

1 **Title:** Forward genetic screen of homeostatic antibody levels in the Collaborative Cross
2 identifies MBD1 as a novel regulator of B cell homeostasis.

3
4 **Authors:** Brea K. Hampton^{1,2}, Kenneth S. Plante², Alan C. Whitmore², Colton L.
5 Linnertz², Emily A. Madden³, Kelsey E. Noll³, Samuel P. Boyson^{1,2}, Breantie Parotti²,
6 Timothy A. Bell², Pablo Hock², Ginger D. Shaw², Fernando Pardo-Manuel de Villena^{2,5},
7 Martin T. Ferris^{2,x}, Mark T. Heise^{2,3,5,x}

8
9 **Affiliations**

10 ¹ Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel
11 Hill, Chapel Hill, NC

12 ² Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC

13 ³ Department of Microbiology and Immunology, University of North Carolina at Chapel
14 Hill, Chapel Hill, NC

15 ⁴ Curriculum in Bioinformatics and Computational Biology, University of North Carolina
16 at Chapel Hill, Chapel Hill, NC

17 ⁵ Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill,
18 NC

19 ^x Co-senior/co-corresponding author

20
21 **Mailing Address:** Department of Genetics, The University of North Carolina at Chapel
22 Hill, 160 Dental Circle, Chapel Hill, NC

23 **Email:** mark_heisem@med.unc.edu , mtferris@email.unc.edu

24
25 **Summary:**

26 Homeostatic antibody levels are highly variable between Collaborative Cross (CC)
27 mouse strains. This forward genetic screen in the CC identifies Methyl-CpG binding
28 domain protein 1 (MBD1) as a regulator of homeostatic IgG1 levels and marginal zone
29 B cell differentiation.

30
31 **Abstract:**

32 Variation in immune homeostasis, the state in which the immune system is maintained
33 in the absence of stimulation, is highly variable across populations. This variation is
34 attributed to both genetic and environmental factors. However, the identity and function
35 of specific regulators have been difficult to identify in humans. We evaluated
36 homeostatic antibody levels in the serum of the Collaborative Cross (CC) mouse

37 genetic reference population. We found heritable variation in all antibody isotypes and
38 subtypes measured. We identified 4 quantitative trait loci (QTL) associated with 3 IgG
39 subtypes: IgG1, IgG2b, and IgG2c. While 3 of these QTL maps to known
40 immunologically important regions of the genomes, *Qih1* (associated with variation in
41 IgG1) mapped to a novel locus on Chromosome 18. We further associated this locus
42 with B cell proportions in the spleen and show that Methyl-CpG binding domain protein
43 1 is a novel regulator of homeostatic IgG1 levels in the serum and marginal zone B cells
44 (MZB) in the spleen, consistent with a role in MZB differentiation to antibody secreting
45 cells.

46

47 **Introduction**

48 Immune homeostasis is the stable state that the immune system maintains in the
49 absence of insult. While the majority of studies on host immunity have focused on the
50 response to specific stimuli (e.g., pathogens, vaccines, allergens, or adjuvants), a
51 growing body of evidence suggests that an individual's baseline immune status affects
52 subsequent innate or antigen specific immune responses (Gnjatic et al., 2017; Graham
53 et al., 2019; HIPC-CHI Signatures Project TeamHIPC-I Consortium, 2017; Tsang et al.,
54 2014). Immune homeostatic parameters are gaining increasing recognition as predictors
55 of clinical outcomes to immunotherapy and vaccination (Gnjatic et al., 2017; HIPC-CHI
56 Signatures Project TeamHIPC-I Consortium, 2017), and several studies have shown
57 that dysregulation of immune homeostasis can contribute to the development of cancer,
58 autoimmunity, allergies, as well as the progression of immune-related pathology in
59 response to infection (Crimeen-Irwin et al., 2005). Natural antibodies, which are present
60 before antigen exposure, are a major component of immune homeostasis. These
61 antibodies have been shown to be produced by specific subsets of B cells (e.g.,
62 marginal zone B cells and B1 B cells) and provide a first line of defense against
63 infection through low affinity binding to pathogens (Palma J., et al. 2018). Concurrent with
64 our understanding of B cell and antibody biology, there is growing evidence that
65 immune homeostasis is under genetic control (Graham et al., 2017; Krištić et al., 2018;
66 Phillipi et al., 2013; Collin et al., 2019). However, we still do not fully understand the
67 role that genetic differences between individuals play in driving baseline immunity.

68

69 Many studies have shown that humans exhibit significant inter-individual variation in
70 baseline immune phenotypes (Cassidy et al., 1974; Grunbacher, 1974; HIPC-CHI
71 Signatures Project TeamHIPC-I Consortium, 2017; Tsang et al., 2014). However, it has
72 been difficult to identify the genes that contribute to this variation due to a variety of
73 confounding factors. These include difficult to control environmental factors, such as
74 prior microbial and environmental exposures as well as age dependent changes in
75 immune status that create a highly dynamic immune environment (Poon M., et al.
76 2021). Rodent models, which allow for greater control of host genetics and
77 environmental exposures, represent an attractive system with which to model and
78 investigate those factors driving the development of various immune homeostatic
79 states. Gene specific knockout mice have been critical to our understanding of the
80 immune system. However, these models represent extreme genetic perturbations,
81 rather than the more subtle effects on gene expression or function more commonly
82 associated with naturally occurring genetic variation in humans.

83

84 To better model how natural genetic variation impacts immune homeostasis, we turned
85 to the Collaborative Cross (CC) genetic reference panel (grp; Collaborative Cross
86 Consortium, 2012). The CC grp is a large set of recombinant inbred (RI) mouse strains
87 derived from 8 founders: five classical laboratory strains (C57BL/6J (B6), A/J,
88 129S1/SvImJ (129S1), NOD/ShiLtJ (NOD), and NZO/HILtJ (NZO)) and three wild-
89 derived strains (PWK/PhJ (PWK), CAST/EiJ (CAST), and WSB/EiJ (WSB))
90 (Collaborative Cross Consortium, 2012). These eight founder strains capture >90% of
91 common genetic variation present in laboratory mouse strains and represent the three
92 major subspecies of *Mus musculus* (Threadgill et al., 2011; Welsh et al., 2012; Roberts
93 et al., 2007). Importantly, this genetic variation exists across the genome, ensuring no
94 blind spots for genetic mapping analyses. This genetic diversity has resulted in
95 discovery of several genetic loci associated with a variety of biomedically relevant traits
96 (Ferris et al., 2013, He et al., 2021; Graham et al., 2021; Gu et al., 2020; Smith et al.,
97 2019; Noll et al., 2020; Hampton et al., 2021, *Preprint*). We and others have shown that
98 there is extensive variation in splenic T cell populations (Graham et al., 2017), antibody
99 glycosylation patterns (Krištić et al., 2018), as well as variation in the general immune
100 landscape of the spleen (Collin et al., 2019), across the CC population.

101

102 Here, we investigated how genetic variation impacts one aspect of systemic immune
103 homeostasis: baseline serum antibody levels. We found that serum antibody levels for a
104 variety of immunoglobulin (Ig) isotypes was highly varied across the CC, and we
105 identified four quantitative trait loci (QTL) regulating these phenotypes. Three of the
106 identified QTL mapped to known immunologically relevant regions of the genome,
107 including the major histocompatibility locus and the immunoglobulin heavy chain locus.
108 We also identified a novel locus broadly associated with variation in serum antibody
109 levels, as well as B cell subset proportions in the spleen. Further analysis and
110 independent mutant generation showed that the Methyl-CpG binding domain protein 1
111 (*Mbd1*) regulates homeostatic antibody levels and B cell differentiation, providing new
112 insights into the genetic regulation of the humoral immune system and highlighting the
113 utility of forward genetics-based discovery approaches in studying immunity.

114
115 **Results**
116

117 **Variation in baseline antibody levels in the Collaborative Cross (CC) is largely
118 driven by genetic factors.**

119 We quantified antibody concentrations in the serum of 117 mice from 58 CC strains
120 (median = 3 mice/strain, 6-8 weeks old) to understand the role of genetic variation on
121 homeostatic antibody levels. Serum from these mice was collected seven days after a
122 non-specific footpad infection of phosphate buffered saline (PBS) with 1% fetal bovine
123 serum (FBS), as these animals were control animals for another study. We assessed
124 the concentrations of total IgA, IgM, and IgG, as well as IgG subtypes (IgG1, IgG2a,
125 IgG2b, IgG2c, IgG3) in these sera by ELISA. We found that antibody concentrations
126 varied greatly (3-50-fold) across these mice (**Figure 1**). For example, IgM levels varied
127 from 7.86 ug/mL – 271.39 ug/mL, total IgG levels ranged from 58.76 ug/mL – 173.89
128 mg/mL, and IgA varied from 4.39 ug/mL – 257.9 ug/mL in this population. Importantly,
129 the variation between strains is much greater than that within strains (median standard
130 deviation within strains is 0.596 ug/mL across all isotypes). We more formally assessed
131 this by estimating the broad sense heritability (proportion of phenotypic variance in our
132 population which can be attributable to genetic differences between individuals) for each
133 of our antibody phenotypes and found that heritability estimates ranged from 0.25 –
134 0.66 (**Table 1**), indicating that genetic differences between strains plays a strong role in

135 impacting this observed phenotypic variation in the CC. To understand the phenotypic
136 relationships between antibody isotypes at homeostasis, we looked at pairwise
137 correlations between all antibody isotypes and subtypes measured in the serum. We
138 found that several antibody isotypes were highly correlated (mean correlation
139 coefficient: 0.406, range: -0.115 – 0.841). We find that IgG1 levels were highly
140 correlated with total IgG levels (correlation coefficient = 0.805), which was expected
141 given the well characterized prevalence of IgG1 in the makeup of total IgG. However,
142 we found additional interesting relationships among other antibody isotypes. For
143 example, we found that IgA was highly correlated with both IgG2a (correlation
144 coefficient = 0.645) and IgG2b (correlation coefficient = 0.543) (**Figure 1**). These data
145 suggests that there may be common genetic regulation of homeostatic antibody levels.
146

147 We next conducted genetic mapping to identify polymorphic genome regions associated
148 with antibody level differences between the strains. This quantitative trait locus (QTL)
149 mapping identified four genome regions associated with variation in antibody levels
150 (**Table 2**). *Qih1*, QTL for immune homeostasis 1 (Chromosome 18:73 – 78Mb, genome-
151 wide p < 0.2), was identified for variation in homeostatic IgG1 levels, with the B6, CAST,
152 and WSB haplotypes associated with higher levels of homeostatic IgG1. *Qih2*
153 (Chromosome 17: 43.46 – 44.03Mb, genome-wide p < 0.05) was identified for variation
154 in homeostatic IgG2c levels, where NOD, B6, CAST, and NZO haplotypes were all
155 associated with higher levels of IgG2c. Additionally for IgG2c, we identified *Qih3*
156 (Chromosome 12:117.73 – 120.02Mb, genome-wide p < 0.2), driven by the B6 and
157 NOD haplotypes, which are associated with higher levels of IgG2c. Lastly, we found
158 *Qih4* (Chromosome 12: 112.93 – 115.06Mb, genome-wide p < 0.05) for variation in
159 IgG2b levels at homeostasis. At this locus, B6 and NOD haplotypes are associated with
160 higher levels of IgG2b. CAST, WSB, A/J, 129S1, and NOD haplotypes are intermediate,
161 and the PWK haplotype is associated with lower levels of IgG2b.
162

163 It has long been suggested that expression of IgG2a and IgG2c is mutually exclusive in
164 mouse strains based on the expression of IgG2a in BALB/c mice and IgG2c in B6 and
165 SJL mice (Morgado et al., 1989; Zhang et al., 2011). However, whether the genes
166 controlling these isotypes were physically linked on the same chromosome, or unique

167 alleles at a locus was not understood. Recent work using isotype specific PCR showed
168 that IgG2a and IgG2c were mutually exclusive in 4 inbred strains of mice: C57BL/6,
169 NMRI, DBA2, and SJL, which the authors took as strong evidence of allelism (Zhang et
170 al. 2011). Given that we mapped a QTL for IgG2c levels to the heavy chain locus
171 (where the putative allelic variants of IgG2a and IgG2c exist), we examined these
172 phenotypes and haplotypes much more closely and assessed the relationship between
173 the CC founder haplotypes at this locus, and their ability to create either IgG2a or IgG2c
174 (**Figure 2**). Phenotypically, we found that CC strains with either the B6 or NOD
175 haplotype at the IgH locus expressed IgG2c, while strains with the other founder
176 haplotypes at the locus expressed IgG2a. To confirm this relationship more formally
177 with previous analyses in the literature, we queried whole genome sequences of 24 CC
178 strains (Srivastava 2017, Shorter 2018) (3 strains with each of the founder haplotypes at
179 IgH) using probes that would specifically identify the previously proposed IgG2c or
180 IgG2a alleles (Morgado et al. 1989). We found that strains with B6 and NOD
181 haplotypes had no evidence for the IgG2a probe and only had genome sequences for
182 the IgG2c allele. Similarly, strains with the 129S1, A/J, NZO, CAST, WSB, or PWK
183 haplotypes at IgH only had genome sequences for the IgG2a allele. Under *Qih3*, which
184 sits at the IgH locus, the B6 and NOD haplotypes were associated with high levels of
185 IgG2c (while also showing no evidence for IgG2a), while the other 6 founder haplotypes
186 were associated with low/nonexistent IgG2c, as well as high IgG2a levels. We have 3
187 CC strains in our screen with informative recombination in this region, CC017 transitions
188 from A/J to NOD at 118Mb, CC058 was segregating B6 and CAST alleles across the
189 entire region, and CC060 transitions from B6 to CAST at 117Mb. We found that CC017
190 and CC058 animals express only IgG2a, while CC060 animals express IgG2c. As
191 such, our data strongly support the hypothesis that IgG2a and IgG2c represent products
192 of two alleles of the same gene, distal to 118 Mb (consistent with the genomic location
193 of the IgG2a/c gene). Concurrently, our ability to genetically map and associate these
194 phenotypes to a prior implicated causal locus validates our larger genetic mapping
195 approach.

196

197 ***Qih1* broadly impacts homeostatic antibody and splenic B cells.**

198 Given the proximity of *Qih2*, *Qih3*, and *Qih4* to known immunologically relevant genome
199 regions (*Qih2* with the major histocompatibility complex (MHC), and *Qih3* and *4* with the
200 immunoglobulin heavy chain (IgH) locus), we focused our attention on the novel *Qih1*
201 (**Figure 3**). We first asked whether *Qih1* specifically regulated IgG1 levels (the initial
202 trait for which we mapped the locus), or if it was more broadly associated with
203 differences in the levels of other antibody classes and isotypes. We simplified the eight
204 haplotype groups present in the CC into high- and low- response haplotypes at *Qih1*
205 (BFH=high, ACDEG=low) using our previously established approach (Noll et al.). We
206 found that there was a significant association between *Qih1* haplotype groups and total
207 IgG ($p = 1.627e-6$) and IgG2b ($p = 0.0024$) levels, as well as marginal associations with
208 IgG2a ($p = 0.015$), IgG3 ($p = 0.057$), and IgM ($p = 0.068$) levels, suggesting that *Qih1*
209 has broad effects on antibody levels at homeostasis (**Figure 4**).
210

211 We next addressed whether this genetic regulation of differences in antibody levels was
212 due to intrinsic production differences of antibody on a per cell basis or could be due to
213 the locus controlling the abundance of specific cell populations (e.g., B cells). We took
214 advantage of an independent cohort of 89 mice from 48 CC strains (1-2 mice per strain,
215 supplemental table 1, Keele et al., 2020). We analyzed splenocytes from these mice for
216 high-level immune populations (e.g., T cells, B cells, dendritic cells, and macrophages)
217 at homeostasis, as these mice had not had any specific immunological perturbations
218 performed on them. As with our original antibody screen, we found that these cell
219 populations were highly variable across animals (2-6-fold differences, supplemental
220 table 2), and that most of this variation could be attributed to differences between
221 genotypes (heritability of 0.24-0.76, supplemental table 2). As above, we again
222 assigned these CC strains to either the high or low haplotype groups at *Qih1* and
223 assessed the strength of relationships between these *Qih1* haplotypes and the
224 measured cell populations. We found that there was a significant relationship between
225 *Qih1* and total CD19⁺ B cells in the spleen ($p = 0.041$), where CC strains with a high
226 antibody level at *Qih1* showed a decrease in the proportion of total splenic B cells. We
227 also found marginal associations between *Qih1* and CD3⁺ T cells ($p = 0.088$) and CD8⁺
228 T cells ($p = 0.078$) in the same direction as the B cell relationship. However, we found
229 no associations with CD4⁺ T cells ($p = 0.414$), CD11b⁺ cells ($p = 0.169$), or CD11c⁺ cells

230 (p = 0.612) in this study (**Figure 5**). These results suggest that *Qih1* may broadly
231 regulate multiple aspects of systemic immune homeostasis. However, consistent with its
232 effects on antibody levels, the strongest relationship we observed was between *Qih1*
233 haplotype and splenic B cell proportions.

234

235 Given the relationship between *Qih1* and both antibody levels and the relative
236 abundance of total B cells within the spleen, we next assessed how *Qih1* impacts B cell
237 development. We assessed total serum antibody levels and several B cell subsets in
238 the spleen and bone marrow in 67 animals from a selected a set of 12 CC strains (2-8
239 mice/strain, 6 strains with a B6 haplotype, and 6 strains with contrasting NZO, NOD or
240 PWK haplotypes at *Qih1*; **supplemental table 1**). We analyzed total B220⁺ B cells,
241 early, immature, and mature B cells in the bone marrow, as well as total B220⁺,
242 transitional, mature, and B1a (CD5⁺) B cells in the spleen. Across these B cell
243 populations, we found that there was a significant relationship between splenic mature
244 B cells and this locus (p = 0.102, **supplemental figure 1**). Concurrently, we validated
245 the effects of this locus on total IgG and IgG1 concentrations in the serum. Taken
246 together, these data suggest that *Qih1* may be regulating antibody levels in a B cell
247 intrinsic manner.

248

249 **MBD1 as a novel regulator of homeostatic antibody levels and splenic B cell
250 subsets.**

251 Concurrent with our work investigating the immune mechanisms that *Qih1* causes
252 variation in, we used our established QTL candidate analysis pipeline (Noll et al. 2020)
253 to identify candidate genes underlying the effects of *Qih1*. Within the *Qih1* locus, there
254 are only 14 protein coding genes, and 10 of these genes had variants specific to all 3
255 causal haplotypes (in total 12 genes with CAST-specific variants, 11 genes with WSB-
256 specific variants, and 11 genes with B6-specific genetic variants). Only one gene
257 contained missense or nonsense (protein sequence) variants across all three
258 haplotypes (six genes contained CAST-specific protein effecting variants, WSB and B6
259 specific protein effecting variants only occurred in this one gene). As such, this one
260 gene, Methyl-CpG binding domain protein 1 (*Mbd1*) became our gene of focus.

261

262 There were not common missense variants in *Mbd1* segregating B6, CAST and WSB
263 from the other founder strains. However, all three strains possessed independent
264 missense variants (WSB: rs36715598; CAST: rs36834535 and rs222802617; and B6:
265 rs46321411, rs46176119, and rs30250376). Of note was the excess of non-
266 synonymous differences between B6 and the other common laboratory strain founders
267 of the CC. Therefore, we further investigated the amino acid sequence variation among
268 29 additional mouse strains and 3 additional species (rats, non-human primates, and
269 humans) (supplemental table 1, Keene et al., 2013; Doran et al., 2016) Besides the
270 other Clarence Little strains (C57BL/6NJ, C57BL/10J, C57BR/cdJ, C57L/J, C58/J), only
271 ST/bJ, BUB/BnJ (2 variants) and the wild derived ZALENDE/EiJ strains had these 'B6'
272 variants. Given the otherwise high level of amino acid conservation in MBD1 across
273 mouse strains, rats, non-human primates, and humans, this indicates that the B6 allele
274 of *Mbd1* is both highly evolutionarily derived in this region and likely of a single wild
275 origin that was only introduced into a subset of mouse inbred strains.

276
277 MBD1 has been previously shown to be involved in T cell development (consistent with
278 our above observation that there were T cell differences in some of our CC analyses)
279 and autoimmunity (Waterfield et al., 2014), neural development (Lax et al., 2017; Jobe
280 et al., 2017), and adipocyte differentiation (Matsumura et al., 2015). While *Mbd1*
281 deficient animals have been previously generated, these mice were initially generated
282 on the 129S4 genetic background (Zhao X et al., 2003), and then backcrossed to
283 C57BL/6. Given that 129 (129s1 in the case of the CC) and C57BL/6 had opposing
284 haplotype effects, this makes it difficult to differentiate whether effects on baseline
285 antibody or B cell populations are due to the lack of *Mbd1*, or other variants in the locus.
286 Therefore, we generated a new *Mbd1* knockout (KO) directly on the C57BL/6J genetic
287 background by CRISPR gene editing to directly test whether MBD1 specifically plays a
288 role in regulating homeostatic antibody levels and more broadly, B cell subset
289 differences.

290
291 Using a heterozygote-x-heterozygote breeding design, we found that early adult (6-8wk
292 old) *Mbd1* KO animals had several antibody and B cell related differences relative to
293 their WT littermates. Specifically, mutant mice had lower levels of IgG1 in the serum

294 compared to WT littermates (Figure 6, recapitulating our observations in the CC). They
295 also had significant increases in marginal zone B cell numbers and proportions (of all B
296 cells) in the spleen, with no differences in total, transitional, or follicular B cells (Figure
297 7). Given that marginal zone B cells can rapidly differentiate into antibody secreting cells
298 and the inverse relationship between MZBs and antibody levels in our KO mouse, we
299 measured CD138+ antibody secreting cells in the spleen. As expected, we found a
300 decrease in antibody secreting cell abundances in the spleens of *Mbd1* KO animals,
301 corresponding to the decrease in antibody and increase in MZBs (Figure 7).

302

303 In a separate cohort of animals, we aged them further to maturity (15-16 weeks old),
304 and assessed IgG1, total IgG and IgM levels. We found that *Mbd1* KO animals
305 maintained reduced levels of antibodies (total IgG and IgM, supplemental figure 2)
306 relative to their wild type littermates through this age. All told, our data in this *Mbd1* KO
307 stock are consistent with the haplotype effects on baseline antibody and B cell
308 populations observed in the CC, indicate that MBD1 is a negative regulator of marginal
309 zone B cell differentiation and a suppressor of antibody secretion. Thus, it seems likely
310 that MBD1 acts to regulate marginal zone B cell differentiation into an antibody
311 secreting cell, and genetic polymorphisms in the *Mbd1* gene contributing to variation in
312 baseline antibody levels and B cell populations are due to MBD1's role in this
313 differentiation process.

314

315 **Discussion**

316

317 Immune homeostasis is the state in which the immune system is maintained in the
318 absence of specific insults. This balanced state is critical in ensuring an efficient
319 response when challenged, while concurrently limiting immune pathology or unwanted
320 (e.g. allergic) responses. The immune homeostatic state varies greatly in humans
321 (Cassidy et al., 1974; Grunbacher, 1974; HIPC-CHI Signatures Project TeamHIPC-I
322 Consortium, 2017; Tsang et al., 2014) and has been shown to influence responses to
323 immunotherapies and vaccination (Gnjatic et al., 2017; HIPC-CHI Signatures Project
324 TeamHIPC-I Consortium, 2017). Therefore, understanding the genetic mechanisms that
325 regulate the homeostatic state is critical to understanding an individual's potential to
326 respond to pathogen challenge. However, it is challenging to study immune

327 homeostasis in human populations due to environmental factors like prior pathogen
328 exposure, diet (Kapellos et al., 2019), or environmental insults (Smeester et al., 2017) –
329 all of which concurrently can perturb the immune system. As such, mouse models have
330 been critical for identifying and understanding genes that regulate immune development
331 and homeostasis (Falk et al., 1996; Kitamura et al., 1991; Lansford et al., 1998; Khattri
332 et al., 2001; Kasprowicz et al., 2003). We extend this body work by describing variation
333 in homeostatic antibody levels across the Collaborative Cross population and identify
334 four QTL that are associated with variation in three different IgG subtypes (IgG1, IgG2b,
335 IgG2c). Three of these QTL map to known immunologically important regions, *Qih2*
336 (mapped for IgG2c) is located near the major histocompatibility locus, and *Qih3*
337 (mapped for IgG2c) and *Qih4* (mapped for IgG2b) are located at or near the
338 immunoglobulin heavy chain locus. We also identified a novel locus, *Qih1*, associated
339 with variation in IgG1 levels at homeostasis, and demonstrated that this locus had
340 broader effects on total antibody levels and splenic immune cell populations. Lastly, we
341 identified a gene underneath *Qih1*, *Mbd1*, as a novel regulator of homeostatic antibody
342 and marginal zone B cell differentiation to antibody secreting cells.

343
344 Our initial study focused on a variety of circulating antibody isotypes, and we identified
345 loci at or near the major histocompatibility (MHC) locus and the immunoglobulin heavy
346 chain (IgH) locus that are associated with variation in IgG2a/c or IgG2b. These loci
347 validate our approach, as they serve as strong positive controls for regions known to be
348 important for antibody levels. However, they can also inform potential mechanisms
349 driving differences in total homeostatic antibody levels. *Qih4* (mapped for IgG2b),
350 located near the IgH locus, would potentially suggest cis-regulatory elements which
351 control expression or regulation of IgG2b alleles. *Qih2* (mapped for IgG2c), located near
352 MHC, may indicate a haplotype specific manner of antigen detection and presentation
353 that influences IgG2c expression or relate to the regulation of adaptive immune cell
354 crosstalk, more generally. However, defining the specific mechanism by which *Qih2*
355 regulates IgG2c levels requires additional analysis of T cell responses and potentially
356 other aspects of innate immune crosstalk with the adaptive B cell compartment. More
357 broadly, various antibody isotypes and subtypes are important for different aspects of
358 the immune response (Collins A, 2016; Vidarsson G et al., 2014). In our study, we have

359 identified divergent haplotypes across loci regulating antibody levels at homeostasis,
360 which suggests that independent genetic regulation arose from antigenic exposure
361 histories in the evolution of various mouse strains (Smith et al., 2016).

362
363 Our mapping allowed us to return to an observation long known in the literature: that
364 laboratory mice tend to produce either IgG2a or IgG2c, but not both (Morgado et al.,
365 1989). Additionally, even in outbred mice it was somewhat unclear if these represented
366 two alleles or paralogues closely linked on the same chromosome (Morgado et al.,
367 1989; Zhang et al., 2011). As described above, we found that CC strains with either B6
368 or NOD haplotypes at the IgH locus expressed IgG2c and strains with the other founder
369 haplotypes at the locus expressed IgG2a. Concurrently, we took advantage of whole
370 genome sequence data of the CC strains. We identified probe sequences from the
371 original characterization of the IgG2a and IgG2c paralogues and confirmed for strains
372 with a B6 or NOD haplotype at IgH that they not only expressed IgG2c, but that there
373 were only genome sequence reads for the IgG2c gene. Likewise, strains with either A/J,
374 129S1, NZO, CAST, WSB, or PWK haplotypes at IgH only contained genome sequence
375 reads for the IgG2a gene and not IgG2c. These data indicate that IgG2a and IgG2c
376 indeed represent two distinct alleles in the mouse genome. It has been noted that there
377 are functional differences between IgG2a and IgG2c (Petrushina et al., 2003), and
378 these results can help investigators identify relevant mouse strains with specific IgG2
379 subtypes for functional follow-up to these two alleles.

380
381 B cells play a critical role in immune system development and homeostasis. Specific
382 subsets of B cells, B1 and marginal zone B cells, differentiate to antibody secreting cells
383 to produce natural antibodies, which are present before antigen stimulation and provide
384 a first line of defense against infection (Holodick et al., 2017; Zhou et al., 2007;
385 Subramaniam et al., 2010; Jayasekera et al., 2007). Natural antibodies are
386 characterized by their broad reactivity and low affinity and are pre-existing or
387 immediately secreted upon stimulation or a 'light push' (Holodick et al., 2017). These
388 antibodies are largely thought to bridge the gap between innate and adaptive immunity
389 and have been studied for their ability to protect against various pathogens (Panda et
390 al., 2015; Jayasekera et al., 2007). Several aspects of natural antibody have been

391 investigated, but it is still largely unclear how these antibodies are regulated and under
392 what contexts they are produced (New et al., 2016; Holodick et al., 2017). Here we
393 identify a novel genetic regulator, *Mbd1*, of pre-existing antibody, marginal zone B cell,
394 and antibody secreting cell levels at homeostasis. Our data suggests that MBD1 inhibits
395 marginal zone B cell differentiation to antibody secreting cells at homeostasis, thus
396 regulating pre-existing antibody levels.

397

398 MBD1 is a known epigenetic regulator, facilitating chromatin remodeling through various
399 protein-protein interactions, binding directly to methylated DNA, and facilitating
400 transcriptional repression (Fujita et al., 2000; Ichimura et al., 2005). Much of what is
401 known about MBD1's function comes from studies of neural stem cell differentiation
402 (Lax et al., 2017) and adipocyte differentiation (Matsumura et al., 2015). In the immune
403 system, previous work has shown that MBD1 facilitates tissue-specific antigen
404 expression through protein-protein interactions with AIRE to promote T cell tolerance
405 (Waterfield et al., 2014). However, MBD1 has not been described as having a role in B
406 cell differentiation. Chromatin modifying complexes and other epigenetic regulators are
407 critical to cellular differentiation, as chromatin accessibility changes over differentiation
408 states allows for proper gene expression. Recent work has highlighted the important
409 role of epigenetic regulators in B cell activation and differentiation. For example, EZH2
410 (Herviou et al., 2019), LSD1 (Haines et al., 2018), and DNA methylation (Barwick et al.,
411 2016; Barwick et al., 2018) have all been shown to regulate some aspect antibody
412 secreting cell differentiation. Given the role of MBD1 in cellular differentiation in other
413 tissues as well as our data presented here, it is likely that MBD1 is regulating chromatin
414 dynamics necessary for altering gene expression profiles that promote antibody
415 secreting cell differentiation. Thus, understanding the role of MBD1 in regulating gene
416 expression profiles necessary for B cell differentiation will be important for defining
417 those genes and regulatory networks that control B cell responses at homeostasis, as
418 well as following infection and activation of adaptive immune responses. serving a
419 comparable role.

420

421 Our study encompasses experiments using several cohorts of CC strains with varying
422 ages and experimental designs, as well as a new *Mbd1* knockout model on the B6

423 background. While we find that the B6 allele is consistently associated with greater
424 antibody levels and lower splenic B cell proportions in the CC, we were not able to
425 recapitulate all those phenotypes in our knockout studies. For example, in the CC the
426 B6 haplotype is not only associated with greater levels of IgG1 in the serum but also
427 greater levels of total IgG and marginally associated with greater levels of other
428 antibody subtypes. However, we were only able to recapitulate the impact of MBD1 on
429 IgG1 levels, specifically, in the context of our knockout model. It is not entirely surprising
430 that we are not able to completely recapitulate every phenotype observed in the larger
431 initial screen. In the CC, allelic variants across many genetic backgrounds are
432 averaged, while a knockout represents an extreme abrogation in the context of a single
433 genetic background. In inbred B6 mice, the evolutionarily derived allele of *Mbd1* has co-
434 evolved with protein binding partners and regulatory networks, whereas in the CC,
435 those co-evolved networks have been broken apart and alleles are shuffled out of
436 context. Additionally, there are 2 other founder strain haplotypes that were associated
437 with greater antibody levels in the CC, and we do not capture their contributions in our
438 knockout studies. Lastly, we do not map 100% of the genetic regulators of IgG1, as
439 *Qih1* only accounts for ~75% of the genetic regulation of IgG1 levels at homeostasis.
440 Although, *Qih1/Mbd1* has a large effect, there are other genes that contribute to the
441 regulation of IgG1 and marginal zone B cell differentiation at homeostasis. None the
442 less, we find a consistent role for *Qih1/Mbd1* on homeostatic antibody levels and
443 various B cell subsets across our experimental populations. Specifically, we found that a
444 functional B6 *Mbd1* allele is consistently associated with greater levels of homeostatic
445 antibody and lower levels of various B cell subsets in the spleen. Interestingly, the
446 association between the B6 allele and lower levels of B cell subsets was not observed
447 in the bone marrow (**supplemental figure 1**), suggesting that overall B cell
448 development was intact.

449
450 In summary our data provide evidence for strong genetic regulation of homeostatic
451 immunity. We also show the utility of forward genetic screens in diverse mouse
452 populations for identifying novel genes regulating homeostatic immunity. To our
453 knowledge this is the first demonstration that MBD1 may act as a negative regulator of
454 marginal zone B cell differentiation to antibody secreting cells, thereby regulating

455 antibody levels at homeostasis. Additionally, our data further illustrates the role of
456 epigenetic regulators in cellular differentiation and function. Future work to elucidate the
457 specific pathways controlled by MBD1 to regulate marginal zone B cell differentiation
458 could enhance our understanding of marginal zone B cell mediated humoral immunity at
459 homeostasis and in response to pathogen infection.

460

461 **Methods**

462

463 **Mice**

464 **Collaborative Cross mice:** CC mice were obtained from the UNC Systems Genetics
465 Core Facility at UNC Chapel Hill between 2013 – 2017. All experiments were approved
466 by the UNC Chapel Hill Institutional Animal Care and Use Committee. Mice were
467 sacrificed using isoflurane overdose and terminally bled by cardiac puncture at six to
468 twelve weeks of age depending on the experiment. For the baseline antibody screen,
469 experiments were conducted under biosafety level 3 (BSL3) conditions where four to six
470 weeks old female mice were cohoused across strains and allowed to acclimate to the
471 BSL3 for 3-4 days. Mice were then inoculated subcutaneously in the left rear footpad
472 with phosphate-buffered saline (PBS) supplemented with 1% fetal bovine serum (FBS).

473 ***Mbd1* knockout mouse:** *Mbd1* knockout mice were generated at UNC Chapel Hill by
474 the Animal Models Core via CRISPR mutagenesis. Specifically, Cas9 guide RNAs were
475 designed with Benchling software and used to generate a 752bp deletion spanning
476 exons 11 and 13, which resulted in protein ablation. The presence of the knockout or
477 wildtype allele was determined by amplifying across the region using the following
478 primers: forward primer – GCTCACTGAGTAGGGCAAGG, reverse primer –
479 TACGGAGCACACCTTGGCA. Wildtype amplicon: 1262bp. Knockout amplicon: 510bp.
480 We maintained these mice in our colony via 2 generations of backcrossing to C57BL/6J
481 mice (JAX stock #000664) to remove any potential off-target mutations. The stock was
482 thereafter maintained via het-by-het crosses.

483

484 **ELISA**

485 Total antibody levels were quantified by ELISA. 96-well flat-bottom high-binding plates
486 were coated with anti-Ig antibodies (Southern Biotech) diluted in carbonate buffer for
487 each antibody subtype measured. Serum was diluted in ELISA wash buffer (1x PBS +

488 0.3% Tween20) with 5% nonfat milk and added to pre-coated plates to incubate in
489 humid storage overnight at 4°C. Plates were washed using ELISA wash buffer and
490 incubated with HRP-conjugated anti-Ig secondary antibodies (Southern Biotech) for 2
491 hours in humid storage at 4°C. Plates were washed and developed in the dark for 30
492 minutes at room temperature with citrate substrate buffer, the reaction was stopped with
493 sodium fluoride, and read immediately at 450nm. Standard curves for each antibody
494 subtype (Invitrogen standards) were run with each plate for a specific subtype to
495 determine antibody concentrations.

496

497 **Sample preparation**

498 Following euthanasia (as described above), blood was collected immediately into serum
499 separator tubes to isolate serum for ELISAs. Serum was aliquoted in 1.7mL Eppendorf
500 snap-cap tubes and stored at -80°C until analyzed by ELISA. Spleens were
501 homogenized using frosted microscope slides and pelleted by centrifugation (1000
502 RPM/4°C/10 minutes). Spleen homogenates were filtered through 70um mesh, treated
503 with ammonium chloride potassium (ACK) lysing buffer to remove red blood cells,
504 washed, and resuspended in FACS buffer (HBSS + 1-2% FBS). Cell numbers were
505 determined by trypan blue exclusion using a hemocytometer or Countess II automated
506 cell counter.

507

508 **Flow Cytometry**

509 Cells were plated at 1-2x10⁷ per mL in FACS buffer (HBSS + 1-2% FBS) in a 96-well
510 polypropylene round-bottom plate. Cells were centrifuged at 1000 RPM for 4 minutes at
511 4°C and resuspended in 100uL of fluorochrome-conjugated antibody dilution. Cells were
512 incubated at 4°C for 45 minutes to allow for antibody staining. Following incubation,
513 cells were washed twice with FACS buffer and resuspended in 100uL of FACS buffer.
514 An equal volume of 4% PFA (in PBS) was added to cells to fix, and plates were stored
515 in the dark at 4°C until analyzed of Attune NxT flow cytometer. Data was analyzed using
516 FlowJo software. The following antibodies were used: Live/Dead Fixable Aqua, CD3-
517 PE (145-2C11), CD4-APC/Cy7 (GK1.5), CD8a-PerCP(53-6.7), CD11b-eF450 (M1/70),
518 CD11c-PE/TxRd (N418), CD19-AF647 (6D5), CD45-AF700 (30-F11), CD19-APC/Cy7
519 (6D5), IgM-PE (II/41), IgD-FITC(11-26c.2a), CD5-BV421 (53-7.3), CD3-PerCP (145-

520 2C11), CD21/CD35-PE (7E9), IgM-AF594, CD23-PE/Cy7 (B3B4), CD45R-APC (RA3-
521 6B2).

522

523 Data processing

524 Antibody concentrations were determined from a standard curve and \log_{10} transformed
525 to follow a normal distribution. Event counts from flow cytometry gating were used to
526 calculate cell proportions. Using Box-Cox transformation (MASS package in R, version
527 3.5.1), values were independently transformed for each phenotype to follow a normal
528 distribution. For all phenotypes used for QTL mapping, the average phenotype value
529 was calculated for each Collaborative Cross strain and used to map.

530

531 Nested linear models

532 Correlations between identified QTL and immune cell populations and other antibody
533 subtypes were determined by comparing the goodness of model fit of mixed effect linear
534 models using a partial fit F-test. *Qih1* haplotype scores were determined by the founder
535 haplotype at the *Qih1* peak marker. In both the base and full model, CC Strain is a
536 random effect variable and *Qih1* haplotype score is a fixed effect variable. The full
537 model tests whether including information about the haplotype at *Qih1* explains more of
538 the phenotypic variation than the CC Strain alone.

539

Base model: Phenotype ~ CC Strain + error

541 Full model: Phenotype ~ CC Strain + *Qih1* haplotype score + error

542

543

544 Heritability calculations

545 Heritability calculations were performed as described previously (Noll et al., 2020).
546 Briefly, box-cox transformed phenotype values were used to fit a linear fixed-effect
547 model. The coefficient of genetic determination was calculated as such:

$$548 \quad (\mathbf{MS}_{\text{CC-F1}} - \mathbf{MS}\varepsilon) / (\mathbf{MS}_{\text{CC-F1}} + (2N-1)\mathbf{MS}\varepsilon)$$

549 Where MS_{CC-F1} is the mean square of the CC-F1 and $MS\epsilon$ is the mean square of the
550 error using a $N=3$ as an average group size, as a measure of broad-sense heritability.

551

552 QTL mapping

553 QTL mapping was performed as previously described (Noll et al., 2020). Briefly, we
554 used the DOQTL (Gatti et al., 2014) package in the R statistical environment (version
555 3.5.1). A multiple regression is performed at each marker, assessing the relationship
556 between the phenotype and the haplotype probabilities for each strain. LOD scores are
557 calculated based on the increase in statistical fit compared to a null model, considering
558 only covariates and kinship. To calculate significance thresholds, permutation tests
559 were used to shuffle genotypes and phenotypes without replacement. We determined
560 the 80th, 90th, and 95th percentiles after 500 permutations as cutoffs for suggestive (both
561 p<0.2 and p<0.1) and genome-wide significant (p<0.05). QTL intervals were determined
562 using a 1.5 LOD drop.

563

564 **Acknowledgements**

565 This work was supported, in part, by U19AI100625 (to MTH, MTF, and FPMV),
566 P01AI132130 (to FPMV and MTF), R21AI119933 (to MTF), HHMI Gilliam Fellowship (to
567 BKH), and F99AG073570 (to BKH). We wish to thank the Systems Genetics Core
568 Facility for the maintenance of the Collaborative Cross lines used in these studies. We
569 would also like to thank the UNC Flow Cytometry Core for their help with flow cytometry
570 data acquisition and analysis.

571

572 Studies were designed by BKH KSP ACW FPMV MTF MTH
573 Experiments were conducted by BKH KSP ACW CLL EAM GDS TAM PH KEN SPB
574 Data were analyzed by BKH ACW CLL MTF MTH
575 Manuscript was written primarily by BKH MTF MTH
576 All authors contributed to the editing of the manuscript

577

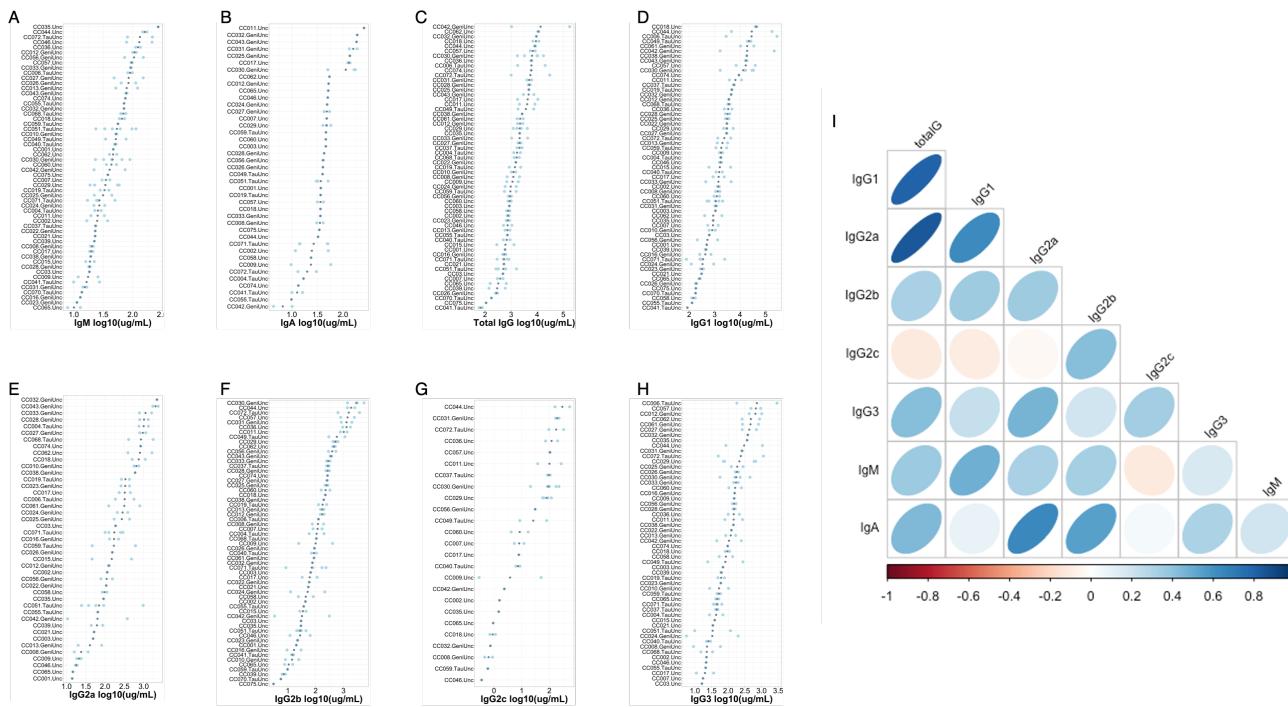
- 578 **References**
- 579 Barwick BG, Scharer CD, Bally APR, Moss JM. (2016). Plasma cell differentiation is
580 coupled to division-dependent DNA hypomethylation and gene regulation. *Nat.*
581 *Immunol.* 17(10). 1216-1228. doi:10.1038/ni.3519
- 582
- 583 Barwick BG, Scharer CD, Martinez RJ, Price MJ, Wein AN, Haines RR, Bally APR,
584 Kolhmeier JE, Boss JM. (2018). B cell activation and plasma cell differentiation are
585 inhibited by de novo DNA methylation. *Nat. Comm.* 9:1900.
- 586
- 587 Cassidy, J.T., Nordby, G.L., and Dodge, H.J. (1974). Biologic variation of human serum
588 immunoglobulin concentrations: Sex-age specific effects. *Journal of Chronic Diseases*
589 27, 507–516.
- 590 Collaborative Cross Consortium. (2012). The genome architecture of the Collaborative
591 Cross mouse genetic reference population. *Genetics* 190, 389–401.
- 592 Collin, R., Balmer, L., Moraham G., Lesage, S. (2019). Common Heritable
593 Immunological Variations Revealed in Genetically Diverse Inbred Mouse Strains of the
594 Collaborative Cross. *J. Immunol.* 202, 1801247
- 595 Collins AM. (2016). IgG subclass co-expression brings harmony to the quartet model of
596 murine IgG function. *Immunol and Cell Biol* 94, 949-954.
- 597 Crimeen-Irwin, B., Scalzo, K., Gloster, S., Mottram, P.L., and Plebanski, M. (2005).
598 Failure of immune homeostasis -- the consequences of under and over reactivity. *Curr.*
599 *Drug Targets Immune Endocr. Metabol. Disord.* 5, 413–422.
- 600 Doran AG, Wong K, Flint J, Adams DJ, Hunter KW, Keane TM. (2016). Deep genome
601 sequencing and variation analysis of 13 inbred mouse strains defines candidate
602 phenotypic alleles, private variation and homozygous truncating mutations. *Genome*
603 *Biol.* 17(1):167.
- 604 Falk, I., Potocnik, A.J., Barthlott, T., Levelt, C.N., and Eichmann, K. (1996). Immature T
605 cells in peripheral lymphoid organs of recombinase-activating gene-1/-2-deficient mice.
606 Thymus dependence and responsiveness to anti-CD3 epsilon antibody. *The Journal of*
607 *Immunology* 156, 1362–1368.
- 608 Ferris MT, Aylor DL, Bottomly D, Whitmore AC, Aicher LD, Bell TA, Badel-Tretheway B,
609 Bryan JT, Buus RJ, Gralinski LE, Haagmans BL, McMillan L, Miller DR, Rosenzweig E,
610 Valdar W, Wang J, Churchill GA, Threadgill DW, McWeeney SK, Katze MG, Pardo-
611 Manuel de Villena F, Baric RS, Heise MT. (2013). Modeling host genetic regulation of
612 influenza pathogenesis in the collaborative cross. *PLoS Pathog.* 9(2):e1003196.
- 613 Fujita N, Shimotake N, OhKI I, Chiba T, Saya H, Shirakawa M, Nakao M. (2000).
614 Mechanism of Transcriptional Regulation by Methyl-CpG Binding Protein MBD1. *Mol*
615 *Cell Biol.* 20(14):5107-18.
- 616
- 617 Gnjatic, S., Bronte, V., Brunet, L.R., Butler, M.O., Disis, M.L., Galon, J., Hakansson,
618 L.G., Hanks, B.A., Karanikas, V., Khleif, S.N., Kirkwood, J.M., Miller, L.D., Schendel,
619 D.J., Tanneau, I., Wigginton, J.M., Butterfield, L.H. (2017). Identifying baseline immune-

- 620 related biomarkers to predict clinical outcome of immunotherapy. *J Immunother Cancer*
621 5, 44.
- 622 Graham, J.B., Swarts, J.L., Menachery, V.D., Gralinski, L.E., Schäfer, A., Plante, K.S.,
623 Morrison, C.R., Voss, K.M., Green, R., Choonoo, G., Jeng, S., Miller, D.R., Mooney,
624 M.A., McWeeney, S.K., Ferris, M.T., Pardo-Manuel de Villena, F., Gale, M., Heise, M.T.,
625 Baric, R.S., Lund, J.M. (2019). Immune predictors of mortality following ribonucleic acid
626 virus infection. *J Infect Dis* 1–8.
- 627
- 628 Graham, J.B., Swarts, J.L., Mooney, M., Choonoo, G., Jeng, S., Miller, D.R., Ferris,
629 M.T., McWeeney, S., and Lund, J.M. (2017). Extensive Homeostatic T Cell Phenotypic
630 Variation within the Collaborative Cross. *Cell Rep* 21, 2313–2325.
- 631 Graham JB, Swarts JL, Leist SR, Schafer A, Menachery VD, Gralinski LE, Jeng S,
632 Miller DR, Mooney MA, McWeeney SK, Ferris MT, Pardo-Manuel de Villena F, Heise
633 MT, Baric RS, Lund JM. (2021). Baseline T cell immune phenotypes predict virologic
634 and disease control upon SARS-CoV infection in Collaborative Cross mice. *PLoS*
635 *Pathog.* 17(1):e1009287.
- 636
- 637 Grunbacher, F.J. (1974). Heritability estimates and genetic and environmental
638 correlations for the human immunoglobulins G, M, and A. *Am. J. Hum. Genet.* 26, 1–12.
- 639 Gu B, Shorter JR, Williams LH, Bell TA, Hock P, Dalton KA, Pan Y, Miller DR, Shaw
640 GD, Philpot BD, Pardo-Manuel de Villena F. (2020). Collaborative Cross mice reveal
641 extreme epilepsy phenotypes and genetic loci for seizure susceptibility. *Epilepsia*.
642 61(9):2010-2021.
- 643
- 644 Hampton BK, Jensen KL, Whitmore AC, Linnertz CL, Maurizio P, Miller DR, Morrison
645 CR, Noll KE, Plante KS, Shaw GD, West A, Baric RS, Pardo-Manuel de Villena F, Heise
646 MT, Ferris MT. (2021). Genetic regulation of homeostatic immune architecture in the
647 lungs of collaborative cross mice. *bioRxiv*. doi: 10.1101/2021.04.09.439180
- 648
- 649 Haines RR, Barwick BG, Scharer CD, Majumder P, Randall TD, Boss JM. (2018). The
650 histone demethylase ISD1 regulates B cell proliferation and plasmablast differentiation.
651 *J Immunol.* 201:2799-2811
- 652
- 653 He L, Wang P, Schick SF, Huang A, Jacob 3rd, P, Yang, X, Xia Y, Snijders AM, Mao J,
654 Chang H, Hang B. (2021). Genetic background influences the effect of thirdhand smoke
655 exposure on anxiety and memory in Collaborative Cross mice. *Sci Rep.* 11(1):13285.
- 656
- 657 Herviou L, Jourdan M, Martinez A, Cavalli G, Moreaux J. (2019). EZH2 is
658 overexpressed in transitional preplasmablasts and is involved in human plasma cell
659 differentiation. *Leukemia* 33:2047-2060.
- 660
- 661 HIPC-CHI Signatures Project Team, HIPC-I Consortium (2017). Multicohort analysis
662 reveals baseline transcriptional predictors of influenza vaccination responses. *Sci*
663 *Immunol* 2, eaal4656.
- 664 Holodick, N. E., Rodriguez-Zhurbenko, N., and Hernandez, A.M., (2017). Defining
665 Natural Antibodies. *Front. Immunol.* 8:872. doi: 10.3389/fimmu.2017.00872

- 666
667 Ichimura T, Watanabe S, Sakamoto Y, Aoto T, Fujita N, Makao M. (2005).
668 Transcriptional Repression and Heterochromatin Formation by MBD1 and MCAF/AM
669 Family Proteins. *J Biol Chem.* 280(14):13928-35.
670
671 Jayasekera JP, Moseman EA, Carroll MC. (2007). Natural antibody and complement
672 mediate neutralization of influenza virus in the absence of prior immunity. *J Virol.*
673 81(7):3487-94.
674
675 Jobe EM, Gao Y, Eisinger BE, Mladucky JK, Giuliani CC, Kelnhofer LE, Zhao W.
676 (2017). Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment
677 through Maintaining Adult Neural Stem Cell Identity. *J Neurosci.* 37(3):523-536.
678
679 Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL.
680 (2019). Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory
681 Diseases. *Front Immunol.* 10:2035.
682
683 Kasprowicz, D.J., Smallwood, P.S., Tynnik, A.J., and Ziegler, S.F. (2003). Scurfin
684 (FoxP3) controls T-dependent immune responses in vivo through regulation of CD4+ T
cell effector function. *The Journal of Immunology* 171, 1216–1223.
685
686 Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A,
687 Slater G, Goodson M, Furlotte NA, Eskin E, Nellåker C, Whitley H, Cleak J, Janowitz D,
688 Hernandez-Pliego P, Edwards A, Belgard TG, Oliver PL, McIntyre RE, Bhomra A, Nicod
689 J, Gan X, Yuan W, van der Weyden L, Steward CA, Bala S, Stalker J, Mott R, Durbin R,
690 Jackson IJ, Czechanski A, Guerra-Assunção JA, Donahue LR, Reinholdt LG, Payseur
691 BA, Ponting CP, Birney E, Flint J, Adams DJ. (2011). Mouse genomic variation and its
effect on phenotypes and gene regulation. *Nature* 477, 289-294.
692
693 Keele GR, Quach BC, Israel JW, Chappell GA, Lewis L, Safi A, Simon JM, Cotney P,
694 Crawford GE, Valdar W, Rusyn I, Furey TS. (2020). Integrative QTL analysis of gene
695 expression and chromatin accessibility identifies multi-tissue patterns of genetic
regulation. *PLoS Genet.* 16(1):e1008537.
696
697 Khattri, R., Kasprowicz, D., Cox, T., Mortrud, M., Appleby, M.W., Brunkow, M.E.,
698 Ziegler, S.F., and Ramsdell, F. (2001). The amount of scurfin protein determines
699 peripheral T cell number and responsiveness. *The Journal of Immunology* 167, 6312–
6320.
700
701 Kitamura, D., Roes, J., Kühn, R., and Rajewsky, K. (1991). A B cell-deficient mouse by
702 targeted disruption of the membrane exon of the immunoglobulin mu chain gene.
Nature 350, 423–426.
703
704 Krištić, J., Zaytseva, O.O., Ram, R., Nguyen, Q., Novokmet, M., Vučković, F., Vilaj, M.,
705 Trbojević-Akmačić, I., Pezer, M., Davern, K.M., Morahan, G., Lauc, G. (2018). Profiling
706 and genetic control of the murine immunoglobulin G glycome. *Nat Chem Biol* 14, 516–
524.
707
708 Lansford, R., Manis, J.P., Sonoda, E., Rajewsky, K., and Alt, F.W. (1998). Ig heavy
chain class switching in Rag-deficient mice. *Int Immunol* 10, 325–332.

- 709 Lax E and Sapozhnikov DM. (2017). Adult Neural Stem Cell Multipotency and
710 Differentiation are Directed by the Methyl-CpG-Binding Protein MBD1. *J Neurosci.*
711 37(16):4228-4230.
- 712
- 713 Matsumura Y, Nakaki R, Inagaki T, Yoshida A, Kano Y, Kimura H, Tanaka T, Tsutsumi
714 S, Nakao M, Doi T, Fukami K, Osborne TF, Kodama T, Aburatani H, Sakai J. (2015).
715 H3K4/H3K9me3 Bivalent Chromatin Domains Targeted by Lineage-Specific DNA
716 Methylation Pauses Adipocyte Differentiation. *Mol. Cell.* 60(4):584-96.
- 717
- 718 Morgado MG, Cam P, Gris-Liebe C, Cazenave PA, Jouvin-Marche E. Further evidence
719 that BALB/c and C57BL/6 gamma 2a genes originate from two distinct isotypes. (1989).
720 *EMBO J.* 8(11):3245-51.
- 721
- 722 New JS, King RG, Kearney JF. Manipulation of the glycan-specific natural antibody
723 repertoire for immunotherapy. *Immunol Rev* (2016) 270:32–50. doi:10.1111/imr.12397
- 724
- 725 Noll, K.E., Whitmore, A.C., West, A., McCarthy, M.K., Morrison, C.R., Plante, K.S.,
726 Hampton, B.K., Kollmus, H., Pilzner, C., Leist, S.R., Gralinski, L.E., Menachery, V.D.,
727 Schafer, A., Miller, D.R., Shaw, G., Mooney, M., McWeeney, S., Pardo-Manuel de
728 Villena, F., Schugart, K., Morrison, T.E., Baric, R.S., Ferris, M.T., Heise, M.T. (2020).
729 Complex Genetic Architecture Underlies Regulation of Influenza-A-Virus-Specific
730 Antibody Responses in the Collaborative Cross. *Cell Rep* 31, 107587.
- 731
- 732 Palma J, Tokarz-Deptula B, Deptula J, Deptula W. (2018). Natural antibodies – facts
733 known and unknown. *Cent Eur J Immunol.* 43(4):466-475.
- 734
- 735 Panda S and Ding JL. (2015). Natural antibodies bridge innate and adaptive immunity. *J*
736 *Immunol.* 194(1):13-20.
- 737
- 738 Petruchina I, Tran M, Sadzikava N, Ghochikyan A, Vasilevko V, Agadjanyan MG, Cribbs
739 DH. (2003). Importance of IgG2c isotype in the immune response to beta-amyloid
740 precursor protein/transgenic mice. *Neurosci. Lett.* 338(1):5-8.
- 741
- 742 Phillipi, J., Xie, Y., Miller, D.R., Bell, T.A., Zhang, Z., Lenarcic, A.B., Aylor, D.L., Krovi,
743 S.H., Threadgill, D.W., de Villena, F.P.-M., Wang, W., Valdar, W., Frelinger, J.A. (2013).
744 Using the emerging Collaborative Cross to probe the immune system. *15*, 38–46.
- 745
- 746 Poon MML, Byington E, Meng W, Kutoba M, Matsumoto R, Grifnoi A, Weiskopf D,
747 Dogra P, Lam N, Szabo PA, Ural BB, Wells SB, Rosenfeld AM, Brusko MA, Brusko TM,
748 Connors TJ, Sette A, Sims PA, Luning Prak ET, Shen T, Farber DL. (2021).
749 Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. *Cell*
750 *Rep.* 37(9):110071
- 751
- 752 Roberts, A., de Villena, F.P.-M., Wang, W., McMillan, L., Threadgill, D.W. (2007). The
753 polymorphism architecture of mouse genetic resources elucidated using genome-wide
resequencing data: implications for QTL discovery and systems genetics. *Mamm*
754 *Genome* 18, 473–481.

- 754 Shorter JR, Najarian ML, Bell TA, Blanchard M, Ferris MT, Hock P, Kashfeen A, Kirchoff
755 KE, Linnertz CL, Sigmon JS, Miller DR, McMillan L, Pardo-Manuel de Villena F. (2019).
756 Whole Genome Sequencing and Progress Toward Full Inbreeding of the Mouse
757 Collaborative Cross Population. *G3* (Bethesda). 9(5):1303-1311.
758
- 759 Smeester L, Bommarito PA, Martin EM, Recio-Vega R, Gonzalez-Corets T, Olivas-
760 Calderon E, Clark Lantz R, Fry RC. (2017). Chronic early childhood exposure to arsenic
761 is associated with a TNF-mediated proteomic signaling response. *Environ Toxicol
762 Pharmacol.* 52:183-187.
763
- 764 Smith CM, Proulx MK, Lai R, Kiritsy MC, Bell TA, Hock P, Pardo-Manuel de Villena F,
765 Ferris MT, Baker RE, Behar SM, Sassetti CM. (2019) Functionally overlapping variants
766 control tuberculosis susceptibility in Collaborative Cross mice. *mBio.* 10(6):e02791-19.
767
- 768 Smith CM, Proulx MK, Olive AJ, Laddy D, Mishra BB, Moss C, Martinez Gutierrez N,
769 Bellerose MM, Barreira-Silva P, Yao Phuah J, Baker RE, Behar SM, Kornfield H, Evans
770 TG, Beamer G, Sassetti CM. (2016). Tuberculosis Susceptibility and Vaccine Protection
771 Are Independently Controlled by Host Genotype. *mBio.* 7(5):e01516-16.
772
- 773 Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR, Kashfeen
774 A, McMullan RC, Williams LH, Giusti-Rodriguez P, Ferris MT, Sullivan P, Hock P, Miller
775 DR, Bell TA, McMillan L, Churchill GA, de Villena FP. (2017). Genomes of the Mouse
776 Collaborative Cross. *Genetics.* 206(2):537-556.
777
- 778 Subramaniam KS, Datta K, Quintero E, Manix C, Marks MS, Pirofski LA. The absence
779 of serum IgM enhances the susceptibility of mice to pulmonary challenge with
780 *Cryptococcus neoformans*. *J Immunol* (2010) 184:5755–67.
781 doi:10.4049/jimmunol.0901638
782
- 783 Threadgill, D.W., Miller, D.R., Churchill, G.A., and de Villena, F.P.-M. (2011). The
784 collaborative cross: a recombinant inbred mouse population for the systems genetic era.
785 *Ilar J* 52, 24–31.
- 786 Tsang, J.S., Schwartzberg, P.L., Kotliarov, Y., Biancotto, A., Xie, Z., Germain, R.N.,
787 Wang, E., Olnes, M.J., Narayanan, M., Golding, H., Moir, S., Dickler, H.B., Perl, S.,
788 Cheung, F., Baylor HIPC Center; CHI Consortium. (2014). Global analyses of human
789 immune variation reveal baseline predictors of postvaccination responses. *Cell* 157,
790 499–513.
791
- 792 Vidarsson G, Dekkers G, Rispen T. (2014). IgG subclasses and allotypes: from
793 structure to effector functions. *Front. Immunol.*
794
- 795 Waterfield M, Khan IS, Cortez JT, Fan U, Metzger T, Greer A, Fasano K, Martinez-
796 Llordella M, Pollack JL, Erle DJ, Su M, Anderson MS. (2014). The transcriptional
797 regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of
798 immunotolerance. *Nat Immunol.* 15(3):258-65.
799


- 800 Welsh, C.E., Miller, D.R., Manly, K.F., Wang, J., McMillan, L., Morahan, G., Mott, R.,
801 Iraqi, F.A., Threadgill, D.W., and de Villena, F.P.-M. (2012). Status and access to the
802 Collaborative Cross population. *Mamm. Genome* 23, 706–712.
- 803 Zhang Z, Goldschmidt T, Salter H. (2012). Possible allelic structure of IgG2a and IgG2c
804 in mice. *Mol. Immunol.* 50(3):169-71.
- 805
- 806 Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie
807 BD, Willhoite AR, Muotri AR, Summers RG, Chun J, Lee K, Gage FH. (2003). Mice
808 lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and
809 hippocampal function. *Biol. Sci.* 100 (11) 6777-6782.
- 810
- 811 Zhou ZH, Zhang Y, Hu YF, Wahl LM, Cisar JO, Notkins AL. (2007). The broad
812 antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies.
813 *Cell Host Microbe.* 1(1):51-61.
- 814
- 815
- 816
- 817
- 818
- 819
- 820
- 821
- 822

823 **Figures and Tables**

824

825

826

845 **Figure 1: Variation in baseline antibody levels across CC strains and antibody isotypes.**
846 Total antibody levels for each of IgG subtypes, total IgG, IgA, and IgM were quantified by
847 ELISAs. (A-H) Each plot is individually ordered so that the strain with the greatest strain
848 mean is at the top of the plot and the strain with the lowest is at the bottom. Grey dots
849 indicate the mean antibody concentration for an individual strain, and light blue dots
850 indicate individual animal measurements. (I) the relationship between individual antibody
851 isotypes and subtypes in the CC strains.

852

853

854

855

856

857

858

859

860

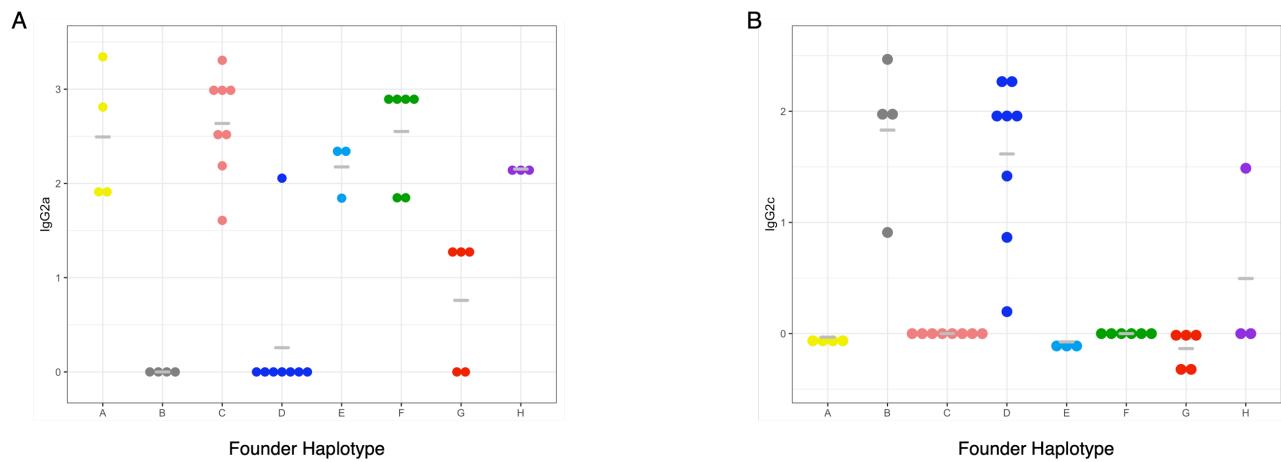
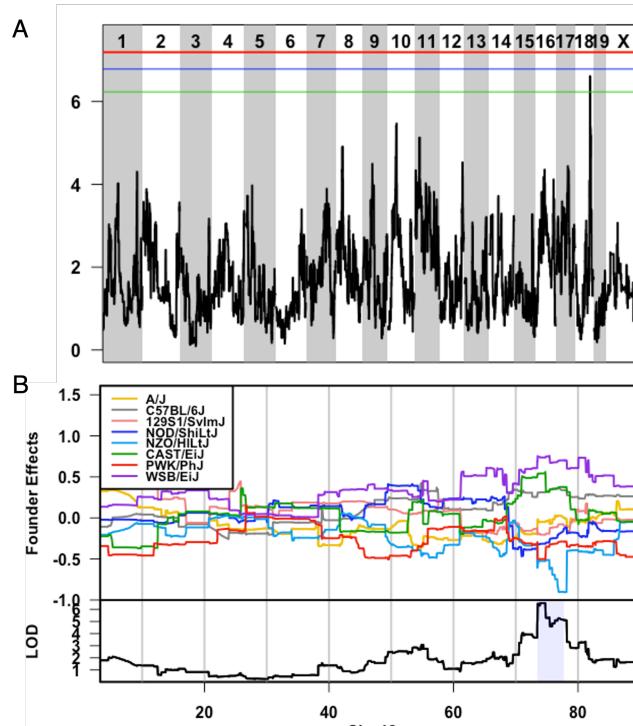
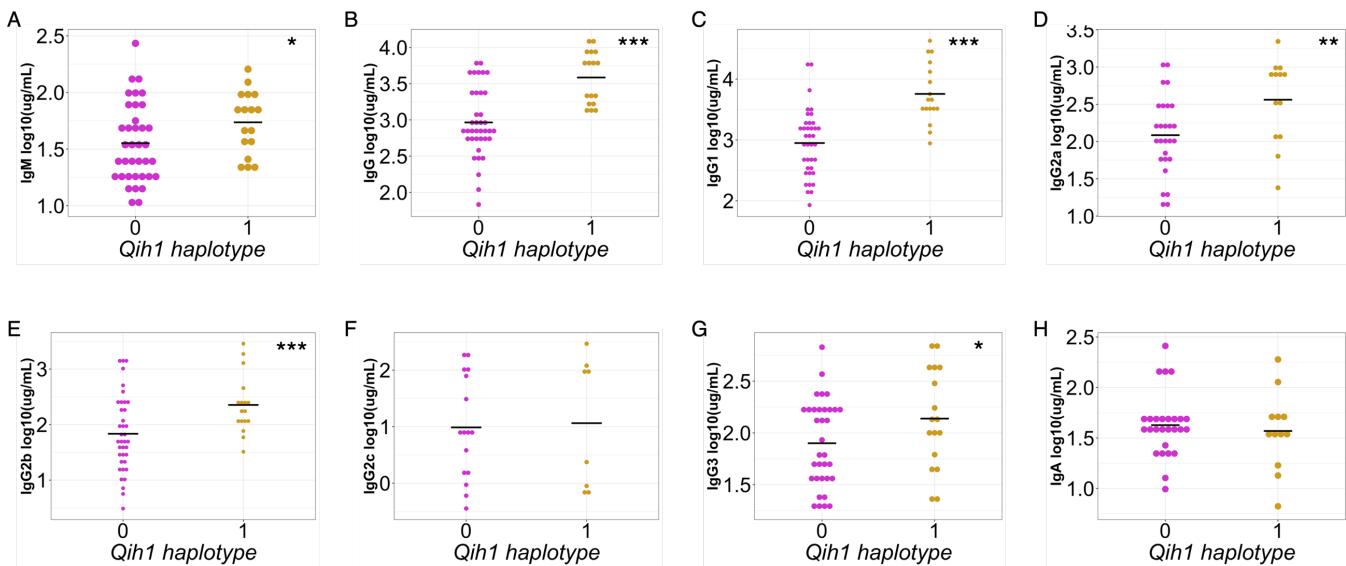

Antibody isotype	Phenotypic range (ug/mL)	Median Phenotype Value (ug/mL)	Heritability Estimate
Total IgG	58.76 – 173895.19	1498.06	0.488
IgG1	78.09 – 280910.17	1834.49	0.518
IgG2a	10.71 – 2378.67	187.10	0.462
IgG2b	3.07 – 5448.50	149.16	0.641
IgG2c	0.29 – 536.33	79.45	0.661
IgG3	5.61 – 2906.31	101.02	0.249
IgM	7.87 – 271.39	44.22	0.561
IgA	4.39 – 257.93	41.63	0.375

Table 1: Homeostatic antibody serum concentration ranges and broad sense heritability estimates.

QTL name	Antibody isotype	QTL interval	QTL threshold	Causal haplotype(s)
<i>Qih1</i>	IgG1	Chr. 18: 73 – 78Mb	p < 0.2	C57BL/6J, WSB/EiJ, CAST/EiJ – high
<i>Qih2</i> <i>Qih3</i>	IgG2c	Chr. 17: 43.4 – 44Mb Chr. 12: 117.7 – 120.1Mb	p < 0.05 p < 0.2	C57BL/6J, NOD/ShiLtJ, CAST/EiJ, NZO/HILtJ – high C57BL/6J, NOD/ShiLtJ – high
<i>Qih4</i>	IgG2b	Chr. 12: 112.9 – 115Mb	p < 0.05	C57BL/6J, NOD/ShiLtJ – high PWK/PhJ – low

Table 2: QTL identified in homeostatic antibody screen and causal haplotypes driving each QTL.


908
909
910


Figure 2: Expression of IgG2a and IgG2c by founder strain haplotype at the heavy chain locus.

Grey bar indicate haplotype means and each individual point represents the strain mean for each CC strain with a given haplotype at the heavy chain locus (Chromosome 12: 113 – 120Mb). The y-axis is the log10 transformed concentration of the specified antibody isotype.

911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

Figure 3: *Qih1* identified for variation in homeostatic IgG1 levels is driven by B6, WSB, and CAST haplotypes. A) LOD plot showing QTL significance (y-axis) across the genome (x-axis) with significance thresholds (genome-wide p-value = 0.05 (red), 0.1 (blue), 0.2 (green)). *Qih1* associated allele effects (A/J = yellow, B6 allele = grey, 129S1 allele = pink; NOD allele = dark blue; NZO allele = light blue; CAST = green; PWK = red; WSB = purple) were determined for the associated peak. B) Allele effect plot shows the mean deviation from population-wide mean as on the upper Y-axis for each allele segregating in the CC across the QTL peak region (x-axis positions are megabases on the chromosome) Highlighted region is the QTL confidence interval.

953

954

955

956

957

958

959

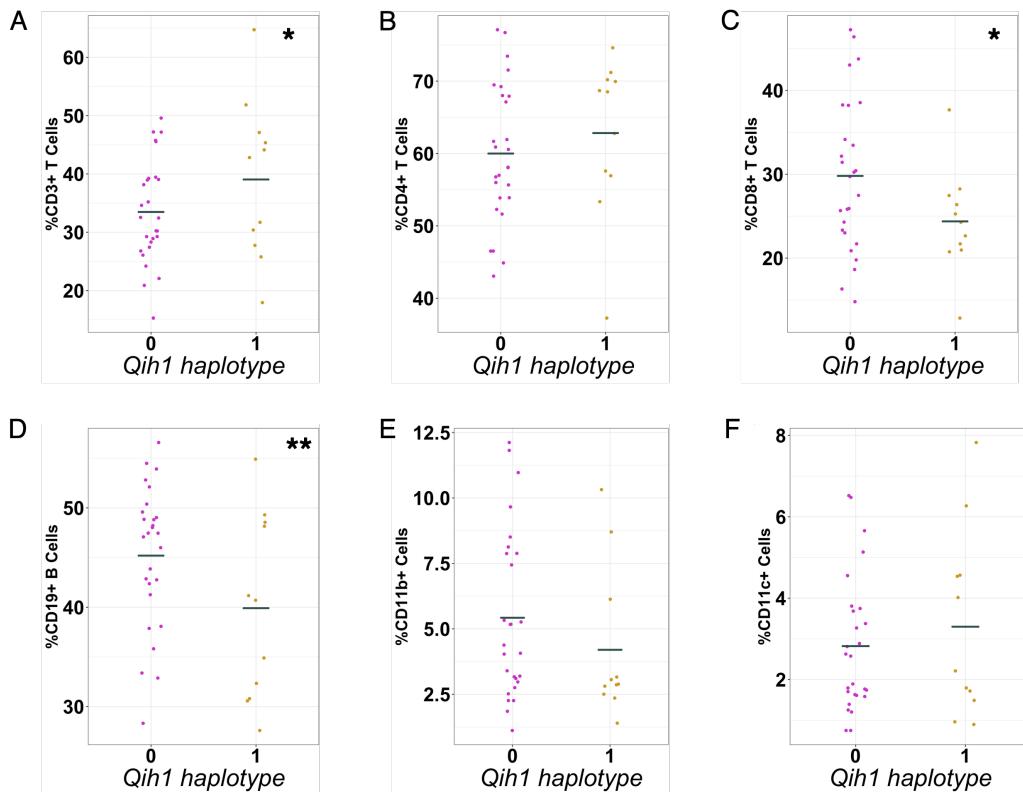
960

961

962

963

964


965

966

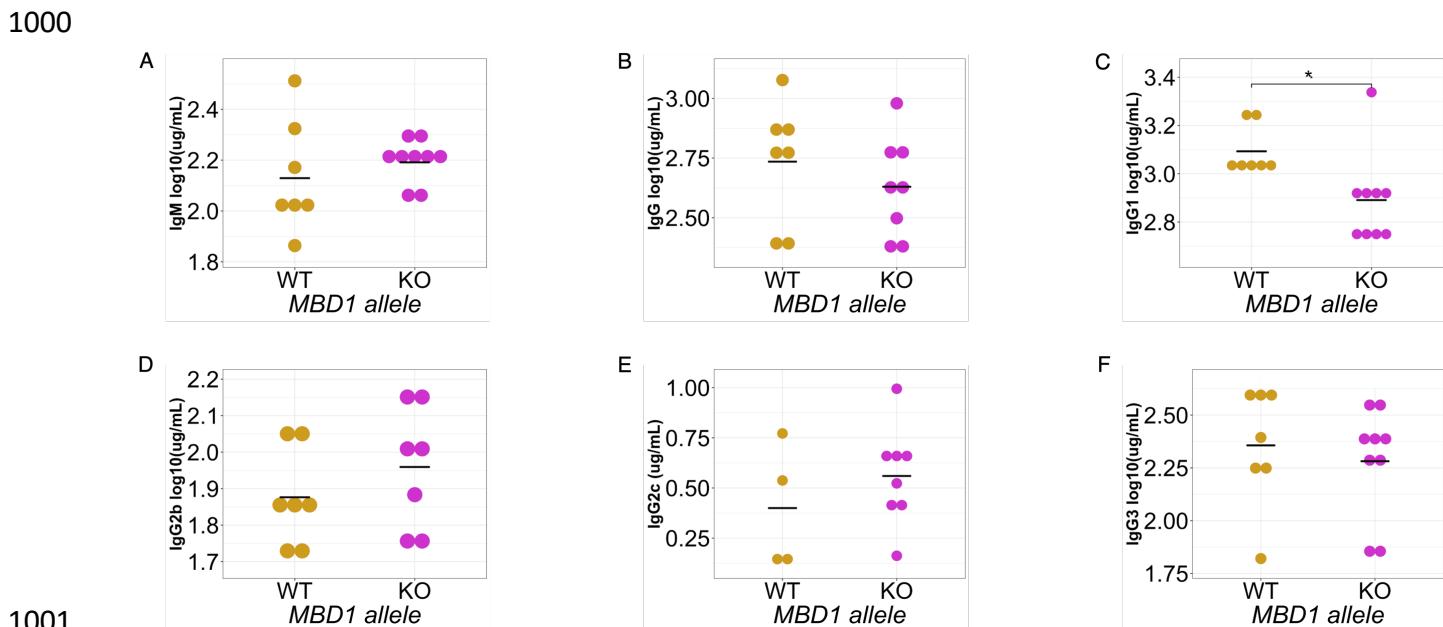

967

Figure 4: *Qih1* shows broad effects across antibody isotypes and subtypes. We assessed the relationship between B6, WSB, and CAST haplotypes (*Qih1* haplotype = 1) and other antibody isotypes and subtypes measured in our screen. Each point represents the mean value for each CC strain and the mean for each haplotype group on the x-axis is denoted by the grey crossbar. (*p < 0.1, **p < 0.05, *p < 0.01) p-values determined using nest linear model approach described in the methods.**

968
969
970
971
972
973
974
975
976
977
978
979
980

991 **Figure 5:** *Qih1* shows broad effects on immune cell populations in the spleen. We
992 assessed the relationship between B6, WSB, and CAST haplotypes (*Qih1*
993 haplotype = 1) and high-level immune cell populations in the spleen. Each point
994 represents the mean value for each CC strain and the mean for each haplotype
995 group on the x-axis is denoted by the grey crossbar. (* $p < 0.1$, ** $p < 0.05$, *** $p <$
996 0.01) p-values determined using nest linear model approach described in the
997 methods.
998
999

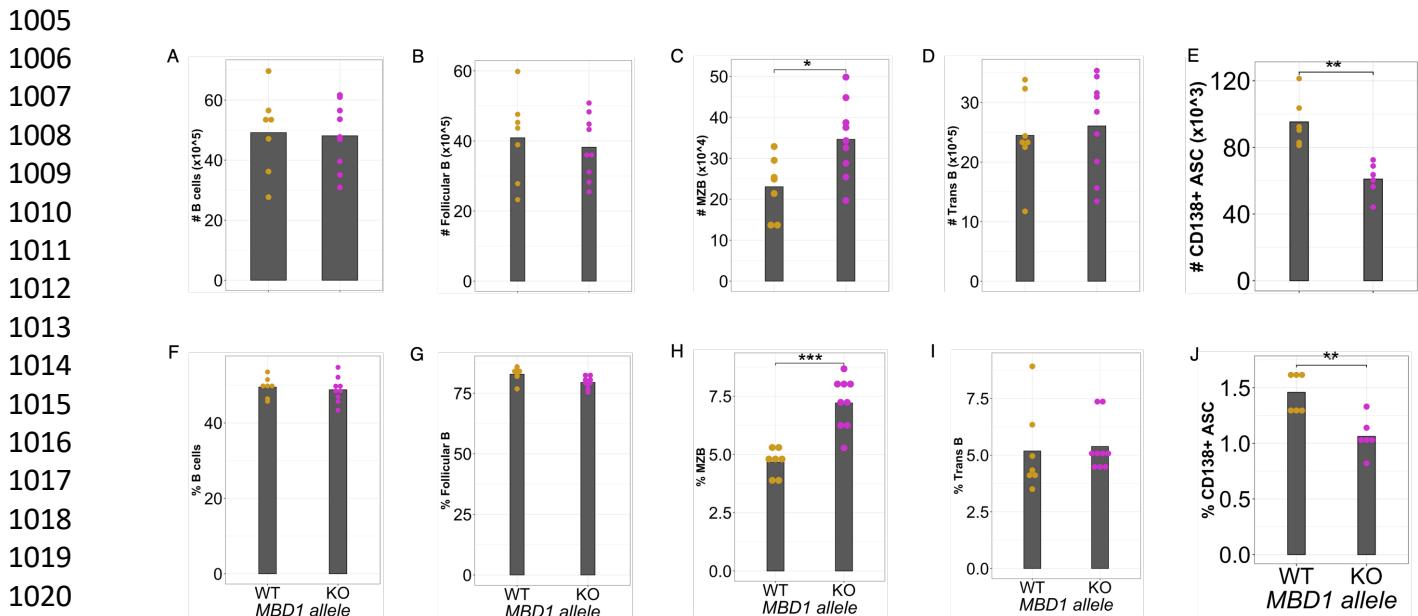


Figure 7: MBD1 regulates marginal zone B cell and antibody secreting cell levels at homeostasis. The data shown represent one of two independent experiments, each performed with 6-9 KO and 6-7 WT animals. Each point represents an individual animal in the experiment and the mean for each genotype is denoted by the grey bar. (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$) p-values determined using students t test or wilcox test.