

1 **Mechanotransduction coordinates extracellular matrix protein homeostasis**
2 **promoting longevity in *C. elegans***

3

4 Alina C. Teuscher^{1§}, Cyril Statzer^{1§}, Anita Goyala¹, Seraina A. Domenig¹, Ingmar
5 Schoen^{2,3}, Max Hess¹, Alexander M. Hofer¹, Andrea Fossati^{4,5}, Viola Vogel³, Orcun
6 Goksel^{6,7}, Ruedi Aebersold⁴, and Collin Y. Ewald^{1*}

7

8 **1** Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine,
9 Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603,
10 Switzerland

11 **2** School of Pharmacy and Biomolecular Sciences, Irish Centre for Vascular Biology,
12 Royal College of Surgeons in Ireland, Dublin 2, Ireland

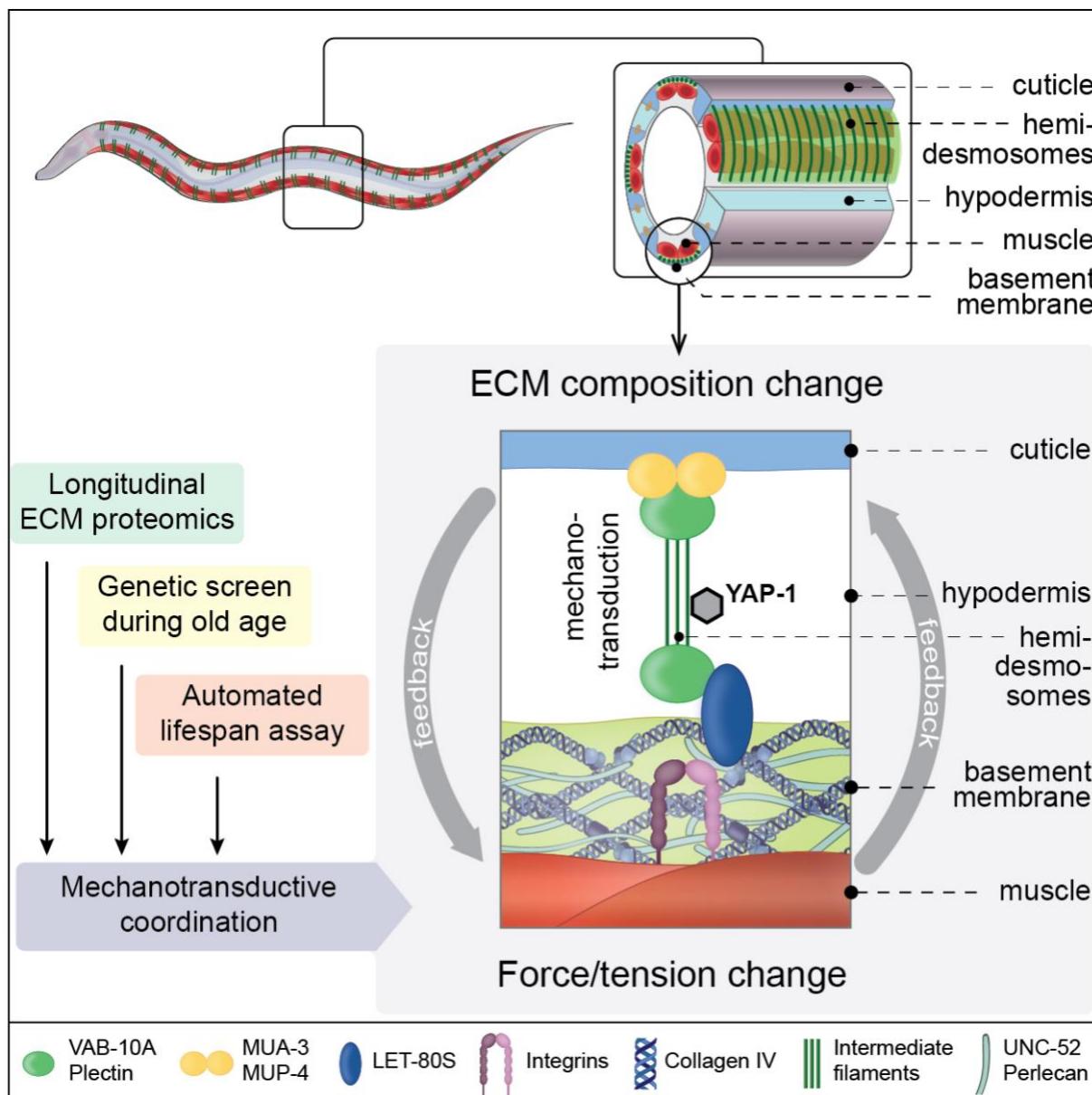
13 **3** Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department
14 of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland

15 **4** Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich,
16 Switzerland

17 **5** Department of Cellular and Molecular Pharmacology, University of California San
18 Francisco, San Francisco, 94158, California, USA.

19 **6** Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich,
20 Switzerland

21 **7** Department of Information Technology, Uppsala University, Uppsala, Sweden


22 § authors contributed equally

23 *Corresponding author: collin-ewald@ethz.ch (CYE)

24 **Keywords:** aging, collagen, mechanobiology, integrin, adhesome, matrisome,

25 matreotype

26 **Graphical Abstract**

32 • Coupling of biomechanical properties of two ECMs with underlying cellular
33 signaling
34 • Transcriptional co-activator YAP-1 is required for longevity and pressure-induced
35 collagen homeostasis

36

37

38 **Abstract**

39 Although it is postulated that dysfunctional extracellular matrices (ECM) drive aging and
40 disease, how ECM integrity assures longevity is unknown. Here, using proteomics and
41 *in-vivo* monitoring of fluorescently tagged ECM proteins, we systematically examined the
42 ECM composition during *Caenorhabditis elegans* aging revealing three distinct collagen
43 dynamics. We show that age-dependent stiffening of inert collagen was slowed by
44 longevity interventions through prolonged replenishing of collagens. In genetic and
45 automated lifespan screens for the regulators that drive this remodeling, we identify
46 hemidesmosome-containing structures that span from the exoskeletal ECM through the
47 hypodermis, basement membrane ECM, to the muscles, coupling mechanical forces to
48 adjust ECM gene expression across tissues. The hemidesmosome tension-induced
49 adaptation is mediated via transcriptional co-activator YAP. Our data reveal a novel
50 mechanism of mechano-coupling and synchronizing of two functionally distinct and
51 spatially distant ECMs that is indispensable for longevity. Thus, besides signaling
52 molecules, mechanotransduction-coordinated ECM remodeling systemically promotes
53 healthy aging.

54 **Introduction**

55 Cells and organs are surrounded by and anchored to extracellular matrices (ECMs)
56 (Bonnans et al., 2014; Frantz et al., 2010; Hynes, 2009). The ECM is a network composed
57 of large multidomain proteins linked together to form stable structures essential for tissue
58 geometry and integrity (Hynes, 2009). About 300 proteins, such as collagens,
59 glycoproteins, and proteoglycans, form the actual matrix, the so-called core-matrisome
60 (Naba et al., 2016). These proteins are produced, secreted, and incorporated to form the
61 matrix (Lu et al., 2011). Each cell niche has the capability to produce its own ECM (Ewald,
62 2020; Frantz et al., 2010; McKee et al., 2019; Sacher et al., 2021). Thereby, each tissue
63 is surrounded by its own unique ECM that entails unique physical properties (Humphrey
64 et al., 2014).

65 The function of the ECM is to support and protect organs and tissues and facilitate
66 inter-tissue communication (Hynes, 2009). To execute these functions, the ECM has
67 recently been appreciated to be a highly dynamic structure while providing mechanical
68 support (Vogel, 2018); it stores and presents growth factors and is enzymatically
69 remodeled to assure cellular homeostasis (Bonnans et al., 2014; Ewald, 2020; Frantz et
70 al., 2010; Hynes, 2009). These remodeling and signaling functions are performed and
71 controlled by about 700 associated-matrisome proteins (Naba et al., 2016). The ~1000
72 core- and associated matrisome genes comprise about 4% of the genome and are linked
73 to more than ten thousand phenotypes encompassing about 10% of the entire genome,
74 including the developmental, structural, immune system, stress resilience, and age-
75 related phenotypes in humans, mice, zebrafish, *Drosophila*, and *C. elegans* (Statzer and
76 Ewald, 2020). Furthermore, the core matrisome proteins collagen type I, II, V, and

77 glycoprotein fibrillin have each been associated with more than 150 distinct phenotypes,
78 revealing the profound importance of a functional ECM (Statzer and Ewald, 2020).

79 Not surprisingly, changes in ECM composition are involved in many diseases, such
80 as cancer, fibrosis, atherosclerosis, and neurodegenerative disorders (Ewald, 2020; Taha
81 and Naba, 2019). For instance, based on their ECM composition cancer types can be
82 identified, adverse patient outcomes can be predicted, as well as circulating tumor cells
83 can be identified based on their ECM gene expression (LIM et al., 2017; Naba et al.,
84 2014; Ting et al., 2014; Yuzhalin et al., 2018). Furthermore, deregulation of matrisome
85 genes is a crucial step during the transition and reprogramming from normal healthy cells
86 into tumor cells and for metastasis (Mitra et al., 2019). Thus, ECM composition does not
87 only reflect cell identity but also their phenotypic state, health, or disease status. To
88 conceptualize this, we named this phenomenon the ‘matreotype’. A matreotype is a
89 ‘snapshot’ of the ECM composition associated with or caused by a phenotype or
90 physiological states, such as health, disease, or aging (Ewald, 2020). Using RNA
91 sequencing data, we have defined the youthful matreotype of humans, probed changes
92 in gene expression upon drug treatment, and thereby predicted and validated several
93 novel longevity drugs (Statzer et al., 2021a). This illustrates that the matreotype has broad
94 implications for biomedical research. However, the underlying mechanism(s) of how
95 changes in matreotype impact physiology are unknown.

96 Although RNA sequencing and proteomics can provide an indication of potential
97 changes in ECM composition *ex vivo*, the functional consequences on cellular integrity
98 and homeostasis *in vivo* during aging are largely unexplored. RNA levels rarely tightly
99 correlate with protein levels (Liu et al., 2016), and the protein/mRNA abundance ratio is

100 further complicated for proteins that form multicomplex structures, such as the ECM,
101 where proteins are post-translationally processed, modified, secreted, incorporated, and
102 crosslinked to form the matrix. To profile matreotype changes, we turned to the
103 multicellular model organism *C. elegans*, which has two main extracellular matrices: the
104 basement membrane, a sheet-like structure surrounding organs, and the cuticle that
105 forms the exoskeleton (Kramer, 2005; Page and Johnstone, 2007). Its short lifespan of 3
106 weeks and the transparency of *C. elegans* allowed us to monitor fluorescently tagged
107 ECM proteins incorporated into matrices non-invasively *in vivo* during aging.

108 Specifically, we monitor ECM proteins during aging to identify changes in
109 matreotypes (*i.e.*, matrix composition). Since ECMs are bound via adhesion receptors
110 such as integrins to cells and their cytoskeleton we also defined the adhesome of *C.*
111 *elegans* to complement the matrisome. We show that certain cuticular collagens are
112 remodeled out of the ECM during aging which is associated with a decline in the gene
113 expression of these collagens. Longevity interventions prolong collagen expression and
114 we utilize this finding for a targeted RNAi screen. We identify hemidesmosome-containing
115 structures that encompass or connect many components of the basement membrane,
116 integrin receptors, and adhesome-cytoskeleton signaling regulators underlying prolonged
117 collagen homeostasis associated with longevity. Yes1 Associated Transcriptional
118 Regulator (YAP-1) transforms the physical forces from hemidesmosome-containing
119 structures to prolong collagens gene expression (*i.e.*, mechanotransduction) and
120 longevity. We demonstrate that an age-dependent uncoupling of mechanotransduction
121 abolishes the feedback, thereby inhibiting the prolonged ECM protein homeostasis and

122 longevity. Thus, we provide new mechanistic evidence that mechano-coupling or
123 mechano-transduction is essential for promoting healthy aging.

124

125 **Results**

126 **ECM composition during aging**

127 Our first goal was to determine whether ECM composition changes and remodels during
128 aging. ECM remodeling starts with proteases, which excise and degrade proteins from
129 the ECM. Excised proteins are then replaced by *de novo* synthesized ECM proteins that
130 are secreted and incorporated into the matrix with the help of proteases and cross-linking
131 enzymes (Lu et al., 2011). To capture this process, we assessed matrisome and
132 adhesome dynamics by fluorescent reporters and generated new ECM-enriched
133 proteomics data along an aging timeline, and combined them with previously published
134 omics data on five different levels: (1) gene expression via RNA sequencing, (2) timing
135 and localization of expression via promoter reporters *in vivo*, (3) matrisome protein levels
136 via quantitative proteomics, (4) *de novo* synthesis of matrisome proteins based on SILAC-
137 label-chase proteomics data, and (5) monitoring of selected matrisome proteins tagged
138 with fluorescent proteins incorporated into the ECM *in vivo* during aging (Figure 1 and
139 Supplementary Figure 1).

140 Starting in early adulthood, during aging the majority of cuticular collagen (*col*)
141 mRNA levels steeply declined, accompanied by a decline in some molting-associated
142 ECM remodelers (protease/*nas*) (Figure 1A, Supplementary Figure 1I, 2, Supplementary
143 Table 1, 2) (Budovskaya et al., 2008; Schmeisser et al., 2013). The mRNA levels of
144 adhesome (integrin/*pat-3*), ECM glycoproteins (laminin/*lam-2/epi-1*), some conserved

145 collagens (Type XVIII/*cle-1*, Type XXV/*col-99*) accompanied by some pro-collagen
146 processing and stabilization enzymes (procollagen C-peptidase/*dpy-31*, prolyl 4-
147 hydroxylase/*dpy-18/phy-2*) were unchanged and continuously expressed during aging
148 (Figure 1B, Supplementary Figure 1I, Supplementary Table 1, 2). By contrast, the only
149 category of matrisome genes that increased in expression during aging were proteases
150 and protease inhibitors that remodel the ECM, such as MMP/*zmp*, astacin
151 metalloprotease/*nas*, cathepsin/*cpr*, and protease inhibitor/cystatin/*cpi* (Figure 1C,
152 Supplementary Figure 1I, Supplementary Table 1, 2).

153 To determine the changes in ECM protein composition (*i.e.*, matreotype) during
154 aging, we performed ECM-enriched proteomics on young (day 0 = L4), mature (day 4),
155 and post-reproductive (day 8) *C. elegans*. On day 8 deaths from senescence were not
156 observed. Mirroring the mRNA expression, the protein levels of several cuticular
157 collagens declined during aging, adhesome protein levels were unchanged and proteases
158 and protease inhibitors increased during aging (Figure 1D-F, Supplementary Table 3). By
159 contrast, some ECM proteins increased with aging, although their mRNA levels declined
160 (*e.g.*, collagen type IV/*emb-9*; Figure 1A, 1F). The protein levels of other matrisome genes
161 that showed continuous mRNA expression declined during aging (*e.g.*, laminin/*epi-1*,
162 perlecan/*unc-52*, prolyl 4-hydroxylase/*dpy-18/phy-2*; Figure 1B, 1D). This was consistent
163 with lower *de novo* synthesis of these ECM proteins during aging (Figure 1G, 1H,
164 Supplementary Table 3) (Vukoti et al., 2015). Consistent with the increased mRNA and
165 protein levels, proteases and protease inhibitors maintained a higher *de novo* synthesis
166 rate during aging (Figure 1I, Supplementary Table 3).

167 To assess the actual levels of proteins that are incorporated into the ECM, we
168 followed fluorescent protein-tagged ECM proteins *in vivo*. The challenge was to place the
169 tag in the protein sequence so it did not interfere with its function and incorporation into
170 the ECM. Furthermore, the extremely low fluorescent signal of ECM tagged proteins is
171 masked by the accumulation of autofluorescent waste products (e.g., lipofuscin) during
172 aging. In addition, isolated cuticles also start to auto-fluoresce during aging presumably
173 due to accumulated glycation adducts on collagens (Davis et al., 1982). To overcome
174 these challenges, we built a triple-band filter set to distinguish autofluorescence from
175 ECM tagged GFP signals (Teuscher and Ewald, 2018). Based on our omics analysis, we
176 assessed 21 tagged ECM proteins across the core-matrisome and adhesome categories
177 during development and aging (Supplementary Figure 1J, Supplementary Table 1). We
178 observed an age-dependent increase in abundance in basement membrane proteins,
179 such as laminin/*lam*, perlecan/*unc-52*, collagen type IV/*emb-9*, and *myotactin-fibronectin-*
180 *repeats/let-805* (Supplementary Figure 1J, Supplementary Table 1).

181 Collagens make up the majority of proteins in the ECM (Frantz et al., 2010). Out
182 of the 181 *C. elegans* collagens (Teuscher et al., 2019a), we were able to assess the
183 quantitative abundance data for 41 collagens proteins and mRNAs during aging
184 (Supplementary Table 1). For these collagens, we observed three distinct dynamic
185 patterns (I-III) during aging (Figure 1J-O, Supplementary Table 1). The pattern I consists
186 of 21/41 detected collagens for which the mRNA, protein levels, and abundance in the
187 ECM steeply declined during aging (e.g, *col-120*; Figure 1J-K, Supplementary Figure 1I-
188 J, Supplementary Table 1-3). Pattern II consists of 6/41 detected collagens for which the
189 mRNA steeply declined in early adulthood but the protein levels and/or abundance in the

190 ECM stayed unchanged or increased during aging (e.g., *col-19*; Figure 1L-N,
191 Supplementary Figure 1I-J, Supplementary Table 1-3). Pattern III consists of 14/41
192 detected collagens for which the mRNA remained unchanged or mildly declined but the
193 protein levels and/or abundance in the ECM stayed increased during aging (e.g., *emb-9*;
194 Figure 1M-O, Supplementary Figure 1I-J, Supplementary Table 1-3).

195 Taken together, we mapped the dynamic ECM composition (*i.e.*, matreotype)
196 during aging. Our data indicate that some ECM components are once synthesized,
197 incorporated, and stay lifelong in the ECM, whereas other components are excised from
198 the ECM during aging, and yet other ECM components are continuously added to the
199 ECM.

200

201 **Longevity interventions prolong collagen pattern I expression during aging**

202 Next, we asked which of these three dynamic collagen patterns are altered *in vivo* upon
203 longevity interventions. To slow aging, we used *daf-2(RNAi)* to reduce Insulin/IGF-1
204 receptor signaling. For pattern I, using promoter-driven transgenic animals, we observed
205 that *daf-2(RNAi)* prolonged the expression of *col-120* mRNA during aging
206 (Supplementary Figure 3A, 3B, Supplementary Table 4). While COL-120 protein tagged
207 with GFP gradually disappeared from the cuticular ECM during aging, slowing aging by
208 rIIS showed COL-120 in the ECM for a prolonged time (Figure 2A, 2B, Supplementary
209 Figure 3C, 3D, Supplementary Table 4). Similar dynamics were observed with other
210 collagens from the pattern I (Supplementary Figure 3E-J, Supplementary Table 4).

211 To assess protein turnover, we tagged COL-120 with Dendra, a photoswitchable
212 fluorophore (Dhondt et al., 2016; Ihara et al., 2011). Because COL-120 starts to disappear

213 from the ECM in early adulthood, we irreversibly photoconverted COL-120::Dendra from
214 green to red fluorescence on day 2 of adulthood, let the animals age for two more days,
215 and then assessed green versus red fluorescent COL-120::Dendra in the cuticle (Figure
216 2C). If during these two days no new COL-120 would be synthesized, then the
217 photoconverted area would stay red. If all photoconverted COL-120 would be replaced
218 (i.e, turned over), the photoconverted area would turn green. We found that the
219 photoconverted areas mostly stayed red but new COL-120 collagens (in green) were
220 added on top of the older COL-120 (in red; Figure 2D, Supplementary Table 5). Since
221 COL-120 levels gradually decline in the ECM during this time period, we included the
222 levels of the outside regions to subtract this general decline from quantification in the
223 photoconverted area. We found that the old COL-120 disappeared faster from the ECM
224 faster than the new COL-120 was added (Figure 2E, Supplementary Table 5). Regarding
225 the dependency on longevity, slowing aging by *daf-2(RNAi)* enhanced and prolonged the
226 addition of newly synthesized COL-120 onto the old COL-120 in the ECM (Figure 2E,
227 Supplementary Table 5). Our representative example suggests that longevity
228 interventions might counteract the gradual loss of pattern I collagens from the cuticle by
229 simply adding newly synthesized collagens to the older collagens that are continuously
230 excised out of the cuticle. This is consistent with the prolonged mRNA expression of these
231 collagens and the higher collagen protein levels of longevity interventions during aging.

232

233 **Age-dependent loss of mechanical tension of stably intercalated pattern II**
234 **collagens is rescued by longevity interventions**

235 As COL-19 is a representative member of the pattern II collagens, we next assessed its
236 turnover during aging. The *col-19* mRNA declined rapidly during early adulthood, but the
237 GFP tagged COL-19 stayed incorporated during aging. Upon *daf-2(RNAi)*, the cuticular
238 COL-19 protein levels in the ECM compared to control remained unchanged during aging
239 (Supplementary Figure 3I-J, Supplementary Table 4), suggesting that these collagens
240 once synthesized and incorporated into the cuticle would stay lifelong in this ECM.

241 During aging, collagens that are not replaced accumulate advanced glycation end
242 products (AGEs) leading to crosslinking of collagens and stiffening of ECM (Ewald, 2020).
243 Isolated *C. elegans* cuticles become stiffer with age (Rahimi et al., 2022) and show a
244 marked increase in fluorescent spectral peaks reminiscent of AGE (Davis et al., 1982).
245 Based on this and our observation that COL-19 protein stayed incorporated in the ECM
246 during aging, we hypothesized that COL-19 might become crosslinked, thereby altering
247 mechanical properties. To test this, we used a Förster resonance energy transfer (FRET)
248 sensor incorporated into COL-19 (Figure 2F) that has been previously used to read out
249 mechanical stress and forces (Meng et al., 2011). As expected for a mechanosensor, the
250 FRET transmission of this COL-19::FRET increased when the animals were compressed
251 between two coverslips (Supplementary Figure 4A). To avoid external forces, we built a
252 flow chamber for FRET measurements (Supplementary Figure 4B). We scored FRET
253 ratios when animals were young (day 2 of adulthood), old but before death events
254 occurred (day 8), and at very old age, when about 75% of the population had died (day
255 12; Figure 2G, Supplementary Figure 4C-F). We found a stark increase in FRET
256 transmission during old age (day 12) compared to young (day 2) and this age-dependent
257 increase in FRET transmission was lower in long-lived *g/p-1* mutants at day 8 of adulthood

258 compared to normal-lived wild-type controls (Figure 2H-J, Supplementary Table 4). This
259 suggests that longevity interventions counteract age-dependent crosslinking of pattern II
260 collagens.

261 To assess whether the increase in FRET transmission of this COL-19::FRET
262 sensor corresponds to a reduction in its extensibility due to crosslinking, we fixed *C.*
263 *elegans* with the crosslinking-agent formaldehyde which increased the FRET
264 transmission compared to anesthetized animals (Supplementary Figure 4G-H). However,
265 treating *C. elegans* with agents that either increase or decrease AGEs had minor effects
266 on COL-19::FRET ratios and on lifespan (Supplementary Figure 4I-Q, Supplementary
267 Table 7), arguing against collagen crosslinking as the sole driver for the age-dependent
268 increase in FRET transmission.

269 An alternative reason for age-dependent changes in FRET transmission could be
270 a change in tissue tension. Tissue tension is established and maintained by cells pulling
271 on the ECM, either within the tissue itself or in neighboring tissues. To assess tissue
272 tension, we used sodium chloride to remove the internal osmotic pressure leading to
273 wrinkling of the cuticle at young (day 2) and old (day 8) age. We found that the age-
274 dependent increase of COL-19::FRET transmission was nullified by loss of internal
275 pressure in wild type and long-lived *glp-1* animals at day 8 of adulthood (Supplementary
276 Figure 4R-U). However, young animals still had lower FRET ratios after salt treatment,
277 suggesting that not all of it is due to tissue tension but some part might be due to collagen
278 cross-linking. Our observation is consistent with a recent finding that under osmotic-
279 shock-induced shrinkage of *C. elegans*, longevity interventions prevent the age-
280 dependent increase of cuticular stiffness, which is nullified by knocking down pattern I

281 collagen *col-120* (Rahimi et al., 2022), strengthening our model that longevity
282 interventions promote ECM homeostasis to also counteract collagen crosslinking.

283 We conclude that age-related changes including collagen crosslinking occur on
284 collagens that have been synthesized during youth and stay inert integrated into the ECM.
285 Cuticle integrity declines during aging in part due to the loss of cells adhering to the ECM
286 and progressive loss of tissue tension, which is slowed by longevity intervention.

287

288 **Longevity interventions slow the age-dependent accumulation of basement
289 membrane collagens**

290 As type IV collagen EMB-9 is a representative member of the pattern III collagens, we
291 examined EMB-9 tagged with Dendra. As before, we photoconverted on day 2 of
292 adulthood and two days later quantified the green (new) to the red (old) ratio of this
293 basement membrane collagen. The newly synthesized EMB-9 collagens were added to
294 the old collagens resulting in a thickening of the basement membrane independent of *daf-2(RNAi)*
295 longevity interventions (Figure 2K, 2L, Supplementary Figure 3K, 3L),
296 Supplementary Table 4, 8). This observation is consistent with the thickening of human
297 basement membranes (up to 100 fold) during aging (Halfter et al., 2015).

298

299 **Longevity interventions counteract age-dependent ECM compositional changes**

300 To elicit what constitutes a youthful matreotype or ECM composition upon longevity
301 interventions, we treated wild-type animals with *daf-2(RNAi)* to slow aging and compared
302 the protein levels relative to control using proteomic data acquired at different time points
303 of aging (Figure 3A, Supplementary Table 9). We searched the longitudinal abundance

304 data for signatures that might reinstate a youthful matreotype. We found that protein
305 levels of laminin/*epi-1*, collagen type IV/*let-2*, prolyl 4-hydroxylase/*dpy-18*, and
306 perlecan/*unc-52*, which normally decline during aging, were increased in long-lived *daf-*
307 *2(RNAi)* animals (Figure 3A, Supplementary Table 9). Furthermore, several proteases
308 that are normally being elevated during aging were reduced, particularly starting during
309 mid-age in long-lived *daf-2(RNAi)* animals (Figure 3A, Supplementary Table 9).
310 Consistent with our proteomics, across six different longevity interventions (dietary
311 restriction, metformin, *glp-1*, *daf-2*, *isp-1*, *eat-2*) and data sets (Depuydt et al., 2013;
312 Espada et al., 2020; Jung et al., 2021; Koyuncu et al., 2021; Pu et al., 2017), we observed
313 an increase of a subset of cuticular collagens (*col-*) protein levels, collagen-stabilizing and
314 remodeling enzymes (*dpy-18*, *phy-2*, *bli-*, *nas-*, *zmp-*) and a decrease of cathepsin (*cpl-*,
315 *cpz-*, *cpr-*) protease levels (Figure 3B, Supplementary Table 9). We thus propose that
316 longevity interventions mobilize compensatory adjustments counteracting age-related
317 ECM changes, especially in older animals, presumably to maintain homeostasis of the
318 ECM proteins.

319 Given that the largest observed changes occurred with enzymes that remodel
320 collagens and with collagens, we quantified the overall collagen levels during aging. We
321 found that one-fifth of the total collagen mass normalized to total protein mass is lost
322 during aging and that longevity interventions started with more collagen mass which
323 declined at a similar rate during aging (Figure 3C, 3D). This is in line with previous
324 observations that longevity interventions have higher collagen levels during old age
325 (Ewald et al., 2015). The cuticle is the fifth largest body part of *C. elegans*, making up
326 about one hundred thousand μm^3 or 1/6th of the total volume (Froehlich et al., 2021).

327 Because many cuticular collagens decline during aging, we reasoned that there might be
328 a thinning of the cuticle occurring and thereby a loss of barrier protection, similar to the
329 age-dependent loss of collagen and thinning of the human skin (Shuster et al., 1975).
330 However, based on electron microscope pictures, the cuticle thickened in total by 0.197
331 μm (18%) during old age (day 7-15 of adulthood; Figure 3E, Supplementary Figure 5),
332 consistent with previous observations (Herndon et al., 2002; Wolkow et al., 2017). It is
333 unclear what underlies the thickening of the cuticle during aging, but given the massive
334 decline in collagen levels, it might be other cuticular components such as the insoluble
335 cuticulins, an accumulation of water, or a loosening of structural integrity as observed by
336 EM (Essmann et al., 2020).

337 We conclude that the pattern I collagens are remodeled out of the ECM during
338 aging, accounting for a gradual loss of collagen mass which is counterbalanced by
339 longevity interventions.

340

341 **A feedback loop is sufficient and required for ECM homeostasis and longevity**

342 Our observed time course of the collagen mass changes coincides with the growth rates
343 in body size during adulthood, whereby after the final molt from L4 to adult, *C. elegans*
344 continuously grows until day 6-8 of adulthood and then starts to shrink (Hulme et al., 2010;
345 Shi et al., 2017; Statzer et al., 2022). *C. elegans* growth during early adulthood means an
346 extension of the cuticular exoskeleton. We have previously shown that longevity
347 interventions prolong this adult growth phase compared to wild type (Statzer et al., 2022).
348 The longer this adulthood growth phase is, the longer-lived is an individual *C. elegans*
349 (Hulme et al., 2010). To test whether this correlation is associated with prolonged

350 production of the pattern I collagens, we used transgenic animals expressing GFP driven
351 by the collagen *col-144* promoter, whose expression gradually declines during aging
352 (Ewald, 2021; Statzer et al., 2021a), and split this isogenic population grown in the same
353 environment into high expression and low expression of *Pcol-144::GFP* transgenic
354 animals at day 5 of adulthood. Animals expressing higher levels of *Pcol-144::GFP* at day
355 5 of adulthood lived longer than their genetically identical siblings with lower levels of *col-*
356 *144*-driven GFP expressed (Figure 3F, Supplementary Table7), demonstrating that
357 prolonged pattern I collagen expression is associated with longevity.

358 Previously we had shown that overexpression of pattern I collagen is sufficient to
359 increase lifespan. Further, adulthood-specific knockdown of some pattern I collagens
360 collapsed the higher collagen mass and blocked lifespan extension across conserved
361 interventions (Ewald et al., 2015). However, the underlying mechanism remains unknown.
362 Given that *C. elegans* die from age-associated infection of proliferating *E. coli*, its primary
363 food source, we measured the lifespan of *C. elegans* overexpressing collagen COL-120
364 on heat-killed bacteria. We confirmed that overexpressing COL-120 extended *C. elegans*
365 lifespan on dead bacteria (Figure 3G, Supplementary Table 7), excluding the idea that
366 higher cuticular collagen levels would extend lifespan by improving barrier function.
367 Selecting collagens from our omics dataset that were unaltered upon longevity
368 interventions and overexpressing them was not sufficient to increase lifespan
369 (Supplementary Figure 6, Supplementary Table 7) (Ewald et al., 2015), suggesting the
370 unique properties of longevity-promoting collagens.

371 To identify downstream mechanisms mobilized by collagen overexpression, we
372 used COL-120 overexpressing (COL-120OE) animals and treated them either with a

373 control empty vector (EV) or *col-120(RNAi)* from L4 and performed proteomic analyses
374 on day 8 of adulthood. We found abundance changes in proteins governing the
375 cytoskeleton dynamics (*tbcb-1*/Tubulin-specific chaperone B, *pat-6*/parvin, *ifd-2*/intermediate filament), as well as proteins involved in pathogen and oxidative stress
376 response, and metabolism, respectively (Supplementary Table 9). Interestingly, we
377 observed changes enhancing ECM composition (i.e., matreotype) that were specific to
378 *COL-120* overexpression (Figure 3H, Supplementary Table 9). These include
379 enhancement of cuticular collagens, enzymes that remodel cuticles and stabilize
380 collagen, basement membrane components, as well as reduction of some age-dependent
381 upregulated proteases (Figure 3H). We confirmed by qRT-PCR that overexpression of
382 *COL-120* leads to upregulation of transcripts coding for other collagens and ECM-
383 remodeling enzymes (Figure 3I), suggesting a feedback loop between ECM composition
384 and ECM production by cells. This suggests a model that the abundance of some key
385 collagens is read out to adjust the abundance of other ECM components, an important
386 feature for assembling a functional matrix.

388 To identify the extent of ECM remodeling and downstream pathways, we
389 compared *daf-2(e1368)* with and without *col-10* at day 4 of adulthood. As loss of *col-10*
390 blunts the longevity of *daf-2* (Figure 3J, Supplementary Table 7), we found that the
391 enhancement of metabolism, detoxification, and stress defense depended on *col-10* but
392 also on changes in the cytoskeleton (Supplementary Table 9). For the matrisome
393 changes, the most significant enhancement of *daf-2*-induced longevity depending on *col-10*
394 was with prolyl 4-hydroxylase/*dpy-18*, an enzyme important for collagen stabilization
395 (Figure 3K, Supplementary Table 9), reinforcing the idea of a feedback loop and

396 demonstrating the importance to remodel the ECM for the cellular reprogramming upon
397 longevity interventions.

398 To further test this idea, we compared wild type and a P4H *dpy-18(ok162)* loss-of-
399 function mutant treated either with control or *daf-2(RNAi)* from L4 and performed ECM-
400 enriched proteomics at day 8 of adulthood (Figure 3L, Supplementary Table 9). We found
401 that the longevity-matotype upon *daf-2(RNAi)* was reverted to the aging-matotype of
402 wild type in the *daf-2(RNAi)*-treated P4H *dpy-18(ok162)* mutants (Figure 3L). Consistent
403 with these findings P4H function did not affect wild-type lifespan, but the enhancement of
404 P4H during aging was important for longevity. The *daf-2(RNAi)*-mediated longevity was
405 abolished in P4H *dpy-18(ok162)* mutants (Figure 3M, Supplementary Table 7),
406 demonstrating that collagen stability is required for the dynamic change of ECM
407 composition associated with healthy aging and for lifespan extension.

408 In summary, these results show that longevity interventions prolong the dynamic
409 ECM homeostasis during aging. Levels of key ECM components are read out and
410 communicated back into the cell to initiate a response that balances all the multifold
411 components that make up the matrix. Interventions increasing key collagen levels are
412 sufficient to drive enhanced remodeling during aging, whereas blocking this collagen
413 enhancement leads to a collapse of this enhancement (Figure 3N). Furthermore, the
414 enhancement of ECM is sufficient and required for cellular reprogramming upon longevity
415 interventions.

416

417 **Screening identifies mechanotransduction genes as regulators for prolonged
418 collagen expression**

419 To investigate the above-described feedback loop and how longevity interventions
420 prolong the maintenance of collagen dynamics, we designed a screen to assess ECM
421 homeostasis during old age. Since the decline in the pattern I collagen transcription
422 preceded its decline or remodeling out from the cuticle, we scored *col-144* promoter-
423 driven GFP levels (*Pcol-144::GFP*) that progressively declined from day 1 to day 8 of
424 adulthood (Figure 4A, Supplementary Figure 7A). At day 8 of adulthood, in a wild-type
425 temperature-sensitive sterile background (*spe-9(hc88)*), most *Pcol-144::GFP* levels
426 vanished, whereas long-lived mutants *glp-1(e2141)* or *daf-2(e1370)* still retained low
427 levels of *Pcol-144::GFP* fluorescence, indicating prolonged collagen expression (Figure
428 4A). We aimed to identify two types of regulators by RNAi screening. The first, are
429 negative regulators that would lead to higher *Pcol-144::GFP* levels at day 8 of adulthood
430 upon knocking down by RNAi in a wild-type background, suggesting prolonged collagen
431 maintenance as observed by longevity interventions. The second is for regulators
432 required to prolong collagen expression in longevity-promoting mutant backgrounds, *i.e.*,
433 RNAi knockdown would abolish higher *Pcol-144::GFP* levels at day-8 of adulthood in
434 long-lived animals.

435 We took a targeted approach to screen through most *C. elegans* kinases (382 out
436 of 438 kinases), about one-third of all transcription factors (330 out of 934 genes), and
437 190 metabolism genes (Supplementary Figure 7B, Supplementary Table 10) (Venz et al.,
438 2020). Since knockdown of certain collagens and ECM regulators abolishes prolonged
439 collagen gene expression and longevity of normally long-lived *C. elegans* (Ewald et al.,
440 2015), we generated a matrisome library containing 625 out of the 719 matrisome genes
441 (Supplementary Figure 7B, Supplementary Table 10). Furthermore, a whole-genome

442 RNAi screen has been previously performed for pathogen infections using a *col-12*
443 promoter-driven reporter as a control (Zugasti et al., 2016). We re-analyzed their
444 screening data for enhancers or suppressors of *col-12* expression during young
445 adulthood and chose 133 genes (Supplementary Figure 7B, Supplementary Table 10).
446 Lastly, we performed a literature search for ECM regulators across species and selected
447 98 genes. In total, we screened 1770 genes in more than three replicates and found 254
448 hits. Then in a second pass, we validated candidate genes in addition also in a *daf-*
449 *2(e1370)* longevity background and ended up with 107 confident hits (Supplementary
450 Figure 7B, Supplementary Table 10).

451 We identified several required genes for longevity, such as *daf-16/FOXO*, *pqm-1*,
452 and *xbp-1/XBP1* (Supplementary Table 10) (Henis-Korenblit et al., 2010; Tepper et al.,
453 2013). We also identified known longevity-promoting genes that, when knocked down.
454 prolonged *Pcol-144::GFP* expression (e.g., *let-363/mTOR*, *sams-1/MAT1*, *pat-4/ILK1*,
455 Supplementary Table 10) (Hansen et al., 2005; Kumsta et al., 2013; Vellai et al., 2003).
456 Gene categories of candidate hits included autophagy, metabolism, molting, pathogen
457 innate immune response, and signaling (Supplementary Figure 7C, Supplementary Table
458 10). To our surprise, most hits were in the matrisome and adhesome gene category
459 (Supplementary Figure 7C, Supplementary Table 10). We mapped these candidates in
460 an anatomical model displaying the four tissue layers: The cuticle (1) is attached to the
461 hypodermis (2), which is attached to the basement membrane (3), which is attached to
462 the body wall muscles (4; Figure 4B). We found that knocking down genes that form or
463 remodel the cuticle either functions as an enhancer (green) or suppressor (red) of
464 prolonged collagen expression (Figure 4B, Supplementary Table 10). RNAi of genes that

465 anchor the hypodermis to the muscles (*mup-4/ matrilin*, *vab-10/ dystonin*, *let-805/*
466 *myotactin-fibronectin repeats*) via the basement membrane (*emb-9/collagen type IV*, *let-*
467 *2/collagen type IV*, *unc-52/ perlecan*, *epi-1/ laminin alpha*, *lam-2/ laminin gamma*) were
468 generally required for prolonged hypodermal collagen expression (Figure 4B,
469 Supplementary Table 10). By contrast, knocking down genes that form the adhesome
470 (*pat-2/ integrin alpha*, *pat-3/ integrin beta*, *unc-112/ pleckstrin*, *pat-4/ integrin-linked*
471 *kinase*, *tln-1/ talin*, *pxl-1/ paxillin*, *deb-1/ vinculin*, *pat-10/ troponin C*) upregulated and
472 prolonged *Pcol-144::GFP* expression in the hypodermis (Figure 4B, Supplementary Table
473 10).

474 Most strikingly, all these genes are components that are either required for
475 enabling or transmitting mechanical forces (mechanotransduction) during embryo
476 elongation (Zhang et al., 2011). This suggests that the underlying mechanism of the
477 feedback loop for prolonged collagen expression during aging might be mediated via
478 mechanical force coupling across tissues.

479

480 **Progressive decline in colocalization of basement membrane components with**
481 **adhesome during aging**

482 For mechanotransduction to occur, both collagen type IV ([EMB-9]₂ [LET-2]) and perlecan
483 (UNC-52) bind to the integrin receptors composed of the heterodimers of integrin alpha
484 INA-1 or PAT-2 with integrin beta PAT-3 (Figure 4B) (Gieseler, 2017; Teuscher et al.,
485 2019a). To monitor the mechanical coupling of the basement membrane to integrin
486 signaling during aging, we assessed the colocalization of collagen EMB-9 tagged with
487 mCherry and integrin receptor beta PAT-3 tagged with GFP. Despite the age-dependent

488 increase in EMB-9, UNC-52, and PAT-3 levels in muscular attachment structures, we
489 found a progressive decline in colocalization of EMB-9 with PAT-3 during days 1 to 8 of
490 adulthood, which was rescued by longevity intervention *daf-2(RNAi)* (Figure 5A-E,
491 Supplementary Figure 8A-B, Supplementary Table 11).

492 Because perlecan UNC-52 is at the interface between collagen EMB-9 and integrin
493 receptor PAT-3, we used a temperature-sensitive perlecan *unc-52(e699, su250)* at the
494 semi-permissive temperature of 20°C and found that loss of *unc-52* function accelerated
495 the loss of colocalization of EMB-9 from PAT-3 during day 1 to day 8 of adulthood (Figure
496 5A, 5B), presumably leading to detachment of muscle from the basement membrane.
497 This is consistent with the observation that these *unc-52(e699, su250)* animals become
498 progressively paralyzed in the midbody region at permissive temperature (15°C) during
499 aging (Ben-Zvi et al., 2009) but not in the head region. coinciding with the increased
500 colocalization observed in the posterior head region (Figure 5A).

501

502 **Mechanical coupling is required for longevity**

503 To understand the relationship between loss of mechanical tension across tissues and
504 longevity, we used the perlecan *unc-52(e699, su250)* paralysis phenotype as a functional
505 read-out and hypodermal collagen reporter (*Pcol-144::GFP*) as a read-out for the loss of
506 mechanical coupling to gene expression across tissues. First, we noticed that the
507 perlecan *unc-52(e699, su250)* had higher base-line *Pcol-144::GFP* expression during
508 development and throughout adulthood (Supplement Figure 8C-D, Supplementary Table
509 12), suggesting that the strength of mechanical coupling determines gene expression
510 levels across tissues, which is consistent with a feedback loop to adapt exoskeleton
511 cuticle strength with muscle strength.

512 We found that *daf-2(RNAi)* postponed the perlecan *unc-52(e699, su250)* paralysis
513 phenotype during adulthood by two days at a permissive temperature of 15°C and a semi-
514 permissive temperature of 20°C (Figure 5F, Supplementary Figure 8E). This is consistent
515 with a previous study showing a delay of *unc-52*-paralysis in long-lived *glp-1* mutants
516 (Cohen-Berkman et al., 2020), suggesting that this delay in paralysis is due to the general
517 improvement of protein homeostasis promoted by longevity interventions. By contrast,
518 the prolonged collagen gene expression and extreme longevity upon *daf-2(RNAi)* were
519 blunted and completely abolished by perlecan *unc-52(e699, su250)* mutations at 15°C or
520 20°C, respectively (Figure 5F, 5G, Supplementary Figure 8E, Supplementary Table 7,
521 12). This demonstrates that proper tissue coupling is required to promote hypodermal
522 collagen expression for the systemic longevity effects.

523

524 **Relevance of the matrisome and adhesome for longevity**

525 To identify which of these components are functionally important for longevity, we
526 measured the lifespan of 35'795 individuals, including 39 matrisome and adhesome
527 mutants treated either with control or *daf-2(RNAi)* (Figure 6A, Supplementary Table 7)
528 using the lifespan machine (Stroustrup et al., 2013). We found requirements for *daf-2*-
529 longevity across the different matrisome categories (Supplementary Figure 9),
530 demonstrating the essential interplay of these molecular components to form a proper
531 functional network. In line with our screening data, components of both ECMs, basement
532 membrane and cuticle, were required (Figure 6A). Consistent with our proteomics data,
533 whereby the age-dependent decline of perlecan/UNC-52 protein levels was counteracted

534 by *daf-2(RNAi)* (Figures 1 and 3), these *unc-52* mutants showed the strongest epigenetic
535 requirements for *daf-2*-longevity (Figure 6A).

536 Next, we wondered whether the hemidesmosome components discovered in our
537 screen would affect lifespan. We found that *vab-10*/plectin loss-of-function mutants were
538 shorter-lived and blocked *daf-2*-longevity (Figure 6B, Supplementary Table 7).
539 Hemicentin *him-4* is essential for hemidesmosome anchoring and mechanotransduction
540 (Vogel and Hedgecock, 2001), and *him-4* was required for longevity (Figure 6C,
541 Supplementary Table 7).

542 Since hemidesmosomes interact with integrin receptors (Gieseler, 2017), we next
543 investigated the integrin receptors' requirements for longevity. Both. integrin alpha (*ina-*
544 1) and the sole integrin beta (*pat-3*) were required for *daf-2*-longevity (Figure 6D,
545 Supplementary Table 7). To exclude any developmental effects and to test another
546 longevity pathway, we used long-lived *glp-1(e2141)* animals and knocked down *unc-52*
547 or *pat-3* by RNAi starting at day 2 of adulthood. Adulthood-specific knockdown of *unc-52*
548 or *pat-3* had no lifespan effects on normal-lived control animals but abolished the
549 longevity of *glp-1(e2141)* mutants (Figure 6E, Supplementary Table 7). Thus, integrin
550 receptors are required for longevity but not for wild-type aging, consistent with the
551 observation that only longevity interventions enhance pattern I collagen expression. This
552 implicates a functional role of mechanotransductive integrin signaling in this feedback
553 loop to enhance extracellular matrices.

554 Integrins transmit mechanical forces from the ECM to the cytoskeleton, and vice
555 versa, whereby they get physically connected to the cytoskeleton by linker proteins,
556 including talin/TLN-1 and integrin-linked kinase (ILK/PAT-4), and RHO-associated kinase

557 (ROCK/LET-502) regulate the dynamic reorganization of cytoskeletal proteins by
558 regulating the phosphorylation of myosin motors (Humphrey et al., 2014). Adult-specific
559 upshift to 20°C of temperature-sensitive loss-of-function ROCK/*let-502* mutants did not
560 suppress *daf-2(RNAi)* longevity (Supplementary Figure 10A, Supplementary Table 7).
561 While the dephosphorylation of the integrin receptors at tyrosine 792 in the membrane-
562 proximal NPXY motif promotes integrin activations via talin recruitment (Walser et al.,
563 2017), phospho-deficient integrin PAT-3(Y792F) mutants, as well as talin/*tln-1* mutants
564 treated with *daf-2(RNAi)*, were still long-lived (Supplementary Figure 10B, Supplementary
565 Table 7). Loss of focal adhesion kinase *kin-32* increased lifespan (Supplementary Figure
566 10C, Supplementary Table 7). Heterozygous ILK/*pat-4* mutants were shorter-lived and
567 blocked *daf-2*-longevity (Supplementary Figure 10D, Supplementary Table 7), consistent
568 with severe *pat-4* knockdown leads to detachment of the cytoskeleton and shortening of
569 lifespan, whereas mild *pat-4* knockdown has a mild effect on cytoskeleton detachment
570 and increases lifespan (Nishimura et al., 2014). Consistent with our screening hits and
571 proteomics data are cytoskeleton remodelers implicated in longevity by our and other
572 groups (Figure 5F) (Baird et al., 2014; Ewald et al., 2017; Mansfeld et al., 2015; Vitiello
573 et al., 2021). This points towards a hemidesmosome-to-integrin-to-cytoskeleton
574 remodeling axis to mediate downstream mechanotransduction and organismal longevity.
575

576 **Yap-1 is required for longevity and collagen homeostasis**

577 To determine the downstream effectors of this hemidesmosome-to-integrin-to-
578 cytoskeleton remodeling axis, we explored whether YAP is important for longevity, as the
579 conserved Yes-associated protein transcriptional co-activator YAP is implicated in the

580 transcriptional response to ECM stiffness and cytoskeletal organization (Dupont et al.,
581 2011; Panciera et al., 2017). Treatment of *yap-1(tm1416)* putative null mutants with *daf-*
582 *2(RNAi)* revealed that the loss of *yap-1* function abolished longevity upon reduced
583 Insulin/IGF-1 signaling (Figure 7A, Supplementary Table 7). We did not observe any
584 enhanced YAP-1 nuclear localization upon *daf-2(RNAi)* but observed higher levels of
585 YAP-1, which was potentiated at 25°C (Figure 7B, 7C, Supplementary Table 13). Interestingly,
586 under normal conditions, very faint YAP-1::GFP signal was observed at
587 hemidesmosome-containing structures (Figure 7D-H, Supplementary Table 13). Upon
588 *daf-2(RNAi)*, YAP-1 translocated from the cytoplasm to localize at the hemidesmosome-
589 containing structures between the apical and basal VAB-10/plectin/dystonin (Figure 7D-
590 H, Supplementary Table 13). This might suggest that YAP-1 could help read out
591 mechanical changes occurring at these hemidesmosome-containing structures. In
592 mammals, YAP responds to a broad range of mechanical cues, from shear stress to cell
593 shape, and extracellular matrix rigidity, and is considered a mechano-sensitive
594 transcriptional regulator (Elosegui-Artola et al., 2017; Moya and Halder, 2019; Panciera
595 et al., 2017). To test YAP-1's mechano-sensitive role in *C. elegans*, we placed L4 animals
596 for 3 days under ca 12 Pa pressure (Supplementary Table 13). We found that YAP-1
597 levels increased under these mildly higher pressure conditions (Figure 7I, Supplementary
598 Table 13), suggesting its expression responded to mechanical compression. If our model
599 of hemidesmosomes regulating collagen expression via mechanical tensions is correct,
600 then placing *C. elegans* under these mild pressure conditions should prolong collagen
601 expression during aging. To control for general gene expression changes under pressure,
602 we generated *C. elegans* expressing mCherry in body wall muscles and neonGreen in

603 the hypodermis under the *col-120* promoter, whose expression rapidly declined in early
604 adulthood (Figure 7J). Normalized to control muscular mCherry expression, which did not
605 change under pressure, we found that *col-120* expression was enhanced by these 3 days
606 of mild pressure (Figure 7K, Supplementary Table 14). We confirmed this enhanced
607 collagen expression under pressure by *col-144* promoter-driven GFP in a sterile
608 background avoiding FUdR (Figure 7L, Supplementary Table 14). Weakening the
609 hemidesmosome force transduction by *unc-52* temperature-sensitive mutations, as
610 before, showed already higher *col-144* expression under normal conditions but blunted
611 the enhancement of collagen expression upon pressure (Figure 7M, Supplementary
612 Table 14). Furthermore, knockdown of *yap-1* abolished this pressure-mediated collagen
613 expression (Figure 7O, Supplementary Table 14), suggesting that YAP-1 requirements
614 for longevity are due to responding to mechanical tension changes from
615 hemidesmosomes to coordinate collagen expression (Figure 7P).

616

617 **Discussion**

618 There is a general appreciation of the importance of the progressive decline of ECM
619 integrity during aging (Ewald, 2020). However, much of the past analysis focused on
620 physical and structural disorganization, which is improved by longevity interventions
621 (Essmann et al., 2020; Rahimi et al., 2022). Our previous genetic study pointed toward
622 the importance of ECM components at the molecular level for promoting longevity (Ewald
623 et al., 2015). Through the establishment of matreotypes using proteomics and *in-vivo*
624 reporter systems, we have laid here the groundwork for understanding a number of
625 distinct features of the dynamic ECM composition changes during aging and longevity.

626

627 Because of the long a half-life time of 114 years of collagens in humans (Ewald,
628 2020) it is generally thought that when ECMs are formed in development, collagens would
629 simply serve as an inert scaffold and accumulate damage during aging, such as collagen
630 fragmentation through dysregulated ECM proteases and accumulation of AGEs leading
631 to crosslinking and stiffening of ECMs (Ewald, 2020). While we observed an age-
632 dependent increase in proteases which was reverted by longevity interventions, we
633 additionally characterized three distinct patterns of collagen dynamics resembling
634 changes occurring during mammalian aging and diseases (loss of collagen mass,
635 collagen crosslinking, and localized collagen deposition). Consistent with the hypergrowth
636 or “faucet left on” theory (Blagosklonny, 2012), we found that *C. elegans* pattern III
637 collagens are continuously synthesized and integrated into the basement membranes
638 analogous to the increase of human basement membrane thickness during aging (Halfter
639 et al., 2015). By contrast, *C. elegans* pattern II collagens are synthesized once and
640 integrated into the ECM, and they thus suffer age-related consequences (i.e., crosslinking
641 and stiffening of ECM, analogous to changes of mammalian or human tendons (Haefke
642 and Ewald, 2020; Hamlin and Kohn, 1972). Interestingly, *C. elegans* pattern I collagens
643 are the most dynamic collagens, which become excised out of the ECM during aging but
644 are replenished for longer periods under longevity-promoting conditions. This is
645 analogous to the human skin during aging, whereby collagen mass progressively declines
646 (1% per year), and loss of mechanical tension-coupling results in declined collagen
647 synthesis (Shuster et al., 1975; Varani et al., 2006). Another parallel is the observation
648 that certain collagens are overexpressed in centenarians based on proteomic signatures

649 (Sebastiani et al., 2021). Most importantly, enhancing *C. elegans* pattern I collagen
650 dynamics is a prerequisite for longevity. We identified a regulatory feedback loop reading
651 out the key pattern I collagens to signal into the cells to not only adjust ECM components
652 to form a functional matrix but also to reprogram metabolism, stress defense, and cellular
653 homeostasis upon longevity interventions (Figure 7P). We undertook three different
654 approaches (proteomics, lifespan assays, genetic screening) to identify the underlying
655 molecular mechanism(s) of this essential-for-longevity feedback loop. From all the
656 imaginable possibilities, surprisingly, all three approaches pointed to one molecular
657 hemidesmosome-containing structure spanning from the cuticle through the hypodermis,
658 through the basement membrane to the muscles.

659

660 Although not formally implicated, there are several genetic observations during
661 development that point to a reciprocal role of hemidesmosome structures in
662 mechanosensation and ECM remodeling. The hemidesmosome-containing structures
663 are required for contractile force transmission for normal locomotion of *C. elegans*
664 (Hresko et al., 1999). Muscle contractions are essential for embryonic elongation by
665 mechanical coupling and proper assembly of these filamentous hemidesmosome-
666 containing structures from the muscle basement membrane through the hypodermis to
667 the outer cuticle that acts as a soft exoskeleton (Figure 4B) (Zhang et al., 2011). Muscular
668 contraction induces mechanical force transmission promoting reorganization of actin
669 bundles in the hypodermis (Lardennois et al., 2019), indicating a mechanotransductive
670 remodeling adapting inner and outer tensions and forces to these scaffolding structures.

671 Besides force transmission and cytoskeleton adaptation, genes that influence the
672 physical properties of ECM were also identified in our screen during aging. For instance,
673 *noah-1* and *noah-2* are important for maintaining mechanoreceptor potentials and
674 cuticular ECM remodeling (Frands et al., 2005; Vuong-Brenner et al., 2017). Intriguingly,
675 loss of *unc-95*, *unc-52*, or *pat-3* results in ECM-associated molting defects (Frands et al.,
676 2005; Zaidel-Bar et al., 2010). By contrast, mutations in muscle myosin *unc-54* important
677 for muscle contraction or mutations in *unc-13* important for neurotransmitter release did
678 not induce cuticular collagen expression (Broday et al., 2007). Moreover, scanning
679 electron microscopy revealed abnormal, branched, or flat cuticular annuli of *unc-*
680 *52/perlcan* mutants, but not for *unc-13/neurotransmitter-release* mutants (Broday et al.,
681 2007), suggesting that impaired hemidesmosome function impairs proper cuticle ECM
682 morphology. In our screen, we also identified *pxn-2/peroxidasin* that promotes sulfilimine
683 crosslinks of basement membrane type IV collagen, thereby regulating basement
684 membrane mechanical properties. Defects in *pxn-2* can be bypassed by mutations in
685 hemidesmosome components, such as *let-805*, *vab-10*, and *unc-52* (Gotenstein et al.,
686 2018), suggesting changes in either the cuticular or basement membrane ECM are
687 mediated by hemidesmosomes.

688 Mechanical compression of hemidesmosomes by placing *C. elegans* into
689 hypergravity impairs the migration of motor neurons over the muscle, and mutations in
690 *vab-10*, *unc-52*, and other hemidesmosome components rescue neuronal migration
691 (Kalichamy et al., 2020). Vice versa, stretching hemidesmosomes unmasks the SH3
692 domain of VAB-10/Plectin enabling mechanosensitive signaling essential for embryonic
693 elongation (Suman et al., 2019). Interestingly, hydrostatic pressure increases *col-107*

694 mRNA and increases lifespan (Watanabe et al., 2020). Similarly, a three-month space
695 flight hypogravity induces collagen turnover in mice's skin (Neutelings et al., 2015).

696 Together with our results that exogenously applied pressure promotes collagen
697 expression and longevity, we propose that the physical properties of either the cuticle
698 ECM or basement membrane ECM are sensed and adapted by hemidesmosomes to
699 orchestrate force coupling across tissues (Figure 7P). Our proposed feedback loop of
700 ECM homeostasis via hemidesmosome tension coupling reconciles and explains these
701 previous observations during development (Figure 7P). Moreover, we adapted a
702 biomechanical model recently established by Humphrey and Schwartz describing arterial
703 wall integrity, where mechanical forces regulate gene expression and signaling across
704 several cell types, smooth muscle cells, endothelial cells, fibroblasts, and surrounding
705 ECM to maintain optimal functions (Humphrey and Schwartz, 2021), which captures well
706 our findings. Thus, *C. elegans* recalibrates tissue forces applied to ECM through
707 remodeling ECM composition (Figure 7P).

708

709 The key question is how do changes in hemidesmosomes affect longevity? During
710 aging, we observed uncoupling of basement-membrane collagen type IV from its integrin
711 receptor, suggesting an age-dependent loss of hemidesmosome integrity. In early
712 adulthood of *C. elegans*, the protein homeostasis network collapses, which is slowed by
713 longevity interventions (Ben-Zvi et al., 2009; Labbadia and Morimoto, 2014). Similarly, we
714 found that longevity interventions were able to slow this age-dependent uncoupling of
715 ECM from its receptor (Figure 5). We favor the idea that loss of proteostasis drives the
716 loss of hemidesmosome tension-coupling, since a less stable perlecan mutant, serves as

717 a readout of ECM proteostasis (Ben-Zvi et al., 2009), accelerated this disassociation
718 (Figure 5). Mutated perlecan disorganizes and forms aggregates, which are removed by
719 enhanced chaperones, autophagy, and proteasomal functions (*i.e.*, better protein
720 homeostasis) of longevity mutants or drugs (Alavez et al., 2011). Furthermore, in our
721 screen, we identified calreticulin *crt-1/CALR*, which regulates UNC-52/perlecan folding
722 and protein levels (Zahreddine et al., 2010). Thus, longevity interventions might improve
723 the integrity of hemidesmosomes to ensure their dynamic adaptation and signaling.

724 Beyond the known fact that ECM-cell detachment leads to apoptosis or loss of
725 cellular identity (He et al., 2015), several recent findings point toward the idea that
726 hemidesmosomes might directly regulate cellular homeostasis and tissue adaptation. For
727 instance, chaperone HSP-43 is constitutively expressed and stored at hemidesmosomes
728 (Fu et al., 2020). Upon heat, HSP-43 is released from the hemidesmosomes as a fast
729 response, analogous to small heat shock chaperones associated with desmosomes and
730 focal adhesions to ensure resistance against heat-induced damage in mammalian cells
731 (Fu et al., 2020). Disturbances or disintegration of hemidesmosomes induces V-ATPase
732 and activates lysosomes to facilitate ECM turnover during development (Miao et al.,
733 2020). Hemidesmosomal integrity is also linked to mitochondrial ATP production and
734 muscle protein synthesis (Etheridge et al., 2015). Moreover, mitochondrial homeostasis
735 and stress responses (mitohormesis) are interlinked with ECM-integrin cytoskeleton
736 remodeling in *C. elegans* and human stem cells (Ding et al., 2008; Munkácsy et al., 2016;
737 Schinzel et al., 2019; Tharp et al., 2021). Lastly, disruption of the cuticle or the upper part
738 of the hemidesmosomes (*mup-4*) induces a pathogen response (Zhang et al., 2015).
739 Similarly, in primary human epidermal keratinocytes, disruption of hemidesmosomes

740 induces an antimicrobial peptide pathogen response (Zhang et al., 2015). Intriguingly, our
741 data shows that the hemidesmosome feedback loop that enhances collagen expression
742 leads to cellular adaptation of cytoskeleton, metabolic, oxidative stress response, and
743 pathogen response proteins (Figure 7P, Supplementary Table 9), all processes important
744 for longevity interventions to maintain cellular homeostasis.

745 Mechanotransduction refers to the conversion of biophysical forces into
746 transcriptional output or adaptation. Our lifespan screening identified mechano-
747 responsive transcriptional co-activator YAP-1, which is required for longevity. Consistent
748 with our proteomics on downstream processes upon enhanced collagen overexpression,
749 YAP-1 is required for cytoskeleton, stress, and pathogen responses (Iwasa et al., 2013;
750 Lee et al., 2019; Ma et al., 2020). Our data showed that YAP-1 levels are increased at
751 higher temperatures and YAP-1 is found at the hemidesmosome-containing structures
752 under reduced insulin/IGF-1 signaling. Furthermore, we demonstrated that YAP-1
753 responds to externally applied pressure and promotes the enhancement of collagen
754 expression requiring intact hemidesmosomes (Figure 7). In humans, YAP1 senses the
755 stiffness of the ECM (Elosegui-Artola et al., 2017), which increases with age leading to
756 dysregulation of YAP1 impairing mechanotransduction and altering stem cell
757 differentiation *in vivo* (Pelissier et al., 2014) and inducing cellular senescence *in vitro* (He
758 et al., 2019; Xie et al., 2013). A feedback loop of YAP regulating collagen deposition and
759 ECM remodeling has been observed for cancer-associated fibroblasts (Calvo et al.,
760 2013). Although activation of YAP1 promotes tissue regeneration, hyperactivated YAP1
761 has been observed in human cancers, suggesting a tight regulation of YAP1 activity for
762 regenerative medicine (Moya and Halder, 2019). Interestingly, several phenotypes we

763 observed here are conserved in mammals, for instance, YAP1 is involved in heat stress
764 response (Luo et al., 2020), cytoskeletal dynamics (Morikawa et al., 2015), pathogen
765 response (Wang et al., 2017), and is implicated in hemidesmosome-structure related
766 human epidermolysis bullosa disease (Rosa et al., 2019). However, to the best of our
767 knowledge, our results are the first direct non-invasive *in-vivo* data showing the
768 mechanotransduction of YAP-1 on collagen expression and linking its action to
769 hemidesmosomes as a feedback homeostatic regulator.

770

771 The hemidesmosome-containing structure identified here that is important for
772 longevity might be an ancestral structure combining two conserved mechano-regulators,
773 whereby the upper part resembles hemidesmosomes found in mechanically exposed
774 epithelial tissue (e.g., skin, esophagus, intestine) and the lower part, from the basement
775 membrane to the muscle, resembles focal adhesions (Figure 4B). In mammals, there is
776 dynamic crosstalk between hemidesmosomes and focal adhesions. For instance, during
777 cell migration and wound healing, hemidesmosomes cluster as ordered arrays
778 interspersed by actin-associated focal adhesions (Hatzfeld and Magin, 2019; Molder et
779 al., 2021). Furthermore, cellular tension induces the dynamic interplay between
780 hemidesmosomes and focal adhesions leading to the activation of YAP *in vitro* (Wang et
781 al., 2020), suggesting a functionally conserved mechanism.

782 Given this conserved interplay, impairment of these structures has several
783 consequences for mammalian aging reminiscent of our findings. Facial skin biopsies from
784 older humans (>60 years) show disassociation of β 4-integrin from hemidesmosomes and
785 decreased collagen type IV levels compared to younger individuals (Varlet et al., 1998).

786 Furthermore, in human skin, an age-dependent decline of collagen COL17A1 which is
787 part of hemidesmosomes is observed, which drives the loss of stem cell maintenance
788 and skin aging in mice (Liu et al., 2019). A recent clinical trial (NCT03536143) has shown
789 that it is feasible and safe to administer hemidesmosome components by topical viral
790 application in recessive dystrophic epidermolysis bullosa (Gurevich et al., 2022),
791 suggesting that targeting the age-dependent decline of hemidesmosomes might be
792 possible as a therapeutic intervention. The second line of convergent consequences of
793 losing the lower part of the hemidesmosomes is the commonly observed detachment of
794 muscle from the basement membrane via loss of focal adhesions and other receptors
795 that might drive muscular dystrophy (Yurchenco et al., 2004). Muscular dystrophy patients
796 die in their early twenties (Broomfield et al., 2021) and also show muscular fibrosis (Zhou
797 and Lu, 2010), *i.e.*, excessive collagen production that can be *ex vivo* and *in vitro*
798 reproduced by either a stiffer environment or more contractile cytoskeleton (Engler et al.,
799 2004; Griffin et al., 2005), hinting at a derailed outside-in or inside-out feedback loop.
800 Interestingly, a previous *in-silico* study found focal adhesions as a central network
801 associated with human longevity (Wolfson et al., 2009). Thus, this suggests a conserved
802 role of mechanical forces on focal adhesion and hemidesmosomes in aging and longevity.
803

804 In summary, although mechanotransduction has been observed to derail with
805 aging, we provide here the first *in-vivo* evidence that a hemidesmosome feedback loop is
806 essential to promote organismal lifespan extension. We found coordination between two
807 distinct ECM adjusting ECM remodeling across tissues. We demonstrated that during
808 aging, this ECM remodeling declines, and longevity interventions maintain this ECM

809 remodeling, which promotes tissue integrity and cellular adaptations. Identifying
810 mechanotransduction and hemidesmosomes as novel targets promoting longevity might
811 open new therapeutic avenues.

812

813 **Limitations of the study**

814 While our methodology and results postulate a new model and are a significant step
815 forward towards elucidating the protein homeostasis and remodeling of ECMs elicited by
816 longevity interventions *in-vivo* in an organism, the study also has a number of limitations.
817 First, although we identified many ECM proteins reproducibly, due to inherent technical
818 challenges of solubilizing the inherently poorly soluble ECM fraction for proteomics, this
819 data is likely incomplete for at least some ECM proteins at some time points during the
820 longitudinal time course. Second, we used multicopy translational reporters of cuticular
821 collagens, since the collagens of interest, when endogenously tagged with CRISPR,
822 showed too weak of a fluorescent signal in the ECM, which was masked by the age-
823 related autofluorescence. Third, collagens are extracellularly cleaved and crosslinked in
824 the ECM and several attempts of GFP tagging collagens, including between triple helices,
825 disrupted matrix morphology. This warrants for future development of smaller tags and
826 specialized microscopy to overcome these challenges. Forth, while our study covered a
827 representative collection of core-matrisome proteins (e.g., 3 out of 35 ECM glycoproteins,
828 1 out of 3 proteoglycans, 4 out of 7 conserved collagens, 11 out of 174 cuticular collagens,
829 3 out of 3 integrins, and 2 out of 2 hemidesmosome-like receptors), limited by the above-
830 mentioned technical challenges, a more complete assessment of ECM components could
831 further strengthen our conclusions. Fifth, we have shown an age-dependent decline in

832 colocalization of basement-membrane collagen with integrin receptors. Although, we and
833 others (Alavez et al., 2011; Ben-Zvi et al., 2009; Cohen-Berkman et al., 2020)
834 demonstrated that genetically disrupting this interaction leads to muscle detachment from
835 the basement membrane and a paralysis phenotype, proving physical disassociation
836 turned out to be challenging, either due to difficulties in the preparation of the insoluble
837 collagens or due to the fact that integrins bind collagens via a catch-bond mechanism
838 (Kong et al., 2009), and warrants further investigation. Lastly, while previous isolated
839 studies have shown that several of our key findings are also relevant in higher organisms,
840 an experimental investigation and validation of the discovered mechanisms in mammals
841 will be key for future translation of our findings for therapeutic purposes.

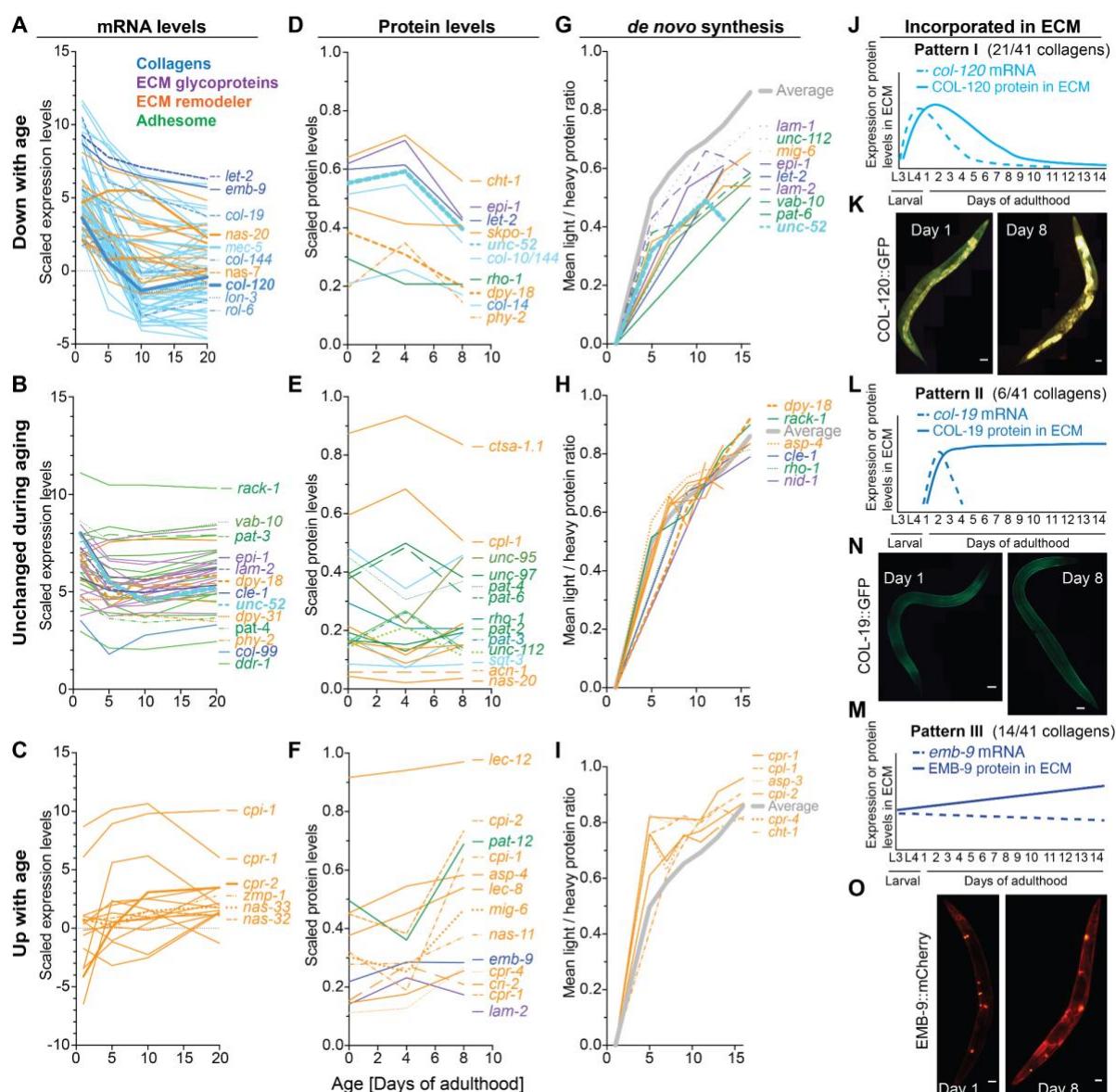
842 **Author contributions**

843 All authors participated in analyzing and interpreting the data. CYE, ACT, and CS
844 designed the experiments. CS, AG, AMH, SAD, and CYE performed lifespan assays.
845 AMH and CS performed the comparative automated lifespan analysis. CS and AF
846 performed proteomics. SAD performed FRET-sensor experiments. IS programmed FRET
847 image analysis. CS performed the bioinformatic analysis. MH quantified cuticle thickness.
848 OG programmed and performed the image analysis. AG and CYE performed the pressure
849 experiments. ACT performed all other experiments. CYE wrote the manuscript in
850 consultation with the other authors.

851

852 **Author Information**

853 The authors have no competing interests to declare. Correspondence should be
854 addressed to C. Y. E.

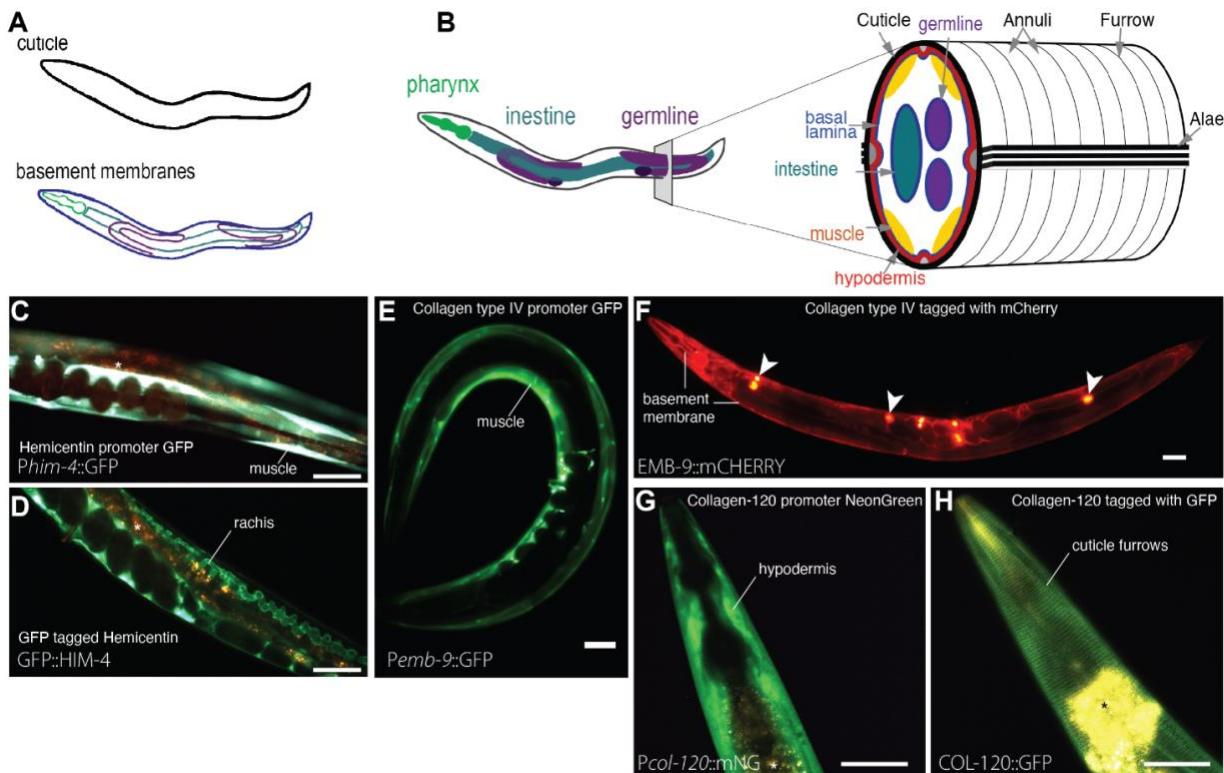

855

856 **Acknowledgment**

857 We thank Mariam Baghdady, Kieran Toms, Vira Chea, and Katharina Tarnutzer for help
858 with the screen, Elisabeth Jongsma for her help scoring GFP, Özlem Altintas for help with
859 lifespan scoring, Katrien De Bock and Ewald lab members for critical discussions of the
860 manuscript, Ann Rougvie for pJA1 [P_{col-19}::GFP] plasmid, Michel Labouesse for OD76,
861 ML2600 strains, Alex Hajnal for AH4617, AH3437, AH3284 strains, Cathy Savage-Dunn
862 for CS637, CS678, Harald Hutter for VH2847 strain, Taina Pihlajaniemi for TU1 strain,
863 WormBase for curated gene and phenotype information, Tobias Schwarz and the support
864 of the Scientific Center for Optical and Electron Microscopy ScopeM of the Swiss Federal

865 Institute of Technology ETHZ. Some strains were provided by the CGC, which is funded
866 by the NIH Office of Research Infrastructure Programs (P40 OD010440). Figure 3N was
867 created with BioRender.com (Publication license JH23SSQB6M). Funding from the Swiss
868 National Science Foundation PP00P3_163898 and 190072 to ACT, CS, AG, and CYE,
869 and the European Research Council AdvG grant 670821 to RA is acknowledged.

870 **Figures and Figure Legends**



871

872 **Figure 1. Matrisome dynamics during aging**

873 (A-C) Aging time course of matrisome mRNA levels were classified as down- (A),
 874 unchanged (B), or up-regulated (C) during aging based on the agreement between the
 875 Pearson and Spearman correlation coefficients when applied to the individual samples.
 876 (Source data: GSE46051, Supplementary Table 2).

877 (D-F) ECM-enriched proteomics aging time course matrisome protein levels declining (A),
878 unchanged (B), or increasing (C) during aging taking into account the aging correlation of
879 the individual samples (Data and statistics Supplementary Table 3).
880 (G-I) Classification of the *de novo* protein synthesis rate of each protein into lower (G),
881 unchanged (H), or elevated (I) during aging based on the difference between the
882 synthesis rate of the individual protein to the overall mean protein production. (Source
883 data: PMID: 25686393, Supplementary Table 3).
884 (J-O) The aging time course of collagens that are incorporated into the ECM. (J, L, M)
885 Model extrapolated from transgenic fluorophore tagged collagens shown as
886 representative images (K, N, O). Details in Supplementary Figure 1, Supplementary Table
887 1. Scale bar = 50 μ m.
888
889
890

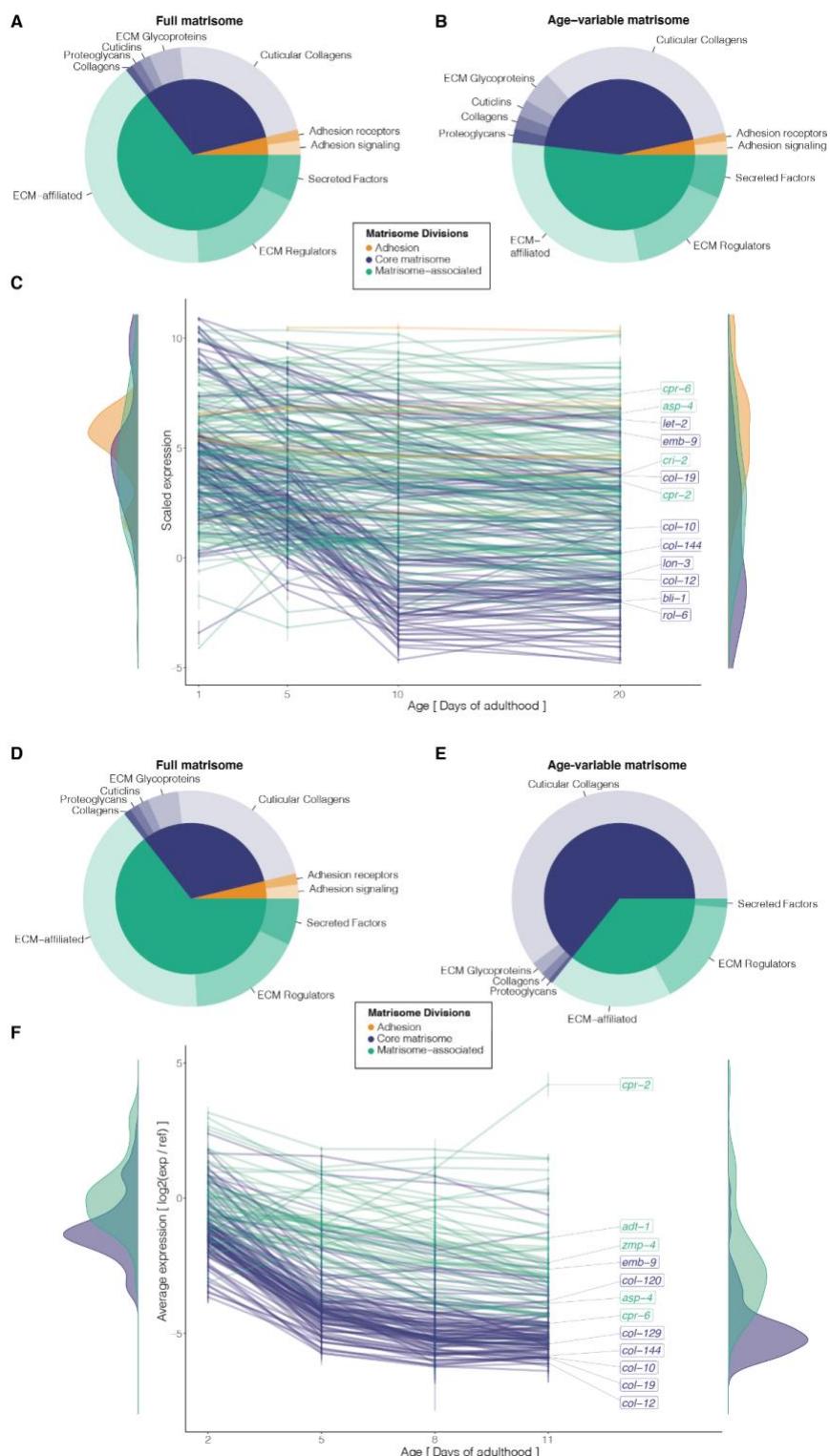
I Transcriptional Reporter

Matrisome	Genotype	egg	L1-L3					L4					Day 1 adult					Day 8 adult				
		total	H	I	G	B	P	N	H	I	G	B	P	N	H	I	G	B	P	N		
Core Matrisome	<i>Pcol-10::GFP</i>	2	3					2											1	1		
	<i>Pcol-19::GFP</i>																		2			
	<i>Pcol-19::NeonGreen</i>							3											1			
	<i>Pcol-129::GFP</i>	0.5	1	1				1	1										1			
	<i>Pcol-144::GFP</i>	1.5	2				3				3								1			
	<i>Pcol-89::GFP</i>						3	1	3p		3	2	2p		3	2	2p		3			
	<i>Pdpy-14::GFP</i>	3	2				1				1	1				1	1					
	Collagens	<i>Pemb-9::GFP</i>	2			2		1			2								2			
	Collagens	<i>Plet-2::GFP</i>	2			2				2								1				
	Collagens	<i>Pmec-5::GFP</i>	2			2			3									2				
	Cuticlin	<i>Pcut-6::GFP</i>	1	1				1			1							3				
	Cuticlin	<i>Pcut-23::GFP</i>	1	1	1			2	1	2	1	1	3p		3	1	1					
	ECM Glycoprotein	<i>Phim-4::GFP</i>				2				2		1	3		1	3						
ECM Glycoprotein	<i>Phim-4::MB::YFP</i>	2			2			2		2				2								
associated	ECM Regulators	<i>Pcri-2::GFP</i>	2	1	1	2		2	1	2	2		2		2	2						
	ECM-affiliated	<i>Pgpn-1::GFP</i>		3	3	3		3	3	3	1	3	3		3	3						

fluorescent scale

0
0.5
1
1.5
2
2.5
3

#p partially


C Cuticle
BM Basement Membrane
H Hypodermis
I Intestine
G Germline
B Bodywall Muscle
P Pharynx
N Neurons

J Translation Reporter

Matrisome	Genotype	egg	L1-L3					L4					Day 1 adult					Day 8 adult						
		total	C	BM	H	I	G	B	P	N	C	BM	H	I	G	B	P	N	C	BM	H	I	G	B
Core Matrisome	<i>Cuticular Collagen BLI-1::GFP</i>							2			2								1					
	<i>Cuticular Collagen COL-120::GFP</i>								1			2		1					1					
	<i>Cuticular Collagen COL-19::GFP</i>									2				3										
	<i>Cuticular Collagen LON-3::GFP</i>	1	1					1	2			2							2					
	<i>Cuticular Collagen ROL-6::GFP</i>	1	1	1				2	1	1		2							1					
	<i>Cuticular Collagen COL-101::GFP</i>						1				2								1					
	Collagens	<i>COL-99::GFP</i>			1																			
	Collagens	<i>GFP::COL-99</i>	3		3			2		3		2			1		1	2		1				
	Collagens	<i>EMB-9::DENDRA</i>	0.5	2	1			2		1	2	1	1	2	2	2	1	2	3	1	3	3		
	Collagens	<i>EMB-9::mCherry</i>	3	1	1			2	1	2	2	2		2	1	2	2	2	3	1	3	3		
	Cuticlin	<i>CUTI-1::GFP</i>	1.5		1				1				1		1				2	2				
	ECM Glycoprotein	<i>GFP::HIM-4</i>	1.5	1		2		2	2	2	1	2	3	2	3	1	3	2	3	1				
	ECM Glycoprotein	<i>LAM-1::DENDRA</i>	1	1	1			2		1	1			2		2	2	2	2	3				
ECM Glycoprotein	<i>LAM-1::mCherry</i>				1				1			2	1	2	2	2	2	3	1	3	3			
ECM Glycoprotein	<i>LAM-2::mKate2 *</i>	1	1	1				2	1			2	1	2	1	2	2	1	2	1	2			
Proteoglycans	<i>mNG::UNC-52 *</i>	0.5	1				1				2			2		3		3		3				
Adhesive	ECM-affiliated	<i>SDN-1::GFP</i>	3		1	1		2	1	1		2	1		1		1	1		3				
	Integrin	<i>INA-1::GFP</i>	2		1	1		1	2	1	3	1	1	1	2	2	2	2	2	3	2			
	Integrin	<i>PAT-2::mNG *</i>	2				1				2			1	2		1	2		1	2			
	Integrin	<i>PAT-3::GFP *</i>	3			3				2	3			1	2	3		1	3					
	Fibronectin-like	<i>LET-805::GFP *</i>	2	2		2	2		2	1	2	2		2	1	2	2	3	1	2	2			
	Plectin	<i>VAB-10a::GFP *</i>	1.5		2				2			2		2		1	2	2	3					
	Talin	<i>GFP::TLN-1 *</i>	1.5		1		2		1		2		1	1	3		1		1					

892 **Supplementary Figure 1. Age-associated changes of matrisome proteins in the**
893 **ECM**

894 (A, B) Schematic of *C. elegans*' tissues and ECMs (basement membrane and cuticle).
895 (C, D) Expression of hemicentin *him-4* promoter-driven in body wall muscles (C) and GFP
896 tagged HIM-4 protein incorporated in ECM (D).
897 (E, F) Expression of collagen type IV *emb-9* promoter-driven in body wall muscles (E)
898 and mCherry tagged EMB-9 protein incorporated in almost all basement membranes
899 surrounding pharynx, intestine, gonad, and apical surface of body wall muscles (F).
900 Arrowheads indicate coelomocytes, the *C. elegans*' macrophage-like cells, which
901 scavenge foreign particles including fluorescent proteins from the pseudocoelomic fluid.
902 (G, H) Expression of cuticular collagen *col-120* promoter-driven in the hypodermis (G)
903 and GFP tagged COL-120 protein incorporated in the cuticular furrows (H).
904 (I) Transcriptional reporters are driven by matrisome genes during development and
905 aging. For details, see Supplementary Table 1. The fluorescent scale corresponds to the
906 highest observed fluorescence of a reporter line (intensity 3) graded to no observed
907 fluorescence above background (intensity 0).
908 (J) Translational reporters of matrisome and adhesome proteins are localized and
909 incorporated into ECM structures during development and aging. For details, see
910 Supplementary Table 1. * indicates CRISPR-Cas9 genome inserted tag in the
911 endogenous gene locus.
912 (C-H) scale bar = 50 μ m, (C,D,G,H) * autofluorescent gut granules are in brown-yellowish.
913

914

915 **Supplementary Figure 2. Transcriptional changes of matrisome and adhesome**

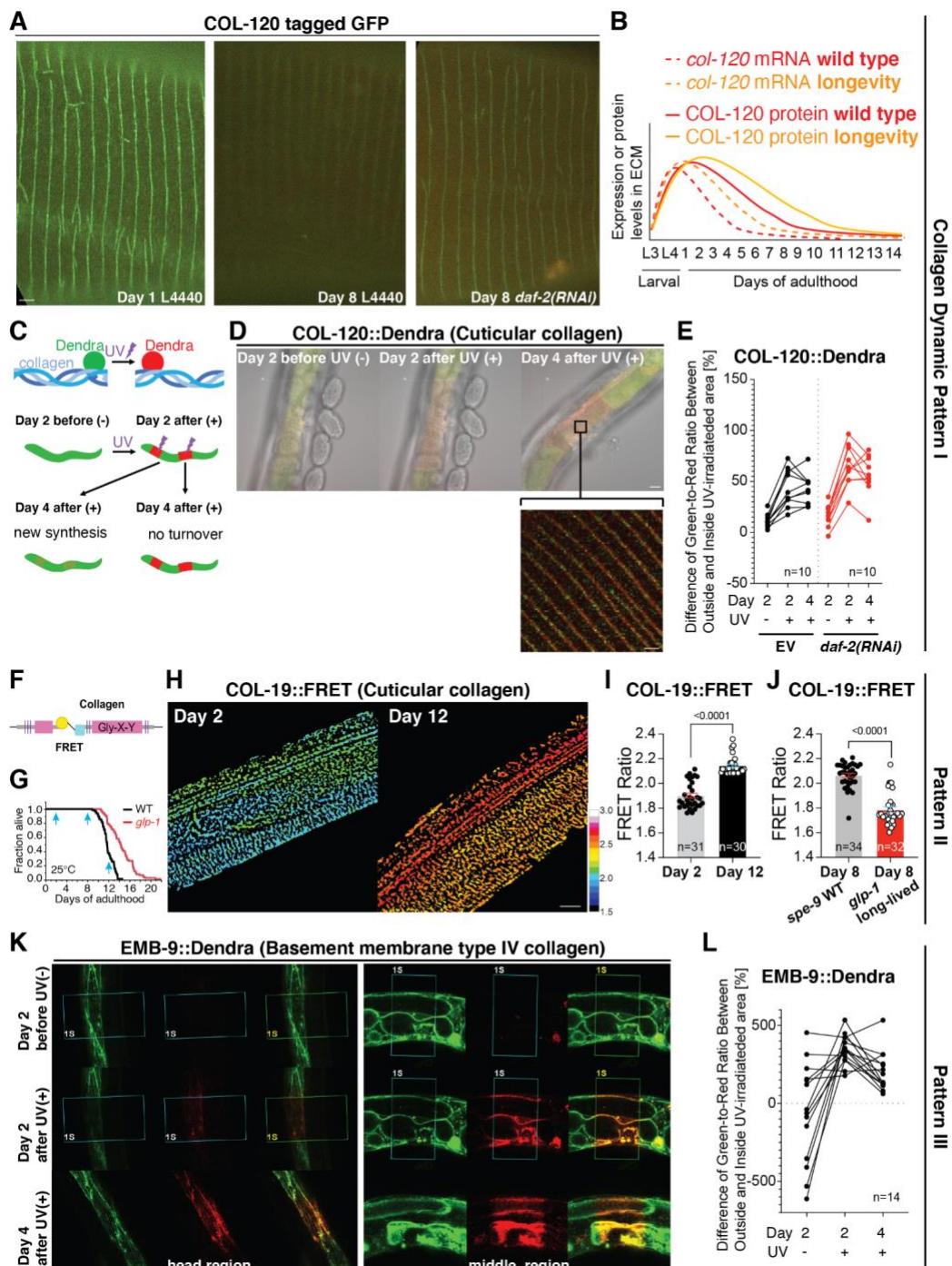
916 **during aging**

917

918 (A, B) Composition of the matrisome and adhesome (A) and their age-variable subset (B)
919 based on the GSE12168 expression profile (B).

920 (C) Longitudinal expression of matrisome and adhesome genes during aging
921 (GSE12168).

922 (D, E) Composition of the matrisome and adhesome (D) and their age-variable subset (E)
923 based on the GSE46051 expression profile (E).

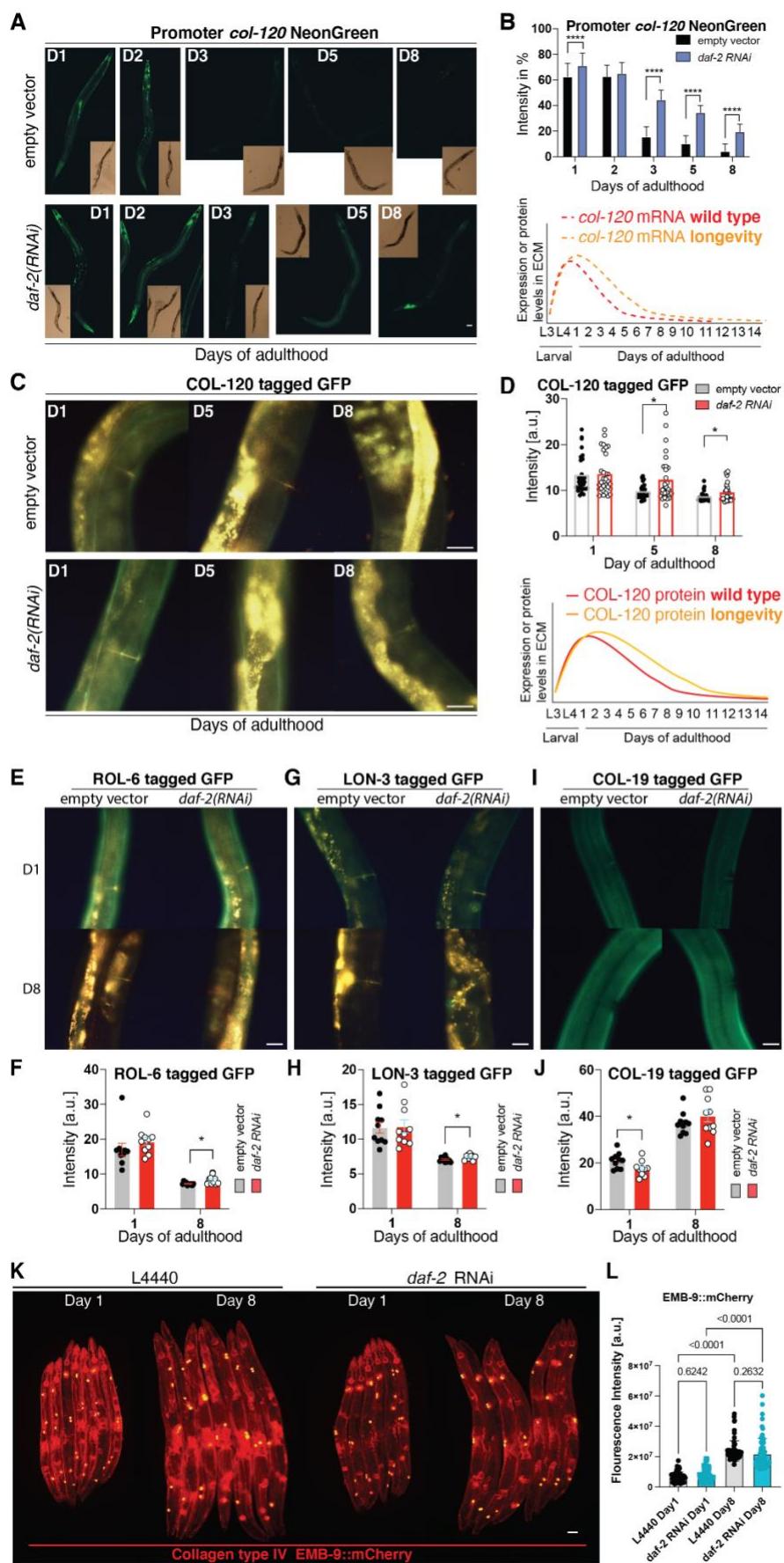

924 (F) Longitudinal expression of matrisome and adhesome genes during aging
925 (GSE46051).

926 (A-F) For details, see Supplementary Table 2.

927

928

929


930

931 **Figure 2. Three patterns of collagen dynamics during longevity quantified *in vivo***

932 (A-E) COL-120 dynamics as a representative for the pattern I collagen.

933 (A) Collagen COL-120 tagged with GFP (LSD1000) in the cuticular ECM furrow vanished
934 from day 1 to day 8 on control empty vector RNAi (L4440) but was still visible at day 8 of
935 adulthood when *daf-2(RNAi)* started at L4. Scale bar = 1 μ m.
936 (B) Model of COL-120 mRNA, protein, and incorporated ECM reporter dynamics.
937 © Experimental workflow and the expected outcome of photoswitching COL-120 tagged
938 *dendra2* *in vivo*.
939 (D) Representative images of photo-switched areas of LSD1061 COL-120::Dendra Scale
940 bars = 10 μ m for overlay and 1 μ m for inset.
941 (E) Quantification of COL-120 turnover of the mid-body area. Each dot represents 1
942 animal (n=10). See Supplementary Table 5 for statistical details and raw data.
943 (F-J) COL-19 is shown as a representative of the pattern II collagen.
944 (F) Schematic representation of COL-19::FRET transgene.
945 (G) Lifespan of wild-type temperature-sensitive sterile background WT (LSD2052 *spe-*
946 *9(hc88)*; COL-19::FRET) vs long-lived (LSD2053 *glp-1(e2141)*; COL-19::FRET) at 25°C.
947 Light blue arrows indicate sampling days for FRET imaging.
948 (H) Representative LSD2052 *spe-9(hc88)*; COL-19::FRET images in the 3D chamber on
949 days 2 and 12 of adulthood at 25°C. The increasing FRET ratio is color-coded from dark
950 blue to red. Scale bar = 10 μ m.
951 (I) FRET ratio increased from day 2 to 12 during aging of LSD2052 *spe-9(hc88)*; COL-
952 19::FRET at 25°C. See Supplementary Table 8 for statistical details and raw data.
953 (J) Long-lived LSD2053 *glp-1(e2141)*; COL-19::FRET showed lower FRET ratio
954 compared to WT (LSD2052 *spe-9(hc88)*; COL-19::FRET) at day 8 of adulthood at 25°C.
955 See Supplementary Table 6 for statistical details and raw data.

956 (K-L) Type IV collagen EMB-9 is shown as a representative of the pattern III collagen.
957 (K) Representative images of photo-switched areas of NK860 EMB-9::Dendra. Scale bar
958 = 10 μ m.
959 (L) Quantification of EMB-9::Dendra showed that newly synthesized EMB-9 is laid on top
960 of the old matrix-incorporated EMB-9, which was not turnover. Each dot represents 1
961 animal (n=14). See Supplementary Table 8 for statistical details and raw data.
962
963
964

966 **Supplementary Figure 3. Collagen levels in the ECM during aging and longevity**

967 (A) Time course of LSD1107 *Pcol-120*::NeonGreen animals fed with *daf-2* RNAi or the
968 empty RNAi vector control L4440 bacteria. Scale bar = 50 μ m.

969 (B) Quantification and model of the LSD1107 *Pcol-120*::NeonGreen time course. Three
970 rounds, each n=20, were quantified using a visual grading scale system with values from
971 0 - 3 in 0.5 steps. Error bars represent SDs. For details and data, see Supplementary
972 Table 4.

973 (C) Images of LSD2043 COL-120::GFP animals fed with *daf-2* RNAi or the empty RNAi
974 vector control L4440 bacteria during aging, taken on day 1, day 5, and day 8 of adulthood.
975 Scale bar = 25 μ m

976 (D) Quantification of LSD2043 COL-120::GFP green fluorescence intensity levels shown
977 as a composite of 3 independent biological trials of each about 10 *C. elegans* per
978 condition and day. For details and data, see Supplementary Table 4. Below is the model
979 of COL-120 levels in ECM during aging and upon longevity.

980 (E, G, I) Images of LSD2022 ROL-6::GFP, LSD2063 LON-3::GFP, and LSD2064 COL-
981 19::GFP animals fed with *daf-2* RNAi or the empty RNAi vector control L4440 bacteria
982 during aging, taken on day 1 and day 8 of adulthood. Scale bar = 25 μ m.

983 (F, H, J) Green fluorescence intensity quantification of two separate experiments, each
984 three rounds of *daf-2* or L4440 RNAi experiments on translational cuticular collagen
985 reporter strains. The green fluorescence intensities (excluding autofluorescence) of
986 images of either 3 independent trials of about 10 animals (LON-3, COL-19) or 1 trial of 10
987 (ROL-6) animals were quantified (see Materials and Methods for details). The data are

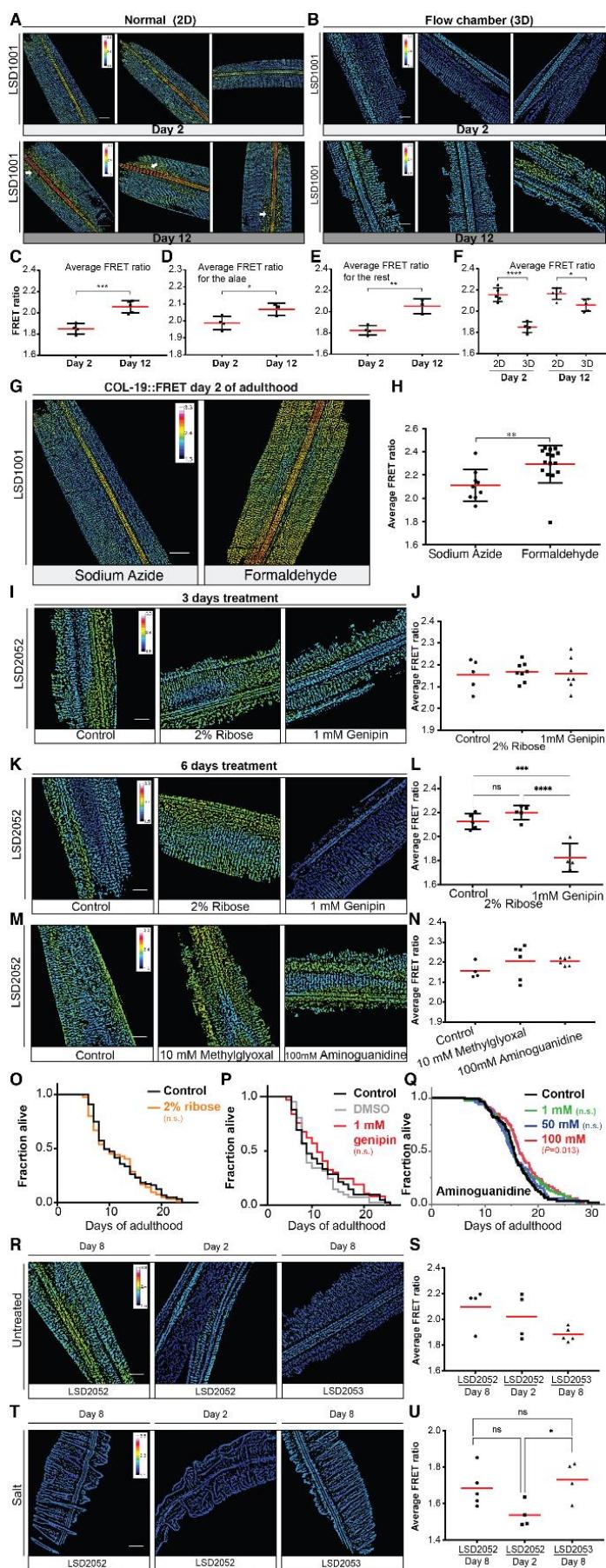
988 represented as mean and SD. * indicates P -value ≤ 0.05 determined by using a two-way

989 ANOVA. For details and data, see Supplementary Table 4.

990 (K- L) An orthologue of mammalian Type IV collagen EMB-9 increases with age

991 independent of slowing aging upon reduced Insulin/IGF-1 signaling. (K) Representative

992 images of EMB::mCherry animals treated from eggs with empty vector (L4440) or *daf-*


993 2(RNAi) and scored at day 1 and day 8 of adulthood at 20°C. Scale bar = 50 μ m. (L)

994 Quantification of EMB-9::mCherry fluorescent intensity. Each dot represents an animal. 3

995 independent biological trials. P -value determined with One-way ANOVA. For raw data

996 and statistics, see Supplementary Table 4.

997

999 **Supplementary Figure 4. Collagen FRET-reporter implicates tissue tension and**
1000 **crosslinking associated with aging**

1001 (A-F) Comparison of FRET ratio images of transgenic LSD1001 COL-19::FRET animals
1002 imaged using normal (2D) or our developed flow chambers (3D) on day 2 and day 12 of
1003 adulthood and corresponding quantification.

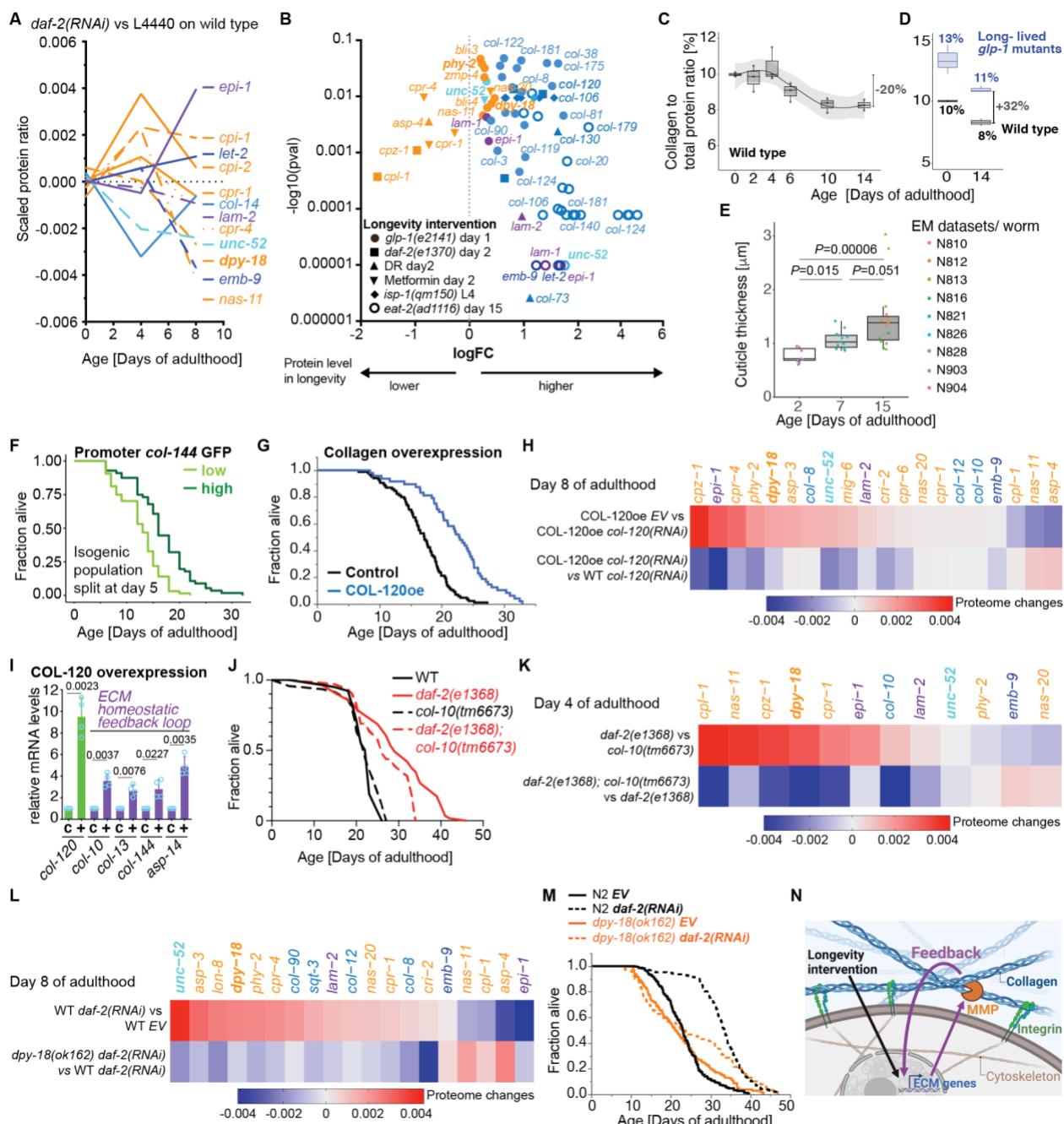
1004 (G) Representative FRET ratio images of transgenic LSD1001 COL-19::FRET animals
1005 anesthetized with 25 mM sodium azide or fixed with 4% formaldehyde. Scale bar = 20
1006 μm , FRET calibration bar between 1.5 - 3.3,

1007 (H) Quantitative analysis of FRET ratios from the whole cuticle revealed significantly
1008 higher FRET ratios for LSD1001 COL-19::FRET *C. elegans* fixed with 4% formaldehyde
1009 for 24 hours compared to LSD1001 COL::FRET *C. elegans* than were anesthetized with
1010 25 mM sodium azide.

1011 (I-N) Representative FRET ratio images and quantification of transgenic LSD2052 COL-
1012 19::FRET animals treated from day 1 of adulthood with different chemicals and scored at
1013 day 4 (I, J) or day 7 of adulthood (K-N).

1014 (O-Q) The lifespans of *C. elegans* were treated with chemicals starting during adulthood
1015 (Raw data and statistical details in Supplementary Table 7).

1016 (R-U) Lowering inner pressure by osmotic conditions. On day 2 or 8 of adulthood, either
1017 normal-lived (LSD2052) or longevity-promoting (LSD2053) transgenic COL-19::FRET
1018 animals were picked and placed directly either into a physiological buffer or high sodium
1019 chloride (1g NaCl/ 10mL M9 buffer) containing flow chambers and then imaged.


1020

1021 (C-F, H, J, L, N, S, U) Error bars correspond to the standard deviation of the mean, * $P <$
1022 0.05, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$. Statistically significant differences
1023 between mean values were calculated using an unpaired *t*-test. For raw data, details, and
1024 statistics, see Supplementary Table 6.

1025

1026

1027

1028

1029 **Figure 3. Feedback loop of ECM homeostasis implicated in longevity**

1030 (A) Time course of counterbalancing age-related changes in matrisome protein levels by
 1031 *daf-2(RNAi)*-longevity intervention. Details in Supplementary Table 9.

1032 (B) Longevity interventions increased the normally age-related decrease of collagen
1033 levels and dampened the normally age-related elevation of extracellular proteases.
1034 Details in Supplementary Table 9.

1035 (C) The collagen over total protein content is displayed as a time course for a *spe-9* quasi
1036 *wild type* population.

1037 (D) The collagen over total protein ratio is shown for *spe-9* and *glp-1* mutant populations
1038 at days 0 and 14 of adulthood.

1039 (E) Cuticle thickness increases with age based on electron microscopy (EM) images
1040 (Source: wormimage.org). Individual *C. elegans* are represented as dots (EM dataset).
1041 Triangles are the outliers. *P* values are One-way ANOVA post hoc Tukey. See
1042 Supplementary Figure 5 and Supplementary Table 9 for details.

1043 (F) Isogenic population of *col-144* promoter GFP (LSD2002 *spe-9(hc88)*; *Pcol-144::GFP*)
1044 *C. elegans* were split at day 5 of adulthood into high and low expressing GFP individuals.

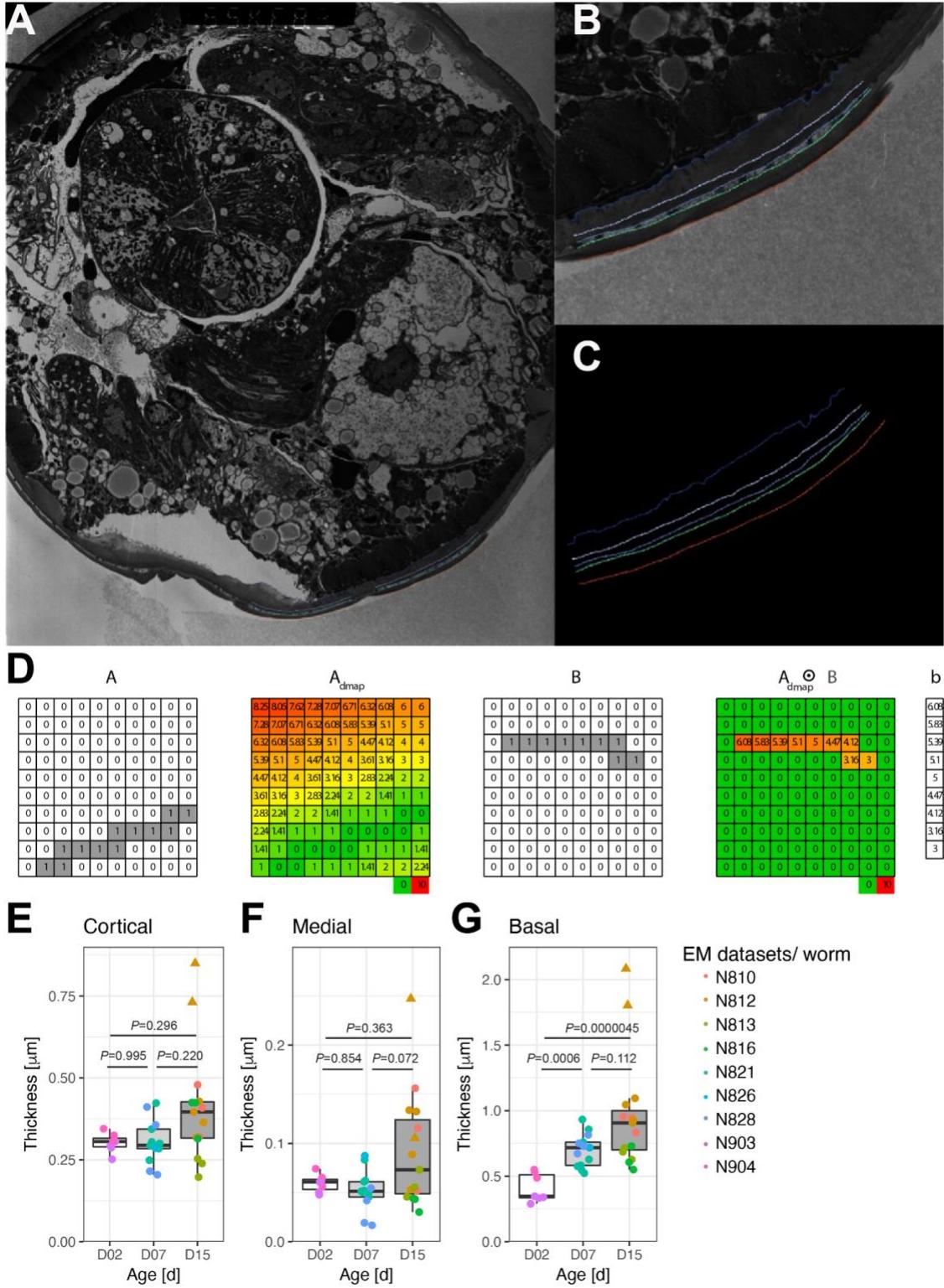
1045 (G) Collagen COL-120oe (LSD2017) overexpression increased lifespan compared to
1046 control (wild type with *rol-6(su1006)* co-injection marker LSD2013) on UV-inactivated
1047 bacteria.

1048 (H) Differences in protein abundance ratios are displayed for COL-120oe and wild-type
1049 populations undergoing control and *col-120* RNAi treatment.

1050 (I) Overexpression of COL-120oe (LSD2017) increased mRNA levels of other collagens
1051 and ECM proteases by qRT-PCR at day 1 of adulthood. N=4 independent biological
1052 samples in duplicates (each over 200 L4 worms). Mean \pm SEM. *P* values relative to WT
1053 were determined by a one-sample t-test, two-tailed, with a hypothetical mean of 1.

1054 (J) Collagen *col-10(tm6673)* mutation partially suppressed *daf-2(e1368)* reduced
1055 insulin/IGF-1 receptor signaling longevity at 20°C.

1056 (K) Changes in protein abundance ratios are show for *daf-2(e1368)*, *col-10(tm6673)*, and
1057 *daf-2(e1368); col-10(tm6673)* animals.


1058 (L) The effect of *daf-2* RNAi on changes in protein abundance ratios is shown in wild type
1059 and *dpy-18(ok162)* populations.

1060 (M) Prolyl 4-hydroxylase *spy-18(ok162)* mutation partially suppressed reduced
1061 insulin/IGF-1 receptor signaling longevity upon adulthood-specific knockdown of *daf-2* at
1062 20°C.

1063 (N) Model of the extracellular matrix homeostasis feedback loop.

1064 (F, G, J, M) For details, raw data, and statistics, see Supplementary Table 7.

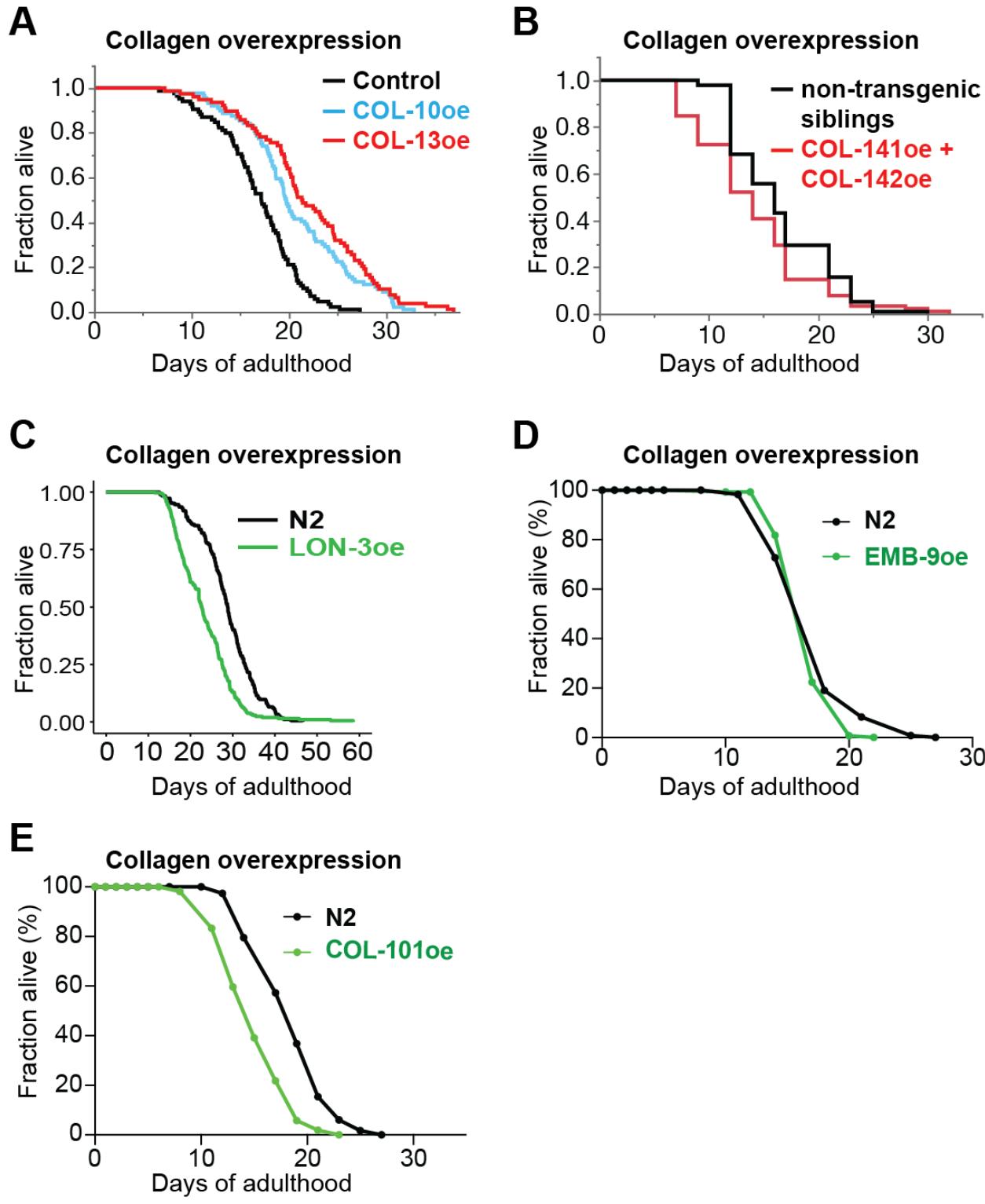
1065

1067

1087 Supplementary Figure 5. Cuticle thickness increases during aging

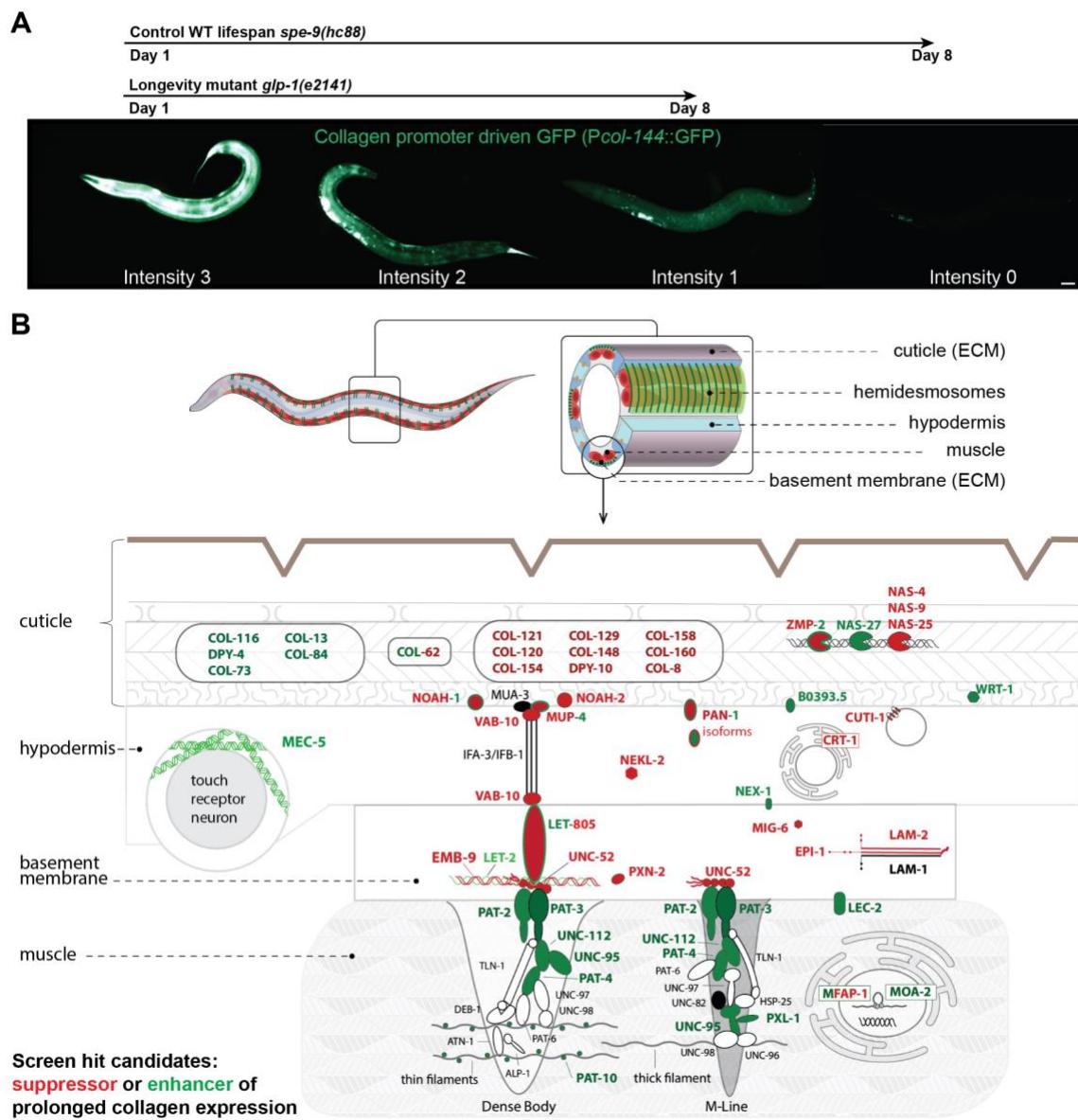
1068 (A) Transverse transmission electron micrograph of a 15 days old adult (Source:
1069 wormimage.org). Colored curves were drawn manually in regions included in the analysis
1070 of cuticle thickness.

1071 (B) Zoom into a region used for evaluation.


1072 (C) Colored curves correspond to binary masks exported to Matlab for evaluation.

1073 (D) Workflow to measure the thickness of annotated cuticle layers. . A = Binary mask of
1074 first layer border. A_{dmap} = Distance transform of A. B = Binary mask second layer border.

1075 $A_{dmap} \odot B$ = Elementwise multiplication of A_{dmap} and B, non-zero values correspond to the
1076 shortest distances to A for every pixel in B.


1077 (E-G) Quantification of the thickness of (E) cortical (F) medial and G) basal cuticle. Dots
1078 correspond to individual animals. Triangles are the outliers. Boxplot shows the median
1079 (black line), 25th/75th percentiles (hinges), and 1.5*IQR (whiskers). *P*-values are One-
1080 way ANOVA post hoc Tukey without including outliers. See Figure 3E for total cuticle
1081 thickness and Supplementary Table 9 for details.

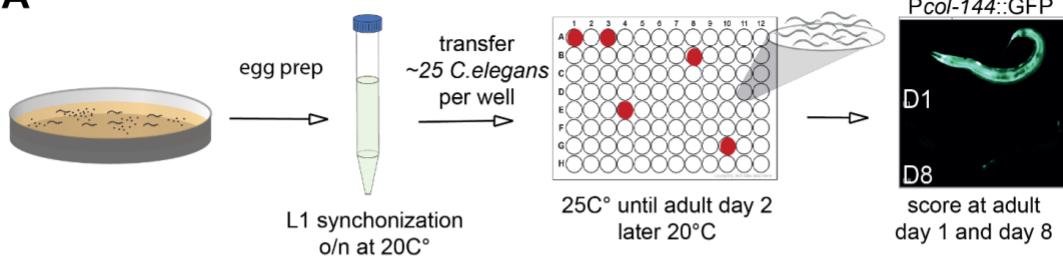
1082

1084 **Supplementary Figure 6. Only key collagen overexpression is sufficient to increase**
1085 **the lifespan**

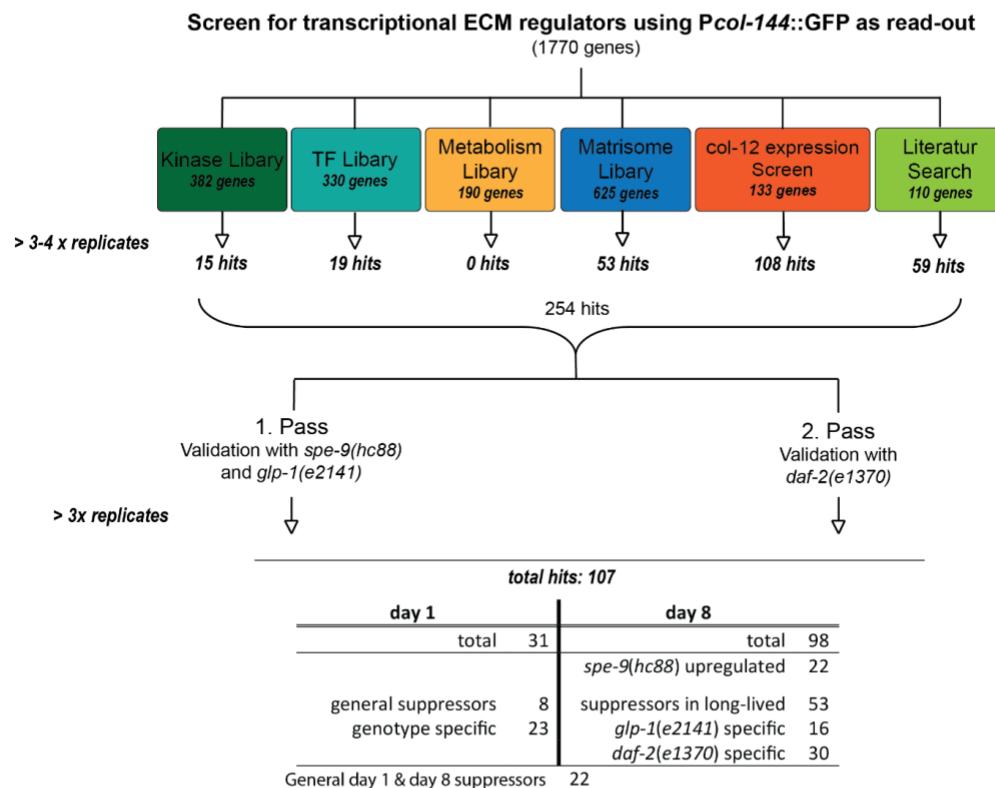
1086 (A) Cuticular collagens COL-10 (LSD2018) or COL-13 (LSD2014) overexpression (oe)
1087 increased lifespan compared to control (wild type with *rol-6(su1006)* co-injection marker
1088 LSD2013) on UV-inactivated bacteria.
1089 (B) Cuticular collagens COL-141+COL-142 (CS637) overexpression (oe) did not extend
1090 lifespan compared to non-transgenic sibling control.
1091 (C) Cuticular collagen LON-3 (*kuls55*) overexpression (oe; 8x outcrossed to N2) did not
1092 extend lifespan compared to wild type (N2).
1093 (D) Basement membrane Type IV collagen EMB-9 (NK364) overexpression (oe) did not
1094 increase lifespan compared to wild type (N2).
1095 (E) Cuticular collagen COL-101 (*dmals40*) overexpression (oe) shortened lifespan
1096 compared to wild type (N2).
1097 (A-E) For details, raw data, and statistics, see Supplementary Table 7.
1098

1099

1100 **Figure 4. RNAi screen for transcriptional ECM regulators at old age**


1101 (A) Scoring scheme for the *Pcol-144::GFP* *C. elegans* RNAi screen. Above indicated with
1102 arrows are the usual decline of the fluorescence of the wild-type background *spe-9(hc88)*
1103 and long-lived mutant backgrounds *glp-1(e2141)*. Scale bar = 50 μ m.

1104 (B) The hits of the screen are shown in the predicted layers from *C. elegans* cuticle to
1105 body wall muscle (not drawn to scale). In green, RNAi hits led to higher *Pcol-144::GFP* at


1106 day 8 of adulthood. In red, RNAi hits that suppressed normally higher *Pcol-144::GFP* of
1107 long-lived mutants at day 8 of adulthood. The proteins in black were also tested but did
1108 not show a significant up- or down-regulation, while the proteins in white were not included
1109 in the screen. For details, see Supplementary Table 10.

1110

A

B

C

Category	Number	Percentage	Category	Number	Percentage
Matrisome	49	45.8%	Unknown	3	2.8%
Signalling	12	11.2%	Development	2	1.9%
Autophagy	9	8.4%	Muscle function	2	1.9%
Adhesome	6	5.6%	Nucleic acid binding	2	1.9%
Metabolism	6	5.6%	Chaperone	1	0.9%
Transcription factor	6	5.6%	Cytoskeleton	1	0.9%
Proteolysis	3	2.8%	Neuronal function	1	0.9%
Stress response	3	2.8%	Protein modification	1	0.9%

1111

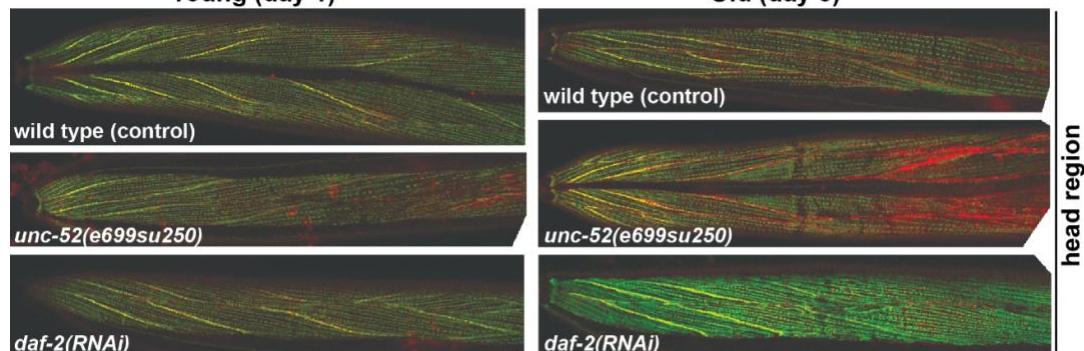
1112 Supplementary Figure 7. RNAi screen set up and results

1113 (A) Schematic workflow of the screen.

1114 (B) Schematic overview of the targeted RNAi screen. 1770 RNAi clones were screened
1115 in a first pass using transgenic *C. elegans* strains expressing the *Pcol-144::GFP* reporter
1116 in either a *spe-9(hc88)* or a long-lived *glp-1(e2141)* background. These hits were re-
1117 validated in *spe-9(hc88)* and *glp-1(e2141)* and additionally in *daf-2(e1370)* animals
1118 identifying 107 high confident hits.

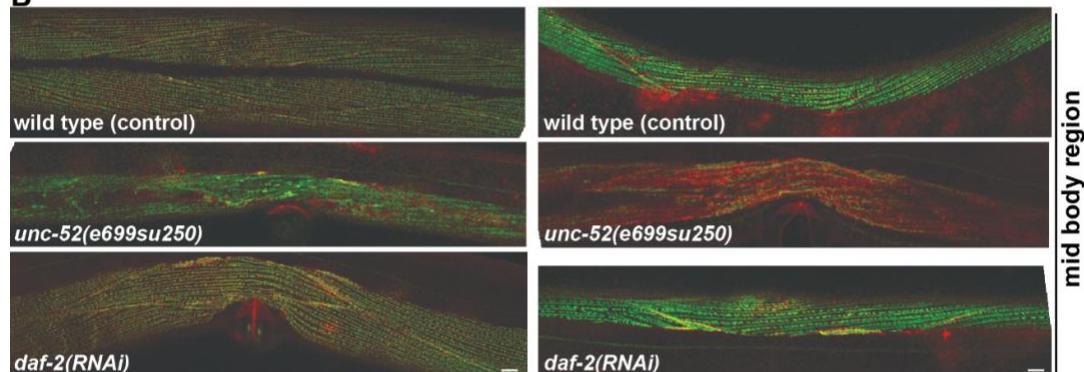
1119 (C) Table of confident hits of RNAi screen for transcriptional ECM regulators sorted by
1120 gene ontology categories, number of hits per category, and the percentage of each
1121 category being represented in relation to all screen hits. For the categorization, the
1122 WormCat online tool was used.

1123 For details, see Supplementary Table 10.

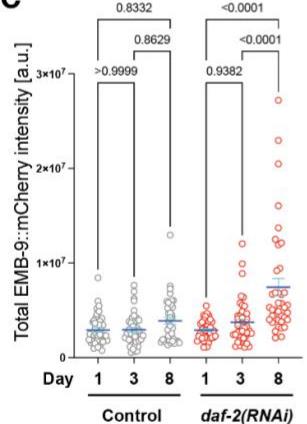

1124

A

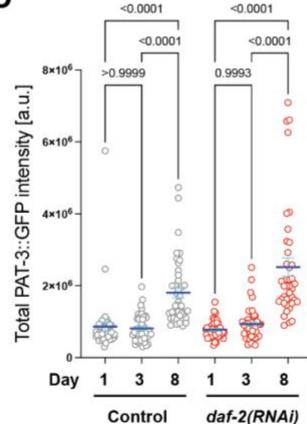
Collagen EMB-9::mCherry; Integrin PAT-3::GFP


Young (day 1)

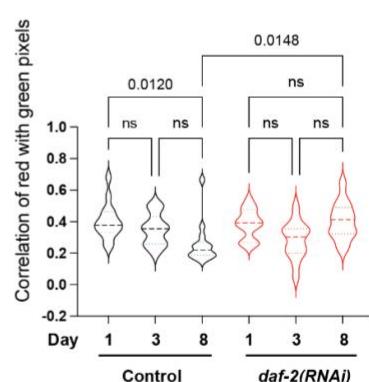
Old (day 8)

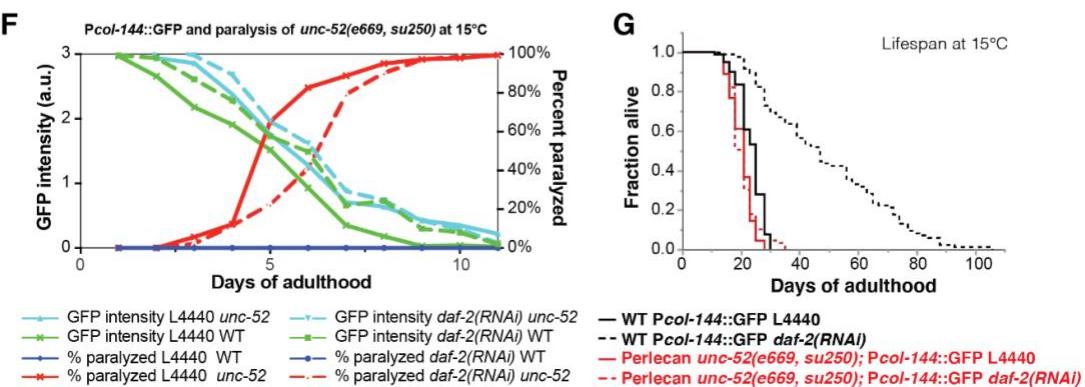

head region

B



mid body region


C

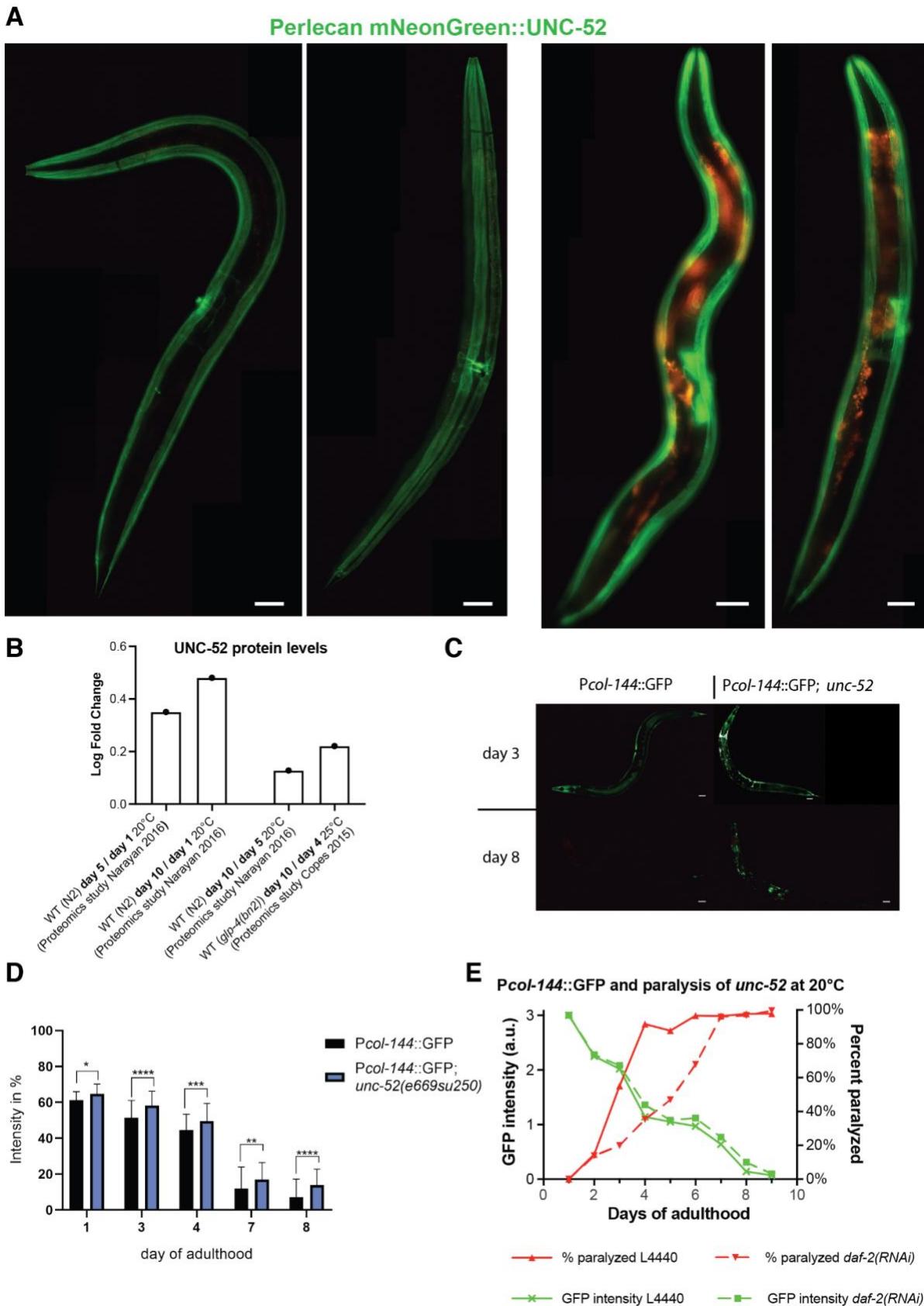

D

E

F

1126 **Figure 5. Disassociation of co-localization of collagen type IV from integrin β**
1127 **receptor**

1128 (A, B) Confocal image overlays of collagen type IV (EMB-9::mCherry) in red and integrin
1129 β receptor (PAT-3::GFP) in green of the head region (A) and midbody region (B) at day
1130 1 and day 8 of adulthood. The yellow color indicates colocalization. Anterior to the left,
1131 ventral side down. Scale bar = 10 μ m.


1132 (C, D) Quantification of total EMB-9::mCherry (C) and PAT-3::GFP (D) intensity levels.
1133 One-way ANOVA.

1134 (E) Quantification of colocalization by correlation of per-pixel red (EMB-9::mCherry) and
1135 green (PAT-3::GFP) intensities of the midbody region (B), which declined during aging in
1136 wild type but was maintained upon *daf-2(RNAi)* longevity intervention. One-way ANOVA.
1137 (A-E) For individual pictures, raw data, and statistical analysis, see Supplementary Table
1138 11.

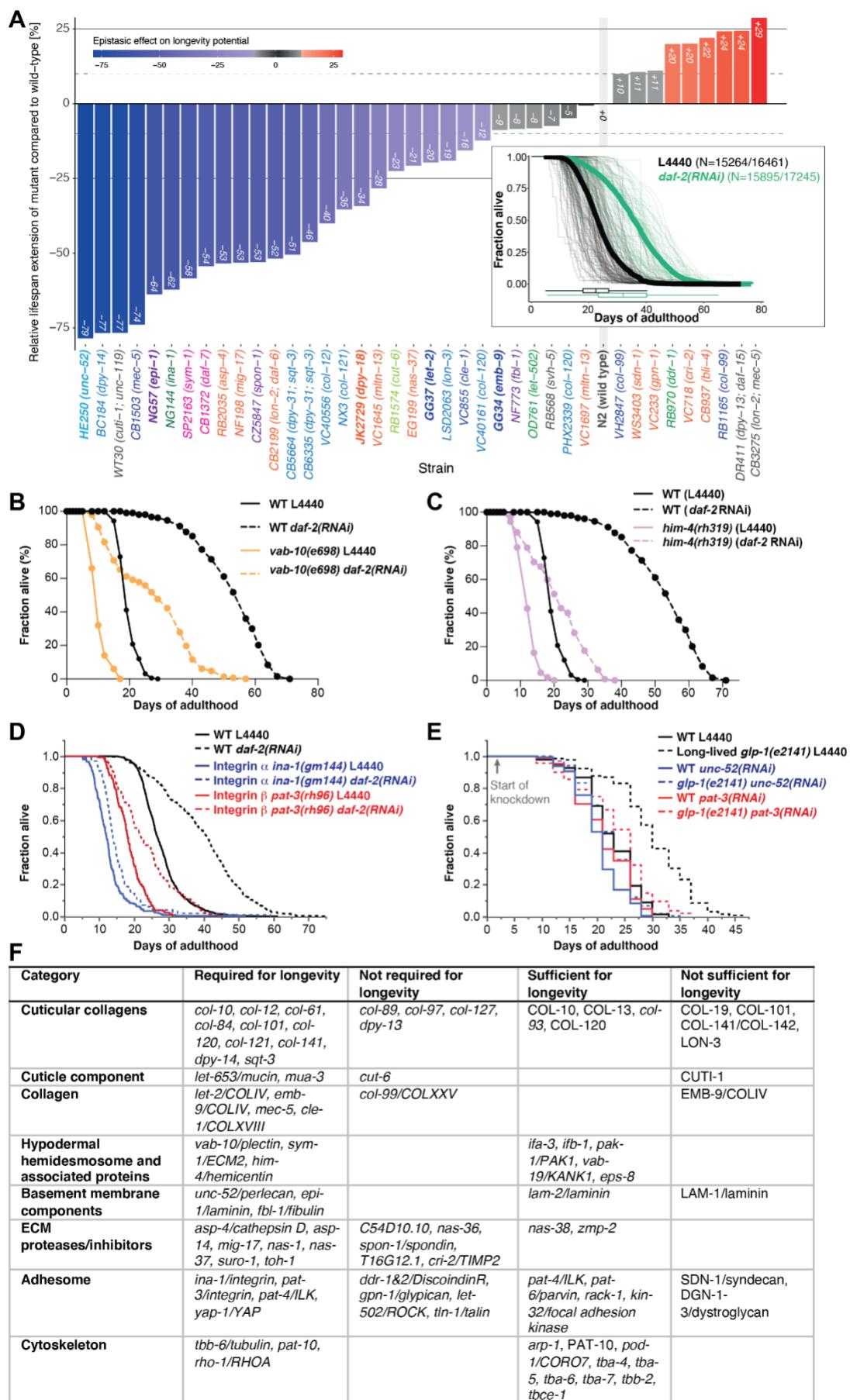
1139 (F) Longevity intervention *daf-2(RNAi)* prolonged collagen expression (P_{col-144}::GFP) of
1140 wild type (green line) during aging but not in a perlecan *unc-52(e669, su250)* mutant
1141 background (aquamarine line) at permissive temperature 15°C. The age-dependent *unc-*
1142 *52(e669, su250)* mutant paralysis phenotype (red line) was delayed by *daf-2(RNAi)*
1143 (dashed red line) at 15°C. For details, see Supplementary Table 12.

1144 (G) Continuing with these same animals, *unc-52(e669, su250)* mutants completely
1145 suppressed *daf-2(RNAi)* longevity at 15°C. For details, see Supplementary Table 7.

1146

1148 **Supplementary Figure 8. Perlecan levels during aging and functional**
1149 **consequences of loss of perlecan integrity**

1150 (A) Fluorescent microscopy images of CRISPR inserted NeonGreen tagging perlecan
1151 (NK2583 *unc-52(qy80* [NeonGreen::UNC-52]) at days 1 and 8 of adulthood. Scale bar =
1152 50 μ m.


1153 (B) Relative increase of UNC-52 perlecan levels during aging quantified from previous
1154 proteomics studies (See Supplementary Table 4 for details).

1155 (C) Fluorescent images of *Pcol-144::GFP*; *unc-52(e669su250)* mutants at day 3 and 8 of
1156 adulthood at 20°C compared with *Pcol-144::GFP* in wild-type background. Scale bar = 50
1157 μ m.

1158 (D) Quantification of *Pcol-144::GFP* fluorescence in *unc-52(e669su250)* temperature-
1159 sensitive mutants at semi-permissive 20°C during aging. Three rounds, each n=20. See
1160 Supplementary Table 12 for statistics and details.

1161 (E) Longevity intervention *daf-2(RNAi)* postponed the perlecan *unc-52(e669, su250)*
1162 mutant paralysis phenotype (dashed red line) but failed to prolong collagen expression
1163 (*Pcol-144::GFP*, green dashed line) during aging at semi-permissive temperature 20°C.
1164 For details, see Supplementary Table 12.

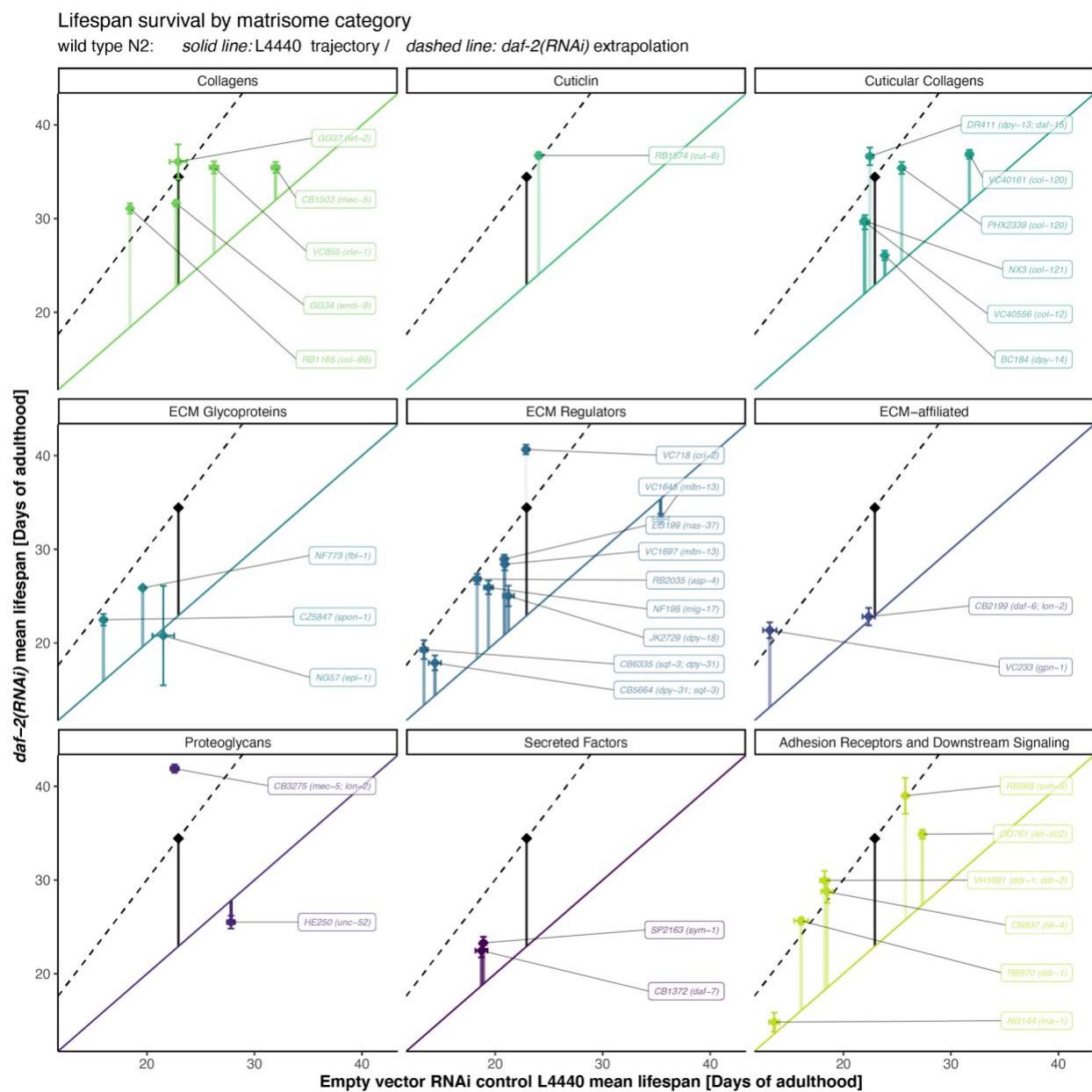
1165

1167 **Figure 6. Functional matrisome is of key importance for *C. elegans* longevity**

1168 (A) Epistatic effect of matrisome mutations on rIIS-mediated longevity potential. Bars
1169 represent the relative differences in mean lifespan extension measured in matrisome
1170 mutants compared to wild-type animals within the same batch.

1171 (B) Mutation in *vab-10*/plectin/dystonin shortened wild type (WT) lifespan and blocked
1172 longevity upon reduced insulin/IGF-1 receptor signaling at 20°C.

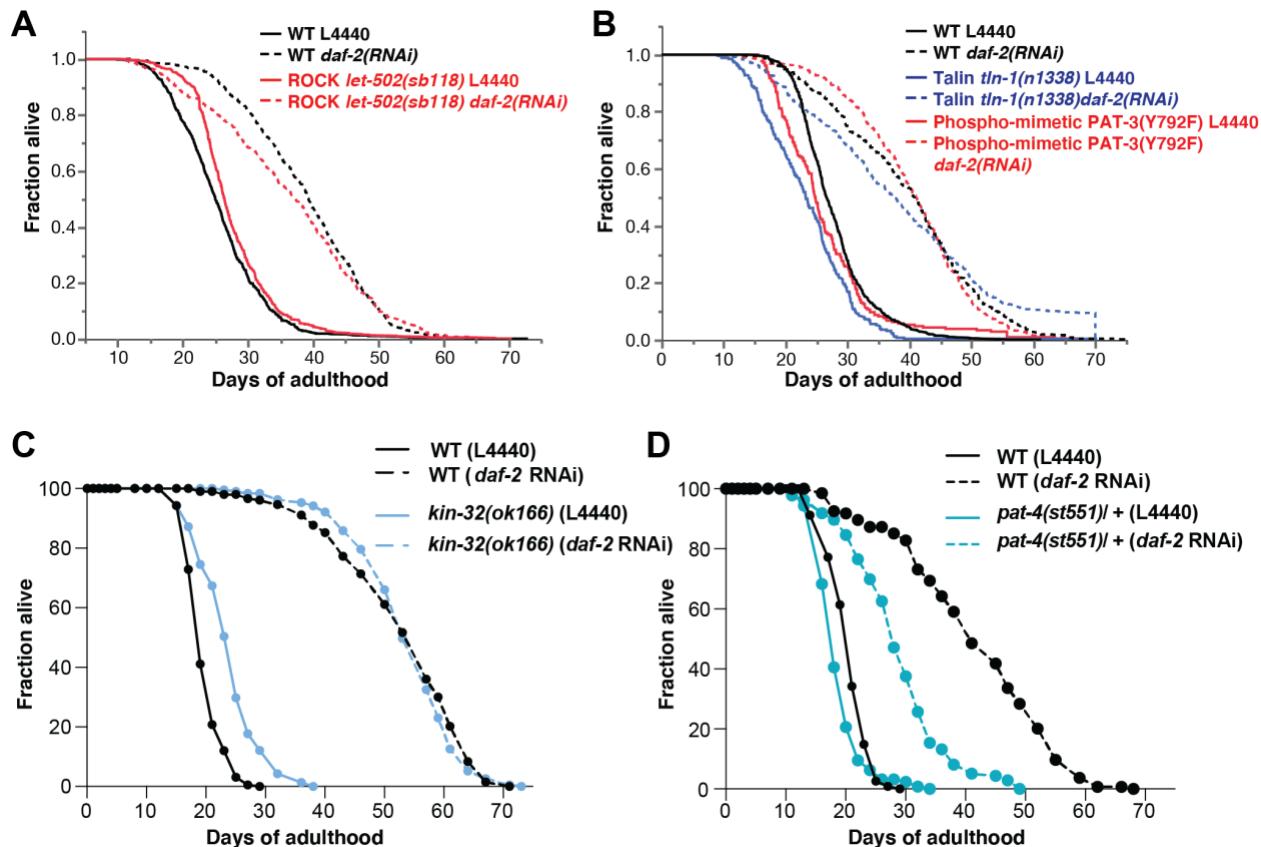
1173 (C) Mutation in *him-4*/hemicentin shortened wild type (WT) lifespan and blocked longevity
1174 upon reduced insulin/IGF-1 receptor signaling at 20°C.


1175 (D) Mutations in integrin α and β suppressed *daf-2*(RNAi) longevity at 20°C.

1176 (E) Knocking down perlecan/*unc-52* or integrin β /*pat-3* starting at day 2 of adulthood
1177 suppressed germ cell-less (*glp-1*(e2141)) mediated longevity.

1178 (F) Summary of all matrisome and adhesome genes implicated in longevity. RNAi or
1179 genetic mutants are in italics, overexpression is in capital letters.

1180 (A-F) For details, statistics, and additional trials, see Supplementary Table 7.


1181

1189 labeled in its corresponding facet and color while the wild type is shown in black. All

1190 details, raw data, and statistics are in Supplementary Table 7.

1191

1192

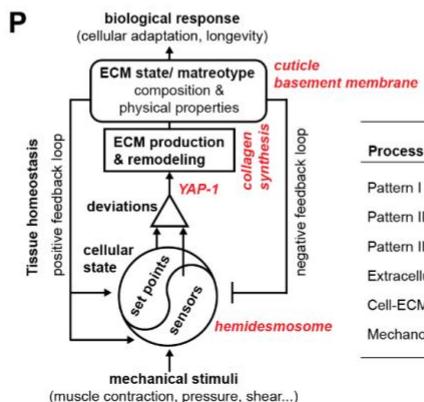
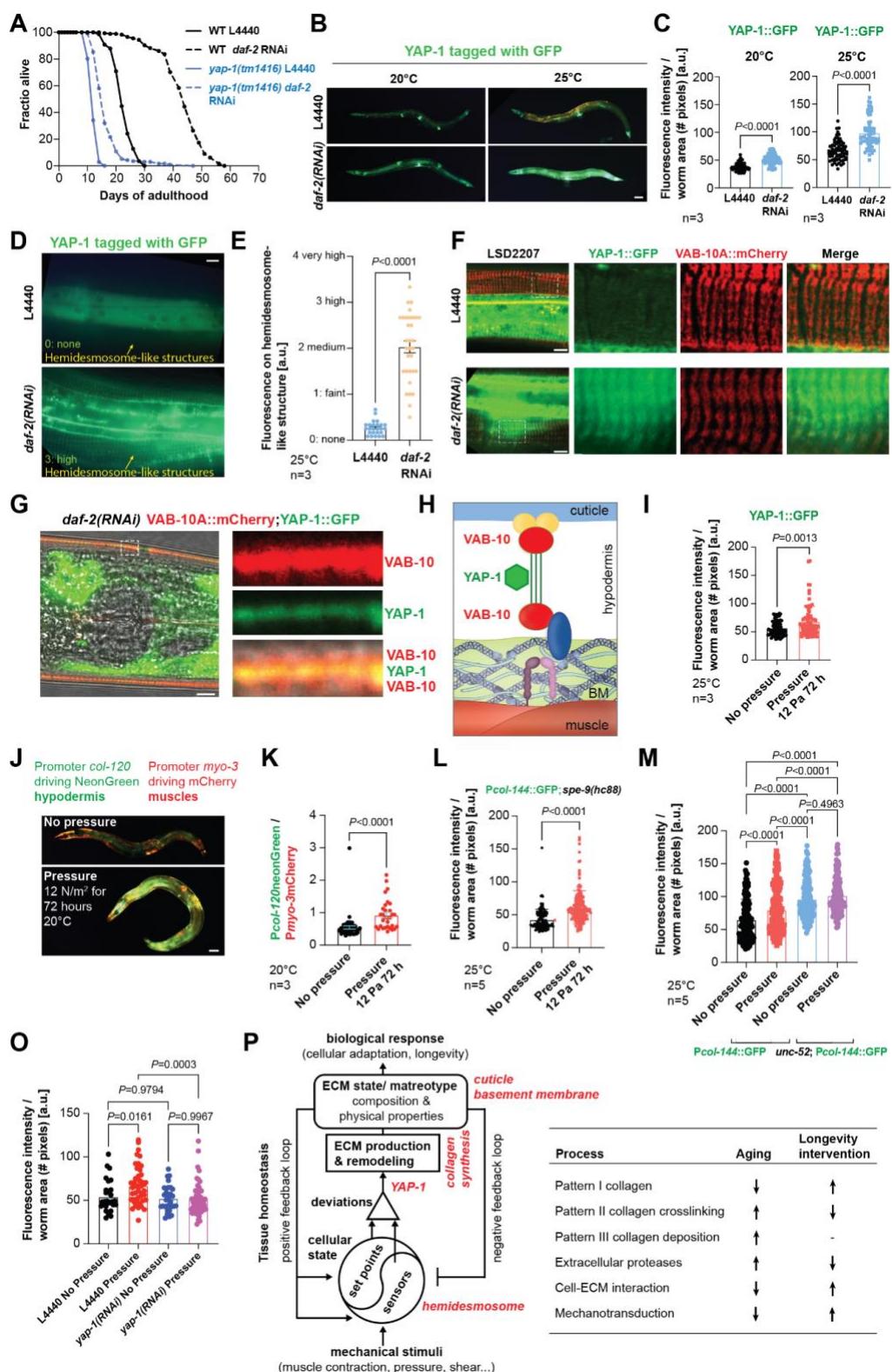
1193 **Supplementary Figure 10. Mechanotransductive signaling genes and their**
1194 **functional role in longevity**

1195 (A) The integrin downstream ROCK kinase was not required for longevity at 20°C.

1196 (B) Both the phospho-mimetic PAT-3(Y792F) that activates talin signaling and *tln-*
1197 *1*(n1338) mutants were not required for longevity at 20°C.

1198 (C) Mutation in focal adhesion kinase *kin-32*(ok166) increased lifespan compared to wild
1199 type but did not suppress *daf-2*(RNAi) mediated longevity at 20°C.

1200 (D) Heterozygous lethal mutation in *pat-4(st551)/+* shortened WT lifespan and longevity



1201 upon reduced Insulin/IGF-1 receptor signaling at 20°C.

1202 (A-D) For raw data and statistical details, see Supplementary Table 7.

1203

1204

1205

Process	Aging	Longevity intervention
Pattern I collagen	↓	↑
Pattern II collagen crosslinking	↑	↓
Pattern III collagen deposition	↑	-
Extracellular proteases	↑	↓
Cell-ECM interaction	↓	↑
Mechanotransduction	↓	↑

1206

1207 **Figure 7. YAP-1 is required for longevity and pressure-induced collagen expression**
1208 **during aging**

1209 (A) Loss-of-function mutants of *yap-1(tm1416)* abolish longevity upon reduced
1210 Insulin/IGF-1 signaling. For raw data, additional trials, and statistics, see Supplementary
1211 Table 7.

1212 (B-C) YAP-1::GFP expression was increased upon reducing insulin signaling. (B)
1213 Representative images show increased expression of *ihls35* YAP-1::GFP in animals fed
1214 with *daf-2* RNAi as compared to L4440 control at 20°C and 25°C. Scale bar = 50 μ m. The
1215 graph shows the quantified data for the YAP-1::GFP expression. 3 independent biological
1216 trials. Welch's *t*-test was used for significance analysis. For raw data and statistical
1217 details, see Supplementary Table 13.

1218 (D-E) YAP-1::GFP expression localizes at hemidesmosome-containing structures was
1219 increased upon reducing insulin signaling at 25°C. (D) Representative images show
1220 increased expression of *ihls35* YAP-1::GFP in animals fed with *daf-2* RNAi as compared
1221 to L4440 control at 25°C. Scale bar = 10 μ m. (E) The graph shows the distribution of the
1222 categories of hemidesmosome-containing structures. 3 independent biological trials.
1223 Welch's *t*-test was used for significance analysis. For raw data and statistical details, see
1224 Supplementary Table 13.

1225 (F-G) Upon *daf-2(RNAi)* at 25°C, more YAP-1 was colocalized with VAB-10. The boxed
1226 areas are enlarged on the right showing the *ihls35* YAP-1::GFP (green channel), *mc100*
1227 VAB-10A::mCherry (red channel), and merge of the confocal images using the transgenic
1228 strain LSD2207. Scale bar = 10 μ m. For additional images and individuals, see
1229 Supplementary Table 13.

1230 (H) Schematic of YAP-1 localizing at the hemidesmosome-containing structure between
1231 the apical and basal VAB-10 based on confocal images shown in (G). Not drawn to scale.

1232 (I) YAP-1::GFP expression was increased upon constant pressure for three days at 25°C.
1233 3 independent biological trials. Welch's *t*-test was used for significance analysis. For raw
1234 data and statistical details, see Supplementary Table 13.

1235 (J-K) Pressure induces collagen expression in the hypodermis. (J) Representative images
1236 of LSD1126 *Pcol-120::mNeonGreen; Pmyo-3::mCherry* transgenic *C. elegans* either kept
1237 under 12 Pa pressure for 72 h starting at L4 at 20°C or not. Scale bar = 50 μ m (K)
1238 Quantification of 3 independent biological trials. A *t*-test was used for significance
1239 analysis. For raw data and statistical details, see Supplementary Table 14.

1240 (L) Promoter-driven *col-144::GFP* expression in a temperature-sterile background
1241 (LSD2002) was increased upon constant 12 Pa pressure for three days at 25°C. 5
1242 independent biological trials. Welch's *t*-test was used for significance analysis. For raw
1243 data, additional trials also at 20°C, and statistical details, see Supplementary Table 14.

1244 (M) Mutations in *unc-52(e669,su250)* blunted promoter-driven *col-144::GFP* expression
1245 upon constant 12 Pa pressure for three days at 25°C. 5 independent biological trials. One-
1246 way ANOVA was used for significance analysis. For data and statistical details, see
1247 Supplementary Table 14.

1248 (O) Knockdown of *yap-1* abolished the promoter-driven *col-144::GFP* expression upon
1249 constant 12 Pa pressure for three days at 25°C. 1 independent biological trial is shown.
1250 One-way ANOVA was used for significance analysis. For data, additional trials, and
1251 statistical details, see Supplementary Table 14.

1252 (P) Proposed biomechanical model of ECM homeostasis and longevity. The right model
1253 is adapted for our *C. elegans* finding from mechanobiological regulation of arterial walls,
1254 which include smooth muscles, endothelial cells, fibroblasts, and ECM (by Humphrey and

1255 Schwartz 2021). The left model depicts the ECM homeostasis-related process that

1256 declines during aging but is counteracted by longevity interventions.

1257

1258 **Materials and Methods**

1259 ***C. elegans* strains**

1260 *Caenorhabditis elegans* strains were grown on NGM plates with OP50 *Escherichia coli*
1261 bacteria at 20°C as described in (Stiernagle, 2006). The Bristol N2 was used as a wild-
1262 type *C. elegans* strain (Brenner, 1974). Most strains were obtained from the
1263 *Caenorhabditis* Genetics Center [CGC]: BC184 *dpy-14(e188) unc-13(e51) bli-4(s90)/unc-*
1264 *15(e73)* I, BC10074 *dpy-5(e907)* I; *sEx10074*[*Pemb-9::GFP + pCeh361*], BC11902 *dpy-*
1265 *5(e907)* I; *sEx11902* [*Pcol-129::GFP + pCeh361*], BC12229 *dpy-5(e907)* I; *sEx10002*
1266 [*Pcutl-23::GFP + pCeh361*], BC12275 *dpy-5(e907)* I; *sEx12275* [*Pcut-6::GFP::GFP +*
1267 *pCeh361*], BC12533 *dpy-5(e907)* I; *sEx12533* [*Pcol-89::GFP + pCeh361*], BC12900 *dpy-*
1268 *5(e907)* I; *sIs11600* [*Pmec-5::GFP+ pCeh361*], BC13149 *dpy-5(e907)* I; *sEx13149* [*Phim-*
1269 *4::GFP + pCeh361*], BC13560 *dpy-5(e907)* I; *sIs13559* [*Pcol-59::GFP + pCeh361*],
1270 BC13623 *dpy-5(e907)* I; *sEx13623* [*Pcri-2::GFP + pCeh361*], BC13861 *dpy-5(e907)* I;
1271 *sIs13252* [*Plet-2::GFP + pCeh361*], BC14295 *dpy-5(e907)* I; *sEx14295* [*Pgpn-1::GFP+*
1272 *pCeh361*], CB937 *bli-4(e937)* I, OD761 *let-502(sb118)* I, MT3100 *tln-1(n1338)* I, CB698
1273 *vab-10(e698)* I, VC117 *vab-10(gk45)* I, GOU2043 *vab-10a(cas602[vab-10a::gfp])* I,
1274 RB776 *kin-32(ok166)* I, VC855 *cle-1(gk364)* I, CZ5847 *spon-1(ju402)* II; *juEx1111*,
1275 HE250 *unc-52(e669su250)* II, BT24 *rhIs23* [*GFP::HIM-4*] III, CB1372 *daf-7(e1372)* III,
1276 GG37 *emb-9(g34)* III, JK2729 *dpy-18(ok162)* III, RB1574 *cut-6(ok1919)* III, RW1522 *pat-*
1277 *2(st538) unc-32(e189)* III; *stEx10* [*pat-2(+); rol-6(su1006)*], RW3550 *pat-4(st551)/unc-*
1278 *45(e286)* III, NJ268 *pat-3(rh96)* III, NG144 *ina-1(gm144)* III, HE250 *unc-52(e669, su250)*
1279 III, CH1445 *unc-119(ed3)* III; *cgEx198* [*BLI-1::GFP + unc-119(+)*], HS428 *dpy-22(os26)*
1280 X; *osEx89* [*COL-10::GFP + dpy-22(+)*], MH2051 *kuls55* [*LON-3::GFP + unc-119(+)*];

1281 pYSL3G3, NG2517 *him-5(e1490)* V; [INA-1::GFP + *rol-6(su1006)*], NK248 *unc-119(ed4)*
1282 III; *qyls10* [LAM-1::GFP + *unc-119(+)*] IV, NK2583 *unc-52(qy80* [NeonGreen::UNC-52]),
1283 NK358 *unc-119(ed4)* III; *qyls43* [PAT-3::GFP + INA-1(genomic) + *unc-119(+)*], NK364
1284 *unc-119(ed4)* III; *qyls46* [EMB-9::mCherry + *unc-119(+)*], NK651 *unc-119(ed4)* III;
1285 *qyls108* [LAM-1::Dendra + *unc-119(+)*], NK696 *unc-119(ed4)* III; *qyls127* [LAM-
1286 1::mCherry + *unc-119(+)*], NK860 *unc-119(ed4)* III; *qyls161* [EMB-9::Dendra + *unc-*
1287 *119(+)*], ML2501 *let-805(mc73[let-805::gfp + unc-119(+)] unc-119(ed3)* III, NK2446 *qy41*
1288 [*lam-2::mKate2*] X, NK2479 *qy49[pat-2::2xmNG]* III, RP247 *trls30* [*Phim-4::MB::YFP* +
1289 *Phmr-1b::DsRed2* + *Punc-129nsp::DsRed2*], TP12 *kals12* [*COL-19::GFP*], WS3403
1290 *opls170* [*SDN-1::GFP::unc-54 3'UTR + lin-15(+)*], WT30 *unc-119(ed3)* III; *wtEx30* [*CUTI-*
1291 *1::GFP* + *unc-119(+)*], TJ1060 *spe-9(hc88)* I; *rrf-3(b26)* II, CB4037 *glp-1(e2141)* III,
1292 LD1036 *daf-2(e1370); him-8(e1489)*, DR411 *dpy-13(e184)/daf-15(m81)* IV, NF773 *fbl-*
1293 *1(k201)* IV, NG57 *epi-1(gm57)* IV, NX3 *col-121* IV, RB1165 *col-99(ok1204)* IV, TM8818
1294 *col-101(tm8818)* IV, VC40161 *col-120* IV, CB5664 *dpy-31(e2770)* III; *sqt-3(e2809)* V,
1295 CB6335 *dpy-31(e2919)* III; *sqt-3(e2906)* V, NF198 *mig-17(k174)* V, TM6673 *col-*
1296 *10(tm6673)* V, VC718 *cri-2(gk314)* V, VC40556 *col-12* V, BT12 *him-4(rh319)* X, CB1503
1297 *mec-5(e1503)* X, CB2199 *lon-2(e678); daf-6(e1377)* X, CB3275 *lon-2(e678)* *mec-*
1298 *5(e1504)* X, CH1878 *dgn-2(ok209)* *dgn-3(tm1092)* *dgn-1(cg121)* X; *cgEx308*
1299 [*pJK600/dgn-1(+)* + *pJK602/dng-1p::GFP* + *rol-6(su1066)*], EG199 *nas-37(ox199)* X,
1300 GG37 *let-2(g37)* X, RB970 *ddr-1(ok874)* X, RB2035 *asp-4(ok2693)* X, RB568 *svh-*
1301 *5(ok286)* X, RT3574 *lin-15B&lin-15A(n765)* X; *ihls35* [*YAP-1::GFP::unc-54 3'UTR* + *lin-*
1302 *15(+)*], SP2163 *sym-1(mn601)* X, VC233 *gpn-1(ok377)* X, VC1645 *mltn-13(gk766)* X,
1303 VC1697 *mltn-13(gk807)* X, *yap-1(tm1416)* X.

1304

1305 The strains AH3284 *pat-3(zh105[PAT-3(Y792F)])*, AH3437 *zh117[GFP::TLN-1]*, AH4617
1306 *zh115[PAT-3::GFP] III* (Walser et al., 2017), DMS1020 *dmals40[col-101p::col-101::GFP*
1307 ($40\text{ ng}/\mu\text{l}$); *unc-54p::mCherry* ($40\text{ ng}/\mu\text{l}$) (Zhang et al., 2020), OD761 *let-502(sb118)*
1308 (Diogon et al., 2007), ML2600 *vab-10(mc100[VAB-10A::mCherry+loxP])I* (Suman et al.,
1309 2019), CS678 *col-141(lf)*, CS637 Ex [COL-141COL-142(oe); Pmyo-2::GFP], *jgl5* [ROL-
1310 6::GFP;TTX-3::GFP] (Kim et al., 2011), TU1 *unc-119(ed3)III*; [P col -
1311 99[16655]::S0001_pR6K_Amp_2xTY1ce_EGFP_FRT_rpsl_neo_FRT_3xFlag]
1312 dFRT::unc-119 (Tu et al., 2015), LSD1001 [*pha-1(e2123); col-19(FRET between exon)-*
1313 *version C3 + PHA-1(+)]* (Meng et al., 2008), VH2847 *hds73* [COL-99::GFP, *pha-1(+)]*
1314 (Taylor et al., 2018) were gifts from other labs.

1315

1316 The last group of strain was generated by UV integration, crossing, or injection in our lab:
1317 LSD1000 *xchEx001* [(pRedFlp-Hgr)(*col*-
1318 120[30044]::S0001_pR6K_Amp_2xTY1ce_EGFP_FRT_rpsl_neo_FRT_3xFlag)dFRT::u
1319 nc-119-Nat]; pRF4 [*rol-6(su1006)*], LSD1106 *pha-1(e2123)* III; *xchEx105* [P col -
1320 120::NeonGreen; *pha-1(+)]*, LSD1107 *xchEx017* [P col -120::NeonGreen; P col -
1321 12::DsRed], LSD2001 *xchls001* [P col -144:: GFP; *pha-1(+)]*, LSD2043 *xchls012*
1322 [(pRedFlp-Hgr) (*col*-120 [30044]::S0001 pR6K Amp 2xTY1ce EGFP FRT rpsl neo FRT
1323 3xFlag) dFRT::unc-119-Nat]; pRF4 *rol-6(su1006gf)*, LSD2051 [*col-19(FRET between*
1324 *exon)-version C3 + PHA-1(+)]* was made by UV integration of LSD1001 and outcrossing
1325 12 times, LSD2052 *spe-9(hc88)*; [*col-19(FRET between exon)-version C3 + PHA-1(+)]*,
1326 LSD2052 *pha-1(e2123)*; [*col-19(FRET between exon)-version C3]; spe-9(hc88) I,*

1327 LSD2053 *glp-1(e2141)*; [*col-19*(FRET between exon)-version C3 + PHA-1(+)], LSD2063
1328 *ku1s55* [*LON-3::GFP* + *unc-119(+)* pYSL3G3 rollers]; *spe-9(hc88)* I, LSD2117 *xchls016*
1329 [*Pcol-19::GFP*], LSD2002 *spe-9(hc88)* I ; *xchls001* [*Pcol-144:: GFP*; *pha-1(+)*], LSD2003
1330 *glp-1(e2141)* III ; *xchls001* [*Pcol-144:: GFP*; *pha-1(+)*], LSD2117 *xchls016* [*Pcol-19::GFP*], LSD2122 *spe-9(hc88)* I; *daf-2(e1370)* III; *xchls001* [*Pcol-144:: GFP*; *pha-1(+)*],
1332 LSD1061 *xchEx062* [*Pcol-120::col-120::dendra2*; *pha-1 (+)*]; *pha-1(e2123)* III, LSD2191
1333 *xchls001* [*Pcol-144:: GFP*; *pha-1(+)*] X; *unc-52(e669su250)*, LSD2197 *xchls001* [*Pcol-144:: GFP*; *pha-1(+)*] X; *pat-3(rh96)* III, LSD2147 *qyls46* [*Pemb-9::emb-9::mCherry* + *unc-119(+)*] ; *pat-3(zh115* [*PAT-3::GFP*]); *unc-119(ed4)* III, LSD2161 *qyls46* [*Pemb-9::emb-9::mCherry* + *unc-119(+)*]; *unc-52(e669su250)* II ; *pat-3(zh115* [*PAT-3::GFP*]); *unc-119(ed4)* III, LSD2207 *vab-10(mc100[VAB-10A::mCherry+loxp])I*; *ihls35* [*YAP-1::GFP::unc-54 3'UTR* + *lin-15(+)*].

1339

1340 **Cloning of transgenic constructs**

1341 The plasmid pXCH8 (*Pcol-120::NeonGreen*) was built and purchased from Vectorbuilder.
1342 The promoter sequence originates from *col-120* fosmid clone WRM0622A_D10(pRedFlp-
1343 Hgr)(*col-*
1344 120[30044]::S0001_pR6K_Amp_2xTY1ce_EGFP_FRT_rpsl_neo_FRT_3xFlag)dFRT::u
1345 nc-119-Nat from the TransgeneOme Project (Sarov et al., 2012), while the plasmid
1346 DG398 (Slot2 ENTRY vector for mNeonGreen::3xFlag) (Hostettler et al., 2017) served as
1347 backbone.

1348

1349 **Generation of mutant *C. elegans* strains**

1350 PHX2339 *col-120(syb2339)* was generated by SunyBiotech, and is a 1085 deletion of the
1351 Y11D7A.11 covering the ATG to the TAA stop and was 4 times outcrossed.

1352

1353 **Generation of transgenic lines**

1354 LSD1106 *pha-1(e2123)* III; *xchEx105* [P*col-120*::NeonGreen; *pha-1*(+)]. Generated by
1355 injecting 50 ng/μl pXCH8 (P*col-120*::NeonGreen) with 50 ng/μl pBX (*pha-1* (+)) co-
1356 injection marker into *pha-1(e2123)*III mutants. LSD1107 *xchEx017* [P*col-*
1357 *120*::NeonGreen; P*col-12*::DsRed] was generated by injecting 50 ng/μl pXCH8 (P*col-*
1358 *120*::NeonGreen) with 50 ng/μl P*col-12*::DsRed into N2.

1359 LSD2001 *xchls001* [P*col-144*::GFP; *pha-1*(+)] was generated by integration of Ex [P*col-*
1360 *144*::GFP; *pha-1*(+)] (Budovskaya et al., 2008) via UV light irradiation and 8 times
1361 outcrossing with N2 animals.

1362 The strain LSD2043 *xchls012* [(pRedFlp-Hgr) (*col-120* [30044]::S0001 pR6K Amp
1363 2xTY1ce EGFP FRT rpsl neo FRT 3xFlag) dFRT::unc-119-Nat]; pRF4 *rol-6*(su1006gf)
1364 was generated by microinjecting 1 ng/μl of WRM0622A_D10 fosmid
1365 (<https://transgeneome.mpi-cbg.de/transgeneomics/index.html>) together with 50 ng/μl
1366 pRF4 *rol-6*(su1006gf) into N2. The *xchEx001* strain was then stably integrated into the
1367 genome via UV light irradiation and outcrossed 8 times.

1368 We obtained the strain LSD2117 *xchls016* [P*col-19*::GFP] by injecting 50 ng/μl pJA1
1369 [P*col-19*::GFP] (gift by Ann Rougvie) into N2, followed by UV irradiation and 8 times
1370 outcrossing. We UV-integrated collagen overexpressing strains: LSD2013 *xchls005*
1371 [pRF4 *rol-6*(su1006gf) (100 ng/μL)] (=co-injection marker control), LSD2014 *xchls006*

1372 [P_{col-13}::COL-13genomic (50 ng/µL); pRF4 *rol-6(su1006gf)* (100 ng/µL)], LSD2017
1373 xchls009 [P_{col-120}::COL-120genomic (50 ng/µL); pRF4 *rol-6(su1006gf)* (100 ng/µL)],
1374 LSD2018 xchls010 [P_{col-10}::COL-10genomic (50 ng/µL); pRF4 *rol-6(su1006gf)* (100
1375 ng/µL)], LSD1061 was generated by injecting 50 ng/µl pXCH4 (P_{col-120}::col-
1376 120::dendra2) together with 50 ng/µl pBX (*pha-1* (+)) into LSD9 (*pha-1(e2123)III*). For
1377 selection and maintenance of transgenic animals, the *C. elegans* were placed at 25°C.
1378

1379 **Imaging of Matrisome and Adhesome**

1380 The genes comprising the *C. elegans* matrisome and Adhesome are curated in
1381 Supplementary Table 1.

1382 Unless indicated, animals were kept on NGM plates. For the images, the
1383 developmental stages from egg to larval L4 were selected from a mixed plate under the
1384 stereoscope and immediately imaged. In preparation for the imaging of day 1 and day 8
1385 of adulthood animals, L4 animals were transferred from NGM plates on plates containing
1386 50 µM FUdR and imaged when they reached their respective age. Depending on whether
1387 the fluorescent protein (FP) tag hindered proper secretion and incorporation of the core-
1388 matrisome protein, some portion of the FP tagged ECM protein became stuck in the
1389 endoplasmic reticulum (ER). In these cases, we largely ignored cytosolic/ER FP signals
1390 and focused on FP surrounding plasma membranes that are incorporated into ECM. The
1391 fluorescence of the animals was graded on a scale from 0 to 3 intensity. Intensity 3
1392 indicates the highest fluorescence observed. Relative to the highest observed
1393 fluorescence of a given reporter line, a gradient scale in 0.5 intervals was categorized
1394 and scored, with 0 indicating no fluorescence above the background.

1395 For imaging, we used the BX-51-F Tritech™ Research bright-field fluorescence
1396 microscope with a DFK 23UX236 camera, IC Capture 2.4 software, and a triple-band filter
1397 from Chroma Technology Corp (described in (Teuscher and Ewald, 2018)). We used 2
1398 mM Levamisole hydrochloride dissolved in the M9 buffer to immobilize the animals for
1399 imaging.

1400

1401 **Analysis of collagen-tagged GFP fluorescence intensity**

1402 For the analysis of our collagen::GFP strains, we used a Python script written by Elisabeth
1403 Jongsma and Jeliazko Jeliazkov in ImageJ (Statzer et al., 2021b). The code is designed
1404 to measure the GFP intensity in *C. elegans* animals while ignoring the autofluorescence
1405 of the gut. The program takes the area of interest selected from the digital image and
1406 compares the intensities for the green and red channels within each pixel. *C. elegans*
1407 autofluorescence appears as yellow in the images, a blend of red and green (Teuscher
1408 and Ewald, 2018). To remove the autofluorescence without affecting the GFP signal, the
1409 red channel intensities are subtracted from the green. Furthermore, signals below a
1410 certain intensity threshold are regarded as background noise and also ignored. The
1411 program then counts all remaining pixels with intensities in the green channel and adds
1412 up the total intensity (it also gives the number of pixels and the mean intensity per pixel).
1413 The resulting image can be printed to check if the thresholds were placed properly. The
1414 data was further analyzed and visualized using GraphPad Prism 8.2.0. *P*-values were
1415 calculated using a two-way ANOVA.

1416

1417 ***In-silico* expression and proteomics analysis**

1418 Published datasets were obtained directly from the corresponding supplementary
1419 material or through the sequence read archive (SRA). RNA-sequencing datasets were
1420 subjected to quality control, quantification (Patro et al., 2017), and subsequent linear
1421 modeling (Ritchie et al., 2015; Robinson et al., 2010). Data cleaning and analysis were
1422 performed in R (dplyr, ggplot2, clusterProfiler) and using the *C. elegans* Matrisome
1423 Annotator ([http://ce-matrisome- annotator.permalink.cc/](http://ce-matrisome-annotator.permalink.cc/)) (Teuscher et al., 2019a).

1424

1425 **COL-19::FRET imaging**

1426 *C. elegans* were anesthetized with 25 mM sodium azide (Sigma, S2002-100G) in M9 for
1427 live imaging. They were imaged on a coverslip (Menzel Gläser, 24x60mm) covered with
1428 a smaller coverslip, which was stuck together with either nail polish (2D or compressed)
1429 or with double-sided tape (Sury AG, 3M/9473M25) (3D flow chamber for aging
1430 experiments).

1431 *For the formaldehyde crosslinking experiment:* LSD1001 on day 1 of adulthood
1432 was fixed in 4% formaldehyde (Sigma-Aldrich, 158127) and imaged the next day. 4%
1433 formaldehyde was dissolved in PBS by heating up to 60°C for approximately 2 hours.
1434 Formaldehyde solution was sterile filtered and stored at -20°C. We imaged the cuticle as
1435 a planar structure in 2D. Therefore 16 µl sodium azide solution was added to a coverslip,
1436 and *C. elegans* were subsequently added to this drop. Next, the drop was covered with a
1437 smaller coverslip, containing nail polish on each corner for attachment. *C. elegans*
1438 prepared with nail polish were imaged at 2048 x 2048 pixel resolution, laser power 20%,
1439 zoom 1.5, 400Hz, line accumulation 3.

1440 *For the aging experiments:* We prepared a flow chamber to image *C. elegans*
1441 without exerting external mechanical forces (flow chamber, 3D). Therefore 16 µl sodium
1442 azide solution was added to a coverslip, and *C. elegans* were subsequently added to this
1443 drop. Next, the drop was covered with a smaller coverslip, containing stripes of double-
1444 sided sticky tape (50 µm thickness (3M-VHB; Sury AG, S1473-M25)) on two sides for
1445 attachment. *C. elegans* prepared in a flow chamber were imaged at 1024 x 1024 pixel
1446 resolution, laser power 25%, zoom 3, 700Hz, line accumulation 4, and z-step size 0.13
1447 µm.

1448 *For chemical manipulation of the FRET ratios during aging:* LSD2052 pha-
1449 1(e2123); COL-19(FRET between exon)-version C3; spe-9(hc88) animals were bleached
1450 and eggs were distributed on NGM plates to grow at 25°C. At day 4 of adulthood, they
1451 were transferred on NGM plates containing 2% ribose (Sigma, R7500-100G) and nystatin
1452 (2.5 ml/1 NGM) (ThermoFisher, 11548886), or 1 mM genipin (Sigma, G4796-25MG), 10
1453 mM MGO (Sigma, 67028-100ML) or 100 mM aminoguanidine (Sigma, 396494-25G).
1454 Also, some *C. elegans* were transferred on NGM plates as a control group. After day 4 of
1455 adulthood, all *C. elegans* were grown at 20°C and were imaged on day 7 of adulthood.
1456 For another approach, LSD2052 animals were placed on day 1 of adulthood on NGM
1457 plates containing ribose and nystatin or 1 mM genipin at 25°C. These samples were put
1458 at 20°C on day 4 of adulthood and imaged on day 7 of adulthood too.

1459 Imaging was performed with a Leica TCS SP5 confocal microscope (Leica,
1460 Microsystems, Mannheim Germany). Cerulean was excited with the 458 nm laser, and
1461 emission was detected in the range 470-515 nm (donor channel) and 520-600 nm
1462 (acceptor channel). Images were taken with a 63 x PL APO CS 1.4 oil objective (pinhole

1463 diameter of 95.5 μ m). A maximum intensity projection was performed on z-stacks with
1464 ImageJ before quantitative analysis. FRET ratio images were constructed in ImageJ and
1465 further visualized and analyzed with LAS AF Lite (Leica Microsystems) and Inkscape. The
1466 ImageJ macro for FRET ratio calculation is provided in the last tab of Supplementary
1467 Table 12 (FRETanalysisMACRO).

1468

1469 **Imaging and photoconversion of COL-120::Dendra2 and EMB-9::Dendra2 in C.**
1470 ***elegans***

1471 For the RNAi experiments, L4 animals were placed on respective RNAi plates for one
1472 generation. To age synchronize the animals, only L4 *C. elegans* of the F1 generation
1473 were selected and moved to fresh RNAi plates containing 50 μ M FUdR. The animals were
1474 imaged on day 2 and day 4 of adulthood, with the photoconversion being performed only
1475 on the second day of adulthood. For imaging, they were transferred into a drop of M9
1476 onto 2mm thick, 3% agar pads on microscope slides. For the confocal images, an
1477 Olympus Fluoview 3000 microscope was used. On day 2, images of the region behind
1478 the pharynx and of the vulva region were taken, both before and after the dendra2
1479 photoconversion. Before photoconversion, dendra2's excitation maxima are at 490 nm
1480 and the emission maxima at 507 nm, similar to EGFP; after photoconversion, they change
1481 to 553 nm and 573 nm, in the red spectrum. In this study, Dendra2 was photoconverted
1482 by using 2% power of the 405 nm laser for 6 sec with 8 μ s at a resolution of 1024 x 1024.
1483 For the analysis, in each image, the *C. elegans* body inside the photoconverted region
1484 was manually delineated as a mask, within which the ratio of the total red to green signal
1485 intensity is calculated as an indicator of relative amounts of respective proteins. This value

1486 was normalized for each image, *i.e.*, per animal and time point, by taking its difference
1487 from the similar ratio computed for masks on either side outside the photoconverted
1488 region. The data was further analyzed and visualized using GraphPad Prism 9.1.1. *P*-
1489 values were calculated using the One-way ANOVA. For details, see Supplementary Table
1490 11.

1491

1492 ***C. elegans* proteomics**

1493 Approximately 1000 - 3000 *C. elegans* were harvested and washed 4 times by
1494 centrifugation and resuspension in physiological M9 buffer. Samples were then frozen at
1495 -80°C until extraction for all samples in parallel. 500 µL of extraction solution (8 M Urea,
1496 25 mM NH4HCO3, Protease inhibitor (cComplete tab, Roche Switzerland, 0.25 tablets per
1497 1 ml of extraction solution) and 2 mM Na3VO4, 1mM PMSF) was added to each *C.*
1498 *elegans* pellet on ice. The samples were then processed by bead bouncing for three times
1499 150 seconds using pre-chilled sample holders (-20°C). After centrifugation at 15000 g for
1500 15 minutes (4°C), the supernatant was subjected to total protein quantification and the
1501 sample was adjusted to 100 µg of protein. TCEP (Sigma-Aldrich) was added to 5 mM
1502 final concentration and the samples were incubated at RT for 30 minutes. Reduced
1503 cysteines were alkylated with 10 mM iodoacetamide (Sigma-Aldrich) for 1 hr in the dark
1504 at room temperature. Samples were diluted 8x in 50 mM ammonium bicarbonate to
1505 reduce the urea concentration to 1 M and protein digestion was performed overnight at
1506 37 C by addition of 2 µg of trypsin (Promega) per sample.

1507 The day after the samples were acidified with the addition of 5% TFA to achieve
1508 pH < 3. Desalting was performed using C18 spin columns (Nest group) as suggested by

1509 the manufacturer. Columns were wetted with 200 μ l (1 CV) of 100% ACN and then
1510 equilibrated with 2 CV of 0.1% FA. Following sample loading, the resin was washed three
1511 times with 1 CV of 0.1% FA and 5% ACN. Peptides were eluted twice with 0.5 CV of 50%
1512 ACN in 0.1% FA and dried under vacuum. The dried peptides of MS-buffer (0.1% FA)
1513 with 1:30 iRT peptides (Biognosys) spiked in. The samples were then injected on a
1514 TripleTOF 5600 (Sciex, Concord, Canada). Peptides were separated at nano-flow liquid
1515 chromatography (NanoLC Ultra 2D, Eksigent) with a flow rate of 300 nL/min using a
1516 NanoSpray III source with a heated interface (Sciex, Concord, Canada). The source
1517 voltage was 2 kV. The used emitter (Peek 30 cm) was manually packed with 3 μ m
1518 ReproSil pur (Maisch) beads. The peptides were separated using a 90 min linear gradient
1519 from 5% to 30% Buffer B (98% ACN and 0.1% formic acid in HPLC grade H₂O) in Buffer
1520 A (2% ACN and 0.1% formic acid in H₂O).

1521 For data acquisition, the instrument was operated in positive ion, with high
1522 sensitivity SWATH-mode using 64 variable-width windows precursor isolation scheme,
1523 between 350 and 1500 m/z with a 1 m/z one-sided overlap. The Updated SWATH-window
1524 scheme is essentially described by Collins et al. 2017 (Collins et al., 2017). Accumulation
1525 time was set to 250 ms for the precursor survey scan and 50 ms for each of the 64 MS2
1526 fragment ion scans, which resulted in a total cycle duty time of 3.5 s. Dynamic collision
1527 energy (CE) and collision energy spread (CES) was optimized for fragmentation of each
1528 peptide following the rolling collision energy formula (CE= m/z * Slope + Intercept) with a
1529 collision energy spread of 15 eV. The SWATH data was searched in Spectronaut v13
1530 (Biognosys) using a *C. elegans* FASTA (4352 entries) and directDIA with default BGS

1531 settings. Downstream analysis was performed in R (Zhang et al., 2018). The raw files and
1532 search results are available in PRIDE under the identified PXDXXXXXXX

1533

1534 **RNAi clones and libraries**

1535 *Generation of RNAi clones:* We cloned the 942 bp *col-120* cDNA into pL4440, validated
1536 correct insertion and sequence, and transformed this plasmid (pLSD051) into HT115.

1537 *Generation of RNAi screening libraries:* For the target RNAi screen, we worked with 5
1538 RNAi bacteria libraries containing selected RNAi clones to knock down specific gene

1539 classes or categories. The kinase library, two transcription factor libraries (bZip and TXN-
1540 factor Libraries), and the metabolism library were a generous gift from Gary Ruvkun

1541 (Harvard Medical School) (Venz et al., 2020). We constructed our Matrisome library
1542 based on our definition of the *C. elegans* matrisome (Teuscher et al., 2019a). The library

1543 contains 652 RNAi clones of the 719 *C. elegans* matrisome genes. For the missing 67
1544 genes, no RNAi clones were available. The bacteria were picked from either the ORF-

1545 RNAi or the Ahringer RNAi libraries (both available from Source BioScience). Bacteria
1546 glycerol stocks of the clones were transferred with a pipette into 96-well plates each also

1547 containing control wells with control bacteria RNAi clones (L4440 (empty vector control),
1548 *daf-2*, *bli-3*, *daf-16*, *skn-1*, *gfp*, *col-144*) and some empty wells (LB mixed with glycerol).

1549 The same procedure was followed for generating the two validation screen
1550 libraries. Validation library I consisted of hits from the previous screen rounds, together
1551 with selected clones of hits from the *Pcol-12::dsRed* expression screen performed by the
1552 Ewbank lab (Zugasti et al., 2016) and selected clones of genes from our literature
1553 research. Validation library II consisted of hits from the Validation library I screen.

1554

1555 **RNAi screen**

1556 The screen was performed on 96-well plates, each well containing 150 µl NGM with 100
1557 µg/ml Ampicillin and 1mM IPTG, seeded with 8 µl concentrated RNAi bacteria. The
1558 bacteria were grown overnight in 96-deep-well plates in 800 µl LB containing 100 µg/ml
1559 Ampicillin and 12.5 µg/ml Tetracycline. The next morning, another 700 µl LB with
1560 Ampicillin and Tetracycline was added. After four additional hours of growth, the plates
1561 were centrifuged, the supernatant was discarded, and each well was filled up with 35 µl
1562 LB containing 100 µg/ml Ampicillin and 1mM IPTG to seed the 96-well NGM plates. For
1563 the preparation of the *C. elegans*, we used plates containing gravid adult *C. elegans*. We
1564 age synchronized the animals at stage L1, by dissolving the parent but leaving the eggs
1565 intact and letting them hatch in an M9 medium with cholesterol, without food, so they
1566 stage arrest until all eggs were hatched (Teuscher et al., 2019b). The next day, we placed
1567 25 animals of our screening strains in wells of 96-well containing Normal Growth Medium
1568 (NGM), each plate was seeded with one of the clones from the 96-well library plates. *C.*
1569 *elegans* grew up at 25°C until day 2 of adulthood, as this temperature is needed to
1570 activate *glp-1* and *spe-9* mutations during development and make them sterile, later
1571 moving them to 20°C. The plates were scored on adulthood day 1 and day 8 under a
1572 fluorescence stereoscope and the fluorescence of the animals was graded on a scale
1573 from 0-3 intensity. The result was counted as a hit when the average of the three to four
1574 replicates was at least 0.5 (lowest visible difference) over the control. For the gene
1575 ontology enrichment, WormCat was used (Holdorf et al., 2019).

1576

1577 **Time-course measurements of fluorescent expression reporter strains**

1578 The strains for time-course measurements were placed as L4s on plates containing 50
1579 μ M FUdR and were scored on the indicated days under a fluorescence stereoscope. For
1580 each animal, the fluorescence was graded on a scale from 0-3 in 0.5 steps. Per measuring
1581 round 20-30 *C. elegans* were used. The data was further analyzed and visualized using
1582 GraphPad Prism 8.2.0. P-values were calculated using a two-way ANOVA.

1583

1584 **EMB-9/PAT-3 co-localization experiments**

1585 For the imaging of a potential co-localization of the EMB-9::mCherry and PAT-3::GFP in
1586 *C.elegans*, the animals were placed as L4s on plates containing 50 μ M FUdR. Images
1587 were taken on day 1, day 3, and day 8 of adulthood using an Olympus FluoView 3000
1588 microscope. For the RNAi experiments, the animals were placed as eggs on plates
1589 seeded with control L4440 RNAi or *daf-2* RNAi bacteria. The RNAi NGM plates contained
1590 100 μ g/ml of Ampicillin and 1mM IPTG. The L4 animals were moved to RNAi NGM plates
1591 that additionally contained 50 μ M FUdR.

1592 For the analysis of colocation, we separately assessed this for the body wall
1593 muscles around the head region, midbody region, and tail region, by imaging and
1594 manually selecting these regions for each *C. elegans* (all images and area selections are
1595 provided in Supplementary Table 11). In our study, *colocation* is defined as very close
1596 proximity (beyond the pixel resolution of the employed microscopy imaging) of the
1597 proteins and hence their fluorescence marker signals. To that end, red and green intensity
1598 (signal) at each pixel indicates the amount of the corresponding protein within the space
1599 covered by that image pixel. If these intensities are *similar* for the same pixel, this would

1600 mean similar amounts of each molecule within that pixel (thus in “very close proximity”
1601 per definition). Instead of the concept of similarity, i.e. being “equal”, we chose to quantify
1602 their correlation (i.e., the null-hypothesis of them being in relation with a fixed ratio)
1603 because intensity equality between red and green markers would require strict
1604 constraints, such as the imaging system scaling raw reading similarly to all RGB values,
1605 these different markers reacting the exact same way to optic excitation, each marker
1606 staining the molecules in the same fashion, etc. Instead, a correlation analysis checks
1607 for an arbitrary (linear) relation model between these markers occurring together in pixels
1608 (i.e., colocating). Accordingly, we computed the correlation of per-pixel red-to-green
1609 signal across the image, per animal, and time point. All pixel quantifications and
1610 calculations are provided in Supplementary Table 11. Since the structures we aim to
1611 quantify are smaller than the pixel size, the intensity red/green quantifies how many/much
1612 collagen and integrin exist in each pixel. Then, observing more green where the red is,
1613 and vice versa (i.e., the correlation metric we used) indicate their co-occurrence spatially.
1614 The term “disassociation” refers to our quantification of the loss of spatial relationships
1615 between the collagen (red) and integrin (green).

1616
1617 **Lifespan assays**

1618 Manually lifespan assays were performed as described in (Ewald et al., 2016). In brief,
1619 L4 animals were picked onto culturing plates containing 50 μ M FUdR. TJ1060 spe-
1620 9(hc88) I; *rrf-3(b26)* II and CB4037 *g/p-1(e2141)* III were grown at 25°C until day 2 of
1621 adulthood and then placed on RNAi plates (without FUdR) at 20°C for the remainder of
1622 the lifespan. The *spe-9(hc88)* is a temperature-sensitive sterile mutation (L’Hernault et

1623 al., 1988). SPE-9 is a transmembrane protein on the sperm required for oocyte interaction
1624 (L'Hernault et al., 1988; Zannoni et al., 2003).

1625 Lifespan machine assays were performed as described in (Statzer et al., 2020;
1626 Williams et al., 2021). In brief, L4s were washed onto RNAi culturing plates containing 50
1627 μ M FUdR until day 5 of adulthood at 20°C, and then placed on special RNAi plates and
1628 placed into the lifespan machine. For experimental details, setup, raw data, and statistics,
1629 see Supplementary Table 8.

1630 Comparative automated lifespan analysis: To compare the longevity-promoting
1631 effects of *daf-2* RNAi on different *C. elegans* matrisome mutants, the mean lifespan of
1632 *daf-2* RNAi was plotted against the corresponding mean lifespan on L440. N2 data from
1633 multiple lifespan assays was compiled, representing the general lifespan extension of *daf-2*
1634 RNAi in N2. For the analysis, the different strains were grouped according to their
1635 respective matrisome category. The code can be found in Supplementary Table 7 and on
1636 Github (<https://github.com/Ewaldlab-LSD/DiagonalPlots>).

1637 For compound treated lifespans: TJ1060 *C. elegans* were bleached and the eggs
1638 were distributed on NGM plates to grow at 25°C. On day 4 of adulthood, 100 *C. elegans*
1639 were placed on 10 NGM plates containing 2% ribose and nystatin and another 100 on 10
1640 control plates. LSD2052 worms were also bleached, and eggs were distributed on NGM
1641 plates at 25°C. This time, 50 *C. elegans* were transferred on two plates with 1 mM genipin,
1642 50 on two DMSO (90.4 μ l DMSO/10ml NGM) (Aldrich, M81802) plates and another 50 on
1643 two control plates. All samples were put at 20°C on day 4 of adulthood. In the following
1644 days, plates were checked for dead animals every day. Lifespan experiments with
1645 aminoguanidine were performed by using the lifespan machine. N2 worms were bleached

1646 and incubated in M9 for 2 days at 20°C on a rotor to synchronize the animals at the L1
1647 stage. L1 animals were then transferred on NGM plates and grown to larval stage L4.
1648 From that time on, nematodes were grown on NGM plates containing FUdR. On day 4 of
1649 adulthood, we transferred approximately 30 worms on one plate, 4 plates in total per
1650 experimental condition. The plates were prepared with 1 mM, 50 mM, and 100 mM
1651 aminoguanidine and control plates without any interventions. All plates contained FUdR
1652 and nystatin.

1653

1654 **Quantification of cuticle thickness using electron microscopy images**
1655 Transmission electron microscopy (TEM) images of *C. elegans* age day 2, day 7, and day
1656 15 were downloaded from wormimage.org. Only transverse sections were considered as
1657 they were thought to minimize the error in measurement due to oblique cutting angles.
1658 Regions distorted by the cutting process were excluded from the analysis. Suitable
1659 regions were manually traced and the resulting binary masks (colored curves, one pixel
1660 thick) were exported to Matlab (Supplementary Figure 5 A-C). As the borders of every
1661 cuticular layer were traced separately, both the total thickness and thickness of the
1662 individual layers could be measured.

1663 To determine the mean distance between two-layer borders (i. e. the mean
1664 thickness of the cuticle layer) represented by two binary masks A and B, the euclidean
1665 distance transform of mask A was calculated leading to A_{dmap} . The Euclidean distance
1666 transform of A assigns to every pixel in A the distance to the nearest non-zero pixel. By
1667 element-wise matrix multiplication of A_{dmap} and B, the nearest distance to A of every pixel
1668 in B can be calculated leading to vector b (Supplementary Figure 5 D). By repeating the

1669 process while swapping A and B, the closest distances to B for every pixel in A can be
1670 calculated. The distance between two curves A and B was then defined as the mean
1671 value of the shortest distances to the other curve for every pixel in both A and B. The data-
1672 set used contained digitized TEM images of various different magnifications (m) (1200x
1673 – 15500x). Every image contained a scale bar of the length of 2.5 cm. For analysis, the
1674 length of the scale bar in pixel (s [px]) was measured. The conversion factor (f [$\mu\text{m}/\text{px}$])
1675 was calculated according to formula (1) and multiplied with the final measurements to
1676 convert them to micrometers.

1677
$$f = 25000 / (m \cdot s) \quad (1)$$

1678

1679 **Fluorescence microscopy of YAP-1::GFP expression**

1680 Strain YAP-1::GFP was maintained on OP50 NGM plates at 20°C. Gravid adults were
1681 treated with sodium hypochlorite solution to obtain eggs. The eggs were grown on L4440
1682 and *daf-2* RNAi plates until the L4 stage. At L4, the plates were transferred to 25°C or
1683 kept at 20°C. Then, at day 1 of adulthood, approx. 30 animals were mounted onto a 2%
1684 agarose pad and anesthetized with 20 mM levamisole for imaging. Animals were captured
1685 at 10X with one or two fields of view and then, stitched together later, using ImageJ.
1686 Quantification of the total fluorescence intensity was done by running a python script,
1687 GreenIntensityCalculator (available publicly in Github-Ewaldlab:
1688 <https://github.com/Ewaldlab-LSD>) in ImageJ (Statzer et al., 2021a). Statistical analysis of
1689 the quantified data was done using graph pad prism software (GraphPad Prism 9.0). The
1690 experiment was performed in three independent biological batches.

1691

1692 **Fluorescence microscopy for YAP::GFP expression on hemidesmosome-
1693 containing structures**

1694 Strain *ihs35* YAP-1::GFP was maintained on OP50 NGM plates at 20°C. Gravid adults
1695 were treated with sodium hypochlorite solution to obtain eggs. The eggs were grown on
1696 L4440 and *daf-2* RNAi plate until young adults. At the young adult stage, the plates were
1697 transferred to 25°C. Then, on day 3 of adulthood, approx. 30 animals were mounted onto
1698 a 2% agarose pad and anesthetized with 20 mM levamisole for imaging. Animals were
1699 captured at 100X with one posterior field of view. Quantification of the distribution of the
1700 categories of hemidesmosome-like phenotype was done manually. Category 0-1 were
1701 allotted to absent to faint appearance of hemidesmosome-containing structures (as in
1702 most L4440 control conditions) while 2-5 category represent the graded intensity of the
1703 present hemidesmosome-containing structure (as observed to be more the case in *daf-2*
1704 RNAi condition). Statistical analysis of the quantified data was done using graph pad
1705 prism software (GraphPad Prism 9.0). The experiment was performed in four independent
1706 biological batches.

1707

1708 **Confocal microscopy for colocalization of YAP-1::GFP with VAB-10::mCherry**

1709 Transgenic strain LSD2207 YAP-1::GFP;VAB-10A::mCherry was grown on L4440 or *daf-2*
1710 RNAi plates at 20°C. At young adult stage, animals were shifted to 25°C. After 24h,
1711 animals were mounted onto 2% agarose pad and anesthetized with 20 mM levamisole
1712 for confocal imaging. Animals were captured with confocal laser scanning microscope
1713 (Olympus Fluoview FV3000), using 60X oil objective. Images were taken at an intensity
1714 of 0.7% for red channel, and 30% for green channel, at 4.00 zoom, at resolution of 1024

1715 \times 1024 pixels and with a gain of 1.0. The experiment was performed in three independent
1716 biological trials.

1717

1718 **Pressure application and quantifying GFP intensity**

1719 Approximate 30 L4 animals were picked onto the center of a 60 mm OP50 FUdR (no
1720 FUdR for LSD2002 animals because containing temperature-sensitive sterile mutation
1721 *spe-9(hc88)*) containing plate, for each condition in technical replicates of two. Then, with
1722 the help of a sterilized spatula, a 2 cm \times 2 cm chunk of agar was cut and transferred to a
1723 glass slide gently. After that, another glass slide was pressed upon this agar chunk gently,
1724 sealing the glass slides with the help of tape. For the pressure condition, an inverted 50
1725 mL water-filled falcon was placed on top. The approximate pressure was calculated as
1726 the force divided by the area. Thus, the pressure was $(0.05 \text{ kg weight} \times 9.81 \text{ m/s}^2 (=g)) /$
1727 $(0.04 \text{ m}^2 \text{ agar area}) = 12.3 \text{ Pa}$. This pressure device was kept at 20°C or 25°C as indicated
1728 in the figure legend for three days, after which the animals were imaged. To assess
1729 fluorescence intensity, the agar chunk was transferred from the pressure device to a fresh
1730 OP50 plate and let the animals move out of the agar for about half an hour. Animals were
1731 then mounted onto a 2% agarose pad and anesthetized with 20 mM levamisole for
1732 imaging. They were captured at 10X with one or two fields of view and then, stitched
1733 together later, using ImageJ. Quantification of the total fluorescence intensity was done
1734 by running a python script, GreenIntensityCalculator (available publicly in Github-
1735 Ewaldlab: <https://github.com/Ewaldlab-LSD>) in ImageJ (Statzer et al., 2021a). Statistical
1736 analysis of the quantified data was done using graph pad prism software (GraphPad
1737 Prism 9.0).

1738

1739

1740

1741

1742 **References**

1743 Alavez, S., Vantipalli, M.C., Zucker, D.J.S., Klang, I.M., and Lithgow, G.J. (2011).
1744 Amyloid-binding compounds maintain protein homeostasis during ageing and extend
1745 lifespan. *Nature* 472, 226–229. <https://doi.org/10.1038/nature09873>.

1746 Baird, N.A., Douglas, P.M., Simic, M.S., Grant, A.R., Moresco, J.J., Wolff, S.C., Yates,
1747 J.R., Manning, G., and Dillin, A. (2014). HSF-1-mediated cytoskeletal integrity
1748 determines thermotolerance and life span. *Sci New York N Y* 346, 360–363.
1749 <https://doi.org/10.1126/science.1253168>.

1750 Ben-Zvi, A., Miller, E.A., and Morimoto, R.I. (2009). Collapse of proteostasis represents
1751 an early molecular event in *Caenorhabditis elegans* aging. *Proceedings of the National
1752 Academy of Sciences* 106, 14914–14919. <https://doi.org/10.1073/pnas.0902882106>.

1753 Blagosklonny, M.V. (2012). Answering the ultimate question “What is the Proximal
1754 Cause of Aging?” *Aging* 4, 861–877. <https://doi.org/10.18632/aging.100525>.

1755 Bonnans, C., Chou, J., and Werb, Z. (2014). Remodelling the extracellular matrix in
1756 development and disease. *Nat Rev Mol Cell Biology* 15, 786–801.
1757 <https://doi.org/10.1038/nrm3904>.

1758 Brenner, S. (1974). The genetics of *Caenorhabditis elegans*. *Genetics* 77, 71–94. .

1759 Broday, L., Hauser, C.A., Kolotuev, I., and Ronai, Z. (2007). Muscle–epidermis
1760 interactions affect exoskeleton patterning in *Caenorhabditis elegans*. *Dev Dynam* 236,
1761 3129–3136. <https://doi.org/10.1002/dvdy.21341>.

1762 Broomfield, J., Hill, M., Guglieri, M., Crowther, M., and Abrams, K. (2021). Life
1763 Expectancy in Duchenne Muscular Dystrophy: Reproduced Individual Patient Data
1764 Meta-analysis. *Neurology* 97, e2304–e2314.
1765 <https://doi.org/10.1212/wnl.00000000000012910>.

1766 Budovskaya, Y.V., Wu, K., Southworth, L.K., Jiang, M., Tedesco, P., Johnson, T.E., and
1767 Kim, S.K. (2008). An elt-3/elt-5/elt-6 GATA Transcription Circuit Guides Aging in *C.*
1768 *elegans*. *Cell* 134, 291–303. <https://doi.org/10.1016/j.cell.2008.05.044>.

1769 Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R.P., Chaudhry, S.I.,
1770 Harrington, K., Williamson, P., Moeendarbary, E., Charras, G., et al. (2013).
1771 Mechanotransduction and YAP-dependent matrix remodelling is required for the
1772 generation and maintenance of cancer-associated fibroblasts. *Nat Cell Biol* 15, 637–
1773 646. <https://doi.org/10.1038/ncb2756>.

1774 Cohen-Berkman, M., Dudkevich, R., Ben-Hamo, S., Fishman, A., Salzberg, Y., Ben-
1775 Asher, H.W., Lamm, A.T., and Henis-Korenblit, S. (2020). Endogenous siRNAs promote
1776 proteostasis and longevity in germline less *C. elegans*. *Elife* 9, e50896.
1777 <https://doi.org/10.7554/elife.50896>.

1778 Collins, B.C., Hunter, C.L., Liu, Y., Schilling, B., Rosenberger, G., Bader, S.L., Chan,
1779 D.W., Gibson, B.W., Gingras, A.-C., Held, J.M., et al. (2017). Multi-laboratory
1780 assessment of reproducibility, qualitative and quantitative performance of SWATH-mass

1781 spectrometry. *Nat Commun* 8, 291. <https://doi.org/10.1038/s41467-017-00249-5>.

1782 Davis, B.O., Anderson, G.L., and Dusenberry, D.B. (1982). Total luminescence

1783 spectroscopy of fluorescence changes during aging in *Caenorhabditis elegans*.

1784 *Biochemistry* 21, 4089–4095. .

1785 Depuydt, G., Xie, F., Petyuk, V.A., Shanmugam, N., Smolders, A., Dhondt, I., Brewer,

1786 H.M., Camp, D.G., Smith, R.D., and Braeckman, B.P. (2013). Reduced insulin/insulin-

1787 like growth factor-1 signaling and dietary restriction inhibit translation but preserve

1788 muscle mass in *Caenorhabditis elegans*. *Mol Cell Proteom Mcp* 12, 3624–3639.

1789 <https://doi.org/10.1074/mcp.m113.027383>.

1790 Dhondt, I., Petyuk, V.A., Cai, H., Vandemeulebroucke, L., Vierstraete, A., Smith, R.D.,

1791 Depuydt, G., and Braeckman, B.P. (2016). FOXO/DAF-16 Activation Slows Down

1792 Turnover of the Majority of Proteins in *C. elegans*. *Cell Reports* 16, 3028–3040.

1793 <https://doi.org/10.1016/j.celrep.2016.07.088>.

1794 Ding, M., King, R.S., Berry, E.C., Wang, Y., Hardin, J., and Chisholm, A.D. (2008). The

1795 cell signaling adaptor protein EPS-8 is essential for *C. elegans* epidermal elongation

1796 and interacts with the ankyrin repeat protein VAB-19. *Plos One* 3, e3346.

1797 <https://doi.org/10.1371/journal.pone.0003346>.

1798 Diogon, M., Wissler, F., Quintin, S., Nagamatsu, Y., Sookhareea, S., Landmann, F.,

1799 Hutter, H., Vitale, N., and Labouesse, M. (2007). The RhoGAP RGA-2 and LET-

1800 502/ROCK achieve a balance of actomyosin-dependent forces in *C. elegans* epidermis

1801 to control morphogenesis. *Development* 134, 2469–2479.

1802 <https://doi.org/10.1242/dev.005074>.

1803 Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato,

1804 F., Digabel, J.L., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in

1805 mechanotransduction. *Nature* 474, 179–183. <https://doi.org/10.1038/nature10137>.

1806 Elosegui-Artola, A., Andreu, I., Beedle, A.E.M., Lezamiz, A., Uroz, M., Kosmalska, A.J.,

1807 Oria, R., Kechagia, J.Z., Rico-Lastres, P., Roux, A.-L.L., et al. (2017). Force Triggers

1808 YAP Nuclear Entry by Regulating Transport across Nuclear Pores. *Cell* 171, 1397–

1809 1410.e14. <https://doi.org/10.1016/j.cell.2017.10.008>.

1810 Engler, A.J., Griffin, M.A., Sen, S., Bönnemann, C.G., Sweeney, H.L., and Discher, D.E.

1811 (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness. *J Cell*

1812 *Biology* 166, 877–887. <https://doi.org/10.1083/jcb.200405004>.

1813 Espada, L., Dakhovnik, A., Chaudhari, P., Martirosyan, A., Miek, L., Poliezhaiava, T.,

1814 Schaub, Y., Nair, A., Döring, N., Rahnis, N., et al. (2020). Loss of metabolic plasticity

1815 underlies metformin toxicity in aged *Caenorhabditis elegans*. *Nat Metabolism* 2, 1316–

1816 1331. <https://doi.org/10.1038/s42255-020-00307-1>.

1817 Essmann, C.L., Martinez-Martinez, D., Pryor, R., Leung, K.-Y., Krishnan, K.B., Lui, P.P.,

1818 Greene, N.D.E., Brown, A.E.X., Pawar, V.M., Srinivasan, M.A., et al. (2020). Mechanical

1819 properties measured by atomic force microscopy define health biomarkers in ageing *C.*

1820 *elegans*. *Nature Communications* 11, 1043. <https://doi.org/10.1038/s41467-020-14785>.

1821 0.

1822 Etheridge, T., Rahman, M., Gaffney, C.J., Shaw, D., Shephard, F., Magudia, J.,
1823 Solomon, D.E., Milne, T., Blawzdiewicz, J., Constantin-Teodosiu, D., et al. (2015). The
1824 integrin-adhesome is required to maintain muscle structure, mitochondrial ATP
1825 production, and movement forces in *Caenorhabditis elegans*. *Faseb J Official Publ Fed*
1826 *Am Soc Exp Biology* 29, 1235–1246. <https://doi.org/10.1096/fj.14-259119>.

1827 Ewald, C.Y. (2020). The Matrisome during Aging and Longevity: A Systems-Level
1828 Approach toward Defining Matreotypes Promoting Healthy Aging. *Gerontology* 66, 266–
1829 274. <https://doi.org/10.1159/000504295>.

1830 Ewald, C.Y. (2021). Drug Screening Implicates Chondroitin Sulfate as a Potential
1831 Longevity Pill. *Frontiers Aging* 2, 741843. <https://doi.org/10.3389/fragi.2021.741843>.

1832 Ewald, C.Y., Landis, J.N., Abate, J.P., Murphy, C.T., and Blackwell, T.K. (2015). Dauer-
1833 independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. *Nature*
1834 519, 97–101. <https://doi.org/10.1038/nature14021>.

1835 Ewald, C.Y., Marfil, V., and Li, C. (2016). Alzheimer-related protein APL -1 modulates
1836 lifespan through heterochronic gene regulation in *Caenorhabditis elegans*. *Aging Cell*
1837 15, 1051–1062. <https://doi.org/10.1111/acel.12509>.

1838 Ewald, C.Y., Hourihan, J.M., Bland, M.S., Obieglo, C., Katic, I., Mazzeo, L.E.M., Alcedo,
1839 J., Blackwell, T.K., and Hynes, N.E. (2017). NADPH oxidase-mediated redox signaling
1840 promotes oxidative stress resistance and longevity through memo-1 in *C. elegans*. *ELife*
1841 6, 819. <https://doi.org/10.7554/elife.19493>.

1842 Frand, A.R., Russel, S., and Ruvkun, G. (2005). Functional Genomic Analysis of *C.*
1843 *elegans* Molting. *Plos Biol* 3, e312. <https://doi.org/10.1371/journal.pbio.0030312>.

1844 Frantz, C., Stewart, K.M., and Weaver, V.M. (2010). The extracellular matrix at a
1845 glance. *Journal of Cell Science* 123, 4195–4200. <https://doi.org/10.1242/jcs.023820>.

1846 Froehlich, J.J., Rajewsky, N., and Ewald, C.Y. (2021). Estimation of *C. elegans* cell- and
1847 tissue volumes. *Micropublication Biology* 2021, 10.17912/micropub.biology.000345.
1848 <https://doi.org/10.17912/micropub.biology.000345>.

1849 Fu, R., Huang, Z., Li, H., Zhu, Y., and Zhang, H. (2020). A Hemidesmosome-to-
1850 Cytoplasm Translocation of Small Heat Shock Proteins Provides Immediate Protection
1851 against Heat Stress. *Cell Reports* 33, 108410.
1852 <https://doi.org/10.1016/j.celrep.2020.108410>.

1853 Gieseler, K. (2017). Development, structure, and maintenance of *C. elegans* body wall
1854 muscle. *Wormbook* 1–59. <https://doi.org/10.1895/wormbook.1.81.2>.

1855 Gotenstein, J.R., Koo, C.C., Ho, T.W., and Chisholm, A.D. (2018). Genetic Suppression
1856 of Basement Membrane Defects in *Caenorhabditis elegans* by Gain of Function in
1857 Extracellular Matrix and Cell-Matrix Attachment Genes. *Genetics* 208, 1499–1512.
1858 <https://doi.org/10.1534/genetics.118.300731>.

1859 Griffin, M.A., Feng, H., Tewari, M., Acosta, P., Kawana, M., Sweeney, H.L., and
1860 Discher, D.E. (2005). γ -Sarcoglycan deficiency increases cell contractility, apoptosis

1861 and MAPK pathway activation but does not affect adhesion. *J Cell Sci* 118, 1405–1416.
1862 <https://doi.org/10.1242/jcs.01717>.

1863 Gurevich, I., Agarwal, P., Zhang, P., Dolorito, J.A., Oliver, S., Liu, H., Reitze, N., Sarma,
1864 N., Bagci, I.S., Sridhar, K., et al. (2022). In vivo topical gene therapy for recessive
1865 dystrophic epidermolysis bullosa: a phase 1 and 2 trial. *Nat Med* 1–9.
1866 <https://doi.org/10.1038/s41591-022-01737-y>.

1867 Haefke, A., and Ewald, C. (2020). Tail Tendon Break Time for the Assessment of Aging
1868 and Longitudinal Healthspan in Mice. *Bio-Protocol* 10.
1869 <https://doi.org/10.21769/bioprotoc.3833>.

1870 Halfter, W., Oertle, P., Monnier, C.A., Camenzind, L., Reyes-Lua, M., Hu, H., Candiello,
1871 J., Labilloy, A., Balasubramani, M., Henrich, P.B., et al. (2015). New concepts in
1872 basement membrane biology. *Febs J* 282, 4466–4479.
1873 <https://doi.org/10.1111/febs.13495>.

1874 Hamlin, C.R., and Kohn, R.R. (1972). Determination of human chronological age by
1875 study of a collagen sample. *Experimental Gerontology* 7, 377–379. .

1876 Hansen, M., Hsu, A.-L., Dillin, A., and Kenyon, C.J. (2005). New genes tied to
1877 endocrine, metabolic, and dietary regulation of lifespan from a *Caenorhabditis elegans*
1878 genomic RNAi screen. *PLoS Genetics* 1, 119–128.
1879 <https://doi.org/10.1371/journal.pgen.0010017>.

1880 Hatzfeld, M., and Magin, T.M. (2019). Cross-Talk between Hemidesmosomes and Focal
1881 Adhesions: A Primer for Wound Healing, Blistering Skin Disease, and Skin Aging. *J*
1882 *Invest Dermatol* 139, 1854–1856. <https://doi.org/10.1016/j.jid.2019.04.010>.

1883 He, C., Lv, X., Huang, C., Hua, G., Ma, B., Chen, X., Angeletti, P.C., Dong, J., Zhou, J.,
1884 Wang, Z., et al. (2019). YAP1-LATS2 feedback loop dictates senescent or malignant
1885 cell fate to maintain tissue homeostasis. *Embo Rep* 20.
1886 <https://doi.org/10.15252/embr.201744948>.

1887 He, N., Xu, Y., Du, W., Qi, X., Liang, L., Wang, Y., Feng, G., Fan, Y., Han, Z., Kong, D.,
1888 et al. (2015). Extracellular Matrix can Recover the Downregulation of Adhesion
1889 Molecules after Cell Detachment and Enhance Endothelial Cell Engraftment. *Sci Rep-*
1890 *Uk* 5, 10902. <https://doi.org/10.1038/srep10902>.

1891 Henis-Korenblit, S., Zhang, P., Hansen, M., McCormick, M., Lee, S.-J., Cary, M., and
1892 Kenyon, C.J. (2010). Insulin/IGF-1 signaling mutants reprogram ER stress response
1893 regulators to promote longevity. *Proceedings of the National Academy of Sciences* 107,
1894 9730–9735. <https://doi.org/10.1073/pnas.1002575107>.

1895 Herndon, L.A., Schmeissner, P.J., Dadaronek, J.M., Brown, P.A., Listner, K.M., Sakano,
1896 Y., Paupard, M.C., Hall, D.H., and Driscoll, M. (2002). Stochastic and genetic factors
1897 influence tissue-specific decline in ageing *C. elegans*. *Nature* 419, 808–814.
1898 <https://doi.org/10.1038/nature01135>.

1899 Holdorf, A.D., Higgins, D.P., Hart, A.C., Boag, P.R., Pazour, G.J., Walhout, A.J.M., and
1900 Walker, A.K. (2019). WormCat: An Online Tool for Annotation and Visualization of

1901 Caenorhabditis elegans Genome-Scale Data. *Genetics* 214, genetics.302919.2019.
1902 <https://doi.org/10.1534/genetics.119.302919>.

1903 Hostettler, L., Grundy, L., Käser-Pébernard, S., Wicky, C., Schafer, W.R., and Glauser,
1904 D.A. (2017). The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression
1905 Analysis In Vivo. *G3 (Bethesda, Md.)* 7, 607–615.
1906 <https://doi.org/10.1534/g3.116.038133>.

1907 Hresko, M.C., Schriefer, L.A., Shrimankar, P., and Waterston, R.H. (1999). Myotactin, a
1908 Novel Hypodermal Protein Involved in Muscle–Cell Adhesion in *Caenorhabditis elegans*.
1909 *J Cell Biol* 146, 659–672. <https://doi.org/10.1083/jcb.146.3.659>.

1910 Hulme, S.E., Shevkoplyas, S.S., McGuigan, A.P., Apfeld, J., Fontana, W., and
1911 Whitesides, G.M. (2010). Lifespan-on-a-chip: microfluidic chambers for performing
1912 lifelong observation of *C. elegans*. *Lab Chip* 10, 589–597.
1913 <https://doi.org/10.1039/b919265d>.

1914 Humphrey, J.D., and Schwartz, M.A. (2021). Vascular Mechanobiology: Homeostasis,
1915 Adaptation, and Disease. *Annu Rev Biomed Eng* 23, 1–27.
1916 <https://doi.org/10.1146/annurev-bioeng-092419-060810>.

1917 Humphrey, J.D., Dufresne, E.R., and Schwartz, M.A. (2014). Mechanotransduction and
1918 extracellular matrix homeostasis. *Nature Reviews Molecular Cell Biology* 15, 802–812.
1919 <https://doi.org/10.1038/nrm3896>.

1920 Hynes, R.O. (2009). The Extracellular Matrix: Not Just Pretty Fibrils. *Science* 326,
1921 1216–1219. <https://doi.org/10.1126/science.1176009>.

1922 Ihara, S., Hagedorn, E.J., Morrissey, M.A., Chi, Q., Motegi, F., Kramer, J.M., and
1923 Sherwood, D.R. (2011). Basement membrane sliding and targeted adhesion remodels
1924 tissue boundaries during uterine-vulval attachment in *Caenorhabditis elegans*. *Nature*
1925 *Cell Biology* 13, 641–651. <https://doi.org/10.1038/hcb2233>.

1926 Iwasa, H., Maimaiti, S., Kuroyanagi, H., Kawano, S., Inami, K., Timalsina, S., Ikeda, M.,
1927 Nakagawa, K., and Hata, Y. (2013). Yes-associated protein homolog, YAP-1, is
1928 involved in the thermotolerance and aging in the nematode *Caenorhabditis elegans*.
1929 *Exp Cell Res* 319, 931–945. <https://doi.org/10.1016/j.yexcr.2013.01.020>.

1930 Jung, Y., Artan, M., Kim, N., Yeom, J., Hwang, A.B., Jeong, D.-E., Altintas, Ö., Seo, K.,
1931 Seo, M., Lee, D., et al. (2021). MON-2, a Golgi protein, mediates autophagy-dependent
1932 longevity in *Caenorhabditis elegans*. *Sci Adv* 7, eabj8156.
1933 <https://doi.org/10.1126/sciadv.abj8156>.

1934 Kalichamy, S.S., Alcantara, A.V., Kim, B.-S., Park, J., Yoon, K.-H., and Lee, J.I. (2020).
1935 Muscle and epidermal contributions of the structural protein β -spectrin promote
1936 hypergravity-induced motor neuron axon defects in *C. elegans*. *Sci Rep-Uk* 10, 21214.
1937 <https://doi.org/10.1038/s41598-020-78414-y>.

1938 Kim, T.H., Kim, Y.J., Cho, J.W., and Shim, J. (2011). A novel zinc-carboxypeptidase
1939 SURO-1 regulates cuticle formation and body morphogenesis in *Caenorhabditis*
1940 *elegans*. *FEBS Letters* 585, 121–127. <https://doi.org/10.1016/j.febslet.2010.11.020>.

1941 Kong, F., García, A.J., Mould, A.P., Humphries, M.J., and Zhu, C. (2009).
1942 Demonstration of catch bonds between an integrin and its ligand. *J Cell Biol* 185, 1275–
1943 1284. <https://doi.org/10.1083/jcb.200810002>.

1944 Koyuncu, S., Loureiro, R., Lee, H.J., Wagle, P., Krueger, M., and Vilchez, D. (2021).
1945 Rewiring of the ubiquitinated proteome determines ageing in *C. elegans*. *Nature* 596,
1946 285–290. <https://doi.org/10.1038/s41586-021-03781-z>.

1947 Kramer, J.M. (2005). Basement membranes. *WormBook : The Online Review of C*
1948 *Elegans Biology* 1–15. <https://doi.org/10.1895/wormbook.1.16.1>.

1949 Kumsta, C., Ching, T.-T., Nishimura, M., Davis, A.E., Gelino, S., Catan, H.H., Yu, X.,
1950 Chu, C.-C., Ong, B., Panowski, S.H., et al. (2013). Integrin-linked kinase modulates
1951 longevity and thermotolerance in *C. elegans* through neuronal control of HSF-1. *Aging*
1952 *Cell* 13, 419–430. <https://doi.org/10.1111/ace.12189>.

1953 Labbadia, J., and Morimoto, R.I. (2014). Proteostasis and longevity: when does aging
1954 really begin? *F1000prime Reports* 6, 7. <https://doi.org/10.12703/p6-7>.

1955 Lardennois, A., Pásti, G., Ferraro, T., Llense, F., Mahou, P., Pontabry, J., Rodriguez,
1956 D., Kim, S., Ono, S., Beaurepaire, E., et al. (2019). An actin-based viscoplastic lock
1957 ensures progressive body-axis elongation. *Nature* 573, 266–270.
1958 <https://doi.org/10.1038/s41586-019-1509-4>.

1959 Lee, H., Kang, J., Ahn, S., and Lee, J. (2019). The Hippo Pathway Is Essential for
1960 Maintenance of Apicobasal Polarity in the Growing Intestine of *Caenorhabditis elegans*.
1961 *Genetics* 213, 501–515. <https://doi.org/10.1534/genetics.119.302477>.

1962 L'Hernault, S.W., Shakes, D.C., and Ward, S. (1988). Developmental genetics of
1963 chromosome I spermatogenesis-defective mutants in the nematode *Caenorhabditis*
1964 *elegans*. *Genetics* 120, 435–452. <https://doi.org/10.1093/genetics/120.2.435>.

1965 LIM, S.B., TAN, S.J., LIM, W.-T., and LIM, C.T. (2017). An extracellular matrix-related
1966 prognostic and predictive indicator for early-stage non-small cell lung cancer. *Nat*
1967 *Commun* 8, 1734. <https://doi.org/10.1038/s41467-017-01430-6>.

1968 Liu, N., Matsumura, H., Kato, T., Ichinose, S., Takada, A., Namiki, T., Asakawa, K.,
1969 Morinaga, H., Mohri, Y., Arcangelis, A.D., et al. (2019). Stem cell competition
1970 orchestrates skin homeostasis and ageing. *Nature* 568, 344–350.
1971 <https://doi.org/10.1038/s41586-019-1085-7>.

1972 Liu, Y., Beyer, A., and Aebersold, R. (2016). On the Dependency of Cellular Protein
1973 Levels on mRNA Abundance. *Cell* 165, 535–550.
1974 <https://doi.org/10.1016/j.cell.2016.03.014>.

1975 Lu, P., Takai, K., Weaver, V.M., and Werb, Z. (2011). Extracellular matrix degradation
1976 and remodeling in development and disease. *Cold Spring Harbor Perspectives in*
1977 *Biology* 3, a005058–a005058. <https://doi.org/10.1101/cshperspect.a005058>.

1978 Luo, M., Meng, Z., Moroishi, T., Lin, K.C., Shen, G., Mo, F., Shao, B., Wei, X., Zhang,
1979 P., Wei, Y., et al. (2020). Heat stress activates YAP/TAZ to induce the heat shock
1980 transcriptome. *Nat Cell Biol* 22, 1447–1459. <https://doi.org/10.1038/s41556-020-00602->

1981 9.

1982 Ma, Y.-C., Yang, Z.-S., Ma, L.-Q., Shu, R., Zou, C.-G., and Zhang, K.-Q. (2020). YAP in
1983 epithelium senses gut barrier loss to deploy defenses against pathogens. *Plos Pathog*
1984 16, e1008766. <https://doi.org/10.1371/journal.ppat.1008766>.

1985 Mansfeld, J., Urban, N., Priebe, S., Groth, M., Frahm, C., Hartmann, N., Gebauer, J.,
1986 Ravichandran, M., Dommaschk, A., Schmeisser, S., et al. (2015). Branched-chain
1987 amino acid catabolism is a conserved regulator of physiological ageing. *Nat Commun* 6,
1988 10043. <https://doi.org/10.1038/ncomms10043>.

1989 McKee, T.J., Perlman, G., Morris, M., and Komarova, S.V. (2019). Extracellular matrix
1990 composition of connective tissues: a systematic review and meta-analysis. *Sci Rep-Uk*
1991 9, 10542. <https://doi.org/10.1038/s41598-019-46896-0>.

1992 Meng, F., Suchyna, T.M., and Sachs, F. (2008). A fluorescence energy transfer-based
1993 mechanical stress sensor for specific proteins *in situ*: Mechanical stress sensor. *Febs J*
1994 275, 3072–3087. <https://doi.org/10.1111/j.1742-4658.2008.06461.x>.

1995 Meng, F., Suchyna, T.M., Lazakowitch, E., Gronostajski, R.M., and Sachs, F. (2011).
1996 Real Time FRET Based Detection of Mechanical Stress in Cytoskeletal and
1997 Extracellular Matrix Proteins. *Cellular and Molecular Bioengineering* 4, 148–159.
1998 <https://doi.org/10.1007/s12195-010-0140-0>.

1999 Miao, R., Li, M., Zhang, Q., Yang, C., and Wang, X. (2020). An ECM-to-Nucleus
2000 Signaling Pathway Activates Lysosomes for *C. elegans* Larval Development. *Dev Cell*
2001 52, 21-37.e5. <https://doi.org/10.1016/j.devcel.2019.10.020>.

2002 Mitra, S., Tiwari, K., Podicheti, R., Pandhiri, T., Rusch, D.B., Bonetto, A., Zhang, C., and
2003 Mitra, A.K. (2019). Transcriptome Profiling Reveals Matrisome Alteration as a Key
2004 Feature of Ovarian Cancer Progression. *Cancers* 11, 1513.
2005 <https://doi.org/10.3390/cancers11101513>.

2006 Molder, L. te, Pereda, J.M. de, and Sonnenberg, A. (2021). Regulation of
2007 hemidesmosome dynamics and cell signaling by integrin $\alpha 6\beta 4$. *J Cell Sci* 134.
2008 <https://doi.org/10.1242/jcs.259004>.

2009 Morikawa, Y., Zhang, M., Heallen, T., Leach, J., Tao, G., Xiao, Y., Bai, Y., Li, W.,
2010 Willerson, J.T., and Martin, J.F. (2015). Actin cytoskeletal remodeling with protrusion
2011 formation is essential for heart regeneration in Hippo-deficient mice. *Sci Signal* 8, ra41.
2012 <https://doi.org/10.1126/scisignal.2005781>.

2013 Moya, I.M., and Halder, G. (2019). Hippo–YAP/TAZ signalling in organ regeneration and
2014 regenerative medicine. *Nat Rev Mol Cell Bio* 20, 211–226.
2015 <https://doi.org/10.1038/s41580-018-0086-y>.

2016 Munkácsy, E., Khan, M.H., Lane, R.K., Borror, M.B., Park, J.H., Bokov, A.F., Fisher,
2017 A.L., Link, C.D., and Rea, S.L. (2016). DLK-1, SEK-3 and PMK-3 Are Required for the
2018 Life Extension Induced by Mitochondrial Bioenergetic Disruption in *C. elegans*. *Plos*
2019 *Genet* 12, e1006133. <https://doi.org/10.1371/journal.pgen.1006133>.

2020 Naba, A., Clauser, K.R., Lamar, J.M., Carr, S.A., and Hynes, R.O. (2014). Extracellular

2021 matrix signatures of human mammary carcinoma identify novel metastasis promoters.
2022 *Elife* 3, e01308. <https://doi.org/10.7554/elife.01308>.

2023 Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., and Hynes, R.O. (2016).
2024 The extracellular matrix: Tools and insights for the “omics” era. *Matrix Biology : Journal*
2025 of the International Society for Matrix Biology 49, 10–24.
2026 <https://doi.org/10.1016/j.matbio.2015.06.003>.

2027 Neutelings, T., Nusgens, B.V., Liu, Y., Tavella, S., Ruggiu, A., Cancedda, R., Gabriel,
2028 M., Colige, A., and Lambert, C. (2015). Skin physiology in microgravity: a 3-month stay
2029 aboard ISS induces dermal atrophy and affects cutaneous muscle and hair follicles
2030 cycling in mice. *Npj Microgravity* 1, 15002. <https://doi.org/10.1038/npjmggrav.2015.2>.

2031 Nishimura, M., Kumsta, C., Kaushik, G., Diop, S.B., Ding, Y., Bisharat-Kernizan, J.,
2032 Catan, H., Cammarato, A., Ross, R.S., Engler, A.J., et al. (2014). A dual role for
2033 integrin-linked kinase and $\beta 1$ -integrin in modulating cardiac aging. *Aging Cell* 13, 431–
2034 440. <https://doi.org/10.1111/acel.12193>.

2035 Page, A.P., and Johnstone, I.L. (2007). The cuticle. *WormBook : The Online Review of*
2036 *C Elegans Biology* 1–15. <https://doi.org/10.1895/wormbook.1.138.1>.

2037 Panciera, T., Azzolin, L., Cordenonsi, M., and Piccolo, S. (2017). Mechanobiology of
2038 YAP and TAZ in physiology and disease. *Nat Rev Mol Cell Bio* 18, 758–770.
2039 <https://doi.org/10.1038/nrm.2017.87>.

2040 Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon
2041 provides fast and bias-aware quantification of transcript expression. *Nat Methods* 14,
2042 417–419. <https://doi.org/10.1038/nmeth.4197>.

2043 Pelissier, F.A., Garbe, J.C., Ananthanarayanan, B., Miyano, M., Lin, C., Jokela, T.,
2044 Kumar, S., Stampfer, M.R., Lorens, J.B., and LaBarge, M.A. (2014). Age-Related
2045 Dysfunction in Mechanotransduction Impairs Differentiation of Human Mammary
2046 Epithelial Progenitors. *Cell Reports* 7, 1926–1939.
2047 <https://doi.org/10.1016/j.celrep.2014.05.021>.

2048 Pu, Y.-Z., Wan, Q.-L., Ding, A.-J., Luo, H.-R., and Wu, G.-S. (2017). Quantitative
2049 proteomics analysis of *Caenorhabditis elegans* upon germ cell loss. *J Proteomics* 156,
2050 85–93. <https://doi.org/10.1016/j.jprot.2017.01.011>.

2051 Rahimi, M., Sohrabi, S., and Murphy, C.T. (2022). Novel elasticity measurements reveal
2052 *C. elegans* cuticle stiffens with age and in a long-lived mutant. *Biophys J*
2053 <https://doi.org/10.1016/j.bpj.2022.01.013>.

2054 Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015).
2055 limma powers differential expression analyses for RNA-sequencing and microarray
2056 studies. *Nucleic Acids Res* 43, e47. <https://doi.org/10.1093/nar/gkv007>.

2057 Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor
2058 package for differential expression analysis of digital gene expression data.
2059 *Bioinformatics* 26, 139–140. <https://doi.org/10.1093/bioinformatics/btp616>.

2060 Rosa, L.D., Seconetti, A.S., Santis, G.D., Pellacani, G., Hirsch, T., Rothoef, T., Teig,

2061 N., Pellegrini, G., Bauer, J.W., and Luca, M.D. (2019). Laminin 332-Dependent YAP
2062 Dysregulation Depletes Epidermal Stem Cells in Junctional Epidermolysis Bullosa. *Cell Reports* 27, 2036-2049.e6. <https://doi.org/10.1016/j.celrep.2019.04.055>.

2063 Sacher, F., Feregrino, C., Tschopp, P., and Ewald, C.Y. (2021). Extracellular matrix
2064 gene expression signatures as cell type and cell state identifiers. *Matrix Biology Plus* 10,
2065 100069. <https://doi.org/10.1016/j.mbplus.2021.100069>.

2066 Sarov, M., Murray, J.I., Schanze, K., Pozniakovski, A., Niu, W., Angermann, K., Hasse,
2067 S., Rupprecht, M., Vinis, E., Tinney, M., et al. (2012). A genome-scale resource for in
2068 vivo tag-based protein function exploration in *C. elegans*. *Cell* 150, 855–866.
2069 <https://doi.org/10.1016/j.cell.2012.08.001>.

2070 Schinzel, R.T., Higuchi-Sanabria, R., Shalem, O., Moehle, E.A., Webster, B.M., Joe, L.,
2071 Bar-Ziv, R., Frankino, P.A., Durieux, J., Pender, C., et al. (2019). The Hyaluronidase,
2072 TMEM2, Promotes ER Homeostasis and Longevity Independent of the UPRER. *Cell*
2073 179, 1306-1318.e18. <https://doi.org/10.1016/j.cell.2019.10.018>.

2074 Schmeisser, S., Priebe, S., Groth, M., Monajembashi, S., Hemmerich, P., Guthke, R.,
2075 Platzer, M., and Ristow, M. (2013). Neuronal ROS signaling rather than AMPK/sirtuin-
2076 mediated energy sensing links dietary restriction to lifespan extension. 1–11.
2077 <https://doi.org/10.1016/j.molmet.2013.02.002>.

2078 Sebastiani, P., Federico, A., Morris, M., Gurinovich, A., Tanaka, T., Chandler, K.B.,
2079 Andersen, S.L., Denis, G., Costello, C.E., Ferrucci, L., et al. (2021). Protein signatures
2080 of centenarians and their offspring suggest centenarians age slower than other humans.
2081 *Aging Cell* 20, e13290. <https://doi.org/10.1111/acel.13290>.

2082 Shi, C., Runnels, A.M., and Murphy, C.T. (2017). Mating and male pheromone kill
2083 *Caenorhabditis* males through distinct mechanisms. *Elife* 6, e23493.
2084 <https://doi.org/10.7554/elife.23493>.

2085 Shuster, S., Black, M.M., and McVitie, E. (1975). The influence of age and sex on skin
2086 thickness, skin collagen and density. *The British Journal of Dermatology* 93, 639–643. .

2087 Statzer, C., and Ewald, C.Y. (2020). The extracellular matrix genome across species.
2088 *Matrix Biology Plus* 8, 100039. <https://doi.org/10.1016/j.mbplus.2020.100039>.

2089 Statzer, C., Venz, R., Bland, M., Robida-Stubbs, S., Meng, J., Patel, K., Emsley, R.,
2090 Petrovic, D., Liu, P., Morantte, I., et al. (2020). ATF-4 and hydrogen sulfide signalling
2091 mediate longevity from inhibition of translation or mTORC1. *Biorxiv* 2020.11.02.364703.
2092 <https://doi.org/10.1101/2020.11.02.364703>.

2093 Statzer, C., Jongsma, E., Liu, S.X., Dakhovnik, A., Wandrey, F., Mozharovskyi, P., Zülli,
2094 F., and Ewald, C.Y. (2021a). Youthful and age-related matreotypes predict drugs
2095 promoting longevity. *Aging Cell* 20, e13441. <https://doi.org/10.1111/acel.13441>.

2096 Statzer, C., Jongsma, E., Liu, S.X., Dakhovnik, A., Wandrey, F., Mozharovskyi, P., Zülli,
2097 F., and Ewald, C.Y. (2021b). Youthful and age-related matreotypes predict drugs
2098 promoting longevity. *BioRxiv* <https://doi.org/https://doi.org/10.1101/2021.01.26.428242>.

2099 Statzer, C., Reichert, P., Dual, J., and Ewald, C.Y. (2022). Longevity interventions

2101 temporally scale healthspan in *Caenorhabditis elegans*. *Iscience* 25, 103983.
2102 <https://doi.org/10.1016/j.isci.2022.103983>.

2103 Stiernagle, T. (2006). Maintenance of *C. elegans*. WormBook : The Online Review of C
2104 Elegans Biology 1–11. <https://doi.org/10.1895/wormbook.1.101.1>.

2105 Stroustrup, N., Ulmschneider, B.E., Nash, Z.M., López-Moyado, I.F., Apfeld, J., and
2106 Fontana, W. (2013). The *Caenorhabditis elegans* Lifespan Machine. *Nat Methods* 10,
2107 665–670. <https://doi.org/10.1038/nmeth.2475>.

2108 Suman, S.K., Daday, C., Ferraro, T., Vuong-Breder, T., Tak, S., Quintin, S., Robin, F.,
2109 Gräter, F., and Labouesse, M. (2019). The plakin domain of *C. elegans* VAB-10/plectin
2110 acts as a hub in a mechanotransduction pathway to promote morphogenesis.
2111 *Development* 146, dev183780. <https://doi.org/10.1242/dev.183780>.

2112 Taha, I.N., and Naba, A. (2019). Exploring the extracellular matrix in health and disease
2113 using proteomics. *Essays in Biochemistry* 63, 417–432.
2114 <https://doi.org/10.1042/ebc20190001>.

2115 Taylor, J., Unsoeld, T., and Hutter, H. (2018). The transmembrane collagen COL-99
2116 guides longitudinally extending axons in *C. elegans*. *Molecular and Cellular*
2117 *Neurosciences* 89, 9–19. <https://doi.org/10.1016/j.mcn.2018.03.003>.

2118 Tepper, R.G., Ashraf, J., Kaletsky, R., Kleemann, G., Murphy, C.T., and Bussemaker,
2119 H.J. (2013). PQM-1 Complements DAF-16 as a Key Transcriptional Regulator of DAF-
2120 2-Mediated Development and Longevity. *Cell* 154, 676–690.
2121 <https://doi.org/10.1016/j.cell.2013.07.006>.

2122 Teuscher, A.C., and Ewald, C.Y. (2018). Overcoming Autofluorescence to Assess GFP
2123 Expression During Normal Physiology and Aging in *Caenorhabditis elegans*. *BIO-*
2124 *PROTOCOL* 8. <https://doi.org/10.21769/bioprotoc.2940>.

2125 Teuscher, A.C., Jongsma, E., Davis, M.N., Statzer, C., Gebauer, J.M., Naba, A., and
2126 Ewald, C.Y. (2019a). The in-silico characterization of the *Caenorhabditis elegans*
2127 matrisome and proposal of a novel collagen classification. *Matrix Biology Plus* 1,
2128 100001. <https://doi.org/10.1016/j.mbplus.2018.11.001>.

2129 Teuscher, A.C., Statzer, C., Pantasis, S., Bordoli, M.R., and Ewald, C.Y. (2019b).
2130 Assessing Collagen Deposition During Aging in Mammalian Tissue and in
2131 *Caenorhabditis elegans*. *Methods Mol Biology Clifton N J* 1944, 169–188.
2132 https://doi.org/10.1007/978-1-4939-9095-5_13.

2133 Tharp, K.M., Higuchi-Sanabria, R., Timblin, G.A., Ford, B., Garzon-Coral, C., Schneider,
2134 C., Muncie, J.M., Stashko, C., Daniele, J.R., Moore, A.S., et al. (2021). Adhesion-
2135 mediated mechanosignaling forces mitohormesis. *Cell Metab*
2136 <https://doi.org/10.1016/j.cmet.2021.04.017>.

2137 Ting, D.T., Wittner, B.S., Ligorio, M., Vincent Jordan, N., Shah, A.M., Miyamoto, D.T.,
2138 Aceto, N., Bersani, F., Brannigan, B.W., Xega, K., et al. (2014). Single-Cell RNA
2139 Sequencing Identifies Extracellular Matrix Gene Expression by Pancreatic Circulating
2140 Tumor Cells. *Cell Reports* 8, 1905–1918. <https://doi.org/10.1016/j.celrep.2014.08.029>.

2141 Tu, H., Huhtala, P., Lee, H.-M., Adams, J.C., and Pihlajaniemi, T. (2015). Membrane-
2142 associated collagens with interrupted triple-helices (MACITs): evolution from a bilaterian
2143 common ancestor and functional conservation in *C. elegans*. *BMC Evolutionary Biology*
2144 15, 281. <https://doi.org/10.1186/s12862-015-0554-3>.

2145 Varani, J., Dame, M.K., Rittie, L., Fligiel, S.E.G., Kang, S., Fisher, G.J., and Voorhees,
2146 J.J. (2006). Decreased Collagen Production in Chronologically Aged Skin Roles of Age-
2147 Dependent Alteration in Fibroblast Function and Defective Mechanical Stimulation. *Am*
2148 *J Pathology* 168, 1861–1868. <https://doi.org/10.2353/ajpath.2006.051302>.

2149 Varlet, B.L., Chaudagne, C., Barré, P., Sauvage, C., Berthoulox, B., Meybeck, A.,
2150 Dumas, M., Saunois, A., and Bonté, F. (1998). Age-Related Functional and Structural
2151 Changes in Human Dermo—Epidermal Junction Components. *J Invest Derm Symp P* 3,
2152 172–179. <https://doi.org/10.1038/jidsymp.1998.34>.

2153 Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A.L., Orosz, L., and Müller, F. (2003).
2154 Genetics: influence of TOR kinase on lifespan in *C. elegans*. *Nature* 426, 620–620.
2155 <https://doi.org/10.1038/426620a>.

2156 Venz, R., Korosteleva, A., Jongsma, E., and Ewald, C.Y. (2020). Combining Auxin-
2157 Induced Degradation and RNAi Screening Identifies Novel Genes Involved in Lipid
2158 Bilayer Stress Sensing in *Caenorhabditis elegans*. *G3 Genes Genomes Genetics*
2159 g3.401635.2020. <https://doi.org/10.1534/g3.120.401635>.

2160 Vitiello, D., Dakhovnik, A., Statzer, C., and Ewald, C.Y. (2021). Lifespan-Associated
2161 Gene Expression Signatures of Recombinant BXD Mice Implicates Coro7 and Set in
2162 Longevity. *Frontiers Genetics* 12, 694033. <https://doi.org/10.3389/fgene.2021.694033>.

2163 Vogel, V. (2018). Unraveling the Mechanobiology of Extracellular Matrix. *Annu Rev*
2164 *Physiol* 80, 353–387. <https://doi.org/10.1146/annurev-physiol-021317-121312>.

2165 Vogel, B.E., and Hedgecock, E.M. (2001). Hemicentin, a conserved extracellular
2166 member of the immunoglobulin superfamily, organizes epithelial and other cell
2167 attachments into oriented line-shaped junctions. *Development* 128, 883–894.
2168 <https://doi.org/10.1242/dev.128.6.883>.

2169 Vukoti, K., Yu, X., Sheng, Q., Saha, S., Feng, Z., Hsu, A.-L., and Miyagi, M. (2015).
2170 Monitoring Newly Synthesized Proteins over the Adult Life Span of *Caenorhabditis*
2171 *elegans*. *J Proteome Res* 14, 1483–1494.
2172 <https://doi.org/10.1021/acs.jproteome.5b00021>.

2173 Vuong-Breder, T.T.K., Suman, S.K., and Labouesse, M. (2017). The apical ECM
2174 preserves embryonic integrity and distributes mechanical stress during morphogenesis.
2175 *Development* 144, 4336–4349. <https://doi.org/10.1242/dev.150383>.

2176 Walser, M., Umbricht, C.A., Fröhli, E., Nanni, P., and Hajnal, A. (2017). β -Integrin de-
2177 phosphorylation by the Density-Enhanced Phosphatase DEP-1 attenuates EGFR
2178 signaling in *C. elegans*. *PLoS Genetics* 13, e1006592.
2179 <https://doi.org/10.1371/journal.pgen.1006592>.

2180 Wang, S., Xie, F., Chu, F., Zhang, Z., Yang, B., Dai, T., Gao, L., Wang, L., Ling, L., Jia,

2181 J., et al. (2017). YAP antagonizes innate antiviral immunity and is targeted for lysosomal
2182 degradation through IKK ϵ -mediated phosphorylation. *Nat Immunol* 18, 733–743.
2183 <https://doi.org/10.1038/ni.3744>.

2184 Wang, W., Zuidema, A., Molder, L. te, Nahidazar, L., Hoekman, L., Schmidt, T.,
2185 Coppola, S., and Sonnenberg, A. (2020). Hemidesmosomes modulate force generation
2186 via focal adhesions. *J Cell Biol* 219, e201904137.
2187 <https://doi.org/10.1083/jcb.201904137>.

2188 Watanabe, N., Morimatsu, M., Fujita, A., Teranishi, M., Sudevan, S., Watanabe, M.,
2189 Iwasa, H., Hata, Y., Kagi, H., Nishiyama, M., et al. (2020). Increased hydrostatic
2190 pressure induces nuclear translocation of DAF-16/FOXO in *C. elegans*. *Biochem Biophys
2191 Res Co* 523, 853–858. <https://doi.org/10.1016/j.bbrc.2020.01.047>.

2192 Williams, E.G., Pfister, N., Roy, S., Statzer, C., Haverty, J., Ingels, J., Bohl, C., Hasan,
2193 M., Čuklina, J., Bühlmann, P., et al. (2021). Multiomic profiling of the liver across diets
2194 and age in a diverse mouse population. *Cell Syst* 13, 43-57.e6.
2195 <https://doi.org/10.1016/j.cels.2021.09.005>.

2196 Wolfson, M., Budovsky, A., Tacutu, R., and Fraifeld, V. (2009). The signaling hubs at
2197 the crossroad of longevity and age-related disease networks. *The International Journal
2198 of Biochemistry & Cell Biology* 41, 516–520.
2199 <https://doi.org/10.1016/j.biocel.2008.08.026>.

2200 Wolkow, C.A., Herndon, L.A., and Hall, D.H. (2017). The aging cuticle (WormAtlas).
2201 Xie, Q., Chen, J., Feng, H., Peng, S., Adams, U., Bai, Y., Huang, L., Li, J., Huang, J.,
2202 Meng, S., et al. (2013). YAP/TEAD-mediated transcription controls cellular senescence.
2203 *Cancer Res* 73, 3615–3624. <https://doi.org/10.1158/0008-5472.can-12-3793>.

2204 Yurchenco, P.D., Cheng, Y.-S., Campbell, K., and Li, S. (2004). Loss of basement
2205 membrane, receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy.
2206 *J Cell Sci* 117, 735–742. <https://doi.org/10.1242/jcs.00911>.

2207 Yuzhalin, A.E., Urbonas, T., Silva, M.A., Muschel, R.J., and Gordon-Weeks, A.N.
2208 (2018). A core matrisome gene signature predicts cancer outcome. *Brit J Cancer* 118,
2209 435–440. <https://doi.org/10.1038/bjc.2017.458>.

2210 Zahreddine, H., Zhang, H., Diogon, M., Nagamatsu, Y., and Labouesse, M. (2010).
2211 CRT-1/Calreticulin and the E3 Ligase EEL-1/HUWE1 Control Hemidesmosome
2212 Maturation in *C. elegans* Development. *Curr Biol* 20, 322–327.
2213 <https://doi.org/10.1016/j.cub.2009.12.061>.

2214 Zaidel-Bar, R., Miller, S., Kaminsky, R., and Broday, L. (2010). Molting-specific
2215 downregulation of *C. elegans* body-wall muscle attachment sites: the role of RNF-5 E3
2216 ligase. *Biochemical and Biophysical Research Communications* 1–6.
2217 <https://doi.org/10.1016/j.bbrc.2010.04.049>.

2218 Zannoni, S., L’Hernault, S.W., and Singson, A.W. (2003). Dynamic localization of SPE-9
2219 in sperm: a protein required for sperm-oocyte interactions in *Caenorhabditis elegans*.
2220 *Bmc Dev Biol* 3, 10. <https://doi.org/10.1186/1471-213x-3-10>.

2221 Zhang, H., Landmann, F., Zahreddine, H., Rodriguez, D., Koch, M., and Labouesse, M.
2222 (2011). A tension-induced mechanotransduction pathway promotes epithelial
2223 morphogenesis. *Nature* 471, 99–103. <https://doi.org/10.1038/nature09765>.

2224 Zhang, X., Smits, A.H., Tilburg, G.B. van, Ovaa, H., Huber, W., and Vermeulen, M.
2225 (2018). Proteome-wide identification of ubiquitin interactions using UbIA-MS. *Nat Protoc*
2226 13, 530–550. <https://doi.org/10.1038/nprot.2017.147>.

2227 Zhang, Y., Li, W., Li, L., Li, Y., Fu, R., Zhu, Y., Li, J., Zhou, Y., Xiong, S., and Zhang, H.
2228 (2015). Structural damage in the *C. elegans* epidermis causes release of STA-2 and
2229 induction of an innate immune response. *Immunity* 42, 309–320.
2230 <https://doi.org/10.1016/j.immuni.2015.01.014>.

2231 Zhang, Z., Bai, M., Barbosa, G.O., Chen, A., Wei, Y., Luo, S., Wang, X., Wang, B.,
2232 Tsukui, T., Li, H., et al. (2020). Broadly conserved roles of TMEM131 family proteins in
2233 intracellular collagen assembly and secretory cargo trafficking. *Sci Adv* 6, eaay7667.
2234 <https://doi.org/10.1126/sciadv.aay7667>.

2235 Zhou, L., and Lu, H. (2010). Targeting Fibrosis in Duchenne Muscular Dystrophy. *J*
2236 *Neuropathology Exp Neurology* 69, 771–776.
2237 <https://doi.org/10.1097/nen.0b013e3181e9a34b>.

2238 Zugasti, O., Thakur, N., Belougne, J., Squiban, B., Kurz, C.L., Soulé, J., Omi, S., Tichit,
2239 L., Pujol, N., and Ewbank, J.J. (2016). A quantitative genome-wide RNAi screen in *C.*
2240 *elegans* for antifungal innate immunity genes. *BMC Biology* 14, 35.
2241 <https://doi.org/10.1186/s12915-016-0256-3>.