

1
2 **MULTI-TISSUE LANDSCAPE OF SOMATIC mtDNA MUTATIONS INDICATES TISSUE SPECIFIC**
3 **ACCUMULATION AND REMOVAL IN AGING**

4
5

6 Monica Sanchez-Contreras⁺¹, Mariya T. Sweetwyne^{+1**}, Kristine A. Tsantilas², Jeremy A. Whitson¹,
7 Matthew D. Campbell³, Brendan F. Kohrn¹, Hyeon Jeong Kim⁴, Micheal J. Hipp, Jeanne Fredrickson¹,
8 Megan M. Nguyen¹, James B. Hurley², David J. Marcinek³, Peter S. Rabinovitch¹, and Scott R. Kennedy^{1**}

9

10 ⁺ authors contributed equally

11 ** Co-corresponding author

12

13 1. Department of Laboratory Medicine and Pathology, University of Washington, Seattle
14 2. Department of Biochemistry, University of Washington, Seattle
15 3. Department of Radiology, University of Washington, Seattle
16 4. Department of Biology, University of Washington, Seattle

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 **ABSTRACT**

34 Accumulation of somatic mutations in the mitochondrial genome (mtDNA) during aging has long been
35 proposed as a possible mechanism of mitochondrial and tissue dysfunction. A thorough characterization
36 of age-associated mtDNA somatic mutations has been hampered by the limited ability to detect low
37 frequency mutations. Here, we used Duplex Sequencing on eight tissues of an aged mouse cohort to
38 detect >89,000 independent somatic mtDNA mutations and show significant tissue-specific increases
39 during aging across all tissues examined which did not correlate with mitochondrial content and tissue
40 function. G→A/C→T substitutions, indicative of replication errors and/or cytidine deamination, were the
41 predominant mutation type across all tissues and increased with age, whereas G→T/C→A substitutions,
42 indicative of oxidative damage, were the second most common mutation type, but did not increase with
43 age regardless of tissue. We also show that clonal expansions of mtDNA mutations with age is tissue and
44 mutation type dependent. Unexpectedly, mutations associated with oxidative damage rarely formed
45 clones in any tissue and were significantly reduced in the hearts and kidneys of aged mice treated at late
46 age with Elamipretide or nicotinamide mononucleotide. Thus, the lack of accumulation of oxidative
47 damage-linked mutations with age indicates a life-long dynamic clearance of either the oxidative lesions
48 or mtDNA genomes harboring oxidative damage.

49

50 INTRODUCTION

51 Genetic instability is a hallmark of aging (López-Otín et al., 2013). A mechanistic link between
52 somatic mutations and age-related diseases such as cancer is clear, but their importance in other aging
53 phenotypes, long hypothesized, is poorly understood (Zhang and Vijg, 2018). Recent surveys of non-
54 diseased somatic tissues have shown that mutations are pervasive in the nuclear genome (nDNA),
55 increase with age, and vary considerably between tissues (Abasca et al., 2021; Li et al., 2021). Additionally,
56 these nDNA mutations commonly occur in cancer-associated genes, show evidence of selection and clonal
57 expansion, and may play important roles in tissue regeneration and tumor suppression (Colom et al.,
58 2020; Martincorena et al., 2018, 2017, 2015; Zhu et al., 2019). Collectively, these studies indicate a
59 growing realization that somatic mutagenesis and clonal dynamics are likely an important determinant of
60 human health during aging. While the accumulation of somatic mutations in the mitochondrial genome
61 (mtDNA) with age has long been documented, the specific nature of their occurrence, and the
62 consequences for aging, have remained unclear (Review (Sanchez-Contreras and Kennedy, 2022)).

63 In vertebrates, mtDNA is a maternally inherited ~16-17kb circular DNA molecule encoding 37
64 genes: 13 essential polypeptides of the electron transport chain (ETC), two ribosomal RNA genes, and 22
65 tRNAs. Mitochondria are involved in a broad range of crucial processes, including ATP generation via
66 oxidative phosphorylation (OXPHOS), calcium homeostasis, iron-sulfur cluster biogenesis, regulation of
67 apoptosis, and the biosynthesis of a wide variety of small molecules (Kowaltowski, 2000). These processes
68 rely on mitochondria such that disruption of the genetic information encoded in mtDNA by mutation leads
69 to dysfunction of these important processes and subsequently induces disease (Wallace, 1999). Unlike
70 nDNA, mtDNA replication is largely independent of the cell cycle. The higher level of mitochondrial
71 genome replication, the absence of several cellular DNA repair pathways, and the lack of protection from
72 histones results in mtDNA mutation rates ~100-1000X higher than that of nDNA (Marcelino and Thilly,
73 1999). Moreover, due to the coding density of mtDNA being higher than nDNA (~91% vs ~1%), the
74 probability that a mutation disrupts mitochondrial function is greater.

75 Observational studies have shown that the genetic instability of mtDNA in somatic cells is a
76 fundamental phenotype of aging and may be involved in the pathogenesis of several diseases (Reviewed
77 in (Larsson, 2010)). Collectively, studies examining endogenous mtDNA mutations have shown low levels
78 of G→T/C→A mutations and a preponderance of G→A/C→T and T→C/A→G transitions. This has been
79 interpreted as being contrary to free radical theories of aging by suggesting that reactive oxygen species
80 (ROS) are not the primary driver of mutagenesis in mtDNA (Arbeitshuber et al., 2020; Ju et al., 2014;
81 Kennedy et al., 2013; Williams et al., 2013; Zheng et al., 2006). Other notable patterns include an over-

82 abundance of mutations in the mitochondrial Control Region (mCR), an unusual strand bias, a mutational
83 gradient in transition mutations, and a unique trinucleotide mutational signature (Ju et al., 2014; Kennedy
84 et al., 2013; Sanchez-Contreras et al., 2021; Wei et al., 2019). However, while the presence of somatic
85 mtDNA mutations is well documented, a clear causative role in aging remains controversial (Reviewed in
86 (Sanchez-Contreras and Kennedy, 2022)).

87 One reason for this controversy stems from a poor understanding of when, where, and how
88 somatic mtDNA mutations arise during the normal aging process. Most conclusions regarding the
89 accumulation of mtDNA mutations during aging are based on a limited number of experimental models
90 and tissue types, with data largely focused on brain and muscle due to their perceived sensitivity to
91 mitochondrial dysfunction. Only a small number of pan-tissue surveys have been performed (Li et al.,
92 2021; Ma et al., 2018; Samuels et al., 2013). Importantly, most of these prior studies made use of either
93 “clone and sequence” or conventional next-generation sequencing (NGS) to detect mutations. These
94 approaches are technically limited in their ability to detect heteroplasmy below a variant allele fraction
95 (VAF) of 1-2% (Reviewed in (Salk et al., 2018)). The advent of ultra-high accuracy sequencing methods has
96 shown that most heteroplasmies are present far below this analytical threshold (Arbeitshuber et al., 2020;
97 Kennedy et al., 2013). As such, determining the burden of somatic mtDNA mutations in the context of
98 normal aging lags well behind the efforts focused on the nDNA. This is especially pertinent given the
99 heterogeneous nature of tissue decline during aging.

100 Like the nDNA, somatic mutations in mtDNA have been proposed to be under selection (Suen et
101 al., 2010). Cells have evolved several mitochondrial quality control pathways such as removal of damaged
102 mitochondria by mitophagy, and fusion/fission to maintain a healthy mitochondrial pool (Youle and
103 Narendra, 2011). The formation and expression of deleterious mtDNA mutations is hypothesized to lead
104 to a loss of mitochondrial membrane potential, mitochondrial dysfunction, and induction of mitophagy.
105 This is a potential mechanism by which cells prevent mtDNA mutations from reaching a phenotypic
106 threshold capable of altering cell homeostasis (Rossignol et al., 2003, 1999). Evidence for involvement of
107 quality control machinery in removing somatic mtDNA mutations has been contradictory, with some
108 indicating a clear role for mitophagy and/or fission/fusion, while other evidence indicates no effect (Chen
109 et al., 2010, 2015; Pickrell et al., 2015; Suen et al., 2010). Thus, the role, if any, of the mitochondrial quality
110 control pathways in targeting mtDNA mutations for removal remains unclear.

111 We and others have previously identified a mitochondrially targeted synthetic peptide,
112 Elamipretide (ELAM; previously referred to as SS-31 and Bendavia), and the NADH precursor nicotinamide
113 mononucleotide (NMN) as interventions that restore mitochondrial function and tissue homeostasis late

114 in life (Reviewed in (Yoshino et al., 2018) and (Obi et al., 2022)). The specific mechanism(s) by which these
115 two compounds ameliorate age-related mitochondrial dysfunction differ. ELAM interacts directly with the
116 inner mitochondrial membrane and membrane associated proteins, stabilizing the mitochondrial
117 ultrastructure and influencing cardiolipin-dependent protein interactions to improve ETC function leading
118 to reduced oxidant production, preservation of membrane potential, and enhanced ATP production
119 (Campbell et al., 2019; Mitchell et al., 2020; Zhang et al., 2020). In contrast, NMN is an NAD⁺ precursor
120 molecule and acts by elevating NAD levels and providing additional substrate for mitochondrial ATP
121 generation (Guan et al., 2017; Martin et al., 2017; Yoshino et al., 2011). Neither intervention is expected
122 to directly alter mtDNA repair mechanisms. Therefore, we sought to test whether these interventions
123 would reduce the prevalence of mtDNA mutations in aged tissues because of their proven efficacy in
124 improving mitochondrial structure and/or function.

125 We first addressed the relative dearth of high accuracy data regarding age-related accumulation
126 of mtDNA in mice across multiple tissue types. To that end, we used ultra-accurate Duplex Sequencing
127 (Duplex-Seq) to identify organ-specific mtDNA mutation burden in heart, skeletal muscle, eye, kidney,
128 liver, and brain in naturally aged mice (Kennedy et al., 2014; Schmitt et al., 2012). Intra-animal comparison
129 allowed us to determine whether mtDNA mutation rates differ between organs while still accounting for
130 inter-animal variation. Our findings point to the accumulation of somatic mtDNA mutations being a
131 dynamic and highly tissue-specific process that can be modulated by one or more cellular pathways
132 amenable to small molecule intervention.

133

134 METHODS

135 *Animals and tissue collection*

136 C57BL/6j male mice from the National Institute of Aging Rodent Resource were handled according
137 to the guidelines of the Institutional Animal Care Committee at the University of Washington. Two age
138 cohorts were used at 4.5 months and 26 months of age, respectively. Tissues from the 26 month old
139 cohort, including aged mice treated with ELAM or NMN, were obtained from the same previously reported
140 study, as previously described (Whitson et al., 2020). Briefly, 24-month-old mice were randomly assigned
141 to control, ELAM or NMN treatment groups. ELAM was provided by Stealth BioTherapeutics (Newton,
142 MA) and administered at a 3 mg/kg body weight/day dosage for 8 weeks through subcutaneously
143 implanted osmotic minipumps (ALZET, Cupertino, CA). Control mice were simultaneously housed in cages
144 with ELAM pump mice. NMN was obtained from the Imai laboratory (Washington University in St. Louis,
145 MO) and administered through *ad libitum* drinking water with a concentration based on each cage's

146 measured water consumption and mean mouse body weight to approximate a 300 mg/kg/day dose. This
147 method of drug delivery necessitated that NMN treated mice were housed independently from control
148 animals, however, treatments were run concurrently. Because we sequenced just a subset of the animals
149 from the Whitson *et al.* study (N=3-5 vs N=11-15 each group), we minimized study variation by excluding
150 tissues from animals with clearly cancerous lesions by gross analysis (primarily seen in liver) and then
151 sequenced a random cohort of age matched groups from the three treatment cohorts (Whitson *et al.*,
152 2020).

153 Mouse tissue was collected at 26-months of age immediately following euthanasia.
154 Representative portions of six different organ systems were flash frozen: 1) apex of the heart; 2) 2 mm
155 section from the inferior pole of the left lateral liver lobe; 3) Eyes were enucleated and cleared of muscle
156 and adipose tissue before dissecting the retina from the retinal pigmented epithelium (RPE)-choroid
157 complex (also referred to as 'eye cup' or 'EC' in our raw data files) with both regions preserved separately;
158 4) 3 mm slice of the lower pole of the decapsulated left kidney; 5) proximal 3 mm of left gastrocnemius;
159 6) brain was dissected in ice cold 1x PBS to obtain a 3 mm-thick coronal section from the most
160 anterior/septal pole of the left hippocampus and a 3 mm-thick sagittal section from the medial side of the
161 left cerebellar hemisphere. For every sample, dissecting tools were wiped in 70% ethanol, a new razor
162 blades and cutting boards were used, and samples were rinsed in fresh 1x PBS to minimize the
163 contribution of blood and avoid DNA cross-contamination. For perfused experiments, a separate cohort
164 of NIA male mice matching the same age for the aged cohort above (26 mo, N=3) was perfused
165 transcardially with 1x PBS containing calcium and magnesium before tissue isolation.

166

167 **DNA processing and Duplex Sequencing**

168 DNA was extracted using the Qiagen DNeasy Blood & Tissue kit (Qiagen, Valencia, CA) and stored
169 at -80°C. Duplex-Seq was performed as previously described (Kennedy *et al.*, 2014), but with several
170 modifications also previously described (Hoekstra *et al.*, 2016; Sanchez-Contreras *et al.*, 2021). Duplex-
171 Seq adapters with defined UMIs were used and were constructed by separately annealing complementary
172 oligonucleotides (IDT, Coralville IA), each containing one of 96 unique molecular identifiers (UMIs) of
173 defined sequence (Table S1). The resulting adapters were diluted to 25µM for ligation to sheared DNA.
174 Targeted capture used the IDT xGen Lockdown protocol and probes specific for mouse mtDNA (Integrated
175 DNA Technologies, Coralville, IA) following the manufacturer's instructions. The resulting libraries were
176 indexed and sequenced using ~150-cycle paired-end reads (300-cycles total) on an Illumina NovaSeq6000
177 with ~20x10⁶ reads per sample. Per sample sequencing metrics are available in Table S2.

178

179 ***mtDNA content***

180 mtDNA copy number was determined by droplet-digital PCR (ddPCR) by the Genomic Sciences
181 Core (GSC) of the Oklahoma Nathan Shock Center. Briefly, 200ng of total genomic DNA from the same
182 isolated DNA sample used for Duplex-Seq was mixed with ddPCR assay components including fluorogenic
183 'TaqMan' primer probe sets and the reactions were distributed across a chip with ~20,000 856pL droplets
184 to dilute the DNA template to either zero or one copy per well, as described previously (Masser et al.,
185 2016). Reactions were then cycled to end-point and fluorescence was read in each droplet. Based on the
186 count of fluorescent positive and negative wells and using a Poisson distribution, the number of target
187 copies was calculated per microliter. Nuclear genome counting was performed in parallel and used as a
188 surrogate for cell number which allows for normalization to cell number and results in an absolute
189 quantitation of mitochondrial genomes. The data are available in Table S3.

190

191 ***Data analysis and statistics***

192 The raw sequencing data was processed using version 1.1.4 of our in-house bioinformatics
193 pipeline (<https://github.com/Kennedy-Lab-UW/Duplex-Seq-Pipeline>) with the default consensus making
194 parameters. A detailed description of the Duplex Sequencing pipeline is described in Sanchez-Contreras
195 et al. (Sanchez-Contreras et al., 2021). Seven small polynucleotide repeats were masked to reduce errors
196 associated with alignment artifacts (Table S4).

197 To quantify the frequency of *de novo* events, we used a clonality cutoff of 1% or a depth of <100,
198 which excluded any positions with variants occurring at a high heteroplasmy level and scores each type
199 of mutation only once at each genome position. Called variants were annotated using the Ensembl Variant
200 Effect Predictor v99 to obtain protein change. Mutation frequencies were calculated by dividing the
201 number of reads for each allele by the total number of reads at the same mtDNA position. Correlation
202 statistics were applied to determine intra- and inter-animal mutation frequency variation using GraphPad
203 Prism, R, and Python software.

204 Statistical significances between young and old mutation frequencies for single nucleotide variants (SNV)
205 and insertions/deletions (In/Dels) were determined by Welch's t-test for each mutation class between
206 young vs. old. For comparisons within each age group and mutation type but between tissues (e.g. young
207 kidney vs. young liver vs. young heart frequency, etc), one-way repeated measures (i.e. each tissue)
208 ANOVA were followed with Tukey's HSD For comparing more than one group to a control (e.g. frequency of
209 mutation type for kidney in aged ELAM or aged NMN treated mice vs. untreated aged control) one-way

210 ANOVA was followed by Dunnett's multiple comparison test. The significance of the ratio of means
211 between young and old mutation spectra was determined by t-test for the ratio of means of two
212 independent samples from two gaussian distributions with the 95% confidence interval estimated by
213 Fieller's theorem implemented in the *mratios* R-package (Fieller, 1954)(Fieller 1954). P-values or adjusted
214 p-values less than 0.05 were considered significant in all cases.

215 Somatic heteroplasmic clones were defined as variants called in >2 supporting reads. Expected
216 clone events were calculated as the percentage of clonal mutations (>2 calls per sample) for each
217 mutation type observed by age, either in total across all samples or by individual tissue types (as
218 indicated). Significance between expected and observed clone events was calculated by Poisson
219 distribution.

220 dN/dS analysis was carried out using the *dNdScv* R package (Martincorena et al., 2017). The
221 package is designed to quantify selection in somatic evolution by implementing maximum-likelihood
222 methods that accounts for trinucleotide context-dependent substitution models, which is highly biased in
223 mtDNA. Each sample was processed independently using the *dNdScv* implementation with options
224 *max_muts_per_gene_per_sample* set to *Inf*, *numcode* set to 2, and the mean depth per gene included as
225 a covariate. ND6 was analyzed separately due to it residing on the opposite strand from the other protein
226 coding genes and having different G/C-skew (Ju et al., 2014). The resulting dN/dS values (w_{mis}) for each
227 gene were averaged and significant deviation from 1 determined by a one sample t-test with Bonferroni
228 correction (significance set to $p \leq 0.0167$).

229

230 RESULTS

231 To study the effects of aging on the accumulation of somatic mtDNA mutations across tissues, we
232 used Duplex-Seq to obtain high-accuracy variant information across the entire mitochondrial genome. We
233 examined six different organ systems (heart, kidney, liver, skeletal muscle, brain, and eye) at two different
234 ages (young=4.5 months; N=5 and old=26 months; N=6). These two age groups were chosen for their
235 representation of the two extremes of the adult mouse lifespan while mitigating potential confounders
236 related to development, sexual maturation, and survival selection at more advanced ages. These tissues
237 vary on their dependence of mitochondria function and OXPHOS (Fernández-Vizarra et al., 2011). To
238 minimize variation of cell type substructure within tissues between animals, care was taken to isolate
239 similar regions of each organ, as described above. In total, we sequenced over 27.9 billion high-accuracy
240 bases, corresponding to a grand mean post-consensus depth of 10,125X for all samples with reasonably
241 uniform coverage among experimental groups and mice, with the exception of the *Ori_L* (5160-5191) and

242 several masked regions with high G/C content and/or repetitive sequences (Figure S1 and S2; Table S4).
243 We observed a combined total of 77,017 single-nucleotide variants (SNVs) and 12,031 insertion/deletions
244 (In/Dels) across all tissue, age, and intervention groups. Collectively, these data represent the largest
245 collection of somatic mtDNA mutations obtained in a single study to date. A summary of the data for each
246 sample is reported in Table S2.

247

248 ***Frequency of somatic mtDNA mutations increase with age and is tissue-specific***

249 To better understand the effects of aging on somatic mtDNA mutations across tissues, we
250 determined the frequency of both SNVs and small InDels ($\lesssim 15$ bp) in aged mice. To minimize the
251 contribution of mtDNA mutations that could be either maternally inherited or clonal expansions
252 established in development, we limited our analysis to mutations occurring at or below a variant allele
253 fraction (VAF) of 1%. In young mice, an initial comparison of the frequency of mtDNA SNVs revealed a
254 mutation frequency on the order of $\sim 1 \times 10^{-6}$, with low variability between tissues (Figure 1A). Kidney and
255 liver were notable exceptions, exhibiting significantly higher SNV frequencies compared the other tissues
256 in the young cohort (Figure 1A, B). With age, we observed significant increases in SNV frequency in all
257 tissues we surveyed (Figure 1A). Moreover, mutation frequencies varied considerably between tissues in
258 the aged cohort, with kidney having the highest SNV frequency ($6.60 \pm 0.56 \times 10^{-6}$) and heart having the
259 lowest ($1.74 \pm 0.16 \times 10^{-6}$) (Figure 1A, C). The observed changes in frequency with age or tissue type did not
260 correlate with differences in mtDNA copy number, as the mtDNA:nDNA ratio did not change with age
261 (Table S3; Figure S3A, B). In/Dels were approximately 10-fold less prevalent than SNVs in young mice, with
262 a mean frequency of $\sim 1.5 \times 10^{-7}$, and virtually no differences between tissues (Figure 1D, E). Like SNVs,
263 In/Dels increased with age in nearly all tissues we surveyed and did not correlate with copy number, but
264 unlike SNVs, they did not significantly differ between tissue types, likely due to the high variability
265 between samples (Figure 1D, F; Figure S3C).

266 Due to mutation burdens being tissue specific, we considered whether these differences could be
267 driven by variation in the contribution of mitochondrial mutations in leukocytes of circulating blood. To
268 determine this, we analyzed Duplex-Seq in a small subset of tissues from aged mice perfused with PBS to
269 remove the blood. Duplex-Seq of mtDNA from blood collected prior to the perfusion showed that in aged
270 mice, the average frequency of SNV in blood was $3.05 \pm 0.15 \times 10^{-6}$, comparable to the frequency detected
271 in aged hippocampus. Comparisons of perfused (no/low blood) to non-perfused tissues from liver, kidney,
272 skeletal muscle, hippocampus and cerebellum (the retina, RPE/choroid, and heart were not sequenced),

273 showed no significant difference in the frequency of SNV mutations (Figure S4). Thus, our mutation
274 profiles are likely driven primarily by organ-specific cell types.

275 Although little is known about the kinetics of somatic mtDNA mutation accumulation during
276 aging, they have been reported to increase exponentially during aging in mice (Vermulst et al., 2007). Both
277 this study and the prior study by Arbeithuber *et al.* report only two time points each (4.5-months vs. 26-
278 months and 20-days vs. 10-months, respectively), making it impossible to confirm exponential increase in
279 either study (Arbeithuber et al., 2020). However, the combination of our data with Duplex-Seq data with
280 the previously published data by Arebiethuber *et al.* indicates a linear increase in overall mutation
281 frequencies across the lifespan in the three tissue types common to both studies (brain, muscle, and liver).
282 This indicates a likely constant ‘clock-like’ accumulation analogous to what is seen in the nuclear genome
283 (Abascal et al., 2021; Alexandrov et al., 2015; Arbeithuber et al., 2020) (Figure S5). Together, these data
284 demonstrate mtDNA mutations accumulate at tissue-specific rates during aging and indicate use of a
285 single tissue source to draw broad organism level conclusions regarding the interaction between mtDNA
286 mutations and aging is not scientifically supported.

287

288 ***Mutation spectra of somatic mtDNA mutations demonstrate tissue-specific distribution of mutation
289 types.***

290 Previous work by us and others indicates that somatic mtDNA mutations are strongly biased
291 towards transitions (*i.e.* G→A/C→T and T→C/A→G), with low levels of transversions (Ameur et al., 2011;
292 Arbeithuber et al., 2020; Ju et al., 2014; Kennedy et al., 2013; Pickrell et al., 2015; Williams et al., 2013).
293 Moreover, due to their low prevalence transversions associated with oxidative lesions (*i.e.* G→T/C→A
294 and G→C/C→G) have been largely discounted as contributing to age-associated mtDNA mutagenesis
295 (Arbeithuber et al., 2020; Hoekstra et al., 2016; Itsara et al., 2014; Kauppila et al., 2018; Kennedy et al.,
296 2013; Zheng et al., 2006). However, these findings are based on a limited number of tissue types,
297 specifically muscle and brain. Given the wide range of SNV frequencies and known metabolic activities of
298 the tissues we assayed, we examined the mutational spectra for each tissue. Our data show that the
299 overall bias towards G→A/C→T transitions remains broadly true for most tissues, but extent of this bias
300 varies considerably, with kidney and heart being the notable extremes (Figure 2A). In agreement with
301 prior studies, a single mutation class, G→A/C→T, is the most abundant mutation type and accounts for
302 more than 50% all mutations in most young tissues (Figure S6). In contrast, ROS-linked G→T/C→A and G

303 →C/C→G mutations exhibited substantial variation in the level mutations between tissues. In the central
304 nervous system (CNS) tissues (hippocampus, cerebellum, retina), G→T/C→A and G→C/C→G, combined,
305 accounted for an average of 23% of the total mutation burden (Retina = 18%, Hippocampus 18%,
306 Cerebellum 33%) (Figure S6). These data are consistent with prior Duplex-Seq based studies that focused
307 on neural tissues (Arbeituber et al., 2020; Hoekstra et al., 2016; Kennedy et al., 2013). In contrast,
308 skeletal muscle and heart in young animals have a relatively high frequency of ROS-linked mutations, with
309 43% and 66% of all mutations, respectively, resulting from these two types of mutations. This suggests
310 that ROS is a greater source of mtDNA mutagenesis earlier in life and is tissue dependent (Figure S6).

311 In comparison to the young tissues, mutation loads became more weighted towards transitions
312 across the aged tissues we surveyed (Figure 2B). Significant differences between tissues within mutation
313 classes also became more pronounced (Figure 2B, *heatmap*). The fold-increase in most mutation types
314 were remarkably uniform despite significant differences in SNV frequency between them (Figure 2C).
315 Aging led to an average 3.2-fold increase of G→A/C→T and T→C/A→G transitions. Similarly, a significant
316 2.4-fold increase of T→A/A→T transversions was also observed (Figure 2C). A→C/T→G mutations were
317 not evaluated due to their extreme paucity. In contrast to the other mutation types, G→T/C→A and G→
318 C/C→G mutations did not significantly increase with age (Figure 2C). Thus, we confirmed that ROS-linked
319 mutations do not accumulate significantly with age.

320

321 ***Clonal expansion of somatic mtDNA mutations is tissue specific.***

322 Mutagenesis has been described as an irreversible process that results in increasing levels of
323 mutations in a population over time, termed ‘Muller’s ratchet’ (Felsenstein, 1974; Muller, 1964).
324 Consequently, absent any compensatory mechanisms, mutations should increase during life. In the case
325 of mtDNA, this should appear as an increase in the burden of apparent heteroplasmies (or clones) within
326 a tissue over time. Importantly, because mtDNA replicates independently of nDNA, apparent
327 heteroplasmies can increase during aging even in the absence of substantial cell proliferation. Moreover,
328 mitochondria are subject to surveillance by mitophagy, which may affect the age dependent mutational
329 dynamics in tissue specific ways (Pickles et al., 2018). Expansion of mtDNA mutations sufficient to warrant
330 the term ‘clonal’ has been documented in human tissues, but the prevalence of this phenomenon remains
331 poorly documented in mice (Greaves et al., 2014, 2010, 2006; Nekhaeva et al., 2002). The set of tissues
332 we examined comprise a range of varying proliferative and replicative potentials, with heart, brain and

333 retina being limited, while many kidney and liver cell types proliferate significantly throughout life.
334 Therefore, we sought to determine the tissue-specific burden and dynamics of age-related clonal
335 expansion of mtDNA mutations.

336 We defined a “heteroplasmic clone” as a variant supported by three or more error-corrected
337 reads and then calculated both the frequency and percentage of total mutations corresponding to these
338 clones. We observed considerable tissue-specific variation in the effects of age on the presence
339 heteroplasmic clones, with all tissues exhibiting a significant increase in the frequency of total
340 heteroplasmic clones with age (Figure 3A, C). Clones in all tissues were distributed relatively uniformly
341 across the mtDNA but with a striking clustering of variants in the mCR (Figure 3C, *green region*), consistent
342 with prior reports (Arbeituber et al., 2020; Kennedy et al., 2013; Sanchez-Contreras et al., 2021).

343 The mutation composition of the clones varied between tissues. In the RPE/choroid, brain,
344 skeletal muscle and heart, the relative percentage of SNVs found as heteroplasmic clones did not change
345 with age (~2-3% of total SNV). In contrast, kidney, liver, and retina exhibited a disproportionate increase
346 in the number of clonally expanded variants with age. In old kidney, the percentage of SNV detected as
347 heteroplasmic clones increased to 10.4%, while clones in liver increased from ~1% of SNVs in young to
348 5.6% in old (Figure 3B). In retina, the percentage of SNVs detected as clones increased from 3.6% in young
349 to 5.6% in old mice. In kidney and liver, the expansion of mtDNA mutations was pervasive across the
350 genome and suggestive of a relationship to the high proliferative and regenerative capacity of these
351 tissues. Retina, however, is a post-mitotic tissue and displayed a very different pattern, with the age-
352 associated increase in clonality being attributed almost entirely to variants clustered in the mCR (Figure
353 3C). Importantly, several of the tissues we examined are highly vascular and the hematological
354 compartment has been documented to exhibit significant heteroplasmy and shifts in clonal expansions
355 with age (Lareau et al., 2019). With the exception of kidney, which showed a modest effect, we observed
356 no significant changes between the perfused and non-perfused samples, indicating that blood is not a
357 significant source of age-dependent changes across tissues (Figure S7). Collectively, these data suggest
358 that the importance of mtDNA heteroplasmic clones in aging phenotypes is tissue dependent. Very few
359 studies have examined somatic mtDNA heteroplasmic clones in any tissue, and this remains an area for
360 future work.

361

362 ***Spectral analysis of clonal somatic mtDNA mutations suggests removal of ROS-linked mutations***

363 Having established the tissue-specific profile of heteroplasmic clones, we reasoned that we could
364 distinguish between mutations arising from a transient process earlier in life and an active clearance of

365 mtDNA and/or whole mitochondria containing mutation types by examining which mutation types
366 became more heteroplasmic with age. Specifically, an ongoing or early transient mutational process
367 would be expected to result in expansion of a subset of variants across all mutation types. In contrast,
368 evidence of active clearance would appear as either a lack of heteroplasmic expansion or a bias in the
369 specific variants that underwent expansion. Because five of the eight tissues showed no significant change
370 in the proportion of clonal SNV with aging, we expected that clones would be distributed across the
371 spectra in a pattern like that of non-clonal mutations. Instead, we observed that the spectrum of
372 heteroplasmic clones demonstrates a nearly complete suppression of clones derived from G→T/C→A and
373 G→C/C→G mutations in both young and old mice (Figure 4A, B). Remarkably, suppression of ROS-linked
374 clones was true even in the heart, which carried the highest combined G→T/C→A and G→C/C→G SNV
375 mutation burden of any tissue, with 65% of total SNV in young and 34% of SNV in old mice (Figure S6).
376 Thus, we asked whether this lack of G→T/C→A and G→C/C→G clones was a significant finding or merely
377 a consequence of low sampling due to the relative paucity of clones and the lower frequency of ROS-
378 associated mutations. Under the assumption that clones arise randomly, we tested whether our data set
379 of detected SNV clones differed from the expected number of clones based on the spectral distribution
380 of non-clonal SNV mutations. To ensure that we had sufficient power, we combined SNV mutations and
381 clones detected in all eight tissues of the six old mice for a total of 24,244 *de novo* SNVs and 1,461
382 heteroplasmic clones. To account for differences in depth between samples, the spectral distribution of
383 total SNV mutations was calculated for each tissue of each mouse. The expected contribution of clones in
384 each tissue was then weighted based on the average percent of 'clonality' measured in the aged data set
385 (Figure 4B). For example, more clones were expected to form in kidney and liver (10.4% and 6% clonality,
386 respectively) than would be expected in brain or muscle tissues (~3% clonality). Using this method, our
387 model predicted that we should expect to detect 1,341 clones in total for combined aged tissues, which
388 was within 10% of the detected clone total of 1,461.

389 We modeled the expected spectrum of these clones among the six mutation types using a Poisson
390 process to model random sampling error due to the low abundance of clones. We compared the expected
391 number to the observed spectrum and found that the clonal spectra differed significantly from the
392 distribution of non-clonal SNVs (Figure 4C, D). G→T/C→A and C→G/G→C mutations were predicted to
393 form ~146 and ~69 clones respectively, however, only eight G→T/C→A clones and two C→G/G→C clones
394 were detected in the entire aged mouse data set, corresponding to an 18- and 34-fold

395 underrepresentation, respectively. Conversely, G→A/C→T and T→C/A→G transitions only deviated from
396 the expected values by less than two-fold (Figure 4D). Although we used a combined aged tissue data set
397 to ensure that we were not under sampling, this under/over representation by mutation spectra was
398 detected in every tissue type as shown by their observed spectral distribution (Figure 4E). Taken together,
399 these results suggest that expansions of heteroplasmic clones in mtDNA do not arise as a random
400 consequence of somatic mutation formation. The uneven distribution of clones relative to non-clonal
401 SNVs suggests that the lack of G→T/C→A and G→C/C→G mutation accumulation with age does not
402 reflect differences in the formation of these mutations, but rather is consistent with a steady-state level
403 of ROS-linked mutations that is susceptible to a constant generation and removal.

404

405 ***Late-life treatment with mitochondrially-targeted interventions eliminate ROS-linked mutations***

406 Like in the germline, mtDNA mutations have been hypothesized to be selectively removed in the
407 somatic tissue through a mechanism involving a still undetermined interaction between the unfolded
408 protein response, mitophagy, and mitochondrial fission/fusion (Chen et al., 2010; Gitschlag et al., 2016;
409 Lin et al., 2016; Suen et al., 2010). Therefore, we hypothesized that compounds known to improve
410 function and/or ultrastructure in aged mitochondria would impact the burden of aging mtDNA mutations
411 by shifting the steady state of ROS damage towards removal of damaged/dysfunctional mitochondria and
412 their accompanying mtDNA. To this end we sequenced tissues from mice treated systemically for eight
413 weeks with either ELAM or NMN in old mice that had accumulated somatic mtDNA mutations throughout
414 their lives. Functionally, both ELAM and NMN, improve mitochondrial energetics and the mitochondrial
415 network in aged mice across multiple aged tissues within an eight-week time frame (Chiao et al., 2020;
416 Sweetwyne et al., 2017; Whitson et al., 2020), albeit through different mechanisms. This allowed us to
417 examine mice within such a narrow window of time that it was more likely to detect changes in mutation
418 turnover/removal, rather than significant prevention of mutation accumulation during aging.

419 All treated samples were sequenced to a similar mean ‘duplex’ depth and detected comparable
420 numbers of mutations as the controls (Figures S2, S8, and S9; Table S2). We did not observe a significant
421 change in the overall mutation frequencies between aged mice and treated mice, regardless of tissue,
422 indicating that these interventions do not indiscriminately affect mtDNA mutations (Figure S10). In
423 support of this observation, the non-synonymous to synonymous ratio (dN/dS), which is a measure of
424 positive or negative selection, shows no significant deviation from the expected ratio of one for any age,
425 tissue, or intervention (Figure S11). However, consistent with our hypothesis, ELAM significantly reduced

426 G→T/C→A transversions in heart (Control: $9.7\pm3.0\times10^{-7}$ vs. ELAM: $5.5\pm1.5\times10^{-7}$, $p=0.019$; Control:
427 $9.7\pm3.0\times10^{-7}$ vs. NMN: $4.7\pm0.9\times10^{-7}$, $p=0.017$). As well, A→T/T→A mutations were reduced in NMN
428 treated animals relative to control ($p=0.0018$) (Figure 5A). Kidney, trended lower in ROS-linked mutations
429 in NMN treated animals with reduction in G→C/C→G mutations reaching significance in NMN treated
430 kidneys (Control: $7.3\pm2.0\times10^{-7}$ vs. NMN: $3.7\pm1.7\times10^{-7}$, $p=0.038$, Figure 5B). Liver showed a trending
431 decrease in G→T/C→A mutations with NMN intervention (Control: $1.4\pm0.4\times10^{-6}$ vs. NMN: $6.3\pm1.9\times10^{-7}$,
432 $p=0.120$, Figure 5C). Muscle showed a trending decrease in G→A/C→T mutations with ELAM intervention
433 (Control: $3.3\pm0.7\times10^{-6}$ vs. NMN: $2.7\pm0.3\times10^{-6}$, $p=0.110$ Figure 5C). Because G→T/C→A and G→C/C→G
434 mutations do not increase with age but are reduced with these interventions, these results indicate that
435 these changes are not simply due to the prevention of these mutation types during the treatment window.
436 In contrast, tissues of the central nervous system, including cerebellum, hippocampus, and retina as well
437 as the RPE/choroid did not display the same pattern in G→T/C→A mutations as seen in peripheral tissues,
438 with no reduction in ROS-linked mutations for treated mice (Figure S12). In cerebellum, A→T/T→A
439 mutations trended slightly higher in NMN treated mice compared to controls. These findings are
440 consistent with the lower overall G→T/C→A and G→C/C→G mutation burden in these latter tissues and
441 may indicate that their mtDNA is more protected from ROS damage with age than is the case in peripheral
442 organs.

443

444 **DISCUSSION**

445 The processes that drive and influence somatic mtDNA mutagenesis in aging and disease has
446 proved to be nuanced and controversial (Kauppila and Stewart, 2015; Sanchez-Contreras and Kennedy,
447 2022; Szczepanowska and Trifunovic, 2017). Enhancement of accuracy by NGS and newer methods, such
448 as Duplex-Seq, have begun to shed light on these processes. The few studies that have applied these
449 approaches to mtDNA have noted that the distinct lack of G→T/C→A and G→C/C→G transversions,
450 suggesting that oxidative damage is not a major contributor to aging mtDNA mutagenesis (Ameur et al.,
451 2011; Andreazza et al., 2019; Arbeithuber et al., 2020; Hoekstra et al., 2016; Itsara et al., 2014; Kennedy
452 et al., 2013; Samstag et al., 2018; Zheng et al., 2006). While these studies have increased our
453 understanding of mtDNA mutagenesis, these conclusions are largely based on a small number of tissue

454 types. In this report, we took advantage of our continued improvement in the Duplex-Seq protocol to
455 perform a multi-tissue survey of somatic mtDNA mutations in a naturally aging mouse cohort. The very
456 high depths we achieved (depth grand mean: 10,125X) allowed us to detect hundreds to thousands of
457 mutations per sample (variant count mean: 453, Total: 77,017) across all mutation types, representing a
458 ~8.3-fold increase in depth and a 38.5-fold increase in mean mutation count per sample compared to the
459 next largest currently published Duplex-Seq dataset for mouse mtDNA (depth grand mean: 1,231X; variant
460 count mean: 12.7, Total: 2,488) (Arbeithuber et al., 2020). This substantially expanded dataset allowed us
461 to examine the types and classes of *de novo* mtDNA mutations with unprecedented sensitivity and as a
462 result, we observed unexpected patterns that would have been missed with a lower coverage of
463 mutations. For example, our data set observed a mean of 50 G→T/C→A mutations per sample with no
464 samples having zero instances. In contrast, Arbeithuber et al. reported a mean of three G→T/C→A
465 mutations per sample with ~17% of samples failing to detect this mutation type at all (Arbeithuber et
466 al., 2020). Such low numbers can lead to significant biases in determining mutation frequencies and make
467 it difficult to detect meaningful differences between sample types. This issue is exacerbated in the
468 detection of heteroplasmic clones, which account for only a small fraction of detected SNV.

469 An analogous issue is at play when examining heteroplasmic clone dynamics. In the absence of a
470 significant technical error-rate, such as afforded by Duplex-Seq, the detection threshold of a heteroplasmy
471 is dictated primarily by the depth of sequencing. Therefore, the lower the depth, the larger the VAF must
472 be in order to be detected. Prior studies that made use of conventional NGS to detect low-level mutations
473 in mtDNA required VAF thresholds of 0.5-2% to be above error rate of these platform and reported no
474 changes with age or genotypes being studied (Ameur et al., 2011; Kauppila et al., 2018; Ma et al., 2018).
475 In contrast, recent work by Arbeithuber et al., as well as the data reported here, note clear age-related
476 changes occurring well below the detection threshold of earlier studies in mice, suggesting that high
477 detection thresholds imparted by either high error-rates or limited depth do not allow for adequate
478 sensitivity to detect these relatively subtle changes (Arbeithuber et al., 2020). The very high depths
479 achieved in this study also allowed us to observe heteroplasmic clones at a median VAF of 2×10^{-4} , which
480 is ~8.5-fold lower than the minimum VAF of 1.7×10^{-3} reported in Arbeithuber et al. (Arbeithuber et al.,
481 2020). These much lower levels allowed us to detect changes in both absolute and relative burden that
482 would have been difficult to discern with less data or lower accuracy methods, thus highlighting the
483 essential need to use high accuracy methods as the *de facto* approach to testing hypotheses related to
484 somatic mutations.

485 The findings reported here broadly recapitulate those from smaller studies reporting that somatic
486 mtDNA point mutations occur at a frequency on the order of 10^{-6} , increase with age, and are biased
487 towards G→A/C→T transitions (Ameur et al., 2011; Andreazza et al., 2019; Arbeithuber et al., 2020;
488 Hoekstra et al., 2016; Kennedy et al., 2013; Samstag et al., 2018; Williams et al., 2013). However, our
489 expanded dataset found an unexpected level of variation between tissues in both overall mutation
490 frequency and spectrum, indicating tissue-specific effects of aging on mtDNA mutation burden. In young
491 mouse tissues, we observed minimal variation in mtDNA SNV frequency with only kidney, liver, and
492 RPE/choroid showing significantly increased levels compared to other tissues. Only with advancing age
493 were distinct differences between all tissues apparent. Interestingly, although the relative mutation
494 frequencies differed widely between tissues in our data set, we observed a surprisingly consistent two-
495 fold increase from young to old mice, driven largely by the accumulation of G→A/C→T transitions.
496 Combining our Duplex-Seq data with those from Arbeithuber *et al.* show a clear clock-like behavior
497 reminiscent of the Horvath epigenetic clock (Horvath, 2013). Such a clock-like phenotype holds promise
498 as a biomarker for biological or even chronological age, depending on its modifiability. Our data showing
499 that small molecule interventions can indeed modify mtDNA mutations suggests that changes in the
500 mutational clock may be possible.

501 The age-related spectrum of mutations between tissues revealed considerable variation of the
502 canonical ROS-associated G→T/C→A and G→C/C→G transversions (Figure 2). Interestingly, and
503 consistent with prior reports, mouse tissues that are part of the CNS exhibited distinctly reduced levels
504 of ROS-associated transversions compared to the other tissues we surveyed (Figure 2) (Ameur et al.,
505 2011; Kennedy et al., 2013; Williams et al., 2013). Neural tissues are widely considered to be exquisitely
506 sensitive to ETC dysfunction and therefore may have evolved on their ability to defend from it. More
507 robust repair or quality control mechanisms may help eliminate damaged mtDNA before inducing
508 mutagenesis. Consistent with this idea, we observed that both heart and skeletal muscle have a high
509 relative burden of G→T/C→A and G→C/C→G transversions, especially in young tissues, suggesting that
510 their high metabolic activity may confer transversion mutagenesis in these tissue types relative to
511 transitions. These observations suggest that previously broad conclusions of ROS being irrelevant in
512 mtDNA mutagenesis may be biased for having relied on CNS tissues. As shown in previous Duplex-Seq
513 studies, ROS-linked mtDNA mutations are abundant in young, striated muscle tissues but they did not
514 increase in prevalence with age. Contrary to what would be expected, ROS-linked mutations very rarely

515 resulted in expanded heteroplasmic clones regardless of their contribution to overall mutation burden
516 in all tissues we assayed. The disproportionate lack of G→T/C→A and G→C/C→G clones suggests that
517 mutations arising from ROS damage to the mtDNA are cleared more often than mutations formed during
518 replication.

519 The data reported in this study indicate that mtDNA mutations accumulated very differently
520 across tissues. Mutations occurring from replication are likely to arise with replication in any genome,
521 even in fully functional mitochondria. However, there are some aspects of mtDNA structure and
522 replication patterns that prevent polymerase gamma (PolG)-induced mutations from being distributed
523 entirely randomly across the genome. First, we have previously used the power of this large data set to
524 demonstrate that a gradient exists across the mtDNA genome in the formation of G→A/C→T mutations,
525 driven by the structure and composition of the genome itself (Sanchez-Contreras et al., 2021). Second,
526 the relative prevalence of these mutations, as well as their increased percentage of clonal mtDNA
527 heteroplasmy in aged kidney and liver tissues, likely demonstrates how cellular proliferation also
528 contributes to the accumulation of mtDNA replication-linked transitions. Despite these caveats, PolG
529 errors likely explains why G→A/T→C mutations appear to be tightly linked with age across all tissues. In
530 contrast, ROS-linked mutations are not specifically generated by the process of DNA replication itself. It
531 was unexpected to find that such a significant proportion of mutations in some young tissues were ROS-
532 linked, including 65% of all SNV mutations in the heart and 43% in skeletal muscle. Despite this, there
533 was little increase of these mutations with age such that the proportion of ROS-linked mutation burden
534 relative to all SNV mutations dropped to 30% and 25% heart and skeletal muscle respectively. This finding
535 suggests the possibility that different tissues experience varying levels of ROS injury in early life, but that
536 these differences are attenuated in aged animals. Alternatively, it could mean that there is tissue-
537 specificity in how cells repair and/or destroy oxidatively damaged mitochondria and/or mtDNA resulting
538 in a steady-state of ROS-linked mutations.

539 We propose that instead of the incidence and impact of ROS damage on mtDNA being minimal,
540 recognition and removal of ROS-linked mutations are maintained at a steady state during aging. We expect
541 that in tissues with exacerbated levels of ROS, the extent of damage could be sufficient to simultaneously
542 create multiple lesions along an individual genome. This could affect the formation of ROS-linked
543 mutations if enough damage is accrued to targeting that mitochondrion for autophagic removal.
544 Alternatively, mitochondrial dysfunction itself can elicit apoptosis, which would also effectively remove

545 damaged mtDNA from the pool. Finally, if replication is initiated, significant DNA damage can stall
546 progression of the replication fork indefinitely, causing collapse of the replication machinery and leading
547 to large mtDNA deletions. This last scenario is a blind spot in Duplex-Seq methodology, such that large
548 deletions are difficult to detect due to the reliance on alignment of barcoded DNA fragments of ~200-
549 400 nucleotides. These scenarios all would prevent ROS-induced DNA damage from being converted into
550 a mtDNA mutation.

551 Our study is the first to demonstrate that ROS-linked mtDNA mutations can be specifically
552 decreased pharmacologically at late age and within a short treatment period in some tissues. These
553 pharmacological interventions are known to reverse age-related decline in mitochondrial function by
554 improving the function of the mitochondrial pool in some aged tissues, albeit through very different
555 mechanisms. Although neither drug has been shown to interact directly with mtDNA, the reduction of
556 ROS-linked mtDNA mutation frequency within such a short treatment window suggests a measurable
557 loss of mitochondrial genomes harboring ROS-linked mutations, rather than a reduced rate of
558 accumulation due to reduced excess ROS. This response demonstrates why ROS-linked mtDNA mutations
559 are rarely found to accumulate with age. Left unexplored by our current study is whether an earlier
560 initiation, longer duration, or more optimal dose of intervention would more robustly alter the mutation
561 spectra. Additionally, we cannot discount that the lack of efficacy in some tissues may be due to tissue-
562 specific differences in biodistribution of the two compounds tested. Finally, we did not have the
563 opportunity or sufficient sample size in this study to explore potential correlation between the
564 heterogeneity in mitochondrial function of tissues versus the degree of change in the oxidative mutations.

565 Our data indicate that the accumulation of somatic mtDNA mutation is highly segmental in nature
566 and that its impact on aging and/or disease risk may be tissue dependent. Moreover, several of the tissues
567 we examined, such as kidney, are very heterogeneous in their cell-type composition. By examining two
568 compartments of brain (hippocampus and cerebellum), two compartments of the eye (retina and
569 RPE/choroid), and two types of striated muscle tissue (skeletal and heart) we observe that not only are
570 aging-related mtDNA mutation patterns tissue-specific, but they are also region and cell type-specific. The
571 different mutation spectra that we detected must be underlain by cell-specific regulation of mtDNA.
572 Previous overarching assumptions of how mtDNA mutations do, or do not, contribute to aging may have
573 been premature when based on limited information from few tissues and with previous technical hurdles
574 of poor accuracy in detection of low-level mutation burdens. To fully understand how somatic mutation
575 of mtDNA contributes to common diseases of aging, future work must delve into cell-specific mechanisms

576 of mitochondrial mutation accumulation and mtDNA regulation, combined with high-accuracy methods
577 of mtDNA mutation detection.

578

579

580 **Funding and Support**

581 NIA P01 AG001751 (PSR & DM), NIA K01 AG062757 (MTS), NIDDK R21 DK128540 (MTS & MSC) Oklahoma
582 Nathan Shock Center Pilot Award (MSC & MTS), Dolsen Family Gift Funds (MSC), DOD/CDMRP W81XWH-
583 16-1-0579 (SRK), Genetic Approaches to Aging Training Grant NIA T32 AG000057 (JW & KAT), Biological
584 Mechanisms for Healthy Aging Training Grant NIA T32 AG066574 (KAT)

585

586 **Data Availability and Reproducibility**

587 The Duplex-Seq-Pipeline is written in Python and R, but has dependencies written in other languages. The
588 DuplexSeq-Pipeline software has been tested to run on Linux, Windows WSL1, Windows WSL2 and Apple
589 OSX. The software can be obtained at <https://github.com/KennedyLab-UW/Duplex-Seq-Pipeline>. Raw
590 mouse sequencing data used in this study are available at SRA accension PRJNA727407. The data from
591 Arbeitshuber *et al.* are available at SRA accension PRJNA563921. The final post-processed data, including
592 variant call files, depth information, data summaries, and mutation frequencies, as well as the scripts to
593 perform reproducible production of statistics and figure generation (with the exception of Figure 4C-E)
594 are available at https://github.com/Kennedy-Lab-UW/Sanchez_Contreras_etal_2022.

595

596 **Acknowledgements**

597 The authors wish to acknowledge the technical support of Carolyn N. Mann for the Sweetwyne Laboratory
598 and Dr. Claudia Moreno for the helpful discussions and long sessions of scientific writing.

599

600 **Author contributions**

601 M.S.C. and M.T.S. conceived of and performed mouse tissue experiments and isolations, DNA extraction
602 and Duplex Sequencing. M.S.C., M.T.S. and S.R.K. analyzed the results and wrote the manuscript. J.A.W.,
603 M.D.C. and M.T.S. set up the mouse colonies and organized the tissue collections. K.A.T. collected retina
604 tissue, dissected RPE from retina and contributed to the first draft of the manuscript. B.F.K. and S.R.K.
605 designed and developed computational programs for duplex sequencing data. H.J.K. and M.S.C.
606 developed R scripts to query and analyze data. M.J.H., J.F. and M.N. performed experiments. J.H., D.M

607 and P.S.R. provided financial support and assistance in supervising the project with M.T.S and S.R.K. All
608 authors reviewed the final manuscript.

609

610 **Conflict of Interest Statement**

611 SRK is an equity holder and paid consultant for Twinstrand Biosciences, a for-profit company
612 commercializing Duplex Sequencing. No Twinstrand products were used in the generation of the
613 data for this paper.

614

615 **References**

616 Abascal F, Harvey LM, Mitchell E, Lawson ARJ, Lensing SV, Ellis P, Russell AJ, Alcantara RE, Baez-
617 Ortega A, Wang Y, Kwa EJ, Lee-Six H, Cagan A, Coorens TH, Chapman MS, Olafsson S,
618 Leonard S, Jones D, Machado HE, Davies M, Øbro NF, Mahubani KT, Allinson K, Gerstung
619 M, Saeb-Parsy K, David G Kent, Elisa Laurenti, Stratton MR, Rahbari R, Campbell PJ,
620 Osborne RJ, Martincorena I. 2021. Somatic mutation landscapes at single-molecule
621 resolution. *Nature* **593**:405–410.

622 Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, Stratton MR. 2015.
623 Clock-like mutational processes in human somatic cells. *Nat Genet* **47**:1402–1407.
624 doi:10.1038/ng.3441

625 Ameur A, Stewart JB, Freyer C, Hagström E, Ingman M, Larsson N-G, Gyllensten U. 2011. Ultra-
626 deep sequencing of mouse mitochondrial DNA: Mutational patterns and their origins.
627 *PLoS Genet* **7**:e1002028. doi:10.1371/journal.pgen.1002028

628 Andreazza S, Samstag CL, Sanchez-Martinez A, Fernandez-Vizarra E, Gomez-Duran A, Lee JJ, Tufi
629 R, Hipp MJ, Schmidt EK, Nicholls TJ, Gammie PA, Chinnery PF, Minczuk M, Pallanck LJ,
630 Kennedy SR, Whitworth AJ. 2019. Mitochondrially-targeted APOBEC1 is a potent mtDNA
631 mutator affecting mitochondrial function and organismal fitness in *Drosophila*. *Nat
632 Commun* **10**:3280. doi:10.1038/s41467-019-10857-y

633 Arbeitshuber B, Hester J, Cremona MA, Stoler N, Zaidi A, Higgins B, Anthony K, Chiaromonte F,
634 Diaz FJ, Makova KD. 2020. Age-related accumulation of de novo mitochondrial
635 mutations in mammalian oocytes and somatic tissues. *PLoS Biol* **18**:e3000745.
636 doi:10.1371/journal.pbio.3000745

637 Campbell MD, Duan J, Samuelson AT, Gaffrey MJ, Merrihew GE, Egertson JD, Wang L, Bammler
638 TK, Moore RJ, White CC, Kavanagh TJ, Voss JG, Szeto HH, Rabinovitch PS, MacCoss MJ,
639 Qian W-J, Marcinek DJ. 2019. Improving mitochondrial function with SS-31 reverses age-
640 related redox stress and improves exercise tolerance in aged mice. *Free Radic Biol Med*
641 **134**:268–281. doi:10.1016/j.freeradbiomed.2018.12.031

642 Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. 2010.
643 Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of
644 mtDNA mutations. *Cell* **141**:280–289. doi:10.1016/j.cell.2010.02.026

645 Chen Z, Qi Y, French S, Zhang G, Garcia RC, Balaban R, Xu H. 2015. Genetic mosaic analysis of a
646 deleterious mitochondrial DNA mutation in *Drosophila* reveals novel aspects of

647 mitochondrial regulation and function. *Mol Biol Cell* **26**:674–684. doi:10.1091/mbc.E14-
648 11-1513

649 Chiao YA, Zhang H, Sweetwyne M, Whitson J, Ting YS, Basisty N, Pino LK, Quarles E, Nguyen N-
650 H, Campbell MD, Zhang T, Gaffrey MJ, Merrihew G, Wang L, Yue Y, Duan D, Granzier HL,
651 Szeto HH, Qian W-J, Marcinek D, MacCoss MJ, Rabinovitch P. 2020. Late-life restoration
652 of mitochondrial function reverses cardiac dysfunction in old mice. *eLife* **9**:e55513.
653 doi:10.7554/eLife.55513

654 Colom B, Alcolea MP, Piedrafita G, Hall MWJ, Wabik A, Dentro SC, Fowler JC, Herms A, King C,
655 Ong SH, Sood RK, Gerstung M, Martincorena I, Hall BA, Jones PH. 2020. Spatial
656 competition shapes the dynamic mutational landscape of normal esophageal
657 epithelium. *Nat Genet* **52**:604–614. doi:10.1038/s41588-020-0624-3

658 Felsenstein J. 1974. The evolutionary advantage of recombination. *Genetics* **78**:737–756.
659 doi:10.1093/genetics/78.2.737

660 Fernández-Vizarra E, Enríquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P. 2011. Tissue-
661 specific differences in mitochondrial activity and biogenesis. *Mitochondrion* **11**:207–213.
662 doi:10.1016/j.mito.2010.09.011

663 Fieller E. 1954. Some problems in interval estimation. *J Royal Stat Soc Ser B* **16**:175–185.

664 Gitschlag BL, Kirby CS, Samuels DC, Gangula RD, Mallal SA, Patel MR. 2016. Homeostatic
665 responses regulate selfish mitochondrial genome dynamics in *C. elegans*. *Cell Metab*
666 **24**:91–103. doi:10.1016/j.cmet.2016.06.008

667 Greaves LC, Barron MJ, Plusa S, Kirkwood TB, Mathers JC, Taylor RW, Turnbull DM. 2010.
668 Defects in multiple complexes of the respiratory chain are present in ageing human
669 colonic crypts. *Exp Gerontol* **45**:573–579. doi:10.1016/j.exger.2010.01.013

670 Greaves LC, Nooteboom M, Elson JL, Tuppen HAL, Taylor GA, Commane DM, Arasaradnam RP,
671 Khrapko K, Taylor RW, Kirkwood TBL, Mathers JC, Turnbull DM. 2014. Clonal expansion
672 of early to mid-life mitochondrial DNA point mutations drives mitochondrial dysfunction
673 during human ageing. *PLoS Genet* **10**:e1004620. doi:10.1371/journal.pgen.1004620

674 Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, Oukrif D, Leedham SJ, Deheragoda
675 M, Sasieni P, Novelli MR, Jankowski JAZ, Turnbull DM, Wright NA, McDonald SAC. 2006.
676 Mitochondrial DNA mutations are established in human colonic stem cells, and mutated
677 clones expand by crypt fission. *Proc Natl Acad Sci USA* **103**:714–719.
678 doi:10.1073/pnas.0505903103

679 Guan Y, Wang S-R, Huang X-Z, Xie Q, Xu Y-Y, Shang D, Hao C-M. 2017. Nicotinamide
680 mononucleotide, an NAD⁺ precursor, rescues age-associated susceptibility to AKI in a
681 sirtuin 1-dependent manner. *J Am Soc Nephrol* **28**:2337–2352.
682 doi:10.1681/ASN.2016040385

683 Hoekstra JG, Hipp MJ, Montine TJ, Kennedy SR. 2016. Mitochondrial DNA mutations increase in
684 early stage Alzheimer disease and are inconsistent with oxidative damage. *Ann Neurol*
685 **80**:301–306. doi:10.1002/ana.24709

686 Horvath S. 2013. DNA methylation age of human tissues and cell types. *Genome Biol* **14**:R115.
687 doi:10.1186/gb-2013-14-10-r115

688 Itsara LS, Kennedy SR, Fox EJ, Yu S, Hewitt JJ, Sanchez-Contreras M, Cardozo-Pelaez F, Pallanck
689 LJ. 2014. Oxidative stress is not a major contributor to somatic mitochondrial DNA
690 mutations. *PLoS Genet* **10**:e1003974. doi:10.1371/journal.pgen.1003974

691 Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, Ramakrishna M, Davies HR,
692 Papaemmanuil E, Gundem G, Shlien A, Bolli N, Behjati S, Tarpey PS, Nangalia J, Massie
693 CE, Butler AP, Teague JW, Vassiliou GS, Green AR, Du M-Q, Unnikrishnan A, Pimanda JE,
694 Teh BT, Munshi N, Greaves M, Vyas P, El-Naggar AK, Santarius T, Collins VP, Grundy R,
695 Taylor JA, Hayes DN, Malkin D, ICGC Breast Cancer Group, ICGC Chronic Myeloid
696 Disorders Group, ICGC Prostate Cancer Group, Foster CS, Warren AY, Whitaker HC,
697 Brewer D, Eeles R, Cooper C, Neal D, Visakorpi T, Isaacs WB, Bova GS, Flanagan AM,
698 Futsreal PA, Lynch AG, Chinnery PF, McDermott U, Stratton MR, Campbell PJ. 2014.
699 Origins and functional consequences of somatic mitochondrial DNA mutations in human
700 cancer. *Elife* **3**:e02935. doi:10.7554/elife.02935

701 Kauppila JHK, Bonekamp NA, Mourier A, Isokallio MA, Just A, Kauppila TES, Stewart JB, Larsson
702 N-G. 2018. Base-excision repair deficiency alone or combined with increased oxidative
703 stress does not increase mtDNA point mutations in mice. *Nucleic Acids Res* **46**:6642–
704 6669. doi:10.1093/nar/gky456

705 Kauppila JHK, Stewart JB. 2015. Mitochondrial DNA: Radically free of free-radical driven
706 mutations. *Biochim Biophys Acta* **1847**:1354–1361. doi:10.1016/j.bbabi.2015.06.001

707 Kennedy SR, Salk JJ, Schmitt MW, Loeb LA. 2013. Ultra-sensitive sequencing reveals an age-
708 related increase in somatic mitochondrial mutations that are inconsistent with oxidative
709 damage. *PLoS Genet* **9**:e1003794. doi:10.1371/journal.pgen.1003794

710 Kennedy SR, Schmitt MW, Fox EJ, Kohn BF, Salk JJ, Ahn EH, Prindle MJ, Kuong KJ, Shen J-C,
711 Risques R-A, Loeb LA. 2014. Detecting ultralow-frequency mutations by Duplex
712 Sequencing. *Nat Protoc* **9**:2586–2606. doi:10.1038/nprot.2014.170

713 Kowaltowski AJ. 2000. Alternative mitochondrial functions in cell physiopathology: beyond ATP
714 production. *Braz J Med Biol Res* **33**:241–250. doi:10.1590/S0100-879X2000000200014

715 Lareau CA, Ludwig LS, Sankaran VG. 2019. Longitudinal assessment of clonal mosaicism in
716 human hematopoiesis via mitochondrial mutation tracking. *Blood Adv* **3**:4161–4165.
717 doi:10.1182/bloodadvances.2019001196

718 Larsson N-G. 2010. Somatic mitochondrial DNA mutations in mammalian aging. *Annu Rev
719 Biochem* **79**:683–706. doi:10.1146/annurev-biochem-060408-093701

720 Li R, Di L, Li J, Fan W, Liu Y, Guo W, Liu W, Liu L, Li Q, Chen L, Chen Y, Miao C, Liu H, Wang Y, Ma
721 Y, Xu D, Lin D, Huang Y, Wang J, Bai F, Wu C. 2021. A body map of somatic mutagenesis
722 in morphologically normal human tissues. *Nature* **597**:398–403. doi:10.1038/s41586-
723 021-03836-1

724 Lin Y-F, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM. 2016. Maintenance and
725 propagation of a deleterious mitochondrial genome by the mitochondrial unfolded
726 protein response. *Nature* **533**:416–419. doi:10.1038/nature17989

727 López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2013. The hallmarks of aging. *Cell*
728 **153**:1194–1217. doi:10.1016/j.cell.2013.05.039

729 Ma H, Lee Y, Hayama T, Van Dyken C, Marti-Gutierrez N, Li Y, Ahmed R, Koski A, Kang E, Darby
730 H, Gonmanee T, Park Y, Wolf DP, Jai Kim C, Mitalipov S. 2018. Germline and somatic
731 mtDNA mutations in mouse aging. *PLoS ONE* **13**:e0201304.
732 doi:10.1371/journal.pone.0201304

733 Marcelino LA, Thilly WG. 1999. Mitochondrial mutagenesis in human cells and tissues. *Mutat
734 Res* **434**:177–203. doi:10.1016/S0921-8777(99)00028-2

735 Martin AS, Abraham DM, Hershberger KA, Bhatt DP, Mao L, Cui H, Liu J, Liu X, Muehlbauer MJ,
736 Grimsrud PA, Locasale JW, Payne RM, Hirschey MD. 2017. Nicotinamide
737 mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a
738 Friedreich's ataxia cardiomyopathy model. *JCI Insight* **2**:e93885.
739 doi:10.1172/jci.insight.93885

740 Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, Hall MWJ, Cagan A, Murai K,
741 Mahbubani K, Stratton MR, Fitzgerald RC, Handford PA, Campbell PJ, Saeb-Parsy K,
742 Jones PH. 2018. Somatic mutant clones colonize the human esophagus with age. *Science*
743 **362**:911–917. doi:10.1126/science.aau3879

744 Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, Davies H, Stratton MR,
745 Campbell PJ. 2017. Universal patterns of selection in cancer and somatic tissues. *Cell*
746 **171**:1029–1041.e21. doi:10.1016/j.cell.2017.09.042

747 Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S, Wedge DC, Fullam A,
748 Alexandrov LB, Tubio JM, Stebbings L, Menzies A, Widaa S, Stratton MR, Jones PH,
749 Campbell PJ. 2015. High burden and pervasive positive selection of somatic mutations in
750 normal human skin. *Science* **348**:880–886. doi:10.1126/science.aaa6806

751 Masser DR, Clark NW, Van Remmen H, Freeman WM. 2016. Loss of the antioxidant enzyme
752 CuZnSOD (Sod1) mimics an age-related increase in absolute mitochondrial DNA copy
753 number in the skeletal muscle. *Age (Dordr)* **38**:323–333. doi:10.1007/s11357-016-9930-
754 1

755 Mitchell W, Ng EA, Tamucci JD, Boyd KJ, Sathappa M, Coscia A, Pan M, Han X, Eddy NA, May ER,
756 Szeto HH, Alder NN. 2020. The mitochondria-targeted peptide SS-31 binds lipid bilayers
757 and modulates surface electrostatics as a key component of its mechanism of action. *J
758 Biol Chem* **295**:7452–7469. doi:10.1074/jbc.RA119.012094

759 Muller H. 1964. The relation of recombination to mutational advance. *Mutat Res* **1**:2–9.
760 doi:10.1016/0027-5107(64)90047-8

761 Nekhaeva E, Bodyak ND, Kraytsberg Y, McGrath SB, Van Orsouw NJ, Pluzhnikov A, Wei JY, Vijg J,
762 Khrapko K. 2002. Clonally expanded mtDNA point mutations are abundant in individual
763 cells of human tissues. *Proc Natl Acad Sci USA* **99**:5521–5526.
764 doi:10.1073/pnas.072670199

765 Obi C, Smith AT, Hughes GJ, Adeboye AA. 2022. Targeting mitochondrial dysfunction with
766 elamipretide. *Heart Fail Rev*. doi:10.1007/s10741-021-10199-2

767 Pickles S, Vigié P, Youle RJ. 2018. Mitophagy and quality control mechanisms in mitochondrial
768 maintenance. *Curr Biol* **28**:R170–R185. doi:10.1016/j.cub.2018.01.004

769 Pickrell AM, Huang C-H, Kennedy SR, Ordureau A, Sideris DP, Hoekstra JG, Harper JW, Youle RJ.
770 2015. Endogenous Parkin preserves dopaminergic substantia nigral neurons following
771 mitochondrial DNA mutagenic stress. *Neuron* **87**:371–381.
772 doi:10.1016/j.neuron.2015.06.034

773 Rossignol R, Faustin B, Rocher C, Malgat M, Mazat J-P, Letellier T. 2003. Mitochondrial
774 threshold effects. *Biochem J* **370**:751–762. doi:10.1042/bj20021594

775 Rossignol R, Malgat M, Mazat J-P, Letellier T. 1999. Threshold effect and tissue specificity. *J Biol
776 Chem* **274**:33426–33432. doi:10.1074/jbc.274.47.33426

777 Salk JJ, Schmitt MW, Loeb LA. 2018. Enhancing the accuracy of next-generation sequencing for
778 detecting rare and subclonal mutations. *Nat Rev Genet* **19**:269–285.
779 doi:10.1038/nrg.2017.117

780 Samstag CL, Hoekstra JG, Huang C-H, Chaisson MJ, Youle RJ, Kennedy SR, Pallanck LJ. 2018.
781 Deleterious mitochondrial DNA point mutations are overrepresented in *Drosophila*
782 expressing a proofreading-defective DNA polymerase γ . *PLoS Genet* **14**:e1007805.
783 doi:10.1371/journal.pgen.1007805

784 Samuels DC, Li C, Li B, Song Z, Torstenson E, Boyd Clay H, Rokas A, Thornton-Wells TA, Moore
785 JH, Hughes TM, Hoffman RD, Haines JL, Murdock DG, Mortlock DP, Williams SM. 2013.
786 Recurrent tissue-specific mtDNA mutations are common in humans. *PLoS Genet*
787 **9**:e1003929. doi:10.1371/journal.pgen.1003929

788 Sanchez-Contreras M, Kennedy SR. 2022. The complicated nature of somatic mtDNA mutations
789 in aging. *Front Aging* **2**:805126. doi:10.3389/fragi.2021.805126

790 Sanchez-Contreras M, Sweetwyne MT, Kohn BF, Tsantilas KA, Hipp MJ, Schmidt EK, Fredrickson
791 J, Whitson JA, Campbell MD, Rabinovitch PS, Marcinek DJ, Kennedy SR. 2021. A
792 replication-linked mutational gradient drives somatic mutation accumulation and
793 influences germline polymorphisms and genome composition in mitochondrial DNA.
794 *Nucl Acids Res* **49**:11103–11118.

795 Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. 2012. Detection of ultra-rare
796 mutations by next-generation sequencing. *Proc Natl Acad Sci USA* **109**:14508–14513.
797 doi:10.1073/pnas.1208715109

798 Suen D-F, Narendra DP, Tanaka A, Manfredi G, Youle RJ. 2010. Parkin overexpression selects
799 against a deleterious mtDNA mutation in heteroplasmic cybrid cells. *Proc Natl Acad Sci*
800 *USA* **107**:11835–11840. doi:10.1073/pnas.0914569107

801 Sweetwyne MT, Pippin JW, Eng DG, Hudkins KL, Chiao YA, Campbell MD, Marcinek DJ, Alpers
802 CE, Szeto HH, Rabinovitch PS, Shankland SJ. 2017. The mitochondrial-targeted peptide,
803 SS-31, improves glomerular architecture in mice of advanced age. *Kidney Int* **91**:1126–
804 1145. doi:10.1016/j.kint.2016.10.036

805 Szczepanowska K, Trifunovic A. 2017. Origins of mtDNA mutations in ageing. *Essays Biochem*
806 **61**:325–337. doi:10.1042/EBC20160090

807 Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS, Prolla TA, Loeb LA. 2007.
808 Mitochondrial point mutations do not limit the natural lifespan of mice. *Nat Genet*
809 **39**:540–543. doi:10.1038/ng1988

810 Wallace DC. 1999. Mitochondrial diseases in man and mouse. *Science* **283**:1482–1488.
811 doi:10.1126/science.283.5407.1482

812 Wei W, Tuna S, Keogh MJ, Smith KR, Aitman TJ, Beales PL, Bennett DL, Gale DP, Bitner-Glindzicz
813 MAK, Black GC, Brennan P, Elliott P, Flinter FA, Floto RA, Houlden H, Irving M, Koziell A,
814 Maher ER, Markus HS, Morrell NW, Newman WG, Roberts I, Sayer JA, Smith KGC, Taylor
815 JC, Watkins H, Webster AR, Wilkie AOM, Williamson C, NIHR BioResource–Rare
816 Diseases, 100,000 Genomes Project–Rare Diseases Pilot, Ashford S, Penkett CJ, Stirrups
817 KE, Rendon A, Ouwehand WH, Bradley JR, Raymond FL, Caulfield M, Turro E, Chinnery
818 PF. 2019. Germline selection shapes human mitochondrial DNA diversity. *Science*
819 **364**:eaau6520. doi:10.1126/science.aau6520

820 Whitson JA, Bitto A, Zhang H, Sweetwyne MT, Coig R, Bhayana S, Shankland EG, Wang L,
821 Bammler TK, Mills KF, Imai S, Conley KE, Marcinek DJ, Rabinovitch PS. 2020. SS-31 and
822 NMN: Two paths to improve metabolism and function in aged hearts. *Aging Cell*
823 **19**:e13213. doi:10.1111/acel.13213

824 Williams SL, Mash DC, Züchner S, Moraes CT. 2013. Somatic mtDNA mutation spectra in the
825 aging human putamen. *PLoS Genet* **9**:e1003990. doi:10.1371/journal.pgen.1003990

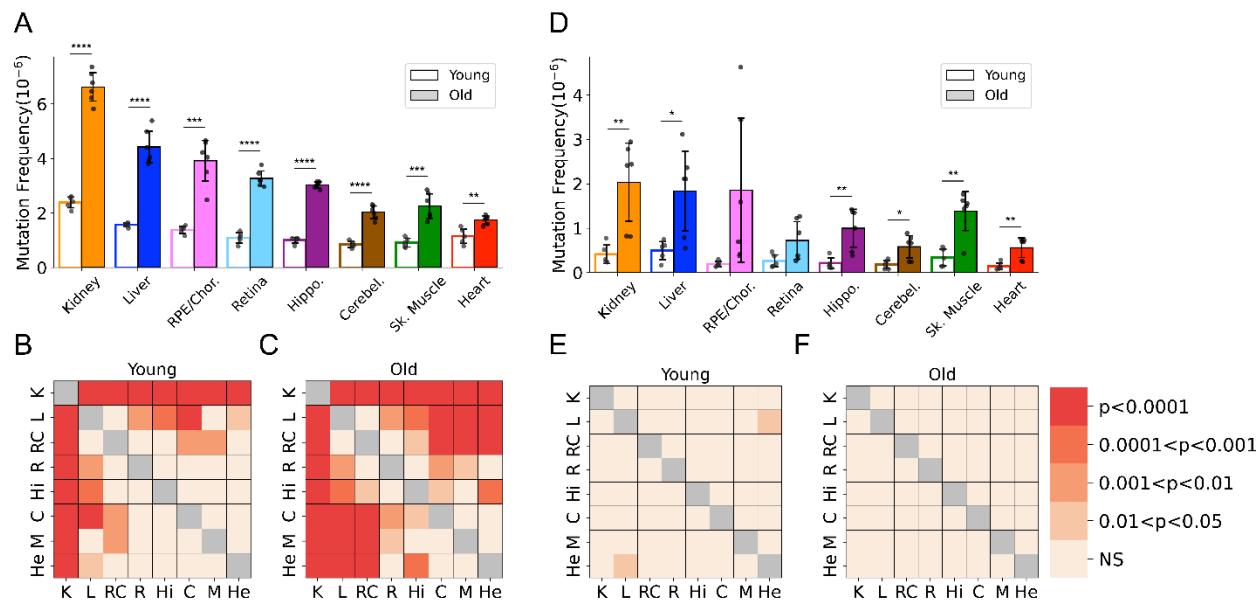
826 Yoshino J, Baur JA, Imai S. 2018. NAD⁺ intermediates: The biology and therapeutic potential of
827 NMN and NR. *Cell Metab* **27**:513–528. doi:10.1016/j.cmet.2017.11.002

828 Yoshino J, Mills KF, Yoon MJ, Imai S. 2011. Nicotinamide mononucleotide, a key NAD+
829 intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. *Cell*
830 *Metab* **14**:528–536. doi:10.1016/j.cmet.2011.08.014

831 Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. *Nat Rev Mol Cell Biol* **12**:9–14.
832 doi:10.1038/nrm3028

833 Zhang H, Alder NN, Wang W, Szeto H, Marcinek DJ, Rabinovitch PS. 2020. Reduction of elevated
834 proton leak rejuvenates mitochondria in the aged cardiomyocyte. *eLife* **9**:e60827.
835 doi:10.7554/eLife.60827

836 Zhang L, Vijg J. 2018. Somatic mutagenesis in mammals and its implications for human disease
837 and aging. *Annu Rev Genet* **52**:397–419. doi:10.1146/annurev-genet-120417-031501


838 Zheng W, Khrapko K, Coller HA, Thilly WG, Copeland WC. 2006. Origins of human mitochondrial
839 point mutations as DNA polymerase γ-mediated errors. *Mutat Res* **599**:11–20.
840 doi:10.1016/j.mrfmmm.2005.12.012

841 Zhu M, Lu T, Jia Y, Luo X, Gopal P, Li L, Odewole M, Renteria V, Singal AG, Jang Y, Ge K, Wang SC,
842 Sorouri M, Parekh JR, MacComara MP, Yopp AC, Wang T, Zhu H. 2019. Somatic
843 mutations increase hepatic clonal fitness and regeneration in chronic liver disease. *Cell*
844 **177**:608–621.e12. doi:10.1016/j.cell.2019.03.026

845

846 **Figures and Figure Legends:**

847

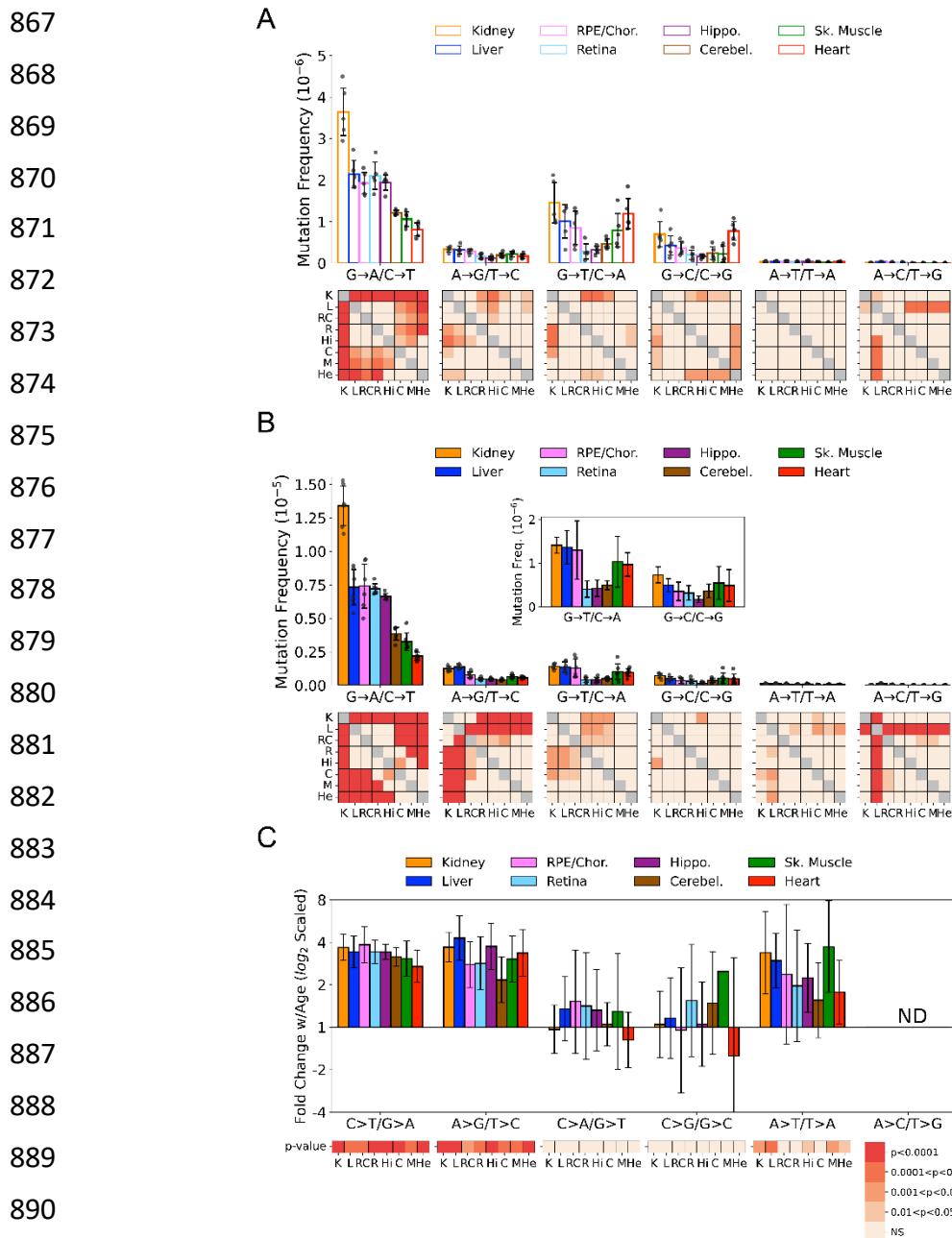
848

849 **Figure 1. Frequency of somatic mtDNA mutations increase with age and is tissue-specific. (A)** The
850 frequency by which single nucleotide variants (SNV) were detected in all sequenced bases in either young
851 (~5-months-old) or old (26-months-old) tissues arranged from highest to lowest SNV frequency in aged
852 mice. **(B)** The frequency by which DNA insertions or deletions (In/Del) of any size are detected within all
853 sequenced bases either young (~5-months-old) or old (26-months-old) tissues. For (A) and (B), significance
854 between young and old within a tissue was determined by Welch's t-test. * $0.01 < p < 0.05$, ** $0.001 < p < 0.01$,
855 *** $0.0001 < p < 0.001$, **** $p < 0.0001$; error bars = standard deviation of individual data points shown. **(C)**
856 **(D)** Heatmaps of one-way ANOVA analysis for significant differences of SNV frequencies between tissues,
857 within either young **(C)** or old **(D)** age groups. **(E-F)** Heatmaps of one-way ANOVA analysis for significant
858 differences of In/Del frequencies between tissues, within either young **(E)** or old **(F)** age groups.

859

860

861


862

863

864

865

866

891 **Figure 2. Mutation spectra of somatic mtDNA mutations demonstrate tissue-specific distribution of**
 892 **mutation types. (A)** SNV frequency by mutation type for young (~5-month-old) tissues shows that ROS-
 893 linked G→A/C→T mutations largely dictate overall SNV mutation burden and predominate in all young
 894 tissues except heart. Tissues of the central nervous system: eye retina, brain hippocampus and brain
 895 cerebellum have the lowest frequencies of G→T/C→A and G→C/C→G transversions whereas they are
 896 highest in kidney and heart. Heatmaps show p-value from one-way ANOVA analysis for significant
 897 differences of SNV frequencies between young tissues within each mutation class. **(B)** SNV frequency by

898 mutation type for old (26-month-old) tissues shows age-specific changes to mutation spectra. Heatmaps
899 show one-way ANOVA for significant differences of SNV frequencies between old tissues within each
900 mutation class. **(C)** Fold change of frequency from young to old age calculated for each tissue and spectra
901 and shown as Log₂. Heatmap shows whether fold-change values of old relative to young mice are
902 significantly different from fold-change 0 (no change). K = Kidney; L = Liver; RC = RPE/choroid; R = Retina;
903 Hi = Hippocampus; C = Cerebellum; M = Skeletal Muscle; He = Heart.

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

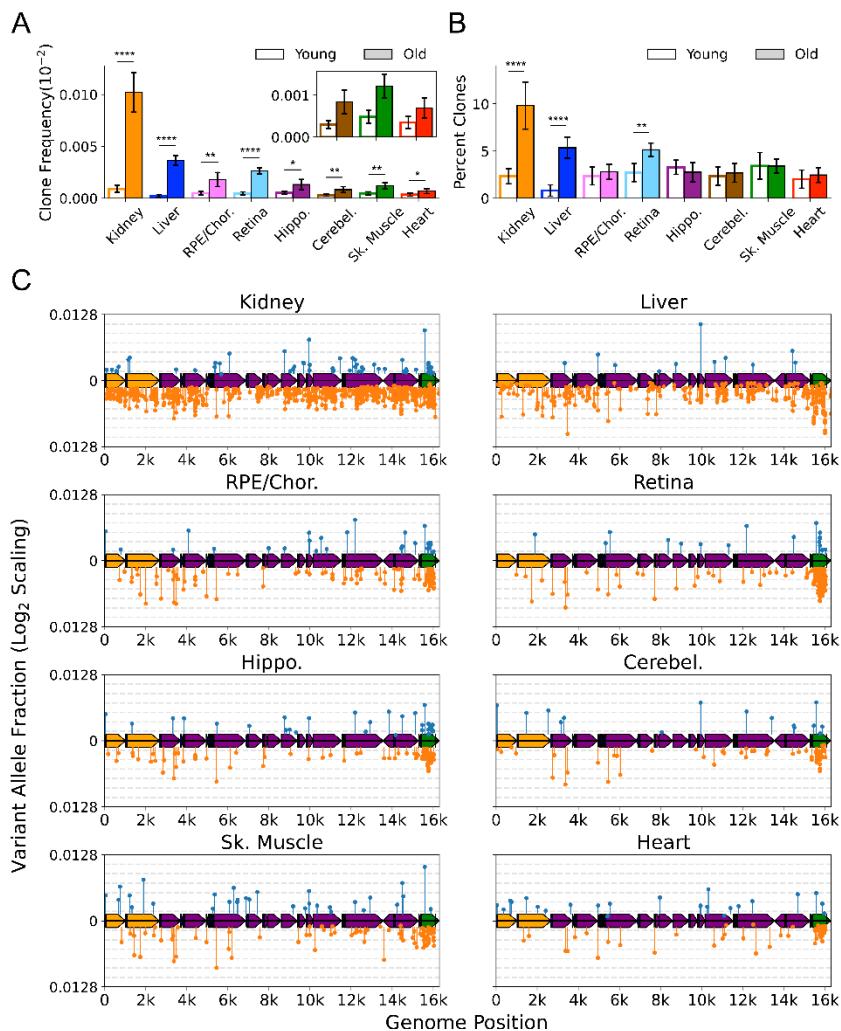
922

923

924

925

926


927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

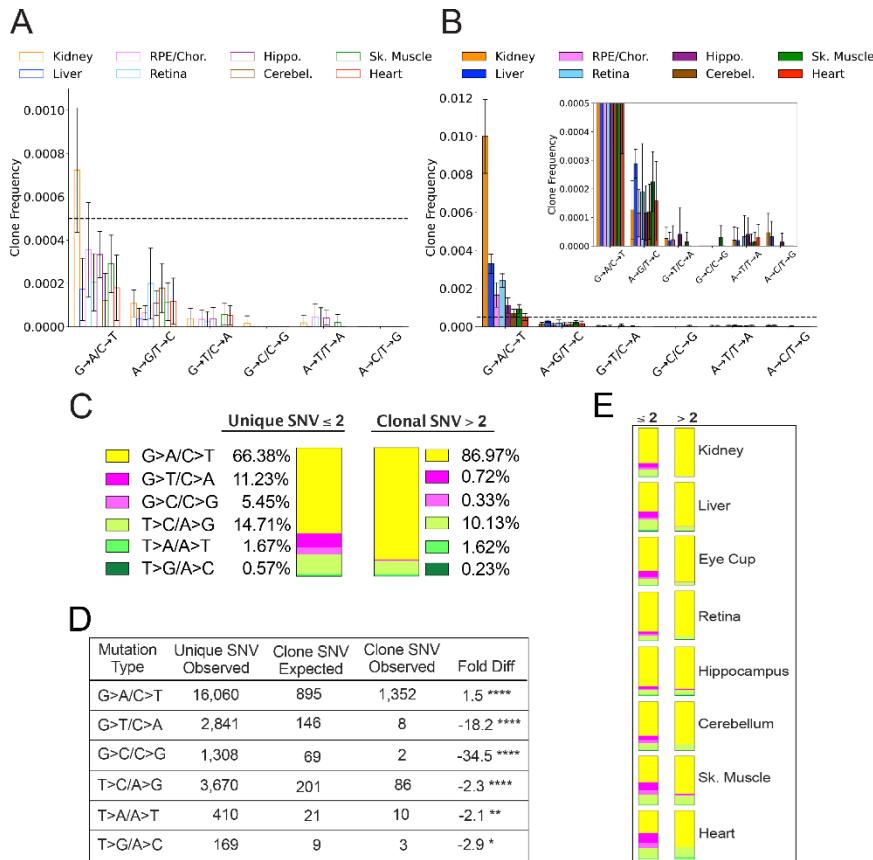
954

955

956

957

958


959

960

961

Figure 3. Clonal expansion of somatic mtDNA mutations is tissue specific. **(A)** Frequency of mtDNA clones detected in each tissue shows an increase in detection of clones with age in all tissues. Note that y-axes are set for each tissue ($n=5$ for young; $n=6$ for old, error = \pm -standard deviation). **(B)** Percentage of total mutations found in heteroplasmic clones for each tissues shows that only kidney, liver and retina have significant increases in relative 'clonality' with age. For (A) and (B), significance between young and old within a tissue was determined by Welch's t-test. * $0.01 < p < 0.05$, ** $0.001 < p < 0.01$, *** $0.0001 < p < 0.001$, **** $p < 0.0001$; error bars = standard deviation of individual data points shown. **(C)** Lollipop plots show the mtDNA genomic location of clonal heteroplasmic mutations in young (top row, blue markers, $n=5$) and old (bottom row, orange markers, $n=6$) for each tissue type. Orange = rRNA; Dark Blue = tRNA; Purple = Protein Coding; Green = Ori_L or mCR.

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

Figure 4. Spectral analysis of clonal somatic mtDNA mutations suggests removal of ROS-linked mutations. **(A)** Frequency of heteroplasmic clones in young mice shown as clone frequency for each mutation class and tissue. **(B)** Frequency of heteroplasmic clones in aged mice shown as mutations per genome (MPG) for each mutation class and tissue. Inset shows graph with adjusted axis to match young mice in (A) to better visualize lack of mutations in G→T/C→A and G→C/C→G mutation classes despite expansion of clonality with age. In both (A) and (B) the dotted line indicates frequency value of 0.005. **(C)** The combined distribution of mutation spectra for single nucleotide variants (SNV) for either unique mutations (detected 2 or less times per single sample) or clonal mutations (detected more than 2 times per single sample) for all aged tissues (48 samples in total). **(D)** Table showing that, based on the mutation spectra of unique mutations, the observed number of SNV clones differs the number SNV clones expected if heteroplasmic clones arise randomly as a consequence of mutation burden. G→A/C→T and T→C/A→G clones are over-represented, while G→T/C→A and G→C/C→G clones are strongly under-represented based on a Poisson distribution. ‘Fold Diff’ represents fold change of observed clone values relative to expected. **(E)** Mutation spectra distributions for each aged tissue type show that clonality within individual

993 tissue types mirrors the pattern of the combined aged samples with over/under representation of specific
994 mutation types within observed clones. ≤ 2 = unique mutations, < 2 = clonal mutations, mutation types are
995 color coded as in (C).

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

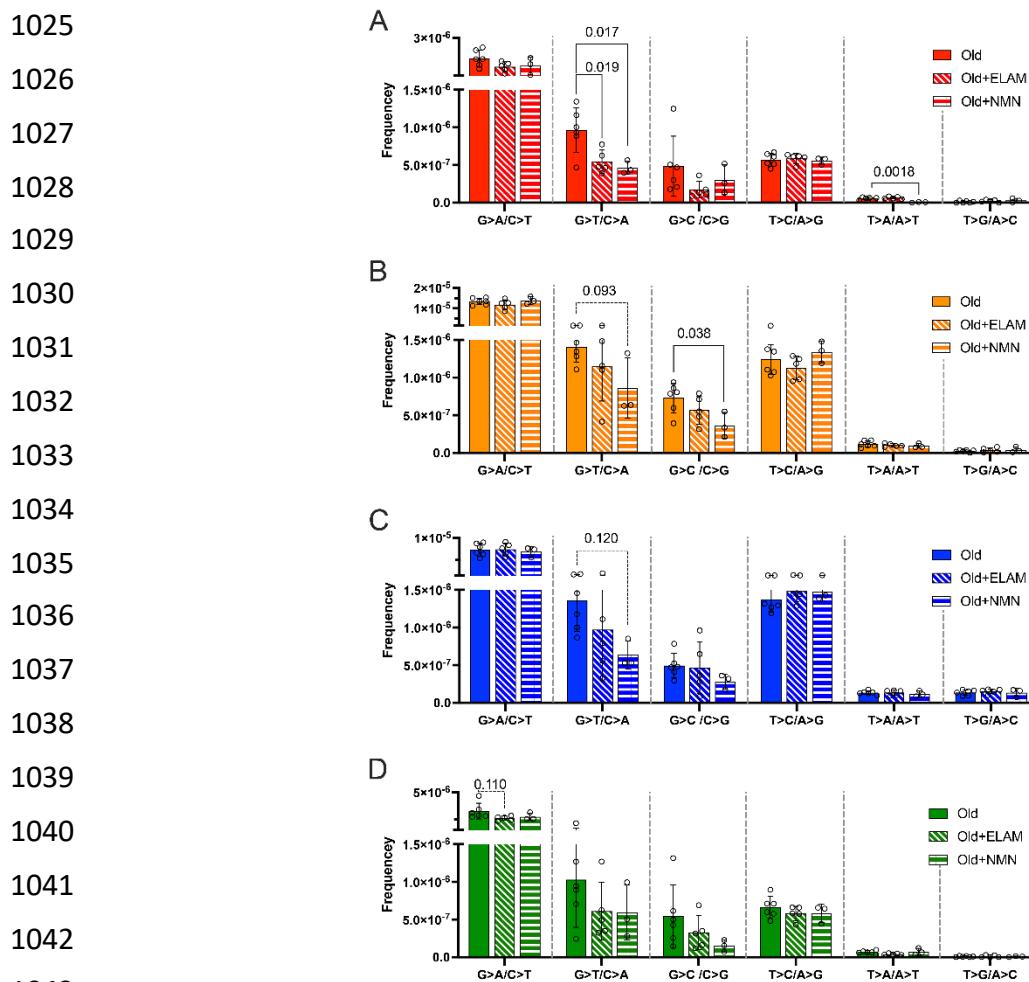
1015

1016

1017

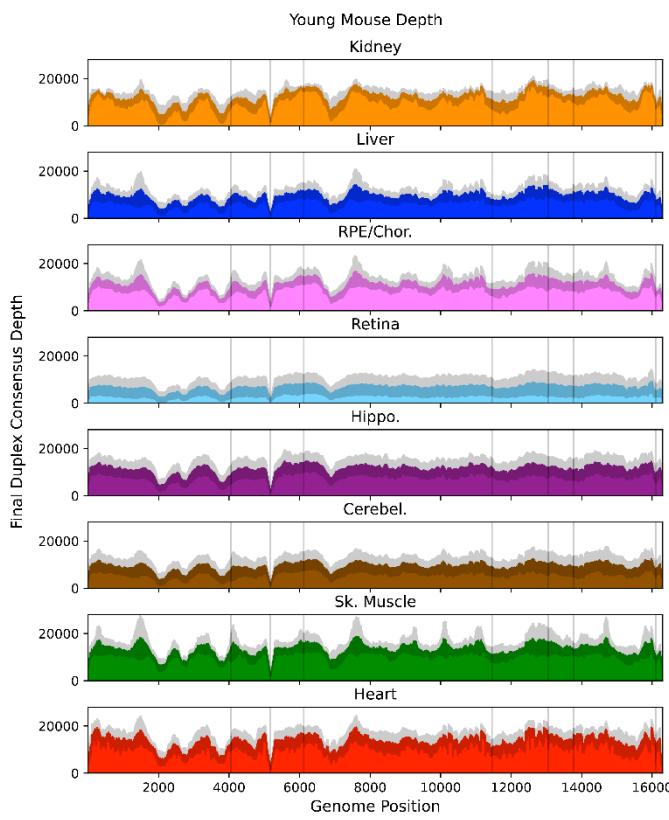
1018

1019


1020

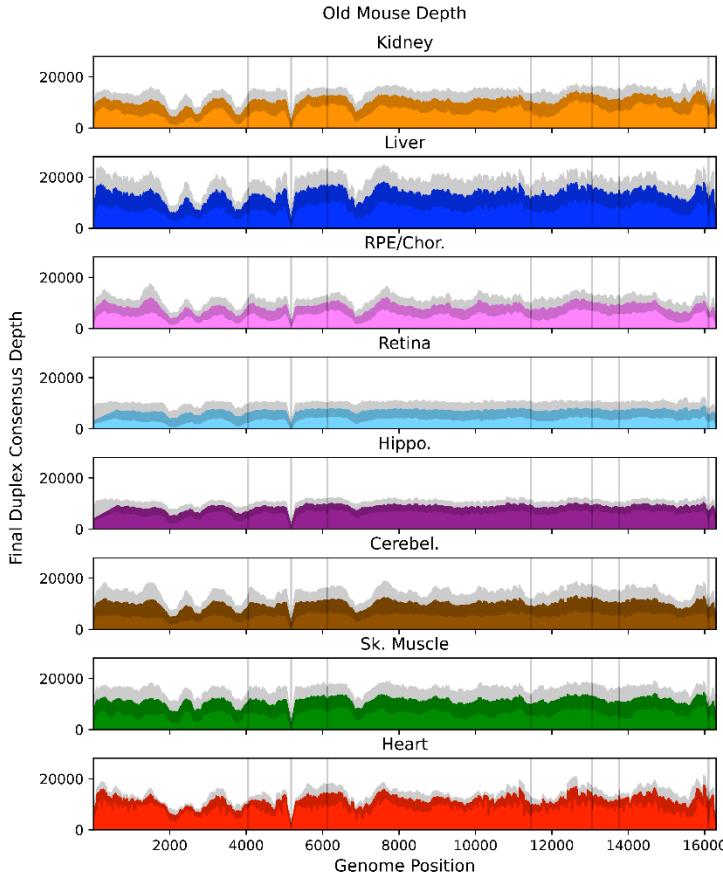
1021

1022


1023

1024

1044 **Figure 5. Late-life treatment with mitochondrially-targeted interventions reduces somatic mtDNA**
1045 **mutation burden and is consistent with a mechanism of active ROS-linked mutation removal.** Mutation
1046 spectra show that aged mice treated for 8 weeks with either elamipretide (ELAM, diagonal striped bars)
1047 or nicotinamide mononucleotide (NMN, horizontal striped bars) have decreased frequency of mutations
1048 specifically in mutation types linked to oxidative damage, G→T/C→A and G→C/C→G, specifically for **(A)**
1049 Heart (red); and **(B)** Kidney (orange) and trending for **(C)** Liver (blue). G→C/C→G mutations are
1050 significantly lower in NMN treated kidneys (b). **(D)** Muscle (green) trends lower for ELAM treated mice in
1051 G→A/C→T mutations. Error bars = +/-standard deviation. Statistics calculated by one-way ANOVA for
1052 each mutation class within tissue, Dunnett's multiple comparison test compared to untreated aged
1053 control group, solid line = significant p<0.05, dotted line = trend p<0.15.


1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071

1072 **Figure S1. Mean post-consensus 'Duplex' depth for young (4.5mo) tissues.** Variant occurring within the
1073 masked regions (*vertical lines*) or positions with less than a post-consensus depth of 100X were ignored.
1074 *Grey shading* = standard deviation of the mean for N=5 mice.

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087

1088

1105 **Figure S2. Mean post-consensus 'Duplex' depth for old (26 mo) tissues.** Variant occurring within the
1106 masked regions (*vertical lines*) or positions with less than a post-consensus depth of 100X were ignored.
1107 *Grey shading* = standard deviation of the mean for N=6 mice.

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

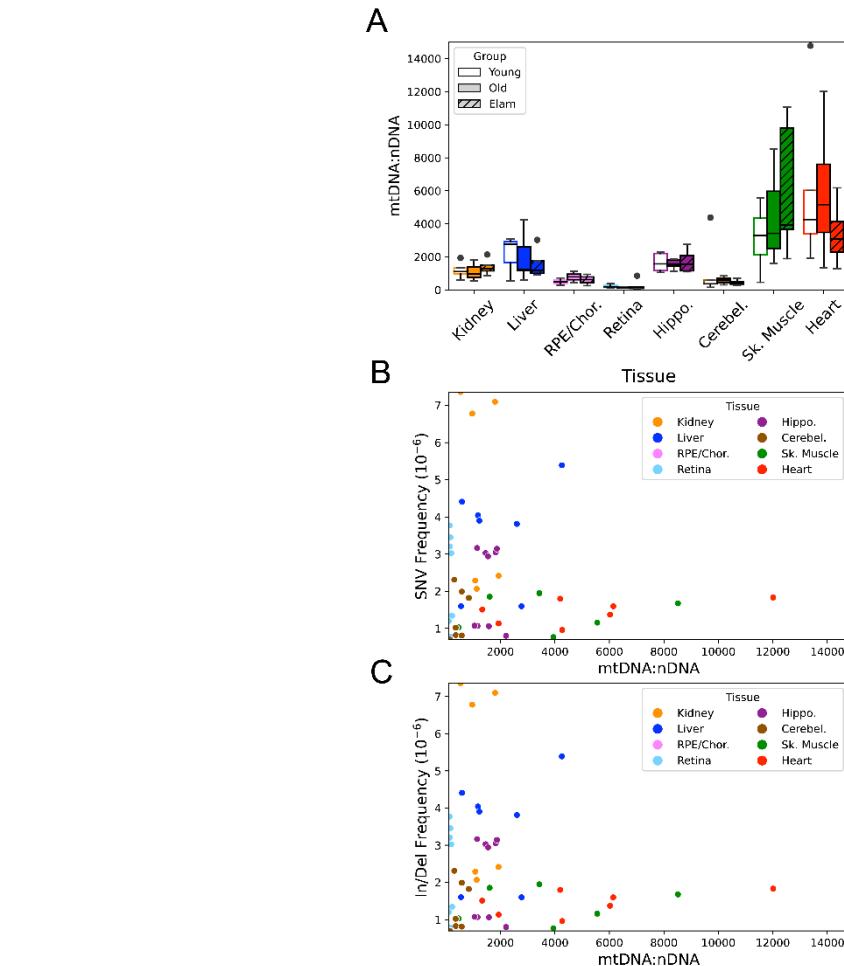
1130

1131

1132

1133

1134


1135

1136

1137

1138

1139

Figure S3. mtDNA copy shows no correlation with age, intervention, or mutation frequency. (A)

mtDNA:nDNA ratio varies considerably between the eight tissue types, but does not change with age or

treatment with Elam. **(B)** SNV mutation frequency and **(C)** In/Del mutation frequency do not correlate

with mtDNA copy number, indicating that the tissue specific differences in mtDNA frequency is not due

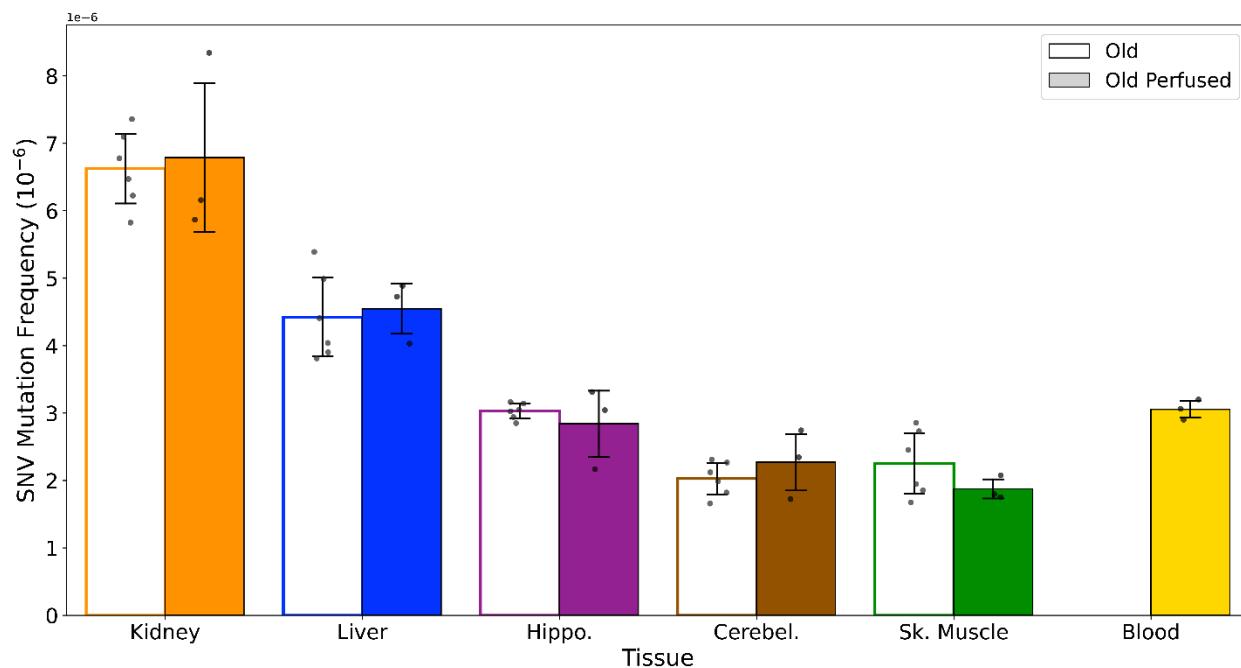
to mtDNA content.

1144

1145

1146

1147


1148

1149

1150

1151

1152

1153

1154 **Figure S4. Blood does not significantly contribute to the differences in mutation frequency observed**
1155 **across tissues.** A separate cohort of NIA male aged mice (26 mo, N=3) were transcardially perfused with
1156 1x PBS prior to organ harvest. Collected tissues (kidney, liver, hippocampus, cerebellum, and skeletal
1157 muscle, and whole blood) were processed for Duplex-Seq using the same protocol as used in the main
1158 aging cohorts.

1159

1160

1161

1162

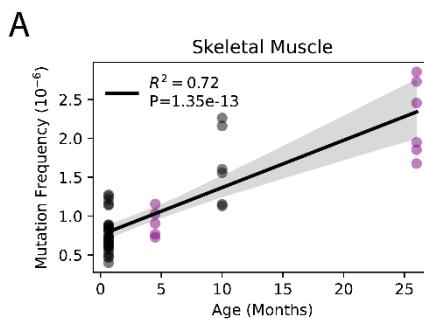
1163

1164

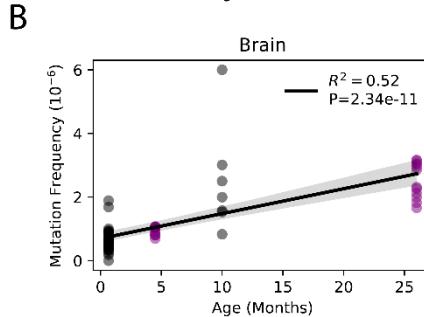
1165

1166

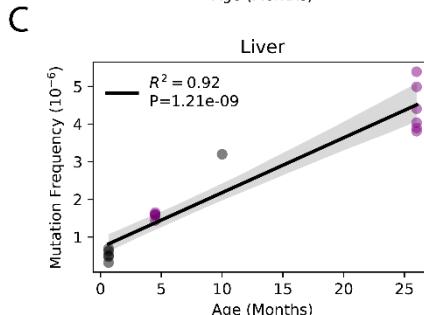
1167


1168

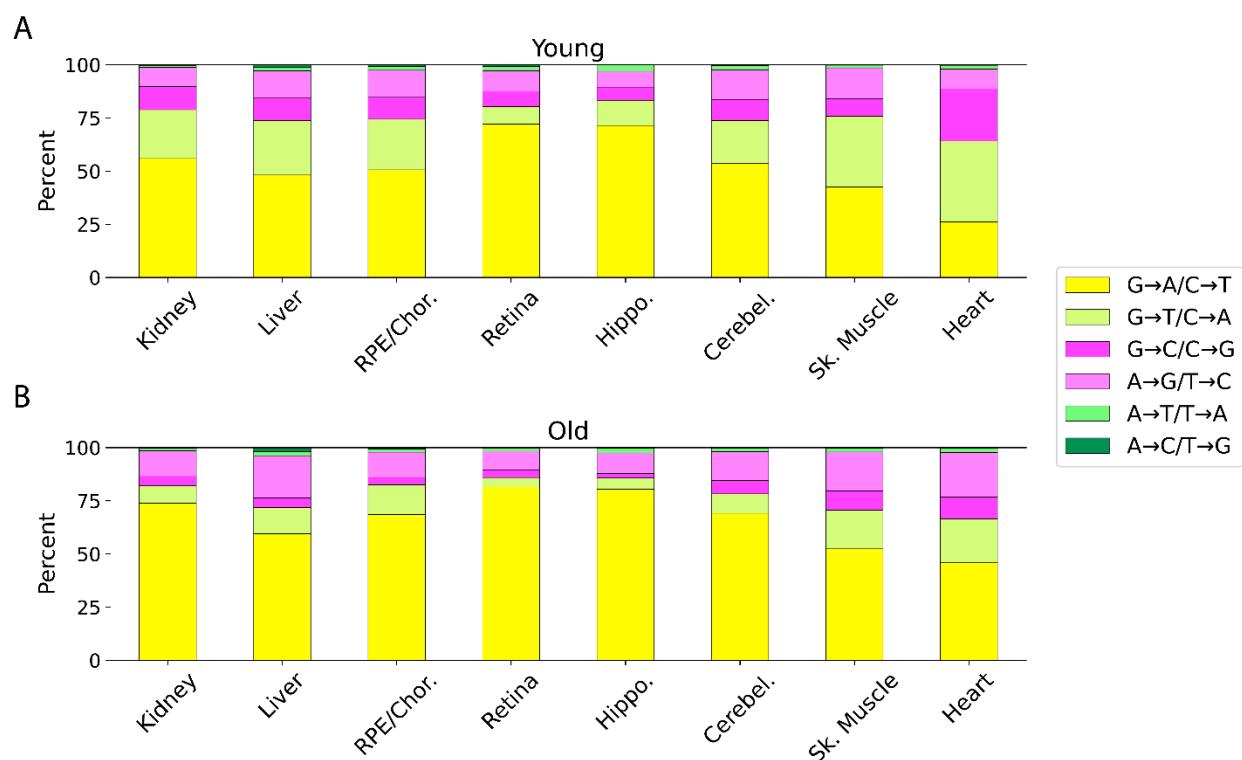
1169


1170

1171


1172
1173
1174
1175
1176
1177

1178
1179
1180
1181
1182
1183


1184
1185
1186
1187
1188
1189

1190 **Figure S5. Somatic SNV mutations increase linearly with age.** Linear regression of total SNV mutation
1191 frequency *vs* age in **(A)** skeletal muscle, **(B)** brain, and **(C)** liver. *black*=data from Arbeitshuber et al.;
1192 *purple*=data from this study; *shaded area*=95% confidence interval of linear regression.

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

1204

1205 **Figure S6. Relative proportion of different mutation types varies across tissues. (A) Young; (B) Old.**

1206

1207

1208

1209

1210

1211

1212

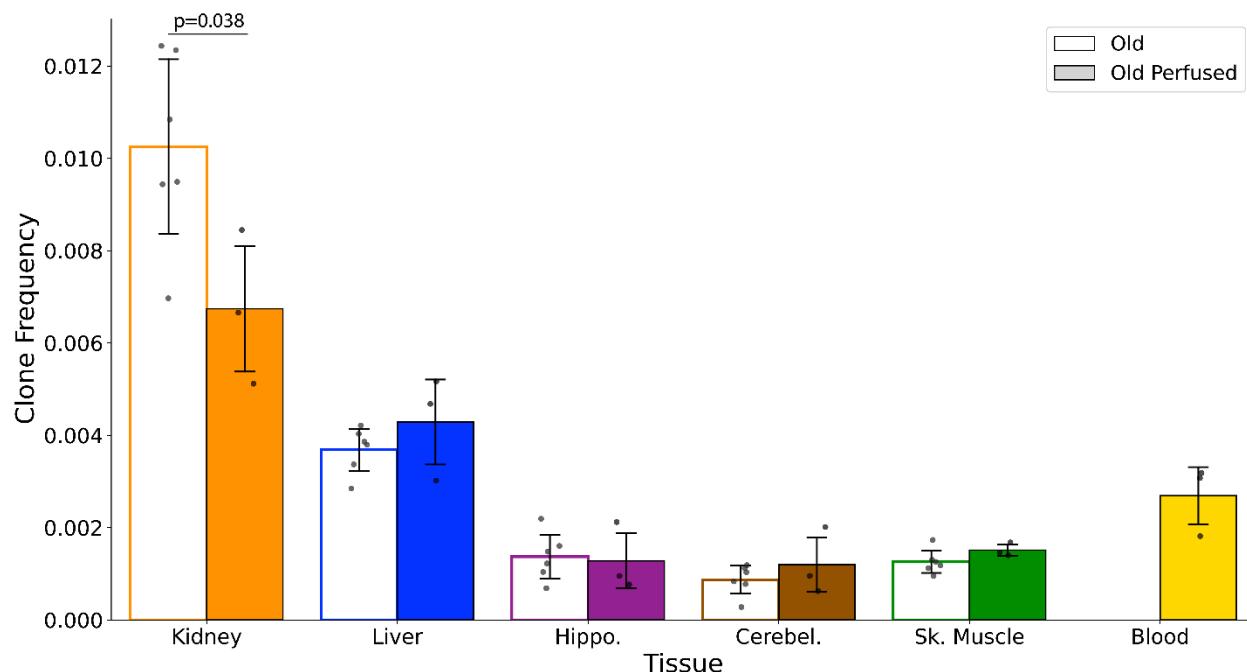
1213

1214

1215

1216

1217


1218

1219

1220

1221

1222

1223

1224 **Figure S7. mtDNA variant clones in blood are not a significant contributor to age-related to clonal**
1225 **expansions.** A separate cohort of NIA male aged mice (26 mo, N=3) were transcardially perfused with 1x
1226 PBS prior to organ harvest. Collected tissues (kidney, liver, hippocampus, cerebellum, and skeletal muscle,
1227 and whole blood) were processed for Duplex-Seq using the same protocol as used in the main aging
1228 cohorts.

1229

1230

1231

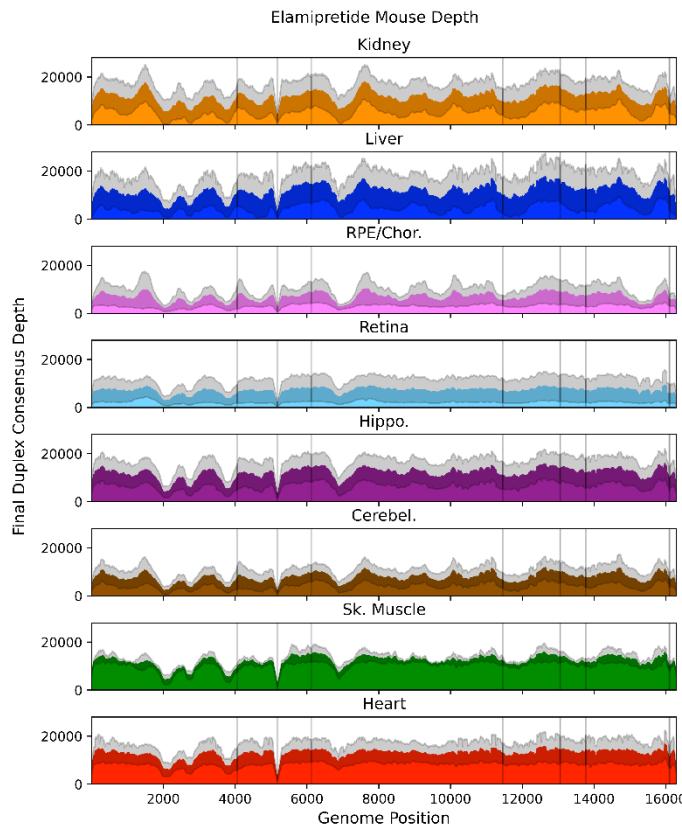
1232

1233

1234

1235

1236

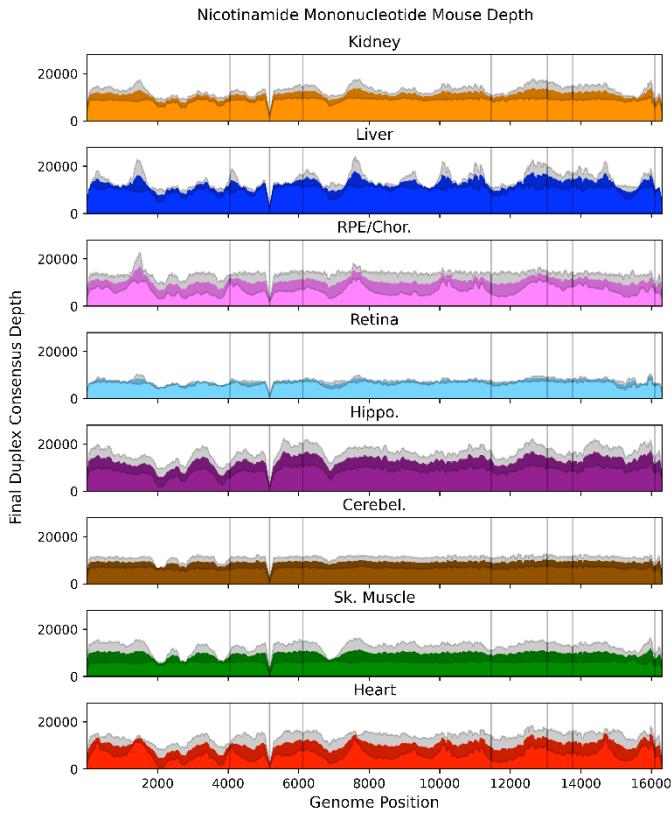

1237

1238

1239

1240

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256



1257 **Figure S8. Mean post-consensus 'Duplex' depth for aged (26 month) Elamipretide treated tissues.**

1258 Variant occurring within the masked regions (*vertical lines*) or positions with less than a post-consensus
1259 depth of 100X were ignored. *Grey shading* = standard deviation of the mean for N=5 mice.

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289 **Figure S9. Mean post-consensus 'Duplex' depth for aged (26 month) nicotinamide mononucleotide**
1290 **treated tissues.** Variant occurring within the masked regions (*vertical lines*) or positions with less than a
1291 post-consensus depth of 100X were ignored. *Grey shading* = standard deviation of the mean for N=3
1292 mice.

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

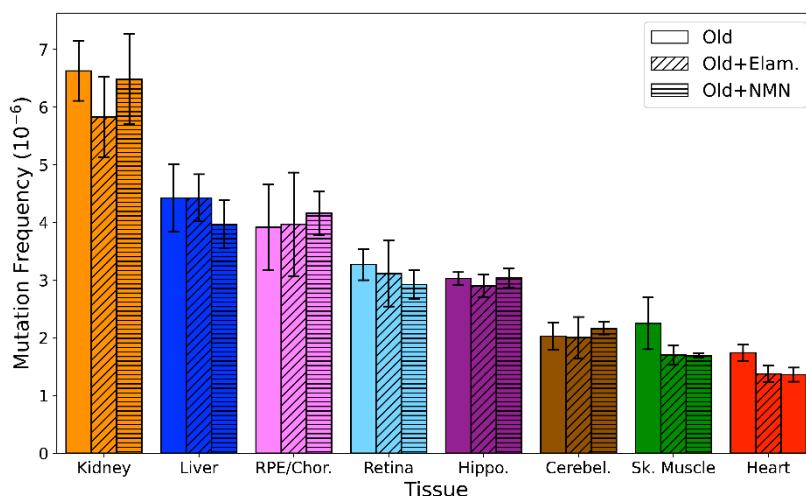
1327

1328

1329

1330

1331

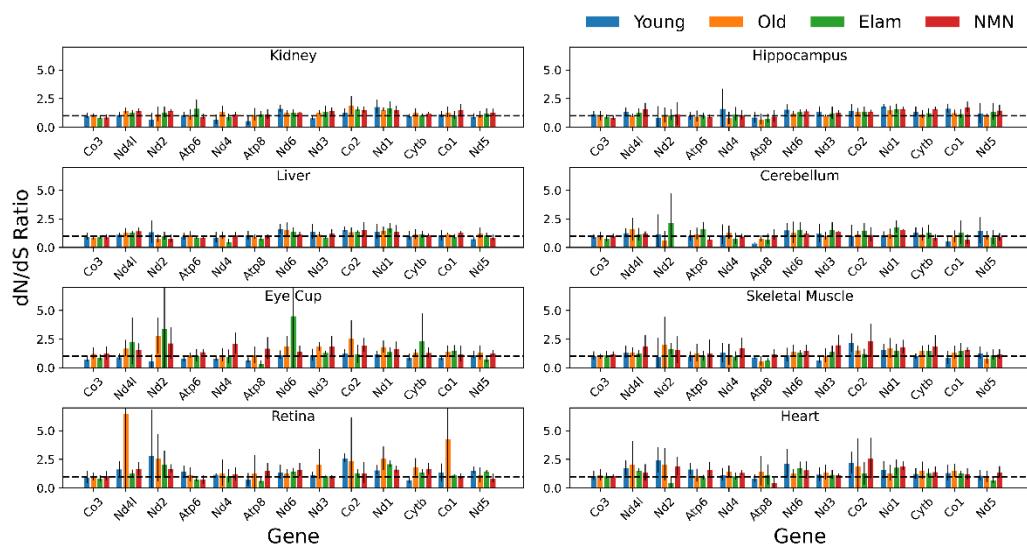

1332

1333

1334

1335

1336


Figure S10. Elamipretide and nicotinamide mononucleotide do not affect the overall mtDNA mutation

frequency. Overall point mutation frequency for old, old+Elam, and old+NMN separated by tissue.

Dunnett's test with untreated old as the control was used to test for significance. Error bars=standard

deviation.

1337

1338

1339 **Figure S11. Per gene dN/dS ratio shows no apparent selection across age, tissues, and interventions.**

1340 Variants for each sample were separated by protein coding gene and the dN/dS ratio calculated using the
1341 *dNdScv* R package using the median depth for each gene as a covariate. dN/dS ratios from the same tissue
1342 and age or treatment group were averaged. Error bars=standard deviation.

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1389 **Table S1. Sequence of the 96 defined UMI Duplex Sequencing adapters.** Sequence is provided in 5'→3'
1390 orientation. Complementary UMI sequences are highlighted in red.

1391

1392 **Table S2. Summary of Duplex Sequencing data.** Summary of the samples sequenced, including assay
1393 performance metrics, including mtDNA enrichment specificity, family size, and consensus metrics, bases
1394 sequenced, sequencing depth, mutation counts, and mutation frequencies.

1395

1396 **Table S3. mtDNA to nDNA copy number ratio data.** Summary of the samples used to determine mtDNA
1397 and nDNA copy numbers. ND=not determined

1398

1399 **Table S4. Genome coordinates of regions masked in the analysis.** Coordinates are 1-indexed and columns
1400 are in .bed format order.

1401