-clusters
581 appears to be expanding in the mtDNAs with West African lineages by targeting another
582 family of clusters [67] and likely explains the high *petite* frequencies in these strains (**Fig**
583 **2B**). Not much is known about functional differences between different categories of
584 these mobile elements [63, 66]. Previously, we carefully aligned 9 mtDNAs, including
585 their long intergenic regions, and showed that only a small number of GC clusters were
586 in conserved positions [67]. Interestingly, the M4 clusters in the West African mtDNA in
587 that alignment interrupted 15% (2 of 13) of the conserved clusters. The M4 clusters
588 could destabilize mtDNAs directly or perhaps their expansion has interrupted genome
589 stabilizing functions provided by the positions of the conserved clusters.

590

591 **Significance**

592 By focusing on naturally occurring genetic variation in *S. cerevisiae*, the alleles mapped
593 using the MNRC provide insight into evolutionary potential. We found that mitonuclear
594 interactions affecting mitotic growth contribute to mtDNA stability although the

595 significance of these specific interactions in yeast populations is not yet known and will
596 depend on allele frequencies and relative effect sizes in context with environments in
597 mating populations. Mitochondrial and nuclear sequences follow different evolutionary
598 trajectories in yeast populations [101] and much of the genetic variation is unique to a
599 single population [47]. It is likely that the MNRC contains combinations of interacting loci
600 that do not exist in nature. Large scale intra- and interpopulation surveys will be
601 required to determine how selection on mitonuclear interactions has shaped patterns of
602 diversity across geographic ranges and ecological niches. Thus, it is not clear that the
603 alleles identified here contribute to population specific phenotypic differences but it is
604 clear that mitonuclear interactions have shaped phenotypic diversity. In addition, the
605 mitonuclear loci identified using the MNRC provide insight into pathways and
606 mechanisms that generate phenotypic differences. The MNRC offers a powerful tool to
607 identify mitonuclear interactions and helps us better understand and predict the complex
608 genotype/phenotype relationships that shape life.

609

610 **Methods**

611 *Yeast strains*

612 All strains are listed in **Table S1**. Wild yeast isolates, described in [102], were obtained
613 from the National Collection of Yeast Cultures General. Deletion strains [103] were
614 obtained from the Yeast Knockout Collection (Horizon Discovery). To replace mtDNAs,
615 karyogamy deficient matings were performed as previously described [15].

616

617 *Media*

618 Media recipes include: SD (6.7 g/L yeast nitrogen base without amino acids, 20 g/L
619 glucose); CSM with or without amino acids as specified (SD + 800mg/L CSM premix or
620 as recommended by the manufacturer (Sunrise Science)); (CSM containing 30mL/L
621 ethanol and 30mL/L glycerol instead of glucose); sporulation media (1% IOAc, 0.1%
622 yeast extract, 0.05% dextrose); YPD (10g/L yeast extract, 20g/L peptone, 20g/L
623 glucose) supplemented with 10 mM CuSO₄ when indicated; YPEG (YPD + 30mL/L
624 ethanol, 30mL/L glycerol instead of glucose); YPDG (1% yeast extract, 2% peptone,

625 0.1% glucose, 3% glycerol). Sugar concentrations in CSM media were altered as
626 indicated. For solid media, agar was added to 2% prior to autoclaving.

627

628 **Petite frequency assays**

629 To assay rates of mtDNA deletions, 5 mL YPD cultures were inoculated with freshly
630 grown colonies, grown in roller tubes at 30°C for exactly 15.0 hrs, diluted and plated
631 onto YPDG solid media. After 2-3 days at 30°C, large (*grande*) and small (*petite*)
632 colonies were counted manually or photographed and counted using an imaging system
633 (sp-Imager-SA, S&P Robotics, Inc). To quantify *petite* frequencies in the deletion
634 strains, 20 freshly grown colonies were scooped from solid media, diluted and plated
635 directly onto YPDG solid media. Single assays were performed for each strain in the
636 recombinant collections. All other assays were performed in 3-20 replicates. *Petite*
637 frequencies are reported as the ratio of *petite* to *grande* ([#*petite* colonies/ total colonies] *
638 100).

639

640 **Growth phenotyping**

641 To test to the effects of sugar and temperature on growth, strains were cultivated in 96
642 well microtiter plates using Biotek Eon photospectrometers using double orbital shaking.
643 Optical densities (600nm) were recorded at 15-minute intervals until cells reached
644 stationary phase. Maximal growth rates (V_{max}) were determined as the highest slope of
645 regression lines modeled over sliding windows of 5 data points from growth curves and
646 normalized to the mean of a reference strain included on each plate.

647

648 **Multiparent recombinant strain collection**

649 An F7 multiparent recombinant collection of *S. cerevisiae* yeast derived from 25 wild
650 isolates and paired with 3 different mtDNAs was created for genome-wide association
651 studies. We first created a set of parental strains containing a single mitotype with
652 selectable markers to facilitate matings. We began with haploid derivatives (*MAT α* and
653 *MAT α ura3::KanMX*) representing 25 wild yeast isolates (**Table S1**). To facilitate the
654 selection of diploids between these haploid strains, an *arg8::URA3* disruption cassette
655 from *BamHI* linearized plasmid, pSS1, was introduced into each *MAT α* strain through

656 chemical competence (EZ Yeast Transformation Kit (Zymo Research) or [104]) or
657 electroporation [105]. Transformants (strains MLx2x1UA-MLx28x1UA) were selected on
658 CSM-ura solid media and arginine auxotrophies and respiratory competencies were
659 verified by replica plating to CMS-arg and YPEG, respectively. Correct integration of the
660 *arg8::URA3* disruption cassette was verified through tetrad analysis: each *MAT α*
661 *arg8::URA3* strain was mated to their *MAT α ura3::KanMX* isogenic counterpart, diploids
662 were selected on SD media and sporulated on SPO media. Spores were dissected
663 from \geq 12 tetrads and printed to CSM-ura, CSM-arg, and YPEG media, verifying a 2:2
664 segregation of Arg- Ura+: Arg+ Ura- phenotypes. All crosses had >90% spore viabilities.
665 The mtDNAs in the *MAT α* strains were replaced with the mtDNA from 273614N using
666 karyogamy-deficient matings as previously described [15]. The mtDNAs from the *MAT α*
667 *arg8::URA3* strains were removed through ethidium bromide treatment.

668
669 To create the multiparent recombinant collection, the *MAT α ura3::KanMX* ρ^+ and *MAT α*
670 *ura3::KanMX* *arg8::URA3* ρ^0 strains were mated to create each possible heterozygous
671 F1 diploid. To do this, aliquots (50 μ L) of haploid strains were mixed with 200 μ L fresh
672 YPD media and incubated without mixing for 2 days at 30°C in 96-well plates. Mating
673 mixtures were harvested by centrifugation, washed (200 μ L ddH₂O), re-suspended in
674 250 μ L CSM-URA-ARG liquid media and incubated for 2 days at 30°C with continuous
675 shaking, and then spotted onto solid CSM-URA-ARG media. This yielded 279 F1
676 heterozygous diploids (of 284 attempted crosses). To create F1 haploids, 10 μ L aliquots
677 of diploid-enriched mixtures were spotted to sporulation media and incubated at room
678 temperature until tetrads were visible via compound microscopy (7-11 days). The
679 sporulated cells were collected and pooled by washing the plates with 5mL ddH₂O. To
680 isolate spores from ascii and vegetative cells, a random spore analysis protocol was
681 followed [106], with modifications. Cell walls were digested by incubating 1 mL aliquots
682 of the sporulated cells with zymolyase 20T (1 mg/ml) at room temperature for 1 hr with
683 gentle rocking. The cells were centrifuged (12000 rpm, 4°C, 1min), washed (1 mL
684 ddH₂O) and resuspended in 100 μ L ddH₂O. The treated cell mixture was vortexed
685 vigorously for 3 minutes to adhere spores to tube walls. The supernatant was carefully
686 aspirated, and the spores were gently washed (1mL ddH₂O) to remove remaining

687 vegetative cells. To release spores from the plastic tube walls, cells were sonicated for
688 10-20 sec at 110 V (Stamina XP s50.0.7L, SharperTek) in 1mL of 0.02% Triton-X. The
689 released spores were centrifuged (12000 rpm, 4°C, 1min), washed (1mL ddH₂O), and
690 re-pelleted. The resulting freed spore mixtures were combined into a single tube with
691 1mL ddH₂O. Spore density was determined with a hemocytomer and plated for single F1
692 haploid colonies (~500 CFU/plate) onto 10 petri plates containing CSM-URA media
693 (selecting for *MATa* or *α ura3 arg8::URA3*) and 10 petri plates containing CMS-ARG
694 media (selecting for *MATa* or *α ura3 ARG8*). The F1 haploid cells were pooled by
695 washing the colonies from each plate using ~5 mL ddH₂O. The pooled cells were
696 washed in 5 mL ddH₂O, resuspended in 5mL YPD media and incubated at 30°C without
697 shaking. The random mating mixtures were washed in 5 mL ddH₂O, resuspended in 5
698 mL CSM-URA-ARG and incubated for 8-12 hours to enrich for F2 diploids. The cell
699 mixtures were pelleted, resuspended in 2.5 mL ddH₂O, aliquoted (250 ul) onto solid
700 sporulation media and incubated at room temperature for 7 days. Spores were released
701 and F2 haploids were isolated as described above. Random matings and haploid
702 selection were repeated for a total of 7 meioses. Haploid F7 progeny were isolated as
703 single colonies on YPD media, and replica plated to CSM-ARG, CSM-URA, and YPEG
704 to determine auxotrophies and respiratory growth. Mating types were tested using
705 mating type testers. Approximately 200 verified haploid recombinants were selected as
706 strains for Recombinant Collection 1 (RC1) and include ~50 isolates of each selectable
707 genotype. RC001-RC049: *MATa ura3 ARG8*; RC102-146: *MATα ura3 arg8::URA3*;
708 RC201-247: *MATa ura3 arg8::URA3*; RC301-347: *MATα ura3 ARG8*.
709 The mtDNAs from each strain in RC1 were removed using an ethidium bromide
710 treatment (creating RC001-347 ρ^0) and replaced using karyogamy deficient matings to
711 create RC2 and RC3. RC2 strains contain the mtDNA from YPS606 and were created
712 using mitochondrial donor strains SPK27 (for RC2:001-048), CK520E1 (for RC2:102-
713 146 and RC2:301-347) and MKG109 (for RC2:301-307). RC3 strains contain the
714 mtDNA from NCYC110 and were created using mtDNA donor strain TUC131.
715
716 *Genome Sequencing and analysis*

717 Genomic DNAs from 192 F7 recombinants from RC1 were isolated following Hoffman-
718 Winston genomic DNA protocol (Hoffman & Winston 1987). DNA samples were
719 concentrated using ZR-96 Genomic DNA Clean & ConcentratorTM – 5 (Zymo Research
720 Corp). DNA concentrations were measured using Qubit and diluted to the final
721 concentration of 0.2 ng/μl. DNA sequencing libraries were prepared using an Illumina
722 Nextera XT DNA Library Prep Kit according to manufacture instructions. The DNA
723 concentration of each library was determined using Qubit, normalized, and pooled. The
724 pooled libraries were sequenced using a single run of paired end 2 x 150 bp on
725 Nextseq500 (Illumina) at the Institute for Biotechnology and Life Sciences Technology at
726 Cornell University. The reads for each RC strain were individually mapped to the
727 annotated reference genome S288C (R64-2-1_20110203) using Bowtie2. Single
728 nucleotide variants (SNPs) and regions of low and high coverage were identified using
729 the Find Variations/SNPs function in Geneious v.8, filtering the results to regions with a
730 minimum coverage ≥ 5 , minimum variant frequencies within the reads ≥ 0.8 and the
731 maximum variant *P* values (the probability of a sequencing error) $\leq 10^{-6}$. To create a
732 SNP table for association mapping, adjacent polymorphisms were merged, telomeric
733 regions were removed and polymorphisms from each strain were combined into a single
734 file. Low coverage areas were converted to deletions and the polymorphisms were
735 filtered for biallelic variants with MAF $> 0.5\%$. This resulted in 24,955 polymorphic
736 sites.

737 The mtDNA sequences were analyzed for GC cluster and intron content as
738 previously described [67]. Accession numbers are provided in **Table S4**.
739

740 *Statistical analysis and association testing*

741 Statistics and plotting were performed using R 4.1.2 [107] and association models were
742 performed using R 4.0.4 in RStudio [108]. Generalized linear models of the family
743 binomial accounting for the different numbers of *petite* and *grande* colonies were
744 performed using *glm* with the *cbind* function. ANOVAs for the analyses of growth or
745 expression were performed using linear models with the *lm* function. Correlations were
746 run using the *corr.test* function. Gene ontology classes for associated genes were
747 identified using GO::TermFinder (Boyle, 2004

748 <https://doi.org/10.1093/bioinformatics/bth456>) and tested for over-representation using
749 Fisher's exact tests.

750

751 *Genome-wide association analysis*

752 A biallelic SNP table containing 24955 unique SNPs was used for association testing.
753 To address residual population structure in the recombinant strains, a principal
754 component analysis was performed using PLINK v1.9 [109]. A simple association test
755 was performed on the growth parameters from RC1 strains grown on YPD + 10 mM
756 CuSO₄ using the linear model: *colony size* ~ *covariates* + *nuclear SNP* + *error* where
757 colony size is the strain mean derived from the linear model, nuclear SNP represented
758 SNP variation at a given locus, and covariates included auxotrophies, mating type, and
759 the first ten principal components from the PCA analysis. Association tests to detect
760 mitonuclear interactions were performed using the strain means for *petite* frequency
761 from RC1, RC2 and RC3 in the following model:: *phenotype* ~ *covariates* + *nuclear SNP*
762 + *mtDNA* + *nuclear SNP*mtDNA*+ *error*, where phenotype is either the petite
763 frequencies. Covariates included MIP1 alleles when indicated. False discovery rates
764 were calculated using the “*qvalue*” package version 2.22.0 [110].

765

766 Associated SNPs that crossed FDR threshold were further filtered to non-synonymous
767 SNPs within coding sequence (CDS) regions, and upstream regions within 250bp
768 upstream of the CDS. Effect sizes for the associated SNPs with main effects were
769 determined as the absolute differences in *petite* frequencies for strains with each variant
770 weighted by their allele frequencies (effect size = Δ = |(freq_{allele1} × petite freq_{allele1}) – (f
771_{allele2} × petite freq_{allele2})|).

772

773 *RT-qPCR*

774 Cells from overnight CSM cultures were lysed according to [111] and total RNA was
775 isolated using Qiagen RNeasy mini spin columns. RNA was quantified (Invitrogen Qubit
776 Fluorometer) and diluted to 92 ng/µL. BioRad iScript cDNA Synthesis Kit was used to
777 create cDNA, according to manufacturer's instructions. RT-qPCR was performed on a
778 BioRad CFX Connect Real-Time PCR Detection System by adding 2 µl (~2.3 ng/µl)

779 cDNA to 10 μ l of BioRad SsoAdvanced Universal SYBR Green Supermix, 1 μ L each of
780 forward and reverse primers (500 nM) and 6 μ L nuclease-free H₂O in BioRad Hard-Shell
781 96-Well PCR Plates according to the following protocol: [95C-30s, (95C-15s, 60C 15-
782 40s)₄₀, 65C-95C-0.5C/5s]. Primer sequences are provided in **Table S14**. Relative
783 expression was determined as the residuals from a linear regression of 1/Ct for each
784 candidate gene against 1/Ct for the control gene, UBC6 as previously described [112].
785 This approach controls for differences in RNA extraction and cDNA manufacturing
786 efficiencies and results in more normally distributed data where higher residual values
787 correspond to higher starting mRNA levels.

788

789 Data Availability

790 Reads for the MNRC strains can be retrieved from NCBI under the BioProject ID
791 PRJNA871925. Scripts, SNP table and data available at
792 <https://github.com/mito32/Mitonuclear-Recombinant-Collection>.

793

794 Author Contributions

795 HLF, ACF, and KC conceived the project. ML, MG, and FR created the recombinant
796 collection. Library preps were performed by THMN, JFW, and WL. Phenotyping was
797 performed by THMN, MG, FR, WL, ATB, MS, BB, MT, BG. Data analysis was
798 performed by THMN, ATB, JFW, ACF and HLF. The manuscript is written by THMN,
799 ACF and HLF. All authors read and improved the manuscript.

800

801 Acknowledgements

802 We gratefully acknowledge T.D. Fox for the gift of plasmid, pSS1 and L. P. Musselman
803 for assistance with RT-qPCR. We are also grateful to Binghamton University
804 undergraduate students K. Dave, B. DeJesus, J. DeJesus, A. Federico, G. Lal, S.
805 Sondhi, S. Oh, B.A. Wong, and A. Ziesel for technical assistance with *petite* frequencies
806 in RC1.

807

808 Funding

809 This research was supported by an NIH award (GM101320) to HLF, ACF and KC. MS
810 was supported by an NSF REU (EEC 1757846). ATB, BB, MT, and BG received
811 Binghamton University Undergraduate Research awards.

812

813 REFERENCES

814

- 815 1. Wolff JN, Ladoukakis ED, Enriquez JA, Dowling DK. Mitonuclear interactions:
816 evolutionary consequences over multiple biological scales. *Philos Trans R Soc Lond B Biol Sci.*
817 2014;369(1646). Epub 2014/05/28. doi: [rstb.2013.0443](https://doi.org/10.1098/rstb.2013.0443) [pii]
818 10.1098/rstb.2013.0443. PubMed PMID: 24864313; PubMed Central PMCID: PMC4032519.
- 819 2. Quiros PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress.
820 *Nat Rev Mol Cell Biol.* 2016;17(4):213-26. Epub 20160309. doi: [10.1038/nrm.2016.23](https://doi.org/10.1038/nrm.2016.23). PubMed
821 PMID: 26956194.
- 822 3. Pozzi A, Dowling DK. New Insights into Mitochondrial-Nuclear Interactions Revealed
823 through Analysis of Small RNAs. *Genome Biol Evol.* 2022;14(2). doi: [10.1093/gbe/evac023](https://doi.org/10.1093/gbe/evac023).
824 PubMed PMID: 35143645; PubMed Central PMCID: PMCPMC8883506.
- 825 4. Baris TZ, Wagner DN, Dayan DI, Du X, Blier PU, Pichaud N, et al. Evolved genetic and
826 phenotypic differences due to mitochondrial-nuclear interactions. *PLoS Genet.*
827 2017;13(3):e1006517. doi: [10.1371/journal.pgen.1006517](https://doi.org/10.1371/journal.pgen.1006517). PubMed PMID: 28362806; PubMed
828 Central PMCID: PMCPMC5375140.
- 829 5. Ding Y, Chen W, Li Q, Rossiter SJ, Mao X. Mitonuclear mismatch alters nuclear gene
830 expression in naturally introgressed Rhinolophus bats. *Front Zool.* 2021;18(1):42. Epub
831 20210906. doi: [10.1186/s12983-021-00424-x](https://doi.org/10.1186/s12983-021-00424-x). PubMed PMID: 34488775; PubMed Central
832 PMCID: PMCPMC8419968.
- 833 6. Ma H, Marti Gutierrez N, Morey R, Van Dyken C, Kang E, Hayama T, et al.
834 Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies
835 Reproductive Barrier. *Cell Metab.* 2016;24(2):283-94. Epub 20160714. doi:
836 [10.1016/j.cmet.2016.06.012](https://doi.org/10.1016/j.cmet.2016.06.012). PubMed PMID: 27425585; PubMed Central PMCID:
837 PMCPMC4981548.
- 838 7. Mossman JA, Ge JY, Navarro F, Rand DM. Mitochondrial DNA Fitness Depends on
839 Nuclear Genetic Background in *Drosophila*. *G3 (Bethesda)*. 2019;9(4):1175-88. Epub
840 2019/02/13. doi: [10.1534/g3.119.400067](https://doi.org/10.1534/g3.119.400067). PubMed PMID: 30745378; PubMed Central PMCID:
841 PMCPMC6469417.
- 842 8. Immonen E, Berger D, Sayadi A, Liljestrand-Ronn J, Arnqvist G. An experimental test of
843 temperature-dependent selection on mitochondrial haplotypes in *Callosobruchus maculatus* seed
844 beetles. *Ecol Evol.* 2020;10(20):11387-98. Epub 20200917. doi: [10.1002/ece3.6775](https://doi.org/10.1002/ece3.6775). PubMed
845 PMID: 33144972; PubMed Central PMCID: PMCPMC7593184.
- 846 9. Bever BW, Dietz ZP, Sullins JA, Montoya AM, Bergthorsson U, Katju V, et al.
847 Mitonuclear Mismatch is Associated With Increased Male Frequency, Outcrossing, and Male
848 Sperm Size in Experimentally-Evolved *C. elegans*. *Front Genet.* 2022;13:742272. Epub
849 20220311. doi: [10.3389/fgene.2022.742272](https://doi.org/10.3389/fgene.2022.742272). PubMed PMID: 35360860; PubMed Central
850 PMCID: PMCPMC8961728.

851 10. Lima TG, Burton RS, Willett CS. Genomic scans reveal multiple mito-nuclear
852 incompatibilities in population crosses of the copepod *Tigriopus californicus*. *Evolution*.
853 2019;73(3):609-20. Epub 20190208. doi: 10.1111/evo.13690. PubMed PMID: 30675905.

854 11. Carnegie L, Reuter M, Fowler K, Lane N, Camus MF. Mother's curse is pervasive across
855 a large mitonuclear *Drosophila* panel. *Evol Lett*. 2021;5(3):230-9. Epub 20210313. doi:
856 10.1002/evl3.221. PubMed PMID: 34136271; PubMed Central PMCID: PMCPMC8190446.

857 12. Plytycz B, Bigaj J, Rysiewska A, Osikowski A, Hofman S, Podolak A, et al. Impairment
858 of reproductive capabilities in three subsequent generations of asymmetric hybrids between
859 *Eisenia andrei* and *E. fetida* from French, Hungarian and Polish laboratory colonies. *PLoS One*.
860 2020;15(7):e0235789. Epub 2020/07/10. doi: 10.1371/journal.pone.0235789. PubMed PMID:
861 32645117; PubMed Central PMCID: PMCPMC7347191.

862 13. Chase CD. Cytoplasmic male sterility: a window to the world of plant mitochondrial-
863 nuclear interactions. *Trends Genet*. 2007;23(2):81-90. Epub 20061222. doi:
864 10.1016/j.tig.2006.12.004. PubMed PMID: 17188396.

865 14. Paliwal S, Fiumera AC, Fiumera HL. Mitochondrial-nuclear epistasis contributes to
866 phenotypic variation and coadaptation in natural isolates of *Saccharomyces cerevisiae*. *Genetics*.
867 2014;198(3):1251-65. Epub 2014/08/29. doi: 10.1534/genetics.114.168575. PubMed PMID:
868 25164882; PubMed Central PMCID: PMC4224164.

869 15. Nguyen THM, Sondhi S, Ziesel A, Paliwal S, Fiumera HL. Mitochondrial-nuclear
870 coadaptation revealed through mtDNA replacements in *Saccharomyces cerevisiae*. *BMC Evol
871 Biol*. 2020;20(1):128. Epub 2020/09/27. doi: 10.1186/s12862-020-01685-6. PubMed PMID:
872 32977769; PubMed Central PMCID: PMCPMC7517635.

873 16. Giordano L, Sillo F, Garbelotto M, Gonthier P. Mitonuclear interactions may contribute
874 to fitness of fungal hybrids. *Sci Rep*. 2018;8(1):1706. Epub 2018/01/28. doi: 10.1038/s41598-
875 018-19922-w. PubMed PMID: 29374209; PubMed Central PMCID: PMCPMC5786003.

876 17. Lee HY, Chou JY, Cheong L, Chang NH, Yang SY, Leu JY. Incompatibility of nuclear
877 and mitochondrial genomes causes hybrid sterility between two yeast species. *Cell*.
878 2008;135(6):1065-73. Epub 2008/12/17. doi: S0092-8674(08)01385-8 [pii]
879 10.1016/j.cell.2008.10.047. PubMed PMID: 19070577.

880 18. Zeyl C, Andreson B, Weninck E. Nuclear-mitochondrial epistasis for fitness in
881 *Saccharomyces cerevisiae*. *Evolution*. 2005;59(4):910-4. Epub 2005/06/02. PubMed PMID:
882 15926700.

883 19. Leducq JB, Henault M, Charron G, Nielly-Thibault L, Terrat Y, Fiumera HL, et al.
884 Mitochondrial Recombination and Introgression during Speciation by Hybridization. *Mol Biol
885 Evol*. 2017;34(8):1947-59. doi: 10.1093/molbev/msx139. PubMed PMID: 28444332.

886 20. Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Lin ZG, Kennell J, et al.
887 Mitochondrial Genome Variation Affects Multiple Respiration and Nonrespiration Phenotypes in
888 *Saccharomyces cerevisiae*. *Genetics*. 2019;211(2):773-86. doi: 10.1534/genetics.118.301546.
889 PubMed PMID: WOS:000458574800026.

890 21. Pickett SJ, Deen D, Pyle A, Santibanez-Koref M, Hudson G. Interactions between
891 nuclear and mitochondrial SNPs and Parkinson's disease risk. *Mitochondrion*. 2022;63:85-8.
892 Epub 20220212. doi: 10.1016/j.mito.2022.02.002. PubMed PMID: 35167983.

893 22. Gonzalez S. The Role of Mitonuclear Incompatibility in Bipolar Disorder Susceptibility
894 and Resilience Against Environmental Stressors. *Front Genet*. 2021;12:636294. Epub 20210316.
895 doi: 10.3389/fgene.2021.636294. PubMed PMID: 33815470; PubMed Central PMCID:
896 PMCPMC8010675.

897 23. Son JM, Lee C. Aging: All roads lead to mitochondria. *Semin Cell Dev Biol.*
898 2021;116:160-8. Epub 20210323. doi: 10.1016/j.semcdb.2021.02.006. PubMed PMID:
899 33741252.

900 24. Kozin M, Kulakova O, Kiselev I, Baulina N, Boyko A, Favorova O. Mitonuclear
901 interactions influence multiple sclerosis risk. *Gene.* 2020;758:144962. Epub 20200717. doi:
902 10.1016/j.gene.2020.144962. PubMed PMID: 32687946.

903 25. Andrews SJ, Fulton-Howard B, Patterson C, McFall GP, Gross A, Michaelis EK, et al.
904 Mitonuclear interactions influence Alzheimer's disease risk. *Neurobiol Aging.* 2020;87:138 e7-
905 e14. Epub 20190924. doi: 10.1016/j.neurobiolaging.2019.09.007. PubMed PMID: 31784277;
906 PubMed Central PMCID: PMCPMC7205324.

907 26. Hill GE, Havird JC, Sloan DB, Burton RS, Greening C, Dowling DK. Assessing the
908 fitness consequences of mitonuclear interactions in natural populations. *Biol Rev Camb Philos
909 Soc.* 2019;94(3):1089-104. Epub 2018/12/28. doi: 10.1111/brv.12493. PubMed PMID:
910 30588726; PubMed Central PMCID: PMCPMC6613652.

911 27. Burton RS. The role of mitonuclear incompatibilities in allopatric speciation. *Cell Mol
912 Life Sci.* 2022;79(2):103. Epub 20220129. doi: 10.1007/s00018-021-04059-3. PubMed PMID:
913 35091831.

914 28. Ellison CK, Burton RS. Interpopulation hybrid breakdown maps to the mitochondrial
915 genome. *Evolution.* 2008;62(3):631-8. Epub 2007/12/18. doi: EVO305 [pii]
916 10.1111/j.1558-5646.2007.00305.x. PubMed PMID: 18081717.

917 29. Ellison CK, Burton RS. Disruption of mitochondrial function in interpopulation hybrids
918 of *Tigriopus californicus*. *Evolution.* 2006;60(7):1382-91. Epub 2006/08/26. PubMed PMID:
919 16929655.

920 30. Montooth KL, Meiklejohn CD, Abt DN, Rand DM. Mitochondrial-nuclear epistasis
921 affects fitness within species but does not contribute to fixed incompatibilities between species
922 of *Drosophila*. *Evolution.* 2010;64(12):3364-79. Epub 2010/07/14. doi: EVO1077 [pii]
923 10.1111/j.1558-5646.2010.01077.x. PubMed PMID: 20624176; PubMed Central PMCID:
924 PMC2997886.

925 31. Meiklejohn CD, Holmbeck MA, Siddiq MA, Abt DN, Rand DM, Montooth KL. An
926 Incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase
927 compromises development and fitness in *Drosophila*. *PLoS Genet.* 2013;9(1):e1003238. Epub
928 2013/02/06. doi: 10.1371/journal.pgen.1003238
929 PGENETICS-D-12-02557 [pii]. PubMed PMID: 23382693; PubMed Central PMCID:
930 PMC3561102.

931 32. Jhuang HY, Lee HY, Leu JY. Mitochondrial-nuclear co-evolution leads to hybrid
932 incompatibility through pentatricopeptide repeat proteins. *Embo Reports.* 2017;18(1):87-101.
933 doi: 10.15252/embr.201643311. PubMed PMID: WOS:000392430400014.

934 33. Chou JY, Hung YS, Lin KH, Lee HY, Leu JY. Multiple molecular mechanisms cause
935 reproductive isolation between three yeast species. *PLoS Biol.* 2010;8(7):e1000432. Epub
936 20100720. doi: 10.1371/journal.pbio.1000432. PubMed PMID: 20652018; PubMed Central
937 PMCID: PMCPMC2907292.

938 34. Gibson JD, Niehuis O, Peirson BR, Cash EI, Gadau J. Genetic and developmental basis
939 of F2 hybrid breakdown in *Nasonia* parasitoid wasps. *Evolution.* 2013;67(7):2124-32. Epub
940 2013/07/03. doi: 10.1111/evo.12080. PubMed PMID: 23815665.

941 35. Riles L, Fay JC. Genetic Basis of Variation in Heat and Ethanol Tolerance in
942 *Saccharomyces cerevisiae*. *G3-Genes Genom Genet*. 2019;9(1):179-88. doi:
943 10.1534/g3.118.200566. PubMed PMID: WOS:000455206600017.

944 36. Healy TM, Burton RS. Strong selective effects of mitochondrial DNA on the nuclear
945 genome. *Proc Natl Acad Sci U S A*. 2020;117(12):6616-21. Epub 2020/03/12. doi:
946 10.1073/pnas.1910141117. PubMed PMID: 32156736; PubMed Central PMCID:
947 PMCPMC7104403.

948 37. Haddad R, Meter B, Ross JA. The Genetic Architecture of Intra-Species Hybrid Mito-
949 Nuclear Epistasis. *Front Genet*. 2018;9:481. Epub 2018/12/07. doi: 10.3389/fgene.2018.00481.
950 PubMed PMID: 30505316; PubMed Central PMCID: PMCPMC6250786.

951 38. Naseeb S, Visinoni F, Hu Y, Hinks Roberts AJ, Maslowska A, Walsh T, et al. Restoring
952 fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits. *Proc Natl Acad
953 Sci U S A*. 2021;118(38). doi: 10.1073/pnas.2101242118. PubMed PMID: 34518218; PubMed
954 Central PMCID: PMCPMC8463882.

955 39. Santiago JC, Boylan JM, Lemieux FA, Gruppuso PA, Sanders JA, Rand DM.
956 Mitochondrial genotype alters the impact of rapamycin on the transcriptional response to
957 nutrients in *Drosophila*. *BMC Genomics*. 2021;22(1):213. Epub 2021/03/26. doi:
958 10.1186/s12864-021-07516-2. PubMed PMID: 33761878; PubMed Central PMCID:
959 PMCPMC7992956.

960 40. Mossman JA, Biancani LM, Rand DM. Mitochondrial genomic variation drives
961 differential nuclear gene expression in discrete regions of *Drosophila* gene and protein
962 interaction networks. *BMC Genomics*. 2019;20(1):691. Epub 2019/09/04. doi: 10.1186/s12864-
963 019-6061-y. PubMed PMID: 31477008; PubMed Central PMCID: PMCPMC6719383.

964 41. Rand DM, Mossman JA, Spierer AN, Santiago JA. Mitochondria as environments for the
965 nuclear genome in *Drosophila*: mitonuclear GxGxE. *J Hered*. 2022;113(1):37-47. doi:
966 10.1093/jhered/esab066. PubMed PMID: 34964900; PubMed Central PMCID:
967 PMCPMC8851671.

968 42. Pereira RJ, Lima TG, Pierce-Ward NT, Chao L, Burton RS. Recovery from hybrid
969 breakdown reveals a complex genetic architecture of mitonuclear incompatibilities. *Mol Ecol*.
970 2021. Epub 2021/05/19. doi: 10.1111/mec.15985. PubMed PMID: 34003535.

971 43. Wernick RI, Christy SF, Howe DK, Sullins JA, Ramirez JF, Sare M, et al. Sex and
972 Mitonuclear Adaptation in Experimental *Caenorhabditis elegans* Populations. *Genetics*.
973 2019;211(3):1045-58. Epub 2019/01/24. doi: 10.1534/genetics.119.301935. PubMed PMID:
974 30670540; PubMed Central PMCID: PMCPMC6404257.

975 44. Rand DM, Mossman JA. Mitonuclear conflict and cooperation govern the integration of
976 genotypes, phenotypes and environments. *Philos Trans R Soc Lond B Biol Sci*.
977 2020;375(1790):20190188. Epub 2019/12/04. doi: 10.1098/rstb.2019.0188. PubMed PMID:
978 31787039; PubMed Central PMCID: PMCPMC6939372.

979 45. Campbell RF, McGrath PT, Paaby AB. Analysis of Epistasis in Natural Traits Using
980 Model Organisms. *Trends Genet*. 2018;34(11):883-98. Epub 20180827. doi:
981 10.1016/j.tig.2018.08.002. PubMed PMID: 30166071; PubMed Central PMCID:
982 PMCPMC6541385.

983 46. Mackay TF. Epistasis and quantitative traits: using model organisms to study gene-gene
984 interactions. *Nat Rev Genet*. 2014;15(1):22-33. doi: 10.1038/nrg3627. PubMed PMID:
985 24296533; PubMed Central PMCID: PMCPMC3918431.

986 47. Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D, Bergstrom A, et al. Genome
987 evolution across 1,011 *Saccharomyces cerevisiae* isolates. *Nature*. 2018;556(7701):339-44. doi:
988 10.1038/s41586-018-0030-5. PubMed PMID: 29643504.

989 48. Gilea AI, Ceccatelli Berti C, Magistrati M, Di Punzio G, Goffrini P, Baruffini E, et al.
990 *Saccharomyces cerevisiae* as a Tool for Studying Mutations in Nuclear Genes Involved in
991 Diseases Caused by Mitochondrial DNA Instability. *Genes*. 2021;12(12):1866. doi:
992 10.3390/genes12121866.

993 49. Stenger M, Le DT, Klecker T, Westermann B. Systematic analysis of nuclear gene
994 function in respiratory growth and expression of the mitochondrial genome in *S. cerevisiae*.
995 *Microb Cell*. 2020;7(9):234-49. Epub 2020/09/10. doi: 10.15698/mic2020.09.729. PubMed
996 PMID: 32904421; PubMed Central PMCID: PMCPMC7453639.

997 50. Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a
998 plethora of nuclear genes in the budding yeast. *Microbiol Mol Biol Rev*. 2000;64(2):281-315.
999 PubMed PMID: 10839818.

1000 51. Dimitrov LN, Brem RB, Kruglyak L, Gottschling DE. Polymorphisms in multiple genes
1001 contribute to the spontaneous mitochondrial genome instability of *Saccharomyces cerevisiae*
1002 S288C strains. *Genetics*. 2009;183(1):365-83. Epub 2009/07/08. doi: genetics.109.104497 [pii]
1003 10.1534/genetics.109.104497. PubMed PMID: 19581448; PubMed Central PMCID:
1004 PMC2746160.

1005 52. Stenberg S, Li J, Gjuvsland AB, Persson K, Demitz-Helin E, Gonzalez Pena C, et al.
1006 Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative
1007 phosphorylation. *Elife*. 2022;11. Epub 20220708. doi: 10.7554/eLife.76095. PubMed PMID:
1008 35801695.

1009 53. Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum
1010 in evolution and disease. *Cold Spring Harb Perspect Biol*. 2013;5(11):a021220. Epub
1011 2013/11/05. doi: 5/11/a021220 [pii]
1012 10.1101/cshperspect.a021220. PubMed PMID: 24186072.

1013 54. Payne BA, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D, Horvath R, et al. Universal
1014 heteroplasmy of human mitochondrial DNA. *Hum Mol Genet*. 2013;22(2):384-90. Epub
1015 2012/10/16. doi: 10.1093/hmg/dds435. PubMed PMID: 23077218; PubMed Central PMCID:
1016 PMCPMC3526165.

1017 55. Yusoff A, Radzak S, Mohd Khair S. Research highlights on contributions of
1018 mitochondrial DNA microsatellite instability in solid cancers – an overview. *Współczesna
1019 Onkologia*. 2022;26(1):8-26. doi: 10.5114/wo.2022.115674.

1020 56. El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates
1021 of genetic basis, manifestations, and therapeutic options. *Neurotherapeutics*. 2013;10(2):186-98.
1022 doi: 10.1007/s13311-013-0177-6. PubMed PMID: 23385875; PubMed Central PMCID:
1023 PMCPMC3625391.

1024 57. Nogueira C, Almeida LS, Nesti C, Pezzini I, Videira A, Vilarinho L, et al. Syndromes
1025 associated with mitochondrial DNA depletion. *Ital J Pediatr*. 2014;40:34. Epub 20140403. doi:
1026 10.1186/1824-7288-40-34. PubMed PMID: 24708634; PubMed Central PMCID:
1027 PMCPMC3985578.

1028 58. Dujon B. Mitochondrial genetics revisited. *Yeast*. 2020;37(2):191-205. Epub 2019/11/07.
1029 doi: 10.1002/yea.3445. PubMed PMID: 31691343.

1030 59. Faugeron-Fonty G, Culard F, Baldacci G, Goursot R, Prunell A, Bernardi G. The
1031 mitochondrial genome of wild-type yeast cells. VIII. The spontaneous cytoplasmic "petite"

1032 mutation. *J Mol Biol.* 1979;134(3):493-57. Epub 1979/11/05. doi: 0022-2836(79)90365-6 [pii].
1033 PubMed PMID: 231670.

1034 60. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population
1035 genomics of domestic and wild yeasts. *Nature.* 2009;458(7236):337-41. Epub 2009/02/13. doi:
1036 nature07743 [pii]
1037 10.1038/nature07743. PubMed PMID: 19212322; PubMed Central PMCID: PMC2659681.

1038 61. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The
1039 100-genomes strains, an *S. cerevisiae* resource that illuminates its natural phenotypic and
1040 genotypic variation and emergence as an opportunistic pathogen. *Genome Res.* 2015;25(5):762-
1041 74. doi: 10.1101/gr.185538.114. PubMed PMID: 25840857; PubMed Central PMCID:
1042 PMC4417123.

1043 62. de Zamaroczy M, Bernardi G. The GC clusters of the mitochondrial genome of yeast and
1044 their evolutionary origin. *Gene.* 1986;41(1):1-22. Epub 1986/01/01. doi: 0378-1119(86)90262-3
1045 [pii]. PubMed PMID: 3009268.

1046 63. Wu B, Hao W. A Dynamic Mobile DNA Family in the Yeast Mitochondrial Genome. *G3*
1047 (Bethesda). 2015;5(6):1273-82. doi: 10.1534/g3.115.017822. PubMed PMID: 25897011;
1048 PubMed Central PMCID: PMCPMC4478555.

1049 64. Weiller GF, Bruckner H, Kim SH, Pratje E, Schweyen RJ. A GC cluster repeat is a
1050 hotspot for mit-macro-deletions in yeast mitochondrial DNA. *Molecular and General Genetics*
1051 *MGG.* 1991;226(1):233-40.

1052 65. Dieckmann CL, Gandy B. Preferential Recombination between Gc Clusters in Yeast
1053 Mitochondrial-DNA. *Embo J.* 1987;6(13):4197-203. PubMed PMID: WOS:A1987L435200041.

1054 66. Weiller G, Schueller CM, Schweyen RJ. Putative target sites for mobile G + C rich
1055 clusters in yeast mitochondrial DNA: single elements and tandem arrays. *Mol Gen Genet.*
1056 1989;218(2):272-83. PubMed PMID: 2674655.

1057 67. Wolters JF, Chiu K, Fiumera HL. Population structure of mitochondrial genomes in
1058 *Saccharomyces cerevisiae*. *BMC Genomics.* 2015;16:451. doi: 10.1186/s12864-015-1664-4.
1059 PubMed PMID: 26062918; PubMed Central PMCID: PMC4464245.

1060 68. Wolters JF, Charron G, Gaspari A, Landry CR, Fiumera AC, Fiumera HL. Mitochondrial
1061 Recombination Reveals Mito-Mito Epistasis in Yeast. *Genetics.* 2018;209(1):307-19. doi:
1062 10.1534/genetics.117.300660. PubMed PMID: 29531011; PubMed Central PMCID:
1063 PMCPMC5937185.

1064 69. Warringer J, Zorgo E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, et al. Trait
1065 variation in yeast is defined by population history. *PLoS Genet.* 2011;7(6):e1002111. Epub
1066 2011/06/24. doi: 10.1371/journal.pgen.1002111. PubMed PMID: 21698134; PubMed Central
1067 PMCID: PMCPMC3116910.

1068 70. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The
1069 100-genomes strains, an *S. cerevisiae* resource that illuminates its natural phenotypic and
1070 genotypic variation and emergence as an opportunistic pathogen. *Genome Res.* 2015;25(5):762-
1071 74. doi: 10.1101/gr.185538.114. PubMed PMID: WOS:000353712200014.

1072 71. Luban C, Beutel M, Stahl U, Schmidt U. Systematic screening of nuclear encoded
1073 proteins involved in the splicing metabolism of group II introns in yeast mitochondria. *Gene.*
1074 2005;354:72-9.

1075 72. Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N, Neupert W, et al. Genetic
1076 basis of mitochondrial function and morphology in *Saccharomyces cerevisiae*. *Mol Biol Cell.*

1077 2002;13(3):847-53. Epub 2002/03/22. doi: 10.1091/mbc.01-12-0588. PubMed PMID: 11907266;
1078 PubMed Central PMCID: PMCPMC99603.

1079 73. Merz S, Westermann B. Genome-wide deletion mutant analysis reveals genes required
1080 for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis
1081 in *Saccharomyces cerevisiae*. *Genome Biol.* 2009;10(9):R95. Epub 2009/09/16. doi: gb-2009-10-
1082 9-r95 [pii]
1083 10.1186/gb-2009-10-9-r95. PubMed PMID: 19751518.

1084 74. Zhang Z, Dai J, Veliath E, Jones RA, Yang D. Structure of a two-G-tetrad intramolecular
1085 G-quadruplex formed by a variant human telomeric sequence in K⁺ solution: insights into the
1086 interconversion of human telomeric G-quadruplex structures. *Nucleic Acids Res.*
1087 2010;38(3):1009-21. Epub 2009/12/01. doi: 10.1093/nar/gkp1029. PubMed PMID: 19946019;
1088 PubMed Central PMCID: PMCPMC2817458.

1089 75. Bateman JM, Perlman PS, Butow RA. Mutational bisection of the mitochondrial DNA
1090 stability and amino acid biosynthetic functions of ilv5p of budding yeast. *Genetics.*
1091 2002;161(3):1043-52. doi: 10.1093/genetics/161.3.1043. PubMed PMID: 12136009; PubMed
1092 Central PMCID: PMCPMC1462179.

1093 76. Herbert CJ, Labouesse M, Dujardin G, Slonimski PP. The NAM2 proteins from *S.*
1094 *cerevisiae* and *S. douglasii* are mitochondrial leucyl-tRNA synthetases, and are involved in
1095 mRNA splicing. *Embo J.* 1988;7(2):473-83. Epub 1988/02/01. PubMed PMID: 3284745;
1096 PubMed Central PMCID: PMCPMC454344.

1097 77. Schilke B, Forster J, Davis J, James P, Walter W, Laloraya S, et al. The cold sensitivity
1098 of a mutant of *Saccharomyces cerevisiae* lacking a mitochondrial heat shock protein 70 is
1099 suppressed by loss of mitochondrial DNA. *J Cell Biol.* 1996;134(3):603-13. Epub 1996/08/01.
1100 doi: 10.1083/jcb.134.3.603. PubMed PMID: 8707841; PubMed Central PMCID:
1101 PMCPMC2120932.

1102 78. Schmalix W, Bandlow W. The ethanol-inducible YAT1 gene from yeast encodes a
1103 presumptive mitochondrial outer carnitine acetyltransferase. *J Biol Chem.* 1993;268(36):27428-
1104 39. PubMed PMID: 8262985.

1105 79. van Rossum HM, Kozak BU, Niemeijer MS, Dykstra JC, Luttk MA, Daran JM, et al.
1106 Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to
1107 the Yeast Cytosol. *mBio.* 2016;7(3). Epub 2016/05/05. doi: 10.1128/mBio.00520-16. PubMed
1108 PMID: 27143389; PubMed Central PMCID: PMCPMC4959659.

1109 80. Liu ZL, Huang X. A glimpse of potential transposable element impact on adaptation of
1110 the industrial yeast *Saccharomyces cerevisiae*. *FEMS Yeast Res.* 2020;20(6). doi:
1111 10.1093/femsyr/foaa043. PubMed PMID: 32780789.

1112 81. Reinders J, Wagner K, Zahedi RP, Stojanovski D, Eyrich B, van der Laan M, et al.
1113 Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of
1114 the ATP synthase. *Mol Cell Proteomics.* 2007;6(11):1896-906. Epub 2007/09/01. doi:
1115 10.1074/mcp.M700098-MCP200. PubMed PMID: 17761666.

1116 82. Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, et al. Dissecting DNA
1117 damage response pathways by analysing protein localization and abundance changes during
1118 DNA replication stress. *Nat Cell Biol.* 2012;14(9):966-76. Epub 20120729. doi:
1119 10.1038/ncb2549. PubMed PMID: 22842922; PubMed Central PMCID: PMCPMC3434236.

1120 83. Mönkemeyer L, Klaips CL, Balchin D, Körner R, Hartl FU, Bracher A. Chaperone
1121 Function of Hgh1 in the Biogenesis of Eukaryotic Elongation Factor 2. *Mol Cell.* 2019;74(1):88-
1122 100.e9. Epub 2019/03/17. doi: 10.1016/j.molcel.2019.01.034. PubMed PMID: 30876804.

1123 84. Martin-Yken H, Dagkessamanskaia A, Talibi D, Francois J. KNR4 is a member of the
1124 PKC1 signalling pathway and genetically interacts with BCK2, a gene involved in cell cycle
1125 progression in *Saccharomyces cerevisiae*. *Curr Genet.* 2002;41(5):323-32. Epub 2002/08/20. doi:
1126 10.1007/s00294-002-0299-6. PubMed PMID: 12185498.

1127 85. Brown JA, Sherlock G, Myers CL, Burrows NM, Deng C, Wu HI, et al. Global analysis
1128 of gene function in yeast by quantitative phenotypic profiling. *Mol Syst Biol.* 2006;2:2006 0001.
1129 Epub 20060117. doi: 10.1038/msb4100043. PubMed PMID: 16738548; PubMed Central
1130 PMCID: PMCPMC1681475.

1131 86. Visintin R, Stegmeier F, Amon A. The role of the polo kinase Cdc5 in controlling Cdc14
1132 localization. *Mol Biol Cell.* 2003;14(11):4486-98. Epub 2003/10/11. doi: 10.1091/mbc.e03-02-
1133 0095. PubMed PMID: 14551257; PubMed Central PMCID: PMCPMC266767.

1134 87. Morgenstern M, Stiller SB, Lubbert P, Peikert CD, Dannenmaier S, Drepper F, et al.
1135 Definition of a High-Confidence Mitochondrial Proteome at Quantitative Scale. *Cell Rep.*
1136 2017;19(13):2836-52. Epub 2017/06/29. doi: 10.1016/j.celrep.2017.06.014. PubMed PMID:
1137 28658629; PubMed Central PMCID: PMCPMC5494306.

1138 88. Li J, Rinnerthaler M, Hartl J, Weber M, Karl T, Breitenbach-Koller H, et al. Slow
1139 Growth and Increased Spontaneous Mutation Frequency in Respiratory Deficient *< i>afol</i>*-
1140 Yeast Suppressed by a Dominant Mutation in *< i>ATP3</i>*. *G3 Genes|Genomes|Genetics.*
1141 2020;10(12):4637-48. doi: 10.1534/g3.120.401537.

1142 89. Lee H-C, Wei Y-H. Mitochondrial DNA Instability and Metabolic Shift in Human
1143 Cancers. *International journal of molecular sciences.* 2009;10(2):674-701. doi:
1144 10.3390/ijms10020674.

1145 90. Stuart GR, Santos JH, Strand MK, Van Houten B, Copeland WC. Mitochondrial and
1146 nuclear DNA defects in *Saccharomyces cerevisiae* with mutations in DNA polymerase gamma
1147 associated with progressive external ophthalmoplegia. *Hum Mol Genet.* 2006;15(2):363-74.
1148 Epub 20051220. doi: 10.1093/hmg/ddi454. PubMed PMID: 16368709.

1149 91. Baruffini E, Horvath R, Dallabona C, Czermin B, Lamantea E, Bindoff L, et al.
1150 Predicting the contribution of novel POLG mutations to human disease through analysis in yeast
1151 model. *Mitochondrion.* 2011;11(1):182-90. Epub 20100929. doi: 10.1016/j.mito.2010.09.007.
1152 PubMed PMID: 20883824.

1153 92. Lee Y, Kim T, Lee M, So S, Karagozlu MZ, Seo GH, et al. De Novo Development of
1154 mtDNA Deletion Due to Decreased POLG and SSBP1 Expression in Humans. *Genes (Basel).*
1155 2021;12(2). Epub 20210217. doi: 10.3390/genes12020284. PubMed PMID: 33671400; PubMed
1156 Central PMCID: PMCPMC7922481.

1157 93. Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS, Prolla TA, et al. DNA
1158 deletions and clonal mutations drive premature aging in mitochondrial mutator mice. *Nat Genet.*
1159 2008;40(4):392-4. Epub 20080302. doi: 10.1038/ng.95. PubMed PMID: 18311139.

1160 94. Chen H, Xue J, Churikov D, Hass EP, Shi S, Lemon LD, et al. Structural Insights into
1161 Yeast Telomerase Recruitment to Telomeres. *Cell.* 2018;172(1-2):331-43 e13. Epub 20171228.
1162 doi: 10.1016/j.cell.2017.12.008. PubMed PMID: 29290466; PubMed Central PMCID:
1163 PMCPMC5839504.

1164 95. Lubin JW, Tucey TM, Lundblad V. Using Separation-of-Function Mutagenesis To
1165 Define the Full Spectrum of Activities Performed by the Est1 Telomerase Subunit in Vivo.
1166 *Genetics.* 2018;208(1):97-110. Epub 20171129. doi: 10.1534/genetics.117.300145. PubMed
1167 PMID: 29187507; PubMed Central PMCID: PMCPMC5753878.

1168 96. Zhang ML, Tong XJ, Fu XH, Zhou BO, Wang J, Liao XH, et al. Yeast telomerase
1169 subunit Est1p has guanine quadruplex-promoting activity that is required for telomere
1170 elongation. *Nature structural & molecular biology*. 2010;17(2):202-9. Epub 2010/01/26. doi:
1171 10.1038/nsmb.1760. PubMed PMID: 20098422.

1172 97. Butler TJ, Estep KN, Sommers JA, Maul RW, Moore AZ, Bandinelli S, et al.
1173 Mitochondrial genetic variation is enriched in G-quadruplex regions that stall DNA synthesis in
1174 vitro. *Hum Mol Genet*. 2020. Epub 2020/03/20. doi: 10.1093/hmg/ddaa043. PubMed PMID:
1175 32191790.

1176 98. Lin KW, McDonald KR, Guise AJ, Chan A, Cristea IM, Zakian VA. Proteomics of yeast
1177 telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. *Nat
1178 Commun*. 2015;6:8290. Epub 2015/09/15. doi: 10.1038/ncomms9290. PubMed PMID:
1179 26365526; PubMed Central PMCID: PMCPMC4579843.

1180 99. Macierzanka M, Plotka M, Pryputniewicz-Drobinska D, Lewandowska A, Lightowers R,
1181 Marszalek J. Maintenance and stabilization of mtDNA can be facilitated by the DNA-binding
1182 activity of Ilv5p. *Biochim Biophys Acta*. 2008;1783(1):107-17. Epub 20071030. doi:
1183 10.1016/j.bbamcr.2007.09.009. PubMed PMID: 18023287.

1184 100. Špírek M, Šoltésová A, Horváth A, Sláviková E, Sulo P. GC clusters and the stability of
1185 mitochondrial genomes of *Saccharomyces cerevisiae* and related yeasts. *Folia Microbiologica*.
1186 2002;47(3):263-70. doi: 10.1007/bf02817649.

1187 101. De Chiara M, Friedrich A, Barre B, Breitenbach M, Schacherer J, Liti G. Discordant
1188 evolution of mitochondrial and nuclear yeast genomes at population level. *BMC Biol*.
1189 2020;18(1):49. Epub 2020/05/13. doi: 10.1186/s12915-020-00786-4. PubMed PMID: 32393264;
1190 PubMed Central PMCID: PMCPMC7216626.

1191 102. Cubillos FA, Louis EJ, Liti G. Generation of a large set of genetically tractable haploid
1192 and diploid *Saccharomyces* strains. *FEMS Yeast Res*. 2009;9(8):1217-25. Epub 2009/10/21. doi:
1193 FYR583 [pii]
1194 10.1111/j.1567-1364.2009.00583.x. PubMed PMID: 19840116.

1195 103. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al.
1196 Functional characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis.
1197 *Science*. 1999;285(5429):901-6. Epub 1999/08/07. doi: 7737 [pii]. PubMed PMID: 10436161.

1198 104. Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier
1199 DNA/PEG method. *Nat Protoc*. 2007;2(1):31-4. Epub 2007/04/03. doi: nprot.2007.13 [pii]
1200 10.1038/nprot.2007.13. PubMed PMID: 17401334.

1201 105. Becker DM, Guarente L. High-efficiency transformation of yeast by electroporation.
1202 *Methods Enzymol*. 1991;194:182-7. Epub 1991/01/01. doi: 10.1016/0076-6879(91)94015-5.
1203 PubMed PMID: 2005786.

1204 106. Duveau F, Metzger BP, Gruber JD, Mack K, Sood N, Brooks TE, et al. Mapping small
1205 effect mutations in *Saccharomyces cerevisiae*: impacts of experimental design and mutational
1206 properties. *G3 (Bethesda)*. 2014;4(7):1205-16. doi: 10.1534/g3.114.011783. PubMed PMID:
1207 24789747.

1208 107. Team RC. R: A language and environment
1209 for statistical computing. R Foundation for
1210 Statistical Computing, Vienna, Austria. 2020.

1211 108. Team R. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston,
1212 MA. 2021.

1213 109. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a
1214 tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet.*
1215 2007;81(3):559-75. Epub 2007/08/19. doi: S0002-9297(07)61352-4 [pii]
1216 10.1086/519795. PubMed PMID: 17701901; PubMed Central PMCID: PMC1950838.
1217 110. Storey JD, Bass AJ, Dabney A, Robinson D. qvalue: Q-value estimation for false
1218 discovery rate control. <http://github.com/jdstorey/qvalue2022>.
1219 111. Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases
1220 autonomous plasmids for transformation of *Escherichia coli*. *Gene.* 1987;57(2-3):267-72.
1221 PubMed PMID: 3319781.
1222 112. Fiumera AC, Dumont BL, Clark AG. Sperm competitive ability in *Drosophila*
1223 *melanogaster* associated with variation in male reproductive proteins. *Genetics.*
1224 2005;169(1):243-57. Epub 2004/10/07. doi: genetics.104.032870 [pii]
1225 10.1534/genetics.104.032870. PubMed PMID: 15466425; PubMed Central PMCID:
1226 PMC1448872.
1227

1228

1229 **Supplemental Tables**

1230 **Table S1.** Strain table

1231 **Table S2.** ANOVA *Petite* frequencies in wild isolates vary by strain and population

1232 **Table S3.** ANOVA mtDNAs influence *petite* frequencies in the Y55 nuclear background

1233 **Table S4.** mtDNA GC clusters and introns

1234 **Table S5.** ANOVA *Petite* frequencies influenced by mitonuclear interactions in a 4x4
1235 mitonuclear genotype panel

1236 **Table S6.** Recombinant Collection SNP descriptions

1237 **Table S7.** Associated SNPs that influence *petite* frequencies independent of mitotype
1238 (main effect loci)

1239 **Table S8.** Associated SNPs that influence *petite* frequencies dependent on mitotype
1240 (mitonuclear loci)

1241 **Table S9.** Effect sizes of main effect loci

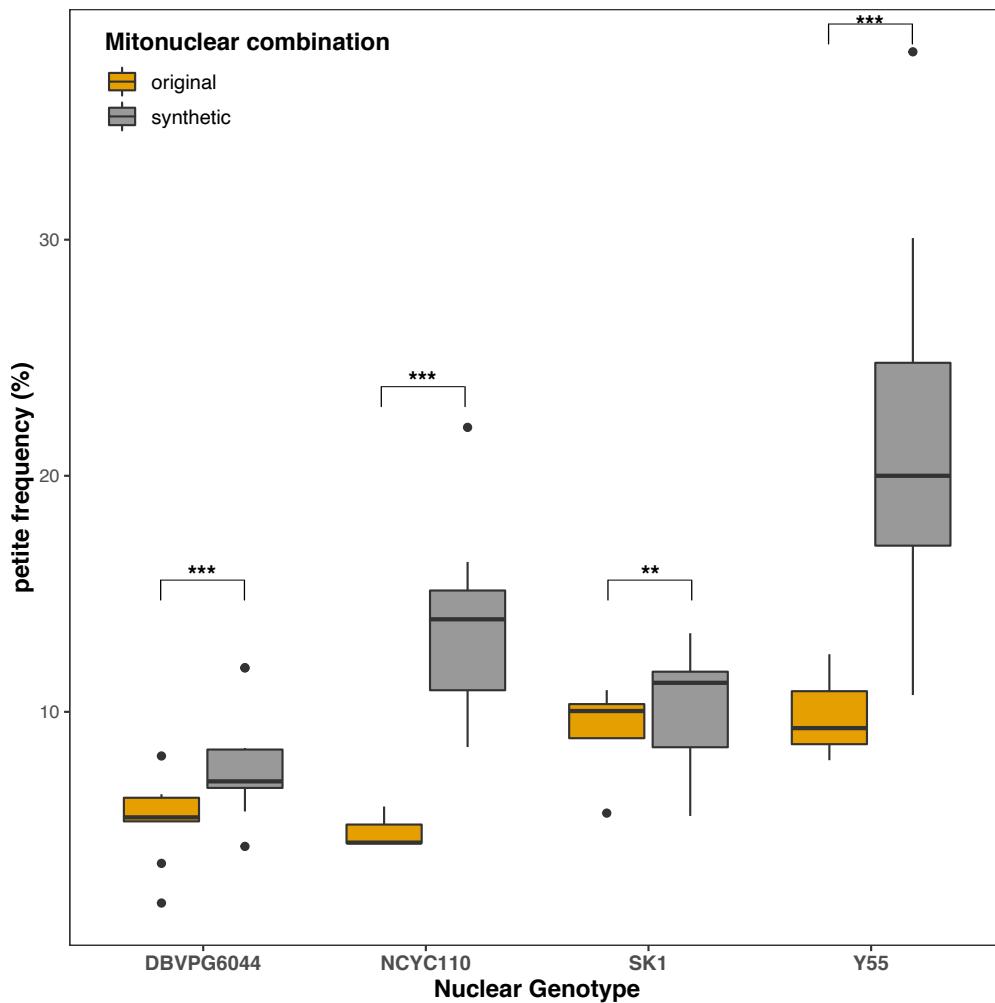
1242 **Table S10.** Effect sizes of mitonuclear loci

1243 **Table S11.** ANOVAs Mitonuclear effects of *HGH1* and *YAT1*

1244 **Table S12.** ANOVA Mitonuclear effects of *HGH1*, *BSN1*, *SMI1*

1245 **Table S13.** ANOVAs Expression differences of mitonuclear candidate loci

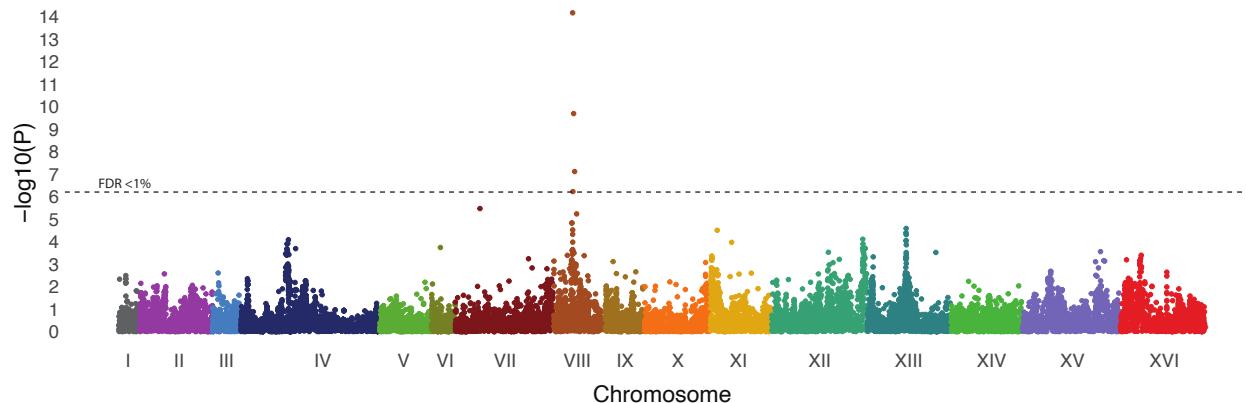
1246 **Table S14.** Primer sequences for qRT-PCR


1247

1248

1249

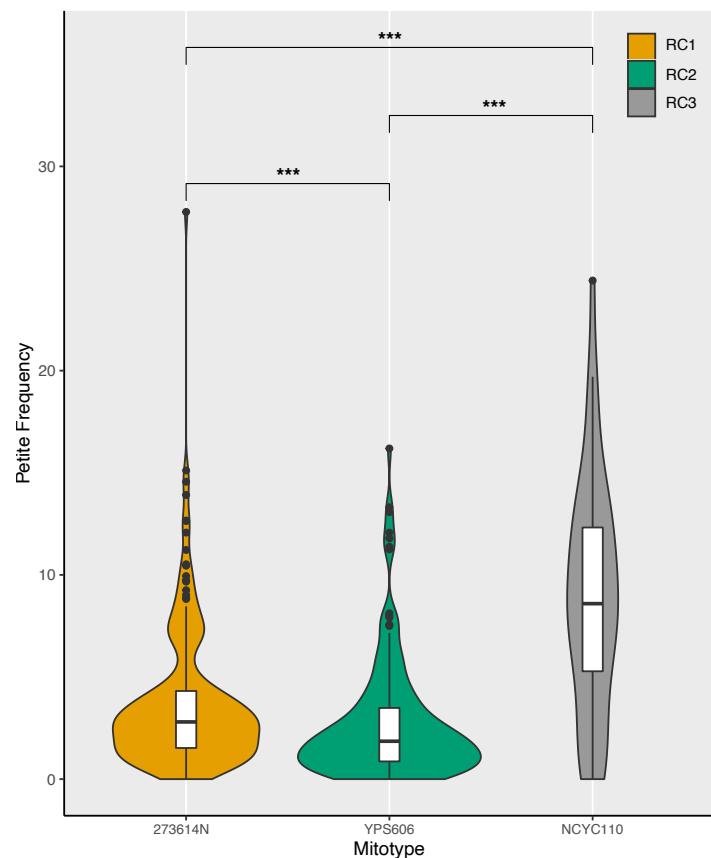
1250 Supplemental Figures


1251

1252

1253 **Fig S1. Strains harboring original mtDNAs have lower *petite* frequencies than**
1254 **those with synthetic mitonuclear combinations.** *Petite* frequencies of strains with the
1255 original (gold) vs. synthetic (grey) mitonuclear genotypes from **Fig 3** are replotted as
1256 box plots with the synthetic combinations combined. All nuclear and mtDNAs are from
1257 strains with West African lineages. ANOVA significances are shown. * $P < 0.05$, ** $P \leq$
1258 0.005, *** $P \leq 0.001$.

1259



1260

1261 **Fig S2. Association Mapping using the Recombinant Collection** A Manhattan plot
1262 of $-\log_{10}$ of P values plotted against chromosomal position shows associations for
1263 maximal colony sizes for RC1 strains grown on copper sulfate. A single peak,
1264 corresponding to the location of *CUP1* on Chr. 8, is the only significant association at
1265 FDR<1%.

1266

1267

1268

1269

1270 **Fig S3. Strains with the GC-rich mtDNA in RC3 strains have higher *petite***
1271 **frequencies.** *Petite* frequencies of strains from RC1, RC2, and RC3 are presented as
1272 violin plots. RC1 strains harbor mtDNA from 273614N containing a medium number
1273 (137) of GC clusters. RC2 strains harbor mtDNA from YPS606 containing a low number
1274 (117) of GC clusters. RC3 harbor mtDNA from NCYC110 containing a high number
1275 (210) of GC clusters.

1276

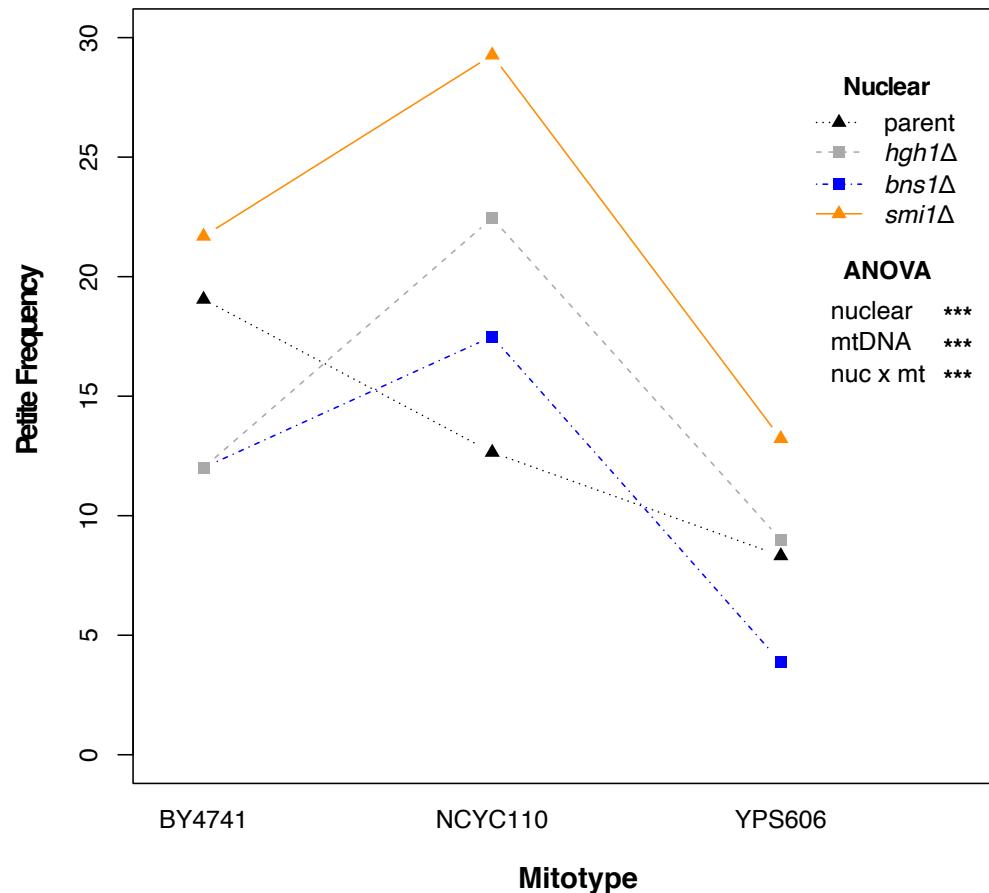
1277

1278

1279

1280 **Fig S4. GWAS using MIP1 variants as covariates increases power to detect**

1281 **mitonuclear associations.** Manhattan plots show mitotype **A.** independent and **B.**

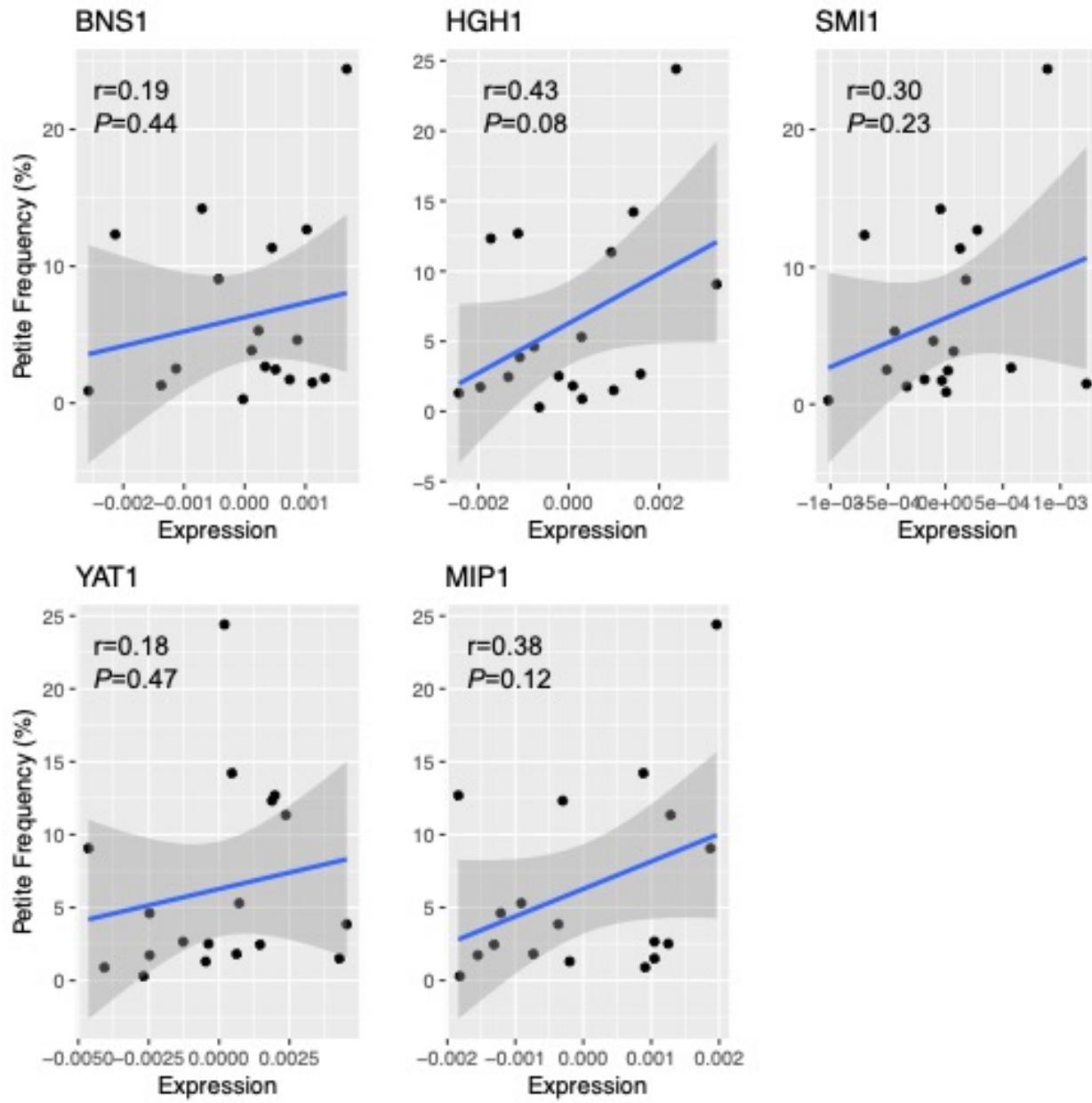

1282 mitotype dependent associations, when *MIP1* variants were included as covariates. Red

1283 lines indicate FDR thresholds at 0.1% for nuclear associations and 5.0% for mitonuclear

1284 associations.

1285

1286

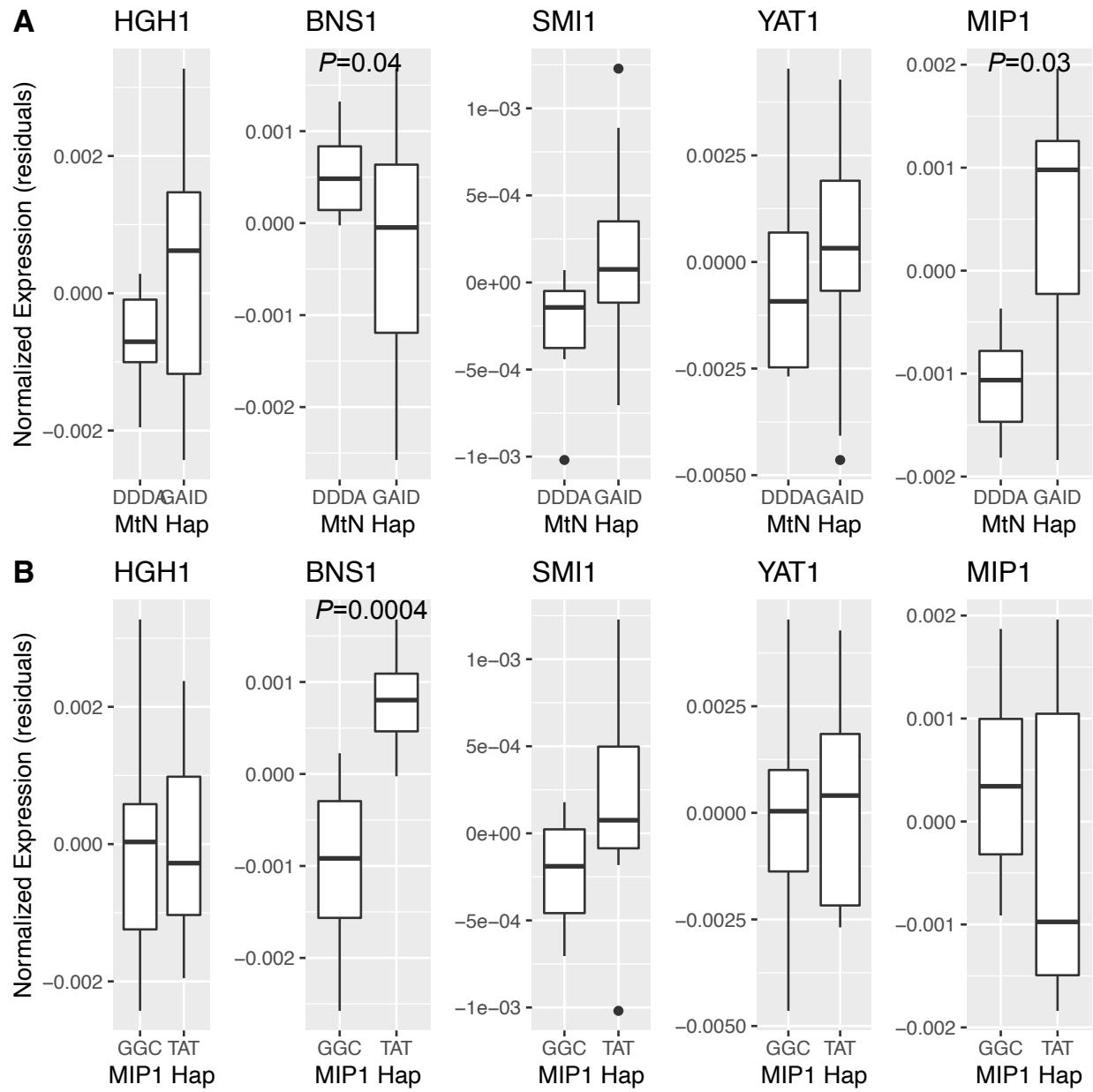

1287

1288 **Fig S5. Mitonuclear interactions of BNS1, SMI1 and HGH1 on petite frequencies.**

1289 Interaction plot follows *petite* frequencies for each nuclear genotype paired with different
1290 mtDNAs. See **Table S11** for ANOVA. Data was collected using the same assay as
1291 performed for phenotyping the RCs (with 8-12 replicates) and cannot be combined with
1292 the data shown in **Fig 6**.

1293
1294

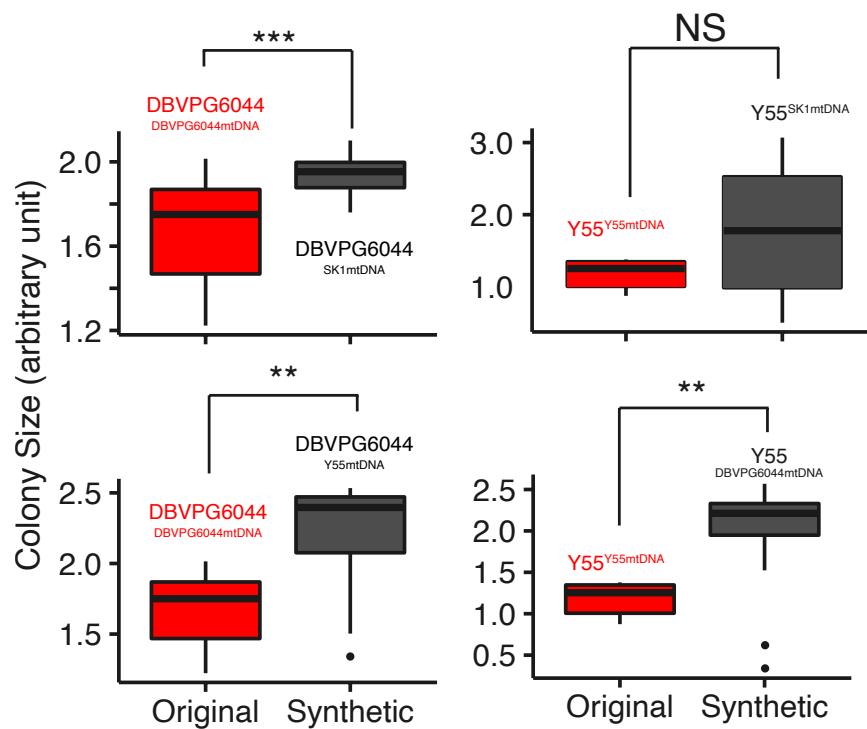
1295



1296

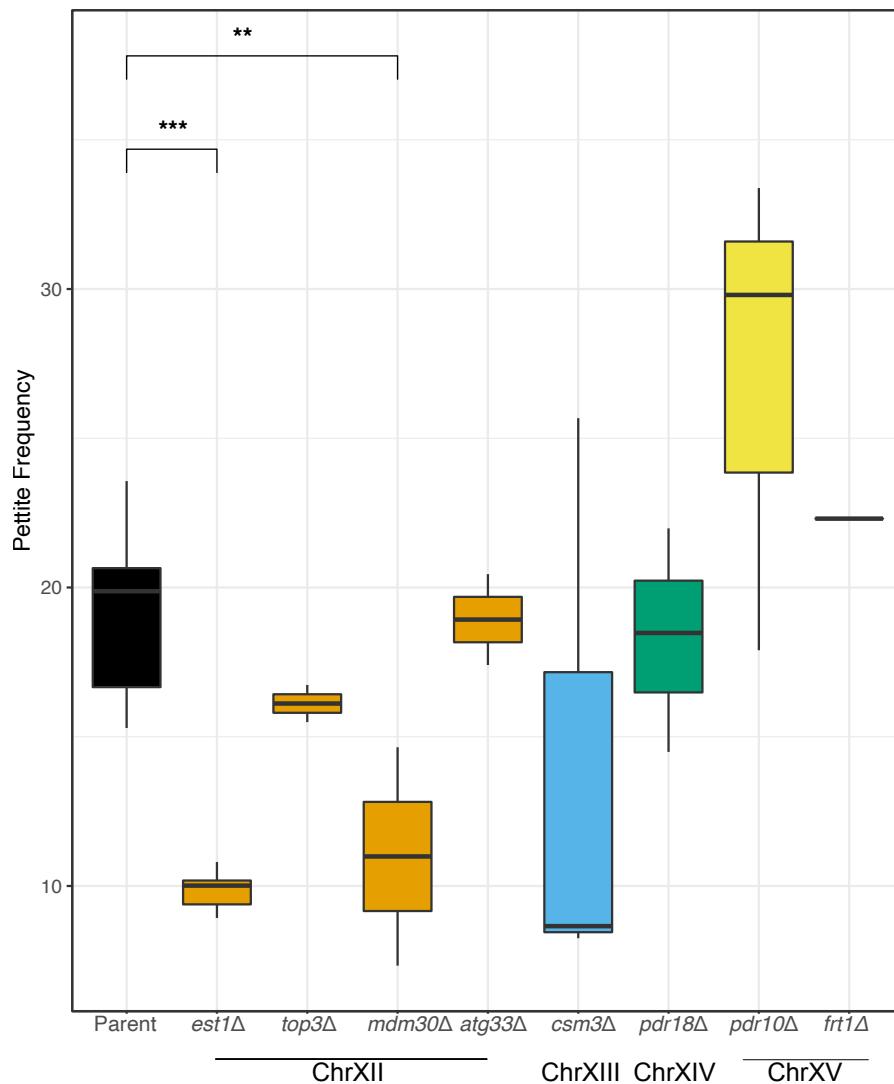
1297 **Fig S6. Petite frequencies do not correlate with mRNA expression of associated**
1298 **genes.** Normalized expression levels (as residuals from regression lines of mRNA
1299 levels of each gene compared to a control gene) were plotted against *petite*
1300 frequencies. All genes showed positive correlation with *petite* frequencies, though no
1301 correlation was statistically significant.

1302


1303

1304

1305 **Fig S7. Expression of candidate genes by nuclear haplotype. A.** Normalized
1306 expression levels of each candidate gene separated by haplotypes of **A.** mitonuclear
1307 candidate loci or **B.** *MIP1* loci. The mitonuclear haplotypes represent the SNPs with
1308 highest effect sizes for each candidate gene. *P* values for significant differences are
1309 shown. All other comparisons were non-significant.


1310

1311

mitonuclear combination

1312 **Fig S8. Synthetic mitonuclear genotypes with increased *petite* frequencies have**
1313 **increased growth rates.** Maximum colony sizes for strains containing original or
1314 synthetic mitonuclear genotypes are presented as boxplots. Each synthetic mitonuclear
1315 genotype had higher growth, and higher *petite* frequencies (Fig S1), than the original
1316 mitonuclear genotype. Growth data were from NGUYEN *et al.* 2020 and collected in the
1317 same conditions as the *petite* assays were performed. * P<0.05, ** P ≤ 0.005, *** P ≤
1318 0.001
1319

1320

ChrXII

ChrXIII ChrXIV

ChrXV

1321

1322 **Figure S9. Petite frequency of candidate genes associated with mtDNA stability**

1323 *Petite* frequencies of strains containing deletions of candidate genes that did not

1324 depend on mitotype are shown as boxplots. Significant differences between the *petite*

1325 frequencies of the parental strain and each gene disruption, based on 3 replicates for

1326 each strain, are shown. Colors indicate chromosomal location of genes. * $P < 0.05$, ** $P \leq$

1327 0.005, *** $P \leq 0.001$

1328