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ABSTRACT: Kinetic mass spectrometry imaging (KMSI) integrates imaging-MS with stable
isotope labelling to elucidate metabolic fluxes in a spatiotemporal manner. KMSI studies are
hampered by high volumes of complex data and a lack of computational workflows for data
analysis that additionally address replicated experiments. To meet these challenges, we
developed KineticMSI, an open-source R-based tool for processing and analyzing kMSI datasets.
KineticMSI includes statistical tools to quantify tracer incorporation across replicated treatment
groups spatially in tissues. It allows users to make data-driven decisions by elucidating affected
pathways associated with changes in metabolic turnover. We demonstrate a validation of our
method by identifying metabolic changes in the hippocampus of a transgenic Huntington’s
disease (HD) mouse model as compared to wild-type mice. We discovered significant changes in

metabolism of neuronal cell body lipids (phosphatidylinositol and cardiolipins) in HD mice,
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previously masked by conventional statistical approaches that compare mean tracer incorporation

across brain regions.

INTRODUCTION

Mass spectrometry imaging (MSI) has generated significant interest in biomedical research for
its ability to spatially map the distribution and relative abundances of thousands of metabolites
simultaneously within thin intact biological tissue sections in their native environment*™. When
used in a multimodal imaging approach, such as in combination with immunocytochemistry™®,
MSI allows metabolism to be examined at cell-type resolution, which can aid in understanding
pathogenic mechanisms mediating the onset or progression of disease, and identifying potential
therapeutic targets’. Typically, MSI has been used for acquiring a snapshot of an organism’s
metabolism. However, when coupled to isotope labeling of tissues over time, kinetic MSI
(kMSI) allows greater insight into the dynamic spatial changes in metabolism. First reported in
2013 to study phospholipid biosynthesis in a mouse tumor®, kMSI has since been applied in a
growing number of studies in both animal and plant-based models®™°. kMSI generates a huge
amount of data, and a lack of open-source computational tools that can automate the processing

and analysis of kMSI datasets has hindered wider uptake of the method.

Currently available software for MSI users such as SCIiLS Lab (Bremen, Germany), ClinPro
Tools software (Bruker Daltonics GmbH, Germany), Cardinal*’, MSiReader'®, HIT-MAP" and
others are tailored for the investigation of the classical label-free MSI data from steady-state
metabolomic or proteomic studies but lack features that are critical for the high-throughput
analysis of stable-isotope label (SIL) data. Numerous other software pipelines such as Mass

Isotopomer Distribution analysis®®, DexSI#, X**CMS?#, and geoRge®® are available for
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performing differential isotopic tracer labelling analysis, however these software packages have
been specifically designed to support SIL data generated by traditional non-MSI approaches (i.e.,
gas and liquid chromatography-mass spectrometry (GC/LC-MS))"?*?. While GC/LC-MS
approaches are crucial for providing higher specificity and a broader metabolome coverage,
these methods typically entail averaging metabolic flux across a whole tissue containing a
heterogeneous population of cells, thereby compromising spatial information. Previously
developed kMSI analysis pipelines do provide visualization of isotopic ratio images'® and spatial
patterns of tracer incorporation within tissues®®?®; and enable quantitative analysis of region-
specific metabolism within organs®’. However, these tools lack the statistical pipelines that allow
users to conduct relative quantification of tracer incorporation between two treatment groups,
such as normal versus pathophysiological circumstances, which is essential for biomedical
research. In addition, it is difficult to confidently measure differential tracer incorporation
between two groups, when tissue(s) display spatial heterogeneity in tracer incorporation®*. The
development of computational tools using freely available computational software (such as R)
would aid the accessibility of data analyses pipelines. Further enhancements would be provided
by tools that can streamline the entire data analysis workflow of KMSI datasets and allow users

to evaluate region-specific changes in metabolic activity, which show spatially heterogenous

tracer incorporation.

Here we present an open-source tool for systematically analyzing data derived from kMSI
experiments, KineticMSI, which operates in R and is connected to other freely available MSI-
related R packages. Key features include an automated workflow for: (1) Quality control and
data pre-processing, including options to select the best tracer incorporation proxy in high

isotopic quality spatial points (pixels); (2) Visualization of spatial dynamics of isotopic tracer
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incorporation and quick exploration of isotopic labelling patterns using unsupervised K-means
clustering; (3) Coherent partitioning of replicated MSI datasets into spatial subsets comprising
regions of similar tracer incorporation status and concomitant relative quantification of tracer
incorporation across conditions before or after partitioning; and (4) Elucidation of significantly
impacted pathways associated with the detected metabolic and proteomic changes. We applied
the developed method to measure metabolic changes in a deuterium (?H) labelled hippocampus
from a Huntington’s disease (HD) mouse model transgenic for the human huntingtin exon 1 gene
fragment, versus non-transgenic wild-type (WT) littermate controls. We focused our attention on
the neuron rich hippocampal subfield, Cornu Ammonis (CA1) pyramidal layer, for further
analysis. The CA1 layer is vitally important for the induction of long-term potentiation (LTP)
and long-term depression (LTD), mechanisms that underlie synaptic plasticity?® and
hippocampal-dependent cognitive functions such as learning and memory®. We explored spatial
heterogeneity in metabolic activity using a statistically validated unsupervised clustering
approach based on ?H incorporation and uncovered distinct metabolic states in HD

mice, where conventional statistical approaches using mean values across brain regions failed.

RESULTS

Experimental design to determine in vivo metabolic kinetics

Metabolic changes are fundamental to HD pathology. Yet it is not clear how these changes arise
longitudinally as symptoms and aggregate pathology develop, and where these changes occur
(i.e., which hippocampal sub-region and cell types). Here we validated our package KineticMSI
by examining metabolic changes spatially within the neuron enriched CA1 hippocampal

pyramidal sub-field (Fig. 1, S1) of the R6/1 mouse model of HD*, relative to age-matched WT
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112 mice (n=6/group). The R6/1 model involves the transgenic expression of the exon 1 gene

113 fragment of human huntingtin containing the CAG expansion mutation, which is sufficient to
114  cause disease-relevant pathology. To establish our dataset, we subjected WT and HD mice to
115  isotope labeling through deuterated water following established protocols®, at an age

116  corresponding to post-onset of phenotype (16 weeks) (Fig. 1). Our design was aimed at

117 monitoring lipid synthesis by measuring the percentage of ?H incorporation into lipids detected
118 by MALDI-MSI of each mouse hippocampus harvested eight days post-labelling. We selected
119  eight days as a suitable timeframe for labelling mice as this timepoint resulted in ~30-50% °H
120  incorporation into the metabolic targets (Tso) across lipid classes (with at least a single

121 substitution of *H atom by ?H), which was sufficient to facilitate downstream statistical

122 analysis. Around this timepoint, ?H concentrations in the body water have been shown to

123 equilibrate at approximately 5% (v/v)*® and at this point, metabolic processes are expected to
124  have reached a steady state. We analyzed the unlabeled lipid pools of an equal number of WT
125  and HD mice using the classical label free-MSI approach to determine the baseline natural
126  abundance lipid pools. In parallel, to gain a thorough understanding of the changes in *H

127  labelling in lipids found in the whole hippocampal tissue, we performed LC-MS on matched
128  brain hemispheres (labelled and label-free) to confirm the identity of the lipid species and

129  compare “H-labelling trends achieved by kMSI.

130  KineticM SI wor kflow

131 To develop our software, several considerations were made. First, to enable users to handle the
132 highly complex data generated by kMSI and decide the appropriate statistical approach, we
133 designed KineticMSI to function as two modules covering different steps. The first module

134  facilitated data quality assessment, calculation of H incorporation in a pixel-wise manner and
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135  visualization of the spatial dynamics of “H incorporation within the tissue, through the

136  reconstruction of KineticMSI images (Fig. 2a). We found that the following proxies provide the
137  best ways to measure features of 2H incorporation: (1) first isotope ratio (M1/My); (2) total

138  isotope fraction (M1/(Mg+M3)); (3) newly synthesized pools (corrected >, My + My); and (4)

139 the percent ?H incorporation ((corrected Y My + My) / (corrected Mo + corrected ¥ My + M) *
140  100)). Most importantly, the first module enabled selection of high-isotopic quality spatial points
141 (i.e., pixels displaying interpretable isotopic peak profiles) and metabolic features to assess

142  spatial differences in metabolic activity between two experimental groups.

143 The second module provided statistical tools to perform relative quantification and comparative
144  analyses of 2H incorporation in individual metabolic features between two samples (Fig. 2b). To
145  enable statistical class comparison of ?H incorporation in targeted lipid species between WT and
146 HD mice (n=6/group), two main approaches were used for computation of mean 2H

147  incorporation (Fig. 2b): (1) H incorporation means of the complete MSI pixel population across
148  the entire region of interest, herein termed pixel population mean, and (2) *H incorporation

149  means of coherent pixel subsets or clusters that share similar ?H incorporation within a region of
150  interest, termed pixel cluster means. The clustering of MSI pixels based on ?H incorporation was
151 performed using unsupervised internally validated, clustering-based approaches. The first

152  approach may be applied to KMSI datasets that display relatively homogenous incorporation of
153  isotopic tracer within the tissue of interest. By contrast, the second approach is suitable for kMSI
154  datasets exhibiting intra-tissue spatial heterogeneity, and accounts for this spatial heterogeneity,
155  prior to performing statistical comparison between treatment groups. Additionally, an extra

156  feature allowed comparison between zones of different metabolic activity from two experimental

157  groups, using a provision to compare pixel proportions that are below or above a pre-
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defined threshold of 2H incorporation. Finally, we performed a pathway enrichment analysis to
identify significantly enriched functional categories and determine which metabolic pathways or
molecular functions are associated with metabolites showing significantly altered *H
incorporation. For illustrative purposes, we have applied all KineticMSI tools to our exemplary
dataset. To aid interpretation of the spatial data, single lipid ion images and reconstructed kKMSI
images were used to display differential H incorporation. Additionally, we have applied
KineticMSI tools to a matching LC-MS/MS dataset from equivalent biological specimens for

comparing the trends in isotope labelling obtained from kMSI datasets (Extended Data Fig. 4).

KineticM Sl application
Data pre-processing and spatial reconstruction of KineticM SI images

As a first step, we used KineticMSI to perform data quality control by removing MSI data pixels
with missing values to ensure that they do not affect the interpretation of real spatial °H
incorporation dynamics in downstream calculations. Next, we corrected the data for baseline
levels of natural isotopic abundance and calculated the percent “H incorporation across all spatial
points using the IsoCorrectoR R package® (for detailed procedure, see Supplementary note 1 and
Fig. S2). In the HD mouse brain dataset, we found the percentage of H incorporation i.e., the
ratio of newly synthesized and total lipid pools was selected as the most suitable proxy for
measuring lipid synthesis using the selection procedure outlined in Supplementary Note 2 (Fig.

S3).

To visually assess the spatial dynamics of H incorporation within the tissue, we generated
KineticMSI images by mapping the nominal values of °H incorporation using the acquired MSI

coordinates. For most lipids, we observed spatial heterogeneity evidenced by varying degrees of

8
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180  2H incorporation across the spatial points within the tissue. The pixel-to-pixel variation in *H

181  incorporation is reflected by the dispersion of the data points in the scatterplot featuring °H

182  incorporation in Pl 38:4, m'z885.5 (10 — 20%) across WT and HD replicate datasets (Fig. 3a).
183  This variation can also be visualized as color gradations in the reconstructed kMSI image of Pl
184  38:4in WT and HD replicated datasets (Fig. 3b). There are zones of higher H incorporation

185  (gold) and zones of lower ?H incorporation (dark purple). Indeed, to gain a quick visualization of
186  spatial patterns of metabolic synthesis, we performed K-means analysis based upon similarity in
187  2H incorporation and identified distinct clusters within the CA1 hippocampal sub-field of each
188  MSI replicate dataset of WT and HD mice (Fig. 3c). This finding led us to utilize statistical

189  approaches to account for the evident spatial heterogeneity in ?H incorporation, prior to statistical
190  comparison of 2H incorporation between WT and HD mice, thus bypassing the limitation of

191  averaging °H incorporation from individual spatial points across a large tissue area, a matter that
192 will be discussed in the next section.

193  We benchmarked our results against SCILS Lab (Fig. 3d-g), where we visualized the intensity
194  image of Mo (Fig. 3d), M (Fig. 3e) and the isotope ratio image (i.e. M feature normalized to its
195 Mo m/zfeature, M1/Mo) for P1 38:4 (Fig. 3f) for determining *H incorporation in Pl 38:4. As

196  suggested by the isotope ratio (M1/My) image for P1 38:4 (Fig. 3f), we found spatial

197  heterogeneity in 2H incorporation reflected by the color gradations within the CA1 sub-field of
198  WT and HD tissues (black arrows). In contrast to our results, segmentation of the hippocampal
199  CAL1 sub-field using K-means analysis in SCIiLS Lab was unable to reveal any distinct spatial

200  patterns based on the isotope ratio (M1/My) for P1 38:4 in WT and HD mice (Fig. 3g).

201 Differential analysisof ?H incorporation between WT and HD mice
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202 To statistically compare ?H incorporation in targeted lipid species between WT and HD mice, we
203 used two approaches that include: mean comparison using (1) pixel populations and (2)

204  coherent-clustered pixel subsets that share similar H incorporation.

205  Comparison using pixel population mean reveals no differencein ?H incor poration between

206 WT and HD mice

207  To calculate *H incorporation pixel population means, we first addressed the challenge of

208  variability in the number of pixels across individual kMSI replicates by randomly sampling a
209  matching number of pixels equal to the pixel number of the smallest dataset (For the procedure
210  used to assess the correctness of random sampling approach, see supplementary note 3 and

211 Extended Data Fig. 1b for details). We then evaluated data distributions of ?H incorporation

212 across the selected MSI pixels of the CAL hippocampal sub-field (See supplementary note 3 and
213 Extended Data Fig. 1a, b and d for details) and compared pixel population means i.e., mean ?H
214  incorporation in the target lipids across the entire CA1 hippocampal sub-field. This analysis

215  revealed no significant changes in mean ?H incorporation between WT and HD mice (Fig. 4c,
216  bottom left), demonstrated using the neuronal lipid P1 36:4 (n/z857.5) (Generalized linear

217  models, FDR-adjusted P value = 0.93) (Fig. 4a). However, when we compared the shapes and
218  the extent of overlap of the distribution of H incorporation in P1 36:4, we found significantly
219  different distributions between WT and HD mice, as evident by a rightward shift in the

220  cumulative frequency plot of HD (red) compared to WT mice (blue) (Kolmogorov- Smirnov test,
221  FDR-adjusted P value = 0.01 and Cohen’s d value = 0.76) (Fig. 4b). This significantly altered
222 distribution in ?H incorporation was observed across the majority of neuronal cell body enriched

223 lipids such as PI 38:4 and PI 38:5 (m/z 883.5) and synaptic lipids such as PA 34:1 (m/z673.48)

10
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and GM1 36:1 (m/z 1544.8), indicative of a significantly higher ?H incorporation in HD mice
(Fig. 4c, bottom right). This scenario suggested that averaging *H incorporation across pixels
displaying spatial heterogeneity in *H labelling could potentially mask significant differences in
’H incorporation between WT and HD mice. The pathway enrichment analysis based on lipids
that significantly change their distributions, identified neuronal cell body lipids (Fisher’s exact
test P value = 0.001) as a significantly enriched functional category. This category is associated
with lipid features displaying a trend towards higher H incorporation in HD mice (Fig. 4d).
Furthermore, we observed a shift from a bimodal distribution in H incorporation in WT mice to
a unimodal distribution in HD mice (Fig. 4b) that led us to hypothesize the existence of distinct
clusters or sub-populations of pixels/cells with similar ?H incorporation within the CA1

hippocampal sub-field of the mouse hippocampus.

Clustering analysis reveals significant differencesin H incor poration between WT and HD

mice

To test for the presence of pixel subsets sharing similar °H incorporation within the hippocampal
CAL1 sub-field, we performed tissue segmentation based upon similarity in ?H incorporation in an
unsupervised manner, independently within the WT and HD groups (n=6/group). This revealed
the presence of two coherent pixel clusters of H incorporation (AU-P value > 0.95) in the
hippocampal CA1 sub-field, corresponding to the ‘low” and ‘high’ ?H enrichment zones
(Extended Data Fig. 2a). The partitioning into two coherent clusters of MSI pixels based on the
degree of 2H incorporation was observed in the majority of lipid features, as confirmed by the
density histogram summarizing the number of significant clusters found across the evaluated

lipid features (Extended Data Fig. 2b). The cluster dendrogram of the lipid Pl 38:4 (m/z 885.5)

11
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246 shows two significant pixel cluster subsets (AU-P value = 0.95) obtained by sub-setting the

247 kMSI data structure based on the extent of H incorporation (Extended Data Fig. 2c).

248  In addition, we visualized spatial patterns of metabolic synthesis by mapping the obtained

249  significant clusters subsets onto the original MSI images and found areas of preferentially high
250  versus low ?H incorporation that potentially reflect the presence of “metabolic hotspots” versus
251 “metabolically inactive” areas within the CA1 hippocampal sub-field of WT and HD mice.

252 These metabolic patterns were particularly evident in the neuron-enriched lipid Pl 38:4, which
253 showed spatial constraints in °H incorporation with the high H enrichment zones (yellow)

254  localized at the edges of the hippocampal CAL field in the WT mice. On the other hand, the HD
255 mice showed a more dispersed distribution of ‘high’ and ‘low’ ?H incorporated pixels,

256  suggesting a potential loss of spatial coordination in lipid synthesis in HD mice (Extended Data
257  Fig. 2d). These results confirm the intra-tissue spatial heterogeneity in H incorporation as

258  observed in PI 38:4 (Fig. 3a) and implies the presence of cellular sub-populations with their own
259  distinct °H incorporation dynamics into the target lipid pools within the CA1 hippocampal sub-

260  fields of WT and HD mice.

261 Next, using the coherent pixel clusters obtained from the above clustering analysis, we compared
262 mean °H incorporation from each cluster pair of individual lipid features between WT and HD
263 mice. This analysis identified lipids showing significant differences in ?H incorporation in

264  majority of the neuronal cell body enriched lipids such as Pl 36:4 (m/z857.5), P1 38:5 (nvz

265  883.5) and PG 44:12 (m/z 865.5) and synaptic lipids such as CerP 23:3 (m/z788.5) and PA 36:4
266 (M/z695.5) in HD mice, relative to WT controls (Fig. S4a). Using the lipid Pl 36:4 as an

267  example, Fig. 5a highlights the multiple comparisons performed between the cluster pairs of WT

12
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268 and HD mice. We found a significant increase in °H incorporation in P1 36:4 in HD mice, when
269  the comparison was performed using both pixel cluster means using One-way ANOVA followed
270 by post-hoc Tukey HSD test (Fig. 5b) and distribution of °H incorporation across MSI pixels
271 between WT and HD mice (Kolmogorov-Smirnov test, FDR-adjusted P value = 0.02 and

272 Cohen’s d value = 2.26) (Fig. 5¢). Therefore, addressing spatial heterogeneity in metabolic

273 activity, prior to statistical comparison of “H incorporation between WT and HD mice revealed
274  distinct clustering patterns and significant changes in ?H incorporation in lipids of HD mice,

275  compared to WT controls (Fig. S4a) that were otherwise masked by comparing overall

276  population means of “H incorporation across the entire CA1 hippocampal sub-field (Fig. 4c,

277 bottom left).

278  Exploration of ‘metabolic hotspots’ reveals distinct metabolic statesin HD mice

279  Next, we explored metabolically active zones by comparing proportion of pixels with ‘high

280  metabolic activity’ i.e., pixels exhibiting at least half of the total ?H incorporation detected (i.e.,
281  >15%) between WT and HD mice. The outcome of this analysis represented by a graphical

282 heatmap (Extended Data Fig. 3) showed significantly higher proportion of ?H enriched (> 15%)
283 in the majority of lipid features of HD mice, relative to WT controls. This shift towards higher
284  metabolic activity state in HD mice is in agreement with the significant increase in °H

285 incorporation observed in HD mice, relative to WT controls using the above-mentioned

286  statistical approaches. Hence, our results provide a strong basis for exploring pixel subsets

287  sharing similar tracer incorporation between two groups of interest, prior to statistical

288  comparison of tracer incorporation across the entire tissue to avoid misinterpretation of the

289  statistical results.

13
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DISCUSSION

Here we describe KineticMSI, an open-source automated R-based pipeline to process and
analyze the enormous amount of data generated isotope-labelled MSI data. We applied
KineticMSI to show how different lipid metabolites changed their apparent synthesis rates in the
hippocampus of HD mouse model, relative to control mice. KineticMSI package has the
potential to work with any isotope labelled MSI data such as *H, *C, **N, 0 and **S. Our
workflow incorporates a range of statistical tools to conduct relative quantification of isotopic
tracer incorporation into common biomolecules (proteins, metabolites, lipids) and compare tracer
incorporation between different treatment groups containing multiple KMSI replicate sets that
display intra-tissue spatial heterogeneity. This work is significant as it is the first to address the
challenges posed by the need for replication in kMSI studies. Furthermore, KineticMSI allows
users to take data-driven decisions by providing a tool for the elucidation of significantly
perturbed pathways, thus providing an in-depth assessment of the detected metabolic turnover
changes and avenue to gain mechanistic insights into (disease) biology in a wide range of
systems.

While previous methods described for analyzing *C or 2H-MSI experiments potentially fulfill

the need to examine distinct isotopic labelling patterns spatially in vivo %%’

, the originality of
our method relies on its features that facilitate statistical comparison of tracer incorporation
between experimental groups (containing multiple replicate datasets) displaying regional spatial
heterogeneity in tracer incorporation. This feature not only allows users to investigate region and
sub-region-specific changes in metabolic activity across different biological systems but also

paves the way toward understanding metabolic synthesis shifts under pathological conditions.

Moreover, while tissue segmentation maps provided by the available MSI-data analysis software
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313 suchas SCiLS Lab (Bremen, Germany), Cardinal*’ and others are based on spatial distribution of
314  metabolites, KineticMSI complements these existing methods by providing additional features to
315  perform segmentation based on a user-defined isotope tracer incorporation proxy and

316  downstream statistical analysis. While SCiLS Lab allows for the visualization of isotope ratio
317 (M1/My) images, it does not compute the percent 2H incorporation which takes into the account
318  all the detected labelled isotopic peaks (M1, My, ...M,) (see supplemental note 2 and Fig S2 for
319  further explanation on the reason behind why isotope ratio (M1/My) is not ideal for calculation of
320  H incorporation). Moreover, SCiLS Lab permits visualization of isotope ratio (M1/Mg) images
321 on an individual basis for each metabolic feature using single ion normalization (Mo) and hence
322 does not permit high-throughput analysis of kMSI datasets. Indeed, the inability to reproduce the
323 segmentation results using SCiLS Lab (Fig. 3g) and Cardinal'’ (Fig. S5a) was likely due to the
324  limitations related to the pre-processing of kMSI datasets by these methods that include: (1) Lack
325  of a feature to filter out pixels with missing values from either the monoisotopic peak (Mo), the
326  isotopologue peaks (M3, My, ...M,), or both; (2) Omission of the correction for natural isotopic
327  abundance for calculating “H incorporation; and (3) Inability to compute the percent H

328  incorporation.

329  Furthermore, the bootstrapped HCA approach - pvclust® implemented in our workflow is

330  superior to conventional K-means clustering algorithms as it computes a statistical measure

331 i.e., Approximately unbiased probability values (AU-P values) for each cluster and only returns
332 the most robust and significantly valid clusters that satisfy the significance threshold i.e., the

333  AU-P value. This feature permits simultaneous visualization and identification of isotopic

334 labelling patterns of several target biomolecules such as proteins, metabolites and lipids within
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335 the tissue, thus allowing researchers to capture in vivo kinetics of metabolic or protein synthesis
336 inahigh throughput manner.

337  Inthis work, we validated our method by discerning metabolic changes in samples obtained from
338  the hippocampus of a Huntington’s disease (HD) neurodegenerative disease mouse model,

339 compared to wild-type (WT) mice. We first generated KineticMSI images to visualize H

340  incorporation dynamics in a pixel-wise manner and found spatial heterogeneity in *H

341  incorporation in the examined lipids across the MSI pixels of CAL hippocampal sub-field of both
342 WT and HD mice. The pixel-to-pixel variability in 2H labelling is not due to the differences in
343 concentration or ionization efficiency of the features examined, and the percent ?H incorporation
344 is independent of the absolute abundances of monoisotopic peak (My) and the labelled

345  isotopologue peaks (M3, My, ...M,), but rather depends on their ratios. This suggests the

346  presence of metabolically heterogeneous cellular sub-populations within the CA1 hippocampal
347  sub-field. This is not surprising, given the complex cellular heterogeneity of the brain,

348  characterized by the presence of multiple neuronal and non-neuronal cell-types (including sub-
349  types) with diverse functional and metabolic characteristics®>*. In agreement to our study,

350  spatial heterogeneity has also been reported in phospholipid synthesis within the mouse tumor

351 tissue by previous kMSI-based studies®.

352 Although the presence of metabolically heterogeneous cellular sub-populations within a tissue of
353 interest adds a new level of complexity for data interpretation, in the current work, we present
354  clustering approaches that extract distinct labelling patterns to account for regional heterogeneity
355 in tracer incorporation, prior to statistical comparison of tracer incorporation between two

356 conditions. Indeed, by addressing spatial heterogeneity in °H incorporation in the examined

357 lipids of WT and HD mice, we uncovered distinct metabolic states with significantly higher H
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358 incorporation in the lipids of HD mice, relative to WT controls, that failed to be revealed by
359  comparing the overall mean ?H incorporation across the entire hippocampal sub-field. These
360  findings highlight the importance of acknowledging the presence of intra-tissue spatial

361  heterogeneity in isotopic tracer incorporation in relatively homogenous regions which, when
362  unaccounted for, can potentially obscure significant differences in tracer incorporation between
363  two treatment groups, which could mislead statistical analysis and lead to incorrect interpretation
364  of biology. Indeed, the LC-MS study confirmed a significantly higher H incorporation in

365  majority of neuronal lipids in the hippocampal tissue of HD mice, relative to WT controls

366  (Extended Data Fig. 4a), thus reproducing the trend observed in the KMSI study. The higher
367  number of significantly impacted functional categories reported by LC-MS represent the global
368  changes measured across the entire hippocampal region and are in contrast to the changes observed
369 inthe CAL hippocampal sub-field measured using kMSI, thus confirming the loss of sub-field

370  specific changes in metabolic activity measured using MSI (Extended Data Fig. 4c).

371 The modular design and multi-step analysis in the KineticMSI workflow provides maximum
372 flexibility to the users to optimize strategies and parameters at different stages of the data

373 analysis workflow to suit the needs of the system under investigation. Moreover, the entire

374  workflow has been written using base R objects and classes, with some method dependencies to
375  S3and S4 packages. This allows users to avoid executing the entire workflow every time, by

376  bypassing some of the functions if their data is already in an optimal state.

377  Although we have used isotopic labelled data from a single time-point for illustration purposes,
378  the same workflow can be readily applied to analyze time-series kMSI datasets to perform

379  metabolic flux analysis. By default, the filtering parameters cater to a partially labelled state
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since a short isotope labelling period of eight days was followed in the illustrated example
dataset. Nevertheless, we have implemented a parameter that allows users to apply the statistical
workflow to a fully labelled state. Moreover, KineticMSI package is generally applicable to
isotope labelled data generated from traditional metabolomic approaches such as GC/LC-MS

(For details on formatting input tables, see Methods section).

Prior to the implementation of the KMSI workflow, we recommend assessing the separability of
the tissue of interest by applying existing spatial segmentation approaches such as SCILS Lab
(Bremen, Germany) (Fig. S1b) and Cardinal'’ to segment the tissue into appropriate spatial
patterns based on biomolecular compositions. This not only serves to reduce the complexity of
the data but also enables statistical comparison between matched segments (i.e., similar tissue
and cell-types) from two groups of interest®, thus accelerating the subsequent downstream
analysis. However, this is not a necessity for the KineticMSI workflow. Also, we have
implemented a standardized batch-effect correction algorithm i.e., ComBat correction®® for
correcting the raw data, in this case applied to steady-state lipid pools; however, there is a
provision for users to apply a normalization method of their choice and generate the input files in

the correct format for further analysis.

One possible limitation of our package is that the bootstrap clustering algorithm used to
segregate pixels based on tracer incorporation may result in arbitrary partitioning of the data,
where pixels with highly similar tracer incorporation can be incorrectly classified into different
clusters. To overcome this issue, we provide the feature to perform cross-validation of the
clusters obtained from the clustering algorithm by comparing cluster means using one-way

ANOVA and Tukey HSD post-hoc testing (Fig. 5B).
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402  Taken together, our results caution against the use of pixel population mean comparisons of

403  tracer incorporation across entire tissues. In order to make valid statistical comparisons of

404  metabolic activity between two conditions, we recommend addressing any spatial heterogeneity
405 in tracer incorporation prior to statistical analysis to facilitate correct downstream data

406  interpretation. KineticMSI provides a comprehensible guide for both bench biologists and

407  computational scientists, thus enabling a broader scientific community to take advantage of the
408  method to analyse kMSI datasets and capture the rapid and dynamic metabolic and proteomic
409  changes associated with healthy and pathological states. In the future, this tool can serve as a
410  valuable resource to accelerate both fundamental and clinical research by facilitating the

411  investigation of biomarkers for early detection of diseases in a range of medical fields, as diverse
412  as cancer, neurodegenerative disease, cardiovascular and immune dysfunctions, parasitology,
413  and plant biology, all of which have been associated with widespread perturbations in metabolic
414  processes. Hence, future work focused on improving collaboration between biologists and

415  computational scientists could pave the way for the development of user-friendly tools that will
416  allow us to better interpret the rich biological data provided by SIL studies and advance our

417  understanding of both normal physiology and the pathophysiology of many diseases.
418 ONLINE METHODS
419  Experimental wor kflow

420  The experimental design for generating KMSI dataset begins with the introduction of deuterated
421 water (99 atom% Deuterium oxide (*H.0), Sigma-Aldrich and 0.9% (w/v) NaCl) via an
422  intraperitoneal injection bolus of 35 pl/gm (body weight), followed by a maintenance dose of 9%

423 (v/v) deuterated water in drinking water, in HD mice and age-matched WT controls (n =
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424  6/group) at 16 weeks of age. Mice were euthanized 8 days post-labelling and the brain tissue
425  was rapidly collected and hemi-sectioned (~ 3 — 5 minutes). While one brain hemisphere (left)
426  was flash-frozen on liquid nitrogen and used for MALDI-MSI, the other matched hemisphere
427  (right) was dissected to obtain the frontal cortex, hippocampus, and striatum, which were

428  homogenized, extracted, and examined in detail using Liquid Chromatography (LC)-MS/MS
429  analysis. The left hemisphere was then cryosectioned at 20 um thickness, followed by the

430  deposition of Norharmane matrix (For details on animal care, sample preparation and tissue

431  collection, see Supplementary note 1-3). Data acquisition of MALDI-MSI was carried out using
432 aBruker SolariX 7T XR hybrid ESI-MALDI-FT-ICR-MS platform at an estimated resolving
433 power of 130,000 at mYz 400 in the negative ionization mode (see Supplementary note 4 for
434  details). Data processing and multivariate analysis of MALDI-MSI data according to a series of
435  tests as outlined in Supplemental Note 5 and 6. The hippocampi from the matched brain

436 hemispheres (right) were homogenized and analyzed using LC-MS/MS operated in the negative
437  and positive ionization mode. Species level lipid annotation for MSI were derived from LC-

438  MS/MS molecular species level annotations (For details on lipid extraction process, acquisition,

439  pre-processing and analysis of LC-MS data, see Supplementary).

440  Preparation of input matricesfor KineticM S|

441  Prior to applying the KineticMSI workflow, we performed data pre-processing using SCILS Lab
442  software (see supplementary for details). Subsequently, we exported the data matrices (.csv files)
443  containing normalized intensities of all mass features including monoisotopic (Mo/Ao) and

444  labelled isotopologue peaks (M1, M2...Mn, where n is the number of nominal mass units added

445  to the monoisotopic mass based on the detected labelled isotopes) from SCILS Lab. The paired

446 *.ibd and *.imzML files were also exported to obtain the file coordinates for generating
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KineticMSI images. Additionally, data matrices containing batch-effect corrected signal
intensities of the monoisotopic (M) peaks of the matched mass features were also exported from
unlabeled controls to determine the most suitable proxy for measuring “H incorporation (see

details in Supplementary Note 2 and Fig. S3).

Kinetic M Sl wor kflow

All the analysis outlined below was performed using the R package KineticMSI

(https://github.com/MSeidelFed/KineticMSI)

Deletion of missing values

In the illustrated example i.e., a partially labelled dataset, pixels that lack either the monoisotopic
peak (Mo/Ao depending on fragmentation), the isotopologue peaks (M1, My, ...M,), or both were
filtered out. Hence, the standard KineticMSI implementation treats pixels that lack an Mo/Ag
signal but have a detected signal intensity in its isotope envelop as an artifact, since in a partially
labelled state the Mo/Ao peak is not expected to disappear due to complete mass shifts to the My,
M, ...M, isotopologues (Fig. S2c¢). However, in a fully labelled state, complete disappearance of
Mo/Ao accompanied by an increase in the signal of its labelled isotopic envelope is possible (Fig.
S2b). Thus, a parameter in the implemented R function was included to allow users to either (1)
delete pixels that only lack M;...M,, isotopologues (applicable to fully labelled states) or (2)
delete pixels that lack both, M;...M, isotopologues and the monoisotopic peak signal (applicable

to partially labelled states).

Calculation of isotope incorporation
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467  Natural isotope correction and calculation of the percent ?H incorporation were performed in a
468  pixel-wise manner by adapting functions from IsoCorrectoR*, an R-based package. The percent

469  2H incorporation was calculated as the ratio of newly synthesized (°H - labelled) and total lipid

470  pool (newly synthesized + pre-existing lipid pools) i.e., ((corrected > My + My + ... M,) /

471 (corrected Mo + corrected X M; + Mz + ... My)) * 100), where n is the number of extra atomic mass

472  units added to the monoisotopic mass based on the detected labelled isotopes. A cross-validation

473 and an alternative function were implemented using IsoCor®, a Python-based module, to confirm
474  the equivalent percentages of background-corrected *H incorporation. To select the most

475  appropriate isotopic H proxy, batch-effect correction of the steady state pools from non-labelled

476  controls was performed using ComBat correction®® as detailed in the SVA package®, followed

477 by its comparison to the H-labelled metabolite steady state pools.

478  Visualization and spatial segmentation based on *H incorporation

479  To recreate kineticMSI images, graphical reconstructions of the MSI images for each metabolite
480  feature were built by mapping 2H incorporation values onto the original coordinate system
481  obtained from the MALDI-MSI platform. To extract the file coordinates from the acquired MSI

482 images, KineticMSI functions use a Cardinal’

dependency, which is an R package designed to
483  perform statistical analysis on MSI datasets. To further explore spatial patterns of metabolic

484  synthesis, MSI pixels were segregated based on similarity in H incorporation independently for
485  WT and HD kMSI datasets. Segregation was done using two unsupervised clustering approaches
486  thatinclude: (1), K-means algorithm (with a user-defined k value = 5) through the R package
487  ComplexHeatmap™; and (2), Hierarchical cluster analysis (HCA) via multiscale bootstrap

488  resampling to return an optimized number of significant clusters that are above a user-defined
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489  significance threshold (Approximately unbiased probability (AU-P)), which is a dependency
490  from the R package pvclust®. For the HD mouse brain dataset, the AU-P value and the bootstrap
491  iteration number ‘nboot” were set to 0.95 (95% confidence) and 1000 iterations respectively to

492  improve robustness and confidence in the resulting clusters.
493  Satistical approaches used for the relative quantitation of ?H incorporation

494  To perform differential analysis of H incorporation between WT and HD mice using both

495  population and cluster means, two approaches for class comparison were used that include: (1),
496  One-way analysis of variance (ANOVA) followed by Tukey HSD (Honestly significant

497  difference) post-hoc testing; and (2), a parametrized Generalized linear model (GLM), according

498  to the procedure detailed in the R package RandoDiStats

499  (https://github.com/MSeidelFed/RandodiStats_package). As an alternative to mean comparisons,
500  the shapes of the empirical cumulative distributions of H incorporation were compared between
501  WT and HD datasets using the two-sample Kolmogorov-Smirnov test. Complementarily to class
502  and distribution comparison, an effect size estimation using the Effsize* R package was

503 employed to obtain Cohen’s d values that measure the extent of overlap between the distributions
504 of WT and HD mice. Cohen’s d statistic is used to indicate the standardized difference between
505 two means (difference between two means divided by the pooled standard deviation). Unlike

506  ANOVA test, effect size calculations are independent of sample size, thus preventing

507  overestimation of the significance of differences between the large number of individual spectra
508  (pixels) collected in MSI experiments*. Cohen’s d absolute values of 0.1, 0.2 and 0.3 were set as
509 thresholds corresponding to a small, medium, and large effect size respectively, based on

510 recommendations from Gignac and Szodorai (2016)*. In metabolic turnover studies, small and
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511  medium effect sizes (Cohen’s values < 0.3) are indicative of perturbations in metabolic synthesis
512  which may have major implications for lipid homeostasis and be highly associated with disease

513  phenotypes.

514  Additionally, a generalized linear model was used to compare pixel proportions below or above a
515  pre-defined magnitude threshold of 2H incorporation between two experimental groups. In all
516  cases, false discovery rate (FDR) correction was performed using Benjamini Hochberg

517  correction®, and FDR-adjusted P value < 0.05 were considered significant. As a final step,

518  customizable volcano plots were built to summarize the results from the above statistical tests.
519  The color codes for the volcano plots were inherited from a custom-built database providing the
520  neuronal compartment, cell-type and known neuronal functions of individual lipid features to

521  facilitate data interpretation (Table S3).

522 For ?H-labelled LC-MS samples, statistical comparison of ?H incorporation was performed
523  between WT and HD mice using One-way ANOVA test followed by a Tukey HSD post-hoc

524  testing and P value < 0.05 were considered significant.

525  Pathway enrichment analysis

526  Pathway enrichment analysis was performed through a Fisher exact test, using a custom-curated
527  pathway database. An in-house pathway database was created by categorizing the detected lipid
528  features based on their known biological functions/processes, cell type and cellular compartment,
529 using previously published studies (For details, refer to Table S3). An FDR P value of 0.05 was

530  used to assess significance.

24


https://doi.org/10.1101/2022.08.31.505954
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.31.505954; this version posted September 3, 2022. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

available under aCC-BY-NC-ND 4.0 International license.

DATA AVAILABILITY

The paired *.ibd and *.imzML files of all kMSI datasets were deposited in Metaspace at

https://metaspace2020.eu/api auth/review?prj=bd3f06aa-36d8-11ec-96db-

8319877174c6&token=eZWzn30yL6FP. Additionally, the raw data matrices (.csv files) and the

*.ibd and *.imzML files have also been deposited in Figshare at

https://figshare.com/s/a7a8940071e04e74c0b2.

CODE AVAILABILITY
A comprehensive and detailed step-by-step guide for installing and using the KineticMSI

package can be found on GitHub (https://github.com/MSeidelFed/KineticMSI). Alternatively, it

can be directly installed into any R environment using devtools::install_github
(‘“MSeidelFed/KineticMSI’). Additionally, the guidelines to format the input tables for adapting
kinetic LC/GC-MS data for usage with the KineticMSI R package can be found on GitHub
(https://github.com/MSeidelFed/KineticMSI_2_KLCMS). An installation of R (Version R-3.6.2
or higher), Microsoft Windows operating systems and a CPU with at least 16GB RAM is

recommended to run the workflow.
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670 FIGURE LEGENDS

671
672  Fig. 1. Schematic representation of the kM Sl experimental wor kflow. (1) WT and HD mice (n
673 = 6/group) at 16 weeks age were administered *H via an intraperitoneal (IP) bolus dose and

674  infusion of ?H,O in drinking water. Unlabeled control animals were provided free access to regular
675  drinking water. (2) Brains were hemi-sectioned. (3) Left hemisphere was cryo-sectioned to obtain
676  coronal hippocampal sections (20 um). (4) Thaw-mounted sections were vacuum-desiccated

677  followed by spray-deposition of norharmane matrix. (5) MALDI-FT-ICR-MSI, 30 x 30 um array.
678  (3°) Right hemisphere was dissected (hippocampus, frontal cortex, striatum) (4°) Homogenized brain
679  regions were subjected to monophasic lipid extraction. (57) LC-Orbitrap-MS/MS. (6) KineticMSI
630  was used to identify lipids with differential deuterium (°H) incorporation in the hippocampal CA1
681  sub-field (shown by black and white arrowheads) of HD versus WT mice.

682  Fig. 2: Schematic representation of KineticM SI wor kflow for processing and analyzing
683 kMSI datasets. a, Module 1: 1, Preparation of input matrices; 2, Deletion of MSI pixels with
684  low quality data or missing values; 3, natural isotopic abundance (NIA) correction; 4, derivation
685  of various isotope tracer proxies; 5, definition of the most suitable isotope tracer proxies and 6,
686  reconstruction of KineticMSI images. b, Module 2: 7, data quality assessment and 7°, statistical
687  comparison using pixel population means; the second approach includes: 8, spatial segmentation
688 into coherent pixel subsets based on tracer incorporation and 87, statistical comparison using the
689  pixel subset means; and the third approach includes: 9, evaluation of pixel proportions that fall
690  under a user-defined tracer incorporation range and 9°, class comparison using enriched pixel
691  proportions across experimental samples. 10, statistical summary of the results obtained using
692  the above-mentioned approaches in steps 7, 8 and 9.

693  Fig. 3. Visualization of spatial isotope labdling patternswithin CA1 hippocampal sub-fidd. a,
694  Boxplot representation of “H incorporation in P 38:4 (m/z885.5) of WT and HD mice (n =

695  6/group). b, KineticMSI images depicting spatial heterogeneity of H incorporation (%) in P1 38:4
696  of individual WT and HD replicate datasets. Lower (closer to 0%) and higher values (closer to
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100%) of “H incorporation indicate decreased and increased lipid synthesis respectively. ¢, K-
mean clustering (k = 5) based on 2H incorporation (%) in PI 38:4 through the R package
ComplexHeatmap** showing pixel subsets with low (yellow) to high 2H incorporation (purple).
Intensity images of d, Mo; €, M, isotope and f, isotope ratio (M1/My) for Pl 38:4 of a representative
WT-HD replicate pair using SCILS Lab software. g, K-means clustering (k = 5) based on M1/Mg
image of PI 38:4 using SCILS Lab software, showing top five k-mean clusters and number of spectra
in each cluster (right). Scale bar — 500 pm.

Fig. 4. Differential analysisof H incorporation in brain lipids of WT and HD mice using pixe
population means. a, Boxplot representation showing no significant difference between mean ?H
incorporation in Pl 36:4 (m/z857.5) between WT and HD mice (n=6/group) using GLM. b,
Kolmogorov-Smirnov (KS) test and effect size estimation (Cohen’s d values) of “H incorporation in
P1 36:4 showing significantly different ?H incorporation of WT (blue) and HD mice (red). c,
Volcano plot — bottom left (Cohen’s d values (X-axis) versus -log;o FDR-adjusted P value from
GLM (Y-axis)) showing no significant difference in mean H incorporation in lipid features WT
versus HD mice. Volcano plot — bottom right (Cohen’s d values (X-axis) versus -log;o FDR-adjusted
P value (Y-axis) using KS test) showing significantly different distributions of 2H incorporation in
lipid features of WT and HD mice. Cohen’s d values > 0.3 indicate differentiation of WT and HD
mice. Each dot represents individual lipid feature coloured by known anatomical location in mouse
hippocampus. Grey dots represent features that have no defined category in the custom-built library
provided for pathway enrichment analysis (Table S3). Significantly changed features are highlighted
and labelled. d, Bar plot representation showing the results of pathway enrichment analysis (-logio
FDR-adjusted P value from the Fisher exact test (X-axis) versus functional categories associated with
the detected lipid features in our study (Y-axis)). Functional categories are colored by lipid class,
cellular activity, compartment, cognitive function, known HD pathology and neuroprotection to
enhance interpretation of results (BDNF — Brain-derived neurotrophic factor; LTP — Long-term
potentiation). Values denotes the proportion of lipids with significantly altered H incorporation in
each functional category. Red line denotes significance P < 0.05.

Fig. 5. Differential °H incor poration in lipids of WT and HD mice using pixel cluster
means. a, Volcano plot (Cohen’s d values (X-axis) versus -logio FDR-adjusted P value from
GLM (Y-axis)) showing mean 2H incorporation in Pl 36:4 (m/z857.5) WT versus HD mice (n =
6/group). Cohen’s d values > 0.3 indicate differentiation of WT and HD mice. Each dot
represents the individual cluster pixel subset comparison from PI 36:4 coloured by known
anatomical location in mouse hippocampus. Grey dots represent features that have no defined
category in the custom-built library provided for pathway enrichment analysis (Table S3).
Significant cluster pair showing differential 2H incorporation highlighted in bold b, Boxplot
representation showing multiple pairwise comparison of pixel subset means ?H incorporation in Pl
36:4 between WT and HD mice (n=6/group) using One-way ANOVA followed by Tukey HSD test.
¢, Kolmogorov-Smirnov test and effect size estimation (Cohen’s d values) of H incorporation in Pl
36:4 showing significantly different pixel subset pair (HD_92 versus WT_125) of WT (blue) and
HD mice (red).
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738  ADDITIONAL INFORMATION

739  Extended Data Figures

740  Extended Data Fig. 1. Visual evaluation of distribution of ?H incor poration in target lipids
741  acrossM Sl pixelsof WT and HD kM S| datasets. a, Data distributions of ?H incorporation in
742 SHexCer 40:2 (m/z860.5) across MSI pixels of individual WT and HD replicate datasets

743 (n=6/group). b, Evaluation of the correctness of random sampling of MSI pixels from WT and HD
744 mice (index of all lipid features detected across the MSI pixels of WT and HD kMSI replicate

745  datasets (X-axis) versus ratios of H incorporation mean and standard deviation from randomly
746  sampled sub-subsets and the entire datasets (Y-axis). ¢, Evaluation of the distribution of °H

747  incorporation in SHexCer 40:2 using the R package RandodiStats. Based on the suggested link i.e.,
748  Gaussian distribution (shown by black arrow), a parametric test (GLM) was applied for mean

749  comparison of “H incorporation in SHexCer 40:2 between WT and HD mice.

750

751  Extended Data Fig. 2. Sub-setting kM Sl datasetsinto coherent pixel subsets based on *H

752  incorporation. a, Schematic diagram showing sorted matrices from all biological replicates (n =
753  6/group) (left) and subset matrices obtained through hierarchical clustering (k=2) corresponding to
754 ‘low’ (black) and ‘high’ °H (red) enrichment zones (right). b, Density histogram showing significant
755  number of coherent partitions found across the evaluated features. Blue box highlights lipid features
756  that returned two partitions based on 2H incorporation. ¢, Cluster dendrogram for PI 38:4 (m/z 885.5)
757  showing optimum number of significant clusters (K=2) returned by bootstrapped hierarchical

758  clustering algorithm. d, Reconstructed KMSI images displaying spatial distribution of significant

759 cluster subsets obtained based on *H incorporation from WT and HD mice. Clusters corresponding to
760  ‘low’ and ‘high’ zones of 2H incorporation are highlighted in yellow (Cluster ID - 1) and purple

761  (Cluster ID - 2). Grey pixels represent pixels that were excluded from analysis during random

762 sampling process.

763  Extended Data Fig. 3. Heatmap representation showing the comparison of H enriched
764  pixel proportions between WT and HD mice. The example shown here uses pixel proportions
765  displaying high metabolic activity (> 15% 2H incorporation). K-means analysis was used to

766  perform clustering of consolidated data matrices into clusters (k = 3) displaying similarity in °H
767  enriched pixel proportions. FDR adjusted P values obtained by performing class comparison of
768  °H enriched pixel proportions between WT and HD mice (n = 6/group) using GLM have been
769  provided on the right. The significance level has been set to P < 0.05 (black bars). Only the

770  significantly changed lipid features have been labelled in the heatmap.

771  Extended Data Fig. 4. Differential analysisof °H incor poration in lipidsof WT and HD mice
772 using homogenized hippocampal tissueby LC-MS. a, VVolcano plot (Cohen’s d value (X-axis)

773 versus -log;o FDR-adjusted P values obtained using one-way ANOVA followed by Tukey HSD post-
774 hoc test (Y-axis)) showing significant differences in mean ?H incorporation in lipid features of WT
775  and HD mice hippocampi (n = 6/group). Cohen’s d values > 0.3 indicate greater differentiation of
776 WT and HD mice. Each dot representing an individual lipid feature, is colored based on its known
777 anatomical location in the mouse hippocampus. Grey dots represent features that have no defined

778  category in the custom-built library provided for pathway enrichment analysis (Table S3).
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779  Significantly changed features are highlighted and labelled. b, Mean comparison of “H incorporation
780  in CL 72:6 (mz1451.9) showing significantly higher ?H incorporation in HD mice, compared to WT
781  controls (n=6/group). ¢, Bar plot representation showing the results of pathway enrichment analysis
782  (-logio FDR-adjusted P value from the Fisher exact test (X-axis) versus functional categories

783  associated with the detected lipid features in our study (Y-axis)). Functional categories are colored by
784  lipid class, cellular activity, compartment, cognitive function, known HD pathology and

785  neuroprotection to enhance interpretation of results (BDNF — Brain-derived neurotrophic factor; LTP
786 — Long-term potentiation). Values denotes the proportion of lipids with significantly altered *H

787  incorporation in each functional category. Red line denotes significance P < 0.05.
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