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ABSTRACT

The analysis of ‘omic data depends heavily on machine-readable information about protein interactions,
modifications, and activities. Key resources include protein interaction networks, databases of post-
trandational modifications, and curated models of gene and protein function. Software systems that read
primary literature can potentially extend and update such resources while reducing the burden on human
curators, but machine-reading software systems have a high error rate. Here we describe an approach to
precisely assemble molecular mechanisms at scale using natural language processing systems and the
Integrated Network and Dynamical Reasoning Assembler (INDRA). INDRA identifies overlaps and
redundancies in information extracted from published papers and pathway databases and uses
probability models to reduce machine reading errors. INDRA enables the automated creation of high-
quality, non-redundant corporafor use in data analysis and causal modeling. We demonstrate the use of
INDRA in extending protein-protein interaction databases and explaining co-dependencies in the Cancer

Dependency Map.
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INTRODUCTION

Molecular biology is characterized by a sustained effort to acquire and organize mechanistic information
about the molecules governing the behavior of cells, tissues and organisms (Craver and Darden, 2013).
“Mechanism” is used rather loosely in this context, since it operates on multiple scales from the
structural transitions of individual molecules to the myriad interactions mediating signal transduction,
but it is generally understood to involve a description of the properties, modifications and behaviors of
biomoleculesin terms of physical and chemical principles. Individual mechanistic discoveries are
reported in the biomedical literature, which, with over 3 x 10’ articles indexed in PubMed as of 2022,
constitutes a substantial public investment and an essential source of knowledge. However, resultsin
research papers are generally described in natural language designed for human — not machine —
consumption. Asthe literature has grown, and methods of experimental data collection become more
diverse, it has become impossible for any individual scientist to acquire all of the background
knowledge necessary to be an expert in a particular problem and fully interpret experimental results
(Forscher, 1963). Biomedicineis therefore faced with a substantial problem of knowledge aggregation,
harmoni zation, and assembly.

The bioinformatics community has actively worked to make knowledge more accessible by curating
information about molecular mechanisms in a machine readable form suitable for computational data
analysis (Ashburner et al., 2000; Fabregat et al., 2018; Perfetto et al., 2016; Schaefer et al., 2009). This
has led to the creation of standard representation languages (Demir et al., 2010; Hucka et al., 2003), and
databases that aggregate curated knowledge from multiple primary sources (Cerami et al., 2011; Jensen
et a., 2009; Turei et al., 2016). Curated databases form the backbone of many widely used methods of
high-throughput data analysis, including gene set and pathway enrichment, and prior knowledge-guided
network inference (Babur et al., 2021; Dugourd et al., 2021). However, creation of these database has
largely involved human curation of the literature, which is costly and difficult to sustain (Bourne et al.,
2015). As aresult, most databases and online resources are incomplete; for example, the creators of
Pathway Commons (which aggregates pathway knowledge from 22 primary human-curated databases)
have estimated that their resource covers only 1-3% of the available literature (Valenzuela-Escarcega et
al., 2018). At the sametime, databases such as Pathway Commons contain redundant or conflicting
information about the same sets of mechanism because assembling knowledge into a coherent whole
remains difficult and is currently dependent on additional human curation. Compounding these
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difficultiesis the increasing volume of published scientific articles and the fact that curation standards
and languages evolve along with methods of data collection and analysis, making on-going maintenance
of apreviously curated resources necessary to prevent them from becoming obsol ete.

Automated extraction of mechanistic information through literature mining has the potential to address
many of the challenges associated with manual curation (Ananiadou et al., 2015). However, the
precision of machine reading systemsis still lower than that of human curators, particularly for complex
relationships that underly many statements about mechanism (Allen et al., 2015; ISlamagj Dogan et al.,
2019; Madan et al., 2019). Nevertheless, at the current state of the art, machine reading can extract
simple relations (e.g., post-translational modifications and binding and regulatory events) at literature
scale and with reasonable reliability. A variety of text mining systems have been developed, each with
different designs, strengths, and weaknesses, but common steps include grammatical parsing of
sentences, named entity recognition and normalization, also called grounding (i.e., associating entities
with astandardized identifier in controlled vocabularies such as HGNC), and event extraction
(identifying interactions, transformations or regulations among grounded entities). Much of the research
to date in text mining for biology has focused on small-scale studies for method validation, but a handful
of efforts have amed to create large-scale resources available for use in data analysis by the broader
computational biology community (Van Landeghem et al., 2013; Yuryev et al., 2006). We specul ate that
the reliability of machine reading could be increased by combining the results of multiple distinct

systems in a principled manner, but few such combined approaches have been described thusfar.

What is still needed are computationa tools for the large-scal e assembly of both text-mined and curated
mechanismsin databases to generate knowledge resources with mechanistic detail and genome scale.
Human-generated resources such as Reactome (Fabregat et al., 2018) aspire to this, but would benefit in
scope and currency from human-in-the-loop collaboration with machines. However, machine assembly
must overcome not only errors in grounding and event extraction but also the challenges associated with
combining noisy information about mechanisms at different levels of specificity. Users of this
information may have different end goals, but have a common need for reliable networks and models
that can be used to investigate mechanisms at the level of the individual reactions, mutations, or drug-
binding events—something currently possible on a smaller scale using dynamical systems analysis
(Lopez et al., 2013) and logic-based modeling (Saez-Rodriguez et al., 2009). These more mechanistic
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networks and models contrast with existing genome-scale networks that commonly involve unsigned
node-edge graphs that aggregate diverse types of interactions (genetic, physical, co-localization, etc.)
using the simplest possible abstraction.

We previously described a software system, the Integrated Network and Dynamical Reasoning
Assembler (INDRA) that automates the use of curated natural language text to create computational
models that can be executed using dynamical, logic-based, or causal formalisms (Gyori et a., 2017). For
example, we have previously used INDRA to convert “word models’” expressed in smplified declarative
text (e.g., “Active ATM activates p53. Active p53 transcribes MDM2 etc.”) into dynamical ODE-based
models. A key feature of INDRA isthat it uses an intermediate representation to decouple the process of
knowledge collection from the construction of specific models (Figure 1A). More specifically, INDRA
normalizes mechanistic information expressed in natural (English) language into a high-level
intermediate machine representation called Statements. Statements can then be used directly to create
executable models, for example in rule-based languages such as BioNetGen or PySB. The current
taxonomy of INDRA Statements accounts for the types of biomolecular processes most commonly
involved in intracellular biological networks and signal transduction (e.g., post-tranglational
modifications, positive and negative regulation, binding, transcriptional regulation, etc.) but is extensible
to other domains of natural science.

Here we describe a greatly expanded set of computational tools and use cases, implemented within the
INDRA architecture, for combining mechanistic information obtained at scale from primary research
publications. Thisisa substantially more challenging task than the conversion of short, controlled,
declarative text into ODE models that we described previously (Gyori et al., 2017). We accomplished
reading at scale by combining the results of multiple reading systems with curated mechanisms from a
wide range of databases and structured knowledge sources. Used in thisway, INDRA identifies
duplicate and partially overlapping Statements, allowing for automated assembly of mechanistic
fragments into a nonredundant and coherent set of interactions and subsequently into large-scale
knowledge assemblies for use in biocuration and data analysis. We illustrate the end-to-end assembly
procedure with INDRA by processing publications specifically relevant to human genes and integrate
thisinformation with publicly available databases to create a corpus of ~ 900,000 unique and specified
interactions among human proteins. We found that overlap between different machine reading systems
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was surprisingly small (highlighting both the readers’ complementarity and their limitations), but for a
given Statement, the existence of supportive evidence from multiple systems was informative of
reliability. We used manual curation to analyze the error and overlap characteristics of multiple machine
reading systems and, using this data, we developed predictive models that estimate the technical
reliability of text-mined extractions in the form of a“belief score”. To evaluate the utility of machine-
extracted mechanisms we used the INDRA-assembled corpus of Statements to prioritize protein-protein
interactions for curation that are not yet captured in the widely used structured knowledgebase,
BioGRID (Oughtred et al., 2019). Finally, we used the same assembled corpus to identify and explain
gene dependency relationships in the Cancer Dependency Map (DepMap) dataset (Meyerset al., 2017;
Tsherniak et al., 2017). In this case, an INDRA-assembled network served helped determine statistically
significant codependencies between genes, thus allowing for the detection of new codependenciesin the
context of cancer. INDRA also provided possible mechanistic explanations rooted in the scientific

literature for observed DepM ap codependencies.

RESULTS

Automated assembly of large knowledge bases from curated databases and machine reading systems
raises a series of interconnected issues not arising in the conversion of curated natural language text to
machine readable mechanisms (Figure 1A) (Gyori €t a., 2017). In particular, each source of
information yields many mechanistic fragments that capture only a subset of the underlying process,
often at different levels of abstraction. For example, one source might describe the MEK1 (HUGO name
MAP2K1) phosphorylation of ERK2 (MAPK1) on a specific threonine residue (T185), whereas another
source might describe the same process at the protein family level, stating that MEK phosphorylates
ERK, without mentioning a specific isoform, residue or site position (Figure 1B). Individual
mechanisms obtained from machine reading are not only fragmented, they also include different types of
technical errors that must be overcome (Figure 1B, red font). One analogy for assembling pathways
from mechanigtic fragmentsis the assembly of afull genome sequence from many noisy, overlapping
sequencing reads (Figur e 1B). The goal of knowledge assembly is similarly to achieve a best
“consensus’ representation of the underlying processes, incorporating as much mechanistic detail as
possible while minimizing errors. Ultimately, the process is expected to yield computational approaches
for finding truly missing or discrepant information, by analogy with variant calling.
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Box 1. Representing knowledge captured from multiple sourcesin INDRA (Figure 1C)
Scientific publications contain descriptions of mechanisms (interaction, regulation, etc.) among
biological entities. These descriptions can be extracted either by human experts and captured in
curated databases or extracted automatically by reading systems using natural language processing.
Collectively, reading systems and curated databases serve as knowledge sources for INDRA. These
extractions are made available by knowledge sources in avariety of custom machine-readable formats
such as JSON, XML and TSV. INDRA processes such extractionsinto INDRA Statements. Each
Satement represents atype of mechanism (e.g., Ubiquitination), and has multiple elements, including
Agents representing biological entities such as proteins or small molecules, and potentially other
mechanistic detail such as an amino acid residue for a modification. Each Satement can be supported
by one or more mentions, each representing a single curated database entry or a single extraction by a
reading system from a sentence in a given publication. Mentions are represented by INDRA as
Evidence objects that have a multitude of properties representing rich provenance for each mention,

including the source sentence and the identifiers of the source publication.

Our preliminary studies identified multiple technical and conceptual problems that needed to be
addressed to assemble coherent knowledge at scale. These included (i) inconsistent use of identifiers for
biological entities among different sources, (ii) full or partial redundancy between mechanisms, and (iii)
technical errorsin named entity recognition and relation extraction. Such problems are particularly
salient when integrating literature-mined interactions, but they also exist when aggregating interactions
from multiple curated databases, due to differences in curation practices. For example, in Pathway
Commons v12 there are at least eight different curated representations of the process by which MAP2K1
phosphorylates MAPK1, each at a different level of detail (Figure S1A). We developed a set of INDRA
algorithms for addressing each of these assembly challenges. These algorithms are general-purpose and
can be configured to support a wide range of modeling applications (Figure 1D), asillustrated in the

following examples of machine reading, assembly, and data analysis.

INDRA integrates mechanisms from pathway databases and machinereading

We used six machine reading systems, Reach (Valenzuela-Escércega et al., 2018), Sparser (McDonald
et al., 2016), MedScan (Novichkova et a., 2003), TRIPS'DRUM (Allen et d., 2015), RLIMS-P (Torii et
a., 2015), and the ISI/AMR system (Garg et al., 2016) to process 567,507 articles (using full-text
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content when available, and allowed by copyright restrictions, and abstracts otherwise; Table 1) curated
as having relevance to human protein function (see Methods). Reader output was normalized to INDRA
Statements, yielding ~5.9-10° unassembled or “raw” Statements (Figure 2A). These were combined
with approximately 7.3-10° INDRA Statements extracted from structured sources such as Pathway
Commons and the BEL Large Corpus; this used the previously described extraction logic (Gyori et al.,
2017) but extended to multiple additional sourcesincluding SIGNOR (Perfetto et al., 2016). In
combination, reading and databases yielded atotal of ~6.7-10° raw Statements (the end-to-end assembly
isillustrated schematically in Figure 2A). In what follows, we refer to the resulting set of assembled
INDRA Statements as the INDRA Benchmark Corpus.

After collecting information from each source, a series of normalization and filtering procedures were
applied (green and red boxes, Figure 2A). These processing steps have been combined into a custom
computational pipeline but are also available as individual and reusable software modulesin INDRA.
First, we removed Statements that were supported by mentions indicative of a hypothesis rather than an
assertion (for instance, including sentences phrased as “we tested whether...”). Next, “grounding
mapping” was performed to correct systematic errors in named entity normalization, which often arise
due to the ambiguity of biomedical naming conventions. INDRA integrates both a manually-curated
mapping table to fix entities frequently mis-identified by reading systems (described in detail in
(Bachman et al., 2018)), and a set of machine learned models to perform disambiguation based on text
context (by integrating the Adeft (Steppi et al., 2020) and Gilda (Gyori et a., 2022) systems). “ER” isan
example of acommon but ambiguous entity: it can stand for endoplasmic reticulum, estrogen receptor,
estradiol receptor, emergency room, and a variety of other entities and concepts depending on context.
As currently implemented, Reach, Sparser and other reading systems ground “ER” deterministically to a
singleidentifier (e.g., estrogen receptor) irrespective of context. In contrast, the machine learned
disambiguation models integrated into INDRA predict the most likely meaning of entities such as ER
based on surrounding text; thisis then used to current the results of text reading systems.

The next step of the grounding mapping process standardizes identifiers for individual entitiesusing a
network of cross-references between equivalent identifiersin different namespaces (Figure S2A). This
addresses the opposite problem from the one described above (i.e., one name corresponding to multiple
entities), namely that a single entity can have multiple identifiersin different namespaces, and these
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identifiers can be assigned incons stently across machine reading systems and curated database sources.
For example, a metabolite such as prostaglandin E-2 identified using a Chemical Entities of Biological
Interest identifier (ChEBI; (Hastings et al., 2016)) will be assigned additional, equivalent identifiers, and
a standard name so that it has the same canonical form as an equivalent metabolite identified using a
NCBI Medical Subject Heading identifier (MESH; Figures S2A and S2B). This procedure ensures that
Agentsin INDRA Statements take on canonical identifiers in multiple namespaces, irrespective of the

identifier used in the original source of knowledge.

The final normalization procedure we performed was sequence normalization. This accounts for
inconsistencies in attributed sequence positions of post-translational modifications, some of which
involve outright errorsin residue numbers, while others involve the implicit, interchangeable use of
residue numbers between human and model organism reference sequences (Bachman et al., 2019).
Commonly, human and mouse residue numbers are used interchangeably even through residue
numbering in orthologous proteins frequently differs, so sequence normalization is necessary for

accurate knowledge assembly.

After these steps were performed, Statements still containing ungrounded entities (~38% of Statements
contained Agents that lacked any identifiers) were filtered out, as were Statements containing non-
canonical sequence positions (about 1% of Statements) as these likely arose from machine reading
errors. Because the current study focuses on biology involving human genes, we also filtered the set of
Statements to just those containing human genes and their families/complexes. Each of these processing
and filtering steps operate at the level of individual Statements and change the overall number of
Statements as well as proportion of Statementsin the corpus from each input source, as shown in Figure
2B. Thefinal corpus contained ~2.9-10° Statements after al filtering steps.

Once the normalization steps were complete, we used INDRA to combine Statements representing
equivalent mechanisms from different sources into a single unique Statement; each unigque Statement
was associated with the supporting mentions from all contributing knowledge sources including curated
databases and reading systems (Figure 2C). In some cases, multiple readers will have extracted the
same mechanisms from the same sentence, but different reading systems often generated mentions

supporting a specific Statement from different sentences in a given publications or even from different
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publications (Figure 2C). This highlights the substantial differences between reading systems and
highlights the benefits of the multi-reader approach used in this paper. For the Benchmark Corpus,
~2.9:10° filtered Statements yielded ~9-10° unique Statements after combining duplicates (Figure 2A),
with an average of ~3 supporting mentions per Statement. However, the distribution of mentions per
Statement was highly non-uniform, with alarge number of Statements (63%) attributable to asingle
sentence or database entry, and a small number of Statements (82 in total) having >1,000 supporting
mentions (Figur e 2D). For example, the Statement that “TP53 binds MDM2” has 2,494 distinct pieces
of evidence. Although noisy for high counts, the distribution of Statements having a given number of
mentions appeared linear on alog-log plot (Figure 2D) implying along-tailed distribution potentially
following a power law. To confirm this, we fitted the observed mention distribution using two
approaches: (i) linear regression of the complement cumulative distribution of mention counts on alog
scale, which showed a strong linear relationship (r=0.999, p<10™"), and implied a power law exponent
of @ = 2.33; and (ii) fitting directly to a power law using the powerlaw software package (Alstott et al.,
2014), which showed that the distribution was fit by a power law with exponent « = 2.38 (standard
error ¢ = 0.008) (Figure 2E) and was more likely than alternatives such as exponentia (p < 10°) or
positive log-normal (p<10°). Thus, the distribution of Statements having a given number of supporting
mentions is similar to long-tailed distributions observed in avariety of domains including linguistics,
computer networking and demographics (Clauset et al., 2009).

A significant benefit of jointly assembling mechanisms from both databases and literature is that curated
interactions from databases become linked to textual evidence that support the interaction (Figure 2F).
For example, the fact that RCHY 1 ubiquitinates TP73 appears as a curated interaction in the NCI-PID
database (Schaefer et al., 2009) with reference to PM1D20615966 (Sayan et al., 2010), but without
providing specific supporting text within that publication. In the Benchmark Corpus, INDRA aligns
seven mentions obtained from text mining with the ubiquitination of TP73 by RCHY 1 derived from four
sentences in two more recent publications (Coppari et al., 2014; Wu et al., 2011) (Figure 2F). Such
aggregation of evidence across curated databases and text mining systems is highly beneficial because it
increases confidence in the accuracy and relevance of the mechanism. Thisiswhere INDRA, dueto its
automated nature, provides a substantial advantage for linking literature sources to specific interactions
compared to comparable manual curation, which would be laborious and time consuming (Kemper et
al., 2010).

10
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Detecting hierarchical relationships between mechanisms

Following processing, filtering, and the identification of duplicate Statements, the next assembly step is
to identify relationships among “overlapping” Statements (Figure 3A). A pair of Statementsis
considered to be overlapping when one functions as a refinement (i.e., adds additional mechanistic
detail) to the other. Although the analogy in this case is not perfect, something ssimilar isrequired in
genome assembly — if a shorter sequenceisfully contained in alonger sequence, the shorter oneis
redundant. When such a relationship exists between two Statements, we say that the more detailed one
“refines’ the less detailed one. Refinement can happen at the level of entities (e.g., an Agent
representing a protein family and another a specific member of that family), or molecular states and
context (e.g., an explicit reference to asite of post-transational modification in one Statement and its
omission in another). The refinement relationship between Statementsis determined using a partial
ordering logic that compares pairs of Statement based on their individual elements (where elements
include the Agents involved in the Statement, and, depending on the type of Statement, post-
translational modifications, cellular locations, types of molecular activity, etc.) and determines whether
each element is either equivalent to or arefinement of the other (Figure 3A). To accomplish this,
INDRA makes use of hierarchies of each relevant type of element, including proteins and their families
and complexes drawn from FamPlex (Bachman et al., 2018), combined with chemical and bioprocess
taxonomies from ChEBI and the Gene Ontology (Ashburner et al., 2000) (e.g., MAP2K1 is a specific
genein the MEK family, Figure 3A, blue), protein activity types (e.g., kinase activity is a specific type
of molecular activity, Figure 3A, red), post-translational modifications (e.g., phosphorylation isatype
of modification, Figure 3A, green), and cellular locations (also obtained from the Gene Ontology; e.g.,
that the cytoplasm is a compartment of the cell, Figure 3A, purple). A Statement is also considered a
refinement of another if it contains additional contextual details but is otherwise a match across
corresponding elements. One example of such arefinement relationship is shown in Figure 3B, in
which the first Statement (Figur e 3B, top) describes an additional molecular state (MAP2K1 being
bound to BRAF) and mechanistic detail (T185 as the specific site of modification of MAPK1) over
another Statement (Figur e 3B, bottom) which omits these contextual details.

Pairwise refinement of relationships among Statements is most easily represented using a graph in which

nodes represent Statements and directed edges point from a node representing a Statement to another
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node representing the Statement that it refines. Such Statement refinement graphs can be quite deep (i.e.,
the length of a directed path starting from a Statement can consist of a large number of edges going
through many refined Statements). For example, the refinement subgraph for RPS6KAL phosphorylated
on S732, T359, S363, T573, S380, and S221 phosphorylates CREB1 on S133 (Figure 3C, where
RPS65KAL encodes the ribosomal S6 kinase and CREB1 atranscription factor) has nine levels. The
refinement relationships for this Statement reveal the varying levels of specificity at which agiven
mechanism is described in sources. CREB is phosphorylated has 2,268 mentions in the literature
collected by 4 reading systems, RPS6KAL phosphorylates CREB1 has 3 mentionsin total from both
literature and curated databases, and CREBL is phosphorylated on S133 has 399 mentions. It isalso
worth noting that support from curated databases for these Statements (Figure 3C, blue circles) is not
attributable to a single database source. For example the Statement labeled S1 in Figure 3C isderived
only from Pathway Commons, S5 only from SIGNOR, and S7 only from HPRD (Mishra, 2006).

Organizing Statements hierarchically helps to ensure that an assembled model does not contain
information that is mechanistically redundant. For instance, the Statementsin Figure 3C, if viewed as a
graph with nodes representing entities (RPS6KA 1, CREBL1, etc.) and edges representing
phosphorylation reactions (Figure 3D, solid arrows) reveals five partialy redundant edges (e.g.,
RPS6KA1—-CREB1, POORSK—CREB1, POORKS—CREB, etc.) connecting members of the RSK and
CREB protein families at different levels of specificity (e.g., POORSK is amember of the RSK family,
Figure 3D, dashed arrows). A key feature of INDRA isthat it can recover Statement refinement
relationships, enabling principled resolution of complex redundancies, for example, by retaining only
Statements that are not refined by any other Statements (in the case of Figur e 3C, the Statement labeled
as S1 at the top of the graph). The refinement graph in Figure 3C also reveals how a highly specific
Statement can serve as evidence for all the other Statements it subsumes, a relationship that is exploited
when estimating Statement reliability.

We found that refinement relationships were common in the Benchmark Corpus: 38% of Statements
refined at least one other Statement, and some Statements refined a large number of other Statements,
including 89 Statementsthat refined at least 20 other Statements (Figure 3E). These Statements are
typically ones that represent a canonical (i.e., often described) mechanism (for example, the mechanism
by which members of the AKT protein family phosphorylate GSK 3 proteins) at a high level of detail
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and subsume multiple variants of the same mechanism described at a lower level of detail. We also
found that the Benchmark Corpus contained tens of thousands of refinements involving three or more
levels (Figure 3F), emphasizing that many mechanisms across databases and literature are described at
many levels of specificity. INDRA assembly can reconstruct these relationships and allow resolving the

corresponding redundancy.

Modeling thereliability of INDRA Statementswith the help of a curated cor pus

One of the most challenging problems in using mechanisms generated by text mining is the unknown
reliability of the extracted information. While the notion of “reliability” includes conventional scientific
concerns, such asthe strength of a particular study or method (Figure 4A, upper left quadrant), in
practice the overwhelming majority of incorrect assertions result from technical errors in machine
reading (Figure 4A, lower left quadrant). Common reading errors include systematic misidentification
of named entities, incorrect polarity assignment (e.g., classifying activation asinhibition), failure to
recognize negative evidence (e.g., “A does not cause B"), and difficulty distinguishing hypotheses from
assertions and conclusions (e.g., “we tested whether A causes B” as opposed to “A causes B”) (Noriega-
Atalaet al., 2019; Vaenzuda-Escarcega et al., 2018). These errors arise primarily because scientific text
uses a wide range of non-standard naming conventions to refer to entities and uses complex grammatical
structures to convey the confidence associated with aresult or datapoint. Indeed, much of the art in
scientific writing isto generate text that appears to progress inexorably from a hypothesis to the
description of supporting evidence to a conclusion and its caveats. Thistype of writing can be difficult
even for humans to fully understand. Addressing the technical errors of reading systems at the level of
individual Statementsis a prerequisite for addressing the additional issues that arise when Statements are

combined into causal models (Figure 4A, right quadrants).

To study the reliability of our assembled Statements, we sampled a set of Statements from the
Benchmark Corpus. The sampled Statements had between 1 and 10 mentions per Statement and arose
from five reading systems (Reach, Sparser, MedScan, RLIMS-P and TRIPS; we excluded the ISI/AMR
system from this systematic analysis due to the low number of extractionsit produced). Two of the
authors, both of whom are PhD biomedical research scientists, used thisto develop a Curated Corpus
from the sampled Statements. Curation involved determining whether a given mention correctly

supported a specific Statement based on human understanding of the sentence containing the mention
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and the overall context of the publication (see Methods). The resulting Curated Corpus data set covers
~980 Statements with a combined total of ~5,000 mentions (Table 2).

For a single reading system, the reliability of an extracted Statement has been observed to increase with
the number of different supporting mentions (Vaenzuela-Escarcega et al., 2018). We hypothesized that
a Statement with multiple mentions would be more reliable if the supporting mentions had been
independently extracted by more than one reading system. To test thisidea, we used two complementary
approaches to create models of Statement reliability: (i) structured probability models that build on
empirical error characteristics of individual reading systems based on the Curated Corpus, and (ii)
machine learning (ML) models trained on the Curated Corpus. Structured probability models require
much less training data, however, machine learned models are generally more expressive and likely to

be more accurate in predicting Statement reliability, given sufficient training data.

Modeling therdiability of Statementsfrom individual reading systems

We first examined the error characteristics of individual reading systems. For individual readers,
analysis of the Curated Corpus showed that while Statements with more mentions are generally more
reliable, in many cases Statements supported by many sentences were still incorrect due to the presence
of systematic errors (Figure 4B). For example, the Sparser reading system extracted the Statement
MAOA binds MAOB with ten mentions from ten different publications, but all extractions were incorrect
because the system incorrectly interpreted “association” as referring to a physical interaction rather than
a statistical association between MAOA and MAOB, which iswhat the original publications described.
We compared three alternative probability models for their ability to capture the dependence of sentence
reliability on mention count: (i) asimple binomial modd, (ii) a beta-binomial model (a binomial model
in which the probability of success at each trial follows a beta distribution), and (iii) a two-parameter
model that captures both random and systematic errors — we termed this latter model the INDRA Belief
Model (Figure 4C; see Methods). Each of the three models was independently fitted to data from the
Curated Corpus using Markov chain Monte Carlo optimization (see Methods) (Foreman-Mackey et al.,
2013). Both the beta-binomial model and the INDRA Belief Model outperformed the binomial model at
predicting Statement correctness from mention counts, primarily due to their ability to capture the
empirical observation that even high-mention Statements do not approach an accuracy of 100% (a
phenomenon accounted for by modeling systematic reader errors) (Figure 4D, Table 3). The INDRA
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Belief Model performed dlightly better than the beta-binomial model at predicting Statement correctness
for both the Reach and Sparser reading systems (T able 3) dueto its better fit to low mention-count
Statements that make up the bulk of the corpus (Figure 4D, mentions 1, 2, and 3). An additional
advantage of the INDRA Belief Modd is that the random and systematic error rates €.anq and ey,¢ are
interpretable and can be estimated heuristically by examining a small number of high-mention
Statements (with precision approximately equal to ey) and 1-mention Statements (with precision equal
t0 ey« + (1 — €ys)€rand). Thismakesit possible to set reasonable parameters for the INDRA Belief
Model based on prior intuition or examination of a small number of exemplary Statements. Since the
INDRA Belief Model performed the best overall, it is used as the default model in INDRA when no
curation datais available. However, we noted that the beta-binomial model more accurately fit the
underlying distribution of correct mentions for each Statement, suggesting that further researchis
needed on such error models (Figures S4A and $4B).

Multi-reader overlap isassociated with higher Statement frequency and reliability

To better understand the potential for multi-reader reliability assessment, we characterized the extent of
reader overlap in the Benchmark Corpus. We call two or more readers overlapping for a given Statement
if they each produced mentions supporting that Statement. We found that 19% of assembled Statements
had supporting mentions from two or more reading systems (T able 4; Figures 5A and S5A) but the
bulk of Statements were supported exclusively by either Reach, Sparser, or MedScan (Figure 5A). The
low overlap between readersis attributable to differencesin their design, including their approachesto
grammatical parsing, named entity recognition, associated resources (i.e., which lexical sources each
reader incorporates), and the types of grammatical or semantic patterns that can be recognized. Low
overlap among readers implies that using multiple reading systems in an integrated fashion via INDRA
can increase coverage relatively to any single reading system.

Despite the relatively small overlap among readers, the number of mentions from each reader supporting
a Statement showed substantial correlation, with both p(Reach, Sparser) and p(Reach, MedScan) > 0.6
(Table5). We found, however, that these correlations in mention counts among Reach, Sparser, and
MedScan were primarily driven by a subset of relations with very high numbers of mentions (Figure
5B). More generally, we found that reader overlap for a Statement increases as a function of the number
of supporting mentions an individual reader extracted for the Statement (Figure 5C). Overall, these data
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support the observation that, if a mechanism represented by a Statement is described in many different
sentences across input documents, multiple systems are likely to extract supporting mentions, and these
will often come from different sentences and publications (as we showed in Figures 2C and E).

When we examined the relationship between reader overlap and Statement correctness using the Curated
Corpus, we found that Statements supported by many mentions were more likely to overlap with other
readers and be correct (Figure S5B, blue points along diagonals). Notably, in the case of Reach, the
reader for which the most extensive subset of curated Statements was generated, we found that the
probability of Statement correctness increased with the overall number of Reach mentions, but only for
high-mention Statements that also included support from other readers (Figur e 5D, blue points). For
relations with support only from Reach, empirical correctness increased from 1 to 2 mentions (an
observation consi stent with the findings regarding the Reach system’ s precision (Vaenzuela-Escarcega
et a., 2018)), but additional Reach-only mentions were not associated with substantial further increases
in precison (Figure 5D, red points). Thus, in amulti-reader setting, the absence of reader overlap aso
plays akey role in assessing Statement reliability. These observations imply that combining multiple
reading systems can be highly valuable when assessing Statement correctness based on supporting
mentions. It also providesinformation that can be used by developers of reading systems to increase
recall and precision.

Two approachesto modeling therdiability of Statementsfrom multiplereaders

We evaluated two strategies for assessing the reliability of Statements using mention counts from
multiple readers: (i) extending the INDRA Belief Model, and (ii) training machine learning models on
the Curated Corpus. Even though reader errors were not in fact fully independent of each other (Figure
S5B) we made an assumption of independence (Zhang, 2004) to extend the INDRA Belief Model to
multiple reading systems while adding the fewest additional model parameters. Specifically, the model’s
formulation of error estimates was changed to express the probability that al the mentions extracted by
all the readers were jointly incorrect (see Methods). We compared the extended INDRA Belief Model to
several different machine-learned classifiers for their ability to correctly predict Statement correctness
based on mention counts from each reading system. Evaluated classifiers included Logistic Regression
on log-transformed mention counts, k-Nearest Neighbors, support vector classifiers, and Random
Forests (see Methods).
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We found that, when mention counts were the only input feature, the INDRA Belief Model yielded the
greatest area under the precision-recall curve (AUPRC), followed by the Logistic Regression and
Random Forest models (Table 6, rows 1, 3, and 2, respectively). However, when the machine learning
models were extended to make use of additional Statement features such as the Statement type, number
of supporting articles (i.e., the number of distinct publications from which mentions were extracted), the
average length of the mention texts (longer sentences were more likely to be incorrectly interpreted), and
the presence of the word “promoter” in the sentence (a frequent indicator that a sentence describing a
protein to DNA promoter interaction had been mis-extracted as a protein-protein interaction), they
outperformed the INDRA Belief Model (Table 6, rows 8-13; see Methods). Thisimplies that—as long
as sufficient training data is available—machine-learned classifiers can use multiple features associated
with Statements and their supporting mentions to boost performance as compared to the INDRA Belief

Model which relies solely on mention counts.

The ability of INDRA to identify refinement relationships among Statements (Figur e 3) has the added
benefit that it allows mentions to be combined across different levels of detail for usein reliability
estimation. For example, any evidence for the specific Statement “MAP2K1 phosphorylates MAPK1 on
T185” also supports the more generic Statement “MEK phosphorylates ERK.” We found that combining
more specific mentions with mentions directly associated with a specific Statement improved precision
and recall: the AUPRC of the Random Forest model increased from 0.895 to 0.913 when using only
mention counts (Table 6, row 2 vs. 17), and from 0.927 to 0.933 when using all features (T able 6, row 9
vs. 24). Further, when we examined the effect of incorporating overlapping mentions from curated
databases as features alongside mentions from readers, we found that the Random Forest model’s
AUPRC increased to 0.941 — the highest AUPRC reached across all models and conditions.

Because readers perform differently on the same input text, Statements supported by multiple readers
are less common than Statements supported by a single reader but our analysis showed that both the
existence of reader overlap as well as lack of overlap for a given Statement can be informative for
predicting Statement correctness. Moreover, in the absence of human-curated data across multiple
Statement features — a type of datathat islaborious to generate — a parametric model (such asthe
INDRA Belief Model) based on the error profiles of individual readers can perform well from a
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precision-recall perspective. When sufficient curated training data is available, machine learning models
such as Random Forests can achieve greater performance, obtaining an AUPRC greater than 0.9in
several different configurations. These findings provide empirical support for INDRA’s approach to
assembling sets of Statements from multiple text mining and curated database sources with principled
estimates of correctness. Both the INDRA Belief Model and the machine-learned classifier models are
available in the belief submodule of INDRA and allow parameters to be either manually set or estimated
from curation data.

Validation of assembled mechanisms and comparison against curated resources

Totest INDRA on a prototypical biocuration task, we compared the subset of Statements representing
human protein-protein interactions (PPIs) in the Benchmark Corpus to the BioGRID database (Oughtred
et a., 2019). BioGRID is a curated public database containing structured information on protein-protein
and protein-small molecule interactions, as well as genetic interactions obtained from multiple
organisms. These interactions were extracted by expert curators from a combination of high-throughput
datasets and focused studies. As a measure of the utility of INDRA for biocuration we determined (i) the
number of previously-uncurated PPIs that the INDRA Benchmark Corpus could add to BioGRID and
(i) the amount of new literature evidence that it could added to PPIs currently in BioGRID. We used our
best-performing Random Forest model to assign a belief to each INDRA Statement in the Benchmark

Corpus.

The Benchmark Corpus contained ~26,000 Statements representing PPIs already in BioGRID, and
~101,000 PPIs that were absent (Figure 6A); the latter potentially represent known but previously
uncurated interactions. Grouping all PPIsin bins defined by belief score, we found that belief score was
highly correlated with the likelihood of a PPI being curated in BioGRID (Figure 6B). This provides a
guantitative corroboration of the belief scores and, by extension, suggests that a substantial number of
the potentially new PPIs involve reading errors which are accounted for by low belief scores. Because
the belief scores obtained from the Random Forest model can beinterpreted as calibrated probabilities
of correctness, they can be used to estimate the number of Statements in each bin that are expected to be
correct. The proportion of Statementsin BioGRID was consistently below the belief score for the bin,
suggesting that each bin contained correctly extracted but uncurated PPIs (Figure 6B, blue line below

diagonal). Conservatively assuming that all Statements found in BioGRID were correctly extracted, we

18


https://doi.org/10.1101/2022.08.30.505688
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.30.505688; this version posted August 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

estimated alower bound of 28,600 correct but uncurated PPIs in the Benchmark Corpus, a 6% increase
over the ~480,000 unique human PPIs in BioGRID.

As apractical matter, correct and incorrect Statements could be efficiently separated by manual curation,
focusing first on Statements with the highest belief scores. The ~2,200 uncurated Statements with belief
scores > 0.9 would be expected to yield >1,870 PPIs, or roughly six correct for every seven reviewed.
Statements with lower belief scores are more numerous but also have a lower expected yield: 18,700
correct but uncurated Statements would be expected among the the 41,600 Statements with belief scores
between 0.4 and 0.9, with the curation yield starting at 67% (for Statements with belief between 0.8 and
0.9) to 29% (for Statements with belief between 0.4 and 0.5) (Figure 6C). By way of illustration, we
examined one PPI not currently in BioGRID that involved binding of the KIF1C kinesin to RAB6A, a
GTPase and regulator of membrane trafficking. INDRA assembled atotal of 40 mentions supporting
this PPI, extracted by two machine reading systems (Reach and Sparser), into a Statement with belief
score 0.82. Human curation confirmed that the interaction had been reliably demonstrated using both co-
immunoprecipitation and reconstitution experiments (Lee et al., 2015).

A second application of INDRA isto add evidence for PPIs aready in BioGRID and thereby (i) provide
new and different types of evidence for an existing PPl (e.g., mass spectrometry vs. 2-hybrid
interaction), (ii) reveal additional biological settings or cell typesin which a PPl might occur, and (iii)
provide additional mechanistic detail about a particular PPl. Asan example of (i) and (ii), BioGRID lists
only three publications as a reference for the interaction between brain-derived neurotrophic factor
(BDNF) and the NTRK2 receptor tyrosine kinase, whereas the INDRA Benchmark Corpus contains 168
mentions of thisinteraction from atotal of 94 publications. Some of these additional publications
provide primary experimental evidence for thisinteraction (e.g., (Vermehren-Schmaedick et al., 2014)
and (Wang et a., 2009a)) discuss the role of the BDNF-NTRK?2 interaction in important biological or
clinical settings. As an example of (iii), the interaction between paxillin (PXN) and the tyrosine kinase
PTK2B is supported by six references in BioGRID; INDRA not only identified 49 mentions from 18
different publications supporting this PPI, but assembled a Statement with substantially more
mechanistic information: namely that PTK2B, when phosphorylated on Y 402, phosphorylates PXN on
Y118 (Moody et al., 2012; Park et a., 2006). This example shows that for a PPl lacking mechanistic
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detail, INDRA can illuminate the directionality and type of regulation, as well as the amino acids

involved in posttranslational modifications.

Detecting and explaining gene dependency correlations with an assembled causal networ k

To study how networks that incorporate text-mined information can aid in the interpretation of
functional genomic datasets, we used INDRA to detect and explain significant gene dependenciesin the
Cancer Dependency Map (https://depmap.org) (Meyers et al., 2017; Tsherniak et a., 2017). The
DepMap reports the effects of RNAI or CRISPR-Cas9 mediated gene inactivation on cell viability and
growth in >700 cancer cdll lines using a competition assay. In this assay, the effect of gene inactivation
is assessed by determining the rate at which a specific knockout (or knockdown) disappears from a co-
culture comprising cells transfected with a genome-scale RNAi or CRISPR-Cas9 library. It has
previously been observed that that genes whose knockouts have similar effects on viability across a
large number of cdll lines—a phenomenon known as codependency—frequently participate in the same
protein complex or pathway (Doherty et al., 2021; Meyers et al., 2017; Pan et al., 2018; Rahman et al.,
2021; Shimadaet al., 2021; Tsherniak et a., 2017). For example, CHEK2 and CDKN1A have a
correlation coefficient of 0.359 and 0.375 in DepMap CRISPR and RNAI data, respectively (Figure
7A), and this codependency can be explained by the fact that the CHEK?2 kinase is an activator of
CDKN1A (also known as p21) and that the two genes jointly regulate cell cycle progression. To obtain
robust measures of gene co-dependencies, we combined the CRISPR and RNAI perturbation data by
converting the Pearson correlation coefficients for each gene pair into signed z-scores and computing the
combined z-score between the two datasets using Stouffer’s method (Figure 7A). In analyzing the data,
we first accounted for a bias also observed by others (Dempster et al., 2019; Rahman et al., 2021),
namely that many of the strongest correlations are between mitochondrial genes (Figure 7B). These
correlations have been described as an artifact of the screening method (such as the timepoint of the
viability measurements relative to cell doubling time) rather than reflecting true co-dependencies
(Rahman et al., 2021). We considered the correlations among these genes to be “explained” a priori due
to their shared mitochondrial function, and using the mitochondrial gene database MitoCartaasa

reference (Rath et al., 2021), we excluded correlations among them from subsequent analysis.

From the Benchmark Corpus of assembled INDRA Statements, we generated a network model in which

each node represents a human gene and each directed edge correspondsto an INDRA Statement (such as
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Phosphorylation, Activation, etc.) connecting two nodes. We used the resulting network for two tasks:
first, to constrain the number of hypotheses tested when determining the statistical significance of
codependency correlations, and second, to find mechanistic explanations for the observed
codependencies. For thefirst task, we calculated the number of codependencies that were significant at a
false discovery rate (FDR) of 0.05 using three methods for controlling FDR with and without the use of
the network to limit the number of hypotheses tested (Table 7). Overall, fewer codependencies were
identified as significant when we restricted comparisonsto relationshipsin the INDRA-assembled
network, both because the network isincomplete and because many codependencies reflect indirect
functional relationships not captured by a single direct edge in the network. However, many
codependencies (4,007 using Benjamini-Y ekutieli FDR correction) were detected as significant only
when using the network (Table 7, “INDRA only”) due to the smaller number of hypotheses tested.
Moreover, the maority of these (2,729) were based on interactions obtained only from machine reading,

of which >60% were supported by a Statement with a belief score greater than 0.5.

Conversdly, the existence of a codependency added context to text-mined mechanisms. For example, the
negative correlation between ERBB2 and STMNL1 (p=-0.146 in DepMap CRISPR data) was associated
with asingle INDRA phosphorylation Statement in the Benchmark Corpus; the fact that the
codependency correlation is negative indicates that ERBB2 phosphorylation of STMNL1 inhibitsit (a
finding corroborated by (Benseddik et a., 2013)). Similarly, the negative correlation between GRB10
and IRS2 (p=-0.137 in CRISPR) is consistent with reports that the binding of GRB10to IRS2 is
inhibitory. This provides context for the INDRA Statement derived from (Keegan et al., 2018; Mori et
al., 2005) that “GRB10 binds IRS2” and is particularly interesting because the effect of GRB10 binding
to IRS2 has been reported as both inhibitory (Wick et al., 2003) and activating (Deng et al., 2003). The
negative DepMap correlation suggests that the inhibitory effect is more relevant in the context of the two
genes' co-regulation of cell viability. Overall, these findings suggest that an INDRA-assembled
networks can lead to the detection of codependencies that would otherwise be missed, and—as the
previous two examples show—the combined information from data and assembled knowledge provides

deeper mechanistic insight into each interaction than data alone.

In addition, we tested whether the Benchmark Corpus could provide mechanistic explanations of
DepMap codependencies beyond what can be explained by curated pathway databases. We considered
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three types of relationships to be explanatory: (i) direct causal relationships where one gene was
reported to regulate, modify or interact with another, e.g. the inhibition of TP53 by MDM 2, (Figure 7C,
“Direct”), (ii) information that the two correlated genes were members of the same protein family or
complex, asindicated by FamPlex relations (Bachman et al., 2018) (Figure 7C, “Family/Complex™), or
(i) alink between the parent family/complex of a gene and another gene or its parent family/complex
(Figure 7C, “Parent Link™). To measure theimpact of text mining, we derived a smaller, “ database-
only” network from the Benchmark Corpus by excluding edges that were supported only by text mining
evidence from the “full” network. As a control, we permuted the node labels of both the full and
database-only networks and repeated our analysis. We found that the full network explained a greater
proportion of codependencies than the database-only network (22% vs. 11% for codependencies with |z-
score] > 6), with smilar improvements at all significance levels (Figure 7D). Thisimprovement is
striking considering the text mining results were drawn from a corpus that constitutes only a fraction of
what is currently available in PubMed. We aso found that for either network, stronger codependencies
were more likely to be explainable than weaker ones (Figure 7D), highlighting that the curated and
published mechanistic knowledge (that is likely to be picked up by INDRA) is generally biased towards
the most robust functional relationships.

To better characterize how INDRA-assembled networks provide mechanistic context for relationshipsin
DepMap, we compared codependencies explainable viathe full INDRA network to those explainable
viainteractionsin BioGRID or by co-membership in a Reactome pathway. Of the 345,077 non-
mitochondrial gene pairs with DepMap codependency correlations above the Benjamini-Y ekutiéli
significance cutoff, only 21,475, or 6.2%, could be explained by BioGRID interactions, a common
Reactome pathway, or the INDRA network, highlighting the many potential functional relationshipsin
DepMap without aliterature precedent. Membership in a common Reactome pathway, the least specific
type of explanation, accounted for the largest number of explanations, including 6,952 codependencies
explainable only viathisinformation (Figure 7E). The INDRA network accounted for the next-highest
number of unique explanations with 4,819 (Figure 7E). Interestingly, a majority of these were
attributable to regulatory relationships mediated by families and complexes of which specific
codependent genes were members (Figure 7F, “Parent Link” explanations). While less stringent than
explicit gene-gene relationships, these family-mediated connections can produce compelling

explanations for genes commonly described at the level of families and complexes (Bachman et al.,
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2018). For example, the strong negative correlation between MPRIP and ROCK2 (p=-0.291) is
explained by multiple text mined Statements linking MPRIP to the ROCK protein family (referred to
generically as “ROCK” or “Rho kinase”) viatheir joint binding to the myosin-binding subunit of the
myosin light chain phosphatase (gene PPP1R12A, Figure 7G) (Nunes et al., 2010; Surks et al., 2003;
Wang et al., 2009D).

The remainder of the INDRA-dependent explanations were derived from Statements involving two
specific codependent genes (Figure 7F, “A->B”). While these explanations are “direct” in the sense that
two genes are linked by an edge in the INDRA network, the relationships may not involve physical
binding and might therefore have intermediaries (a mechanistically indirect connection). Such indirect
mechanisms can be an advantage in many systematic explanation tasks. For example, the strong
correlation between BRAF and MITF (p=0.456) cannot be explained by a common Reactome pathway,
aphysical interaction in BioGRID, or interactionsin any of the pathway databases incorporated in the
INDRA network. However, BRAF and MITF are linked by an INDRA network edge derived from 20
text-mined Statements (supported by 59 distinct mentions) characterizing their complex mutual
regulatory relationship. The Statements correctly capture the evidence that oncogenic BRAF activates
the expression of MITF through the transcription factor BRN2 (Kumar et al., 2014) whereas wild type
BRAF in melanocytes inhibits MITF expression due to the lack of expression of BRN2 (Wellbrock et
al., 2008). Because INDRA can represent molecular states on Agents (in this case BRAF vs. its mutated
form BRAF-V600E) these extracted Statements are able to provide machine-readable information
differentiating the two distinct contexts. Finally, we noted that interactions obtained exclusively from
text mining were not restricted to well characterized or indirect relationships: for example, the INDRA
network also incorporates a Statement extracted from a single sentence explaining the correlation
between DOCK5 and BCAR1 (better known as p130Cas) as arising from their joint interaction with the
scaffold protein CRK (Frank et al., 2017). Despite their robust correlation (p=0.361), DOCKS5 and
BCAR1/p130Cas have only been co-mentioned in atotal of three publicationsin PubMed.

DISCUSSION
In this paper, we described a method, implemented in INDRA software, for robust, automated assembly
of mechanistic causal knowledge about biological interactions. The method normalizes information from

heterogeneous sources, including both curated databases and text mining systems, and integrates this
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information by identifying relationships between Statements and using statistical models to estimate the
reliability of each Statement based on the totality of the supporting evidence. The corpus used in this
paper (~570,000 articles) covers only afraction of the published biomedical literature (>30 million
articles). Nevertheless, we demonstrate that it is possible to meaningfully extend curated interaction
databases and provide explanations for gene dependency correlations in the Cancer Dependency Map.
INDRA enriches biocuration and data analysis efforts in three ways, i) by aggregating and normalizing
new, previously uncurated mechanisms directly from the literature in machine-readable form, ii) by
adding mechanigtic detail (activation, modification, binding, etc.) to generic PPIs or empirical
relationships, and iii) by supplying supporting evidence and context from the literature. Others can make
use of INDRA tools since they are open source (https.//github.com/sorgerlab/indra) and well-
documented (https://indra.readthedocs.io). INDRA has already been used for diverse knowledge

assembly, curation, and analysis tasks, including network-based gene function enrichment (letswaart et

a., 2021), causal analysis of viral pathogenesis (Zucker et al., 2021), drug target prioritization for acute
myeloid leukemia (Wooten et al., 2021), assembling knowledge about protein kinases (Moret et al.,
2021), assisting manual biocuration efforts (Glavaski and Veicki, 2021; Hoyt et al., 2019a; Ostaszewski
et a., 2021), and helping authors capture mechanistic findings in computable form (Wong et al., 2021).

The method described here is related to prior work on the integration of biological databases
(Rodchenkov et al., 2020; Szklarczyk et al., 2021; Ture et a., 2016), assembly of biological knowledge
graphs (Himmelstein et al., 2017; Hoyt et al., 2019b), large-scale biomedical event extraction (Van
Landeghem et al., 2011), and estimation of the reliability of individual interactionsin knowledge graphs
(Jaetal., 2019; Nell et al., 2018). However, it goes beyond the straightforward aggregation of
interactions from multiple sources by 1) systematically normalizing named entities, 2) organizing
Statements by specificity, and 3) exploiting information about Statement sources, frequency and
specificity to predict Statement reliability. Others have introduced innovative methods for using
machine reading and curated databases for automated model learning and extension, while also making
use of INDRA to process reader output (Holtzapple et al., 2020) and estimate Statement reliability
(Ahmed et al., 2021). We believe our work to be the first demonstration of a method that automatically
assembles reliable, non-redundant mechani stic knowledge from both curated resources and multiple

biomedical text mining systems.
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Our approach focuses on capturing the types of information typically represented in biological pathway
databases. post-trandational modifications and physical and regulatory interactions among proteins,
chemicals, and biological processes. It does not currently represent genetic interactions, gene-disease
relationships, biomarkers, or other types of statistical associations. However, given suitable data sources
and text extraction systems, the same approaches for named entity linking, hierarchical assembly and
reliability assessment can be used for these types of information as well. Indeed, the core methodology
described here has been used to generate probabilistic causal models from areading system that extracts
causal relations from open-domain text (Sharp et al., 2019).

Automatically assembled knowledge bases have many uses in computational biology beyond the
biocuration and functional genomics use cases we described here. A number of methods have been
described that use pathway information for regularization in machine learning (Sokolov et al., 2016), to
control false discovery in hypothesis testing (Babur et al., 2015), and to generate causal hypotheses from
-omics data (Dugourd et al., 2021; Tuncbag et al., 2016). Most current methods for prior-guided data
analysis require information about mechanisms to be “flattened” into adirected (possibly signed)
networks (as we did in for our gene dependency correlation analysis). However, INDRA offers the
ability to assemble information from multiple sources while preserving much of the information about
mutations, modifications, and activity states that are necessary for detailed modeling. This supports the
further development of analytical methods that exploit prior knowledge that is both broad and
mechanistically detailed. INDRA facilitates this because it assembles information from sources in terms
of knowledge-level assertions rather than model-specific implementations, different types of causal
models can be generated from the assembled knowledge depending on the downstream application,
including signed directed graphs, Boolean networks, or other types of executable models. In our
previous work, we described a method for automatically assembling curated natural language text into
detailed dynamical signaling models (Gyori et a., 2017). In principle, the methods described here allow
for mechanistically detailed signaling modelsto be initialized from systematically compiled knowledge
bases, with a quality suitable for static causal analysis ((Gyori et al., 2021), see https://emmaa.indra.bio).
However, manual curation is generaly still required to produce dynamical simulation models from
automatically assembled assertions, due to the need to supply reverse rates and guarantee detailed
balance; making this process more efficient is an area of ongoing research (Gyori and Bachman, 2021).
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One of the striking conclusions from thiswork is that different reading systems extract very different
types of information from the same text corpus. Moreover, even in the case of asingle INDRA
Statement, different reading systems extract different mentions from the same text. This pointsto the
value of using multiple readers in parallel, something that has not previously been widely explored and
suggests that direct comparison of reading system errors has the potential to improve these systems. To
make use of multiple readers we developed an approach for estimating the technical reliability of
Statements based on the number of mentions, the characteristics of their supporting evidences, and the
properties of individual reading systems. While addressing this purely technical source of uncertainty is
aprerequisite for the practical use of text mined information in downstream applications, addressing
additional types of uncertainty in assembled knowledge and models is a worthwhile area of future
research. In particular, thereis aneed for systematic approaches to managing conflicts and
contradictions among assembled Statements (Figur e 4A, upper right), which often take the form of
polarity conflicts (“A activates B” vs. “A inhibits B”). While polarity conflicts can arise due to
systematic errorsin machine reading (Noriega-Atala et al., 2019), many represent inconsi stent reports
from the underlying scientific literature. These conflicts can potentially be addressed by a more
thorough incorporation of biological context alongside causal information (Noriega-Atala et al., 2020),
through the use of functional data such asthe DepMap, or potentially by ensemble modeling procedures
that capture polarity uncertainty in downstream analysis. Another primary concern in the use of text-
mined information is the unreliability of many scientific studies (Baker, 2016). Recent efforts in meta-
scientific analysis have examined features such as journal impact factor, article citations, and
collaboration networks among researchers to determine whether these can predict the likelihood of the
future replication of a study (Danchev et al., 2019). Large-scale assembly of causal information from the
literature has the potential to facilitate the study of both biological and meta-scientific sources of

scientific contradictions.

It isinteresting to speculate what might be possible were all of PubMed to be made fully machine
readable. The corpus of 570,000 papers used in this study were chosen in part because they focus on
human genes and their functions. Because it is not a randomly selected subset of all 30 million PubMed
articles, comprehensive machine reading followed by assembly in INDRA is unlikely to generate 60-
fold more mechanistic information than the current study. To obtain a rough estimate of what could be

expected, we determined the increase in the number of unique Statements and total mentions for asingle
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gene of interest, BRAF, obtainable by processing all machine-readable abstracts and full text articlesin
PubM ed with two readers, Reach and Sparser. We found that, relative to the Benchmark Corpus, unique
Statements roughly doubled (from ~1,500 to ~3,300), while total mentions tripled (~4,000 to ~12,000)
and the total number of supporting articles quadrupled (~1,000 to ~4,000). These numbers highlight the
potential value of applying knowledge extraction and assembly methods more broadly. However, in
performing this analysis we were limited by the availability of full text content, as we werein our
assembly of the Benchmark Corpus (Table 1). The contribution of text mining tools to machine readable
knowledge is expected to be much more significant when a greater proportion of full text scientific
articles are both legally and technically accessible (Westergaard et al., 2018).
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METHODS

Article corpusfor event extraction

The Entrez gene database was queried with the official gene symbols for all human genesin the HUGO
database for MEDLINE articles curated as having relevance to the function of each gene. The resulting
list of PubMed identifiers (PMIDs) isincluded in the code and data associated with the paper at
https://github.com/sorgerlab/indra_assembly paper. For these PMIDs, we obtained full text content

when available from three sources: The PubMed Central open access and author’ s manuscript
collections, and the Elsevier Text and Data mining API (https://dev.elsevier.com). For the remaining
PMIDs, we obtained abstracts from PubMed. Table 1 shows the distribution of text content sources.

Text mining of article cor pus
We used multiple text mining systems integrated with INDRA to process al or part of the corpus of
interest described in the previous section.

Reach version 1.3.3 was downloaded from https:.//github.com/clulab/reach and used to process all text

content for the collected corpus described in the previous section. Reach reading output was processed
into INDRA Statements using the indra.sources.reach module.

Spar ser was obtained as an executable image from its developers and was used to process all text
content for the collected corpus described in the previous section. The Sparser source code is available
at https.//github.com/ddmcdonal d/sparser and the Sparser executable is available as part of the INDRA

Docker image which can be obtained from https://hub.docker.com/r/labsyspharm/indra. Sparser reading

output was processed into INDRA Statements using the indra.sources.sparser module.

MedScan reader output for the collected corpus described in the previous section was obtained from
Elsevier and processed into INDRA Statements using the indra.sources.medscan module.
TRIPS'DRUM was obtained from https://github.com/wdebeaum/drum and used to process part of the

text content for the collected corpus, as follows. First, we selected all papers for which only an abstract
was available, then selected those papers from which Reach, Sparser and MedScan extracted at |east one
Statement about any of 227 genes relevant for akey cancer signaling pathway, the Ras pathway. This
resulted in atotal of 42,158 abstracts which were processed with TRIPS'DRUM. The outputs were then
processed into INDRA Statements using the indra.sources.trips module.

RLIM S-P reader output for PubMed abstracts and PubMedCentral full text articles was obtained from
https.//hershey.dbi.udel.edu/textmining/export/ (accessed June 2019), and then filtered to the corpus of
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interest described in the previous section. The outputs were then processed into INDRA Statements
using the indra.sources.rlimsp module.
I|SI/AMR (Docker image available at https://hub.docker.com/r/sahilgar/bigmechis) reader output was

provided by the system’s creators for 10,433 articles which were filtered to the corpus of interest
resulting in atotal of 1,878 reader outputs. These were then processed into INDRA Statements using the

indra.sources.is module.

Structured sources

In addition to text mining, we processed multiple pathway databases with INDRA to obtain INDRA
Statements.

TRRUST release 4/16/2018 with human transcription factor-target relationships was obtained from
https.//www.grnpedia.org/trrust/datal/trrust_rawdata.human.tsv and processed into INDRA Statements

using the indra.sources.trrust module.
Signor content was processed through the Signor web service
(https.//signor.uniroma2.it/download _entity.php) in June 2019 and processed into INDRA Statements

using the indra.sources.signor module.

HPRD content was obtained from

http://www.hprd.oro/RELEASE9/HPRD_FLAT_FILES 041310.tar.gz and processed into INDRA
Statements using the indra.sources.hprd module.

BEL content was obtained from the Selventa Large Corpus available at
https://raw.githubusercontent.com/cthoyt/selventa-

knowledge/master/sel venta._knowledge/large _corpus.bel and processed using PyBEL and the
indra.sources.bel module into INDRA Statements.

CausalBioNet content was processed from JGF files from

http://causalbionet.com/Content/jgf _bulk_files/lHuman-2.0.zip and processed into INDRA Statements

using PyBEL and the indra.sources.bel module.

BioGRID content was obtained from https://downloads.thebiogrid.org/Download/BioGRID/Rel ease-
Archive/BIOGRID-4.2.192/BIOGRID-ALL-4.2.192.tab3.zip and processed into INDRA Statements
using the indra.sources.biogrid module.
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PhosphoSitePlus content was downloaded from https.//www.phosphosite.org/staticDownloads in June
2019 viathe “BioPAX:Kinase-substrate information” link, in BioPAX format, and processed into

INDRA Statements using the indra.sourecs.biopax module.
Pathway Commons content was obtained from
https://www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.Detailed.BIOPAX.owl.gz

and processed using PyBioPAX and the indra.sources.biopax module into INDRA Statements. To
account for the fact that BioGRID, PhosphoSitePlus and HPRD content were obtained separately (and
these are also available as part of Pathway Commons), we filtered out interactions from these sources

when processing Pathway Commons.

The scripts to process each source as described above is available at:

https://qgithub.com/sorgerlab/indra assembly paper/blob/master/run assembly/process sources.py.

Procedurefor identifying duplicates and r efinements

The INDRA ontology graph combines entries across multiple ontologies and represents each entry as a
graph node with a set of properties (namespace, identifier, standard name). There are three types of
edgesin the graph: xref (cross-reference meaning that the source node and the target node, often from
different namespaces, are equivalent), isa (the source node is one of a set of entities represented by the
parent node), and partof (the source node is part of a complex represented by the parent node). Each
INDRA Agent has zero or more namespace/identifier pairs associated with it which constitute its
grounding.

When standardizing the grounding of INDRA Agents, the xref edges of the ontology graph are traversed
following all directed paths starting from each available grounding for the Agent. The namespaces and
identifiers of nodes visited along these paths are then added as grounding for the Agent. We then usea
priority order of namespaces to assign a single canonical grounding to an Agent. If an Agent has no
groundings available, its name is used as canonical grounding.

When determining whether two Statements are duplicates, we require that (1) the two
Statements’ types are the same (2) all the Agent arguments of the two Statements are matching in their
canonical grounding, (3) all states (activity, modifications, bound conditions, location, mutations) of the
matching Agents of the two Statements are equivalent, and (4) all additional Statement arguments are

equivalent (e.g., residue and position for a Modification Statement). To avoid making pairwise
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comparisons, we construct an equivalence key from properties (1-4) needed to determine equivalence
for each individual Statement, and then use a hash map data structure to group Statements efficiently by
equivalence key. Groups of Statements having the same equivalence key are collapsed into asingle
Statement and their Evidences are concatenated.

For finding refinements among Statements, we make use of the INDRA ontology graph’sisa and
partof edges. For determining a refinement, we require that the two Statements have the same type, and
that one Statement is a refinement of the other with respect to at least one of the properties (2-4)
described above, and that the other Statement does not refine the first one based on any of these
properties. In other words, if one Statement is more specific than the other according to one property but
less specific according to another property, there is no refinement relationship between them at the
Statement level.

Binomial, beta-binomial, and INDRA Belief models of Statement reliability
The INDRA Belief Model

The “INDRA belief model” represents the probability of a Statement being correct as the result
of atwo step-random process (Figure 4C). Thefirst process considers the probability that a Statement is
drawn from the pool of Statements that are always incorrect, regardless of the number of evidences they
have. This probability is based on the systematic error parameter for each reading system. If the
Statement is not from this pool, then its reliability is alternatively modeled to follow a binomial
distribution assuming a particular randomerror rate for that source. Like the beta-binomial model, the
INDRA belief model captures the plateau in Statement reliability (Figure 4D), though the predicted
distributions for evidence correctness do not correspond well to the empirical U-shaped distribution
(Figure S4A).

The INDRA Belief Mode is calculated based on evidences belonging to a Statement, each
evidence having been produced by a source such as atext mining system or a pathway database
integrated with INDRA.. In the simple case of a single knowledge source, we define the belief of a

Statement as

1- (esyst + e‘rl'cand(l - esyst))
where e, and e,,,q arethe systematic and random error parameters for the given source, respectively.

This model can also be generalized to multiple sources as follows. Assume there are atotal of K known

sources S = {S;,S,, ..., Sk }, each associated with a random and systematic error rate. For source Sy,
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ex syst Will denote the systematic error rate, and ey ,.q,4 the random error rate. Given a set of N
evidencesE; = {Er 4, ..., Er y}, With Source(ET,i) € S corresponding to the source of evidence of E; ,,,

we introduce Ny 5, the number of evidences for Statement T from source Sy, :

N
Npx = Z I1(Source(Er ), Sk)
n=1

where I(X,Y) standsfor theindicator function which evaluatesto 1 if X =Y, and O otherwise. We then
define the belief of Statement T as follows:

K

. N .
B(T) = 1 - n ek‘syst * mln(l, NT,k) + ek,:’cfnd(l - ekjsyst - min (1, NT,K))'
k=1

For the calculation of beliefs for a Statement that is refined by other Statements, we introduce the
extended evidence set denoted as E'(T) which is defined as

E’T:U ET,UE’X

X€EPT
Here X € P, if and only if X refinesT. In other words, we take the union of all pieces of evidence for
the Statement itself and all the Statements by which it isrefined, recursively. We then apply the equation
for Ny, and B(T) to E'(T) instead of E'(T) in the obvious way.

When the quality of fit of the three different models was compared using maximum likelihood
parameter values, the original belief mode performed very slightly better than the beta-binomia model
for both the Reach and Sparser reading systems (Table 3).

The Binomial and Beta-binomial belief models

The binomial model treats every individual evidence sentence as a Bernoulli trial, where the probability
of asingle reading system being jointly incorrect for all sentences decreases according to a binomial
distribution (e.g., the probability of incorrectly processing ten sentences is analogous to flipping acoin
ten times and getting ten tails). The binomial model substantially overestimates the reliability of
Statements with three or more evidences from Reach, due to the fact that it does not account for
systematic errors (Figure 4A). In addition, the binomial model predictsthat for a Statement with k
evidences, the mode of the distribution of number of correct evidencesis closeto k/2 (bell shaped red
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curves in Figure $4B), whereas the curation data shows that evidences are more likely to be either all
incorrect (zero bars) or al correct (right-most bars).

The binomial belief model has a single random error rate parameter e,.,,,4 for each source, and —
making use of definitions from the previous section — the belief for a Statement with evidences from

multiple sources can be calculated as
K

N
B =1-] [, -

k=1
The beta-binomial model is based on a binomial model where the probability of each mention
being correctly extracted isitself drawn from a beta distribution (Wilcox, 1979). The beta-binomial
model better captures the tendency of Statement reliability to plateau below 100% (Figure 4D) as well as
the U-shaped distributions of the numbers of underlying correct evidences (Figure SAC).

The beta-binomial belief model has two parameters for each source, @ and 8, and for a Statement with

evidences from multiple sources, it can be calculated as

K
Beta(ay, Ny, +
B(T)=1—1—[ (ay, Nr g ﬁk)_
11 Beta(ay, fx)

where Beta isthe standard beta-function.

M achine-lear ned models of Statement reliability

Modd types and evaluation.

Classification models evaluated for their ability to predict Statement correctness were obtained from the
Python package sklearn. Evaluated models included Support Vector Classification (sklearn.svm.SVC
with probability estimation enabled), k-Nearest Neighbors (sklearn.neighbors.KNeighborsClassifier,
used with default parameters), logistic regression with log-transformed mention counts
(sklearn.linear_model.LogisticRegression), and Random Forests
(sklearn.ensemble.RandomForestClassifier with n_estimators=2000 and max_depth=13, obtained by
manual hyper-parameter optimization). Model performance was evaluated by 10-fold cross-validation,
each fold was used to calculate the area under the precision-recall curve (AUPRC) for the held-out data.
Valuesin Table 3 reflect the mean and standard deviations of AUPRC values across the 10 folds.
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Encoding of features for Statement belief prediction.

Reader mention counts. Mention counts for each reader were included as distinct features (columns) for
each Statement. When incorporating evidence from more specific Statements (* specific evidences’ in
Table 3) these were added in a separate set of columns for each reader; a Statement could thus have two
columns with Reach mention counts, one for mentions directly supporting the Statement, and another for
mentions obtained from more specific Statements.

Number of unique PMIDs. Unique PMIDs supporting each Statement were obtained from its mentions
and added as a single feature.

Satement type. Statement types were one-hot encoded (one binary feature for each type, Activation,
Inhibition, Phosphorylation, etc.)

Average evidence length. Mention texts directly supporting the Statement were split by whitespace; the
number of resulting substrings were counted and averaged across all mentions and included as a feature.
“Promoter” frequency. The number of mention texts containing the term “promoter” were counted and
the resulting value was divided by the total number of mentions to obtain afrequency of the occurrence
of this keyword.

Availability of data and material
The datasets generated and analyzed during the current study, as well as the source code used to
generate results is available in the repository https://github.com/sorgerlab/indra_assembly _paper.

INDRA isavailable at https://github.com/sorgerlab/indra under an open-source BSD 2-clause license.

TABLES

Table 1: Digtribution of content types for literature corpus

Content type Count Per centage
PubMed abstract 384,628 67.8%
Elsevier 81,567 14.4%
PM C open access 74,654 13.2%
PMC author’ s manuscript 25,950 4.6%
Missing 707 0.1%

Table 2: Summary of statement curation dataset. Entries are formatted as “ number correct (total curated)” .

Reader 1 2 3 4 6 7 8 9 10
Reach  57(119) 26(41) 25(36) 16(25) 26(36) 24(28) 26(35) 29(48) 18(22) 20(24)
RLIMSP 87(109) 24(26) 23(25 10(10) 6(6) 6(6)  6(6)  6(6)  7(7)  25(25)
TRIPS (igg) 46(G) 2829 33 7(7 1212 24(26) 12(13) 9(l)  9(9
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Sparser 9(25) 13(25) 9(13) 6(12) 11(19) 6(8) 0(0) 0(0) 3(5)  10(11)
MedScan  42(66) 22(30)  2(2) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 3(7)

Table 3: Maximum likelihood values for alternative belief models using best-fit parameters (lower valuesindicate a better
fit).

Reach -log(M ax Reach -log(M ax
M odel
likelihood) likelihood)
Binomial (1 param) 366.2 120.31
Beta-binomial (2 params) 2555 118.28
INDRA Belief M odel (2 params) 254.6 118.24

Table 4: Frequencies of relationsin corpus by total number of sources.

Num.

readers Freq. (%)
1 81.3%
2 14.42%
3 3.55%
4 0.67%
5 0.05%

Table 5: Correlations between reader mention counts

Spar ser MedScan RLIMSP TRIPS

Reach 0.611 0.633 0.072 0.374
Spar ser 0.454 0.114 0.420
MedScan 0.034 0.338
RLIMS-P 0.096

Table 6. Comparison of belief models (using AUPRC as the metric) depending on model type, sourcesincluded, additional
features taken into account, and whether more specific evidences are takin into account based on statement refi nement
relations. (Note: Statement is abbreviated as Smt in the table).

More
specific
Group Row M odel Sour ces Additional Features evidences AUPRC
zmdef counts 1 Belief Model Readers N/A No 0918
2 Random Forest Readers None No 0.895
3 Logistic Regression Readers None No 0.912
4 k-NN Readers None No 0.896
5 svC Readers None No 0.87
More features 6 Random Forest Readers Stmt type, # PMIDs No 0.912
7 Random Forest Readers S".“‘ type, # PMIDs, Avg. No 0.918
evidencelen.
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8 Random Forest Readers Stmt type, # PMIDs, "promoter” No 0.923
Stmt type, # PMIDs,
9 Random Forest Readers " promoter", Avg. evidence No 0.927
len.
10 Logistic Regression Readers Stmt type, # PMIDs No 0.923
11 Logistic Regression Readers Stmt type, # PMIDs, Avg. No 0.923
evidence len.
12 Logistic Regression Readers Stmt type, # PMIDs, "promoter” No 0.924
13 Logistic Regression Readers Stmt ty[:_Je, #PMIDs, "promoter”, No 0.924
Avg. evidence len.
14 k-NN Readers Stmt type, # PMIDs No 0.898
15 svC Readers Stmt type, # PMIDs No 0.879
Reader counts 16 Belief Mode Readers  NI/A Yes 0.919
only, specific
evidences 17 Random Forest Readers None Yes 0.913
18 Logistic Regression Readers None Yes 0.914
19 k-NN Readers None Yes 0.897
20 svC Readers None Yes 0.888
More features, 21 Random Forest Readers St type, # PMIDs Yes 0.925
spedific Stmt t #PMIDs, A
evidences ype, s, Avg.
22 Random Forest Readers evidence len. Yes 0.928
23 Random Forest Readers Stmt type, # PMIDs, " promoter” Yes 0.931
Stmt type, # PMIDs,
24 Random Forest Readers "promoter", Avg. evidence Yes 0.933
len.
25 Logistic Regression Readers Stmt type, # PMIDs Yes 0.924
26 Logistic Regression Readers S".“‘ type, # PMIDs, Avg. Yes 0.924
evidence len.
27 Logistic Regression Readers Stmt type, # PMIDs, " promoter” Yes 0.925
28 Logistic Regression Readers Stmt type, # PMIDs, " promoter™, Yes 0925
Avg. evidencelen.
29 k-NN Readers Stmt type, # PMIDs Yes 0.892
30 svC Readers Stmt type, # PMIDs Yes 0.9
All sources, 31 Belief Model Readers, DBs ~ N/A Yes 0.927
more features,
specific 32 Random Forest Readers, DBs  None Yes 0.933
evidences
33 Random Forest Readers, DBs  Stmt type, # PMIDs Yes 0.935
34 Random Forest Readers, DBs Mt type #PMIDs, Avg. Yes 0.936
evidence len.
35 Random Forest Readers, DBs Stmt type, # PMIDs, "promoter” Yes 0.94
Stmt type, # PMIDs,
36 Random For est Readers, DBs  "promoter", Avg. evidence Yes 0.941
len.
37 Logistic Regression Readers, DBs None Yes 0.925
38 Logistic Regression Readers, DBs  Stmt type, # PMIDs Yes 0.934
. . Stmt type, # PMIDs, Avg.
39 Logistic Regression Readers, DBs evidence len. Yes 0.934
40 Logistic Regression Readers, DBs Stmt type, # PMIDs, " promoter” Yes 0.935
41 Logistic Regression Readers, DBs Stmt type, # PMIDs, *promoter, Yes 0.936

Avg. evidence len.

Table 7. Number of codependencies detected at a significance cutoff of p < 0.05 without multiple hypothesis correction or

after one of three methods for multiple hypothesis testing correction (Bonferroni, Benjamini-Hochberg, and Benjamini-
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Yekutieli). Results are shown for a casein which no prior is used and datais analyzed directly (“ No prior” ), or when an
INDRA prior isused (* INDRA prior / Total” ). The rightmost column shows the number of novel codependencies recovered
exclusively when an INDRA prior was used along with correction for multiple testing (“ INDRA prior / INDRA only” ).

tFiguresfor uncorrected p-values do not apply to the“INDRA prior / INDRA-only” case because without correction for multiple testing, the prior does not
play arolein determining significance. Figures are shown for the“INDRA prior / Total” case to establish the number of codependencies with uncorrected p-
values > 0.05 that fall within the scope of the INDRA network; this serves as an upper bound for the number of correlations determined to be significant with
the different approaches to multiple testing shown in the bottom three rows.

No prior INDRA prior
Tota INDRA only
Number of comparisons (non-mitochondrial) 121,778,711 265,874 N/AT
Correlations with uncorrected p < 0.05 21,526,511 63,926t N/AT
Significant corrs after Bonferroni 99,544 4,982 1,836
Significant corrs after Benjamini-Hochberg 5,025,535 30,127 7,506
Significant corrs after Benjamini-Y ekutieli 972,831 12,812 4,007

FIGURE LEGENDS
Figure 1. Conceptual overview of knowledge assembly.

(A) Assembly of models from diverse knowledge sources. Structured (pathway databases) and unstructured
(literature, expert input in natural language) biological knowledge is converted into machine-readable,
mechanistic fragments. These fragments must be assembled into a coherent corpus before generation of specific
models for data analysis.

(B) Mechanistic “fragments’ capture incomplete but overlapping aspects of an underlying molecular mechanism
(here, the phosphorylation of ERK by MEK). Fragments may also contain errors (highlighted in red). Assembly
involves identifying relationships between fragmentsin order to arrive at a consensus representation that captures
available information.

(C) Artifactsinvolved in the collection of mechanisms from knowledge sources by INDRA, and their
representation as INDRA Statements. Y ellow boxes show key terminology used to refer to different artifacts with
additional synonyms provided in quotes.

(D) INDRA knowledge assembly transforms raw statements into assembled statements from which models can be
generated. Theindividual steps of the assembly pipeline (Steps 1 to N, yellow background) operate on INDRA

Statements and are configurable from alibrary of built-in or user-defined functions.

Figure 2. The INDRA knowledge assembly pipeline used to create a Benchmark Cor pus.
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(A) The INDRA assembly pipeline for the Benchmark Corpus. The pipeline starts with ~570 thousand
publications processed by multiple reading systems, as well as structured database sources including Pathway
Commons and SIGNOR. Raw Statements extracted from these sources proceed through filtering (green), error-
correction (red), and assembly (blue) steps.

(B) Number of INDRA Statements, by source, at key stages of the assembly pipeline shown in panel (A).

(C) Combining duplicate Statements. INDRA identifies raw Statements that are identical and creates asingle
unique Statement with all of the associated mentions.

(D) Distribution of mention counts (including both mentions in text and database entries) across all Statementsin
the Benchmark Corpus. Each point in the scatterplot represents the number of Statements with a given number of
mentions.

(E) Complement cumulative distribution of Statements as a function of the number of mentions supporting them
(black) and the maximum likelihood estimate of a power-law fit to the distribution (red).

(F) Assembly of Statements enriches curated mechanisms in pathway databases with literature evidence from text
mining. Here, areaction in Pathway Commons represents the ubiquitination of TP73 (p73) by the ubiquitin ligase
RCHY 1 (Pirh2). Reach, Sparser and MedScan each extract statements matching the one from Pathway Commons

and provide references to PubMed identifiers and specific evidence sentences as provenance.

Figure 3. I dentifying refinement relationships among Statements.

(A) Refinement by hierarchies of Statement elements as defined by INDRA.. The two Statements shown contain
the same number and types of information but all elementsin the top Statement are refinements of the
corresponding elementsin the bottom Statement according to the INDRA Statement hierarchies.

(B) Refinement by additional context. The upper Statement contains all information in the lower one but also
provides additional detail, making it a refinement of the one below.

(C) Example refinement graph for a Statement from the example corpus. For clarity, the transitive reduction of the
hierarchy is shown, and each Statement object is displayed viaits English language equivaent. Each node in the
graph represents a statement with blue or red circles representing evidence from pathway databases or mentions
extracted by machine reading systems, respectively. Next to each blue or red circle, the number of different
sources is shown with the overall number of mentions from these sources in parentheses. For example, the
statement “ CREBL is phosphorylated on S133” has 5 pieces of evidence from one pathway database source, and
48 mentions extracted by three reading systems. Edges represent refinement relationships and point from more
specific to less specific Statements.

(D) Graph of family relationships (dotted isa edges) and Statements representing phosphorylation (solid edges,
annotated with Statement identifiers from panel C), between different levels of specificity of the RSK and CREB

protein families.
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(E) Number of Statements based on the total number of other Statements that they refine.
(F) Number of Statements with different depths of Statements that they refine (i.e., the length of the longest path
in the graph of refinement relations starting with the given Statement).

Figure 4. Estimating statement belief for a single machinereader.

(A) A classification of sources of error and uncertainty in assembling causal models. Sources are classified
according to whether they are external or internal to the INDRA system, and whether they arise at the level of
individual Statements (atomic) or an integrated network or model (global).

(B) Empirical precision of three reading systems based on the number of mentions supporting a given Statement
extracted by that reader.

(C) Mathematical formulas for Statement correctness for three different Belief Models. Each model specifies the
probability that a Statement isincorrect overall given that a specific number k of mentions support it from a given
Source. €ang: random error for the source; ey: systematic error for the source; B(2Z, £): Beta function.

(D) Fits of the three belief modelsin (C) plotted against the empirical precision of Reach-extracted Statements.

Figure 5. Estimating Statement belief with multiple machinereaders combined

(A) Upset plot (equivalent to a Venn diagram with more than 3 sets) of Statement support for five machine
reading systems integrated by INDRA. For a given Statement, two or more readers intersect if they each provide
supporting mentions for it.

(B) Number of mentions from Reach and Sparser (left) and Reach and MedScan (right) for a given Statement,
each Statement being represented by ared dot. Mention counts are plotted on alogarithmic scale.

(C) The percentage of Statements for which an intersection (i.e., any overlap) between reading systemsis
observed as a function of the number mentions from a given reader; the data are plotted separately for each of the
five reading systems.

(D) Empirical Statement precision as a function of the number of mentions from Reach (left) and Sparser (right),
plotting the cases for which only Reach or Sparser provides supporting mentions for a Statement (red) and the

case where al Statements are taken into account (blue).

Figure 6. Comparison of INDRA-assembled mechanismswith a curated resource, BioGRID.

(A) Number of INDRA Statements representing PPIs (i.e., complex formation between two human proteins)
grouped into bins by their belief score (as determined by a random forest belief model), differentiating whether
the PPI represented by the Statement appearsin BioGRID (orange) or not (blue).

(B) Fraction of INDRA Statements representing PPIs that appear in BioGRID grouped into bins by their belief

score. A gray dashed line shows the expected fraction of correct Statements in each belief bin. The space between
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the gray and blue lines (i.e., between the expected fraction of correct Statementsin each bin and the fraction of
Statements that appear in BioGRID) represents an estimate of the set of correct Statements missing from
BioGRID.

(C) Plot showing estimated curation yield if Statements were reviewed by decreasing belief score for inclusion
into a curated resource. The blue line plots the number of correct Statements expected to be found as afunction of
the number of Statements reviewed, with green and pink dashed lines serving as guides showing 100% return

(i.e., every reviewed Statement is correct) and 25% return (i.e., 1 out of 4 reviewed Statementsis correct).

Figure 7. Detecting and explaining gene codependency in cancer cell lines using an INDRA-assembled
networ k

(A) CRISPR (left) and RNAI (right) data from DepMap showing the codependency of the CHEK2 and CDKN1A
genes across a panel of cancer cell lines (each blue dot represents acell line, placed according to normalized cell
viability change upon gene perturbation). Black lines show the linear regression plot over the cell line viability
values.

(B) Percent of gene codependencies (i.e., correlations) involving one or two mitochondrial genes as a function of
the absolute z-score corresponding to the codependency.

(C) Patterns of network nodes and edges that constitute an “explanation” for an observed DepMap codependency,
including “Direct” (adirect edge between two specific genes A and B), “ Family/Complex” (two genes A and B
are part of the same family or complex), and “Parent Link” (where one or both of the specific genes A and B are
related via a parent family/complex they are part of).

(D) Percent of codependencies/correlations explained using the INDRA network when considering all edges (red)
or only edges supported by curated databases, excluding text mining (blue), with randomly shuffled controls
shown.

(E) Upset plot showing the intersection of explanations for DepMap codependencies provided by three networks:
BioGRID interactions, the INDRA network, and Reactome pathways.

(F) Upset plot showing the intersection of three types of explanation for DepMap codependencies provided by the
INDRA Network, corresponding to explanation patterns shown in panel D.

(G) An example explanation for the codependency between ROCK2 and MPRIP derived from the INDRA
network. INDRA provides evidence for a complex in which ROCK (the protein family of which ROCK2 isa
member) binds MPRIP in athree-way complex with PPP1R12A (also called MBS) through the mention shown at
the bottom (extracted from Wang et al, 2009).

Figure S1. Differencesin curation practices across databases integrated by Pathway Commons
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(A) A subgraph of the * paths-from-to” query between MAP2K1 and MAPK1 obtained from Pathway Commons
and visualized using the ChiBE software (Babur et al., 2009). Each biochemical reaction (R1-R8) depictsa
different curation of the same reaction in which MAP2K 1 phosphorylates MAPK 1. The original source database
(e.g., NetPath) is shown next to each reaction. Inconsistencies include (i) the reaction structureitself, with some
specifying a single step phosphorylation of two sites (e.g., R4) while others specify single-site phosphorylation
(e.g., R1), or the explicit representation of ADP and ATP as part of the reaction (R8); (ii) the phosphorylation
status of MAP2K 1, with no phosphorylation status given in R1, R3, R5, R6 and R8, two phosphorylation sites
indicated in R2, R4, and three phosphorylation sitesin R7; (iii) the initial state of MAPK1, with R2 explicitly
indicating unphosphorylated status, while other reactions do not make this explicit; (iv) the final state of MAPK1,
with some reactions representing MAPK 1 phosphorylation on an unspecified site (R1, R3), and others providing
specific phosphorylation sites (e.g., R2); (v) the specification of active states, with R4 being the only reaction
representing MAP2K 1 explicitly as active, while R4 and R7 are the only reactions specifying that MAPK1 is
active after phosphorylation; (vi) the presence of other co-factors such as IL17RD (R8) as part of the reaction.

Figure S2. Ontology graph guiding INDRA knowledge assembly

(A) A subgraph of the INDRA ontology graph showing the neighborhood of the node representing “ prostaglandin
E2" in the ChEBI database (CHEBI:15551). Edges represent “isa’ relationships to more general terms (and from
more specific terms), and “xref” edges represent identifier equivalence to nodes representing entries in other
databases including MeSH, DrugBank, ChEMBL, CAS, PubChem, and NCIT. Each ontology graph node also
provides aname that can be used for standardization and display purposes.

(B) Example of three entities with inconsistent names and identifiers which, when standardized by INDRA using

the ontology graph, are normalized to consistent entities with identical names and sets of identifiers.

Figure $4. Observed and predicted distributions of mentions correctly extracted by Reach for Statements
supported by up to 10 Reach mentions.

(A) Frequencies of correct mentions predicted by the INDRA Belief Model. The blue barsin each subplot show
the frequencies of statements with k correctly extracted mentions for n total mentions for the Statement
(considering mentions from the Reach reader only). The red line in each subplot shows the frequencies of correct
mentions expected by the INDRA Belief Model. The INDRA Belief Model expects a substantial proportion of
Statements to have an intermediate number of correctly extracted mentions, whereas the empirical data suggests
that Statements are more likely to be associated with mentions that are either al correct or incorrect.

(B). Frequencies of correct mentions expected by the Binomial model. Blue bars areidentical to (A).
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(C). Frequencies of correct mentions expected by the Beta-binomial model. Blue bars are identical to (A) and (B).
The Beta-binomial model differs from the INDRA Belief Model and Binomial modelsin that it predicts relatively

greater proportions of Statements with mentionsthat are either all correct or incorrect.

Figure S5. Reader overlap and Statement correctness.

(A) Upset plot (equivaent to a Venn diagram with more than 3 sets) of Statement support for five machine
reading systems integrated by INDRA. Datais identical to Figure 5A but intersection sizes are plotted on alog
scale and all 32 possible reader combinations are shown.

(B) Multi-reader mention counts and Statement correctness. Each subplot shows the relationship between mention
counts from a combination of two readers for manually curated Statements. Blue points represent Statements that
were curated as correct; red points were curated asincorrect. A small amount of random jitter has been added to

each point to indicate the density of points with fewer mention counts.
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