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ABSTRACT: Kinetic mass spectrometry imaging (kMSI) integrates imaging-MS with stable 34 

isotope labelling to elucidate metabolic fluxes in a spatiotemporal manner. kMSI studies are 35 

hampered by high volumes of complex data and a lack of computational workflows for data 36 

analysis that additionally address replicated experiments. To meet these challenges, we 37 

developed KineticMSI, an open-source R-based tool for processing and analyzing kMSI datasets. 38 

KineticMSI includes statistical tools to quantify tracer incorporation across replicated treatment 39 

groups spatially in tissues. It allows users to make data-driven decisions by elucidating affected 40 

pathways associated with changes in metabolic turnover. We demonstrate a validation of our 41 

method by identifying metabolic changes in the hippocampus of a transgenic Huntington’s 42 

disease (HD) mouse model as compared to wild-type mice. We discovered significant changes in 43 

metabolism of neuronal cell body lipids (phosphatidylinositol and cardiolipins) in HD mice, 44 
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previously masked by conventional statistical approaches that compare mean tracer incorporation 45 

across brain regions.  46 

INTRODUCTION 47 

Mass spectrometry imaging (MSI) has generated significant interest in biomedical research for 48 

its ability to spatially map the distribution and relative abundances of thousands of metabolites 49 

simultaneously within thin intact biological tissue sections in their native environment1–4. When 50 

used in a multimodal imaging approach, such as in combination with immunocytochemistry5,6, 51 

MSI allows metabolism to be examined at cell-type resolution, which can aid in understanding 52 

pathogenic mechanisms mediating the onset or progression of disease, and identifying potential 53 

therapeutic targets7. Typically, MSI has been used for acquiring a snapshot of an organism’s 54 

metabolism. However, when coupled to isotope labeling of tissues over time, kinetic MSI 55 

(kMSI) allows greater insight into the dynamic spatial changes in metabolism. First reported in 56 

2013 to study phospholipid biosynthesis in a mouse tumor8, kMSI has since been applied in a 57 

growing number of studies in both animal and plant-based models9–16. kMSI generates a huge 58 

amount of data, and a lack of open-source computational tools that can automate the processing 59 

and analysis of kMSI datasets has hindered wider uptake of the method.  60 

Currently available software for MSI users such as SCiLS Lab (Bremen, Germany), ClinPro 61 

Tools software (Bruker Daltonics GmbH, Germany), Cardinal17, MSiReader18, HIT-MAP19 and 62 

others are tailored for the investigation of the classical label-free MSI data from steady-state 63 

metabolomic or proteomic studies but lack features that are critical for the high-throughput 64 

analysis of stable-isotope label (SIL) data. Numerous other software pipelines such as Mass 65 

Isotopomer Distribution analysis20, DexSI21, X13CMS22, and geoRge23 are available for 66 
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performing differential isotopic tracer labelling analysis, however these software packages have 67 

been specifically designed to support SIL data generated by traditional non-MSI approaches (i.e., 68 

gas and liquid chromatography-mass spectrometry (GC/LC-MS))7,24,25. While GC/LC-MS 69 

approaches are crucial for providing higher specificity and a broader metabolome coverage, 70 

these methods typically entail averaging metabolic flux across a whole tissue containing a 71 

heterogeneous population of cells, thereby compromising spatial information.  Previously 72 

developed kMSI analysis pipelines do provide visualization of isotopic ratio images10 and spatial 73 

patterns of tracer incorporation within tissues8,16,26; and enable quantitative analysis of region-74 

specific metabolism within organs27. However, these tools lack the statistical pipelines that allow 75 

users to conduct relative quantification of tracer incorporation between two treatment groups, 76 

such as normal versus pathophysiological circumstances, which is essential for biomedical 77 

research. In addition, it is difficult to confidently measure differential tracer incorporation 78 

between two groups, when tissue(s) display spatial heterogeneity in tracer incorporation8,26. The 79 

development of computational tools using freely available computational software (such as R) 80 

would aid the accessibility of data analyses pipelines.  Further enhancements would be provided 81 

by tools that can streamline the entire data analysis workflow of kMSI datasets and allow users 82 

to evaluate region-specific changes in metabolic activity, which show spatially heterogenous 83 

tracer incorporation.   84 

Here we present an open-source tool for systematically analyzing data derived from kMSI 85 

experiments, KineticMSI, which operates in R and is connected to other freely available MSI-86 

related R packages. Key features include an automated workflow for: (1) Quality control and 87 

data pre-processing, including options to select the best tracer incorporation proxy in high 88 

isotopic quality spatial points (pixels); (2) Visualization of spatial dynamics of isotopic tracer 89 
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incorporation and quick exploration of isotopic labelling patterns using unsupervised K-means 90 

clustering; (3) Coherent partitioning of replicated MSI datasets into spatial subsets comprising 91 

regions of similar tracer incorporation status and concomitant relative quantification of tracer 92 

incorporation across conditions before or after partitioning; and (4) Elucidation of significantly 93 

impacted pathways associated with the detected metabolic and proteomic changes. We applied 94 

the developed method to measure metabolic changes in a deuterium (2H) labelled hippocampus 95 

from a Huntington’s disease (HD) mouse model transgenic for the human huntingtin exon 1 gene 96 

fragment, versus non-transgenic wild-type (WT) littermate controls. We focused our attention on 97 

the neuron rich hippocampal subfield, Cornu Ammonis (CA1) pyramidal layer, for further 98 

analysis. The CA1 layer is vitally important for the induction of long-term potentiation (LTP) 99 

and long-term depression (LTD), mechanisms that underlie synaptic plasticity28,29 and 100 

hippocampal-dependent cognitive functions such as learning and memory30. We explored spatial 101 

heterogeneity in metabolic activity using a statistically validated unsupervised clustering 102 

approach based on 2H incorporation and uncovered distinct metabolic states in HD 103 

mice, where conventional statistical approaches using mean values across brain regions failed.  104 

RESULTS  105 

Experimental design to determine in vivo metabolic kinetics 106 

Metabolic changes are fundamental to HD pathology. Yet it is not clear how these changes arise 107 

longitudinally as symptoms and aggregate pathology develop, and where these changes occur 108 

(i.e., which hippocampal sub-region and cell types). Here we validated our package KineticMSI 109 

by examining metabolic changes spatially within the neuron enriched CA1 hippocampal 110 

pyramidal sub-field (Fig. 1, S1) of the R6/1 mouse model of HD31, relative to age-matched WT 111 
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mice (n=6/group). The R6/1 model involves the transgenic expression of the exon 1 gene 112 

fragment of human huntingtin containing the CAG expansion mutation, which is sufficient to 113 

cause disease-relevant pathology. To establish our dataset, we subjected WT and HD mice to 114 

isotope labeling through deuterated water following established protocols32, at an age 115 

corresponding to post-onset of phenotype (16 weeks) (Fig. 1).  Our design was aimed at 116 

monitoring lipid synthesis by measuring the percentage of 2H incorporation into lipids detected 117 

by MALDI-MSI of each mouse hippocampus harvested eight days post-labelling. We selected 118 

eight days as a suitable timeframe for labelling mice as this timepoint resulted in ~30-50% 2H 119 

incorporation into the metabolic targets (T50) across lipid classes (with at least a single 120 

substitution of 1H atom by 2H), which was sufficient to facilitate downstream statistical 121 

analysis. Around this timepoint, 2H concentrations in the body water have been shown to 122 

equilibrate at approximately 5% (v/v)28 and at this point, metabolic processes are expected to 123 

have reached a steady state. We analyzed the unlabeled lipid pools of an equal number of WT 124 

and HD mice using the classical label free-MSI approach to determine the baseline natural 125 

abundance lipid pools.  In parallel, to gain a thorough understanding of the changes in 2H 126 

labelling in lipids found in the whole hippocampal tissue, we performed LC-MS on matched 127 

brain hemispheres (labelled and label-free) to confirm the identity of the lipid species and 128 

compare 2H-labelling trends achieved by kMSI. 129 

KineticMSI workflow 130 

To develop our software, several considerations were made. First, to enable users to handle the 131 

highly complex data generated by kMSI and decide the appropriate statistical approach, we 132 

designed KineticMSI to function as two modules covering different steps. The first module 133 

facilitated data quality assessment, calculation of 2H incorporation in a pixel-wise manner and 134 
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visualization of the spatial dynamics of 2H incorporation within the tissue, through the 135 

reconstruction of KineticMSI images (Fig. 2a).  We found that the following proxies provide the 136 

best ways to measure features of 2H incorporation: (1) first isotope ratio (M1/M0); (2) total 137 

isotope fraction (M1/(M0+M1)); (3) newly synthesized pools (corrected ∑ M1 + Mn); and (4) 138 

the percent 2H incorporation ((corrected ∑ M1 + Mn) / (corrected M0 + corrected ∑ M1 + Mn) * 139 

100)). Most importantly, the first module enabled selection of high-isotopic quality spatial points 140 

(i.e., pixels displaying interpretable isotopic peak profiles) and metabolic features to assess 141 

spatial differences in metabolic activity between two experimental groups.  142 

The second module provided statistical tools to perform relative quantification and comparative 143 

analyses of 2H incorporation in individual metabolic features between two samples (Fig. 2b). To 144 

enable statistical class comparison of 2H incorporation in targeted lipid species between WT and 145 

HD mice (n=6/group), two main approaches were used for computation of mean 2H 146 

incorporation (Fig. 2b): (1) 2H incorporation means of the complete MSI pixel population across 147 

the entire region of interest, herein termed pixel population mean, and (2) 2H incorporation 148 

means of coherent pixel subsets or clusters that share similar 2H incorporation within a region of 149 

interest, termed pixel cluster means. The clustering of MSI pixels based on 2H incorporation was 150 

performed using unsupervised internally validated, clustering-based approaches. The first 151 

approach may be applied to kMSI datasets that display relatively homogenous incorporation of 152 

isotopic tracer within the tissue of interest. By contrast, the second approach is suitable for kMSI 153 

datasets exhibiting intra-tissue spatial heterogeneity, and accounts for this spatial heterogeneity, 154 

prior to performing statistical comparison between treatment groups. Additionally, an extra 155 

feature allowed comparison between zones of different metabolic activity from two experimental 156 

groups, using a provision to compare pixel proportions that are below or above a pre-157 
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defined threshold of 2H incorporation. Finally, we performed a pathway enrichment analysis to 158 

identify significantly enriched functional categories and determine which metabolic pathways or 159 

molecular functions are associated with metabolites showing significantly altered 2H 160 

incorporation. For illustrative purposes, we have applied all KineticMSI tools to our exemplary 161 

dataset. To aid interpretation of the spatial data, single lipid ion images and reconstructed kMSI 162 

images were used to display differential 2H incorporation. Additionally, we have applied 163 

KineticMSI tools to a matching LC-MS/MS dataset from equivalent biological specimens for 164 

comparing the trends in isotope labelling obtained from kMSI datasets (Extended Data Fig. 4).  165 

KineticMSI application 166 

Data pre-processing and spatial reconstruction of KineticMSI images 167 

As a first step, we used KineticMSI to perform data quality control by removing MSI data pixels 168 

with missing values to ensure that they do not affect the interpretation of real spatial 2H 169 

incorporation dynamics in downstream calculations. Next, we corrected the data for baseline 170 

levels of natural isotopic abundance and calculated the percent 2H incorporation across all spatial 171 

points using the IsoCorrectoR R package33 (for detailed procedure, see Supplementary note 1 and 172 

Fig. S2). In the HD mouse brain dataset, we found the percentage of 2H incorporation i.e., the 173 

ratio of newly synthesized and total lipid pools was selected as the most suitable proxy for 174 

measuring lipid synthesis using the selection procedure outlined in Supplementary Note 2 (Fig. 175 

S3).  176 

To visually assess the spatial dynamics of 2H incorporation within the tissue, we generated 177 

KineticMSI images by mapping the nominal values of 2H incorporation using the acquired MSI 178 

coordinates. For most lipids, we observed spatial heterogeneity evidenced by varying degrees of 179 
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2H incorporation across the spatial points within the tissue. The pixel-to-pixel variation in 2H 180 

incorporation is reflected by the dispersion of the data points in the scatterplot featuring 2H 181 

incorporation in PI 38:4, m/z 885.5 (10 – 20%) across WT and HD replicate datasets (Fig. 3a). 182 

This variation can also be visualized as color gradations in the reconstructed kMSI image of PI 183 

38:4 in WT and HD replicated datasets (Fig. 3b). There are zones of higher 2H incorporation 184 

(gold) and zones of lower 2H incorporation (dark purple). Indeed, to gain a quick visualization of 185 

spatial patterns of metabolic synthesis, we performed K-means analysis based upon similarity in 186 

2H incorporation and identified distinct clusters within the CA1 hippocampal sub-field of each 187 

MSI replicate dataset of WT and HD mice (Fig. 3c). This finding led us to utilize statistical 188 

approaches to account for the evident spatial heterogeneity in 2H incorporation, prior to statistical 189 

comparison of 2H incorporation between WT and HD mice, thus bypassing the limitation of 190 

averaging 2H incorporation from individual spatial points across a large tissue area, a matter that 191 

will be discussed in the next section.  192 

We benchmarked our results against SCiLS Lab (Fig. 3d-g), where we visualized the intensity 193 

image of M0 (Fig. 3d), M1 (Fig. 3e) and the isotope ratio image (i.e. M1 feature normalized to its 194 

M0 m/z feature, M1/M0) for PI 38:4 (Fig. 3f) for determining 2H incorporation in PI 38:4. As 195 

suggested by the isotope ratio (M1/M0) image for PI 38:4 (Fig. 3f), we found spatial 196 

heterogeneity in 2H incorporation reflected by the color gradations within the CA1 sub-field of 197 

WT and HD tissues (black arrows). In contrast to our results, segmentation of the hippocampal 198 

CA1 sub-field using K-means analysis in SCiLS Lab was unable to reveal any distinct spatial 199 

patterns based on the isotope ratio (M1/M0) for PI 38:4 in WT and HD mice (Fig. 3g).   200 

Differential analysis of 2H incorporation between WT and HD mice 201 
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To statistically compare 2H incorporation in targeted lipid species between WT and HD mice, we 202 

used two approaches that include: mean comparison using (1) pixel populations and (2) 203 

coherent-clustered pixel subsets that share similar 2H incorporation.  204 

Comparison using pixel population mean reveals no difference in 2H incorporation between 205 

WT and HD mice 206 

To calculate 2H incorporation pixel population means, we first addressed the challenge of 207 

variability in the number of pixels across individual kMSI replicates by randomly sampling a 208 

matching number of pixels equal to the pixel number of the smallest dataset (For the procedure 209 

used to assess the correctness of random sampling approach, see supplementary note 3 and 210 

Extended Data Fig. 1b for details). We then evaluated data distributions of 2H incorporation 211 

across the selected MSI pixels of the CA1 hippocampal sub-field (See supplementary note 3 and 212 

Extended Data Fig. 1a, b and d for details) and compared pixel population means i.e., mean 2H 213 

incorporation in the target lipids across the entire CA1 hippocampal sub-field. This analysis 214 

revealed no significant changes in mean 2H incorporation between WT and HD mice (Fig. 4c, 215 

bottom left), demonstrated using the neuronal lipid PI 36:4 (m/z 857.5) (Generalized linear 216 

models, FDR-adjusted P value = 0.93) (Fig. 4a). However, when we compared the shapes and 217 

the extent of overlap of the distribution of 2H incorporation in PI 36:4, we found significantly 218 

different distributions between WT and HD mice, as evident by a rightward shift in the 219 

cumulative frequency plot of HD (red) compared to WT mice (blue) (Kolmogorov- Smirnov test, 220 

FDR-adjusted P value = 0.01 and Cohen’s d value = 0.76) (Fig. 4b). This significantly altered 221 

distribution in 2H incorporation was observed across the majority of neuronal cell body enriched 222 

lipids such as PI 38:4 and PI 38:5 (m/z 883.5) and synaptic lipids such as PA 34:1 (m/z 673.48) 223 
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and GM1 36:1 (m/z 1544.8), indicative of a significantly higher 2H incorporation in HD mice 224 

(Fig. 4c, bottom right). This scenario suggested that averaging 2H incorporation across pixels 225 

displaying spatial heterogeneity in 2H labelling could potentially mask significant differences in 226 

2H incorporation between WT and HD mice. The pathway enrichment analysis based on lipids 227 

that significantly change their distributions, identified neuronal cell body lipids (Fisher’s exact 228 

test P value = 0.001) as a significantly enriched functional category. This category is associated 229 

with lipid features displaying a trend towards higher 2H incorporation in HD mice (Fig. 4d). 230 

Furthermore, we observed a shift from a bimodal distribution in 2H incorporation in WT mice to 231 

a unimodal distribution in HD mice (Fig. 4b) that led us to hypothesize the existence of distinct 232 

clusters or sub-populations of pixels/cells with similar 2H incorporation within the CA1 233 

hippocampal sub-field of the mouse hippocampus. 234 

Clustering analysis reveals significant differences in 2H incorporation between WT and HD 235 

mice 236 

To test for the presence of pixel subsets sharing similar 2H incorporation within the hippocampal 237 

CA1 sub-field, we performed tissue segmentation based upon similarity in 2H incorporation in an 238 

unsupervised manner, independently within the WT and HD groups (n=6/group). This revealed 239 

the presence of two coherent pixel clusters of 2H incorporation (AU-P value ≥ 0.95) in the 240 

hippocampal CA1 sub-field, corresponding to the ‘low’ and ‘high’ 2H enrichment zones 241 

(Extended Data Fig. 2a). The partitioning into two coherent clusters of MSI pixels based on the 242 

degree of 2H incorporation was observed in the majority of lipid features, as confirmed by the 243 

density histogram summarizing the number of significant clusters found across the evaluated 244 

lipid features (Extended Data Fig. 2b). The cluster dendrogram of the lipid PI 38:4 (m/z 885.5) 245 
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shows two significant pixel cluster subsets (AU-P value = 0.95) obtained by sub-setting the 246 

kMSI data structure based on the extent of 2H incorporation (Extended Data Fig. 2c).  247 

In addition, we visualized spatial patterns of metabolic synthesis by mapping the obtained 248 

significant clusters subsets onto the original MSI images and found areas of preferentially high 249 

versus low 2H incorporation that potentially reflect the presence of “metabolic hotspots” versus 250 

“metabolically inactive” areas within the CA1 hippocampal sub-field of WT and HD mice.  251 

These metabolic patterns were particularly evident in the neuron-enriched lipid PI 38:4, which 252 

showed spatial constraints in 2H incorporation with the high 2H enrichment zones (yellow) 253 

localized at the edges of the hippocampal CA1 field in the WT mice. On the other hand, the HD 254 

mice showed a more dispersed distribution of ‘high’ and ‘low’ 2H incorporated pixels, 255 

suggesting a potential loss of spatial coordination in lipid synthesis in HD mice (Extended Data 256 

Fig. 2d). These results confirm the intra-tissue spatial heterogeneity in 2H incorporation as 257 

observed in PI 38:4 (Fig. 3a) and implies the presence of cellular sub-populations with their own 258 

distinct 2H incorporation dynamics into the target lipid pools within the CA1 hippocampal sub-259 

fields of WT and HD mice.  260 

Next, using the coherent pixel clusters obtained from the above clustering analysis, we compared 261 

mean 2H incorporation from each cluster pair of individual lipid features between WT and HD 262 

mice. This analysis identified lipids showing significant differences in 2H incorporation in 263 

majority of the neuronal cell body enriched lipids such as PI 36:4 (m/z 857.5), PI 38:5 (m/z 264 

883.5) and PG 44:12 (m/z 865.5) and synaptic lipids such as CerP 23:3 (m/z 788.5) and PA 36:4 265 

(m/z 695.5) in HD mice, relative to WT controls (Fig. S4a). Using the lipid PI 36:4 as an 266 

example, Fig. 5a highlights the multiple comparisons performed between the cluster pairs of WT 267 
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and HD mice. We found a significant increase in 2H incorporation in PI 36:4 in HD mice, when 268 

the comparison was performed using both pixel cluster means using One-way ANOVA followed 269 

by post-hoc Tukey HSD test (Fig. 5b) and distribution of 2H incorporation across MSI pixels 270 

between WT and HD mice (Kolmogorov-Smirnov test, FDR-adjusted P value = 0.02 and 271 

Cohen’s d value = 2.26) (Fig. 5c). Therefore, addressing spatial heterogeneity in metabolic 272 

activity, prior to statistical comparison of 2H incorporation between WT and HD mice revealed 273 

distinct clustering patterns and significant changes in 2H incorporation in lipids of HD mice, 274 

compared to WT controls (Fig. S4a) that were otherwise masked by comparing overall 275 

population means of 2H incorporation across the entire CA1 hippocampal sub-field (Fig. 4c, 276 

bottom left).  277 

Exploration of ‘metabolic hotspots’ reveals distinct metabolic states in HD mice 278 

Next, we explored metabolically active zones by comparing proportion of pixels with ‘high 279 

metabolic activity’ i.e., pixels exhibiting at least half of the total 2H incorporation detected (i.e., 280 

>15%) between WT and HD mice. The outcome of this analysis represented by a graphical 281 

heatmap (Extended Data Fig. 3) showed significantly higher proportion of 2H enriched (≥ 15%) 282 

in the majority of lipid features of HD mice, relative to WT controls. This shift towards higher 283 

metabolic activity state in HD mice is in agreement with the significant increase in 2H 284 

incorporation observed in HD mice, relative to WT controls using the above-mentioned 285 

statistical approaches. Hence, our results provide a strong basis for exploring pixel subsets 286 

sharing similar tracer incorporation between two groups of interest, prior to statistical 287 

comparison of tracer incorporation across the entire tissue to avoid misinterpretation of the 288 

statistical results. 289 
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DISCUSSION  290 

Here we describe KineticMSI, an open-source automated R-based pipeline to process and 291 

analyze the enormous amount of data generated isotope-labelled MSI data. We applied 292 

KineticMSI to show how different lipid metabolites changed their apparent synthesis rates in the 293 

hippocampus of HD mouse model, relative to control mice. KineticMSI package has the 294 

potential to work with any isotope labelled MSI data such as 2H, 13C, 15N, 18O and 34S. Our 295 

workflow incorporates a range of statistical tools to conduct relative quantification of isotopic 296 

tracer incorporation into common biomolecules (proteins, metabolites, lipids) and compare tracer 297 

incorporation between different treatment groups containing multiple kMSI replicate sets that 298 

display intra-tissue spatial heterogeneity. This work is significant as it is the first to address the 299 

challenges posed by the need for replication in kMSI studies. Furthermore, KineticMSI allows 300 

users to take data-driven decisions by providing a tool for the elucidation of significantly 301 

perturbed pathways, thus providing an in-depth assessment of the detected metabolic turnover 302 

changes and avenue to gain mechanistic insights into (disease) biology in a wide range of 303 

systems.   304 

While previous methods described for analyzing 13C or 2H-MSI experiments potentially fulfill 305 

the need to examine distinct isotopic labelling patterns spatially in vivo 8,16,27, the originality of 306 

our method relies on its features that facilitate statistical comparison of tracer incorporation 307 

between experimental groups (containing multiple replicate datasets) displaying regional spatial 308 

heterogeneity in tracer incorporation. This feature not only allows users to investigate region and 309 

sub-region-specific changes in metabolic activity across different biological systems but also 310 

paves the way toward understanding metabolic synthesis shifts under pathological conditions. 311 

Moreover, while tissue segmentation maps provided by the available MSI-data analysis software 312 
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such as SCiLS Lab (Bremen, Germany), Cardinal17 and others are based on spatial distribution of 313 

metabolites, KineticMSI complements these existing methods by providing additional features to 314 

perform segmentation based on a user-defined isotope tracer incorporation proxy and 315 

downstream statistical analysis. While SCiLS Lab allows for the visualization of isotope ratio 316 

(M1/M0) images, it does not compute the percent 2H incorporation which takes into the account 317 

all the detected labelled isotopic peaks (M1, M2, …Mn,) (see supplemental note 2 and Fig S2 for 318 

further explanation on the reason behind why isotope ratio (M1/M0) is not ideal for calculation of 319 

2H incorporation). Moreover, SCiLS Lab permits visualization of isotope ratio (M1/M0) images 320 

on an individual basis for each metabolic feature using single ion normalization (M0) and hence 321 

does not permit high-throughput analysis of kMSI datasets. Indeed, the inability to reproduce the 322 

segmentation results using SCiLS Lab (Fig. 3g) and Cardinal17 (Fig. S5a) was likely due to the 323 

limitations related to the pre-processing of kMSI datasets by these methods that include: (1) Lack 324 

of a feature to filter out pixels with missing values from either the monoisotopic peak (M0), the 325 

isotopologue peaks (M1, M2, …Mn,), or both; (2) Omission of the correction for natural isotopic 326 

abundance for calculating 2H incorporation; and (3) Inability to compute the percent 2H 327 

incorporation.  328 

Furthermore, the bootstrapped HCA approach - pvclust34 implemented in our workflow is 329 

superior to conventional K-means clustering algorithms as it computes a statistical measure 330 

i.e., Approximately unbiased probability values (AU-P values) for each cluster and only returns 331 

the most robust and significantly valid clusters that satisfy the significance threshold i.e., the 332 

AU-P value. This feature permits simultaneous visualization and identification of isotopic 333 

labelling patterns of several target biomolecules such as proteins, metabolites and lipids within 334 
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the tissue, thus allowing researchers to capture in vivo kinetics of metabolic or protein synthesis 335 

in a high throughput manner.  336 

In this work, we validated our method by discerning metabolic changes in samples obtained from 337 

the hippocampus of a Huntington’s disease (HD) neurodegenerative disease mouse model, 338 

compared to wild-type (WT) mice. We first generated KineticMSI images to visualize 2H 339 

incorporation dynamics in a pixel-wise manner and found spatial heterogeneity in 2H 340 

incorporation in the examined lipids across the MSI pixels of CA1 hippocampal sub-field of both 341 

WT and HD mice. The pixel-to-pixel variability in 2H labelling is not due to the differences in 342 

concentration or ionization efficiency of the features examined, and the percent 2H incorporation 343 

is independent of the absolute abundances of monoisotopic peak (M0) and the labelled 344 

isotopologue peaks (M1, M2, …Mn,), but rather depends on their ratios. This suggests the 345 

presence of metabolically heterogeneous cellular sub-populations within the CA1 hippocampal 346 

sub-field. This is not surprising, given the complex cellular heterogeneity of the brain, 347 

characterized by the presence of multiple neuronal and non-neuronal cell-types (including sub-348 

types) with diverse functional and metabolic characteristics35,36. In agreement to our study, 349 

spatial heterogeneity has also been reported in phospholipid synthesis within the mouse tumor 350 

tissue by previous kMSI-based studies8.  351 

Although the presence of metabolically heterogeneous cellular sub-populations within a tissue of 352 

interest adds a new level of complexity for data interpretation, in the current work, we present 353 

clustering approaches that extract distinct labelling patterns to account for regional heterogeneity 354 

in tracer incorporation, prior to statistical comparison of tracer incorporation between two 355 

conditions. Indeed, by addressing spatial heterogeneity in 2H incorporation in the examined 356 

lipids of WT and HD mice, we uncovered distinct metabolic states with significantly higher 2H 357 
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incorporation in the lipids of HD mice, relative to WT controls, that failed to be revealed by 358 

comparing the overall mean 2H incorporation across the entire hippocampal sub-field. These 359 

findings highlight the importance of acknowledging the presence of intra-tissue spatial 360 

heterogeneity in isotopic tracer incorporation in relatively homogenous regions which, when 361 

unaccounted for, can potentially obscure significant differences in tracer incorporation between 362 

two treatment groups, which could mislead statistical analysis and lead to incorrect interpretation 363 

of biology. Indeed, the LC-MS study confirmed a significantly higher 2H incorporation in 364 

majority of neuronal lipids in the hippocampal tissue of HD mice, relative to WT controls 365 

(Extended Data Fig. 4a), thus reproducing the trend observed in the kMSI study. The higher 366 

number of significantly impacted functional categories reported by LC-MS represent the global 367 

changes measured across the entire hippocampal region and are in contrast to the changes observed 368 

in the CA1 hippocampal sub-field measured using kMSI, thus confirming the loss of sub-field 369 

specific changes in metabolic activity measured using MSI (Extended Data Fig. 4c).  370 

The modular design and multi-step analysis in the KineticMSI workflow provides maximum 371 

flexibility to the users to optimize strategies and parameters at different stages of the data 372 

analysis workflow to suit the needs of the system under investigation. Moreover, the entire 373 

workflow has been written using base R objects and classes, with some method dependencies to 374 

S3 and S4 packages. This allows users to avoid executing the entire workflow every time, by 375 

bypassing some of the functions if their data is already in an optimal state. 376 

Although we have used isotopic labelled data from a single time-point for illustration purposes, 377 

the same workflow can be readily applied to analyze time-series kMSI datasets to perform 378 

metabolic flux analysis. By default, the filtering parameters cater to a partially labelled state 379 
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since a short isotope labelling period of eight days was followed in the illustrated example 380 

dataset. Nevertheless, we have implemented a parameter that allows users to apply the statistical 381 

workflow to a fully labelled state. Moreover, KineticMSI package is generally applicable to 382 

isotope labelled data generated from traditional metabolomic approaches such as GC/LC-MS 383 

(For details on formatting input tables, see Methods section).  384 

Prior to the implementation of the kMSI workflow, we recommend assessing the separability of 385 

the tissue of interest by applying existing spatial segmentation approaches such as SCiLS Lab 386 

(Bremen, Germany) (Fig. S1b) and Cardinal17 to segment the tissue into appropriate spatial 387 

patterns based on biomolecular compositions. This not only serves to reduce the complexity of 388 

the data but also enables statistical comparison between matched segments (i.e., similar tissue 389 

and cell-types) from two groups of interest37, thus accelerating the subsequent downstream 390 

analysis. However, this is not a necessity for the KineticMSI workflow. Also, we have 391 

implemented a standardized batch-effect correction algorithm i.e., ComBat correction38 for 392 

correcting the raw data, in this case applied to steady-state lipid pools; however, there is a 393 

provision for users to apply a normalization method of their choice and generate the input files in 394 

the correct format for further analysis. 395 

One possible limitation of our package is that the bootstrap clustering algorithm used to 396 

segregate pixels based on tracer incorporation may result in arbitrary partitioning of the data, 397 

where pixels with highly similar tracer incorporation can be incorrectly classified into different 398 

clusters. To overcome this issue, we provide the feature to perform cross-validation of the 399 

clusters obtained from the clustering algorithm by comparing cluster means using one-way 400 

ANOVA and Tukey HSD post-hoc testing (Fig. 5B).  401 
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Taken together, our results caution against the use of pixel population mean comparisons of 402 

tracer incorporation across entire tissues. In order to make valid statistical comparisons of 403 

metabolic activity between two conditions, we recommend addressing any spatial heterogeneity 404 

in tracer incorporation prior to statistical analysis to facilitate correct downstream data 405 

interpretation. KineticMSI provides a comprehensible guide for both bench biologists and 406 

computational scientists, thus enabling a broader scientific community to take advantage of the 407 

method to analyse kMSI datasets and capture the rapid and dynamic metabolic and proteomic 408 

changes associated with healthy and pathological states. In the future, this tool can serve as a 409 

valuable resource to accelerate both fundamental and clinical research by facilitating the 410 

investigation of biomarkers for early detection of diseases in a range of medical fields, as diverse 411 

as cancer, neurodegenerative disease, cardiovascular and immune dysfunctions, parasitology, 412 

and plant biology, all of which have been associated with widespread perturbations in metabolic 413 

processes. Hence, future work focused on improving collaboration between biologists and 414 

computational scientists could pave the way for the development of user-friendly tools that will 415 

allow us to better interpret the rich biological data provided by SIL studies and advance our 416 

understanding of both normal physiology and the pathophysiology of many diseases.  417 

ONLINE METHODS  418 

Experimental workflow  419 

The experimental design for generating kMSI dataset begins with the introduction of deuterated 420 

water (99 atom% Deuterium oxide (2H2O), Sigma-Aldrich and 0.9% (w/v) NaCl) via an 421 

intraperitoneal injection bolus of 35 µl/gm (body weight), followed by a maintenance dose of 9% 422 

(v/v) deuterated water in drinking water, in HD mice and age-matched WT controls (n = 423 
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6/group) at 16 weeks of age.  Mice were euthanized 8 days post-labelling and the brain tissue 424 

was rapidly collected and hemi-sectioned (~ 3 – 5 minutes). While one brain hemisphere (left) 425 

was flash-frozen on liquid nitrogen and used for MALDI-MSI, the other matched hemisphere 426 

(right) was dissected to obtain the frontal cortex, hippocampus, and striatum, which were 427 

homogenized, extracted, and examined in detail using Liquid Chromatography (LC)-MS/MS 428 

analysis. The left hemisphere was then cryosectioned at 20 μm thickness, followed by the 429 

deposition of Norharmane matrix (For details on animal care, sample preparation and tissue 430 

collection, see Supplementary note 1-3). Data acquisition of MALDI-MSI was carried out using 431 

a Bruker SolariX 7T XR hybrid ESI–MALDI–FT–ICR–MS platform at an estimated resolving 432 

power of 130,000 at m/z 400 in the negative ionization mode (see Supplementary note 4 for 433 

details). Data processing and multivariate analysis of MALDI-MSI data according to a series of 434 

tests as outlined in Supplemental Note 5 and 6. The hippocampi from the matched brain 435 

hemispheres (right) were homogenized and analyzed using LC-MS/MS operated in the negative 436 

and positive ionization mode. Species level lipid annotation for MSI were derived from LC-437 

MS/MS molecular species level annotations (For details on lipid extraction process, acquisition, 438 

pre-processing and analysis of LC-MS data, see Supplementary). 439 

Preparation of input matrices for KineticMSI  440 

Prior to applying the KineticMSI workflow, we performed data pre-processing using SCiLS Lab 441 

software (see supplementary for details). Subsequently, we exported the data matrices (.csv files) 442 

containing normalized intensities of all mass features including monoisotopic (M0/A0) and 443 

labelled isotopologue peaks (M1, M2…Mn, where n is the number of nominal mass units added 444 

to the monoisotopic mass based on the detected labelled isotopes) from SCiLS Lab. The paired 445 

*.ibd and *.imzML files were also exported to obtain the file coordinates for generating 446 
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KineticMSI images. Additionally, data matrices containing batch-effect corrected signal 447 

intensities of the monoisotopic (M0) peaks of the matched mass features were also exported from 448 

unlabeled controls to determine the most suitable proxy for measuring 2H incorporation (see 449 

details in Supplementary Note 2 and Fig. S3).  450 

Kinetic MSI workflow 451 

 All the analysis outlined below was performed using the R package KineticMSI 452 

(https://github.com/MSeidelFed/KineticMSI) 453 

Deletion of missing values 454 

In the illustrated example i.e., a partially labelled dataset, pixels that lack either the monoisotopic 455 

peak (M0/A0 depending on fragmentation), the isotopologue peaks (M1, M2, …Mn,), or both were 456 

filtered out. Hence, the standard KineticMSI implementation treats pixels that lack an M0/A0 457 

signal but have a detected signal intensity in its isotope envelop as an artifact, since in a partially 458 

labelled state the M0/A0 peak is not expected to disappear due to complete mass shifts to the M1, 459 

M2, …Mn isotopologues (Fig. S2c). However, in a fully labelled state, complete disappearance of 460 

M0/A0 accompanied by an increase in the signal of its labelled isotopic envelope is possible (Fig. 461 

S2b). Thus, a parameter in the implemented R function was included to allow users to either (1) 462 

delete pixels that only lack M1…Mn isotopologues (applicable to fully labelled states) or (2) 463 

delete pixels that lack both, M1…Mn isotopologues and the monoisotopic peak signal (applicable 464 

to partially labelled states).  465 

Calculation of isotope incorporation  466 
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Natural isotope correction and calculation of the percent 2H incorporation were performed in a 467 

pixel-wise manner by adapting functions from IsoCorrectoR33, an R-based package. The percent 468 

2H incorporation was calculated as the ratio of newly synthesized (2H - labelled) and total lipid 469 

pool (newly synthesized + pre-existing lipid pools) i.e., ((corrected ∑ M1 + M2 + ... Mn) / 470 

(corrected M0 + corrected ∑ M1 + M2 + … Mn)) * 100), where n is the number of extra atomic mass 471 

units added to the monoisotopic mass based on the detected labelled isotopes. A cross-validation 472 

and an alternative function were implemented using IsoCor39, a Python-based module, to confirm 473 

the equivalent percentages of background-corrected 2H incorporation. To select the most 474 

appropriate isotopic 2H proxy, batch-effect correction of the steady state pools from non-labelled 475 

controls was performed using ComBat correction38 as detailed in the SVA package40, followed 476 

by its comparison to the 2H-labelled metabolite steady state pools.  477 

Visualization and spatial segmentation based on 2H incorporation 478 

To recreate kineticMSI images, graphical reconstructions of the MSI images for each metabolite 479 

feature were built by mapping 2H incorporation values onto the original coordinate system 480 

obtained from the MALDI-MSI platform. To extract the file coordinates from the acquired MSI 481 

images, KineticMSI functions use a Cardinal17 dependency, which is an R package designed to 482 

perform statistical analysis on MSI datasets. To further explore spatial patterns of metabolic 483 

synthesis, MSI pixels were segregated based on similarity in 2H incorporation independently for 484 

WT and HD kMSI datasets. Segregation was done using two unsupervised clustering approaches 485 

that include: (1), K-means algorithm (with a user-defined k value = 5) through the R package 486 

ComplexHeatmap41; and (2), Hierarchical cluster analysis (HCA) via multiscale bootstrap 487 

resampling to return an optimized number of significant clusters that are above a user-defined 488 
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significance threshold (Approximately unbiased probability (AU-P)), which is a dependency 489 

from the R package pvclust34. For the HD mouse brain dataset, the AU-P value and the bootstrap 490 

iteration number ‘nboot’ were set to 0.95 (95% confidence) and 1000 iterations respectively to 491 

improve robustness and confidence in the resulting clusters.  492 

Statistical approaches used for the relative quantitation of 2H incorporation 493 

To perform differential analysis of 2H incorporation between WT and HD mice using both 494 

population and cluster means, two approaches for class comparison were used that include: (1), 495 

One-way analysis of variance (ANOVA) followed by Tukey HSD (Honestly significant 496 

difference) post-hoc testing; and (2), a parametrized Generalized linear model (GLM), according 497 

to the procedure detailed in the R package RandoDiStats 498 

(https://github.com/MSeidelFed/RandodiStats_package). As an alternative to mean comparisons, 499 

the shapes of the empirical cumulative distributions of 2H incorporation were compared between 500 

WT and HD datasets using the two-sample Kolmogorov-Smirnov test. Complementarily to class 501 

and distribution comparison, an effect size estimation using the Effsize42 R package was 502 

employed to obtain Cohen’s d values that measure the extent of overlap between the distributions 503 

of WT and HD mice. Cohen’s d statistic is used to indicate the standardized difference between 504 

two means (difference between two means divided by the pooled standard deviation). Unlike 505 

ANOVA test, effect size calculations are independent of sample size, thus preventing 506 

overestimation of the significance of differences between the large number of individual spectra 507 

(pixels) collected in MSI experiments43. Cohen’s d absolute values of 0.1, 0.2 and 0.3 were set as 508 

thresholds corresponding to a small, medium, and large effect size respectively, based on 509 

recommendations from Gignac and Szodorai (2016)44. In metabolic turnover studies, small and 510 
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medium effect sizes (Cohen’s values < 0.3) are indicative of perturbations in metabolic synthesis 511 

which may have major implications for lipid homeostasis and be highly associated with disease 512 

phenotypes. 513 

Additionally, a generalized linear model was used to compare pixel proportions below or above a 514 

pre-defined magnitude threshold of 2H incorporation between two experimental groups. In all 515 

cases, false discovery rate (FDR) correction was performed using Benjamini Hochberg 516 

correction45, and FDR-adjusted P value < 0.05 were considered significant. As a final step, 517 

customizable volcano plots were built to summarize the results from the above statistical tests. 518 

The color codes for the volcano plots were inherited from a custom-built database providing the 519 

neuronal compartment, cell-type and known neuronal functions of individual lipid features to 520 

facilitate data interpretation (Table S3). 521 

For 2H-labelled LC-MS samples, statistical comparison of 2H incorporation was performed 522 

between WT and HD mice using One-way ANOVA test followed by a Tukey HSD post-hoc 523 

testing and P value < 0.05 were considered significant. 524 

Pathway enrichment analysis  525 

Pathway enrichment analysis was performed through a Fisher exact test, using a custom-curated 526 

pathway database. An in-house pathway database was created by categorizing the detected lipid 527 

features based on their known biological functions/processes, cell type and cellular compartment, 528 

using previously published studies (For details, refer to Table S3). An FDR P value of 0.05 was 529 

used to assess significance. 530 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 3, 2022. ; https://doi.org/10.1101/2022.08.31.505954doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.31.505954
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

DATA AVAILABILITY 531 

The paired *.ibd and *.imzML files of all kMSI datasets were deposited in Metaspace at 532 

https://metaspace2020.eu/api_auth/review?prj=bd3f06aa-36d8-11ec-96db-533 

8319877174c6&token=eZWzn30yL6FP. Additionally, the raw data matrices (.csv files) and the 534 

*.ibd and *.imzML files have also been deposited in Figshare at 535 

https://figshare.com/s/a7a8940071e04e74c0b2. 536 

CODE AVAILABILITY 537 

 A comprehensive and detailed step-by-step guide for installing and using the KineticMSI 538 

package can be found on GitHub (https://github.com/MSeidelFed/KineticMSI). Alternatively, it 539 

can be directly installed into any R environment using devtools::install_github 540 

(‘MSeidelFed/KineticMSI’). Additionally, the guidelines to format the input tables for adapting 541 

kinetic LC/GC-MS data for usage with the KineticMSI R package can be found on GitHub 542 

(https://github.com/MSeidelFed/KineticMSI_2_kLCMS). An installation of R (Version R-3.6.2 543 

or higher), Microsoft Windows operating systems and a CPU with at least 16GB RAM is 544 

recommended to run the workflow. 545 
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FIGURE LEGENDS 670 

 671 

Fig. 1. Schematic representation of the kMSI experimental workflow. (1) WT and HD mice (n 672 

= 6/group) at 16 weeks age were administered 2H via an intraperitoneal (IP) bolus dose and 673 

infusion of 2H2O in drinking water. Unlabeled control animals were provided free access to regular 674 

drinking water. (2) Brains were hemi-sectioned. (3) Left hemisphere was cryo-sectioned to obtain 675 

coronal hippocampal sections (20 μm). (4) Thaw-mounted sections were vacuum-desiccated 676 

followed by spray-deposition of norharmane matrix. (5) MALDI-FT-ICR-MSI, 30 × 30 µm array. 677 

(3`) Right hemisphere was dissected (hippocampus, frontal cortex, striatum) (4`) Homogenized brain 678 

regions were subjected to monophasic lipid extraction. (5`) LC-Orbitrap-MS/MS. (6) KineticMSI 679 

was used to identify lipids with differential deuterium (2H) incorporation in the hippocampal CA1 680 

sub-field (shown by black and white arrowheads) of HD versus WT mice.  681 

Fig. 2: Schematic representation of KineticMSI workflow for processing and analyzing 682 

kMSI datasets. a, Module 1: 1, Preparation of input matrices; 2, Deletion of MSI pixels with 683 

low quality data or missing values; 3, natural isotopic abundance (NIA) correction; 4, derivation 684 

of various isotope tracer proxies; 5, definition of the most suitable isotope tracer proxies and 6, 685 

reconstruction of KineticMSI images. b, Module 2: 7, data quality assessment and 7`, statistical 686 

comparison using pixel population means; the second approach includes: 8, spatial segmentation 687 

into coherent pixel subsets based on tracer incorporation and 8`, statistical comparison using the 688 

pixel subset means; and the third approach includes: 9, evaluation of pixel proportions that fall 689 

under a user-defined tracer incorporation range and 9`, class comparison using enriched pixel 690 

proportions across experimental samples. 10, statistical summary of the results obtained using 691 

the above-mentioned approaches in steps 7, 8 and 9. 692 

Fig. 3. Visualization of spatial isotope labelling patterns within CA1 hippocampal sub-field. a, 693 

Boxplot representation of 2H incorporation in PI 38:4 (m/z 885.5) of WT and HD mice (n = 694 

6/group). b, KineticMSI images depicting spatial heterogeneity of 2H incorporation (%) in PI 38:4 695 

of individual WT and HD replicate datasets. Lower (closer to 0%) and higher values (closer to 696 
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100%) of 2H incorporation indicate decreased and increased lipid synthesis respectively. c, K-697 

mean clustering (k = 5) based on 2H incorporation (%) in PI 38:4 through the R package 698 

ComplexHeatmap41 showing pixel subsets with low (yellow) to high 2H incorporation (purple).  699 

Intensity images of d, M0; e, M1 isotope and f, isotope ratio (M1/M0) for PI 38:4 of a representative 700 

WT-HD replicate pair using SCiLS Lab software. g, K-means clustering (k = 5) based on M1/M0 701 

image of PI 38:4 using SCiLS Lab software, showing top five k-mean clusters and number of spectra 702 

in each cluster (right). Scale bar – 500 µm. 703 

Fig. 4. Differential analysis of 2H incorporation in brain lipids of WT and HD mice using pixel 704 

population means. a, Boxplot representation showing no significant difference between mean 2H 705 

incorporation in PI 36:4 (m/z 857.5) between WT and HD mice (n=6/group) using GLM. b, 706 

Kolmogorov-Smirnov (KS) test and effect size estimation (Cohen’s d values) of 2H incorporation in 707 

PI 36:4 showing significantly different 2H incorporation of WT (blue) and HD mice (red). c, 708 

Volcano plot – bottom left (Cohen’s d values (X-axis) versus -log10 FDR-adjusted P value from 709 

GLM (Y-axis)) showing no significant difference in mean 2H incorporation in lipid features WT 710 

versus HD mice. Volcano plot – bottom right (Cohen’s d values (X-axis) versus -log10 FDR-adjusted 711 

P value (Y-axis) using KS test) showing significantly different distributions of 2H incorporation in 712 

lipid features of WT and HD mice. Cohen’s d values ≥ 0.3 indicate differentiation of WT and HD 713 

mice. Each dot represents individual lipid feature coloured by known anatomical location in mouse 714 

hippocampus. Grey dots represent features that have no defined category in the custom-built library 715 

provided for pathway enrichment analysis (Table S3). Significantly changed features are highlighted 716 

and labelled. d, Bar plot representation showing the results of pathway enrichment analysis (-log10 717 

FDR-adjusted P value from the Fisher exact test (X-axis) versus functional categories associated with 718 

the detected lipid features in our study (Y-axis)). Functional categories are colored by lipid class, 719 

cellular activity, compartment, cognitive function, known HD pathology and neuroprotection to 720 

enhance interpretation of results (BDNF – Brain-derived neurotrophic factor; LTP – Long-term 721 

potentiation). Values denotes the proportion of lipids with significantly altered 2H incorporation in 722 

each functional category. Red line denotes significance P < 0.05.  723 

Fig. 5. Differential 2H incorporation in lipids of WT and HD mice using pixel cluster 724 

means. a, Volcano plot (Cohen’s d values (X-axis) versus -log10 FDR-adjusted P value from 725 

GLM (Y-axis)) showing mean 2H incorporation in PI 36:4 (m/z 857.5) WT versus HD mice (n = 726 

6/group). Cohen’s d values ≥ 0.3 indicate differentiation of WT and HD mice. Each dot 727 

represents the individual cluster pixel subset comparison from PI 36:4 coloured by known 728 

anatomical location in mouse hippocampus. Grey dots represent features that have no defined 729 

category in the custom-built library provided for pathway enrichment analysis (Table S3). 730 

Significant cluster pair showing differential 2H incorporation highlighted in bold b, Boxplot 731 

representation showing multiple pairwise comparison of pixel subset means 2H incorporation in PI 732 

36:4 between WT and HD mice (n=6/group) using One-way ANOVA followed by Tukey HSD test. 733 

c, Kolmogorov-Smirnov test and effect size estimation (Cohen’s d values) of 2H incorporation in PI 734 

36:4 showing significantly different pixel subset pair (HD_92 versus WT_125) of WT (blue) and 735 

HD mice (red).  736 

 737 
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ADDITIONAL INFORMATION 738 

Extended Data Figures 739 

Extended Data Fig. 1. Visual evaluation of distribution of 2H incorporation in target lipids 740 

across MSI pixels of WT and HD kMSI datasets. a, Data distributions of 2H incorporation in 741 

SHexCer 40:2 (m/z 860.5) across MSI pixels of individual WT and HD replicate datasets 742 

(n=6/group). b, Evaluation of the correctness of random sampling of MSI pixels from WT and HD 743 

mice (index of all lipid features detected across the MSI pixels of WT and HD kMSI replicate 744 

datasets (X-axis) versus ratios of 2H incorporation mean and standard deviation from randomly 745 

sampled sub-subsets and the entire datasets (Y-axis). c, Evaluation of the distribution of 2H 746 

incorporation in SHexCer 40:2 using the R package RandodiStats. Based on the suggested link i.e., 747 

Gaussian distribution (shown by black arrow), a parametric test (GLM) was applied for mean 748 

comparison of 2H incorporation in SHexCer 40:2 between WT and HD mice. 749 

 750 

Extended Data Fig. 2. Sub-setting kMSI datasets into coherent pixel subsets based on 2H 751 

incorporation. a, Schematic diagram showing sorted matrices from all biological replicates (n = 752 

6/group) (left) and subset matrices obtained through hierarchical clustering (k=2) corresponding to 753 

‘low’ (black) and ‘high’ 2H (red) enrichment zones (right). b, Density histogram showing significant 754 

number of coherent partitions found across the evaluated features. Blue box highlights lipid features 755 

that returned two partitions based on 2H incorporation. c, Cluster dendrogram for PI 38:4 (m/z 885.5) 756 

showing optimum number of significant clusters (K=2) returned by bootstrapped hierarchical 757 

clustering algorithm. d, Reconstructed kMSI images displaying spatial distribution of significant 758 

cluster subsets obtained based on 2H incorporation from WT and HD mice. Clusters corresponding to 759 

‘low’ and ‘high’ zones of 2H incorporation are highlighted in yellow (Cluster ID - 1) and purple 760 

(Cluster ID - 2). Grey pixels represent pixels that were excluded from analysis during random 761 

sampling process. 762 

Extended Data Fig. 3. Heatmap representation showing the comparison of 2H enriched 763 

pixel proportions between WT and HD mice. The example shown here uses pixel proportions 764 

displaying high metabolic activity (> 15% 2H incorporation). K-means analysis was used to 765 

perform clustering of consolidated data matrices into clusters (k = 3) displaying similarity in 2H 766 

enriched pixel proportions. FDR adjusted P values obtained by performing class comparison of 767 
2H enriched pixel proportions between WT and HD mice (n = 6/group) using GLM have been 768 

provided on the right. The significance level has been set to P < 0.05 (black bars). Only the 769 

significantly changed lipid features have been labelled in the heatmap. 770 

Extended Data Fig. 4. Differential analysis of 2H incorporation in lipids of WT and HD mice 771 

using homogenized hippocampal tissue by LC-MS. a, Volcano plot (Cohen’s d value (X-axis) 772 

versus -log10 FDR-adjusted P values obtained using one-way ANOVA followed by Tukey HSD post-773 

hoc test (Y-axis)) showing significant differences in mean 2H incorporation in lipid features of WT 774 

and HD mice hippocampi (n = 6/group). Cohen’s d values ≥ 0.3 indicate greater differentiation of 775 

WT and HD mice. Each dot representing an individual lipid feature, is colored based on its known 776 

anatomical location in the mouse hippocampus. Grey dots represent features that have no defined 777 

category in the custom-built library provided for pathway enrichment analysis (Table S3). 778 
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Significantly changed features are highlighted and labelled. b, Mean comparison of 2H incorporation 779 

in CL 72:6 (m/z 1451.9) showing significantly higher 2H incorporation in HD mice, compared to WT 780 

controls (n=6/group). c, Bar plot representation showing the results of pathway enrichment analysis 781 

(-log10 FDR-adjusted P value from the Fisher exact test (X-axis) versus functional categories 782 

associated with the detected lipid features in our study (Y-axis)). Functional categories are colored by 783 

lipid class, cellular activity, compartment, cognitive function, known HD pathology and 784 

neuroprotection to enhance interpretation of results (BDNF – Brain-derived neurotrophic factor; LTP 785 

– Long-term potentiation). Values denotes the proportion of lipids with significantly altered 2H 786 

incorporation in each functional category. Red line denotes significance P < 0.05.  787 
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