

1 **KineticMSI, an R-based framework for relative quantification of spatial isotopic**
2 **incorporation in mass spectrometry imaging experiments**

3 **Author Information**

4 Farheen Farzana^{1,2,*#}, Federico Martinez-Seidel^{3,4,*#}, Anthony J. Hannan¹, Danny Hatters², Berin
5 A Boughton^{4,5*}.

6 ¹ Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne,
7 Australia; ² Department of Biochemistry and Pharmacology, Bio21 Molecular Science and
8 Biotechnology Institute, The University of Melbourne, Victoria 3010 Australia; ³ Molecular
9 Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam,
10 Germany; ⁴ School of Biosciences, University of Melbourne, Melbourne, Australia; ⁵ Australian
11 National Phenome Centre, Murdoch University, Perth, Australia.

12 **Affiliations**

13 **Florey Institute of Neuroscience & Mental Health, University of Melbourne, Melbourne,**
14 **Australia**

15 Author-1 & Author-3

16 **Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne,**
17 **Australia**

18 Author-1 & Author-4

19 **Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology,**
20 **Potsdam, Germany**

21 Author-2

22 **School of Biosciences, University of Melbourne, Melbourne, Australia**

23 Author-2 & Author-5

24 **Australian National Phenome Centre, Murdoch University, Perth, Australia**

25 Author-5

26 Contributions

27 #These authors contributed equally to this work – Author-1 & Author-2.

28 Corresponding authors

29 *Correspondence to:

30 ffarheen@student.unimelb.edu.au

31 MSeidel@mpimp-golm.mpg.de

32 Berin.boughton@murdoch.edu.au

33

34 **ABSTRACT:** Kinetic mass spectrometry imaging (kMSI) integrates imaging-MS with stable
35 isotope labelling to elucidate metabolic fluxes in a spatiotemporal manner. kMSI studies are
36 hampered by high volumes of complex data and a lack of computational workflows for data
37 analysis that additionally address replicated experiments. To meet these challenges, we
38 developed KineticMSI, an open-source R-based tool for processing and analyzing kMSI datasets.
39 KineticMSI includes statistical tools to quantify tracer incorporation across replicated treatment
40 groups spatially in tissues. It allows users to make data-driven decisions by elucidating affected
41 pathways associated with changes in metabolic turnover. We demonstrate a validation of our
42 method by identifying metabolic changes in the hippocampus of a transgenic Huntington's
43 disease (HD) mouse model as compared to wild-type mice. We discovered significant changes in
44 metabolism of neuronal cell body lipids (phosphatidylinositol and cardiolipins) in HD mice,

45 previously masked by conventional statistical approaches that compare mean tracer incorporation
46 across brain regions.

47 **INTRODUCTION**

48 Mass spectrometry imaging (MSI) has generated significant interest in biomedical research for
49 its ability to spatially map the distribution and relative abundances of thousands of metabolites
50 simultaneously within thin intact biological tissue sections in their native environment^{1–4}. When
51 used in a multimodal imaging approach, such as in combination with immunocytochemistry^{5,6},
52 MSI allows metabolism to be examined at cell-type resolution, which can aid in understanding
53 pathogenic mechanisms mediating the onset or progression of disease, and identifying potential
54 therapeutic targets⁷. Typically, MSI has been used for acquiring a snapshot of an organism's
55 metabolism. However, when coupled to isotope labeling of tissues over time, kinetic MSI
56 (kMSI) allows greater insight into the dynamic spatial changes in metabolism. First reported in
57 2013 to study phospholipid biosynthesis in a mouse tumor⁸, kMSI has since been applied in a
58 growing number of studies in both animal and plant-based models^{9–16}. kMSI generates a huge
59 amount of data, and a lack of open-source computational tools that can automate the processing
60 and analysis of kMSI datasets has hindered wider uptake of the method.

61 Currently available software for MSI users such as SCiLS Lab (Bremen, Germany), ClinPro
62 Tools software (Bruker Daltonics GmbH, Germany), Cardinal¹⁷, MSiReader¹⁸, HIT-MAP¹⁹ and
63 others are tailored for the investigation of the classical label-free MSI data from steady-state
64 metabolomic or proteomic studies but lack features that are critical for the high-throughput
65 analysis of stable-isotope label (SIL) data. Numerous other software pipelines such as Mass
66 Isotopomer Distribution analysis²⁰, DexSI²¹, X¹³CMS²², and geoRge²³ are available for

67 performing differential isotopic tracer labelling analysis, however these software packages have
68 been specifically designed to support SIL data generated by traditional non-MSI approaches (i.e.,
69 gas and liquid chromatography-mass spectrometry (GC/LC-MS))^{7,24,25}. While GC/LC-MS
70 approaches are crucial for providing higher specificity and a broader metabolome coverage,
71 these methods typically entail averaging metabolic flux across a whole tissue containing a
72 heterogeneous population of cells, thereby compromising spatial information. Previously
73 developed kMSI analysis pipelines do provide visualization of isotopic ratio images¹⁰ and spatial
74 patterns of tracer incorporation within tissues^{8,16,26}; and enable quantitative analysis of region-
75 specific metabolism within organs²⁷. However, these tools lack the statistical pipelines that allow
76 users to conduct relative quantification of tracer incorporation between two treatment groups,
77 such as normal versus pathophysiological circumstances, which is essential for biomedical
78 research. In addition, it is difficult to confidently measure differential tracer incorporation
79 between two groups, when tissue(s) display spatial heterogeneity in tracer incorporation^{8,26}. The
80 development of computational tools using freely available computational software (such as R)
81 would aid the accessibility of data analyses pipelines. Further enhancements would be provided
82 by tools that can streamline the entire data analysis workflow of kMSI datasets and allow users
83 to evaluate region-specific changes in metabolic activity, which show spatially heterogenous
84 tracer incorporation.

85 Here we present an open-source tool for systematically analyzing data derived from kMSI
86 experiments, KineticMSI, which operates in R and is connected to other freely available MSI-
87 related R packages. Key features include an automated workflow for: (1) Quality control and
88 data pre-processing, including options to select the best tracer incorporation proxy in high
89 isotopic quality spatial points (pixels); (2) Visualization of spatial dynamics of isotopic tracer

90 incorporation and quick exploration of isotopic labelling patterns using unsupervised K-means
91 clustering; (3) Coherent partitioning of replicated MSI datasets into spatial subsets comprising
92 regions of similar tracer incorporation status and concomitant relative quantification of tracer
93 incorporation across conditions before or after partitioning; and (4) Elucidation of significantly
94 impacted pathways associated with the detected metabolic and proteomic changes. We applied
95 the developed method to measure metabolic changes in a deuterium (²H) labelled hippocampus
96 from a Huntington's disease (HD) mouse model transgenic for the human huntingtin exon 1 gene
97 fragment, versus non-transgenic wild-type (WT) littermate controls. We focused our attention on
98 the neuron rich hippocampal subfield, Cornu Ammonis (CA1) pyramidal layer, for further
99 analysis. The CA1 layer is vitally important for the induction of long-term potentiation (LTP)
100 and long-term depression (LTD), mechanisms that underlie synaptic plasticity^{28,29} and
101 hippocampal-dependent cognitive functions such as learning and memory³⁰. We explored spatial
102 heterogeneity in metabolic activity using a statistically validated unsupervised clustering
103 approach based on ²H incorporation and uncovered distinct metabolic states in HD
104 mice, where conventional statistical approaches using mean values across brain regions failed.

105 **RESULTS**

106 **Experimental design to determine *in vivo* metabolic kinetics**

107 Metabolic changes are fundamental to HD pathology. Yet it is not clear how these changes arise
108 longitudinally as symptoms and aggregate pathology develop, and where these changes occur
109 (i.e., which hippocampal sub-region and cell types). Here we validated our package KineticMSI
110 by examining metabolic changes spatially within the neuron enriched CA1 hippocampal
111 pyramidal sub-field (Fig. 1, S1) of the R6/1 mouse model of HD³¹, relative to age-matched WT

112 mice (n=6/group). The R6/1 model involves the transgenic expression of the exon 1 gene
113 fragment of human huntingtin containing the CAG expansion mutation, which is sufficient to
114 cause disease-relevant pathology. To establish our dataset, we subjected WT and HD mice to
115 isotope labeling through deuterated water following established protocols³², at an age
116 corresponding to post-onset of phenotype (16 weeks) (Fig. 1). Our design was aimed at
117 monitoring lipid synthesis by measuring the percentage of ²H incorporation into lipids detected
118 by MALDI-MSI of each mouse hippocampus harvested eight days post-labelling. We selected
119 eight days as a suitable timeframe for labelling mice as this timepoint resulted in ~30-50% ²H
120 incorporation into the metabolic targets (T₅₀) across lipid classes (with at least a single
121 substitution of ¹H atom by ²H), which was sufficient to facilitate downstream statistical
122 analysis. Around this timepoint, ²H concentrations in the body water have been shown to
123 equilibrate at approximately 5% (v/v)²⁸ and at this point, metabolic processes are expected to
124 have reached a steady state. We analyzed the unlabeled lipid pools of an equal number of WT
125 and HD mice using the classical label free-MSI approach to determine the baseline natural
126 abundance lipid pools. In parallel, to gain a thorough understanding of the changes in ²H
127 labelling in lipids found in the whole hippocampal tissue, we performed LC-MS on matched
128 brain hemispheres (labelled and label-free) to confirm the identity of the lipid species and
129 compare ²H-labelling trends achieved by kMSI.

130 **KineticMSI workflow**

131 To develop our software, several considerations were made. First, to enable users to handle the
132 highly complex data generated by kMSI and decide the appropriate statistical approach, we
133 designed KineticMSI to function as two modules covering different steps. The first module
134 facilitated data quality assessment, calculation of ²H incorporation in a pixel-wise manner and

135 visualization of the spatial dynamics of ^2H incorporation within the tissue, through the
136 reconstruction of KineticMSI images (Fig. 2a). We found that the following proxies provide the
137 best ways to measure features of ^2H incorporation: (1) first isotope ratio (M_1/M_0); (2) total
138 isotope fraction ($\text{M}_1/(\text{M}_0+\text{M}_1)$); (3) newly synthesized pools (corrected $\sum \text{M}_1 + \text{M}_n$); and (4)
139 the percent ^2H incorporation ((corrected $\sum \text{M}_1 + \text{M}_n$) / (corrected M_0 + corrected $\sum \text{M}_1 + \text{M}_n$) *
140 100)). Most importantly, the first module enabled selection of high-isotopic quality spatial points
141 (i.e., pixels displaying interpretable isotopic peak profiles) and metabolic features to assess
142 spatial differences in metabolic activity between two experimental groups.

143 The second module provided statistical tools to perform relative quantification and comparative
144 analyses of ^2H incorporation in individual metabolic features between two samples (Fig. 2b). To
145 enable statistical class comparison of ^2H incorporation in targeted lipid species between WT and
146 HD mice (n=6/group), two main approaches were used for computation of mean ^2H
147 incorporation (Fig. 2b): (1) ^2H incorporation means of the complete MSI pixel population across
148 the entire region of interest, herein termed pixel population mean, and (2) ^2H incorporation
149 means of coherent pixel subsets or clusters that share similar ^2H incorporation within a region of
150 interest, termed pixel cluster means. The clustering of MSI pixels based on ^2H incorporation was
151 performed using unsupervised internally validated, clustering-based approaches. The first
152 approach may be applied to kMSI datasets that display relatively homogenous incorporation of
153 isotopic tracer within the tissue of interest. By contrast, the second approach is suitable for kMSI
154 datasets exhibiting intra-tissue spatial heterogeneity, and accounts for this spatial heterogeneity,
155 prior to performing statistical comparison between treatment groups. Additionally, an extra
156 feature allowed comparison between zones of different metabolic activity from two experimental
157 groups, using a provision to compare pixel proportions that are below or above a pre-

158 defined threshold of ^2H incorporation. Finally, we performed a pathway enrichment analysis to
159 identify significantly enriched functional categories and determine which metabolic pathways or
160 molecular functions are associated with metabolites showing significantly altered ^2H
161 incorporation. For illustrative purposes, we have applied all KineticMSI tools to our exemplary
162 dataset. To aid interpretation of the spatial data, single lipid ion images and reconstructed kMSI
163 images were used to display differential ^2H incorporation. Additionally, we have applied
164 KineticMSI tools to a matching LC-MS/MS dataset from equivalent biological specimens for
165 comparing the trends in isotope labelling obtained from kMSI datasets (Extended Data Fig. 4).

166 **KineticMSI application**

167 **Data pre-processing and spatial reconstruction of KineticMSI images**

168 As a first step, we used KineticMSI to perform data quality control by removing MSI data pixels
169 with missing values to ensure that they do not affect the interpretation of real spatial ^2H
170 incorporation dynamics in downstream calculations. Next, we corrected the data for baseline
171 levels of natural isotopic abundance and calculated the percent ^2H incorporation across all spatial
172 points using the IsoCorrectoR R package³³ (for detailed procedure, see Supplementary note 1 and
173 Fig. S2). In the HD mouse brain dataset, we found the percentage of ^2H incorporation i.e., the
174 ratio of newly synthesized and total lipid pools was selected as the most suitable proxy for
175 measuring lipid synthesis using the selection procedure outlined in Supplementary Note 2 (Fig.
176 S3).

177 To visually assess the spatial dynamics of ^2H incorporation within the tissue, we generated
178 KineticMSI images by mapping the nominal values of ^2H incorporation using the acquired MSI
179 coordinates. For most lipids, we observed spatial heterogeneity evidenced by varying degrees of

180 ^2H incorporation across the spatial points within the tissue. The pixel-to-pixel variation in ^2H
181 incorporation is reflected by the dispersion of the data points in the scatterplot featuring ^2H
182 incorporation in PI 38:4, m/z 885.5 (10 – 20%) across WT and HD replicate datasets (Fig. 3a).
183 This variation can also be visualized as color gradations in the reconstructed kMSI image of PI
184 38:4 in WT and HD replicated datasets (Fig. 3b). There are zones of higher ^2H incorporation
185 (gold) and zones of lower ^2H incorporation (dark purple). Indeed, to gain a quick visualization of
186 spatial patterns of metabolic synthesis, we performed K-means analysis based upon similarity in
187 ^2H incorporation and identified distinct clusters within the CA1 hippocampal sub-field of each
188 MSI replicate dataset of WT and HD mice (Fig. 3c). This finding led us to utilize statistical
189 approaches to account for the evident spatial heterogeneity in ^2H incorporation, prior to statistical
190 comparison of ^2H incorporation between WT and HD mice, thus bypassing the limitation of
191 averaging ^2H incorporation from individual spatial points across a large tissue area, a matter that
192 will be discussed in the next section.
193 We benchmarked our results against SCiLS Lab (Fig. 3d-g), where we visualized the intensity
194 image of M_0 (Fig. 3d), M_1 (Fig. 3e) and the isotope ratio image (i.e. M_1 feature normalized to its
195 M_0 m/z feature, M_1/M_0) for PI 38:4 (Fig. 3f) for determining ^2H incorporation in PI 38:4. As
196 suggested by the isotope ratio (M_1/M_0) image for PI 38:4 (Fig. 3f), we found spatial
197 heterogeneity in ^2H incorporation reflected by the color gradations within the CA1 sub-field of
198 WT and HD tissues (black arrows). In contrast to our results, segmentation of the hippocampal
199 CA1 sub-field using K-means analysis in SCiLS Lab was unable to reveal any distinct spatial
200 patterns based on the isotope ratio (M_1/M_0) for PI 38:4 in WT and HD mice (Fig. 3g).

201 **Differential analysis of ^2H incorporation between WT and HD mice**

202 To statistically compare ^2H incorporation in targeted lipid species between WT and HD mice, we
203 used two approaches that include: mean comparison using (1) pixel populations and (2)
204 coherent-clustered pixel subsets that share similar ^2H incorporation.

205 **Comparison using pixel population mean reveals no difference in ^2H incorporation between**
206 **WT and HD mice**

207 To calculate ^2H incorporation pixel population means, we first addressed the challenge of
208 variability in the number of pixels across individual kMSI replicates by randomly sampling a
209 matching number of pixels equal to the pixel number of the smallest dataset (For the procedure
210 used to assess the correctness of random sampling approach, see supplementary note 3 and
211 Extended Data Fig. 1b for details). We then evaluated data distributions of ^2H incorporation
212 across the selected MSI pixels of the CA1 hippocampal sub-field (See supplementary note 3 and
213 Extended Data Fig. 1a, b and d for details) and compared pixel population means i.e., mean ^2H
214 incorporation in the target lipids across the entire CA1 hippocampal sub-field. This analysis
215 revealed no significant changes in mean ^2H incorporation between WT and HD mice (Fig. 4c,
216 bottom left), demonstrated using the neuronal lipid PI 36:4 (m/z 857.5) (Generalized linear
217 models, FDR-adjusted P value = 0.93) (Fig. 4a). However, when we compared the shapes and
218 the extent of overlap of the distribution of ^2H incorporation in PI 36:4, we found significantly
219 different distributions between WT and HD mice, as evident by a rightward shift in the
220 cumulative frequency plot of HD (red) compared to WT mice (blue) (Kolmogorov- Smirnov test,
221 FDR-adjusted P value = 0.01 and Cohen's d value = 0.76) (Fig. 4b). This significantly altered
222 distribution in ^2H incorporation was observed across the majority of neuronal cell body enriched
223 lipids such as PI 38:4 and PI 38:5 (m/z 883.5) and synaptic lipids such as PA 34:1 (m/z 673.48)

224 and GM1 36:1 (*m/z* 1544.8), indicative of a significantly higher ^2H incorporation in HD mice
225 (Fig. 4c, bottom right). This scenario suggested that averaging ^2H incorporation across pixels
226 displaying spatial heterogeneity in ^2H labelling could potentially mask significant differences in
227 ^2H incorporation between WT and HD mice. The pathway enrichment analysis based on lipids
228 that significantly change their distributions, identified neuronal cell body lipids (Fisher's exact
229 test P value = 0.001) as a significantly enriched functional category. This category is associated
230 with lipid features displaying a trend towards higher ^2H incorporation in HD mice (Fig. 4d).
231 Furthermore, we observed a shift from a bimodal distribution in ^2H incorporation in WT mice to
232 a unimodal distribution in HD mice (Fig. 4b) that led us to hypothesize the existence of distinct
233 clusters or sub-populations of pixels/cells with similar ^2H incorporation within the CA1
234 hippocampal sub-field of the mouse hippocampus.

235 **Clustering analysis reveals significant differences in ^2H incorporation between WT and HD
236 mice**

237 To test for the presence of pixel subsets sharing similar ^2H incorporation within the hippocampal
238 CA1 sub-field, we performed tissue segmentation based upon similarity in ^2H incorporation in an
239 unsupervised manner, independently within the WT and HD groups (n=6/group). This revealed
240 the presence of two coherent pixel clusters of ^2H incorporation (AU-P value ≥ 0.95) in the
241 hippocampal CA1 sub-field, corresponding to the 'low' and 'high' ^2H enrichment zones
242 (Extended Data Fig. 2a). The partitioning into two coherent clusters of MSI pixels based on the
243 degree of ^2H incorporation was observed in the majority of lipid features, as confirmed by the
244 density histogram summarizing the number of significant clusters found across the evaluated
245 lipid features (Extended Data Fig. 2b). The cluster dendrogram of the lipid PI 38:4 (*m/z* 885.5)

246 shows two significant pixel cluster subsets (AU-P value = 0.95) obtained by sub-setting the
247 kMSI data structure based on the extent of ^2H incorporation (Extended Data Fig. 2c).

248 In addition, we visualized spatial patterns of metabolic synthesis by mapping the obtained
249 significant clusters subsets onto the original MSI images and found areas of preferentially high
250 versus low ^2H incorporation that potentially reflect the presence of “metabolic hotspots” versus
251 “metabolically inactive” areas within the CA1 hippocampal sub-field of WT and HD mice.

252 These metabolic patterns were particularly evident in the neuron-enriched lipid PI 38:4, which
253 showed spatial constraints in ^2H incorporation with the high ^2H enrichment zones (yellow)
254 localized at the edges of the hippocampal CA1 field in the WT mice. On the other hand, the HD
255 mice showed a more dispersed distribution of ‘high’ and ‘low’ ^2H incorporated pixels,
256 suggesting a potential loss of spatial coordination in lipid synthesis in HD mice (Extended Data
257 Fig. 2d). These results confirm the intra-tissue spatial heterogeneity in ^2H incorporation as
258 observed in PI 38:4 (Fig. 3a) and implies the presence of cellular sub-populations with their own
259 distinct ^2H incorporation dynamics into the target lipid pools within the CA1 hippocampal sub-
260 fields of WT and HD mice.

261 Next, using the coherent pixel clusters obtained from the above clustering analysis, we compared
262 mean ^2H incorporation from each cluster pair of individual lipid features between WT and HD
263 mice. This analysis identified lipids showing significant differences in ^2H incorporation in
264 majority of the neuronal cell body enriched lipids such as PI 36:4 (*m/z* 857.5), PI 38:5 (*m/z*
265 883.5) and PG 44:12 (*m/z* 865.5) and synaptic lipids such as CerP 23:3 (*m/z* 788.5) and PA 36:4
266 (*m/z* 695.5) in HD mice, relative to WT controls (Fig. S4a). Using the lipid PI 36:4 as an
267 example, Fig. 5a highlights the multiple comparisons performed between the cluster pairs of WT

268 and HD mice. We found a significant increase in ^2H incorporation in PI 36:4 in HD mice, when
269 the comparison was performed using both pixel cluster means using One-way ANOVA followed
270 by post-hoc Tukey HSD test (Fig. 5b) and distribution of ^2H incorporation across MSI pixels
271 between WT and HD mice (Kolmogorov-Smirnov test, FDR-adjusted P value = 0.02 and
272 Cohen's d value = 2.26) (Fig. 5c). Therefore, addressing spatial heterogeneity in metabolic
273 activity, prior to statistical comparison of ^2H incorporation between WT and HD mice revealed
274 distinct clustering patterns and significant changes in ^2H incorporation in lipids of HD mice,
275 compared to WT controls (Fig. S4a) that were otherwise masked by comparing overall
276 population means of ^2H incorporation across the entire CA1 hippocampal sub-field (Fig. 4c,
277 bottom left).

278 **Exploration of ‘metabolic hotspots’ reveals distinct metabolic states in HD mice**

279 Next, we explored metabolically active zones by comparing proportion of pixels with ‘high
280 metabolic activity’ i.e., pixels exhibiting at least half of the total ^2H incorporation detected (i.e.,
281 >15%) between WT and HD mice. The outcome of this analysis represented by a graphical
282 heatmap (Extended Data Fig. 3) showed significantly higher proportion of ^2H enriched ($\geq 15\%$)
283 in the majority of lipid features of HD mice, relative to WT controls. This shift towards higher
284 metabolic activity state in HD mice is in agreement with the significant increase in ^2H
285 incorporation observed in HD mice, relative to WT controls using the above-mentioned
286 statistical approaches. Hence, our results provide a strong basis for exploring pixel subsets
287 sharing similar tracer incorporation between two groups of interest, prior to statistical
288 comparison of tracer incorporation across the entire tissue to avoid misinterpretation of the
289 statistical results.

290 **DISCUSSION**

291 Here we describe KineticMSI, an open-source automated R-based pipeline to process and
292 analyze the enormous amount of data generated isotope-labelled MSI data. We applied
293 KineticMSI to show how different lipid metabolites changed their apparent synthesis rates in the
294 hippocampus of HD mouse model, relative to control mice. KineticMSI package has the
295 potential to work with any isotope labelled MSI data such as ^2H , ^{13}C , ^{15}N , ^{18}O and ^{34}S . Our
296 workflow incorporates a range of statistical tools to conduct relative quantification of isotopic
297 tracer incorporation into common biomolecules (proteins, metabolites, lipids) and compare tracer
298 incorporation between different treatment groups containing multiple kMSI replicate sets that
299 display intra-tissue spatial heterogeneity. This work is significant as it is the first to address the
300 challenges posed by the need for replication in kMSI studies. Furthermore, KineticMSI allows
301 users to take data-driven decisions by providing a tool for the elucidation of significantly
302 perturbed pathways, thus providing an in-depth assessment of the detected metabolic turnover
303 changes and avenue to gain mechanistic insights into (disease) biology in a wide range of
304 systems.

305 While previous methods described for analyzing ^{13}C or ^2H -MSI experiments potentially fulfill
306 the need to examine distinct isotopic labelling patterns spatially *in vivo*^{8,16,27}, the originality of
307 our method relies on its features that facilitate statistical comparison of tracer incorporation
308 between experimental groups (containing multiple replicate datasets) displaying regional spatial
309 heterogeneity in tracer incorporation. This feature not only allows users to investigate region and
310 sub-region-specific changes in metabolic activity across different biological systems but also
311 paves the way toward understanding metabolic synthesis shifts under pathological conditions.
312 Moreover, while tissue segmentation maps provided by the available MSI-data analysis software

313 such as SCiLS Lab (Bremen, Germany), Cardinal¹⁷ and others are based on spatial distribution of
314 metabolites, KineticMSI complements these existing methods by providing additional features to
315 perform segmentation based on a user-defined isotope tracer incorporation proxy and
316 downstream statistical analysis. While SCiLS Lab allows for the visualization of isotope ratio
317 (M_1/M_0) images, it does not compute the percent 2H incorporation which takes into the account
318 all the detected labelled isotopic peaks ($M_1, M_2, \dots M_n$) (see supplemental note 2 and Fig S2 for
319 further explanation on the reason behind why isotope ratio (M_1/M_0) is not ideal for calculation of
320 2H incorporation). Moreover, SCiLS Lab permits visualization of isotope ratio (M_1/M_0) images
321 on an individual basis for each metabolic feature using single ion normalization (M_0) and hence
322 does not permit high-throughput analysis of kMSI datasets. Indeed, the inability to reproduce the
323 segmentation results using SCiLS Lab (Fig. 3g) and Cardinal¹⁷ (Fig. S5a) was likely due to the
324 limitations related to the pre-processing of kMSI datasets by these methods that include: (1) Lack
325 of a feature to filter out pixels with missing values from either the monoisotopic peak (M_0), the
326 isotopologue peaks ($M_1, M_2, \dots M_n$), or both; (2) Omission of the correction for natural isotopic
327 abundance for calculating 2H incorporation; and (3) Inability to compute the percent 2H
328 incorporation.

329 Furthermore, the bootstrapped HCA approach - pvclust³⁴ implemented in our workflow is
330 superior to conventional K-means clustering algorithms as it computes a statistical measure
331 i.e., Approximately unbiased probability values (AU-P values) for each cluster and only returns
332 the most robust and significantly valid clusters that satisfy the significance threshold i.e., the
333 AU-P value. This feature permits simultaneous visualization and identification of isotopic
334 labelling patterns of several target biomolecules such as proteins, metabolites and lipids within

335 the tissue, thus allowing researchers to capture *in vivo* kinetics of metabolic or protein synthesis
336 in a high throughput manner.

337 In this work, we validated our method by discerning metabolic changes in samples obtained from
338 the hippocampus of a Huntington's disease (HD) neurodegenerative disease mouse model,
339 compared to wild-type (WT) mice. We first generated KineticMSI images to visualize ^2H
340 incorporation dynamics in a pixel-wise manner and found spatial heterogeneity in ^2H
341 incorporation in the examined lipids across the MSI pixels of CA1 hippocampal sub-field of both
342 WT and HD mice. The pixel-to-pixel variability in ^2H labelling is not due to the differences in
343 concentration or ionization efficiency of the features examined, and the percent ^2H incorporation
344 is independent of the absolute abundances of monoisotopic peak (M_0) and the labelled
345 isotopologue peaks ($M_1, M_2, \dots M_n$), but rather depends on their ratios. This suggests the
346 presence of metabolically heterogeneous cellular sub-populations within the CA1 hippocampal
347 sub-field. This is not surprising, given the complex cellular heterogeneity of the brain,
348 characterized by the presence of multiple neuronal and non-neuronal cell-types (including sub-
349 types) with diverse functional and metabolic characteristics^{35,36}. In agreement to our study,
350 spatial heterogeneity has also been reported in phospholipid synthesis within the mouse tumor
351 tissue by previous kMSI-based studies⁸.

352 Although the presence of metabolically heterogeneous cellular sub-populations within a tissue of
353 interest adds a new level of complexity for data interpretation, in the current work, we present
354 clustering approaches that extract distinct labelling patterns to account for regional heterogeneity
355 in tracer incorporation, prior to statistical comparison of tracer incorporation between two
356 conditions. Indeed, by addressing spatial heterogeneity in ^2H incorporation in the examined
357 lipids of WT and HD mice, we uncovered distinct metabolic states with significantly higher ^2H

358 incorporation in the lipids of HD mice, relative to WT controls, that failed to be revealed by
359 comparing the overall mean ^2H incorporation across the entire hippocampal sub-field. These
360 findings highlight the importance of acknowledging the presence of intra-tissue spatial
361 heterogeneity in isotopic tracer incorporation in relatively homogenous regions which, when
362 unaccounted for, can potentially obscure significant differences in tracer incorporation between
363 two treatment groups, which could mislead statistical analysis and lead to incorrect interpretation
364 of biology. Indeed, the LC-MS study confirmed a significantly higher ^2H incorporation in
365 majority of neuronal lipids in the hippocampal tissue of HD mice, relative to WT controls
366 (Extended Data Fig. 4a), thus reproducing the trend observed in the kMSI study. The higher
367 number of significantly impacted functional categories reported by LC-MS represent the global
368 changes measured across the entire hippocampal region and are in contrast to the changes observed
369 in the CA1 hippocampal sub-field measured using kMSI, thus confirming the loss of sub-field
370 specific changes in metabolic activity measured using MSI (Extended Data Fig. 4c).

371 The modular design and multi-step analysis in the KineticMSI workflow provides maximum
372 flexibility to the users to optimize strategies and parameters at different stages of the data
373 analysis workflow to suit the needs of the system under investigation. Moreover, the entire
374 workflow has been written using base R objects and classes, with some method dependencies to
375 S3 and S4 packages. This allows users to avoid executing the entire workflow every time, by
376 bypassing some of the functions if their data is already in an optimal state.

377 Although we have used isotopic labelled data from a single time-point for illustration purposes,
378 the same workflow can be readily applied to analyze time-series kMSI datasets to perform
379 metabolic flux analysis. By default, the filtering parameters cater to a partially labelled state

380 since a short isotope labelling period of eight days was followed in the illustrated example
381 dataset. Nevertheless, we have implemented a parameter that allows users to apply the statistical
382 workflow to a fully labelled state. Moreover, KineticMSI package is generally applicable to
383 isotope labelled data generated from traditional metabolomic approaches such as GC/LC-MS
384 (For details on formatting input tables, see Methods section).

385 Prior to the implementation of the kMSI workflow, we recommend assessing the separability of
386 the tissue of interest by applying existing spatial segmentation approaches such as SCiLS Lab
387 (Bremen, Germany) (Fig. S1b) and Cardinal¹⁷ to segment the tissue into appropriate spatial
388 patterns based on biomolecular compositions. This not only serves to reduce the complexity of
389 the data but also enables statistical comparison between matched segments (i.e., similar tissue
390 and cell-types) from two groups of interest³⁷, thus accelerating the subsequent downstream
391 analysis. However, this is not a necessity for the KineticMSI workflow. Also, we have
392 implemented a standardized batch-effect correction algorithm i.e., ComBat correction³⁸ for
393 correcting the raw data, in this case applied to steady-state lipid pools; however, there is a
394 provision for users to apply a normalization method of their choice and generate the input files in
395 the correct format for further analysis.

396 One possible limitation of our package is that the bootstrap clustering algorithm used to
397 segregate pixels based on tracer incorporation may result in arbitrary partitioning of the data,
398 where pixels with highly similar tracer incorporation can be incorrectly classified into different
399 clusters. To overcome this issue, we provide the feature to perform cross-validation of the
400 clusters obtained from the clustering algorithm by comparing cluster means using one-way
401 ANOVA and Tukey HSD post-hoc testing (Fig. 5B).

402 Taken together, our results caution against the use of pixel population mean comparisons of
403 tracer incorporation across entire tissues. In order to make valid statistical comparisons of
404 metabolic activity between two conditions, we recommend addressing any spatial heterogeneity
405 in tracer incorporation prior to statistical analysis to facilitate correct downstream data
406 interpretation. KineticMSI provides a comprehensible guide for both bench biologists and
407 computational scientists, thus enabling a broader scientific community to take advantage of the
408 method to analyse kMSI datasets and capture the rapid and dynamic metabolic and proteomic
409 changes associated with healthy and pathological states. In the future, this tool can serve as a
410 valuable resource to accelerate both fundamental and clinical research by facilitating the
411 investigation of biomarkers for early detection of diseases in a range of medical fields, as diverse
412 as cancer, neurodegenerative disease, cardiovascular and immune dysfunctions, parasitology,
413 and plant biology, all of which have been associated with widespread perturbations in metabolic
414 processes. Hence, future work focused on improving collaboration between biologists and
415 computational scientists could pave the way for the development of user-friendly tools that will
416 allow us to better interpret the rich biological data provided by SIL studies and advance our
417 understanding of both normal physiology and the pathophysiology of many diseases.

418 **ONLINE METHODS**

419 **Experimental workflow**

420 The experimental design for generating kMSI dataset begins with the introduction of deuterated
421 water (99 atom% Deuterium oxide ($^2\text{H}_2\text{O}$), Sigma-Aldrich and 0.9% (w/v) NaCl) via an
422 intraperitoneal injection bolus of 35 $\mu\text{l/gm}$ (body weight), followed by a maintenance dose of 9%
423 (v/v) deuterated water in drinking water, in HD mice and age-matched WT controls (n =

424 6/group) at 16 weeks of age. Mice were euthanized 8 days post-labelling and the brain tissue
425 was rapidly collected and hemi-sectioned (~ 3 – 5 minutes). While one brain hemisphere (left)
426 was flash-frozen on liquid nitrogen and used for MALDI-MSI, the other matched hemisphere
427 (right) was dissected to obtain the frontal cortex, hippocampus, and striatum, which were
428 homogenized, extracted, and examined in detail using Liquid Chromatography (LC)-MS/MS
429 analysis. The left hemisphere was then cryosectioned at 20 μm thickness, followed by the
430 deposition of Norharmane matrix (For details on animal care, sample preparation and tissue
431 collection, see Supplementary note 1-3). Data acquisition of MALDI-MSI was carried out using
432 a Bruker SolariX 7T XR hybrid ESI–MALDI–FT–ICR–MS platform at an estimated resolving
433 power of 130,000 at m/z 400 in the negative ionization mode (see Supplementary note 4 for
434 details). Data processing and multivariate analysis of MALDI-MSI data according to a series of
435 tests as outlined in Supplemental Note 5 and 6. The hippocampi from the matched brain
436 hemispheres (right) were homogenized and analyzed using LC-MS/MS operated in the negative
437 and positive ionization mode. Species level lipid annotation for MSI were derived from LC-
438 MS/MS molecular species level annotations (For details on lipid extraction process, acquisition,
439 pre-processing and analysis of LC-MS data, see Supplementary).

440 **Preparation of input matrices for KineticMSI**

441 Prior to applying the KineticMSI workflow, we performed data pre-processing using SCiLS Lab
442 software (see supplementary for details). Subsequently, we exported the data matrices (.csv files)
443 containing normalized intensities of all mass features including monoisotopic (M_0/A_0) and
444 labelled isotopologue peaks ($M_1, M_2\dots M_n$, where n is the number of nominal mass units added
445 to the monoisotopic mass based on the detected labelled isotopes) from SCiLS Lab. The paired
446 *.ibd and *.imzML files were also exported to obtain the file coordinates for generating

447 KineticMSI images. Additionally, data matrices containing batch-effect corrected signal
448 intensities of the monoisotopic (M_0) peaks of the matched mass features were also exported from
449 unlabeled controls to determine the most suitable proxy for measuring 2H incorporation (see
450 details in Supplementary Note 2 and Fig. S3).

451 **Kinetic MSI workflow**

452 All the analysis outlined below was performed using the R package KineticMSI
453 (<https://github.com/MSeidelFed/KineticMSI>)

454 *Deletion of missing values*

455 In the illustrated example i.e., a partially labelled dataset, pixels that lack either the monoisotopic
456 peak (M_0/A_0 depending on fragmentation), the isotopologue peaks ($M_1, M_2, \dots M_n$), or both were
457 filtered out. Hence, the standard KineticMSI implementation treats pixels that lack an M_0/A_0
458 signal but have a detected signal intensity in its isotope envelop as an artifact, since in a partially
459 labelled state the M_0/A_0 peak is not expected to disappear due to complete mass shifts to the M_1 ,
460 $M_2, \dots M_n$ isotopologues (Fig. S2c). However, in a fully labelled state, complete disappearance of
461 M_0/A_0 accompanied by an increase in the signal of its labelled isotopic envelope is possible (Fig.
462 S2b). Thus, a parameter in the implemented R function was included to allow users to either (1)
463 delete pixels that only lack $M_1 \dots M_n$ isotopologues (applicable to fully labelled states) or (2)
464 delete pixels that lack both, $M_1 \dots M_n$ isotopologues and the monoisotopic peak signal (applicable
465 to partially labelled states).

466 *Calculation of isotope incorporation*

467 Natural isotope correction and calculation of the percent ^2H incorporation were performed in a
468 pixel-wise manner by adapting functions from IsoCorrectoR³³, an R-based package. The percent
469 ^2H incorporation was calculated as the ratio of newly synthesized (^2H - labelled) and total lipid
470 pool (newly synthesized + pre-existing lipid pools) i.e., $((\text{corrected } \sum M_1 + M_2 + \dots M_n) /$
471 $(\text{corrected } M_0 + \text{corrected } \sum M_1 + M_2 + \dots M_n)) * 100$, where n is the number of extra atomic mass
472 units added to the monoisotopic mass based on the detected labelled isotopes. A cross-validation
473 and an alternative function were implemented using IsoCor³⁹, a Python-based module, to confirm
474 the equivalent percentages of background-corrected ^2H incorporation. To select the most
475 appropriate isotopic ^2H proxy, batch-effect correction of the steady state pools from non-labelled
476 controls was performed using ComBat correction³⁸ as detailed in the SVA package⁴⁰, followed
477 by its comparison to the ^2H -labelled metabolite steady state pools.

478 *Visualization and spatial segmentation based on ^2H incorporation*

479 To recreate kineticMSI images, graphical reconstructions of the MSI images for each metabolite
480 feature were built by mapping ^2H incorporation values onto the original coordinate system
481 obtained from the MALDI-MSI platform. To extract the file coordinates from the acquired MSI
482 images, KineticMSI functions use a Cardinal¹⁷ dependency, which is an R package designed to
483 perform statistical analysis on MSI datasets. To further explore spatial patterns of metabolic
484 synthesis, MSI pixels were segregated based on similarity in ^2H incorporation independently for
485 WT and HD kMSI datasets. Segregation was done using two unsupervised clustering approaches
486 that include: (1), K-means algorithm (with a user-defined k value = 5) through the R package
487 ComplexHeatmap⁴¹; and (2), Hierarchical cluster analysis (HCA) via multiscale bootstrap
488 resampling to return an optimized number of significant clusters that are above a user-defined

489 significance threshold (Approximately unbiased probability (AU-P)), which is a dependency
490 from the R package `pvclust`³⁴. For the HD mouse brain dataset, the AU-P value and the bootstrap
491 iteration number ‘nboot’ were set to 0.95 (95% confidence) and 1000 iterations respectively to
492 improve robustness and confidence in the resulting clusters.

493 *Statistical approaches used for the relative quantitation of ²H incorporation*

494 To perform differential analysis of ²H incorporation between WT and HD mice using both
495 population and cluster means, two approaches for class comparison were used that include: (1),
496 One-way analysis of variance (ANOVA) followed by Tukey HSD (Honestly significant
497 difference) post-hoc testing; and (2), a parametrized Generalized linear model (GLM), according
498 to the procedure detailed in the R package `RandoDiStats`
499 (https://github.com/MSeidelFed/RandodiStats_package). As an alternative to mean comparisons,
500 the shapes of the empirical cumulative distributions of ²H incorporation were compared between
501 WT and HD datasets using the two-sample Kolmogorov-Smirnov test. Complementarily to class
502 and distribution comparison, an effect size estimation using the `Effsize`⁴² R package was
503 employed to obtain Cohen’s d values that measure the extent of overlap between the distributions
504 of WT and HD mice. Cohen’s d statistic is used to indicate the standardized difference between
505 two means (difference between two means divided by the pooled standard deviation). Unlike
506 ANOVA test, effect size calculations are independent of sample size, thus preventing
507 overestimation of the significance of differences between the large number of individual spectra
508 (pixels) collected in MSI experiments⁴³. Cohen’s d absolute values of 0.1, 0.2 and 0.3 were set as
509 thresholds corresponding to a small, medium, and large effect size respectively, based on
510 recommendations from Gignac and Szodorai (2016)⁴⁴. In metabolic turnover studies, small and

511 medium effect sizes (Cohen's values < 0.3) are indicative of perturbations in metabolic synthesis
512 which may have major implications for lipid homeostasis and be highly associated with disease
513 phenotypes.

514 Additionally, a generalized linear model was used to compare pixel proportions below or above a
515 pre-defined magnitude threshold of ^2H incorporation between two experimental groups. In all
516 cases, false discovery rate (FDR) correction was performed using Benjamini Hochberg
517 correction⁴⁵, and FDR-adjusted P value < 0.05 were considered significant. As a final step,
518 customizable volcano plots were built to summarize the results from the above statistical tests.
519 The color codes for the volcano plots were inherited from a custom-built database providing the
520 neuronal compartment, cell-type and known neuronal functions of individual lipid features to
521 facilitate data interpretation (Table S3).

522 For ^2H -labelled LC-MS samples, statistical comparison of ^2H incorporation was performed
523 between WT and HD mice using One-way ANOVA test followed by a Tukey HSD post-hoc
524 testing and P value < 0.05 were considered significant.

525 *Pathway enrichment analysis*

526 Pathway enrichment analysis was performed through a Fisher exact test, using a custom-curated
527 pathway database. An in-house pathway database was created by categorizing the detected lipid
528 features based on their known biological functions/processes, cell type and cellular compartment,
529 using previously published studies (For details, refer to Table S3). An FDR P value of 0.05 was
530 used to assess significance.

531 **DATA AVAILABILITY**

532 The paired *.ibd and *.imzML files of all kMSI datasets were deposited in Metaspaces at
533 <https://metaspaces2020.eu/api/auth/review?prj=bd3f06aa-36d8-11ec-96db-8319877174c6&token=eZWzn30yL6FP>. Additionally, the raw data matrices (.csv files) and the
534 *.ibd and *.imzML files have also been deposited in Figshare at
535 <https://figshare.com/s/a7a8940071e04e74c0b2>.

537 **CODE AVAILABILITY**

538 A comprehensive and detailed step-by-step guide for installing and using the KineticMSI
539 package can be found on GitHub (<https://github.com/MSeidelFed/KineticMSI>). Alternatively, it
540 can be directly installed into any R environment using devtools::install_github
541 ('MSeidelFed/KineticMSI'). Additionally, the guidelines to format the input tables for adapting
542 kinetic LC/GC-MS data for usage with the KineticMSI R package can be found on GitHub
543 (https://github.com/MSeidelFed/KineticMSI_2_kLCMS). An installation of R (Version R-3.6.2
544 or higher), Microsoft Windows operating systems and a CPU with at least 16GB RAM is
545 recommended to run the workflow.

546 **REFERENCES**

547 1. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular Imaging of Biological Samples:
548 Localization of Peptides and Proteins Using MALDI-TOF MS. *Anal. Chem.* **69**, 4751–4760
549 (1997).

550 2. Chughtai, K. & Heeren, R. M. A. Mass Spectrometric Imaging for Biomedical Tissue
551 Analysis. *Chem. Rev.* **110**, 3237–3277 (2010).

552 3. Balluff, B., Schöne, C., Höfler, H. & Walch, A. MALDI imaging mass spectrometry for
553 direct tissue analysis: technological advancements and recent applications. *Histochem Cell Biol*
554 **136**, 227–244 (2011).

555 4. Boughton, B. A. & Hamilton, B. Spatial Metabolite Profiling by Matrix-Assisted Laser
556 Desorption Ionization Mass Spectrometry Imaging. in *Metabolomics: From Fundamentals to*
557 *Clinical Applications* (ed. Sussulini, A.) 291–321 (Springer International Publishing, 2017).
558 doi:10.1007/978-3-319-47656-8_12.

559 5. Kaya, I. *et al.* Histology-Compatible MALDI Mass Spectrometry Based Imaging of
560 Neuronal Lipids for Subsequent Immunofluorescent Staining. *Anal. Chem.* **10** (2017).

561 6. Neumann, E. K., Comi, T. J., Rubakhin, S. S. & Sweedler, J. V. Lipid heterogeneity
562 between astrocytes and neurons revealed with single cell MALDI MS supervised by
563 immunocytochemical classification. *Angew Chem Int Ed Engl* **58**, 5910–5914 (2019).

564 7. Chokkathukalam, A., Kim, D.-H., Barrett, M. P., Breitling, R. & Creek, D. J. Stable
565 isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic
566 networks. *Bioanalysis* **6**, 511–524 (2014).

567 8. Louie, K. B. *et al.* Mass spectrometry imaging for in situ kinetic histochemistry. *Sci Rep*
568 **3**, (2013).

569 9. Arts, M. *et al.* Detection of Localized Hepatocellular Amino Acid Kinetics by using Mass
570 Spectrometry Imaging of Stable Isotopes. *Angew Chem Int Ed Engl* **56**, 7146–7150 (2017).

571 10. Carson, R. H. *et al.* Imaging regiospecific lipid turnover in mouse brain with desorption
572 electrospray ionization mass spectrometry. *J Lipid Res* **58**, 1884–1892 (2017).

573 11. McMahon, G., Glassner, B. J. & Lechene, C. P. Quantitative imaging of cells with multi-
574 isotope imaging mass spectrometry (MIMS)—Nanoautography with stable isotope tracers.
575 *Applied Surface Science* **252**, 6895–6906 (2006).

576 12. Seaman, C. *et al.* “Afterlife Experiment”: Use of MALDI-MS and SIMS Imaging for the
577 Study of the Nitrogen Cycle within Plants. *Anal. Chem.* **86**, 10071–10077 (2014).

578 13. Sugiyama, E. Detection of a High-Turnover Serotonin Circuit in the Mouse Brain Using
579 Mass Spectrometry Imaging. **30** (2019).

580 14. Rolletschek, H. *et al.* The metabolic environment of the developing embryo: A
581 multidisciplinary approach on oilseed rapeseed. *Journal of Plant Physiology* **265**, 153505 (2021).

582 15. Kloehn, J. *et al.* Identification of Metabolically Quiescent *Leishmania mexicana* Parasites
583 in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass
584 Spectrometry. *mBio* **12**, (2021).

585 16. Romsdahl, T. B. *et al.* Analyzing Mass Spectrometry Imaging Data of ¹³C-Labeled
586 Phospholipids in *Camelina sativa* and *Thlaspi arvense* (Pennycress) Embryos. *Metabolites* **11**,
587 148 (2021).

588 17. Bemis, K. D. *et al.* *Cardinal*□: an R package for statistical analysis of mass
589 spectrometry-based imaging experiments: Fig. 1. *Bioinformatics* **31**, 2418–2420 (2015).

590 18. Bokhart, M. T., Nazari, M., Garrard, K. P. & Muddiman, D. C. MSiReader v1.0:
591 Evolving Open-Source Mass Spectrometry Imaging Software for Targeted and Untargeted
592 Analyses. *J. Am. Soc. Mass Spectrom.* **29**, 8–16 (2018).

593 19. Guo, G. *et al.* Automated annotation and visualisation of high-resolution spatial
594 proteomic mass spectrometry imaging data using HIT-MAP. *Nat Commun* **12**, 3241 (2021).

595 20. Weindl, D. *et al.* Bridging the gap between non-targeted stable isotope labeling and
596 metabolic flux analysis. *Cancer Metab* **4**, 10 (2016).

597 21. Dagley, M. J. & McConville, M. J. DExSI: a new tool for the rapid quantitation of ^{13}C -
598 labelled metabolites detected by GC-MS. *Bioinformatics* **34**, 1957–1958 (2018).

599 22. Huang, X. *et al.* X ^{13}C MS: Global Tracking of Isotopic Labels in Untargeted
600 Metabolomics. *Anal. Chem.* **86**, 1632–1639 (2014).

601 23. Capellades, J. *et al.* geoRge: A Computational Tool To Detect the Presence of Stable
602 Isotope Labeling in LC/MS-Based Untargeted Metabolomics. *Anal. Chem.* **88**, 621–628 (2016).

603 24. Busch, R., Neese, R. A., Awada, M., Hayes, G. M. & Hellerstein, M. K. Measurement of
604 cell proliferation by heavy water labeling. *Nature Protocols* 3045 (2007).

605 25. Higashi, R. M., Fan, T. W.-M., Lorkiewicz, P. K., Moseley, H. N. B. & Lane, A. N.
606 Stable Isotope Labeled Tracers for Metabolic Pathway Elucidation by GC-MS and FT-MS.
607 *Methods Mol Biol* **1198**, 147–167 (2014).

608 26. Louie, K. B., Bowen, B. P., Lau, R. & Northen, T. R. *Localizing metabolic synthesis in*
609 *microbial cultures with kinetic mass spectrometry imaging (kMSI)*.
610 <http://biorxiv.org/lookup/doi/10.1101/050658> (2016) doi:10.1101/050658.

611 27. Wang, L. *et al.* Spatially resolved isotope tracing reveals tissue metabolic activity. *Nat*
612 *Methods* **19**, 223–230 (2022).

613 28. Edelmann, E., Cepeda-Prado, E. & Leßmann, V. Coexistence of Multiple Types of
614 Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons. *Front. Synaptic*
615 *Neurosci.* **9**, (2017).

616 29. Magó, Á., Weber, J. P., Ujfalussy, B. B. & Makara, J. K. Synaptic Plasticity Depends on
617 the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons. *J. Neurosci.* **40**,
618 2593–2605 (2020).

619 30. Morris, R. G. M., Garrud, P., Rawlins, J. N. P. & O’Keefe, J. Place navigation impaired
620 in rats with hippocampal lesions. *Nature* **297**, 681–683 (1982).

621 31. Mangiarini, L. *et al.* Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient
622 to Cause a Progressive Neurological Phenotype in Transgenic Mice. *Cell* **87**, 493–506 (1996).

623 32. Kloehn, J., Saunders, E. C., O’Callaghan, S., Dagley, M. J. & McConville, M. J.
624 Characterization of Metabolically Quiescent Leishmania Parasites in Murine Lesions Using
625 Heavy Water Labeling. *PLoS Pathog* **11**, e1004683 (2015).

626 33. Heinrich, P. *et al.* Correcting for natural isotope abundance and tracer impurity in MS-,
627 MS/MS- and high-resolution-multiple-tracer-data from stable isotope labeling experiments with
628 IsoCorrectoR. *Sci Rep* **8**, 17910 (2018).

629 34. Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in
630 hierarchical clustering. *Bioinformatics* **22**, 1540–1542 (2006).

631 35. Magistretti, P. J. & Allaman, I. A Cellular Perspective on Brain Energy Metabolism and
632 Functional Imaging. *Neuron* **86**, 883–901 (2015).

633 36. Cembrowski, M. S. & Spruston, N. Heterogeneity within classical cell types is the rule:
634 lessons from hippocampal pyramidal neurons. *Nat Rev Neurosci* **20**, 193–204 (2019).

635 37. Alexandrov, T. MALDI imaging mass spectrometry: statistical data analysis and current
636 computational challenges. *BMC Bioinformatics* **13**, S11 (2012).

637 38. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression
638 data using empirical Bayes methods. *Biostatistics* **8**, 118–127 (2007).

639 39. Millard, P. *et al.* IsoCor: isotope correction for high-resolution MS labeling experiments.

640 *Bioinformatics* **35**, 4484–4487 (2019).

641 40. Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing

642 data. *Nucleic Acids Res* **42**, e161 (2014).

643 41. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in

644 multidimensional genomic data. *Bioinformatics* **32**, 2847–2849 (2016).

645 42. Torchiano, M. Effsize - a package for efficient effect size computation. (2016)

646 doi:10.5281/zenodo.196082.

647 43. Kurczyk, A. *et al.* Classification of Thyroid Tumors Based on Mass Spectrometry

648 Imaging of Tissue Microarrays; a Single-Pixel Approach. *IJMS* **21**, 6289 (2020).

649 44. Gignac, G. E. & Szodorai, E. T. Effect size guidelines for individual differences

650 researchers. *Personality and Individual Differences* **102**, 74–78 (2016).

651 45. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and

652 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B*

653 (*Methodological*) **57**, 289–300 (1995).

654 **ACKNOWLEDGEMENTS**

655 We thank Dr Thibault Renoir for helping make the HD and WT mice available for tissue

656 collection. We would also like to thank the Melbourne Mass Spectrometry and Proteomics

657 Facility of The Bio21 Molecular Science and Biotechnology Institute at The University of

658 Melbourne for the support of mass spectrometry analysis. This work was supported by National

659 Health and Medical Research Council (NHMRC) through the Ideas Grant ID APP1184166

660 awarded to D Hatters, BA Boughton. D Hatters is an NHMRC Senior Research Fellow and AJ

661 Hannan is an NHMRC Principal Research Fellow. F Farzana and F Martinez-Seidel contributed

662 equally to this work and have the right to list their name first in their CV. All authors contributed
663 to the article and approved the final submitted version.

664 **ETHICS DECLARATIONS**

665 The authors declare no competing interests. All animal care and experimental procedures were
666 approved by The Florey Institute of Neuroscience and Mental Health Animal Ethics Committee
667 and were conducted by complying with the Australian Code of Practice for the Care and Use of
668 Animals for Scientific Purposes as outlined by the National Health and Medical Research
669 Council of Australia (Ethics number: 19-019-FINMH).

670 **FIGURE LEGENDS**

671
672 **Fig. 1. Schematic representation of the kMSI experimental workflow.** (1) WT and HD mice (n
673 = 6/group) at 16 weeks age were administered ^2H via an intraperitoneal (IP) bolus dose and
674 infusion of $^2\text{H}_2\text{O}$ in drinking water. Unlabeled control animals were provided free access to regular
675 drinking water. (2) Brains were hemi-sectioned. (3) Left hemisphere was cryo-sectioned to obtain
676 coronal hippocampal sections (20 μm). (4) Thaw-mounted sections were vacuum-desiccated
677 followed by spray-deposition of norharmane matrix. (5) MALDI-FT-ICR-MSI, 30 \times 30 μm array.
678 (3') Right hemisphere was dissected (hippocampus, frontal cortex, striatum) (4') Homogenized brain
679 regions were subjected to monophasic lipid extraction. (5') LC-Orbitrap-MS/MS. (6) KineticMSI
680 was used to identify lipids with differential deuterium (^2H) incorporation in the hippocampal CA1
681 sub-field (shown by black and white arrowheads) of HD versus WT mice.

682 **Fig. 2: Schematic representation of KineticMSI workflow for processing and analyzing**
683 **kMSI datasets. a**, Module 1: 1, Preparation of input matrices; 2, Deletion of MSI pixels with
684 low quality data or missing values; 3, natural isotopic abundance (NIA) correction; 4, derivation
685 of various isotope tracer proxies; 5, definition of the most suitable isotope tracer proxies and 6,
686 reconstruction of KineticMSI images. **b**, Module 2: 7, data quality assessment and 7', statistical
687 comparison using pixel population means; the second approach includes: 8, spatial segmentation
688 into coherent pixel subsets based on tracer incorporation and 8', statistical comparison using the
689 pixel subset means; and the third approach includes: 9, evaluation of pixel proportions that fall
690 under a user-defined tracer incorporation range and 9', class comparison using enriched pixel
691 proportions across experimental samples. 10, statistical summary of the results obtained using
692 the above-mentioned approaches in steps 7, 8 and 9.

693 **Fig. 3. Visualization of spatial isotope labelling patterns within CA1 hippocampal sub-field. a**,
694 Boxplot representation of ^2H incorporation in PI 38:4 (m/z 885.5) of WT and HD mice (n =
695 6/group). **b**, KineticMSI images depicting spatial heterogeneity of ^2H incorporation (%) in PI 38:4
696 of individual WT and HD replicate datasets. Lower (closer to 0%) and higher values (closer to

697 100%) of ^2H incorporation indicate decreased and increased lipid synthesis respectively. **c**, K-
698 mean clustering ($k = 5$) based on ^2H incorporation (%) in PI 38:4 through the R package
699 ComplexHeatmap⁴¹ showing pixel subsets with low (yellow) to high ^2H incorporation (purple).
700 Intensity images of **d**, M_0 ; **e**, M_1 isotope and **f**, isotope ratio (M_1/M_0) for PI 38:4 of a representative
701 WT-HD replicate pair using SCiLS Lab software. **g**, K-means clustering ($k = 5$) based on M_1/M_0
702 image of PI 38:4 using SCiLS Lab software, showing top five k-mean clusters and number of spectra
703 in each cluster (right). Scale bar – 500 μm .

704 **Fig. 4. Differential analysis of ^2H incorporation in brain lipids of WT and HD mice using pixel**
705 **population means.** **a**, Boxplot representation showing no significant difference between mean ^2H
706 incorporation in PI 36:4 (m/z 857.5) between WT and HD mice ($n=6/\text{group}$) using GLM. **b**,
707 Kolmogorov-Smirnov (KS) test and effect size estimation (Cohen's d values) of ^2H incorporation in
708 PI 36:4 showing significantly different ^2H incorporation of WT (blue) and HD mice (red). **c**,
709 Volcano plot – bottom left (Cohen's d values (X-axis) versus $-\log_{10}$ FDR-adjusted P value from
710 GLM (Y-axis)) showing no significant difference in mean ^2H incorporation in lipid features WT
711 versus HD mice. Volcano plot – bottom right (Cohen's d values (X-axis) versus $-\log_{10}$ FDR-adjusted
712 P value (Y-axis) using KS test) showing significantly different distributions of ^2H incorporation in
713 lipid features of WT and HD mice. Cohen's d values ≥ 0.3 indicate differentiation of WT and HD
714 mice. Each dot represents individual lipid feature coloured by known anatomical location in mouse
715 hippocampus. Grey dots represent features that have no defined category in the custom-built library
716 provided for pathway enrichment analysis (Table S3). Significantly changed features are highlighted
717 and labelled. **d**, Bar plot representation showing the results of pathway enrichment analysis ($-\log_{10}$
718 FDR-adjusted P value from the Fisher exact test (X-axis) versus functional categories associated with
719 the detected lipid features in our study (Y-axis)). Functional categories are colored by lipid class,
720 cellular activity, compartment, cognitive function, known HD pathology and neuroprotection to
721 enhance interpretation of results (BDNF – Brain-derived neurotrophic factor; LTP – Long-term
722 potentiation). Values denotes the proportion of lipids with significantly altered ^2H incorporation in
723 each functional category. Red line denotes significance $P < 0.05$.

724 **Fig. 5. Differential ^2H incorporation in lipids of WT and HD mice using pixel cluster**
725 **means.** **a**, Volcano plot (Cohen's d values (X-axis) versus $-\log_{10}$ FDR-adjusted P value from
726 GLM (Y-axis)) showing mean ^2H incorporation in PI 36:4 (m/z 857.5) WT versus HD mice ($n =$
727 6/group). Cohen's d values ≥ 0.3 indicate differentiation of WT and HD mice. Each dot
728 represents the individual cluster pixel subset comparison from PI 36:4 coloured by known
729 anatomical location in mouse hippocampus. Grey dots represent features that have no defined
730 category in the custom-built library provided for pathway enrichment analysis (Table S3).
731 Significant cluster pair showing differential ^2H incorporation highlighted in bold **b**, Boxplot
732 representation showing multiple pairwise comparison of pixel subset means ^2H incorporation in PI
733 36:4 between WT and HD mice ($n=6/\text{group}$) using One-way ANOVA followed by Tukey HSD test.
734 **c**, Kolmogorov-Smirnov test and effect size estimation (Cohen's d values) of ^2H incorporation in PI
735 36:4 showing significantly different pixel subset pair (HD_92 versus WT_125) of WT (blue) and
736 HD mice (red).

737

738 **ADDITIONAL INFORMATION**

739 **Extended Data Figures**

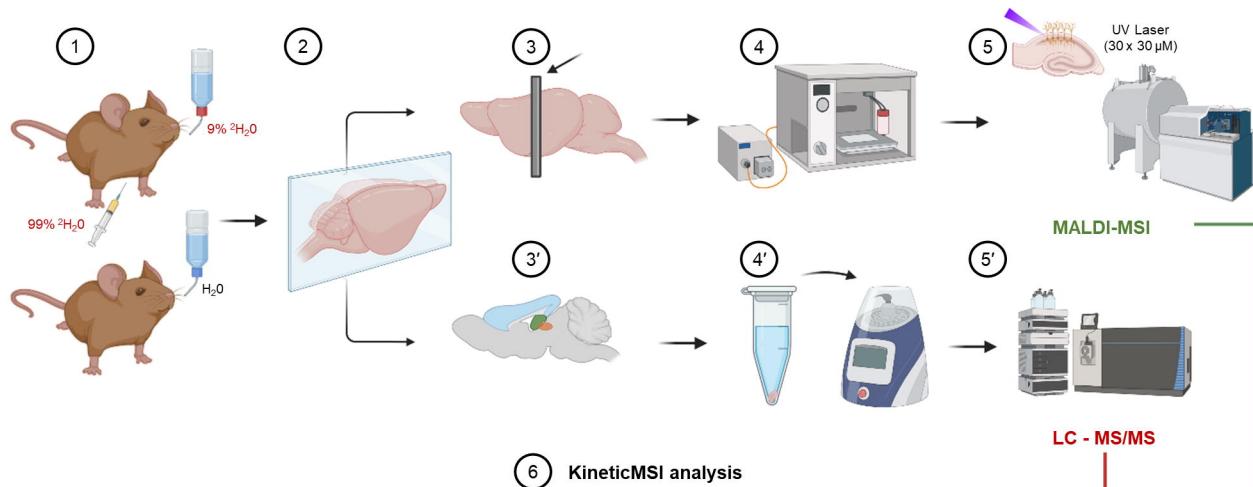
740 **Extended Data Fig. 1. Visual evaluation of distribution of ^2H incorporation in target lipids**
741 **across MSI pixels of WT and HD kMSI datasets.** **a**, Data distributions of ^2H incorporation in
742 SHexCer 40:2 (*m/z* 860.5) across MSI pixels of individual WT and HD replicate datasets
743 ($n=6/\text{group}$). **b**, Evaluation of the correctness of random sampling of MSI pixels from WT and HD
744 mice (index of all lipid features detected across the MSI pixels of WT and HD kMSI replicate
745 datasets (X-axis) versus ratios of ^2H incorporation mean and standard deviation from randomly
746 sampled sub-subsets and the entire datasets (Y-axis). **c**, Evaluation of the distribution of ^2H
747 incorporation in SHexCer 40:2 using the R package RandodiStats. Based on the suggested link i.e.,
748 Gaussian distribution (shown by black arrow), a parametric test (GLM) was applied for mean
749 comparison of ^2H incorporation in SHexCer 40:2 between WT and HD mice.
750

751 **Extended Data Fig. 2. Sub-setting kMSI datasets into coherent pixel subsets based on ^2H**
752 **incorporation.** **a**, Schematic diagram showing sorted matrices from all biological replicates ($n =$
753 6/group) (left) and subset matrices obtained through hierarchical clustering ($k=2$) corresponding to
754 ‘low’ (black) and ‘high’ ^2H (red) enrichment zones (right). **b**, Density histogram showing significant
755 number of coherent partitions found across the evaluated features. Blue box highlights lipid features
756 that returned two partitions based on ^2H incorporation. **c**, Cluster dendrogram for PI 38:4 (*m/z* 885.5)
757 showing optimum number of significant clusters ($K=2$) returned by bootstrapped hierarchical
758 clustering algorithm. **d**, Reconstructed kMSI images displaying spatial distribution of significant
759 cluster subsets obtained based on ^2H incorporation from WT and HD mice. Clusters corresponding to
760 ‘low’ and ‘high’ zones of ^2H incorporation are highlighted in yellow (Cluster ID - 1) and purple
761 (Cluster ID - 2). Grey pixels represent pixels that were excluded from analysis during random
762 sampling process.

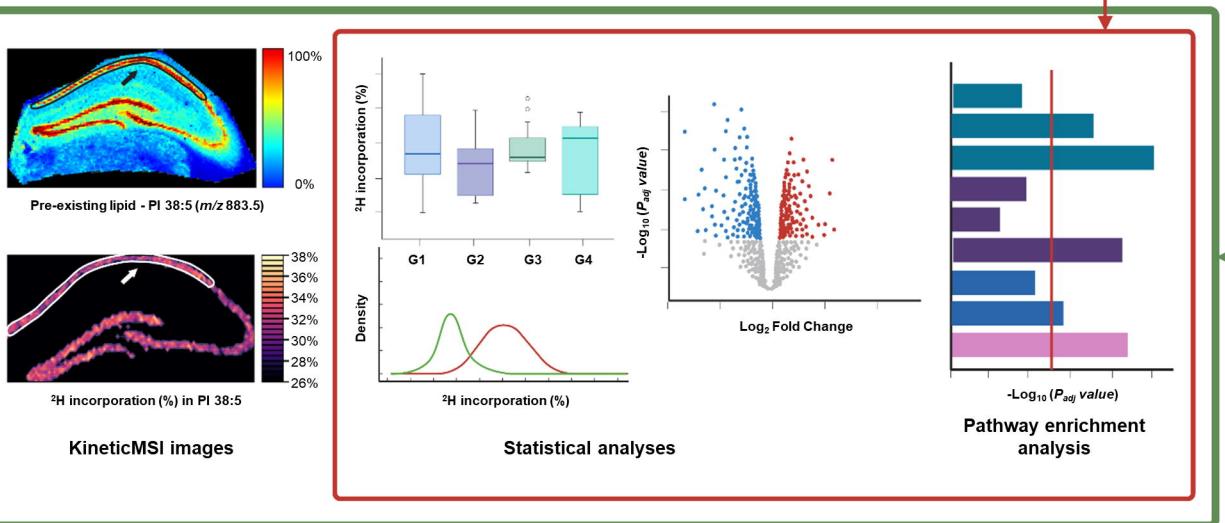
763 **Extended Data Fig. 3. Heatmap representation showing the comparison of ^2H enriched**
764 **pixel proportions between WT and HD mice.** The example shown here uses pixel proportions
765 displaying high metabolic activity ($> 15\% ^2\text{H}$ incorporation). K-means analysis was used to
766 perform clustering of consolidated data matrices into clusters ($k = 3$) displaying similarity in ^2H
767 enriched pixel proportions. FDR adjusted P values obtained by performing class comparison of
768 ^2H enriched pixel proportions between WT and HD mice ($n = 6/\text{group}$) using GLM have been
769 provided on the right. The significance level has been set to $P < 0.05$ (black bars). Only the
770 significantly changed lipid features have been labelled in the heatmap.

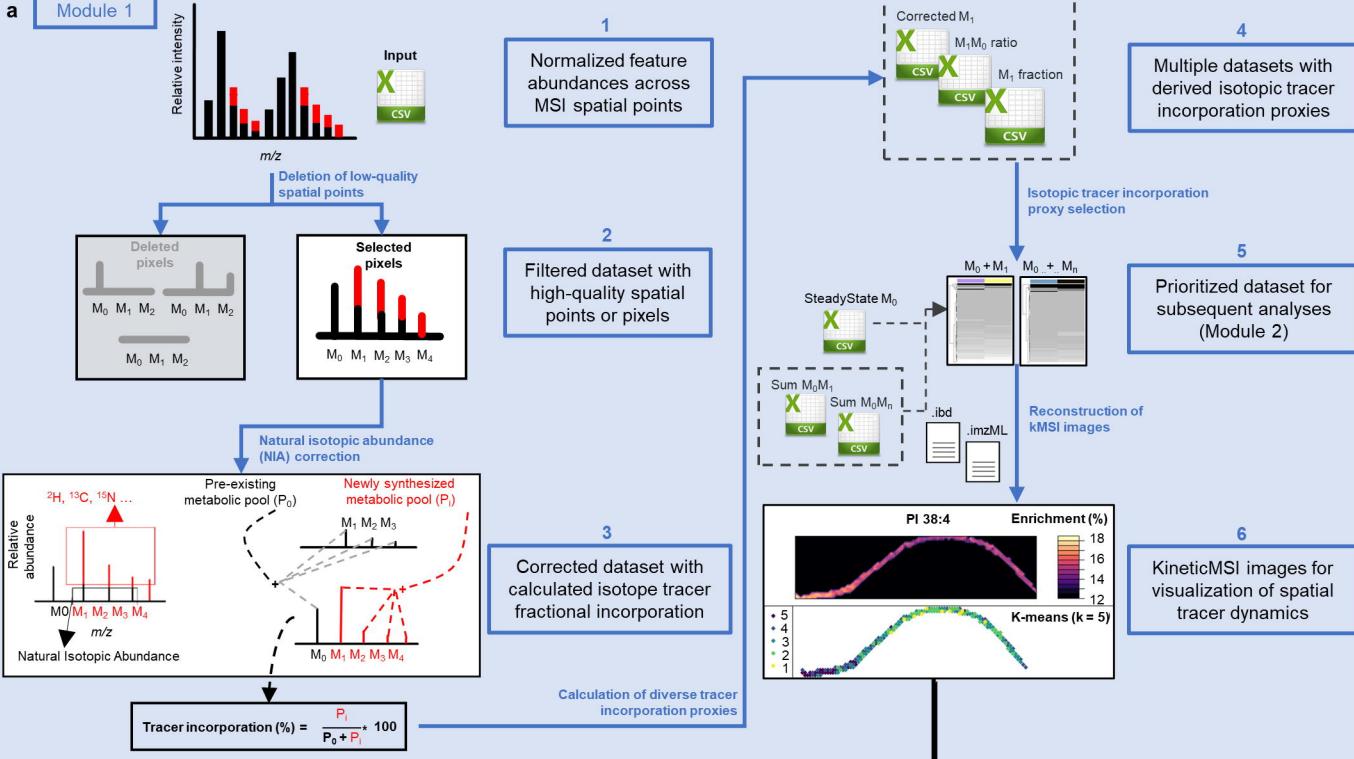
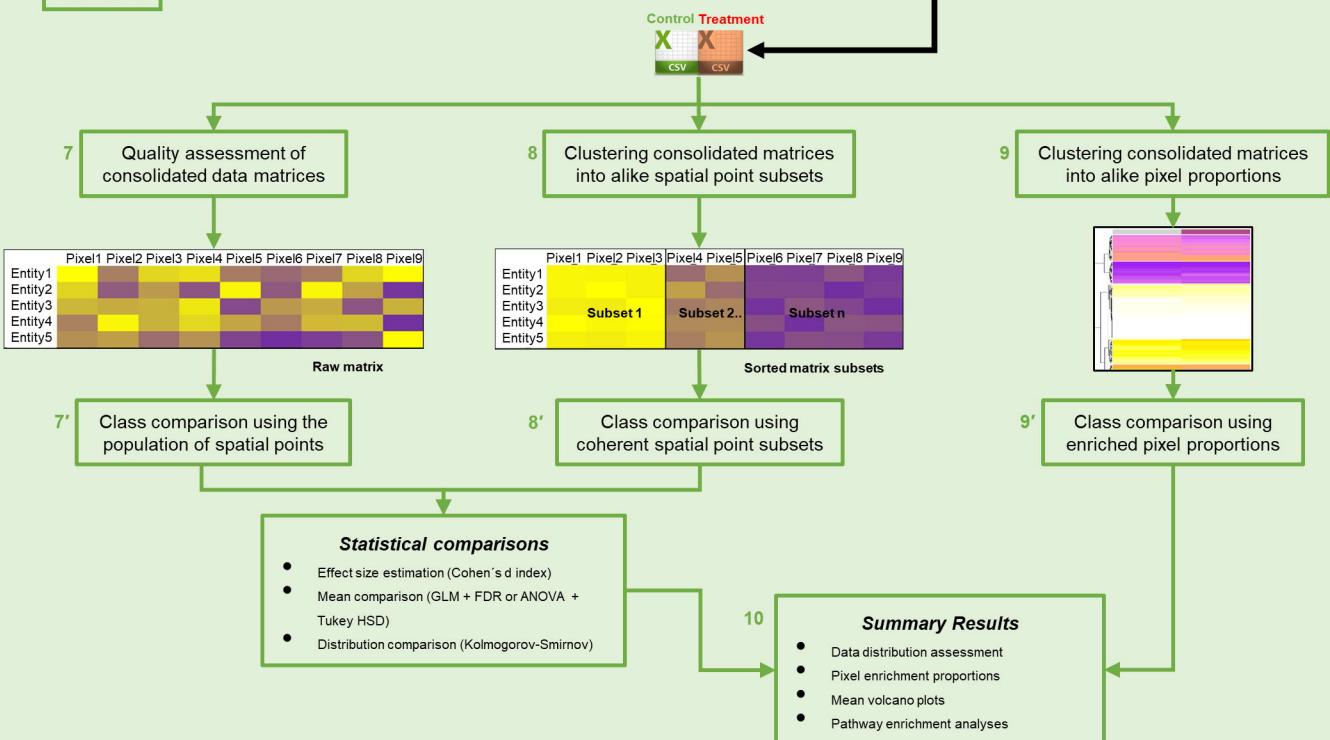
771 **Extended Data Fig. 4. Differential analysis of ^2H incorporation in lipids of WT and HD mice**
772 **using homogenized hippocampal tissue by LC-MS.** **a**, Volcano plot (Cohen’s d value (X-axis)
773 versus $-\log_{10}$ FDR-adjusted P values obtained using one-way ANOVA followed by Tukey HSD post-
774 hoc test (Y-axis)) showing significant differences in mean ^2H incorporation in lipid features of WT
775 and HD mice hippocampi ($n = 6/\text{group}$). Cohen’s d values ≥ 0.3 indicate greater differentiation of
776 WT and HD mice. Each dot representing an individual lipid feature, is colored based on its known
777 anatomical location in the mouse hippocampus. Grey dots represent features that have no defined
778 category in the custom-built library provided for pathway enrichment analysis (Table S3).

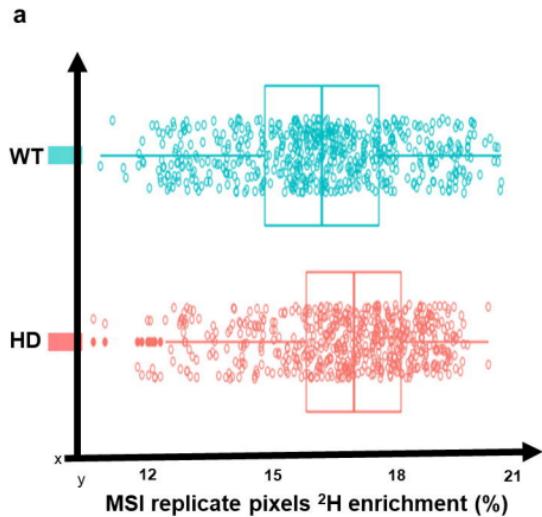
779 Significantly changed features are highlighted and labelled. **b**, Mean comparison of ^2H incorporation
780 in CL 72:6 (*m/z* 1451.9) showing significantly higher ^2H incorporation in HD mice, compared to WT
781 controls (n=6/group). **c**, Bar plot representation showing the results of pathway enrichment analysis
782 (-log₁₀ FDR-adjusted P value from the Fisher exact test (X-axis) versus functional categories
783 associated with the detected lipid features in our study (Y-axis)). Functional categories are colored by
784 lipid class, cellular activity, compartment, cognitive function, known HD pathology and
785 neuroprotection to enhance interpretation of results (BDNF – Brain-derived neurotrophic factor; LTP
786 – Long-term potentiation). Values denotes the proportion of lipids with significantly altered ^2H
787 incorporation in each functional category. Red line denotes significance P < 0.05.



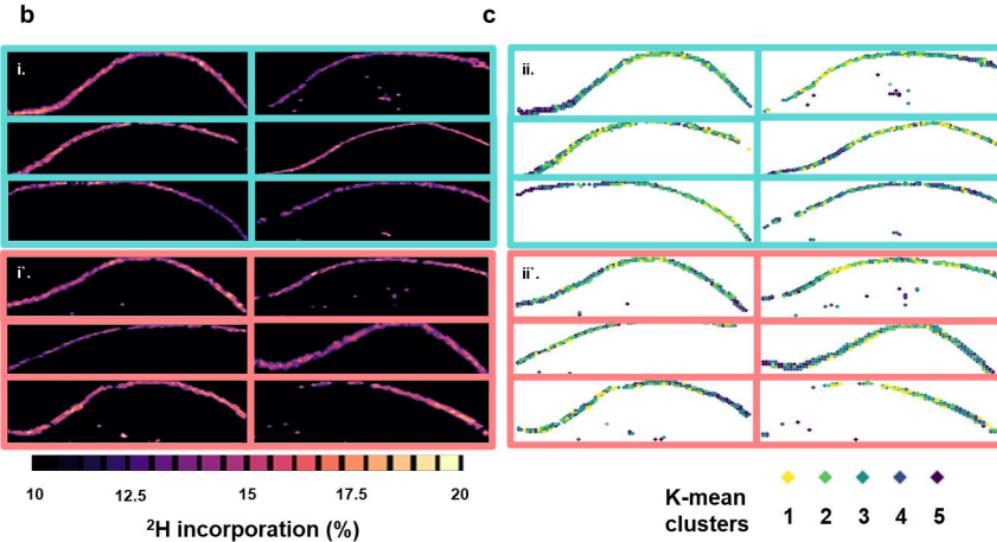
6. **KineticMSI analysis**



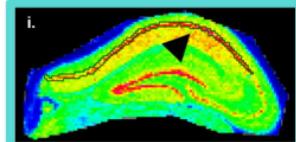
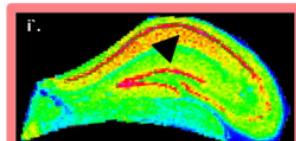
a Module 1**b** Module 2



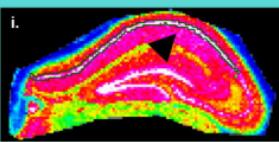
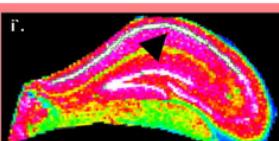
■ Wild type (WT) ■ Huntington's disease (HD)



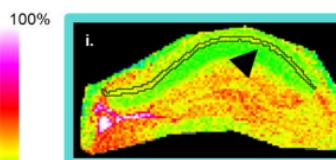
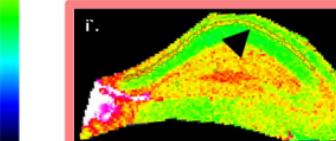
d M_0 Isotope



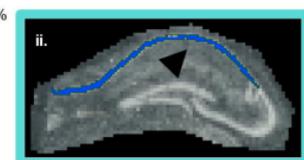
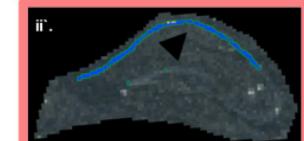
e M_1 Isotope



f Isotopic ratio (M_1/M_0)

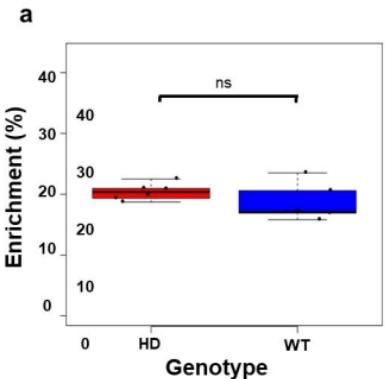
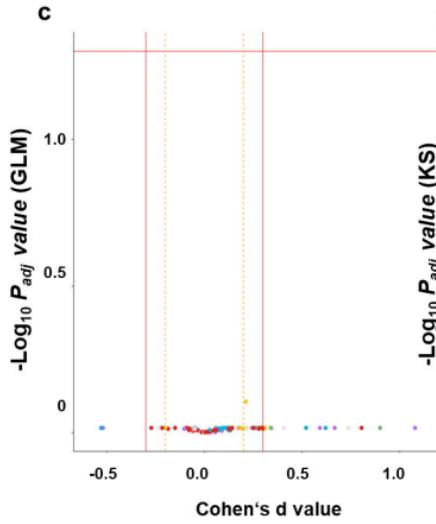
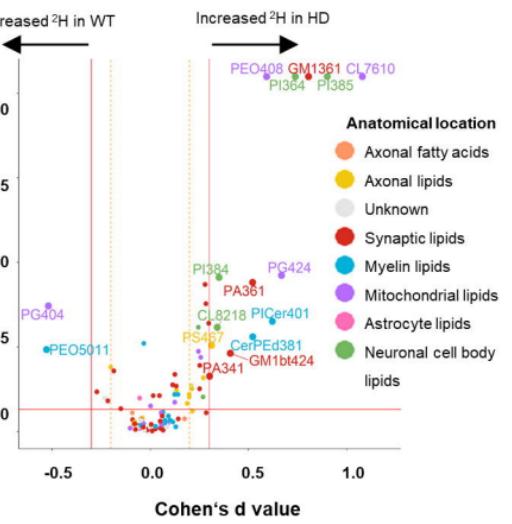
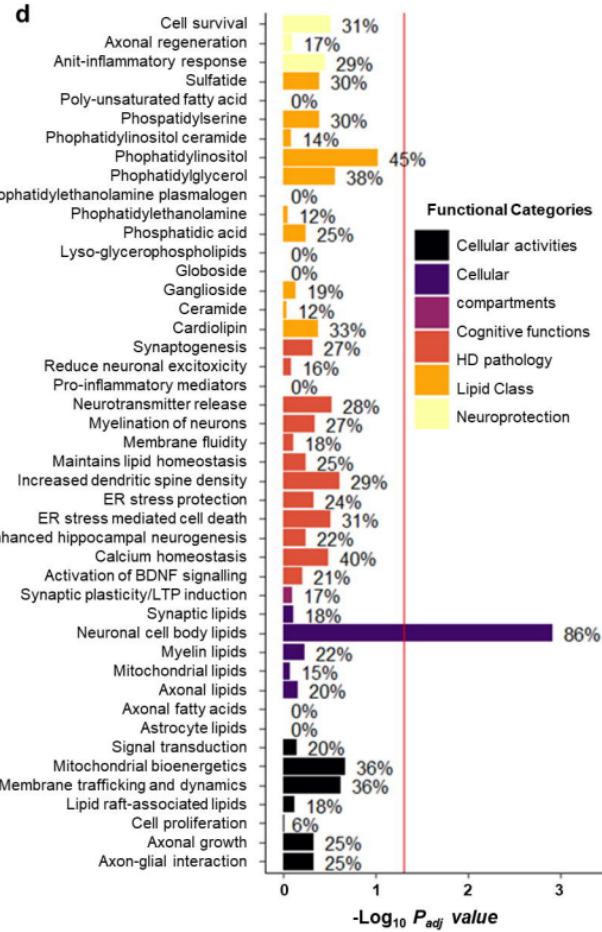


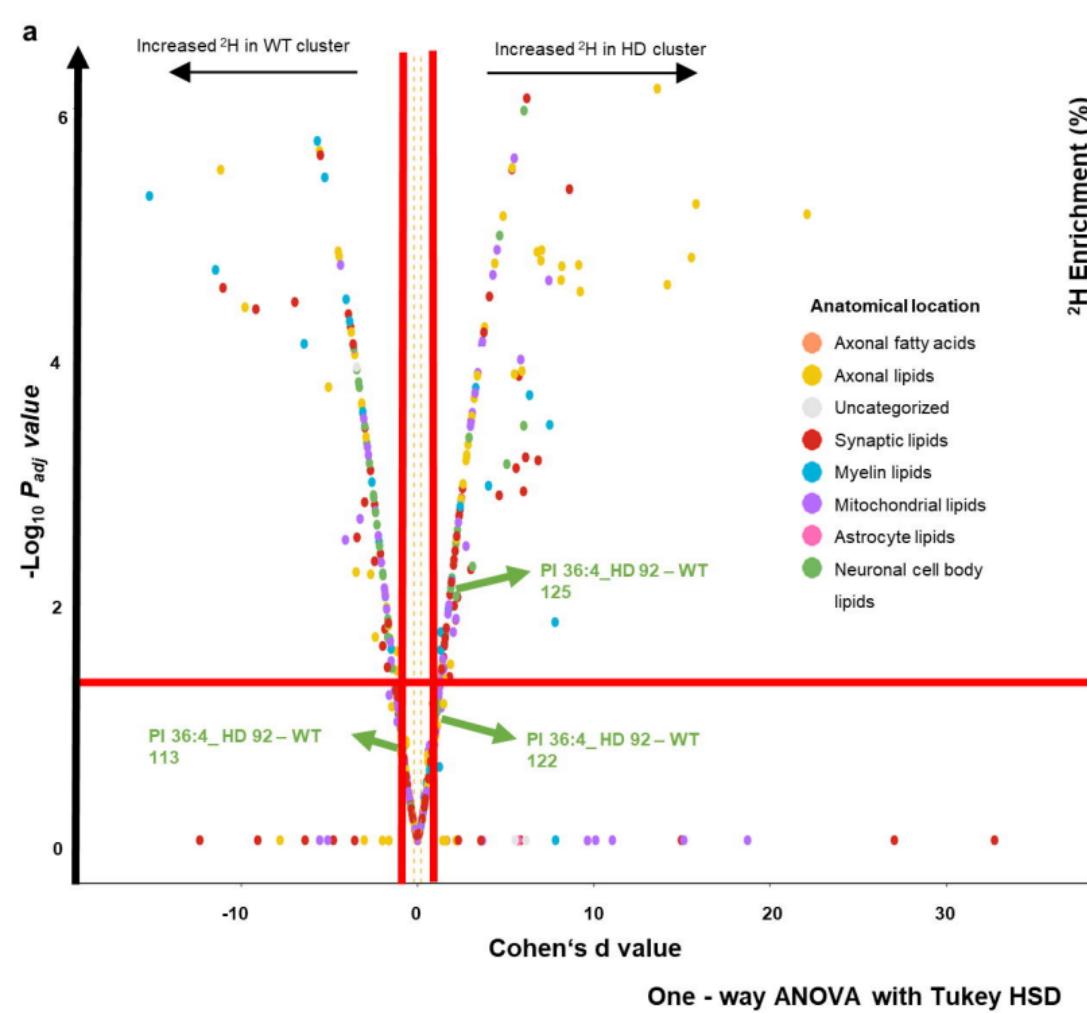
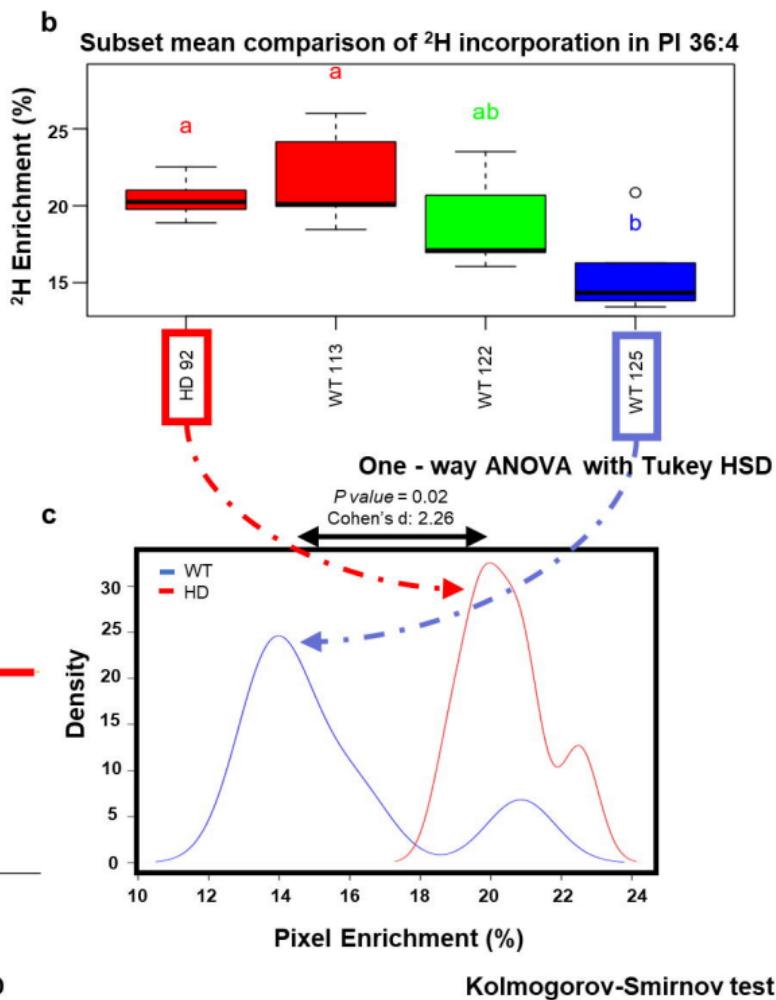
g SCiLS segmentation using M_1/M_0 ratio

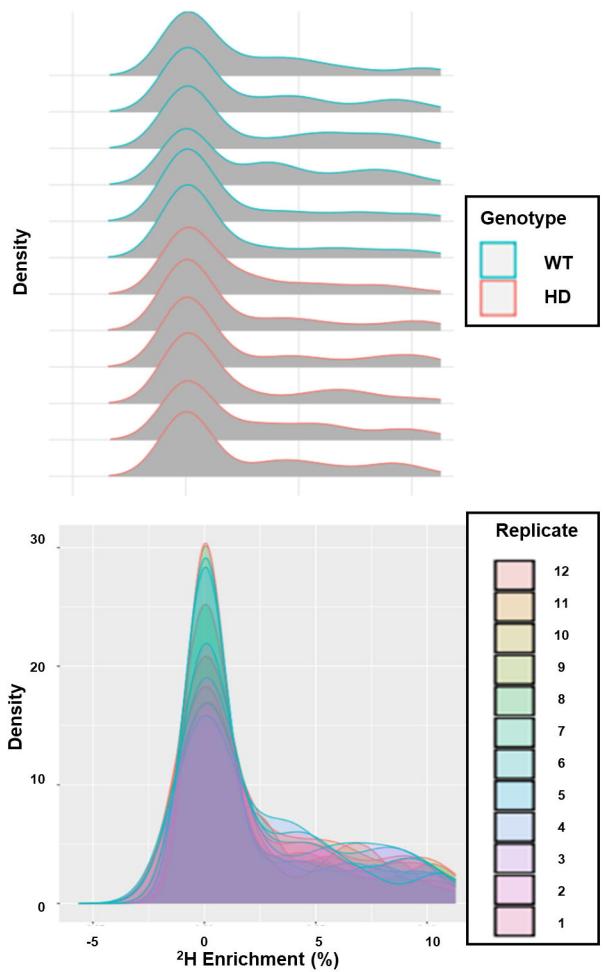
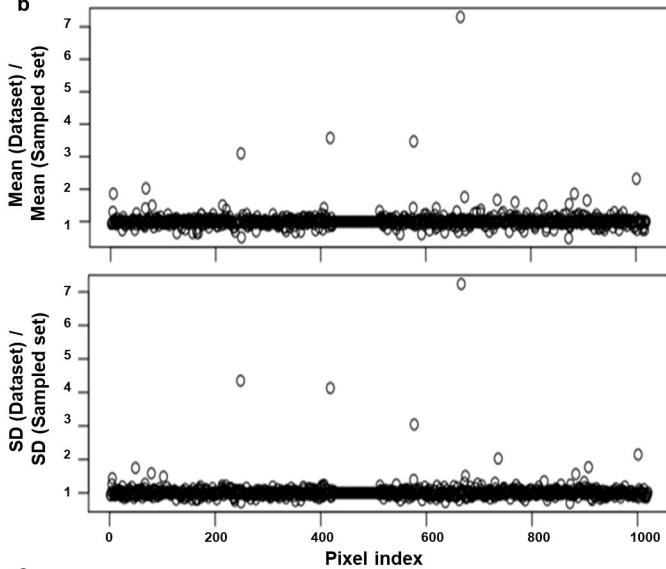
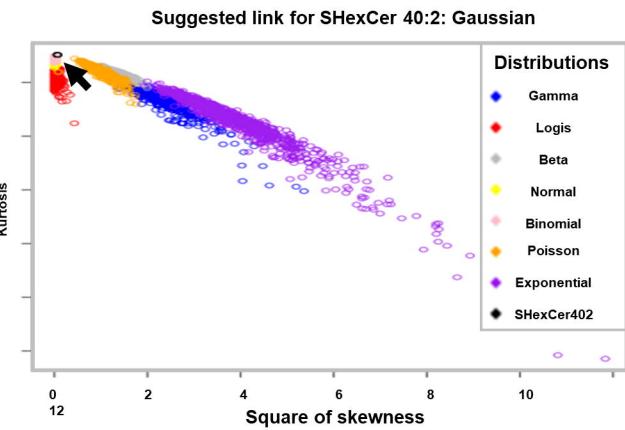


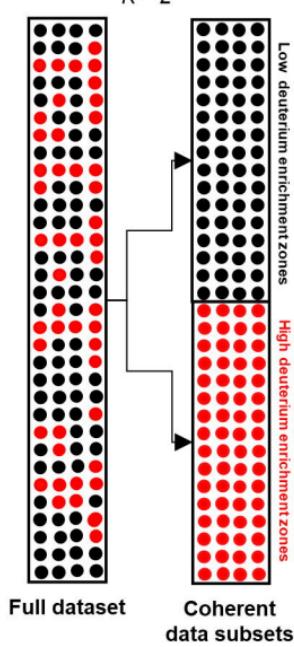
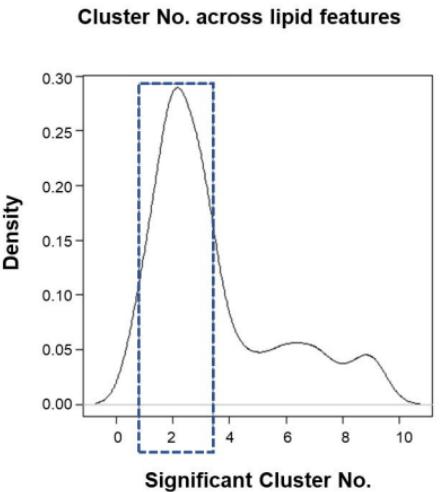
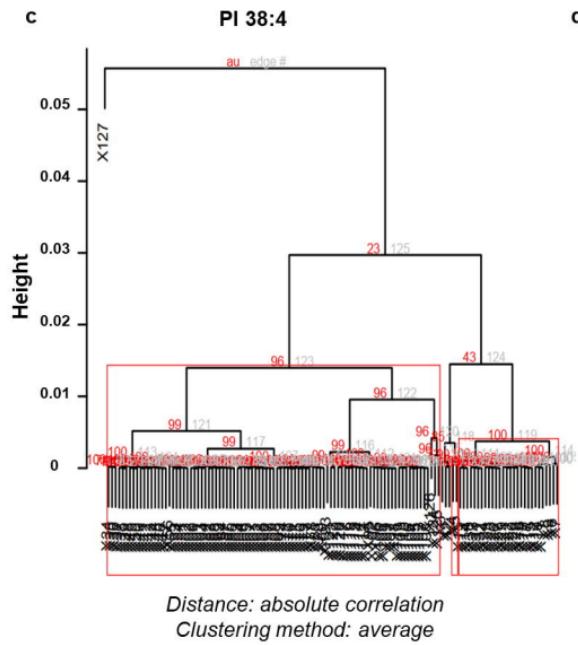
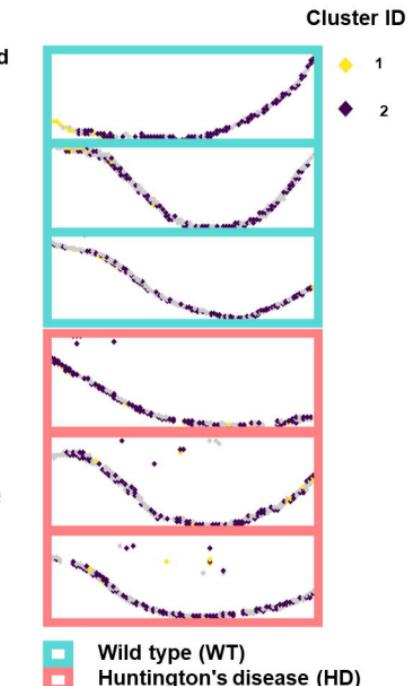
■ 1 (Spectra: 189)
■ 2 (Spectra: 1)
■ 3 (Spectra: 1)
■ 4 (Spectra: 1)
■ 5 (Spectra: 1)

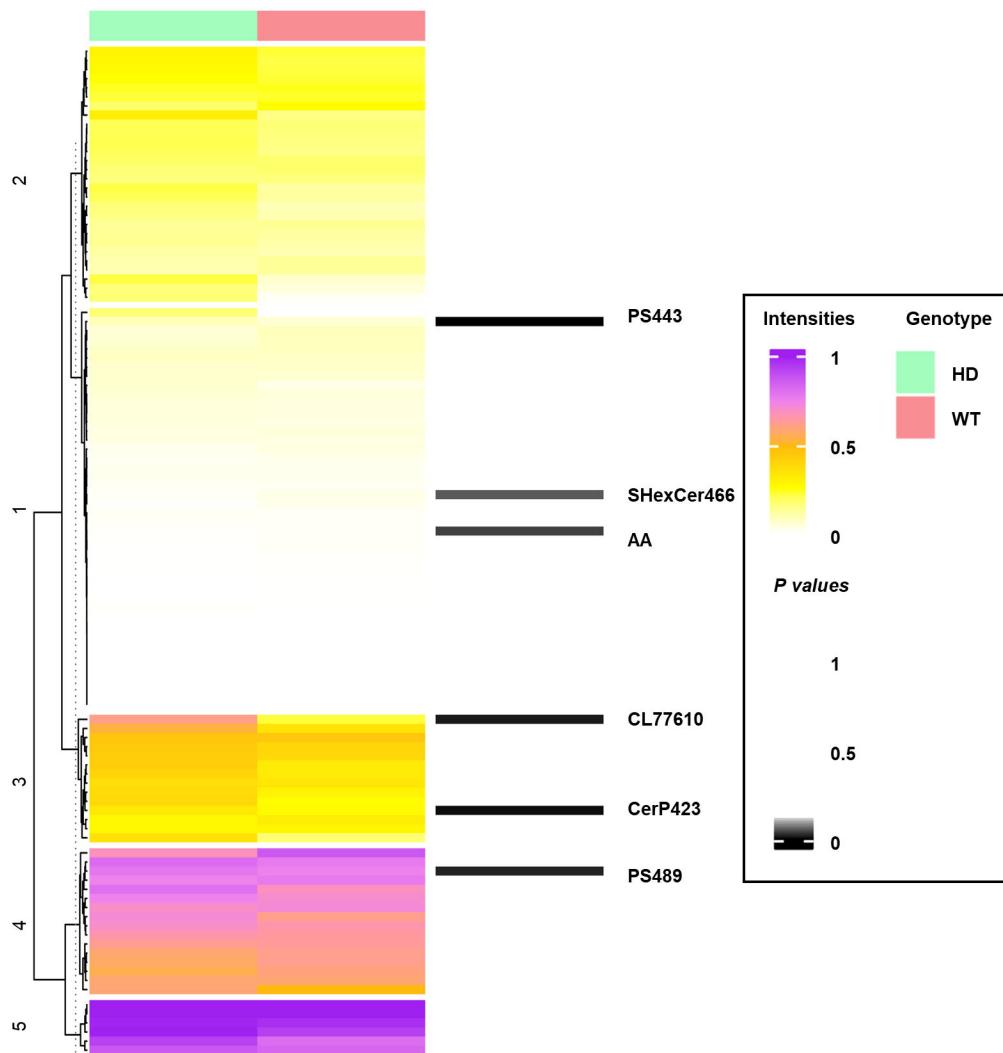
■ 1 (Spectra: 175)
■ 2 (Spectra: 1)
■ 3 (Spectra: 1)
■ 4 (Spectra: 1)
■ 5 (Spectra: 1)

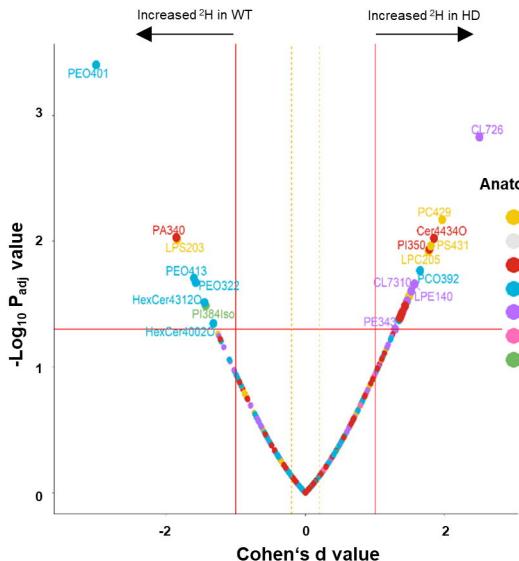
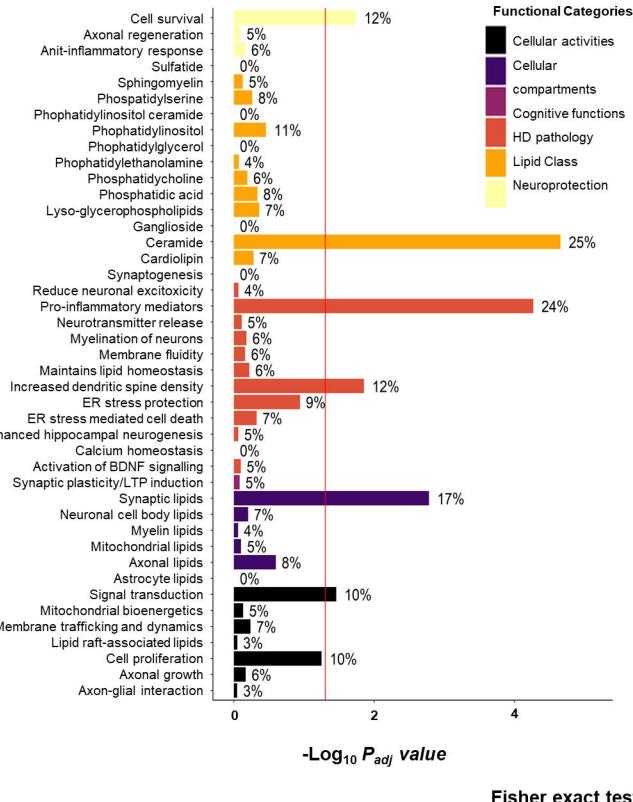




a**b****c**

a**b****c****d**



a**b****c**