

1 **Astrocytic TDP-43 dysregulation impairs memory by modulating**
2 **antiviral pathways and interferon-inducible chemokines**

3 Avital Licht-Murava^{1,2}, Samantha M. Meadows^{1,2,3}, Fernando Palaguachi^{1,2}, Soomin C. Song⁴,
4 Yaron Bram⁵, Constance Zhou^{1,2,6}, Stephanie Jackvony^{1,2,3}, Robert E. Schwartz⁵, Robert C.
5 Froemke⁴, Adam L. Orr^{1,2}, and Anna G. Orr^{1,2,3,6}

6 ¹Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA.

7 ²Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.

8 ³Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.

9 ⁴Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University
10 Grossman School of Medicine, New York, NY, USA.

11 ⁵Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine,
12 New York, NY, USA.

13 ⁶Weill Cornell Medicine-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New
14 York, NY USA.

15 **Abstract**

16 TDP-43 pathology is prevalent in dementia but the cell type-specific effects of TDP-43 are not
17 clear and therapeutic strategies to alleviate TDP-43-linked cognitive decline are lacking. We
18 found that patients with Alzheimer's disease (AD) or frontotemporal dementia (FTD) have
19 aberrant TDP-43 accumulation in hippocampal astrocytes. In mouse models, induction of
20 widespread or hippocampus-targeted accumulation in astrocytic TDP-43 caused progressive
21 memory loss and localized changes in antiviral gene expression. These changes were cell-
22 autonomous and correlated with impaired astrocytic defense against infectious viruses. Among
23 the changes, astrocytes had elevated levels of interferon-inducible chemokines and neurons had
24 elevated levels of the corresponding chemokine receptor CXCR3 in presynaptic terminals.
25 CXCR3 stimulation altered presynaptic function and promoted neuronal hyperexcitability, akin to
26 the effects of astrocytic TDP-43, and blockade of CXCR3 reduced this activity. Ablation of
27 CXCR3 also prevented TDP-43-linked memory loss. Thus, astrocytic TDP-43 dysfunction
28 contributes to cognitive impairment through aberrant chemokine-mediated astrocytic-neuronal
29 interactions.

30 **Summary**

31 In dementia, protein buildup in glia enhances chemokine signaling to synapses and impairs
32 specific aspects of neurocognitive function.

33 **Introduction**

34 Subcellular mislocalization and dysregulation of transactivating response region (TAR) DNA-
35 binding protein 43 (TDP-43) is a key pathological hallmark of FTD and amyotrophic lateral
36 sclerosis (ALS) (1-5). TDP-43 dysregulation is also common in AD and other neurological
37 disorders with pronounced memory loss (6-10). Indeed, TDP-43 pathology correlates with
38 cognitive deficits and occurs in up to 50% of AD cases, the majority of hippocampal sclerosis
39 cases, and several other dementias (11-15). Despite the prevalence of TDP-43 pathology in
40 various disorders, it is not clear how TDP-43 contributes to disease pathogenesis and cognitive
41 impairments.

42 TDP-43 is a ubiquitously expressed protein that is highly enriched in the nucleus. It is
43 known to regulate RNA processing and transport, among other functions (1-5, 16-18).
44 Mislocalization, deficiency, or mutations in TDP-43 can cause pronounced functional deficits and
45 toxicity in animal and cell culture models (19-22), indicating that alterations in TDP-43 are
46 sufficient to cause impairments. Recent studies suggest that TDP-43 in glial cells as well as
47 neurons may be dysfunctional and contribute to disease (7, 11, 23-29). In mice, selective
48 elimination of mutant TDP-43 from motor neurons delays disease onset, but does not affect
49 disease progression, implicating mutant TDP-43 in non-neuronal cells as a contributor to chronic
50 pathology (30). Indeed, astrocyte-targeted expression of TDP-43^{M337V}, an ALS-associated mutant
51 form of TDP-43, causes rapid onset of motor deficits and early mortality (31). In Drosophila, glia-
52 targeted knockdown of a TDP-43 homologue also causes motor deficits (32). Additionally,
53 human induced pluripotent stem cell-derived astrocytes from ALS patients have cell-autonomous
54 TDP-43 accumulation in the cytoplasm (33). However, the effects of astrocytic TDP-43
55 alterations on neurocognitive processes, astrocytic-neuronal interactions, and neuronal activities
56 are not known, and therapeutic targets to alleviate cognitive decline in TDP-43-associated
57 disorders have not been defined.

58 Here, we investigated whether astrocytic TDP-43 is altered in the human brain and how
59 these alterations influence brain function. We found that TDP-43 accumulates in the cytoplasmic
60 compartment of astrocytes in humans with AD or FTD. In mice, induction of analogous TDP-43
61 alterations in astrocytes throughout the brain or specifically in the hippocampus caused
62 progressive memory loss that correlated with aberrant changes in antiviral factors expressed by
63 hippocampal astrocytes. In particular, TDP-43 accumulation increased astrocytic levels of
64 interferon-inducible chemokines and presynaptic levels of the corresponding chemokine receptor
65 CXCR3, which promoted neuronal hyperexcitability and memory loss. Thus, dementia-associated
66 TDP-43 alterations in hippocampal astrocytes may contribute to cognitive decline through

67 aberrant engagement of antiviral mechanisms and increases in astrocytic-neuronal chemokine
68 signaling.

69 **Results**

70 **Astrocytes have extranuclear TDP-43 accumulation in AD and FTD**

71 Neuronal TDP-43 accumulation in the cytoplasm and other alterations have been well-
72 characterized in human samples and model systems. However, TDP-43 pathology is not limited to
73 neurons and might also occur in glial cells, including astrocytes (34-36). Astrocytes have crucial
74 roles in brain function and can contribute to disease-related changes, including memory loss,
75 synaptic deficits, and neuroinflammation (37-39). Despite robust endogenous expression of TDP-
76 43 in astrocytes, it is not clear if astrocytic TDP-43 is altered in patients with dementia-related
77 memory loss and other neurocognitive impairments. Thus, we first assessed subcellular levels of
78 TDP-43 in astrocytes from AD, FTD, and control (nondementia) cases by performing quantitative
79 immunofluorescent labeling for TDP-43 and the astrocyte marker GFAP in *postmortem* human
80 hippocampal sections. Unlike labeling for other prevalent astrocytic markers, labeling for GFAP
81 is sparser and allows for identification of discrete cells for detailed single-cell neuropathological
82 analyses. Specifically, we measured the levels of TDP-43 immunoreactivity within individual
83 GFAP-positive astrocytic cell bodies and within DAPI-positive nuclei of individual astrocytes.
84 Astrocytes were defined by clear GFAP immunolabeling and characteristic cell morphology. In
85 total, over 800 hippocampal astrocytes were analyzed across groups (**Tables S1–S2**). These
86 single-cell subcellular analyses revealed increased levels of diffuse extranuclear TDP-43
87 immunoreactivity in hippocampal astrocytes from AD cases as compared to age-matched control
88 cases (**Fig. 1A–B**). In contrast, the levels of nuclear TDP-43 immunoreactivity in astrocytes were
89 similar between groups (**Fig. 1C**). Most notably, the ratio of extranuclear-to-nuclear TDP-43
90 immunoreactivity in astrocytes was increased by approximately 89% in AD cases as compared to
91 controls (**Fig. 1D**). Similar alterations in diffuse astrocytic TDP-43 were also detected in the
92 hippocampus of cases with sporadic or familial FTD (**Fig. 1B–D**), demonstrating that these
93 effects are not unique to AD and are shared among different disorders. It is possible that similar
94 changes in astrocytic TDP-43 accumulation may also occur in other brain regions and other
95 neurological conditions that affect astrocytes.

96 **Astrocytic TDP-43 alterations cause progressive memory loss**

97 To test whether astrocytic TDP-43 affects behavior and cognitive processes, we generated doubly
98 transgenic mice with inducible and astrocyte-targeted expression of a mutant form of human

99 TDP-43 that accumulates in the cytoplasm (19). Specifically, we used the well-validated
100 transgenic *hGFAP-tTA* driver line (40-44) to selectively target astrocytes with inducible *tetO*-
101 regulated expression of human TDP-43 that contained a mutated nuclear localization sequence
102 (hTDP43-ΔNLS) (19) (**Fig. 2A**). This tet-off system enables suppression of hTDP43-ΔNLS
103 transgene expression using doxycycline (DOX) treatment (42, 43, 45). To prevent potential
104 neurodevelopmental effects, breeding pairs and offspring were maintained on a DOX-
105 supplemented diet until weaning at 3 weeks of age, as described previously (42, 44). By 3 months
106 of age, widespread astrocytic hTDP43-ΔNLS expression and cytoplasmic accumulation were
107 detected throughout the brain, including the neocortex, hippocampus, thalamus, striatum, and
108 spinal cord in doubly transgenic mice, but not in singly transgenic or nontransgenic controls (**Fig.**
109 **2B–C** and **fig. S1**). Expression of hTDP43-ΔNLS was robust in astrocytes, which showed
110 characteristic branching and intermingling with neurons, but was minimal or undetectable in
111 NeuN-positive and Iba1-positive cells (**Fig. 2D–F**).

112 Previous studies have reported that targeting hTDP43-ΔNLS to neurons causes severe
113 motor deficits and early mortality in mice (19) and that an ALS-linked mutant form of hTDP-43
114 (M337V) expressed in astrocytes is similarly detrimental (31). However, we found that targeting
115 hTDP43-ΔNLS to astrocytes did not affect lifespan or alter motor, exploratory, and anxiety-linked
116 behaviors (**fig. S2**). The mice were monitored up to the age of 23–24 months and had normal
117 nesting, burying, and social behaviors, but had mildly increased grooming by 14–15 months of
118 age and increased incidence of ulcerative dermatitis (**fig. S2**). These results highlight the cell
119 type-specific and mutation-specific effects of TDP-43 on brain function and suggest that
120 cytoplasmic TDP-43 accumulation in astrocytes, in contrast to neurons, is not sufficient to cause
121 early mortality, motor deficits, or changes in other innate behaviors.

122 TDP-43 pathology frequently occurs in patients with AD or hippocampal sclerosis (6, 11-
123 14, 46), and TDP-43 pathology correlates with memory impairments (12, 47, 48), implicating
124 TDP-43 alterations in memory loss. To determine if astrocytic hTDP43-ΔNLS impairs
125 hippocampus-dependent learning and memory, we tested the mice in the Morris water maze. In
126 this task, mice learn to locate a hidden platform using spatial cues (49). At 3–4 months of age,
127 doubly transgenic ΔNLS mice had normal learning during training, and normal memory in a
128 probe test conducted one day after training (**Fig. 3A–B**). However, the mice were moderately
129 impaired in a probe test conducted three days after training (**Fig. 3C**). By 9–10 months of age,
130 doubly transgenic ΔNLS mice had severely impaired performance in probe tests conducted one
131 day and three days after training (**Fig. 3E–H**), but had no deficits in learning or swimming (**Fig.**
132 **3D** and **fig. S3**). By 12 months of age, ΔNLS mice also had deficits in novel object recognition,

133 an alternative memory-dependent test, but no changes in total exploration (**Fig. 3I** and **fig. S3**).
134 Thus, astrocytic hTDP43-ΔNLS causes progressive memory deficits but does not markedly
135 impair locomotion or other behavioral functions.

136 **Astrocytic TDP-43 alterations in the hippocampus are sufficient to cause memory loss**

137 We next examined if the memory deficits induced by astrocytic hTDP43-ΔNLS could be caused
138 by direct effects of astrocytic TDP-43 on the hippocampus, a brain region known to be crucial for
139 memory and susceptible to aging and dementia-associated pathology. To selectively target
140 hippocampal astrocytes *in vivo*, we stereotactically microinjected adeno-associated viral (AAV)
141 vectors encoding Cre-dependent hTDP43-ΔNLS or hTDP43-WT into the hippocampus of
142 transgenic *Aldh1l1*-Cre mice, which express Cre recombinase predominantly in astrocytes (50)
143 (**Fig. 4A**). Although the *Aldh1l1* promoter might be active in other cell types in some contexts and
144 niches of the brain (51), recent studies using single-cell transcriptomics and immunolabeling
145 indicate that *Aldh1l1* activity is very low or absent in hippocampal stem cells, including radial
146 glia (52, 53). Moreover, *Aldh1l1* promoter-regulated transgene expression is not detected in
147 neuronal progeny (53). Nonetheless, to further restrict transgene expression to astrocytes, we also
148 placed the AAV vector-encoded hTDP43-ΔNLS and hTDP43-WT transgenes under the control of
149 the astrocytic promoter *hGfaABC1D* (54). This approach created a two-promoter system that
150 requires both *Aldh1l1* and *Gfap* promoter activities for transgene induction. To ensure high
151 efficiency of transgene expression, we used the PHP.eB AAV capsid, which has over 40-fold
152 greater efficiency in transducing neural cells as compared to the standard AAV9 capsid (55).

153 After delivering the vectors intracranially, we performed immunostaining for human TDP-
154 43 protein and markers of astrocytes and other neural cell types. We found that hippocampal
155 transductions with PHP.eB AAV vectors encoding hTDP43-ΔNLS or hTDP43-WT were highly
156 efficient, astrocyte-selective, hippocampus-specific, and stable for months after AAV
157 microinjection (**Fig. 4B–D** and **fig. S4A–C**). hTDP43-ΔNLS was localized in astrocyte cell
158 bodies and processes, whereas hTDP43-WT was enriched in astrocytic nuclei. However, similar
159 to hTDP43-ΔNLS, hTDP43-WT was also moderately extranuclear *in vivo* and in isolated
160 astrocytes (**figs. S4B, S4D–E**), as described previously in other cell types (56, 57), suggesting that
161 both manipulations can cause accumulation of TDP-43 in the cytoplasm.

162 We next used the Morris water maze to assess learning and memory in AAV-injected
163 transgenic *Aldh1l1*-Cre mice and AAV-injected nontransgenic (NTG) littermate controls. Three
164 months after microinjection, *Aldh1l1*-Cre mice that received AAV encoding hTDP43-ΔNLS had
165 normal learning and probe performance (**Fig. 4E–F**). However, by six months after

166 microinjection, these mice had impaired probe performance as compared to control groups (**Fig.**
167 **4G–H**), similar to the results obtained in doubly transgenic hTDP43-ΔNLS mice (**Fig. 3**). NTG
168 mice that received the AAV vector encoding hTDP43-ΔNLS but did not express Cre performed
169 similarly to control *Aldh1l1*-Cre mice that did not receive the AAV vectors, ruling out nonspecific
170 effects by the AAV vectors. Of note, *Aldh1l1*-Cre mice that received the AAV vector encoding
171 hTDP43-WT had normal learning but impaired probe performance by nine months after
172 microinjection (**Fig. 4J–M**), consistent with previous studies showing that accumulation of wild-
173 type TDP-43 is also detrimental (56–58). All groups had similar swim speeds (**Fig. 4I** and **4N**).

174 Additionally, using our two-promoter system, we tested if chronic astrocytic
175 overexpression of other unrelated proteins would similarly cause progressive memory loss. To
176 test this, we transduced hippocampal astrocytes with a PHP.eB AAV vector encoding hM4Di-
177 mCherry (instead of hTDP-43) under the control of *hGfaABC1D* promoter. We did not detect
178 memory deficits in *Aldh1l1*-Cre or NTG mice that received this vector (**fig. S4F–K**), further
179 ruling out potential nonspecific effects of AAV transduction and protein overexpression.
180 Together, these results suggest that dysregulation of TDP-43 in hippocampal astrocytes is
181 sufficient to cause progressive memory deficits and that TDP-43 plays essential roles in astrocytic
182 modulation of hippocampal function.

183 **Astrocytic TDP-43 affects interferon-inducible chemokines and other antiviral factors in a 184 cell-autonomous manner**

185 Astrocytes contribute to memory loss in disease (42, 59–61), but the exact mechanisms are not
186 known. In addition, the effects of TDP-43 on astrocytes and astrocytic-neuronal interactions
187 remain unclear. In other cell types, TDP-43 dysfunction can alter inflammatory cascades (62, 63),
188 which might promote cognitive decline. Therefore, we next examined if doubly transgenic ΔNLS
189 mice had altered transcription of genes linked to neuroinflammation and glial reactivity in
190 different brain regions that expressed hTDP43-ΔNLS. Targeted transcriptional profiling was
191 carried out in four different brain regions across four genotypes using a microfluidic-based high-
192 throughput RT-qPCR and a custom-designed panel of curated neuroinflammation-related genes.
193 Tau-P301S mice were used as a technical positive control because this model has robust
194 hippocampal gliosis and neuroimmune responses. In contrast to the broad changes in hippocampal
195 gene expression detected in transgenic tau-P301S mice (64, 65), we found highly selective
196 changes in gene expression in doubly transgenic ΔNLS mice (**Fig. 5A**). Interferon-inducible
197 chemokines *Cxcl9* and *Cxcl10* were among the top genes affected and were highly increased in
198 the hippocampus, but showed minimal changes in other brain regions, including the neocortex,

199 striatum, and thalamus (**Fig. 5A–C** and **fig. S5A–D**). Various markers of astrocytic and microglial
200 reactivity were minimally affected at the RNA and protein levels (**Fig. 5A** and **fig. S5A–C, F**).
201 Notably, the increases in CXCL9 and CXCL10 proteins were localized to hippocampal
202 astrocytes, but not neurons, microglia/macrophages, or astrocytes in other examined brain regions
203 (**Fig. 5D–E** and **fig. S5D–E**), similar to previous findings of increased astrocytic CXCL10 in a
204 model of multiple sclerosis (66) and in humans with AD (67). Increases in astrocytic CXCL9 and
205 CXCL10 protein levels were also detected in transgenic *Aldh1l1*-Cre mice that received
206 intrahippocampal injections of PHP.eB AAV vectors encoding hTDP43-ΔNLS or hTDP43-WT
207 (**fig. S5G**), suggesting that astrocytic induction of these chemokines does not require widespread
208 transgene expression and is not unique to the transgenic tet-off system. In addition to CXCL9 and
209 CXCL10, the related chemokine CXCL11 also binds to CXCR3 with high affinity. However, in
210 C57Bl/6 mice (which were used in this study), CXCL11 is not expressed at the protein level due
211 to a premature stop codon (68, 69).

212 Increased expression of CXCL9–11 is typically induced by antiviral or interferon-
213 associated signaling, which regulates glial functions and is linked to cognitive changes, dementia,
214 and neuropsychiatric disorders (70–77). One of the primary triggers for antiviral or interferon-
215 associated signaling is activation of pattern recognition receptors (PRRs) that detect non-self or
216 aberrant nucleic acids. Thus, we next tested if sensors of nucleic acids were altered in transgenic
217 mice and isolated astrocytes expressing hTDP43-ΔNLS. Indeed, doubly transgenic mice
218 expressing astrocytic hTDP43-ΔNLS had increased levels of multiple sensors of aberrant dsRNA,
219 including RIG-I (retinoic acid-inducible gene 1; also known as *Ddx58*), MDA5 (melanoma
220 differentiation-associated gene 5; also known as *Ifih1*), and PKR (dsRNA-dependent protein
221 kinase, also known as *Eif2ak2*) (**Fig. 5F**). We also detected increased levels of other antiviral
222 factors, including viperin (virus inhibitory protein, endoplasmic reticulum-associated, *interferon-*
223 *inducible*; also known as *cig5* or *Rsad2*) and IRF-7 (interferon regulatory factor-7), a master
224 regulator of interferon responses (**Fig. 5G**). Similar to the chemokines, the increases in viperin
225 protein levels were localized to astrocytes but not neurons (**Fig. 5H** and **fig. S5H**). In contrast to
226 the dsRNA sensors, we did not detect changes in the genes encoding dsDNA sensor cyclic GMP-
227 AMP synthase (cGAS) or stimulator of interferon genes (STING) (**fig. S5I**), suggesting that
228 astrocytic TDP-43 alterations may preferentially impact dsRNA sensors and other alternative
229 dsDNA-sensing mechanisms.

230 Next, we examined whether the changes in astrocytic gene expression were cell-
231 autonomous and linked to functional changes in immune-related signaling. For these experiments,
232 primary astrocytes were isolated from the hippocampus of doubly transgenic ΔNLS or NTG

233 control mice generated in breeding cages with standard chow without DOX. Cell culture purity
234 and transgene efficiency and specificity were evaluated as described in the Methods. As expected,
235 isolated Δ NLS but not NTG astrocytes expressed human TDP43- Δ NLS protein (**Fig. 6A**). Total
236 TDP-43 levels were less than two-fold greater than endogenous TDP-43 levels (**Fig. 6A–B**) and
237 TDP-43 aggregates were not detected (data not shown). Nonetheless, isolated Δ NLS astrocytes
238 had increased levels of multiple interferon-related gene transcripts, including dsRNA-related
239 PRRs (**Fig. 6C**), *Rasd2/viperin*, *Ifnb1*, and *Ifng* (**Fig. 6D**), suggesting that these gene changes are
240 at least in part cell-autonomous. Isolated Δ NLS astrocytes also had increased levels of
241 phosphorylated NF- κ B (**Fig. 6E–F**), supporting the notion that TDP-43 dysfunction affects
242 immune-related pathways in astrocytes, similar to neurons and microglia (63, 78).

243 To further test if these changes were induced by TDP43- Δ NLS expression, some Δ NLS
244 and NTG astrocytes isolated from the hippocampus were maintained in DOX-supplemented
245 media. As expected, DOX-treated Δ NLS astrocytes had minimal expression of human TDP-43 as
246 compared to Δ NLS astrocytes maintained without DOX (**Fig. 6G**). DOX-treated Δ NLS astrocytes
247 had reduced levels of *Cxcl10* gene expression (**Fig. 6H**) and reduced levels of phosphorylated
248 NF- κ B and STAT3 (**Fig. 6I**) as compared to astrocytes maintained without DOX. These signaling
249 factors were not affected in NTG control astrocytes treated with DOX. Thus, TDP-43 altered
250 baseline astrocytic immune-related gene expression and signaling.

251 Although the approximately two-fold increases in total levels of TDP-43 induced
252 moderate changes in gene expression and signaling, these changes were chronic and associated
253 with marked functional effects on antiviral responses to pathogens. To examine these effects, we
254 used a mimic of viral dsRNA, polyinosinic-polycytidylic acid (poly(I:C)), as a positive control for
255 induction of antiviral responses. Transfection with poly(I:C) induces robust astrocytic antiviral
256 responses at least in part via TLR3 and MDA5 (79). Indeed, isolated astrocytes acutely
257 transfected with poly(I:C) had robust induction of antiviral genes and reduced levels of infection
258 by vesicular stomatitis virus (VSV), a negative-sense RNA virus (**Fig. 7A** and **fig. S6A**). In
259 comparison to NTG controls, Δ NLS astrocytes had increased levels of VSV infection (**Fig. 7A**),
260 suggesting that antiviral responses were impaired. Δ NLS astrocytes also had increased infection
261 by adenovirus (**Fig. 7B**), a double-stranded DNA virus. Cell culture density was similar between
262 treatments and genotypes (**fig. S6B–C**), indicating that the observed increases in viral infections
263 were unlikely to result from altered cell survival or density. We also tested if astrocytes were
264 more susceptible to herpes simplex virus-1 (HSV-1), a highly neurotropic double-stranded DNA
265 virus increasingly implicated in AD (80–82). Indeed, Δ NLS astrocytes had increased levels of
266 HSV-1 infection (**Fig. 7C–E**). Thus, in addition to affecting cognitive function, alterations in

267 astrocytic TDP-43 impaired antiviral defenses, which may predispose the cells to infectious
268 pathogens. However, further studies are necessary to address how astrocytic proteinopathy affects
269 host responses to microbial pathogens and possibly other neuroimmune challenges, and whether
270 alterations in type I and/or type II IFN pathways and other mechanisms are contributing factors.

271 **Astrocytic TDP-43 alterations are linked to increased presynaptic levels of the chemokine
272 receptor CXCR3 and CXCR3-mediated neuronal impairments**

273 Given that memory was impaired in Δ NLS mice, we next explored how changes in astrocytic
274 interferon-inducible factors might affect neuronal functions. Upon release, interferon-inducible
275 chemokines CXCL9–11 activate the shared G protein-coupled receptor CXCR3 (83), which can
276 be expressed by neurons (67, 84), microglia (85), and potentially other cell types. Notably,
277 patients with FTD or AD show increased levels of CXCL10 (86) and have hippocampal CXCR3
278 expression predominantly in neurons (67), suggesting that neuronal CXCR3 might play a role in
279 these disorders. We found that hippocampal *Cxcr3* RNA and protein levels were increased in
280 Δ NLS mice (Fig. 8A–C) and the majority of CXCR3-immunoreactive puncta were localized in
281 neurons (Fig. 8D–E). However, Δ NLS mice did not have increased levels of CXCR3
282 immunoreactivity within neuronal cell bodies (Fig. 8D–E). Co-immunolabeling for CXCR3 and
283 different presynaptic and postsynaptic markers revealed that Δ NLS mice had two-fold increases
284 in CXCR3 selectively within synaptophysin-positive puncta, but not within PSD-95 or gephyrin-
285 positive puncta (Fig. 8F–J), suggesting that the increases in hippocampal CXCR3 levels were
286 localized to presynaptic terminals.

287 CXCR3 activation triggers $G_{i/o}$ -coupled signaling, which can inhibit presynaptic
288 neurotransmitter release (87, 88). However, the presynaptic effects of CXCR3 have not been
289 previously defined. Thus, we next assessed whether activation of presynaptic CXCR3 affects
290 neuronal activity by using the multi-electrode array system. For these experiments, primary
291 mouse neurons were transduced with PHP.eB AAV Syn-Cxcr3-2HA-neurexin1 α . In this vector,
292 the neurexin-1 α sequence targets CXCR3 to presynaptic terminals, which simulates the
293 presynaptic enrichment of CXCR3 observed in Δ NLS mice and limits artificial effects of CXCR3
294 on neuronal excitability (89). We confirmed that the vector was functional in neurons and that
295 CXCR3 stimulation with chemokines induced characteristic intracellular signaling (fig. S7A–B).
296 We found that acute chemokine treatment inhibited spontaneous neuronal activity within minutes
297 of treatment (Fig. 9A), suggesting that CXCR3 rapidly suppresses neuronal firing, possibly
298 through modulation of calcium channels and presynaptic vesicles (87, 88).

299 In contrast to these acute effects, chronic stimulation of CXCR3 increased spontaneous
300 neuronal activity (**Fig. 9B**), indicating that CXCR3 also promotes long-lasting increases in
301 neuronal firing, likely through chronic changes in the presynaptic compartment. Indeed, chronic
302 stimulation of CXCR3 enhanced the levels of synaptophysin-positive puncta, a marker of
303 presynaptic vesicles, but did not affect PSD-95, a marker of postsynaptic compartments (**Fig. 9C–**
304 **D** and **fig. S7C**). Of note, neurons transduced with AAV-CXCR3 but not treated with
305 chemokines, and neurons treated with chemokines but not transduced with AAV-CXCR3
306 performed similarly to untransduced vehicle-treated control neurons, ruling out nonspecific
307 effects of the AAV vector and treatment on neuronal responses.

308 To test whether similar presynaptic changes were present in the hippocampus of Δ NLS
309 mice, we compared the levels of different synaptic markers by quantitative immunofluorescence.
310 Similar to neuronal cultures overexpressing presynaptic CXCR3, doubly transgenic Δ NLS mice
311 had increased levels of synaptophysin-positive puncta (**Fig. 9E–F**) without marked changes in the
312 levels of PSD-95 or gephyrin, which are markers of excitatory and inhibitory postsynaptic zones,
313 respectively (**fig. S7D–E**). There were also no detectable changes in the levels of bassoon, a
314 scaffolding protein in excitatory and inhibitory presynaptic compartments, and no changes in
315 synaptotagmin-2, a marker of inhibitory presynaptic vesicles (90, 91) (**fig. S7F–G**). These results
316 are consistent with recent findings that $G_{i/o}$ -coupled receptors can enhance the number of
317 presynaptic vesicles without altering the number of synaptic zones (92, 93). Thus, astrocytic
318 TDP-43 modulates excitatory presynaptic compartments without markedly changing the density
319 of synaptic zones.

320 We next investigated whether astrocytic TDP-43 altered functional electrophysiological
321 readouts of hippocampal transmission and presynaptic release. For these experiments, acute
322 hippocampal slices were obtained from doubly transgenic Δ NLS mice or littermate controls at 5–
323 6 months of age. The Schaffer collateral pathway was stimulated while recordings of field
324 excitatory postsynaptic potentials (fEPSPs) were obtained in the striatum radiatum of the dorsal
325 CA1 region. We found that Δ NLS mice had increased basal synaptic transmission as evidenced
326 by enhanced fEPSPs (**Fig. 9G**). This effect was most apparent at higher stimulus intensities. The
327 mice also had impaired paired-pulse facilitation, as reflected by lower fEPSC₂/fEPSC₁ ratios (**Fig.**
328 **9H**). Notably, Δ NLS mice had increased responses to the first but not second pulses as compared
329 to control mice (**Fig. 9I–J**), indicative of enhanced probability of neurotransmitter release, which
330 likely contributed to the observed increases in basal synaptic transmission. No significant
331 differences were detected in fiber volley amplitudes, which reflect presynaptic action potentials,
332 or in linear regressions of fEPSP slopes and fiber volleys (**fig. S7H–I**).

333 To further test whether the presence of astrocytes with TDP-43 alterations is sufficient to
334 affect neuronal activities and to confirm that this effect is not dependent on other cell types, we
335 generated primary astrocytic-neuronal co-cultures in which neurons were derived from NTG mice
336 and astrocytes were derived from transgenic *Aldh1l1*-Cre mice to enable astrocyte-selective
337 transgene expression. Prior to the addition of neurons to the cultures, isolated *Aldh1l1*-Cre
338 astrocytes were transduced with a PHP.eB AAV vector encoding Cre-dependent hTDP43-ΔNLS
339 under the control of the *hGfaABC1D* promoter. Consistent with our findings in ΔNLS mice, NTG
340 neurons co-cultured with *Aldh1l1*-Cre astrocytes expressing hTDP43-ΔNLS had altered
341 spontaneous firing patterns as compared to neurons co-cultured with control *Aldh1l1*-Cre
342 astrocytes (Fig. 9K). Notably, spontaneous neuronal activities were suppressed by selective
343 blockade of CXCR3 with SCH 546738 (12 nM) to approximately 40% of baseline activities, and
344 this suppressive effect was significantly more pronounced in neurons cultured in the presence of
345 hTDP43-ΔNLS-expressing astrocytes (Fig. 9L), revealing an increased involvement of CXCR3.
346 Together with our findings in isolated neurons and hippocampal slices, these results suggest that
347 astrocytic TDP-43 is linked to CXCR3-dependent neuronal hyperexcitability.

348 Given these findings, astrocytic TDP-43 alterations may promote memory loss in part
349 through CXCR3-induced effects on hippocampal function. Thus, we next tested whether genetic
350 ablation of the gene encoding CXCR3 can prevent TDP-43-related memory loss. For these
351 experiments, we generated *Aldh1l1*-Cre mice that were either wild-type (WT) or functional null
352 (knockout, KO) for *Cxcr3* and performed bilateral injections of the PHP.eB AAV vector encoding
353 hTDP43-ΔNLS into the hippocampal formation at 4–9 months of age (Fig. 10A–B). Given that
354 *Cxcr3* is X-linked, we used littermate males that were either WT or KO for *Cxcr3* and expressed
355 Cre recombinase, which enabled cell type-selective hTDP-43 expression in hippocampal
356 astrocytes. The mice were then assessed in the Morris water maze at 7–12 months of age.

357 Similar to other results (Fig. 4), *Aldh1l1*-Cre/*Cxcr3*-WT mice that received AAV
358 encoding hTDP43-ΔNLS had impaired memory as compared to control mice that lacked
359 hTDP43-ΔNLS (Fig. 10C–E), without changes in swim speeds (Fig. 10F). In contrast, *Aldh1l1*-
360 Cre/*Cxcr3*-KO mice with hTDP43-ΔNLS performed more similarly to control mice lacking
361 hTDP43-ΔNLS (Fig. 10D–E), suggesting that alterations in astrocytic TDP-43 cause memory
362 loss in a CXCR3-dependent manner. Also, in control conditions, the behavior of *Aldh1l1*-
363 Cre/*Cxcr3*-KO mice was not different from *Aldh1l1*-Cre/*Cxcr3*-WT mice, suggesting that CXCR3
364 impairs memory upon changes in astrocytic function. Altogether, our study reveals that astrocytic
365 TDP-43 is linked to maladaptive antiviral changes and increased chemokine signaling that
366 disrupts hippocampal synaptic transmission and contributes to memory loss (fig. S8).

367 **Discussion**

368 Memory loss is common in aging-related neurological disorders, including AD, ALS-FTD,
369 hippocampal sclerosis, and other conditions. However, the exact causes of memory loss are not
370 clear and treatment options are limited. Increasing evidence implicates glial dysfunction and
371 abnormal glial-neuronal interactions in various pathophysiological processes (37-39). In
372 particular, astrocytes have been implicated in various CNS disorders (94-98) and, like neurons,
373 are functionally diverse (99-101) and affect information processing (102-104). Aberrant changes
374 in astrocytes can contribute to behavioral and cognitive deficits and promote memory loss
375 associated with aging and disease (42, 105-108). However, the mechanisms by which astrocytes
376 impair memory and other cognitive processes are not fully defined.

377 Here, we demonstrate that human hippocampal astrocytes accumulate extranuclear TDP-
378 43 in AD and FTD. Astrocytic TDP-43 accumulation in the hippocampus was sufficient to impair
379 memory, but not other neurocognitive functions, and it altered hippocampal neural activity and
380 presynaptic function. Consistent with the selective impairments in memory, we detected marked
381 increases in interferon-inducible chemokines preferentially in hippocampal astrocytes and
382 increases in the corresponding chemokine receptor CXCR3 in hippocampal presynaptic terminals.
383 These findings suggest that astrocytes in the hippocampus have a distinct response to TDP-43
384 alterations as compared to astrocytes in other brain regions. Indeed, widespread and chronic
385 transgene expression in astrocytes did not cause motor impairments, early mortality, or other
386 severe deficits. In contrast, animal models with analogous TDP-43 manipulations in neurons have
387 severe ALS-associated phenotypes, including motor impairments and early mortality (19, 109).
388 These distinct and selective effects suggest that responses to TDP-43 accumulation are cell type-
389 specific and heterogeneous across astrocytes in different brain regions.

390 Similar to TDP-43, ALS-linked mutations in superoxide dismutase (SOD1) cause
391 neurotoxicity, motor impairments, and early mortality. Analogous to our findings, astrocyte-
392 targeted expression of mutant SOD1 is not sufficient to trigger onset of motor neuron disease in
393 mice (110). However, astrocytic SOD1 is required for disease progression, and astrocytes
394 carrying mutant SOD1 are selectively damaging to isolated motor neurons but not other neuronal
395 subtypes (111, 112). Similarly, AD-linked tau accumulation in hippocampal astrocytes promotes
396 selective neuronal deficits (113). Altogether, our findings and previous work indicate that various
397 dementia-linked protein alterations in astrocytes cause highly context-dependent effects on
398 neurons and might facilitate selective neuronal vulnerability that contributes to variable disease
399 manifestations in neurodegenerative conditions.

400 Most dementia cases involve dysregulation of wild-type rather than mutant TDP-43.
401 Overexpression of wild-type TDP-43 in model systems is sufficient to impair cell function at least
402 in part through the effects of TDP-43 outside the nucleus (57). We found that expression of either
403 hTDP43-WT or hTDP43-ΔNLS, but not control proteins targeted to hippocampal astrocytes
404 induced progressive memory deficits, suggesting that even modest alterations in wild-type TDP-
405 43 within hippocampal astrocytes can impair memory and contribute to dementia-associated
406 cognitive decline. Hippocampal astrocytes were not similarly vulnerable to control vectors, thus
407 ruling out nonspecific effects of AAV injections or chronic protein overexpression as major
408 drivers of the observed phenotype. Of note, microglia and other neural cells in the hippocampus
409 might indirectly modulate astrocytic functions and the effects of TDP-43 alterations. Indeed,
410 microglial progranulin and TREM2 insufficiency may contribute to TDP-43 pathology (58, 114).

411 Astrocytic TDP-43 alterations were accompanied by cell-autonomous changes in antiviral
412 gene expression, increased phosphorylation of NF-κB and STAT3, and functional changes in
413 astrocytic innate defense against viral pathogens. Together, these results point to an aberrant
414 TDP-43-linked antiviral phenotype (aTAP) that may impact cognitive function as well as
415 neuroimmune responses. Our study focused on astrocytes, but TDP-43 is present in most cell
416 types and increasingly linked to interferon-related pathways in different cell populations (115-
417 117), suggesting that aTAP is not specific to astrocytes. Indeed, TDP-43 accumulation in neurons
418 triggers the antiviral cGAS-STING pathway, at least partly through abnormal mitochondrial DNA
419 release (57). We did not detect changes in astrocytic cGAS or STING genes, possibly because
420 aTAP engages distinct mechanisms in different cell types. Indeed, antiviral signaling involves
421 multiple dynamic and cell-specific mechanisms (118). TDP-43 can also affect retrotransposon
422 activity (119, 120), which may also contribute to aTAP. Thus, TDP-43 likely influences multiple
423 intracellular targets that affect neuroimmune signaling and antiviral cascades.

424 Although we focused primarily on the neurocognitive effects, our results in isolated cells
425 implicate TDP-43 in modulating innate responses to viral pathogens. A link between dementia
426 and viral infections has been suggested (121-123), but the effects of TDP-43 pathology on neural
427 responses to infections are not known. We tested three different viral pathogens, used several
428 independent methods to measure viral infections, and assessed different time-points and viral
429 doses. Convergent results across these different conditions suggest that alterations in TDP-43
430 allow pathogens to exploit weaknesses in astrocytic antiviral responses, which might affect innate
431 immunity in the brain.

432 Interferon-related pathways in astrocytes and other neural cells modulate brain function
433 and have been implicated in AD, ALS-FTD, and other CNS disorders (71, 73, 76, 77, 124-127),

434 but the roles of TDP-43 in these pathways have not been fully elucidated. We found that
435 alterations in TDP-43 increase astrocytic interferon-inducible chemokines, among other genes,
436 and promote presynaptic increases in neuronal CXCR3, the shared receptor that is likely
437 overactivated by the increased levels of chemokines. Although previous studies have reported
438 CXCR3 expression in microglia (128) and infiltrating immune cells (129), we did not detect
439 increases in CXCR3 in non-neuronal areas within the hippocampus. Similar to our results,
440 CXCR3 has been detected in human neurons and neuronal processes (67). Acute activation of
441 CXCR3 suppressed neuronal activity whereas chronic activation of CXCR3 increased neuronal
442 activity. In a similar manner, neurons maintained in the presence of astrocytes with chronic TDP-
443 43 accumulation had increased spontaneous neuronal activity, which was reduced by
444 pharmacological inhibition of CXCR3. These results suggest that alterations in astrocytic TDP-43
445 promote CXCR3-dependent neuronal hyperexcitability. Furthermore, Δ NLS mice had increases
446 in hippocampal transmission and presynaptic release probability, which may promote an
447 abnormal shift to low-pass filtering of excitatory firing and thereby impair the encoding of spatial
448 memory within the hippocampus. In support, genetic ablation of CXCR3 alleviated memory
449 deficits but did not affect memory in mice without astrocytic manipulation. Thus, alterations in
450 astrocytic TDP-43 cause neural hyperexcitability and memory deficits that are at least partly
451 dependent on CXCR3.

452 These findings implicate blockers of chemokines and CXCR3 as novel therapeutic
453 approaches for TDP-43-associated cognitive impairments. Notably, human CXCL10 levels are
454 increased in progranulin-linked FTD (86), AD (130), and amnestic mild cognitive impairment
455 (130), either in the cerebrospinal fluid or in astrocytes (67), and these levels correlate with
456 cognitive performance (130). Moreover, neural hyperexcitability has been reported in dementia
457 (131, 132) and global knockout of CXCR3 prevents memory deficits in transgenic mice with
458 amyloid- β pathology (133). CXCR3 blockers have reached clinical trials for peripheral
459 inflammatory conditions (134), but have not yet been tested in patients with dementia or other
460 cognitive disorders.

461 In summary, our findings suggest that TDP-43 alterations in astrocytes contribute to
462 cognitive decline in dementia. We describe a novel chemokine-mediated mechanism that is likely
463 downstream of astrocytic TDP-43-linked antiviral changes that affects hippocampal presynaptic
464 function and neuronal activities. Together, our results implicate astrocytic TDP-43 impairments
465 and aTAP in dementia pathogenesis and point to chemokine signaling as a potential therapeutic
466 target.

467 **Materials and Methods**

468 **Mice**

469 All animal experiments were conducted in accordance with guidelines set by the Institutional
470 Animal Care and Use Committee of Weill Cornell Medicine. Mice were housed in groups of 2–5
471 mice per cage and maintained on a 12-h light/dark cycle with *ad libitum* access to food and water.
472 Experiments were conducted during the light cycle and included littermate controls. Regulatable
473 and astrocyte-specific expression of human TDP-43 was achieved using transgenic *hGFAP*-tTA
474 mice with a tet-off tetracycline transactivator (tTA) element downstream of the human glial
475 fibrillary acidic protein (*hGFAP*) promoter (kindly provided by Dr. Lennart Mucke, Gladstone
476 Institutes, San Francisco, CA) (42, 135). *hGFAP*-tTA mice (B6.Cg-Tg(GFAP-tTA)110Pop/J;
477 Jackson Laboratory strain #005964) were crossed with *tetO*-hTDP43-ΔNLS mice (B6;C3-
478 Tg(*tetO*-TARDBP*)4Vle/J; Jackson Laboratory strain #014650), which contained a tet operator
479 (*tetO*) upstream of the human TARDBP gene with a mutated nuclear localization sequence (*tetO*-
480 hTDP43-ΔNLS) leading to expression of cytoplasmic human TDP-43 (19). In doubly transgenic
481 mice (referred to as ΔNLS mice), doxycycline (DOX) can bind to tTA to prevent *tetO*-mediated
482 transgene expression. DOX-supplemented chow (200 mg/kg, VWR, 89067-462) was provided to
483 breeding pairs and offspring until weaning (P21) to prevent expression of transgene during
484 embryonic and postnatal development. Thereafter, mice were maintained on standard laboratory
485 chow (Purina 5053) to allow the induction of transgene expression. Because the parent *tetO*-
486 hTDP43-ΔNLS strain was on a B6/C3 hybrid background, we backcrossed this line onto the
487 C57Bl/6J background (Jackson Laboratory strain #000664) for five generations.

488 Aldehyde dehydrogenase 1 family, member L1 (*Aldh1l1*)-Cre transgenic mice (B6;FVB-
489 Tg(*Aldh1l1*-cre)JD1884Htz/J) were obtained from the Jackson Laboratory (strain #023748) and
490 backcrossed onto the C57Bl/6J background. *Aldh1l1*-Cre mice express Cre recombinase
491 downstream of the astrocytic *Aldh1l1* promoter. Homozygous *Aldh1l1*-Cre mice were crossed
492 with transgenic mice null for the chemokine receptor CXCR3 (B6.129P2-Cxcr3tm1Dgen/J;
493 Jackson Laboratory strain #005796) to create *Aldh1l1*-Cre/*Cxcr3*-WT and *Aldh1l1*-Cre/*Cxcr3*-KO
494 male mice. Hippocampal tissue from transgenic mice expressing mutant human tau-P301S
495 (B6;C3-Tg(Prnp-MAPT*P301S)PS19Vle/J, Jackson Laboratory stock #008169) was used for
496 gene expression comparisons.

497 **Adeno-associated virus (AAV) preparation**

498 Wild-type and mutant forms of human TDP-43 were cloned into plasmids for pAAV-mediated,
499 astrocyte-specific expression in two stages. First, the truncated human astrocyte-specific promoter

500 *hGfaABC1D* (54) was digested from pAAV-GFAP-EGFP (donated by Dr. Bryan Roth, Addgene
501 Plasmid #50473; RRID #Addgene_50473) and cloned into pAAV-EF1a-DIO-hM4D(Gi)-
502 mCherry (donated by Dr. Bryan Roth, Addgene Plasmid #50461; RRID #Addgene_5046) in place
503 of the EF1a promoter using Anza 28 MluI and Anza 14 SalI (ThermoFisher). The inverted
504 hM4D(Gi)-mCherry coding sequence in the resulting vector was replaced with inverted human
505 wild-type or NLS1 TDP-43 coding sequences (136) by PCR amplification. Primers were designed
506 to contain NheI and SgsI restriction sites 5' and 3' to the TDP-43 coding sequence, respectively
507 (NheI primer = 5'-TGT CGC TAG CGC CAC CAT GTC TGA ATA TAT TCG G-3'; SgsI
508 primer = 5'-AAG GCG CGC CCT ACA TTC CCC AGC CAG AAG-3'). Amplicons were
509 digested and gel-purified before ligation into similarly prepared pAAV-*GfaABC1D*-DIO
510 backbone. The pcDNA3.2 TDP-43 YFP vectors were donated by Aaron Gitler (Addgene
511 plasmids # 84911, 84912, RRID: Addgene_84911, Addgene_84912).

512 Mouse CXCR3 with a C-terminal HA tag was targeted to neuronal presynaptic terminals
513 using the neurexin-1 α targeting sequence, as described (89). A gBlock gene fragment (Integrated
514 DNA Technologies) encoding mCherry-T2A-CXCR3-2HA-neurexin1 α (axon targeting sequence)
515 was designed following sequences made available by Scott Sternson (Addgene plasmid #52523;
516 RRID #Addgene_52523), synthesized and cloned into an AAV-hSyn1 expression vector
517 (Addgene plasmid #50458; RRID #Addgene_50458; donated by Dr. Bryan Roth) using SalI and
518 EcoRI restriction digest to generate pAAV-*hSyn1*:mCherry-T2A-CXCR3-2HA-nrxn1 α . NEB 5-
519 alpha cells (New England Biolabs) were transformed with pAAV constructs and the integrity of
520 inverted terminal repeats and expression-related elements in selected clones were confirmed by
521 sequencing and restriction digests. pAAV2/PHP.eB or pAAV2/DJ particles were produced by the
522 Stanford University Neuroscience Gene Vector and Virus Core or the University of Pennsylvania
523 Vector Core. PHP.eB capsid vectors were provided courtesy of Dr. Viviana Gradinaru and Dr.
524 Benjamin Deverman at the California Institute of Technology. PHP capsids are a modification of
525 AAV9 provided by the University of Pennsylvania (55, 137).

526 **Surgery and AAV microinjections**

527 Mice were anesthetized with sterile Avertin (2,2,2-tribromoethanol, 400–500 mg/kg body weight,
528 Acros Organics) and the hair was removed from the surgical area. Mice were secured in a
529 stereotaxic frame (Kopf Instruments) and 1 mm-diameter openings were made bilaterally in the
530 skull using a mounted drill (Kopf Instruments). Meloxicam (2 mg/kg) was injected
531 subcutaneously, and bupivacaine (1 mg/kg) was applied topically to relieve pain. Stereotaxic
532 coordinates used for hippocampal injections were (from bregma) anterior/posterior: -2.1,

533 medial/lateral: -/+ 1.7, and dorsoventral: -2.0 (for mice under 23 g body weight) or -2.1 (for mice
534 over 23 g body weight). A blunt 32-gauge, 0.5-inch-long needle attached to a 5 μ l Hamilton
535 syringe was mounted to the stereotaxic frame and controlled using a Micro 4 Microsyringe Pump
536 (World Precision Instruments) to infuse 0.5 μ l AAV2/PHP.eB-hGfaABC₁D-DIO-hTDP43-WT
537 (1.2 x 10¹³ particles/ μ l), AAV2/PHP.eB-hGfaABC₁D-DIO-hTDP43- Δ NLS (1.3 x 10¹³
538 particles/ μ l), or AAV2/PHP.eB-hGfaABC₁D-DIO-hM4Di-mCherry (3.15 x 10¹² particles/ μ l) at
539 right and left injection sites at a rate of 0.1 μ l/min, after which the needle was left in place for an
540 additional 5 min. After needle withdrawal, the surgical site was sealed with Vetbond tissue
541 adhesive (3M). Mice were monitored under a heating lamp until fully recovered and returned to
542 their home cage.

543 **Behavioral testing**

544 Experimental groups were distributed randomly across home cages and consisted of age-matched
545 littermates of both sexes. Experimenters were blinded to genotypes and mice were tested in
546 random order. Before most behavioral testing, except for the elevated plus maze, all mice were
547 handled for approximately 2 min per day for 7 days. Mice that were injured or in poor health,
548 independent of genotype, were excluded from behavioral testing. Tests were performed under
549 white light, unless otherwise noted. For all test days, mice were acclimated to the testing room for
550 1 h prior to testing.

551 *Elevated plus maze*: The plus-shaped maze consisted of two enclosed arms and two open arms
552 elevated 60–70 cm above the ground. Furthermore, tape was attached to the ends of the open arms
553 (5 cm from the end of the arm) to limit falls. After 1 h of habituation, mice were placed at the
554 center of the maze facing an open arm. Mice could freely explore the four arms for 5 min. Time
555 and distance traveled in each arm and center area were video recorded and tracked using
556 EthoVision XT video tracking software (Noldus Information Technology Inc. Leesburg, VA).
557 The apparatus was cleaned with 70% alcohol between mice.

558 *Open field test*: Mice were placed in the center of a clear plastic chamber (41 x 41 x 30 cm) with
559 two 16 x 16 photobeam arrays detecting horizontal and vertical movements. To measure context-
560 dependent habituation in the open field, the chambers were surrounded by distinct cues that were
561 maintained across test days. Mice were acclimated to the chamber in 2 x 5-min trials with a 3-h
562 inter-trial interval and assessed in the same chambers 1 and 14 days after habituation. Light in the
563 room was set to 75% red light to limit the anxiolytic effect of 100% white light. Total exploration,

564 rearing and percent time spent in the center of the arena were measured with an automated Flex-
565 Field/Open Field Photobeam Activity System (San Diego Instruments, San Diego, CA). The
566 apparatus was cleaned with 70% alcohol between mice.

567 *Rotarod*: Mice were placed on the Rotarod (Rotamex-5 0254-2002L) that was suspended 25.5 cm
568 from a soft surface. The speed of rotation was either held constant at 12 RPM or increased from 4
569 to 40 RPM gradually at an acceleration rate of 0.3 RPM/s. Mice were tested on the rod in 3 trials
570 with approximately 30 min inter-trial intervals. The latency to fall off the rod was recorded and
571 reported as the average of three trials. Equipment was cleaned with 70% ethanol between trials
572 and the light in the room was set to red light.

573 *Morris water maze*: The maze consisted of a 122-cm-diameter pool filled with water ($20 \pm 2^\circ\text{C}$)
574 made opaque with nontoxic white tempera paint (Colorations powder tempera paint). Spatial cues
575 were set up around the pool prior to testing. All mice underwent one session of 3–4 pre-training
576 trials in which they swam in a rectangular channel (15 cm \times 122 cm) with a square platform (14 \times
577 14 cm) hidden 0.5 cm below the water surface in the middle of the channel. If a mouse did not
578 reach the platform within 10 s, it was guided onto the platform by the experimenter and remained
579 on the platform for 10 s before it was returned to its cage. One to three days following pre-
580 training, mice underwent hidden platform training in the circular water maze.

581 For hidden platform training, the platform was submerged 1.5 cm below the surface. All
582 mice underwent one session of 4 trials for 3–5 consecutive training days. For each trial, the
583 platform location remained the same, but the mice were dropped in 4 different locations. The
584 maximum time allowed per trial was 60 s. If a mouse did not find or mount the platform, it was
585 guided to the platform by the experimenter. All mice were allowed to sit on the platform for 10 s
586 after each training trial.

587 Probe trials were performed 24 h and 72 h after the last hidden platform-training day. For
588 probe trials, the platform was removed, and mice were allowed to swim for up to 60 s per trial.
589 The drop location for the probe trials was 180° from the platform location used during hidden
590 platform training. After 60 s, mice were guided to the platform location before removal from the
591 pool and returned to its cage.

592 If the mice had any problems in learning where the platform is located, we performed a
593 cued platform training 24 h after probe testing. All mice underwent one session of 4 trials of the
594 cued platform training. The cued (visible) platform training was performed using a new platform
595 location and a clearly visible cue (a colorful 15-cm pole on top of the platform). All behavior was

596 recorded and analyzed with an Ethovision XT video tracking system (Noldus). Escape latencies,
597 distance traveled, swim paths, swim speeds, platform crossings and proximity to the platform
598 were recorded automatically for subsequent analysis.

599 *Novel object recognition test:* Mice were habituated to the testing chamber (40 × 40 cm) for 15
600 min. A day after habituation, mice were exposed to two identical objects in the same chamber and
601 allowed to explore freely for 10 min once per day for two consecutive days. The next day, mice
602 were presented with one object used during training and one unfamiliar (novel) object of a
603 different shape and texture in the same chamber, and the mice were allowed to explore for 15 min
604 during a test trial. The objects used for training and testing were assigned randomly to each mouse
605 to avoid object bias and which of the familiar objects was replaced with a novel object was varied
606 randomly between mice to control for location bias. Chamber and objects were cleaned with
607 Clidox-S (Pharmacal; 1:18:1 dilution) after each mouse. Behavior was recorded and analyzed
608 with an Ethovision XT video tracking system (Noldus) the time that the mice spent next to each
609 object were scored.

610 *Social interaction test:* Mice were allowed to freely explore a three-chamber arena (side chambers
611 were 22.86 cm x 42.2 cm; middle chamber was 21.59 cm x 42.2 cm) with two empty inverted
612 wire cups (8.5 cm diameter) in each side chamber. Chambers were divided by clear plexiglass
613 dividers, each with a half-circular opening at the bottom to serve as a free passageway between
614 chambers. After 10 min of exploration by a test mouse, a novel mouse of the same sex as the test
615 mouse was placed under one inverted wire cup and the other wire cup was left empty. The test
616 mouse was allowed to freely explore the three-chamber arena for another 10 min to explore the
617 novel partner. Each novel mouse used for testing was assigned randomly to each side to avoid
618 location bias. Chambers and wire cups were cleaned with 70% ethanol after each mouse.
619 Behavior was recorded and analyzed with the Ethovision XT video tracking system (Noldus). The
620 total time that the test mouse spent next to each inverted wire cup with a mouse or empty wire cup
621 was scored. The light in the room was set to red light.

622 *Marble-burying test:* Mice were placed in large cages (12 cm x 12 cm x 7.25 cm) covered with
623 mouse bedding material to a depth of 5 cm. During each trial, 20 standard glass black marbles
624 were gently placed on the surface of the bedding in a grid pattern. A mouse was placed in the
625 center of the cage and allowed to explore for 30 min. A marble was scored as buried when it was

626 at least 3/4 covered with bedding. The light in the room was set to red light. Between trials, the
627 bedding was changed, and the cages and marbles were cleaned with 70% ethanol.

628 *Nestlet-shredding test*: Mice were single-housed with one cotton fiber nestlet (5 cm x 5 cm, 5 mm
629 thick, ~2.5 g each) for 60–90 min. Nestlets were weighed before putting them in the cages. After
630 returning the mouse to its home cage, whole nestlet pieces (not the shredded nestlet) were
631 removed, dried overnight, and weighed.

632 *Grooming test*: Mice were sprayed three times with a light water mist on the back and neck areas.
633 The mice were placed in large cages (12 cm x 12 cm x 7.25 cm) with no bedding. Behavior was
634 recorded with the Ethovision XT video tracking system (Noldus) for 10 min. Cages were cleaned
635 with 70% ethanol after each mouse. The amount of time spent grooming the head and the rest of
636 the body was recorded and analyzed. The light in the room was set to red light.

637 *Pole test*: A vertical metal pole (1 cm diameter, 50 cm tall) with a heavy metal base was placed in
638 the center of a clean cage covered with bedding. Individual mice were placed on the upper portion
639 of the pole facing the ceiling for three trials. The amount of time spent turning at the top of the
640 pole and climbing down are video recorded (Ethovision XT video tracking system, Noldus) and
641 quantified. The apparatus was cleaned with 70% ethanol after each mouse. The light in the room
642 was set to red light.

643 *Wire hanging test*: Individual mice were placed on top of a 2 mm thick metal cloth hanger that is
644 securely attached 40 cm above the home cage containing extra padding. For three consecutive
645 days the mouse was allowed to grasp the wire with the two forepaws for a maximum of 300 s for
646 three trials. The latency of the mouse to full was recorded and quantified. The apparatus was
647 cleaned with 70% ethanol after each mouse. The light in the room was set to red light.

648 **Cell culture experiments**

649 *Primary astrocyte cultures*: All cultures were maintained at 37°C in a humidified 5% CO₂-
650 containing atmosphere. Cortices and/or hippocampi from wild-type (C57Bl/6J, Jackson
651 Laboratory strain #000664), *Aldh1l1-Cre* (B6;FVB-Tg(*Aldh1l1-cre*)JD1884Htz/J, Jackson
652 Laboratory strain #023748) or hemizygous doubly transgenic ΔNLS pups at postnatal day 1–3
653 were dissected in cold PBS to remove meninges and dissociated by manual trituration with a
654 P1000 pipette in 1 ml fresh culture media consisting of high-glucose DMEM (Corning), 20%

655 heat-inactivated FBS (VWR #89510-188), 1X GlutaMAX (ThermoFisher #35050061), and 1 mM
656 sodium pyruvate (Thermo Scientific). In some experiments, culture media for isolated astrocytes
657 derived from doubly transgenic TDP43-ΔNLS mice contained tetracycline-depleted FBS (VWR
658 #97065-310) that was heat-inactivated for 30 min at 56°C in a water bath. To prevent transgene
659 expression, some cultures were treated with 2 µg/µl doxycycline hydralate (Millipore-Sigma
660 #D9891). Cell suspensions were diluted to 10 ml with media, filtered through a 70 µm cell
661 strainer (VWR), centrifuged for 5 min at 300 g at 22°C, resuspended with culture media, and
662 plated into cell culture dishes pre-coated with poly-D-lysine (75–150 kDa, 0.01% in water,
663 filtered; Sigma #P6407 or MP Biomedical #0215017580). At DIV 4–5, the cells were washed to
664 remove debris and given fresh media.

665 Wild-type and doubly transgenic astrocyte cultures were determined to contain 98.8% ±
666 0.4% (SE) astrocytes and 1.2% ± 0.4% (SE) microglia, based on immunolabeling for GFAP, Iba1,
667 NeuN, and DAPI. These analyses were performed using a Nikon Eclipse Ti-S microscope with a
668 Nikon PlanFluor 10X objective and NIS-Elements BR v5.02.01 acquisition software.

669 In doubly transgenic TDP43-ΔNLS cultures without doxycycline treatment, hTDP-43
670 expression was detected in 47.8 ± 4.7% (SE) of astrocytes, based on immunolabeling for hTDP-
671 43 and the astrocyte marker GFAP. For these analyses, a stringent lower cutoff was determined
672 using mean signal intensity in parallel cultures with doxycycline treatment, which accounted for
673 nonspecific immunoreactivity and background fluorescence. For analyses of hTDP-43
674 distribution in cultures, images were captured with an LSM880 confocal microscope (Zeiss)
675 equipped with a 63X objective (Zeiss) and Zen Black v2.3 SP1 FP3 acquisition software (Zeiss).
676 Images were processed in FIJI v2.1.0/1.53c by subtracting the average background fluorescence
677 and analyzing individual cells that had DAPI-positive nuclei and GFAP-positive cell bodies for
678 levels of nuclear and extranuclear hTDP-43 immunoreactivity, respectively.

679 *Primary neuronal cultures:* Cortical and hippocampal neurons from postnatal day 0–1 wild-type
680 or knockout mouse pups (B6.129P2-Cxcr3tm1Dgen/J; Jackson Laboratory strain #005796) were
681 obtained as described previously (138), with minor modifications. Briefly, papain-dissociated
682 cells were filtered through a 0.4 µm cell strainer (Corning #431750) to enrich for neurons,
683 centrifuged at 500 g for 5 min to eliminate small debris, and suspended in complete primary
684 neuronal medium consisting of B-27 Plus Neuronal Culture system (ThermoFisher #A3653401)
685 and 1X GlutaMAX (ThermoFisher #35050061) without antibiotics. Cells were seeded at 50,000–
686 150,000 live cells per cm² into plates coated with poly-D-lysine (0.01% w/v; Sigma P6407).

687 Media was fully exchanged one day after plating (DIV 1) with subsequent half-media exchanges
688 every 3–4 days.

689 *Chemokine treatments in primary neurons:* For immunostaining, primary wild-type neurons were
690 cultured on poly-D-lysine-coated black walled μ CLEAR 96-well plates (Greiner Bio-One
691 #655090). For recording neuronal activity, primary wild-type neurons were plated onto poly-D-
692 lysine coated 48-well CytoView multielectrode array (MEA) plates (Axion BioSystems) as
693 described above. Neurons were transduced at DIV8 with 2×10^8 AAV2/DJ-*hSyn1*:mCherry-T2A-
694 Cxcr3-2HA-nrxn1a particles per well. Starting at DIV9, neuronal activity was recorded for 15–
695 30 min daily before and after treatment with recombinant CXCL11 (200 nM, BioLegend
696 #573606) using the Maestro Pro MEA System (Axion BioSystems). Neuronal firing rates were
697 analyzed using Neural Metric Software (Axion BioSystems).

698 For RT-qPCR or western blotting, primary wild-type neurons were cultured on TC-treated
699 24-well plates (Greiner Bio-One #662160). For chronic treatment with chemokines, neurons were
700 treated with 200 nM CXCL11 (Biolegend #573606) or PBS vehicle (VWR #76018-870) starting
701 at DIV4 with reapplication at 2X concentrations during half-volume feedings at DIV 7 and DIV
702 11. At DIV 14, neurons were fixed for immunostaining or harvested for RT-qPCR, as described
703 in *Immunocytochemistry* or *Microfluidic qPCR*. To confirm the effects of chemokine stimulation
704 on intracellular signaling, Neuro-2a cells (ATCC, #CCL-131) maintained in high-glucose DMEM
705 (Corning), 10% heat-inactivated FBS (VWR #89510-188), 1X GlutaMAX (ThermoFisher
706 #35050061), and 1 mM sodium pyruvate (Thermo Scientific), were transfected with AAV2/DJ-
707 *hSyn1*:mCherry-T2A-Cxcr3-2HA-nrxn1a using Lipofectamine 3000. To assess the chronic effects
708 of chemokine stimulation on synaptic markers, neurons were treated at DIV 10 with 200 nM
709 recombinant mouse CXCL11 or PBS (vehicle) for 72 h before fixing with 4% PFA in 4% sucrose
710 in PBS and immunostaining at DIV 13. For measuring G_i-coupled phospho-signaling, after
711 overnight starvation, Neuro2a were acutely treated with PBS (vehicle) or CXCL11 for 0, 2 or 10
712 min before harvesting as described in *Western blotting*.

713 *Primary astrocytic-neuronal co-cultures:* Cortical and/or hippocampal astrocytes at postnatal day
714 1–3 were cultured as described above. Prior to seeding neurons, near-confluent monolayers
715 (typically 5–8 days after plating) were briefly rinsed of serum-containing medium. Neuronal
716 suspensions were obtained from cortical and hippocampal tissue of postnatal day 0 mouse pups as
717 described above and seeded at 50,000 live cells per MEA well atop existing rinsed astrocyte
718 monolayers in neuronal media, as described above.

719 Astrocytes were plated onto poly-D-lysine-coated 48-well CytoView multielectrode array
720 (MEA) plates (Axion BioSystems), as described above. After 6–8 days, cells were washed and
721 transduced with 2 μ l/well of AAV2/PHP.eB-*hGfaABC1D*-DIO-TDP43-WT (1.2x10¹³ particles/ μ l)
722 or AAV2/PHP.eB-*hGfaABC1D*-DIO-TDP43- Δ NLS (1.3x10¹³ particles/ μ l). After 3–5 days,
723 primary neurons were isolated and seeded on top of the transduced astrocytes as described above.
724 Neural activity was recorded for 15–30 min daily between neuronal DIV 8–18 using the Maestro
725 Pro MEA System (Axion BioSystems) and firing rates were analyzed using Neural Metric
726 Software (Axion BioSystems). Some wells received the CXCR3 antagonist SCH 546738
727 (MedChemExpress #HY-10017; 12 nM).

728 **Slice electrophysiology**

729 *Slice preparation:* Mice were deeply anesthetized with 5% isofluorane before being cardially
730 perfused with ice-cold and oxygenated (95% O₂/5% CO₂) sucrose cutting solution. Sucrose
731 cutting solution contained (in mM): 87 NaCl, 75 sucrose, 2.5 KCl, 1.25 NaH₂PO₄, 0.5 CaCl₂, 25
732 NaHCO₃, 1.3 ascorbic acid, and 10 D-glucose. The mice were quickly decapitated and the brain
733 was extracted in ice-cold sucrose cutting solution. Coronal slices (350 μ m thick) were made on a
734 vibrating blade microtome (Leica VT1200s) while submerged in ice-cold and oxygenated sucrose
735 cutting buffer. Slices were transferred to a heated (~35°C) incubation chamber containing
736 artificial cerebral spinal fluid (ACSF), which consisted of (in mM): 124 NaCl, 2.5 KCl, 1.5
737 MgSO₄, 1.25 NaH₂PO₄, 2.5 CaCl₂ and 26 NaHCO₃. After approximately 30 minutes, the
738 incubation chamber was allowed to equilibrate to room temperature for at least an additional 30
739 minutes.

740 *Field potential recordings:* For recordings, slices were transferred to a stage mounted holding
741 chamber on an upright BX51W1 microscope (Olympus). The chamber was superfused (2–3
742 ml/min) with oxygenated (95% O₂/5% CO₂) and heated (~35°C) ACSF. Recordings were
743 obtained using a Multiclamp 200B amplifier (Molecular Devices) and filtered at 2 kHz, digitized
744 at 10 kHz, and acquired with Clampex 10.7 (Molecular Devices). Micropipettes were made with
745 borosilicate glass pulled to a resistance of 3.5 – 5.5 M Ω on a Flaming/Brown P-1000 micropipette
746 puller (Sutter Instruments) and filled with the same ACSF. These were placed in the stratum
747 radiatum of CA1 and a concentric bipolar stimulating electrode (FHC) was placed within the
748 same layer, upstream of the Schaffer collaterals. Care was taken to keep the recording pipette and
749 stimulating electrode as far apart as possible (at least 200 μ m) to help isolate the stimulus artifact,
750 the fiber volley, and the field potential. For stimulus intensity/field potential slope relationship,

751 once a minimal current to reliably evoke a fiber volley and field potential was established,
752 stimulus current was systematically increased and the subsequent fiber volley and field potential
753 was recorded. For paired-pulse ratio recordings, stimulus intensity was set to approximately half-
754 maximal intensity. Recordings were analyzed using custom code in Matlab (MathWorks), Excel
755 (Microsoft) or Prism (GraphPad).

756 **VSV production, purification, and quantification**

757 293T cells (ATCC, #CRL-3216) were plated at 1×10^6 cells per well in 6-well plates. The
758 following day, the cells were rinsed with serum-free medium and transfected with a mixture of
759 plasmids encoding the rVSV antigenome, rVSV- Δ G-Luciferase (500 ng, Kerafast, #EH1007), and
760 the rescue plasmids pCAG-VSVP (Addgene, Plasmid #64088), pCAG-VSVN (Addgene, Plasmid
761 #64087), pCAG-VSVM (Addgene, Plasmid #64086), pCAG-VSVL (Addgene, Plasmid #64085),
762 pCAG-VSVG (Addgene, Plasmid #64084) and pCAG-T7pol (Addgene, #59926). Lipofectamine
763 3000 (Thermo, #L3000001) was used for transfection according to the manufacturer's
764 instructions. After 48 h, the supernatant was collected, filtered through a 0.4- μ m filter, and used
765 to infect VSV-G-expressing cells for amplification. To amplify rescued rVSV- Δ G-Luciferase, 5×10^6
766 293T cells were plated per 10-cm dish in 10 ml of growth medium or 1.2×10^7 293T cells
767 were plated per 15-cm dish. The cells were transfected with 5 μ g (in 10-cm dish) or 12.5 μ g (in
768 15-cm dish) of pCMV-VSV-G expression plasmid (Addgene, Plasmid #8454) using
769 Lipofectamine 3000. The following day, the transfected cells were infected with the rescued
770 virus, and 24–48 h later the supernatant was collected, centrifuged at $350 \times g$ to clarify, and
771 filtered through a 0.22- μ m filter. VSV stock titer was quantified by serial dilution followed by
772 infection. Briefly, 293T cells were plated at 2×10^5 cells per well in 24-well plates. The following
773 day, cells were rinsed with serum-free medium and infected with serially diluted VSV. Media was
774 changed 2 h post-infection and the cells were fixed and immunostained 48 h post-infection to
775 detect firefly luciferase (Abcam #ab181640, RRID # AB_2889835).

776 **VSV and adenovirus infections**

777 Primary astrocytes from NTG and doubly transgenic Δ NLS mice were transfected with 0.66 μ g of
778 low molecular weight poly(I:C) (InvivoGen # tlrl-picw) per ml culture medium at DIV 8 using
779 Lipofectamine 3000 5 h before infection with vesicular stomatitis virus (VSV) at 100 MOI or
780 with adenovirus-eGFP (Ad5CMV-eGFP, lot #ad3586, Viral Vector Core Facility, Carver College
781 of Medicine, University of Iowa) at indicated MOIs (see figures). A change of media was made 2
782 h after viral infections and the cells were collected 24 h after infection. VSV levels were

783 measured by RT-qPCR. eGFP fluorescence was analyzed after cultures were fixed with 4% PFA
784 in PBS and stained with DAPI. Fluorescence intensity (integrated density), area, and percent of
785 total area were extracted using FIJI. Data are represented as eGFP normalized to the total DAPI-
786 positive area and percentage of DAPI-positive area per condition.

787 **HSV-1 infections**

788 HSV-1 H129-eGFP strain was generously provided by Dr. Lynn Enquist (Princeton University,
789 Princeton, NJ). Viral stocks were grown on Vero E6 cells (ATCC, CRL-1586) maintained in
790 Dulbecco's minimum essential media (DMEM) with 10% fetal bovine serum (FBS). Standard
791 plaque assays were performed to titer HSV-1 H129-eGFP stocks and quantify viral load in
792 conditioned medium from infected primary astrocytes. Briefly, stocks or media samples were
793 serially diluted in DMEM supplemented with 2% FBS and used to infect Vero cells. After 3 h,
794 cells were washed three times with PBS and further incubated in DMEM with 2% FBS,
795 antibiotics, and 1.5% methylcellulose (37°C). After 48 h, cultures were fixed with 4% PFA in
796 PBS and counterstained with Hoechst 33342 (Thermo). Fluorescent signal was used to detect
797 plaques of infected cells and quantify viral titers. Cell culture plates were imaged on a BX-X710
798 microscope (Keyence) with a 20X objective (Nikon). Images were stitched with BZ-X Analyzer
799 Software (Keyence) and used to count plaques.

800 **Immunocytochemistry**

801 All immunostaining steps were performed at ambient temperature unless specified otherwise.
802 Briefly, cells were fixed with 4% paraformaldehyde and 4% sucrose in PBS for 10 min, rinsed
803 four times with PBS (Corning) with 0.01% Triton X-100, and blocked and permeabilized in 5%
804 normal goat serum (Jackson ImmunoResearch) or 5% normal donkey serum (Jackson
805 ImmunoResearch) in 0.2%–0.3% Triton X-100 in PBS for 1 h. Cells were incubated overnight at
806 4°C with the following primary antibodies diluted in 1% BSA, 2% normal donkey serum, or 2%
807 normal goat serum in 0.2%–0.3% Triton X-100 in PBS: mouse anti-PSD-95 (1:1000; Antibodies
808 Incorporated # 75-028; RRID #AB_2292909), guinea pig anti-synaptophysin 1 (1:750; Synaptic
809 Systems #101 004; RRID #AB_1210382), rabbit anti-bassoon (1:1000; Synaptic System #141
810 003 RRID #AB_887697), rabbit anti-RFP (1:500; Abcam #ab34771; RRID # AB_777699),
811 human-specific mouse anti-TDP-43 (1:500; clone 6H6E12; ProteinTech # 60019-2-Ig; RRID
812 #AB_2200520), or goat anti-GFAP (1:500; Abcam #ab53554; RRID #AB_880202). Cells were
813 rinsed four times with PBS with 0.01% Triton X-100 and incubated for 1 h with the following
814 AlexaFluor-conjugated secondary antibodies diluted in 1% BSA, 2% normal donkey serum, or

815 2% normal goat serum, and 0.2%–0.3% Triton X-100 in PBS (1:500; ThermoFisher #A11073,
816 A31571, A31572; RRID # AB_2534117, AB_162542, AB_162543). Cells were rinsed twice with
817 PBS with 0.01% Triton X-100 and twice with PBS before imaging.

818 **Immunohistochemistry**

819 Postmortem human brain tissue blocks or sections from non-demented controls, AD, or bvFTD
820 cases were obtained from the Neurodegenerative Disease Brain Bank at UCSF (San Francisco,
821 CA) and the Banner Sun Health Research Institute Brain and Body Donation Program of Sun
822 City, Arizona. Case details are listed in Supplementary Table 1. Formalin-fixed tissue blocks
823 were rinsed in PBS and incubated in 30% sucrose for 3–5 days at 4°C before sectioning.

824 Mice were anesthetized with Avertin (2,2,2-tribromoethanol, 400–600 mg/kg body
825 weight, Acros Organics) and transcardially perfused for 2.5 min with 0.9% saline before
826 hemibrains were removed and stored in fixative (4% paraformaldehyde in PBS) overnight at 4°C
827 on a rocking platform. Hemibrains were subsequently incubated in cryoprotectant (30% sucrose
828 in PBS) for at least 48 h before sectioning.

829 Human and mouse brain tissue was sectioned (30 µm-thick sections) using a SM2010 R
830 sliding microtome (Leica) equipped with a BFS-3MP freezing stage and cooling unit (Physitemp,
831 Clifton, NJ). Free-floating sections were collected into cryopreservative (30% ethylene glycol,
832 30% glycerol in PBS) for long-term storage at -20°C.

833 Human tissue was immunolabeled by rinsing sections in PBS and permeabilizing
834 overnight in PBS containing 0.5% Triton X-100 (PBS-T). Antigen retrieval was performed for 15
835 min in hot 0.1 M citrate buffer at pH 6.0, followed by incubation for 15 min with 3% hydrogen
836 peroxide and 10% methanol in PBS. Sections were blocked for 2 h in 10% normal donkey serum
837 (Jackson ImmunoResearch) and 2% non-fat dry milk and incubated overnight on a rocking
838 platform with primary antibodies in 3% normal donkey serum. To minimize autofluorescence,
839 sections were incubated for 20 minutes with 0.2 µm-filtered 0.3% Sudan Black B (Acros) in 70%
840 ethanol and then incubated with secondary antibodies in 3% normal donkey serum for 2 h. The
841 following primary antibodies were used for human tissue: pan-specific rabbit anti-TDP-43 (1:500;
842 ProteinTech #10782-2-AP; RRID #AB_615042), mouse anti-GFAP (1:500; Millipore;
843 #MAB3402B; RRID #AB_10917109), mouse anti-Aldh1L1; Clone N103/39 (1:1000; Millipore;
844 #MABN495; RRID #AB_2687399), and AlexaFluor-conjugated secondary antibodies (1:250;
845 ThermoFisher; listed below).

846 Double or triple immunolabeling of free-floating mouse sections was performed with
847 minor modifications depending on the antibodies used. All steps were performed at ambient

848 temperature unless specified. Cryopreserved sections were rinsed in PBS, permeabilized for 30
849 min or longer in PBS containing 0.5% Triton X-100 (PBS-T), blocked with 10% Normal Donkey
850 or Goat serum (Jackson ImmunoResearch) in PBS-T for 1–2 h, incubated in primary antibodies in
851 3% serum in PBS-T for up to 48 h at 4°C, and rinsed with PBS-T. Sections were protected from
852 light in all subsequent steps. Tissue was incubated with fluorescent secondary antibodies in 3%
853 serum in PBS-T for 2 h, rinsed with PBS-T, mounted, and dried on Superfrost glass slides (VWR
854 #75799-266) before sealing #1.5 coverglass (VWR #89239-734) with Vectashield antifade media
855 containing DAPI (VWR #101098-050). When necessary, Prolong Diamond Antifade Mounting
856 Media (ThermoFisher #P36970) replaced Vectashield mounting media to minimize quenching of
857 AlexaFluor 647-conjugated antibodies. Slides were allowed to set overnight before acquiring
858 images.

859 Unless co-labeled with an antibody requiring modified protocols described below, the
860 following primary antibodies were used according to the general protocol: pan-specific rabbit
861 anti-TDP43 (1:1000; ProteinTech #10782-2-AP; RRID #AB_615042), goat anti-CXCL10 (1:150;
862 R&D Systems #AF-466-NA; RRID # AB_2292487), rabbit anti-GFAP (1:1000; Millipore-Sigma
863 #G9269; RRID #AB_477035), mouse biotin-anti-GFAP (1:1000; Millipore-Sigma #MAB3402B;
864 RRID #AB_10917109), rabbit anti-NeuN (1:1000; Millipore-Sigma #ABN78; RRID
865 #AB_10807945), mouse anti-NeuN (1:1000; Millipore-Sigma #MAB377; RRID # AB_2298772),
866 rabbit anti-Iba1 (1:1000; Wako #019-19741; RRID #AB_839504) and guinea pig anti-
867 synaptophysin-1 (1:750; Synaptic Systems #101 004; RRID #AB_1210382). Following the
868 permeabilization step, some antibodies required an antigen-retrieval step of 15 min in hot citrate
869 buffer as described previously (42). These antibodies were mouse anti-viperin/*Cig5* (1:50; Abcam
870 # ab107359, RRID #AB_10888107), mouse anti-synaptotagmin-2 (1:200; Developmental Studies
871 Hybridoma Bank #znp-1-c), rabbit anti-CXCL9 (1:50; Abcam #ab202961), rabbit anti-CXCR3
872 (1:200; ProteinTech #26756-1-AP), rabbit anti-glutamine synthetase (1:250; ThermoFisher
873 #701989, RRID #AB_2633045) and goat anti-PSD-95 (1:500; Abcam #ab12093; RRID #
874 AB_298846).

875 For labeling with certain mouse monoclonal antibodies, the serum in the blocking and
876 antibody steps was replaced with reagents from the Mouse-on-Mouse (M.O.M.) Basic
877 Immunodetection Kit following vendor instructions (Vector Labs #BMK-2202). These antibodies
878 were mouse anti-viperin/*Cig5*, mouse anti-synaptotagmin-2, human-specific mouse anti-TDP-43
879 (1:7,000; clone 6H6E12; ProteinTech # 60019-2-Ig; RRID #AB_2200520) and mouse anti-
880 gephyrin (1:200; Synaptic Systems #147 011; RRID #AB_887717). Note that antigen retrieval
881 with hot citrate buffer eliminated labeling by the human-specific mouse anti-TDP-43 antibody.

882 AlexaFluor-conjugated secondary antibodies were obtained from ThermoFisher (1:500; #A11055,
883 A21202, A21206, A21432, A21435, A31570, A31571, A31572; RRID #AB_2534102,
884 AB_141607, AB_2535792, AB_141788, AB_2535856, AB_2536180, AB_162542, AB_162543).

885 **Microscopy and image analyses**

886 Primary neurons were evaluated for synaptic content using a 40X objective on an ImageXpress
887 MICRO Confocal Automated High-Content Analysis System (Molecular Devices) at the Weill
888 Cornell Medicine Automated Optical Microscopy Core Facility. Briefly, four regions of interest
889 (ROIs) were imaged per well and images were processed to assess the number and total area of
890 synaptophysin-1 or PSD-95-positive puncta using FIJI (139). Briefly, images of individual
891 channels were background subtracted, stringently thresholded to the brightest 5–10% of all pixels,
892 and particles equal or larger than 1 μm in length were counted. The total area and number of
893 thresholded puncta were measured for each image.

894 To measure astrocytic TDP-43 in human brain tissue, postmortem hippocampal tissue was
895 immunostained with anti-TDP-43 and anti-GFAP antibodies and imaged on a BX-X710
896 microscope (Keyence) with a 40X objective (Nikon) and astrocytes were analyzed within the
897 dentate gyrus and Cornu Ammonis regions. Supplemental Tables 1–2 provide detailed
898 information about the human cases and the numbers of cells analyzed per case. Image analysis
899 was performed using FIJI (139). Single-channel immunostaining did not reveal bleed-through to
900 other channels (data not shown). In addition, the patterns and intensities for TDP-43 and GFAP
901 were not consistently colocalized across cases and individual cells.

902 Astrocytes were defined by drawing ROIs encompassing primary processes and cell soma
903 with strong GFAP fluorescence together with overlapping or adjacent DAPI-positive nucleus.
904 ROIs were extracted and the intensity of nuclear TDP-43 immunoreactivity was measured for
905 pixels within a DAPI-thresholded mask. The intensity of extra-nuclear TDP-43 immunoreactivity
906 in GFAP-positive ROIs was measured for pixels in a GFAP-thresholded mask after eliminating
907 the nuclear area defined by the DAPI mask. Intensities were corrected for background
908 fluorescence in each image by subtracting the mean intensity of five circular ROIs drawn in areas
909 that did not have GFAP, TDP-43, or DAPI labeling above background levels.

910 To evaluate cell-specific localization and intensity of protein expression in mouse brain
911 sections, slides were imaged on a BX-X710 microscope (Keyence) with a 20X objective (Nikon)
912 using the tiling function. Images were stitched with BZ-X Analyzer Software (Keyence) and
913 further processed for brightness and contrast using FIJI. To further evaluate cell localization of
914 proteins in mouse brain sections, z-stacks of immunostained tissue were acquired on a Zeiss LSM

915 880 Laser Scanning Confocal Microscope with a 63X objective and three-dimensional renderings
916 of maximal projections were made using Imaris software (Oxford Instruments).

917 Localization of CXCR3 protein in neuronal cell bodies and synaptic compartments was
918 evaluated using a Zeiss LSM 880 Laser Scanning Confocal Microscope. Images of the CA1
919 stratum radiatum region of the hippocampal formation were acquired using a 63X objective, 4X
920 zoom, 16-line averaging, and a pixel dwell time of 5.3 μ s. Filter and detector configurations were
921 optimized using single-antibody controls and each of the three channels was imaged sequentially
922 to further minimize potential cross-bleed. Images were analyzed using FIJI to measure the
923 number, area, and intensity of puncta that were immunoreactive for CXCR3 and NeuN,
924 synaptophysin-1, synaptotagmin-2, PSD-95, or gephyrin.

925 Briefly, images of individual channels were background subtracted and noise was
926 removed using the “despeckle” function. Images were stringently thresholded to the brightest 5–
927 10% of pixels and particles equal or larger than 1 μ m in length were counted. The total area, mean
928 size, and mean intensity of thresholded puncta were measured for each image. The fractional
929 overlap of CXCR3 and each synaptic marker was measured from processed images as Mander’s
930 coefficient using the Just Another Colocalization Plugin (JACoP) (140). Total of 9–12 images
931 from 3–4 mice were analyzed per genotype.

932 **Western blotting**

933 For cell cultures, wells were rinsed twice with ice-cold PBS before aspirating buffer and lysing
934 directly with ice-cold 1X RIPA Buffer (Thermo Fisher #89900) containing 1X cOmplete Protease
935 Inhibitor Cocktail (Millipore Sigma #11836153001) and 1% each of Phosphatase Inhibitor
936 Cocktails 2 and 3 (Millipore Sigma #P5726 and #P0044). Cells were scraped, collected in 1.5 ml
937 Eppendorf tubes, sonicated on ice for 5 s at 10% power with a probe sonifier (Branson),
938 centrifuged for 5 min at 10,000 g at 4°C, and assayed for protein content using a detergent-
939 compatible Bradford assay (Thermo Fisher #23246).

940 For brain tissue, approximately 30 mg of mouse hippocampal tissue was dissected from
941 flash-frozen forebrain in ice-cold PBS under a dissecting scope (AmScope) and re-frozen on dry
942 ice in 1.5 ml Eppendorf tubes. Frozen samples were thawed on ice for 1–2 min before adding 150
943 μ l ice-cold lysis buffer to each tube (RIPA with protease and phosphatase inhibitors). Samples
944 were immediately homogenized with a Fisherbrand Bead Mill 24 (Fisher Scientific #15-340-163)
945 for 40 s at a speed setting of 5 in a pre-chilled adaptor tube rack. Samples were centrifuged for 2
946 min at 1000 g at 4°C before sonication in an ice-chilled EpiSonic 2000 water bath (5 s on, 2 s off,
947 5 min total, amplitude 40). RIPA-soluble extracts were clarified by centrifugation at 100,000 g for

948 30 min at 4°C in a Beckman Ultracentrifuge and protein content was measured using a detergent-
949 compatible Bradford assay (Thermo Fisher).

950 For tissue and cell culture extracts, 30 µg or 20 µg RIPA-soluble lysates, respectively,
951 were resolved on Bis-Tris SDS-PAGE gels (ThermoFisher) and transferred onto nitrocellulose
952 membranes using an iBlot2 Western blotting system or a Mini Blot Module (ThermoFisher).
953 Membranes were blocked with 5% non-fat milk or 5% bovine serum albumin (BSA; VWR
954 #97062-904) in TBS before probing overnight at 4°C with primary antibodies diluted in TBS
955 containing 0.2% Tween-20 (TBS-Tw). Primary antibodies were raised against TDP-43 (1:2000
956 pan-specific rabbit anti-TDP-43 ProteinTech #10782-2-AP; RRID # AB_615042 or 1:2000
957 human-specific mouse anti-TDP-43 ProteinTech #60019-2-Ig; RRID #AB_2200520), β-actin
958 (1:2000; rabbit; Sigma #A2066; RRID #AB_476693), γ-tubulin (1:1,250; mouse; Sigma #T5326;
959 RRID #AB_532292); NF-κB (1:1000 mouse anti-total NF-κB; Cell Signaling Technology #6956;
960 RRID #AB_10828935 or 1:1000 rabbit anti-phospho NF-κB-S536; Cell Signaling Technology
961 #3033; RRID #AB_331284); Akt (1:250 mouse anti-total Akt; Cell Signaling Technology #2920;
962 RRID #AB_1147620 or 1:2500 rabbit anti-phospho Akt (S473); Abcam ab81283; RRID #
963 AB_2224551); ERK1/2 (1:1000 mouse anti-total ERK1/2; Cell Signaling Technology #4696;
964 RRID # AB_390780 or rabbit anti-phospho ERK1/2 (T202, Y204); Cell Signaling Technology
965 #9101; RRID #AB_331646). STAT3 (1:1000 mouse anti-total STAT3; Cell Signaling 9139S
966 RRID # AB_331757 or 1:1000 rabbit anti-phospho STAT3 (Y705); Cell Signaling 9145S RRID
967 #AB_2491009).

968 After overnight incubation in primary antibodies, all blots were rinsed with TBS-Tw and
969 probed for 1 h with IR Dye 680RD donkey anti-mouse (1:15,000; LI-COR #926-68072, RRID
970 #AB_2814912) and IR Dye 800CW donkey anti-rabbit (1:15,000; LI-COR #926-32213; RRID
971 #AB_621848) in TBS-Tw with 3% BSA. Blots were rinsed twice with TBS-Tw, once with TBS,
972 and dried for at least 20 min before scanning on the Odyssey CLx imaging system (LI-COR).
973 Expression levels were quantified using LI-COR Image Studio software.

974 Microfluidic qPCR

975 RNA was extracted using the RNeasy Mini Kit with on-column DNase treatment following
976 manufacturer instructions (Qiagen #74106, #79256). Cultured primary cells were rinsed once with
977 ice-cold PBS, scraped in freshly prepared extraction buffer and frozen at -80°C until extracted.
978 Saline-perfused, microdissected mouse brain tissue was frozen on dry ice and stored at -80°C
979 until RNA extraction. Tissue was homogenized in fresh extraction buffer using a bead mill for 20
980 s at a speed setting of 5 in a pre-chilled adaptor tube rack.

981 The number of VSV viral copies was determined by RT-qPCR using PowerUp SYBR
982 Green Master Mix (Thermo Fisher #A25741) according to manufacturer's instructions. RT-qPCR
983 was performed in a CFX96 Touch Real-Time PCR Detection System (BioRad). All primer
984 sequences are detailed in Supplemental Table 3.

985 Microfluidic RT-qPCR was performed similarly to described protocols (141-143). Briefly,
986 cDNA was synthesized with Protoscript First Strand Synthesis Kit (New England Biolabs
987 #E6300L) and pre-amplified for 14 cycles against a pool of primers (Supplemental Table 3) using
988 PreAmp Grandmaster mix (TATAA Biocenter, Sweden #TA05) before exonuclease I treatment
989 (New England Biolabs #M0293L). Pre-amplified cDNA was diluted at least 5-fold with nuclease-
990 free water and mixed with SsoFast EvaGreen with Low ROX (BioRad #1725211) and chip-
991 specific DNA Sample Reagents before loading into primed Flex Six or 96.96 Dynamic Array
992 chips (Fluidigm #100-6308, BMK-M-96.96). Individual primers were mixed with DNA assay
993 reagent (Fluidigm) and loaded into chip inlets. Chips were primed and loaded using an IFC
994 Controller HX (Fluidigm) before measuring and analyzing amplification and melting curves on a
995 BioMark HD System (Fluidigm). Cycle of quantification (Cq) values were thresholded equally
996 for all inlets across each chip run and normalized to the average of reference genes (*Actb* and
997 *Gapdh* for tissue samples; *Actb* and/or *Tbp* for cultured cells) before determining ddCq and fold-
998 change relative to experimental control groups.

999 **Statistical analyses**

1000 Statistical specifications are reported in the figures and corresponding figure legends. Data are
1001 presented as mean \pm S.E.M. All statistical tests were performed using GraphPad Prism 8, except
1002 Fisher's exact test, which was performed using IBM SPSS Statistics for Windows, Version 24.0.
1003 The criterion for data point exclusion was established during the design of the study and was set
1004 to values above or below two standard deviations from the group mean. Two-sided Student's *t*
1005 test was used to determine statistical significance between two groups. Welch's correction was
1006 used to account for unequal variances. Differences among multiple groups were assessed by one-
1007 way or two-way ANOVA or mixed-effects model followed by Dunnett's or Bonferroni's multiple
1008 comparisons post-hoc tests, as specified in the legends. Null hypotheses were rejected at $p < 0.05$.

1009 References

1. T. Arai, M. Hasegawa, H. Akiyama, K. Ikeda, T. Nonaka, H. Mori, D. Mann, K. Tsuchiya, M. Yoshida, Y. Hashizume, T. Oda, TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. *Biochem Biophys Res Commun* **351**, 602-611 (2006).
2. A. S. Chen-Plotkin, V. M. Lee, J. Q. Trojanowski, TAR DNA-binding protein 43 in neurodegenerative disease. *Nat Rev Neurol* **6**, 211-220 (2010).
3. I. R. Mackenzie, R. Rademakers, M. Neumann, TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. *Lancet Neurol* **9**, 995-1007 (2010).
4. S. C. Ling, M. Polymenidou, D. W. Cleveland, Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. *Neuron* **79**, 416-438 (2013).
5. A. Ratti, E. Buratti, Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. *J Neurochem* **138 Suppl 1**, 95-111 (2016).
6. C. Amador-Ortiz, W. L. Lin, Z. Ahmed, D. Personett, P. Davies, R. Duara, N. R. Graff-Radford, M. L. Hutton, D. W. Dickson, TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. *Ann Neurol* **61**, 435-445 (2007).
7. A. K. Walker, C. M. Daniels, J. E. Goldman, J. Q. Trojanowski, V. M. Lee, A. Messing, Astrocytic TDP-43 pathology in Alexander disease. *J Neurosci* **34**, 6448-6458 (2014).
8. H. K. Wang, Y. C. Lee, C. Y. Huang, P. C. Liliang, K. Lu, H. J. Chen, Y. C. Li, K. J. Tsai, Traumatic brain injury causes frontotemporal dementia and TDP-43 proteolysis. *Neuroscience* **300**, 94-103 (2015).
9. X. L. Tan, M. Sun, R. D. Brady, S. Liu, R. Llanos, S. Cheung, D. K. Wright, P. M. Casillas-Espinosa, M. Sashindranath, T. J. O'Brien, S. J. McDonald, B. J. Turner, S. R. Shultz, Transactive Response DNA-Binding Protein 43 Abnormalities after Traumatic Brain Injury. *J Neurotrauma* Aug 10. doi: 10.1089/neu.2017.5491 (2018).
10. J. Gao, L. Wang, M. L. Huntley, G. Perry, X. Wang, Pathomechanisms of TDP-43 in neurodegeneration. *J Neurochem* Feb 27;10.1111/jnc.14327 (2018).
11. K. Uryu, H. Nakashima-Yasuda, M. S. Forman, L. K. Kwong, C. M. Clark, M. Grossman, B. L. Miller, H. A. Kretzschmar, V. M. Lee, J. Q. Trojanowski, M. Neumann, Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. *J Neuropathol Exp Neurol* **67**, 555-564 (2008).
12. Y. S. Davidson, S. Raby, P. G. Foulds, A. Robinson, J. C. Thompson, S. Sikkink, I. Yusuf, H. Amin, D. DuPlessis, C. Troakes, S. Al-Sarraj, C. Sloan, M. M. Esiri, V. P. Prasher, D. Allsop, D. Neary, S. M. Pickering-Brown, J. S. Snowden, D. M. Mann, TDP-43 pathological changes in early onset familial and sporadic Alzheimer's disease, late onset Alzheimer's disease and Down's syndrome: association with age, hippocampal sclerosis and clinical phenotype. *Acta Neuropathol* **122**, 703-713 (2011).
13. K. A. Josephs, M. E. Murray, J. L. Whitwell, J. E. Parisi, L. Petrucelli, C. R. Jack, R. C. Petersen, D. W. Dickson, Staging TDP-43 pathology in Alzheimer's disease. *Acta Neuropathol* **127**, 441-450 (2014).
14. S. Nag, L. Yu, A. W. Capuano, R. S. Wilson, S. E. Leurgans, D. A. Bennett, J. A. Schneider, Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. *Ann Neurol* **77**, 942-952 (2015).
15. M. Buciuc, N. Tosakulwong, M. M. Machulda, J. L. Whitwell, S. D. Weigand, M. E. Murray, R. R. Reichard, J. E. Parisi, D. W. Dickson, B. F. Boeve, D. S. Knopman, R. C. Petersen, K. A. Josephs, TAR DNA-Binding Protein 43 Is Associated with Rate of Memory, Functional and Global Cognitive Decline in the Decade Prior to Death. *J Alzheimers Dis* **80**, 683-693 (2021).
16. F. B. Gao, S. Almeida, R. Lopez-Gonzalez, Dysregulated molecular pathways in amyotrophic lateral sclerosis-frontotemporal dementia spectrum disorder. *EMBO J* **36**, 2931-2950 (2017).
17. C. C. Chou, Y. Zhang, M. E. Umoh, S. W. Vaughan, I. Lorenzini, F. Liu, M. Sayegh, P. G. Donlin-Asp, Y. H. Chen, D. M. Duong, N. T. Seyfried, M. A. Powers, T. Kukar, C. M. Hales, M. Gearing, N. J. Cairns, K. B. Boylan, D. W. Dickson, R. Rademakers, Y. J. Zhang, L. Petrucelli, R. Sattler, D. C. Zarnescu, J. D. Glass, W. Rossoll, TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. *Nat Neurosci* **21**, 228-239 (2018).

1063 18. M. S. Fernandopulle, J. Lippincott-Schwartz, M. E. Ward, RNA transport and local translation in
1064 neurodevelopmental and neurodegenerative disease. *Nat Neurosci* **24**, 622-632 (2021).

1065 19. L. M. Igaz, L. K. Kwong, E. B. Lee, A. Chen-Plotkin, E. Swanson, T. Unger, J. Malunda, Y. Xu, M.
1066 J. Winton, J. Q. Trojanowski, V. M. Lee, Dysregulation of the ALS-associated gene TDP-43 leads to
1067 neuronal death and degeneration in mice. *J Clin Invest* **121**, 726-738 (2011).

1068 20. L. S. Wu, W. C. Cheng, C. K. Shen, Targeted depletion of TDP-43 expression in the spinal cord
1069 motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. *J
1070 Biol Chem* **287**, 27335-27344 (2012).

1071 21. Y. Iguchi, M. Katsuno, J. Niwa, S. Takagi, S. Ishigaki, K. Ikenaka, K. Kawai, H. Watanabe, K.
1072 Yamanaka, R. Takahashi, H. Misawa, S. Sasaki, F. Tanaka, G. Sobue, Loss of TDP-43 causes age-
1073 dependent progressive motor neuron degeneration. *Brain* **136**, 1371-1382 (2013).

1074 22. D. X. Medina, M. E. Orr, S. Oddo, Accumulation of C-terminal fragments of transactive response
1075 DNA-binding protein 43 leads to synaptic loss and cognitive deficits in human TDP-43 transgenic
1076 mice. *Neurobiol Aging* **35**, 79-87 (2014).

1077 23. W. L. Lin, M. Castanedes-Casey, D. W. Dickson, Transactivation response DNA-binding protein 43
1078 microvasculopathy in frontotemporal degeneration and familial Lewy body disease. *J Neuropathol
1079 Exp Neurol* **68**, 1167-1176 (2009).

1080 24. A. Uchino, M. Takao, H. Hatsuta, H. Sumikura, Y. Nakano, A. Nogami, Y. Saito, T. Arai, K.
1081 Nishiyama, S. Murayama, Incidence and extent of TDP-43 accumulation in aging human brain. *Acta
1082 Neuropathol Commun* **3**, 35 (2015).

1083 25. R. Takeuchi, Y. Toyoshima, M. Tada, H. Tanaka, H. Shimizu, A. Shiga, T. Miura, K. Aoki, A.
1084 Aikawa, S. Ishizawa, T. Ikeuchi, M. Nishizawa, A. Kakita, H. Takahashi, Globular Glial Mixed Four
1085 Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia.
1086 *Brain Pathol* **26**, 82-94 (2016).

1087 26. T. Mishima, S. Koga, W. L. Lin, K. Kasanuki, M. Castanedes-Casey, Z. K. Wszolek, S. J. Oh, Y.
1088 Tsuboi, D. W. Dickson, Perry Syndrome: A Distinctive Type of TDP-43 Proteinopathy. *J
1089 Neuropathol Exp Neurol* **76**, 676-682 (2017).

1090 27. R. C. Paolicelli, A. Jawaid, C. M. Henstridge, A. Valeri, M. Merlini, J. L. Robinson, E. B. Lee, J.
1091 Rose, S. Appel, V. M. Lee, J. Q. Trojanowski, T. Spires-Jones, P. E. Schulz, L. Rajendran, TDP-43
1092 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. *Neuron* **95**,
1093 297-308 e296 (2017).

1094 28. S. Koga, W. L. Lin, R. L. Walton, O. A. Ross, D. W. Dickson, TDP-43 pathology in multiple system
1095 atrophy: colocalization of TDP-43 and alpha-synuclein in glial cytoplasmic inclusions. *Neuropathol
1096 Appl Neurobiol* **44**, 707-721 (2018).

1097 29. K. Weskamp, E. M. Tank, R. Miguez, J. P. McBride, N. B. Gomez, M. White, Z. Lin, C. Moreno
1098 Gonzalez, A. Serio, J. Sreedharan, S. J. Barmada, Shortened TDP43 isoforms upregulated by
1099 neuronal hyperactivity drive TDP43 pathology in ALS. *J Clin Invest* **130**, 1139-1155 (2020).

1100 30. D. Ditsworth, M. Maldonado, M. McAlonis-Downes, S. Sun, A. Seelman, K. Drenner, E. Arnold, S.
1101 C. Ling, D. Pizzo, J. Ravits, D. W. Cleveland, S. Da Cruz, Mutant TDP-43 within motor neurons
1102 drives disease onset but not progression in amyotrophic lateral sclerosis. *Acta Neuropathol* **133**, 907-
1103 922 (2017).

1104 31. J. Tong, C. Huang, F. Bi, Q. Wu, B. Huang, X. Liu, F. Li, H. Zhou, X. G. Xia, Expression of ALS-
1105 linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. *EMBO
1106 J* **32**, 1917-1926 (2013).

1107 32. D. C. Diaper, Y. Adachi, L. Lazarou, M. Greenstein, F. A. Simoes, A. Di Domenico, D. A.
1108 Solomon, S. Lowe, R. Alsubaie, D. Cheng, S. Buckley, D. M. Humphrey, C. E. Shaw, F. Hirth,
1109 Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural
1110 phenotypes that characterize ALS and FTLD. *Hum Mol Genet* **22**, 3883-3893 (2013).

1111 33. A. Serio, B. Bilican, S. J. Barmada, D. M. Ando, C. Zhao, R. Siller, K. Burr, G. Hagh, D. Story, A.
1112 L. Nishimura, M. A. Carrasco, H. P. Phatnani, C. Shum, I. Wilmot, T. Maniatis, C. E. Shaw, S.
1113 Finkbeiner, S. Chandran, Astrocyte pathology and the absence of non-cell autonomy in an induced
1114 pluripotent stem cell model of TDP-43 proteinopathy. *Proc Natl Acad Sci U S A* **110**, 4697-4702
1115 (2013).

1116 34. T. T. Rohn, Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in
1117 Alzheimer's disease. *Brain Res* **1228**, 189-198 (2008).

1118 35. E. B. Lee, S. Porta, G. Michael Baer, Y. Xu, E. Suh, L. K. Kwong, L. Elman, M. Grossman, V. M.
1119 Lee, D. J. Irwin, V. M. Van Deerlin, J. Q. Trojanowski, Expansion of the classification of FTLD-
1120 TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. *Acta
1121 Neuropathol* **134**, 65-78 (2017).

1122 36. K. Weskamp, E. M. Tank, R. Miguez, J. P. McBride, N. B. Gomez, M. White, Z. Lin, C. M.
1123 Gonzalez, A. Serio, J. Sreedharan, S. J. Barmada, Shortened TDP43 isoforms upregulated by
1124 neuronal hyperactivity drive TDP43 pathology in ALS. *J Clin Invest* **130**, 1139-1155 (2020).

1125 37. W. S. Chung, C. A. Welsh, B. A. Barres, B. Stevens, Do glia drive synaptic and cognitive
1126 impairment in disease? *Nat Neurosci* **18**, 1539-1545 (2015).

1127 38. M. Pekny, M. Pekna, A. Messing, C. Steinhauser, J. M. Lee, V. Parpura, E. M. Hol, M. V.
1128 Sofroniew, A. Verkhratsky, Astrocytes: a central element in neurological diseases. *Acta Neuropathol*
1129 **131**, 323-345 (2016).

1130 39. E. Blanco-Suarez, A. L. Caldwell, N. J. Allen, Role of astrocyte-synapse interactions in CNS
1131 disorders. *J Physiol* **595**, 1903-1916 (2017).

1132 40. M. M. Halassa, T. Fellin, H. Takano, J. H. Dong, P. G. Haydon, Synaptic islands defined by the
1133 territory of a single astrocyte. *J Neurosci* **27**, 6473-6477 (2007).

1134 41. C. Florian, C. G. Vecsey, M. M. Halassa, P. G. Haydon, T. Abel, Astrocyte-derived adenosine and
1135 A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and
1136 memory in mice. *J Neurosci* **31**, 6956-6962 (2011).

1137 42. A. G. Orr, E. C. Hsiao, M. M. Wang, K. Ho, D. H. Kim, X. Wang, W. Guo, J. Kang, G. Q. Yu, A.
1138 Adame, N. Devidze, D. B. Dubal, E. Masliah, B. R. Conklin, L. Mucke, Astrocytic adenosine
1139 receptor A2A and Gs-coupled signaling regulate memory. *Nat Neurosci* **18**, 423-434 (2015).

1140 43. S. Sultan, L. Li, J. Moss, F. Petrelli, F. Casse, E. Gebara, J. Lopatar, F. W. Pfrieger, P. Bezzi, J.
1141 Bischofberger, N. Toni, Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally
1142 Controlled by Astrocytes. *Neuron* **88**, 957-972 (2015).

1143 44. T. Papouin, J. M. Dunphy, M. Tolman, K. T. Dineley, P. G. Haydon, Septal Cholinergic
1144 Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to
1145 Wakefulness. *Neuron* **94**, 840-854 e847 (2017).

1146 45. A. K. Walker, K. J. Spiller, G. Ge, A. Zheng, Y. Xu, M. Zhou, K. Tripathy, L. K. Kwong, J. Q.
1147 Trojanowski, V. M. Lee, Functional recovery in new mouse models of ALS/FTLD after clearance of
1148 pathological cytoplasmic TDP-43. *Acta Neuropathol* **130**, 643-660 (2015).

1149 46. T. Arai, I. R. Mackenzie, M. Hasegawa, T. Nonoka, K. Niizato, K. Tsuchiya, S. Iritani, M. Onaya,
1150 H. Akiyama, Phosphorylated TDP-43 in Alzheimer's disease and dementia with Lewy bodies. *Acta
1151 Neuropathol* **117**, 125-136 (2009).

1152 47. H. S. Yang, L. Yu, C. C. White, L. B. Chibnik, J. P. Chhatwal, R. A. Sperling, D. A. Bennett, J. A.
1153 Schneider, P. L. De Jager, Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in
1154 relation to APOE epsilon4 haplotype status: a community-based cohort study. *Lancet Neurol* **17**,
1155 773-781 (2018).

1156 48. R. S. Wilson, J. Yang, L. Yu, S. E. Leurgans, A. W. Capuano, J. A. Schneider, D. A. Bennett, P. A.
1157 Boyle, Postmortem neurodegenerative markers and trajectories of decline in cognitive systems.
1158 *Neurology* **92**, e831-e840 (2019).

1159 49. C. V. Vorhees, M. T. Williams, Morris water maze: procedures for assessing spatial and related
1160 forms of learning and memory. *Nat Protoc* **1**, 848-858 (2006).

1161 50. A. C. Tien, H. H. Tsai, A. V. Molofsky, M. McMahon, L. C. Foo, A. Kaul, J. D. Dougherty, N.
1162 Heintz, D. H. Gutmann, B. A. Barres, D. H. Rowitch, Regulated temporal-spatial astrocyte precursor
1163 cell proliferation involves BRAF signalling in mammalian spinal cord. *Development* **139**, 2477-2487
1164 (2012).

1165 51. L. C. Foo, J. D. Dougherty, Aldh1L1 is expressed by postnatal neural stem cells in vivo. *Glia* **61**,
1166 1533-1541 (2013).

1167 52. H. Hochgerner, A. Zeisel, P. Lonnerberg, S. Linnarsson, Conserved properties of dentate gyrus
1168 neurogenesis across postnatal development revealed by single-cell RNA sequencing. *Nat Neurosci*
1169 **21**, 290-299 (2018).

1170 53. F. Beyer, W. Ludje, J. Karpf, G. Saher, R. Beckervordersandforth, Distribution of Aldh1L1-
1171 CreER(T2) Recombination in Astrocytes Versus Neural Stem Cells in the Neurogenic Niches of the
1172 Adult Mouse Brain. *Front Neurosci* **15**, 713077 (2021).

1173 54. Y. Lee, A. Messing, M. Su, M. Brenner, GFAP promoter elements required for region-specific and
1174 astrocyte-specific expression. *Glia* **56**, 481-493 (2008).

1175 55. K. Y. Chan, M. J. Jang, B. B. Yoo, A. Greenbaum, N. Ravi, W. L. Wu, L. Sanchez-Guardado, C.
1176 Lois, S. K. Mazmanian, B. E. Deverman, V. Gradinaru, Engineered AAVs for efficient noninvasive
1177 gene delivery to the central and peripheral nervous systems. *Nat Neurosci* **20**, 1172-1179 (2017).

1178 56. Y. F. Xu, T. F. Gendron, Y. J. Zhang, W. L. Lin, S. D'Alton, H. Sheng, M. C. Casey, J. Tong, J.
1179 Knight, X. Yu, R. Rademakers, K. Boylan, M. Hutton, E. McGowan, D. W. Dickson, J. Lewis, L.
1180 Petrucelli, Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial
1181 aggregation, motor deficits, and early mortality in transgenic mice. *J Neurosci* **30**, 10851-10859
1182 (2010).

1183 57. C. H. Yu, S. Davidson, C. R. Harapas, J. B. Hilton, M. J. Mlodzianoski, P. Laohamonthonkul, C.
1184 Louis, R. R. J. Low, J. Moecking, D. De Nardo, K. R. Balka, D. J. Calleja, F. Moghaddas, E. Ni, C.
1185 A. McLean, A. L. Samson, S. Tyebji, C. J. Tonkin, C. R. Bye, B. J. Turner, G. Pepin, M. P. Gantier,
1186 K. L. Rogers, K. McArthur, P. J. Crouch, S. L. Masters, TDP-43 Triggers Mitochondrial DNA
1187 Release via mPTP to Activate cGAS/STING in ALS. *Cell* **183**, 636-649 e618 (2020).

1188 58. M. Xie, Y. U. Liu, S. Zhao, L. Zhang, D. B. Bosco, Y. P. Pang, J. Zhong, U. Sheth, Y. A. Martens,
1189 N. Zhao, C. C. Liu, Y. Zhuang, L. Wang, D. W. Dickson, M. P. Mattson, G. Bu, L. J. Wu, TREM2
1190 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related
1191 neurodegeneration. *Nat Neurosci* **25**, 26-38 (2022).

1192 59. C. M. Alberini, E. Cruz, G. Descalzi, B. Bessieres, V. Gao, Astrocyte glycogen and lactate: New
1193 insights into learning and memory mechanisms. *Glia* **66**, 1244-1262 (2018).

1194 60. A. Adamsky, I. Goshen, Astrocytes in Memory Function: Pioneering Findings and Future
1195 Directions. *Neuroscience* **370**, 14-26 (2018).

1196 61. M. Santello, N. Toni, A. Volterra, Astrocyte function from information processing to cognition and
1197 cognitive impairment. *Nat Neurosci* **22**, 154-166 (2019).

1198 62. V. Swarup, D. Phaneuf, N. Dupre, S. Petri, M. Strong, J. Kriz, J. P. Julien, Deregulation of TDP-43
1199 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. *J Exp
1200 Med* **208**, 2429-2447 (2011).

1201 63. W. Zhao, D. R. Beers, S. Bell, J. Wang, S. Wen, R. H. Baloh, S. H. Appel, TDP-43 activates
1202 microglia through NF-kappaB and NLRP3 inflammasome. *Exp Neurol* **273**, 24-35 (2015).

1203 64. Y. Yoshiyama, M. Higuchi, B. Zhang, S. M. Huang, N. Iwata, T. C. Saido, J. Maeda, T. Suhara, J.
1204 Q. Trojanowski, V. M. Lee, Synapse loss and microglial activation precede tangles in a P301S
1205 tauopathy mouse model. *Neuron* **53**, 337-351 (2007).

1206 65. A. Litvinchuk, Y. W. Wan, D. B. Swartzlander, F. Chen, A. Cole, N. E. Propson, Q. Wang, B.
1207 Zhang, Z. Liu, H. Zheng, Complement C3aR Inactivation Attenuates Tau Pathology and Reverses an
1208 Immune Network Deregulated in Tauopathy Models and Alzheimer's Disease. *Neuron* **100**, 1337-
1209 1353 e1335 (2018).

1210 66. E. Mills Ko, J. H. Ma, F. Guo, L. Miers, E. Lee, P. Bannerman, T. Burns, D. Ko, J. Sohn, A. M.
1211 Soulka, D. Pleasure, Deletion of astroglial CXCL10 delays clinical onset but does not affect
1212 progressive axon loss in a murine autoimmune multiple sclerosis model. *J Neuroinflammation* **11**,
1213 105 (2014).

1214 67. M. Q. Xia, B. J. Bacskai, R. B. Knowles, S. X. Qin, B. T. Hyman, Expression of the chemokine
1215 receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in
1216 vitro ERK1/2 activation and role in Alzheimer's disease. *J Neuroimmunol* **108**, 227-235 (2000).

1217 68. J. R. Groom, J. Richmond, T. T. Murooka, E. W. Sorensen, J. H. Sung, K. Bankert, U. H. von
1218 Andrian, J. J. Moon, T. R. Mempel, A. D. Luster, CXCR3 chemokine receptor-ligand interactions in
1219 the lymph node optimize CD4+ T helper 1 cell differentiation. *Immunity* **37**, 1091-1103 (2012).

1220 69. F. Sierro, C. Biben, L. Martinez-Munoz, M. Mellado, R. M. Ransohoff, M. Li, B. Woehl, H. Leung,
1221 J. Groom, M. Batten, R. P. Harvey, A. C. Martinez, C. R. Mackay, F. Mackay, Disrupted cardiac
1222 development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor,
1223 CXCR7. *Proc Natl Acad Sci U S A* **104**, 14759-14764 (2007).

1224 70. S. Monteiro, F. M. Ferreira, V. Pinto, S. Roque, M. Morais, D. de Sa-Calcada, C. Mota, M. Correia-
1225 Neves, J. J. Cerqueira, Absence of IFNgamma promotes hippocampal plasticity and enhances
1226 cognitive performance. *Transl Psychiatry* **6**, e707 (2016).

1227 71. A. J. Filiano, Y. Xu, N. J. Tustison, R. L. Marsh, W. Baker, I. Smirnov, C. C. Overall, S. P. Gadani,
1228 S. D. Turner, Z. Weng, S. N. Peerzade, H. Chen, K. S. Lee, M. M. Scott, M. P. Beenhakker, V.
1229 Litvak, J. Kipnis, Unexpected role of interferon-gamma in regulating neuronal connectivity and
1230 social behaviour. *Nature* **535**, 425-429 (2016).

1231 72. V. Rothhammer, I. D. Mascanfroni, L. Bunse, M. C. Takenaka, J. E. Kenison, L. Mayo, C. C. Chao,
1232 B. Patel, R. Yan, M. Blain, J. I. Alvarez, H. Kebir, N. Anandasabapathy, G. Izquierdo, S. Jung, N.
1233 Obholzer, N. Pochet, C. B. Clish, M. Prinz, A. Prat, J. Antel, F. J. Quintana, Type I interferons and
1234 microbial metabolites of tryptophan modulate astrocyte activity and central nervous system
1235 inflammation via the aryl hydrocarbon receptor. *Nat Med* **22**, 586-597 (2016).

1236 73. J. S. Yokoyama, C. M. Karch, C. C. Fan, L. W. Bonham, N. Kouri, O. A. Ross, R. Rademakers, J.
1237 Kim, Y. Wang, G. U. Hoglinger, U. Muller, R. Ferrari, J. Hardy, F. T. D. G. C. International, P.
1238 Momeni, L. P. Sugrue, C. P. Hess, A. James Barkovich, A. L. Boxer, W. W. Seeley, G. D.
1239 Rabinovici, H. J. Rosen, B. L. Miller, N. J. Schmansky, B. Fischl, B. T. Hyman, D. W. Dickson, G.
1240 D. Schellenberg, O. A. Andreassen, A. M. Dale, R. S. Desikan, Shared genetic risk between
1241 corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. *Acta
1242 Neuropathol* **133**, 825-837 (2017).

1243 74. S. Monteiro, S. Roque, F. Marques, M. Correia-Neves, J. J. Cerqueira, Brain interference: Revisiting
1244 the role of IFNgamma in the central nervous system. *Prog Neurobiol* **156**, 149-163 (2017).

1245 75. T. Blank, M. Prinz, Type I interferon pathway in CNS homeostasis and neurological disorders. *Glia*
1246 **65**, 1397-1406 (2017).

1247 76. I. Broce, C. M. Karch, N. Wen, C. C. Fan, Y. Wang, C. H. Tan, N. Kouri, O. A. Ross, G. U.
1248 Hoglinger, U. Muller, J. Hardy, F. T. D. G. C. International, P. Momeni, C. P. Hess, W. P. Dillon, Z.
1249 A. Miller, L. W. Bonham, G. D. Rabinovici, H. J. Rosen, G. D. Schellenberg, A. Franke, T. H.
1250 Karlsen, J. H. Veldink, R. Ferrari, J. S. Yokoyama, B. L. Miller, O. A. Andreassen, A. M. Dale, R.
1251 S. Desikan, L. P. Sugrue, Immune-related genetic enrichment in frontotemporal dementia: An
1252 analysis of genome-wide association studies. *PLoS Med* **15**, e1002487 (2018).

1253 77. M. J. Gandal, P. Zhang, E. Hadjimichael, R. L. Walker, C. Chen, S. Liu, H. Won, H. van Bakel, M.
1254 Varghese, Y. Wang, A. W. Shieh, J. Haney, S. Parhami, J. Belmont, M. Kim, P. Moran Losada, Z.
1255 Khan, J. Mleczko, Y. Xia, R. Dai, D. Wang, Y. T. Yang, M. Xu, K. Fish, P. R. Hof, J. Warrell, D.
1256 Fitzgerald, K. White, A. E. Jaffe, E. C. Psych, M. A. Peters, M. Gerstein, C. Liu, L. M. Iakoucheva,
1257 D. Pinto, D. H. Geschwind, Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia,
1258 and bipolar disorder. *Science* **362**, (6420):eaat8127 (2018).

1259 78. K. Dutta, S. S. Thammisetty, H. Boutej, C. Bareil, J. P. Julien, Mitigation of ALS Pathology by
1260 Neuron-Specific Inhibition of Nuclear Factor Kappa B Signaling. *J Neurosci* **40**, 5137-5154 (2020).

1261 79. J. De Miranda, K. Yaddanapudi, M. Hornig, W. I. Lipkin, Astrocytes recognize intracellular
1262 polyinosinic-polycytidylic acid via MDA-5. *FASEB J* **23**, 1064-1071 (2009).

1263 80. R. F. Itzhaki, Herpes simplex virus type 1 and Alzheimer's disease: increasing evidence for a major
1264 role of the virus. *Front Aging Neurosci* **6**, 202 (2014).

1265 81. W. A. Eimer, D. K. Vijaya Kumar, N. K. Navalpur Shanmugam, A. S. Rodriguez, T. Mitchell, K. J.
1266 Washicosky, B. Gyorgy, X. O. Breakfield, R. E. Tanzi, R. D. Moir, Alzheimer's Disease-
1267 Associated beta-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection.
1268 *Neuron* **99**, 56-63 e53 (2018).

1269 82. S. J. Yong, M. H. Yong, S. L. Teoh, T. Soga, I. Parhar, J. Chew, W. L. Lim, The Hippocampal
1270 Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer's Disease and
1271 Memory Impairment. *Front Cell Neurosci* **15**, 695738 (2021).

1272 83. M. Loetscher, B. Gerber, P. Loetscher, S. A. Jones, L. Piali, I. Clark-Lewis, M. Baggolini, B.
1273 Moser, Chemokine receptor specific for IP10 and mig: structure, function, and expression in
1274 activated T-lymphocytes. *J Exp Med* **184**, 963-969 (1996).

1275 84. B. C. Jiang, L. N. He, X. B. Wu, H. Shi, W. W. Zhang, Z. J. Zhang, D. L. Cao, C. H. Li, J. Gu, Y. J.
1276 Gao, Promoted Interaction of C/EBPalpha with Demethylated Cxcr3 Gene Promoter Contributes to
1277 Neuropathic Pain in Mice. *J Neurosci* **37**, 685-700 (2017).

1278 85. K. Biber, I. Dijkstra, C. Trebst, C. J. De Groot, R. M. Ransohoff, H. W. Boddeke, Functional
1279 expression of CXCR3 in cultured mouse and human astrocytes and microglia. *Neuroscience* **112**,
1280 487-497 (2002).

1281 86. D. Galimberti, R. Bonsi, C. Fenoglio, M. Serpente, S. M. Cioffi, G. Fumagalli, A. Arighi, L. Ghezzi,
1282 M. Arcaro, M. Mercurio, E. Rotondo, E. Scarpini, Inflammatory molecules in Frontotemporal
1283 Dementia: cerebrospinal fluid signature of progranulin mutation carriers. *Brain Behav Immun* **49**,
1284 182-187 (2015).

1285 87. B. K. Atwood, D. M. Lovinger, B. N. Mathur, Presynaptic long-term depression mediated by Gi/o-
1286 coupled receptors. *Trends Neurosci* **37**, 663-673 (2014).

1287 88. Z. Zurawski, Y. Y. Yim, S. Alford, H. E. Hamm, The expanding roles and mechanisms of G protein-
1288 mediated presynaptic inhibition. *J Biol Chem* **294**, 1661-1670 (2019).

1289 89. T. J. Stachniak, A. Ghosh, S. M. Sternson, Chemogenetic synaptic silencing of neural circuits
1290 localizes a hypothalamus-->midbrain pathway for feeding behavior. *Neuron* **82**, 797-808 (2014).

1291 90. C. Chen, I. Arai, R. Satterfield, S. M. Young, Jr., P. Jonas, Synaptotagmin 2 Is the Fast Ca(2+)
1292 Sensor at a Central Inhibitory Synapse. *Cell Rep* **18**, 723-736 (2017).

1293 91. Z. P. Pang, E. Melicoff, D. Padgett, Y. Liu, A. F. Teich, B. F. Dickey, W. Lin, R. Adachi, T. C.
1294 Sudhof, Synaptotagmin-2 is essential for survival and contributes to Ca2+ triggering of
1295 neurotransmitter release in central and neuromuscular synapses. *J Neurosci* **26**, 13493-13504 (2006).

1296 92. C. Patzke, M. M. Brockmann, J. Dai, K. J. Gan, M. K. Grauel, P. Fenske, Y. Liu, C. Acuna, C.
1297 Rosenmund, T. C. Sudhof, Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in
1298 Human Synapses. *Cell* **179**, 498-513 e422 (2019).

1299 93. C. Patzke, J. Dai, M. M. Brockmann, Z. Sun, P. Fenske, C. Rosenmund, T. C. Sudhof, Cannabinoid
1300 receptor activation acutely increases synaptic vesicle numbers by activating synapsins in human
1301 synapses. *Mol Psychiatry* **26**, 6253-6268 (2021).

1302 94. O. Devinsky, A. Vezzani, S. Najjar, N. C. De Lanerolle, M. A. Rogawski, Glia and epilepsy:
1303 excitability and inflammation. *Trends Neurosci* **36**, 174-184 (2013).

1304 95. X. Tong, Y. Ao, G. C. Faas, S. E. Nwaobi, J. Xu, M. D. Haustein, M. A. Anderson, I. Mody, M. L.
1305 Olsen, M. V. Sofroniew, B. S. Khakh, Astrocyte Kir4.1 ion channel deficits contribute to neuronal
1306 dysfunction in Huntington's disease model mice. *Nat Neurosci* **17**, 694-703 (2014).

1307 96. Z. Liu, M. Chopp, Astrocytes, therapeutic targets for neuroprotection and neurorestoration in
1308 ischemic stroke. *Prog Neurobiol* **144**, 103-120 (2016).

1309 97. B. De Strooper, E. Karan, The Cellular Phase of Alzheimer's Disease. *Cell* **164**, 603-615 (2016).

1310 98. M. S. Windrem, M. Osipovitch, Z. Liu, J. Bates, D. Chandler-Militello, L. Zou, J. Munir, S. Schanz,
1311 K. McCoy, R. H. Miller, S. Wang, M. Nedergaard, R. L. Findling, P. J. Tesar, S. A. Goldman,
1312 Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. *Cell Stem Cell* **21**,
1313 195-208 e196 (2017).

1314 99. B. S. Khakh, M. V. Sofroniew, Diversity of astrocyte functions and phenotypes in neural circuits.
1315 *Nat Neurosci* **18**, 942-952 (2015).

1316 100. C. C. John Lin, K. Yu, A. Hatcher, T. W. Huang, H. K. Lee, J. Carlson, M. C. Weston, F. Chen, Y.
1317 Zhang, W. Zhu, C. A. Mohila, N. Ahmed, A. J. Patel, B. R. Arenkiel, J. L. Noebels, C. J. Creighton,
1318 B. Deneen, Identification of diverse astrocyte populations and their malignant analogs. *Nat Neurosci*
1319 **20**, 396-405 (2017).

1320 101. L. Ben Haim, D. H. Rowitch, Functional diversity of astrocytes in neural circuit regulation. *Nat Rev
1321 Neurosci* **18**, 31-41 (2017).

1322 102. K. E. Poskanzer, R. Yuste, Astrocytic regulation of cortical UP states. *Proc Natl Acad Sci U S A*
1323 **108**, 18453-18458 (2011).

1324 103. H. S. Lee, A. Ghetti, A. Pinto-Duarte, X. Wang, G. Dziewczapolski, F. Galimi, S. Huitron-Resendiz,
1325 J. C. Pina-Crespo, A. J. Roberts, I. M. Verma, T. J. Sejnowski, S. F. Heinemann, Astrocytes
1326 contribute to gamma oscillations and recognition memory. *Proc Natl Acad Sci U S A* **111**, E3343-
1327 3352 (2014).

1328 104. J. Nagai, A. K. Rajbhandari, M. R. Gangwani, A. Hachisuka, G. Coppola, S. C. Masmanidis, M. S.
1329 Fanselow, B. S. Khakh, Hyperactivity with Disrupted Attention by Activation of an Astrocyte
1330 Synaptogenic Cue. *Cell* **177**, 1280-1292 e1220 (2019).

1331 105. J. Han, P. Kesner, M. Metna-Laurent, T. Duan, L. Xu, F. Georges, M. Koehl, D. N. Abrous, J.
1332 Mendizabal-Zubiaga, P. Grandes, Q. Liu, G. Bai, W. Wang, L. Xiong, W. Ren, G. Marsicano, X.
1333 Zhang, Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of
1334 hippocampal LTD. *Cell* **148**, 1039-1050 (2012).

1335 106. S. Habbas, M. Santello, D. Becker, H. Stubbe, G. Zappia, N. Liaudet, F. R. Klaus, G. Kollias, A.
1336 Fontana, C. R. Pryce, T. Suter, A. Volterra, Neuroinflammatory TNFalpha Impairs Memory via
1337 Astrocyte Signaling. *Cell* **163**, 1730-1741 (2015).

1338 107. A. Adamsky, A. Kol, T. Kreisel, A. Doron, N. Ozeri-Engelhard, T. Melcer, R. Refaeli, H. Horn, L.
1339 Regev, M. Groysman, M. London, I. Goshen, Astrocytic Activation Generates De Novo Neuronal
1340 Potentiation and Memory Enhancement. *Cell* **174**, 59-71.e14 (2018).

1341 108. M. H. Nam, K. S. Han, J. Lee, W. Won, W. Koh, J. Y. Bae, J. Woo, J. Kim, E. Kwong, T. Y. Choi,
1342 H. Chun, S. E. Lee, S. B. Kim, K. D. Park, S. Y. Choi, Y. C. Bae, C. J. Lee, Activation of Astrocytic
1343 mu-Opioid Receptor Causes Conditioned Place Preference. *Cell Rep* **28**, 1154-1166 e1155 (2019).

1344 109. J. A. Alfieri, N. S. Pino, L. M. Igaz, Reversible behavioral phenotypes in a conditional mouse model
1345 of TDP-43 proteinopathies. *J Neurosci* **34**, 15244-15259 (2014).

1346 110. Y. H. Gong, A. S. Parsadanian, A. Andreeva, W. D. Snider, J. L. Elliott, Restricted expression of
1347 G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause
1348 motoneuron degeneration. *J Neurosci* **20**, 660-665 (2000).

1349 111. M. Nagai, D. B. Re, T. Nagata, A. Chalazonitis, T. M. Jessell, H. Wichterle, S. Przedborski,
1350 Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons.
1351 *Nat Neurosci* **10**, 615-622 (2007).

1352 112. K. Yamanaka, S. J. Chun, S. Boilée, N. Fujimori-Tonou, H. Yamashita, D. H. Gutmann, R.
1353 Takahashi, H. Misawa, D. W. Cleveland, Astrocytes as determinants of disease progression in
1354 inherited amyotrophic lateral sclerosis. *Nat Neurosci* **11**, 251-253 (2008).

1355 113. K. Richetin, P. Steullet, M. Pachoud, R. Perbet, E. Parietti, M. Maheswaran, S. Eddarkaoui, S.
1356 Begard, C. Pythoud, M. Rey, R. Caillierez, Q. D. K. S. Halliez, P. Bezzi, L. Buee, G. Leuba, M.
1357 Colin, N. Toni, N. Deglon, Tau accumulation in astrocytes of the dentate gyrus induces neuronal
1358 dysfunction and memory deficits in Alzheimer's disease. *Nat Neurosci* **23**, 1567-1579 (2020).

1359 114. Y. Wu, W. Shao, T. W. Todd, J. Tong, M. Yue, S. Koga, M. Castanedes-Casey, A. L. Librero, C. W.
1360 Lee, I. R. Mackenzie, D. W. Dickson, Y. J. Zhang, L. Petrucelli, M. Prudencio, Microglial lysosome
1361 dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated
1362 FTD. *Cell Rep* **36**, 109581 (2021).

1363 115. M. Polymenidou, C. Lagier-Tourenne, K. R. Hutt, S. C. Huelga, J. Moran, T. Y. Liang, S. C. Ling,
1364 E. Sun, E. Wancewicz, C. Mazur, H. Kordasiewicz, Y. Sedaghat, J. P. Donohue, L. Shiue, C. F.
1365 Bennett, G. W. Yeo, D. W. Cleveland, Long pre-mRNA depletion and RNA missplicing contribute
1366 to neuronal vulnerability from loss of TDP-43. *Nat Neurosci* **14**, 459-468 (2011).

1367 116. T. K. Saldi, P. E. Ash, G. Wilson, P. Gonzales, A. Garrido-Lecca, C. M. Roberts, V. Dostal, T. F.
1368 Gendron, L. D. Stein, T. Blumenthal, L. Petrucelli, C. D. Link, TDP-1, the *Caenorhabditis elegans*
1369 ortholog of TDP-43, limits the accumulation of double-stranded RNA. *EMBO J* **33**, 2947-2966
1370 (2014).

1371 117. W. Dunker, X. Ye, Y. Zhao, L. Liu, A. Richardson, J. Karijolich, TDP-43 prevents endogenous
1372 RNAs from triggering a lethal RIG-I-dependent interferon response. *Cell Rep* **35**, 108976 (2021).

1373 118. A. J. Lee, A. A. Ashkar, The Dual Nature of Type I and Type II Interferons. *Front Immunol* **9**, 2061
1374 (2018).

1375 119. E. Y. Liu, J. Russ, C. P. Cali, J. M. Phan, A. Amlie-Wolf, E. B. Lee, Loss of Nuclear TDP-43 Is
1376 Associated with Decondensation of LINE Retrotransposons. *Cell Rep* **27**, 1409-1421 e1406 (2019).

1377 120. Y. H. Chang, J. Dubnau, The Gypsy Endogenous Retrovirus Drives Non-Cell-Autonomous
1378 Propagation in a Drosophila TDP-43 Model of Neurodegeneration. *Curr Biol* **29**, 3135-3152 e3134
1379 (2019).

1380 121. M. A. Wozniak, A. P. Mee, R. F. Itzhaki, Herpes simplex virus type 1 DNA is located within
1381 Alzheimer's disease amyloid plaques. *J Pathol* **217**, 131-138 (2009).

1382 122. B. Readhead, J. V. Haure-Mirande, C. C. Funk, M. A. Richards, P. Shannon, V. Haroutunian, M.
1383 Sano, W. S. Liang, N. D. Beckmann, N. D. Price, E. M. Reiman, E. E. Schadt, M. E. Ehrlich, S.
1384 Gandy, J. T. Dudley, Multiscale Analysis of Independent Alzheimer's Cohorts Finds Disruption of
1385 Molecular, Genetic, and Clinical Networks by Human Herpesvirus. *Neuron* **99**, 64-82 e67 (2018).

1386 123. M. A. Allnutt, K. Johnson, D. A. Bennett, S. M. Connor, J. C. Troncoso, O. Pletnikova, M. S.
1387 Albert, S. M. Resnick, S. W. Scholz, P. L. De Jager, S. Jacobson, Human Herpesvirus 6 Detection in
1388 Alzheimer's Disease Cases and Controls across Multiple Cohorts. *Neuron* **105**, 1027-1035 e1022
1389 (2020).

1390 124. K. Baruch, A. Deczkowska, E. David, J. M. Castellano, O. Miller, A. Kertser, T. Berkutzki, Z. Barnett-Itzhaki, D. Bezalel, T. Wyss-Coray, I. Amit, M. Schwartz, Aging. Aging-induced type I
1391 interferon response at the choroid plexus negatively affects brain function. *Science* **346**, 89-93
1392 (2014).

1393 125. C. Pottier, Y. Ren, R. B. Perkerson, 3rd, M. Baker, G. D. Jenkins, M. van Blitterswijk, M. DeJesus-
1394 Hernandez, J. G. J. van Rooij, M. E. Murray, E. Christopher, S. K. McDonnell, Z. Fogarty, A.
1395 Batzler, S. Tian, C. T. Vicente, B. Matchett, A. M. Karydas, G. R. Hsiung, H. Seelaar, M. O. Mol, E.
1396 C. Finger, C. Graff, L. Oijerstedt, M. Neumann, P. Heutink, M. Synofzik, C. Wilke, J. Prudlo, P.
1397 Rizzu, J. Simon-Sanchez, D. Edbauer, S. Roeber, J. Diehl-Schmid, B. M. Evers, A. King, M. M.
1398 Mesulam, S. Weintraub, C. Geula, K. F. Bieniek, L. Petruccielli, G. L. Ahern, E. M. Reiman, B. K.
1399 Woodruff, R. J. Caselli, E. D. Huey, M. R. Farlow, J. Grafman, S. Mead, L. T. Grinberg, S. Spina,
1400 M. Grossman, D. J. Irwin, E. B. Lee, E. Suh, J. Snowden, D. Mann, N. Ertekin-Taner, R. J. Uitti, Z.
1401 K. Wszolek, K. A. Josephs, J. E. Parisi, D. S. Knopman, R. C. Petersen, J. R. Hodges, O. Piguet, E.
1402 G. Geier, J. S. Yokoyama, R. A. Rissman, E. Rogava, J. Keith, L. Zinman, M. C. Tartaglia, N. J.
1403 Cairns, C. Cruchaga, B. Ghetti, J. Kofler, O. L. Lopez, T. G. Beach, T. Arzberger, J. Herms, L. S.
1404 Honig, J. P. Vonsattel, G. M. Halliday, J. B. Kwok, C. L. White, 3rd, M. Gearing, J. Glass, S.
1405 Rollinson, S. Pickering-Brown, J. D. Rohrer, J. Q. Trojanowski, V. Van Deerlin, E. H. Bigio, C.
1406 Troakes, S. Al-Sarraj, Y. Asmann, B. L. Miller, N. R. Graff-Radford, B. F. Boeve, W. W. Seeley, I.
1407 R. A. Mackenzie, J. C. van Swieten, D. W. Dickson, J. M. Biernacka, R. Rademakers, Genome-wide
1408 analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel
1409 disease risk factors and increases support for immune dysfunction in FTLD. *Acta Neuropathol* **137**,
1410 879-899 (2019).

1411 126. E. R. Roy, B. Wang, Y. W. Wan, G. Chiu, A. Cole, Z. Yin, N. E. Propson, Y. Xu, J. L. Jankowsky,
1412 Z. Liu, V. M. Lee, J. Q. Trojanowski, S. D. Ginsberg, O. Butovsky, H. Zheng, W. Cao, Type I
1413 interferon response drives neuroinflammation and synapse loss in Alzheimer disease. *J Clin Invest*
1414 **130**, 1912-1930 (2020).

1415 127. S. Hosseini, K. Michaelsen-Preusse, G. Grigoryan, C. Chhatbar, U. Kalinke, M. Korte, Type I
1416 Interferon Receptor Signaling in Astrocytes Regulates Hippocampal Synaptic Plasticity and
1417 Cognitive Function of the Healthy CNS. *Cell Rep* **31**, 107666 (2020).

1418 128. H. Li, Z. Gang, H. Yuling, X. Luokun, X. Jie, L. Hao, W. Li, H. Chunsong, L. Junyan, J. Mingshen,
1419 J. Youxin, G. Feili, J. Boquan, T. Jinquan, Different neurotropic pathogens elicit neurotoxic CCR9-
1420 or neurosupportive CXCR3-expressing microglia. *J Immunol* **177**, 3644-3656 (2006).

1421 129. E. H. Wilson, W. Weninger, C. A. Hunter, Trafficking of immune cells in the central nervous
1422 system. *J Clin Invest* **120**, 1368-1379 (2010).

1423 130. D. Galimberti, N. Schoonenboom, P. Scheltens, C. Fenoglio, F. Bouwman, E. Venturelli, I. Guidi,
1424 M. A. Blankenstein, N. Bresolin, E. Scarpini, Intrathecal chemokine synthesis in mild cognitive
1425 impairment and Alzheimer disease. *Arch Neurol* **63**, 538-543 (2006).

1426 131. J. J. Palop, L. Mucke, Network abnormalities and interneuron dysfunction in Alzheimer disease. *Nat
1427 Rev Neurosci* **17**, 777-792 (2016).

1428 132. K. A. Vossel, K. G. Ranasinghe, A. J. Beagle, D. Mizuiri, S. M. Honma, A. F. Dowling, S. M.
1429 Darwish, V. Van Berlo, D. E. Barnes, M. Mantle, A. M. Karydas, G. Coppola, E. D. Roberson, B. L.
1430 Miller, P. A. Garcia, H. E. Kirsch, L. Mucke, S. S. Nagarajan, Incidence and impact of subclinical
1431 epileptiform activity in Alzheimer's disease. *Ann Neurol* **80**, 858-870 (2016).

1432 133. M. Krauthausen, M. P. Kummer, J. Zimmermann, E. Reyes-Irisarri, D. Terwel, B. Bulic, M. T.
1433 Heneka, M. Muller, CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer's
1434 disease model. *J Clin Invest* **125**, 365-378 (2015).

1435 134. S. P. Andrews, R. J. Cox, Small Molecule CXCR3 Antagonists. *J Med Chem* **59**, 2894-2917 (2016).

1436 135. W. Lin, A. Kemper, K. D. McCarthy, P. Pytel, J. P. Wang, I. L. Campbell, M. F. Utset, B. Popko,
1437 Interferon-gamma induced medulloblastoma in the developing cerebellum. *J Neurosci* **24**, 10074-
1438 10083 (2004).

1439 136. A. C. Elden, H. J. Kim, M. P. Hart, A. S. Chen-Plotkin, B. S. Johnson, X. Fang, M. Armakola, F.
1440 Geser, R. Greene, M. M. Lu, A. Padmanabhan, D. Clay-Falcone, L. McCluskey, L. Elman, D. Juhr,
1441 P. J. Gruber, U. Rub, G. Auburger, J. Q. Trojanowski, V. M. Lee, V. M. Van Deerlin, N. M. Bonini,
1442 A. D. Gitler, Ataxin-2 intermediate-length polyglutamine expansions are associated with increased
1443 risk for ALS. *Nature* **466**, 1069-1075 (2010).

1444

1445 137. B. E. Deverman, P. L. Pravdo, B. P. Simpson, S. R. Kumar, K. Y. Chan, A. Banerjee, W. L. Wu, B.
1446 Yang, N. Huber, S. P. Pasca, V. Gradinaru, Cre-dependent selection yields AAV variants for
1447 widespread gene transfer to the adult brain. *Nat Biotechnol* **34**, 204-209 (2016).

1448 138. P. Sharma, D. M. Ando, A. Daub, J. A. Kaye, S. Finkbeiner, High-throughput screening in primary
1449 neurons. *Methods Enzymol* **506**, 331-360 (2012).

1450 139. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C.
1451 Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P.
1452 Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**,
1453 676-682 (2012).

1454 140. S. Bolte, F. P. Cordelieres, A guided tour into subcellular colocalization analysis in light
1455 microscopy. *J Microsc* **224**, 213-232 (2006).

1456 141. A. S. Devonshire, R. Elaswarapu, C. A. Foy, Applicability of RNA standards for evaluating RT-
1457 qPCR assays and platforms. *BMC Genomics* **12**, 118 (2011).

1458 142. L. G. Siqueira, P. J. Hansen, Sex differences in response of the bovine embryo to colony-stimulating
1459 factor 2. *Reproduction* **152**, 645-654 (2016).

1460 143. S. A. Liddelow, K. A. Guttenplan, L. E. Clarke, F. C. Bennett, C. J. Bohlen, L. Schirmer, M. L.
1461 Bennett, A. E. Munch, W. S. Chung, T. C. Peterson, D. K. Wilton, A. Frouin, B. A. Napier, N.
1462 Panicker, M. Kumar, M. S. Buckwalter, D. H. Rowitch, V. L. Dawson, T. M. Dawson, B. Stevens,
1463 B. A. Barres, Neurotoxic reactive astrocytes are induced by activated microglia. *Nature* **541**, 481-
1464 487 (2017).

1465 **Acknowledgements**

1466 We thank S. Tymchuk, C. Heisenberg, S. Shatela, and T. Chowdhury for technical support, and
1467 M. Garvey, G. Coronas-Samano, L.J. Metakis, and E. Spencer for administrative support. We are
1468 grateful to the Banner Sun Health Research Institute Brain and Body Donation Program of Sun
1469 City, Arizona, and the Neurodegenerative Disease Brain Bank at the University of California, San
1470 Francisco for the provision of human tissue samples. The Banner Brain and Body Donation
1471 Program received support from the National Institute of Neurological Disorders and Stroke, U24
1472 NS072026 National Brain and Tissue Resource for Parkinson's Disease and Related Disorders;
1473 National Institute on Aging, P30 AG19610 Arizona Alzheimer's Disease Core Center; Arizona
1474 Department of Health Services, Arizona Alzheimer's Consortium; Arizona Biomedical Research
1475 Commission, Arizona Parkinson's Disease Consortium; and the Michael J. Fox Foundation for
1476 Parkinson's Research. The Neurodegenerative Disease Brain Bank at the University of California,
1477 San Francisco received support from NIH grants P01AG019724 and P50AG023501, the
1478 Consortium for Frontotemporal Dementia Research, and the Tau Consortium. All schematics
1479 were generated using BioRender.com.

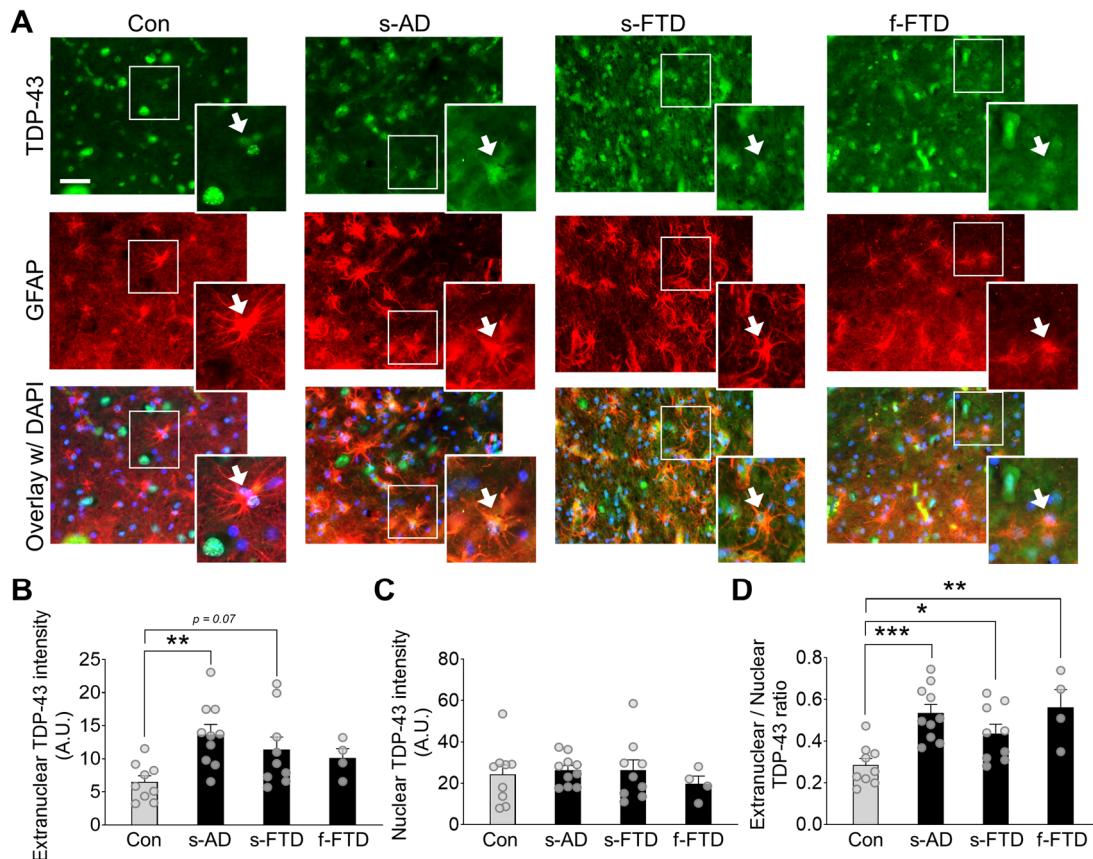
1480 **Funding**

1481 NIAID grant 2R01AI107301 (RES)
1482 NIDDK grant R01DK121072 (RES)
1483 NCI grant R01CA234614 (RES)
1484 Irma T. Hirsch Trust Research Award Scholar (RES)
1485 NIDCD grant DC012557 (RCF)
1486 NIH BRAIN Initiative grant NS107616 (RCF)
1487 Howard Hughes Medical Institute Faculty Scholarship (RCF)
1488 NINDS/NIA grant 1R01NS118569 (AGO)
1489 NIA grant R00AG048222 (AGO)
1490 Alzheimer's Association (AGO)
1491 Leon Levy Foundation (AGO)

1492 **Author contributions**

1493 ALM, ALO, and AGO designed the study and drafted the manuscript; ALM, SM, FP, CZ, SJ,
1494 ALO, and AGO performed experiments and contributed to the acquisition and analysis of data;
1495 YB and RES performed or assisted with viral pathogen experiments; SCS and RCF performed or
1496 assisted with slice electrophysiology.

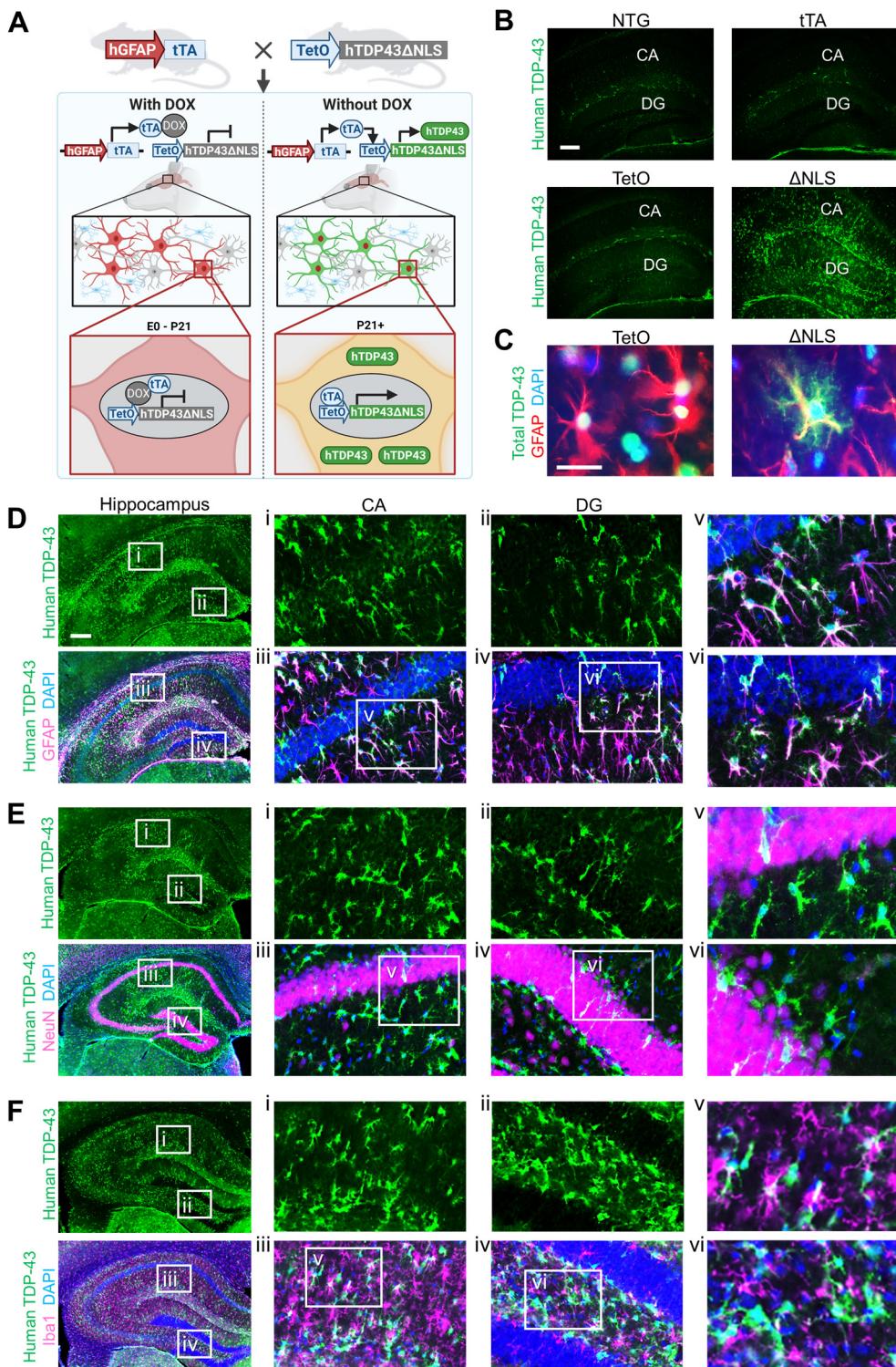
1497 **Competing interests**


1498 RES is on the scientific advisory board of Miromatrix Inc., and a consultant and speaker for
1499 Alnylam Inc. ALM, ALO, and AGO have a patent filed pertaining to CXCR3 blockers. All other
1500 authors declare that they have no competing interests.

1501 **Data and materials availability**

1502 Raw data are available from the corresponding authors upon request. All materials are available
1503 upon request or commercially.

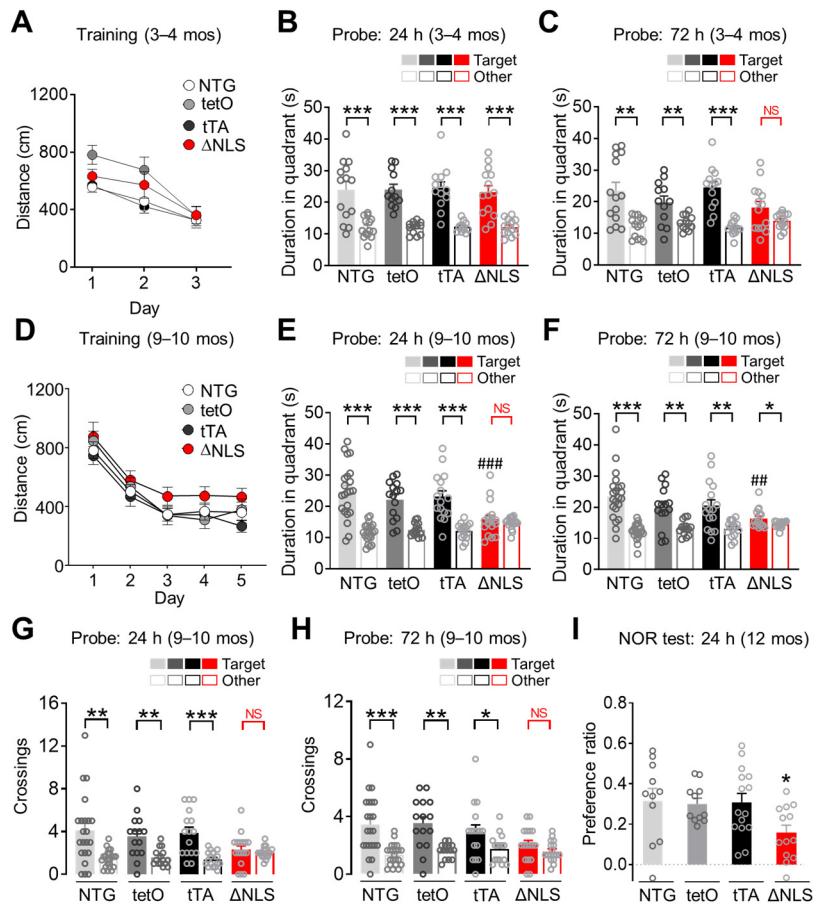
1504


Main Figures 1–10

1505

Fig. 1. Human astrocytes have increased extranuclear TDP-43 accumulation in AD and FTD.

1506 (A) Representative images of TDP-43 immunoreactivity (green) in human postmortem hippocampal sections from nondementia
 1507 controls (Con), sporadic AD (s-AD), sporadic FTD-TDP43 (s-FTD), or familial FTD-TDP43 (f-FTD) cases. The astrocyte marker
 1508 GFAP (red) was used to visualize astrocytic cell bodies and main processes, and DAPI (blue) was used to visualize cell nuclei
 1509 within individual astrocytes. Scale bar: 50 μ m. (B–D) Quantification of TDP-43 immunoreactivity within different astrocytic
 1510 subcellular regions. One-way ANOVA: $F(3, 28) = 4.21$, $p = 0.014$ (B); $F(3, 28) = 0.34$, $p = 0.80$ (C); $F(3, 28) = 7.56$, $p = 0.0007$
 1511 (D); Dunnett's post-hoc test: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ vs. Con. n = 9 Con, 10 s-AD, 9 s-FTD, and 4 f-FTD cases.



1512

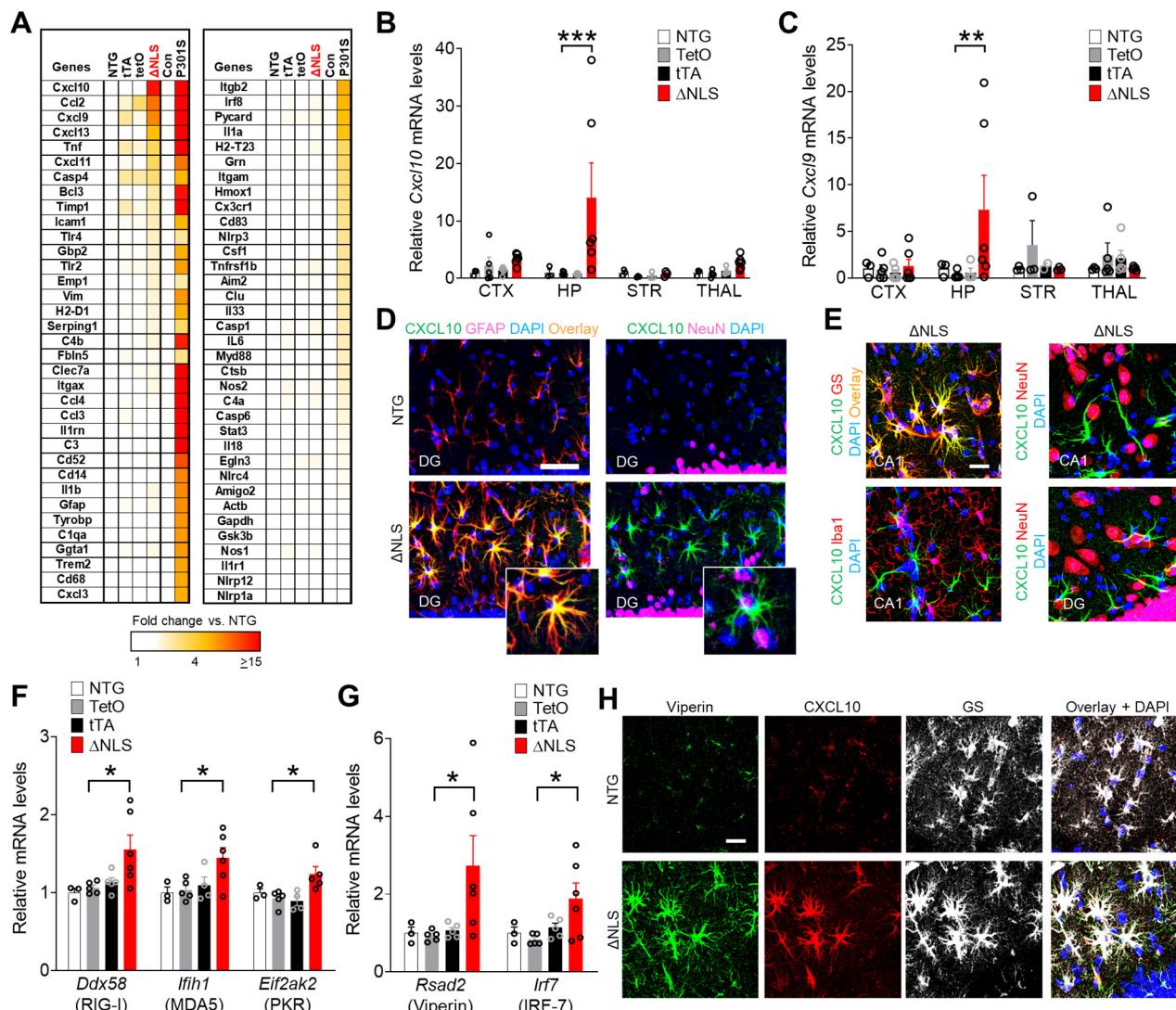
Fig. 2. Transgenic mice with inducible TDP-43 alterations in astrocytes.

1513

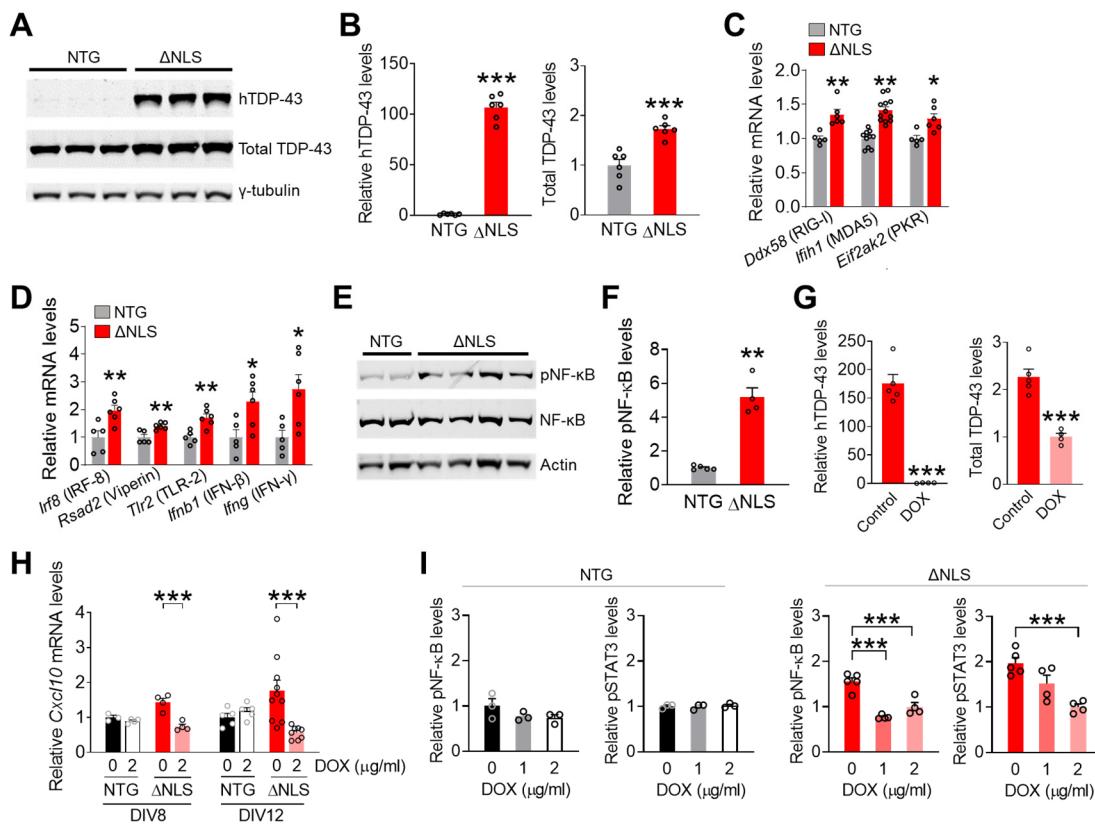
(A) Schematic of the tet-off transgenic system used to induce astrocytic expression of human TDP-43 containing a mutated nuclear localization sequence (ΔNLS). (B) Representative images of human-specific TDP-43 (green) immunoreactivity in hippocampal sections from 3-month-old nontransgenic (NTG), singly transgenic *hGFAP-tTA* (tTA), and *tetO-hTDP43-ΔNLS* (TetO) control mice, or doubly transgenic ΔNLS mice. Scale bar: 200 μm. (C) Representative images of total TDP-43 (green) immunoreactivity in hippocampal sections from TetO controls and ΔNLS mice co-immunolabeled for the astrocyte marker GFAP (red). DAPI (blue) was used to visualize nuclei. Scale bar: 25 μm. (D–F) Representative images of human-specific TDP-43 (green) immunoreactivity in hippocampal sections from ΔNLS mice co-immunolabeled for the astrocyte marker GFAP (D), neuronal marker NeuN (E), or microglial and macrophage marker Iba1 (F) (magenta). DAPI (blue) was used to visualize nuclei. Insets show magnified views. Scale bars: 300 μm. n = 4–8 mice per genotype.

1522

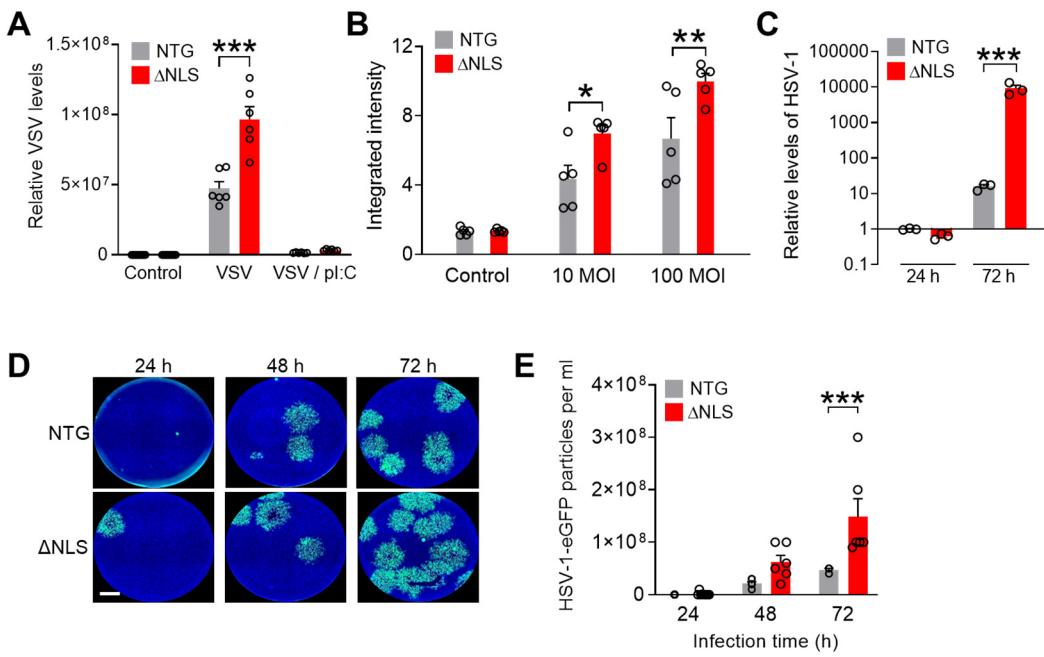
Fig. 3. Astrocytic TDP-43 alterations cause progressive memory loss.


1523 (A–H) Nontransgenic controls (NTG), singly transgenic *hGFAP-tTA* (tTA) and *tetO-hTDP43-ΔNLS* (tetO) controls, and doubly
 1524 transgenic hTDP43-ΔNLS mice (ΔNLS) were tested in the Morris water maze at 3–4 (A–C) and 9–10 (D–H) months of age. (A)
 1525 Distance traveled to reach the platform during hidden platform training (four trials per session, one session per day). Repeated
 1526 measures two-way ANOVA: $F(6, 102) = 1.141$, $p = 0.344$ for interaction effect, $F(3, 51) = 2.635$, $p = 0.0596$ for genotype effect.
 1527 $n = 14$ NTG, 12 tetO, 15 tTA, and 14 ΔNLS mice (29 females, 26 males). (B and C) Probe trials conducted 24 h or 72 h after
 1528 training. Durations in target and non-target (Other) quadrants. One-way ANOVA (Target): $F(3, 49) = 0.06677$, $p = 0.9773$ (B);
 1529 $F(3, 49) = 1.882$, $p = 0.1448$ (C). Student's *t* test with Welch's correction: ** $p < 0.01$, *** $p < 0.001$ vs. Other. $n = 14$ NTG, 12
 1530 tetO, 15 tTA, and 14 ΔNLS mice (29 females, 26 males). No significant preference for target (NS). (D) Distance traveled to reach
 1531 the platform during hidden platform training (four trials per session, one session per day). Repeated measures two-way ANOVA:
 1532 $F(12, 263) = 0.3298$, $p = 0.9834$ for interaction effect, $F(3, 66) = 2.278$, $p = 0.0877$ for genotype effect. $n = 22$ NTG, 15 tetO, 16
 1533 tTA, and 17 ΔNLS mice (37 females, 33 males). (E and F) Probe trials conducted 24 h or 72 h after training. Durations in target
 1534 and non-target (Other) quadrants. One-way ANOVA (Target): $F(3, 66) = 5.372$, $p = 0.0023$ (E), $F(3, 65) = 3.548$, $p = 0.0192$ (F);
 1535 Dunnett's post-hoc test: ## $p < 0.01$, ### $p < 0.001$ vs. NTG Target. Student's *t* test with Welch's correction: * $p < 0.05$, ** $p < 0.01$,
 1536 *** $p < 0.001$ vs. Other. $n = 22$ NTG, 15 tetO, 16 tTA, and 17 ΔNLS mice (37 females, 33 males). (G and H) Probe trials
 1537 conducted 24 h or 72 h after training. Crossings of target and non-target (Other) platform locations. Student's *t* test with Welch's
 1538 correction: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ vs. Other. $n = 22$ NTG, 15 tetO, 16 tTA, and 17 ΔNLS mice (37 females, 33
 1539 males). (I) Novel object recognition test was conducted at 12 months of age. One-way ANOVA and Dunnett's post-hoc test: * $p <$
 1540 0.05 vs. NTG. $n = 14$ NTG, 12 tetO, 15 tTA, and 14 ΔNLS mice (29 females, 26 males).

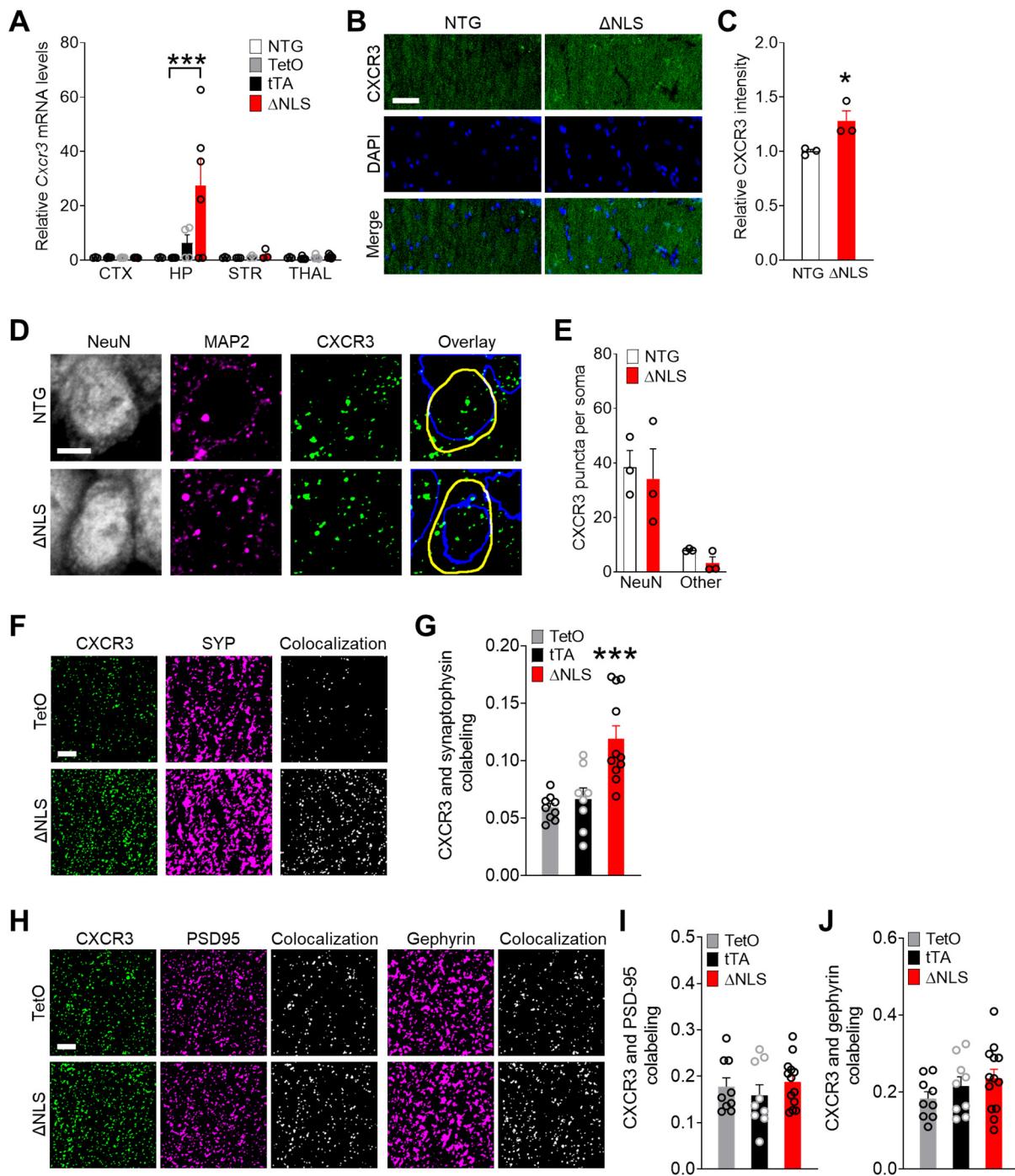
1541 **Fig. 4. Hippocampus-targeted astrocytic TDP-43 alterations are sufficient to cause progressive memory loss.**


1542 (A) Schematic of hippocampal AAV vector-mediated transgene expression involving a two-promoter system. (B) Hippocampal 1543 immunolabeling for human-specific TDP-43 (green) and the astrocytic marker GFAP (red). DAPI (blue) was used to visualize 1544 nuclei. Yellow indicates overlay of green and red channels. Insets i–vi show magnified views. Mice were assessed for transgene 1545 expression 3 weeks after injections. Scale bar: 300 μ m. (C and D) Quantification of hippocampal immunolabeling for human- 1546 specific TDP-43. Specificity was defined as percent of hTDP-43-immunoreactive cells in the CA1 and DG layers that were also 1547 GFAP-positive; efficiency was defined as percent of GFAP-immunoreactive cells in the CA1 and DG layers that were also hTDP- 1548 43-positive. n = 6 AAV hTDP43-ΔNLS and 12 AAV hTDP43-WT-injected *Aldh1l1*-Cre mice. (E–I) *Aldh1l1*-Cre (Cre) or 1549 nontransgenic (NTG) mice were injected at 2–3 months of age and tested in the Morris water maze at 3 or 6 months after injection. 1550 n = 16 Cre/Con, 19 NTG/ΔNLS, and 24 Cre/ΔNLS mice (27 females, 32 males) (E–F); n = 14 Cre/Con, 18 NTG/ΔNLS, and 19 1551 Cre/ΔNLS mice (22 females, 29 males) (G–I). (E and G) Distance traveled to reach the platform during hidden platform training 1552 (four trials per session, one session per day). Repeated measures two-way ANOVA: (E) $F(8, 224) = 0.84$, p = 0.57 for interaction 1553 effect; (G) $F(4, 96) = 1.17$, p = 0.33 for interaction effect. (F and H) Probe trials conducted 72 h after training. Durations in target

1554 and non-target (Other) quadrants. (H) One-way ANOVA (Target): $F(2, 46) = 4.18$, $p = 0.016$, Dunnett's post-hoc test: # $p < 0.05$
1555 vs. Cre/Con Target. Student's t test with Welch's correction: *** $p < 0.001$ vs. Other. No significant preference for target (NS). (J–
1556 N) *Aldh1l1*-Cre (Cre) or nontransgenic (NTG) mice were injected at 2–3 months of age and tested in the Morris water maze at 3 or
1557 9 months after injection. $n = 16$ Cre/Con, 19 NTG/TDP-WT, and 22 Cre/TDP-WT mice (22 females, 35 males) (J–K), $n = 13$
1558 Cre/Con, 18 NTG/TDP-WT, and 17 Cre/TDP-WT mice (19 females, 29 males) (L–N). (J and L) Distance traveled to reach the
1559 platform during hidden platform training. Repeated measures two-way ANOVA: (J) $F(8, 216) = 0.99$, $p = 0.44$ for interaction
1560 effect, $F(2, 54) = 7.19$, $p = 0.0017$ for group effect; (L) $F(4, 88) = 1.06$, $p = 0.38$ for interaction effect, $F(2, 44) = 5.06$, $p = 0.0105$
1561 for group effect. (K and M) Probe trials conducted 24 h or 72 h after training. Durations in target and non-target (Other) quadrants.
1562 Student's t test with Welch's correction: ** $p < 0.01$, *** $p < 0.001$ vs. Other. (I and N) Swim speeds during indicated probe trials.

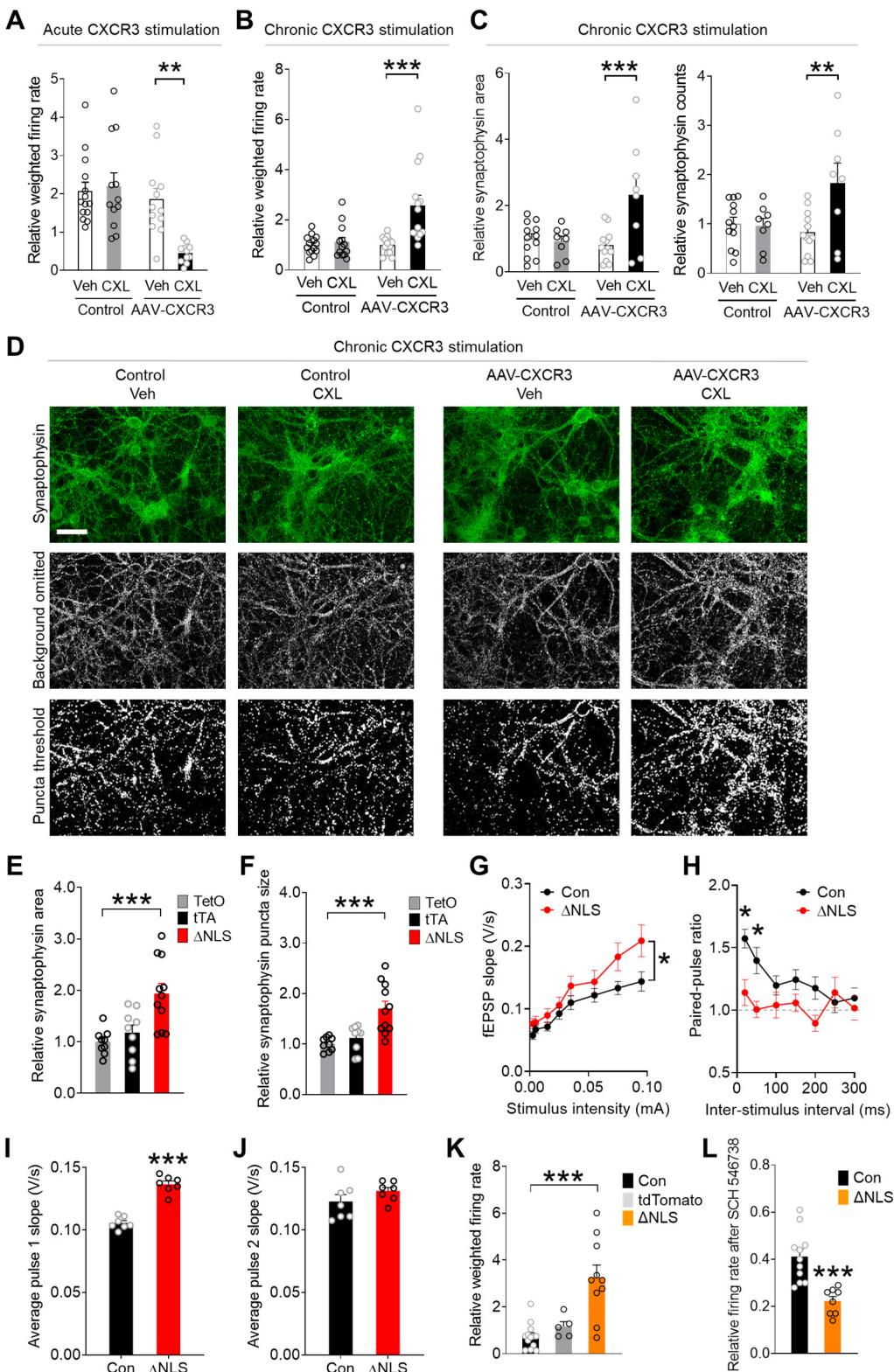

Fig. 5. Astrocytic TDP-43 alterations increase hippocampal interferon-inducible chemokines and other antiviral response factors.

(A) Hippocampal RNA levels for indicated genes in 11-month-old littermate nontransgenic controls (NTG), singly transgenic *hGFAP*-tTA (tTA) and *tetO*-hTDP43-ΔNLS (TetO) controls, and doubly transgenic hTDP43-ΔNLS mice (ΔNLS). Transgenic tau-P301S (P301S) and their littermate controls (Con) at 10 months of age were used for validation and comparison of gene expression. n = 3–6 mice per genotype. (B and C) RNA levels from indicated brain regions as measured by RT-qPCR. Neocortex (CTX), hippocampus (HP), striatum (STR), and thalamus (THAL). Two-way ANOVA: F(9, 52) = 2.06, p = 0.051 for interaction; F(3, 52) = 3.061, p = 0.019 for genotype (B); F(9, 49) = 1.65, p = 0.13 for interaction; F(3, 49) = 0.85, p = 0.47 for genotype (C); Dunnett's post-hoc test: **p < 0.01, ***p < 0.001 vs. TetO. n = 3–6 mice per genotype and brain region. (D and E) Representative images of CXCL10 immunoreactivity (green) in the dentate gyrus molecular layer (DG) and CA1 of 11-month-old NTG and ΔNLS mice. Sections were co-immunolabeled for the astrocyte markers GFAP or glutamine synthetase (GS), neuronal marker NeuN, or microglial/macrophage marker Iba1, as indicated. Yellow indicates overlay of green and red channels. DAPI (blue) was used to visualize nuclei. Insets in (D) show magnified views. Scale bars: 100 μm (D), 20 μm (E). (F and G) Hippocampal RNA levels in 11-month-old NTG controls, singly transgenic TetO and tTA controls, and ΔNLS mice. One-way ANOVA: F(3, 15) = 4.19, p = 0.024 (Ddx58); F(3, 14) = 4.02, p = 0.029 (Ifih1); F(3, 13) = 5.097, p = 0.015 (Eif2ak2); F(3, 15) = 3.38, p = 0.046 (Rsd2); F(3, 15) = 3.29, p = 0.049 (Ir7). Dunnett's post-hoc test: *p < 0.05 vs. TetO. n = 3–6 mice per genotype. (H) Representative images of viperin (green), CXCL10 (red), and GS (white) immunoreactivity in the DG of 11-month-old NTG and ΔNLS mice. DAPI (blue) was used to visualize nuclei. Scale bar: 20 μm.


1581 **Fig. 6. Astrocytic TDP-43 has cell-autonomous effects on antiviral gene expression and neuroimmune**
1582 **pathways.**

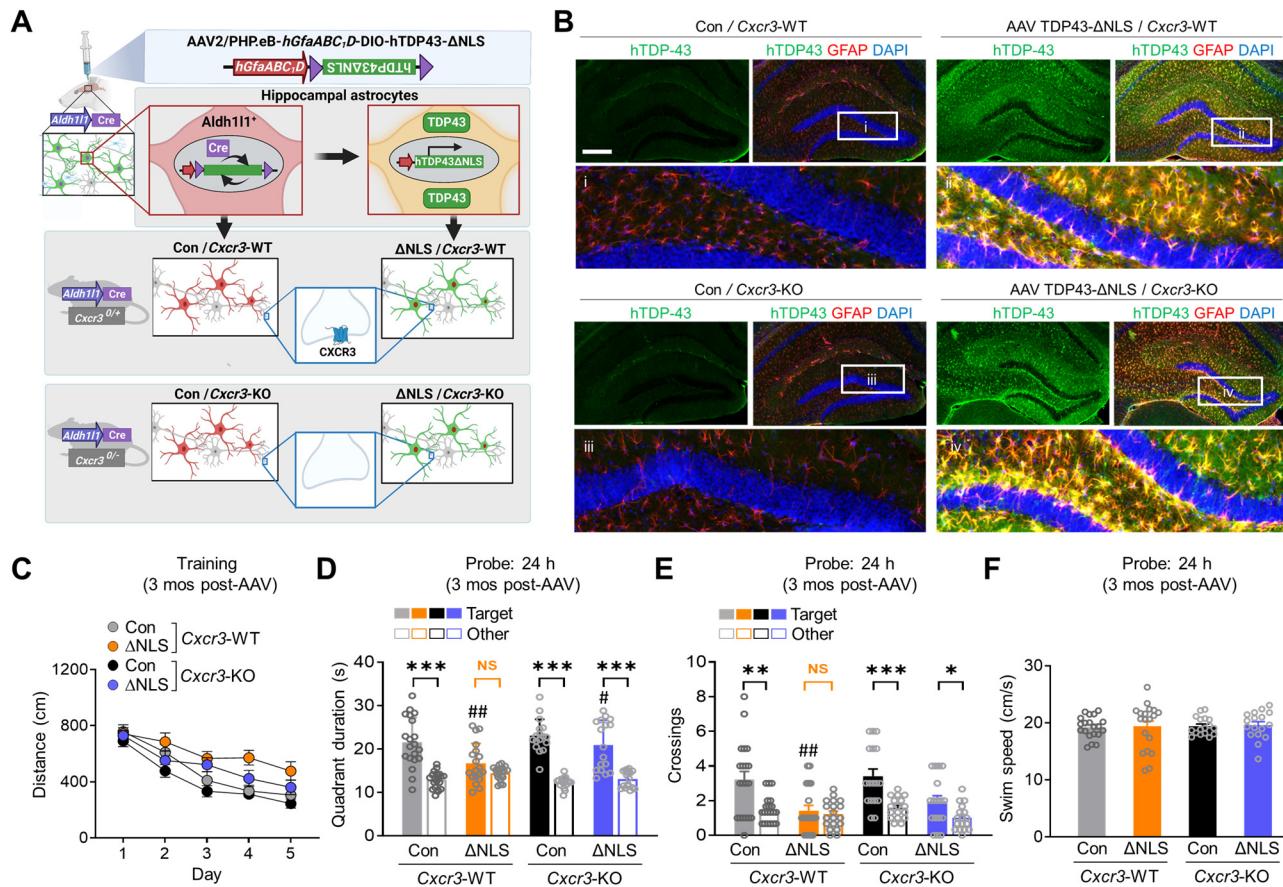
1583 (A) Western blots of human TDP-43 or mouse and human TDP-43 levels (total TDP-43) in primary hippocampal astrocytes (DIV
1584 10) derived from nontransgenic (NTG) or doubly transgenic Δ NLS mice. (B) Quantification of the Western blots shown in (A).
1585 TDP-43 levels were normalized to γ -tubulin levels. Student's *t* test with Welch's correction: ***p < 0.001 vs. NTG. n = 6 culture
1586 wells per genotype. (C and D) RNA levels in primary hippocampal astrocytes (DIV 10) were measured by RT-qPCR. Student's *t*
1587 test: *p < 0.05, **p < 0.01 vs. NTG. n = 5–12 wells per genotype. (E) Western blots of phosphorylated and total NF- κ B levels,
1588 and β -actin in primary hippocampal astrocytes (DIV 10) from NTG and Δ NLS mice. (F) Quantification of the Western blots
1589 shown in (E). Student's *t* test with Welch's correction: **p < 0.01 vs. NTG. n = 4–5 wells per genotype. (G) Western blot
1590 quantification of human-specific TDP-43 and total TDP-43 protein levels in primary hippocampal astrocytes (DIV 10) derived
1591 from Δ NLS mice and maintained in DOX (2 μ g/ml)-containing media or control media. Student's *t* test with Welch's correction:
1592 ***p < 0.001 vs. Control. n = 4–5 wells per genotype and treatment condition. (H) Cxcl10 mRNA levels in primary hippocampal
1593 astrocytes derived from NTG or Δ NLS mice. Some astrocytes were maintained in DOX-containing media and analyzed at DIV 8
1594 or 12, as indicated. Two-way ANOVA: $F(1, 11) = 14.62$, p = 0.0028 for interaction effect at DIV 8, $F(1, 24) = 8.28$, p = 0.0083
1595 for interaction effect at DIV 12. Bonferroni post-hoc test: ***p < 0.001 vs. 0 DOX per DIV. n = 4–10 wells per genotype and
1596 treatment condition. (I) Western blot quantification of phosphorylated NF- κ B and STAT3 levels in primary hippocampal
1597 astrocytes (DIV 10) from NTG or Δ NLS mice and maintained in DOX-containing media or control media, as indicated.
1598 Phosphorylated NF- κ B and STAT3 levels were normalized to total levels of each protein per sample. One-way ANOVA: $F(2, 10)$
1599 = 29.53, p < 0.0001 (pNF- κ B in Δ NLS); $F(2, 10) = 13.68$, p = 0.0014 (pSTAT3 in Δ NLS); $F(2, 6) = 1.77$, p = 0.25 (pNF- κ B in
1600 NTG); $F(2, 6) = 0.20$, p = 0.83 (pSTAT3 in NTG). Dunnett's post-hoc test: ***p < 0.001 vs. 0 DOX. n = 3–5 wells per genotype
1601 and treatment condition.

1602 **Fig. 7. Astrocytic TDP-43 affects antiviral defenses in a cell-autonomous manner.**


1603 (A) Primary astrocytes (DIV 9) from NTG and ΔNLS mice were infected with vesicular stomatitis virus (VSV, 100 MOI) for 24 h.
1604 Some wells were also transfected with poly(I:C) (pi:C). VSV levels were measured by RT-qPCR. Two-way ANOVA: $F(2, 41) =$
1605 34.64, $p < 0.0001$ for interaction effect; $F(1, 41) = 40.60$, $p < 0.0001$ for genotype effect. Bonferroni post-hoc test: *** $p < 0.001$
1606 vs. NTG. $n = 6-12$ wells per genotype and treatment condition. (B) Primary astrocytes (DIV 9) from NTG and ΔNLS mice were
1607 infected with adenovirus tagged with eGFP at indicated MOIs for 24 h. eGFP levels were measured by quantitative microscopy.
1608 $F(2, 24) = 3.47$, $p = 0.047$ for interaction effect; $F(1, 24) = 13.73$, $p = 0.0011$ for genotype effect. Bonferroni post-hoc test: * $p <$
1609 0.05, ** $p < 0.001$ vs. NTG. $n = 5$ wells per genotype and treatment condition. (C) Primary astrocytes (DIV 8) from NTG and
1610 ΔNLS mice were infected with HSV-1 tagged with eGFP (0.01 MOI) for 24 h or 72 h. gB DNA levels were normalized to 18S
1611 DNA per sample to DNA. Two-way ANOVA: $F(1, 12) = 15.66$, $p = 0.0019$ for genotype effect; $F(2, 12) = 9.225$, $p = 0.0037$ for
1612 interaction effect. Bonferroni's post-hoc test: *** $p = 0.0003$ vs. NTG-72 h. $n = 3$ wells per genotype and treatment condition. (D)
1613 and (E) Conditioned media was collected from primary NTG or ΔNLS astrocytes after infection with HSV-1-eGFP (0.01 MOI).
1614 Astrocytes were washed 3 h after infection and conditioned media was analyzed after indicated durations using the plaque assay in
1615 Vero cells. (D) Representative images of Vero cells after treatment with conditioned media from NTG or ΔNLS astrocytes that
1616 were infected with HSV-1-eGFP for indicated durations. Scale bar: 1200 μ m. (E) Number of viral particles in conditioned media
1617 from HSV-1-infected NTG or ΔNLS astrocytes. Two-way ANOVA: $F(1, 33) = 15.24$, $p = 0.0004$ for genotype effect; $F(2, 33) =$
1618 5.58, $p = 0.0082$ for interaction effect. Bonferroni's post-hoc test: *** $p = 0.0009$ vs. NTG-72 h. $n = 3-9$ wells per genotype and
1619 treatment condition.

1620

Fig. 8. Astrocytic TDP-43 increases chemokine receptor CXCR3 levels in presynaptic terminals.


1621 (A) *Cxcr3* RNA levels from indicated brain regions of NTG, singly transgenic controls (TetO and tTA), and doubly transgenic
 1622 Δ NLS mice. Neocortex (CTX), hippocampus (HP), striatum (STR), and thalamus (THAL). Two-way ANOVA: $F(9, 48) = 2.89$, p
 1623 = 0.0081 for interaction; $F(3, 48) = 2.93$, $p = 0.043$ for genotype; Dunnett's post-hoc test: *** $p < 0.001$ vs. TetO. $n = 3$ –5 mice per
 1624 genotype and brain region. Representative images (B and D) and quantification (C and E) of hippocampal immunoreactivity for
 1625 CXCR3 in the CA1 radiatum parenchyma (B–C) or specifically in CA1 neuronal cell bodies (D–E) as delineated by co-
 1626 immunolabeling with neuronal marker NeuN versus non-NeuN regions in NTG and Δ NLS mice. Neuronal nuclei are indicated by
 1627 blue traces; cell somas are indicated by yellow traces. Arbitrary fluorescence intensity units were normalized to NTG mice (C).
 1628 Student's *t* test: * $p = 0.039$; $n = 3$ mice per genotype. (F and G) Colocalization of CXCR3 and the synaptic marker synaptophysin
 1629 in the CA1 region of singly transgenic controls and doubly transgenic Δ NLS mice. Mander's overlap coefficient was used to
 1630 assess colocalization. One-way ANOVA: $F(2, 25) = 12.94$, $p < 0.0001$; Dunnett's post-hoc test: *** $p < 0.001$ vs. TetO. $n = 8$ –11
 1631 mice per genotype. (H–J) Colocalization of immunoreactivity for CXCR3 and the synaptic markers PSD-95 (H, I) or gephyrin (H,
 1632 J) in the CA1 region of singly transgenic controls and doubly transgenic Δ NLS mice. Mander's overlap coefficient was used to
 1633 assess colocalization. $n = 9$ –13 mice per genotype. Scale bars: 50 μ m (B), 5 μ m (D, F, H).

1634 **Fig. 9. Astrocytic TDP-43 and neuronal CXCR3 promote hyperexcitability and aberrant presynaptic function.**

1635 (A and B) Primary wild-type neurons were transduced with AAV PHP.eB *Syn-CXCR3-HA-neurexin1α* to target CXCR3 to
1636 presynaptic terminals. Control cultures were not transduced. (A) Recombinant CXCL11 (CXL, 200 nM) or vehicle (Veh) was
1637 applied acutely after a 30-min baseline recording using the MEA. Firing rates at 1 min post-stimulation were normalized to the
1638 average baseline rate per well. Two-way ANOVA: $F(1, 45) = 8.38$, $p = 0.0058$ for interaction effect; $F(1, 45) = 5.83$, $p = 0.02$ for
1639 CXL effect. Bonferroni post-hoc test: ** $p < 0.01$ vs. Veh. $n = 11$ –14 culture wells per genotype and treatment condition. (B)
1640 Recombinant CXCL11 (CXL, 200 nM) or vehicle (Veh) was applied chronically (24 h) after a 30-min baseline recording. Firing
1641 rates were normalized to the average baseline rate per well. (C and D) Quantification (C) and representative images (D) of

1642 immunoreactivity area and puncta counts for the presynaptic marker synaptophysin in primary wild-type neurons transduced with
1643 AAV PHP.eB *Syn*-CXCR3-HA-neurexin1 α and treated chronically (3 days) with recombinant CXCL11 (CXL, 200 nM) or vehicle
1644 (Veh). Two-way ANOVA: $F(1, 50) = 8.85$, $p = 0.0045$ for interaction effect (firing rate); $F(1, 50) = 11.73$, $p = 0.0012$ for CXL
1645 effect (firing rate); $F(1, 36) = 8.65$, $p = 0.0057$ for interaction effect (area); $F(1, 36) = 6.24$, $p = 0.017$ for interaction effect
1646 (counts). Bonferroni post-hoc test: ** $p < 0.01$, *** $p < 0.001$ vs. Veh. $n = 5$ –14 culture wells per genotype and treatment condition.
1647 Scale bar: 50 μ m. (E and F) Quantification of immunoreactivity for the presynaptic marker synaptophysin in the CA1 radiatum of
1648 singly transgenic controls and doubly transgenic Δ NLS mice. One-way ANOVA: $F(2, 26) = 9.94$, $p = 0.0006$ (E); $F(2, 26) =$
1649 11.62, $p = 0.0002$ (F); Dunnett's post-hoc test: *** $p < 0.001$ vs. TetO. $n = 9$ –12 mice per genotype. (G and H) Recordings in acute
1650 hippocampal slices from singly transgenic controls (TetO and tTA; Con) and doubly transgenic Δ NLS male mice at 5–6 months of
1651 age. (G) Basal synaptic transmission at increasing stimulus intensities. Mixed-effects model: $F(7, 344) = 2.10$, $p = 0.043$ for
1652 interaction effect, $F(1, 50) = 4.19$, $p = 0.046$ for genotype effect. $n = 28$ recordings from 6 Con male mice and 24 recordings from
1653 5 Δ NLS male mice. (H) Paired-pulse facilitation is shown as a ratio of fEPSPs in response to the second pulse as compared to the
1654 first pulse. Ratios are plotted as a function of interstimulus interval. Mixed-effects model: $F(6, 338) = 2.43$, $p = 0.026$ for
1655 interaction effect, $F(1, 60) = 7.81$, $p = 0.007$ for genotype effect. Bonferroni's post-hoc test: * $p < 0.05$ vs. Con. $n = 37$ recordings
1656 from 6 Con male mice and 25 recordings from 5 Δ NLS male mice. (I and J) Average fEPSPs in response to the first (I) and
1657 second (J) stimulus independent of interval. Student's *t* test: *** $p < 0.001$. (K and L) Primary wild-type neurons were co-cultured
1658 with hippocampal *Aldh1l1*-Cre astrocytes that were transduced with AAV PHP.eB-*hGfaABC1D*-DIO-hTDP43- Δ NLS (Δ NLS) or
1659 AAV PHP.eB pAAV-FLEX-tdTomato. Control cultures were not transduced. One-way ANOVA: $F(2, 25) = 15.93$, $p < 0.0001$
1660 (K). Some wells received the selective CXCR3 blocker SCH 546738 (12 nM). Dunnett's post-hoc test: *** $p < 0.001$ vs. Con.
1661 Student's *t* test: *** $p = 0.0003$. $n = 5$ –14 culture wells per genotype and treatment condition.

1662

Fig. 10. Ablation of CXCR3 alleviates astrocytic TDP-43-linked memory deficits.

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675

(A) Schematic of the experimental design. Transgenic *Cxcr3*-WT or *Cxcr3*-KO male mice on a *Aldh1l1*-Cre background were injected with AAV PHP.eB-hGfaABC,D-DIO-hTDP43-ΔNLS (ΔNLS) or saline (Con) at 4–9 months of age and tested in the Morris water maze at 7–12 months of age. Control AAV injections in NTG mice are shown in Figure 4 and Extended Data Fig. 4. (B) Representative images of human-specific TDP-43 (green) and the astrocytic marker GFAP (red). DAPI (blue) was used to visualize nuclei. Yellow indicates overlay of green and red channels. Insets i–vi show magnified views. Scale bar: 300 μ m. (C) Distance traveled to reach the platform during hidden platform training (four trials per session, one session per day). Mixed-effects model: $F(1, 70) = 17.84$, $p < 0.0001$ for ΔNLS effect, $F(1, 70) = 8.93$, $p = 0.0039$ for *Cxcr3*-KO effect, $F(1, 70) = 0.12$, $p = 0.73$ for ΔNLS x *Cxcr3*-KO interaction effect. $n = 20$ Con / *Cxcr3*-WT, 19 ΔNLS / *Cxcr3*-WT, 17 Con / *Cxcr3*-KO, and 17 ΔNLS / *Cxcr3*-KO mice. (D and E) Probe trial conducted 24 h after training. Durations in target and non-target (Other) quadrants. Two-way ANOVA (Target): $F(1, 69) = 8.82$, $p = 0.004$ for ΔNLS effect, $F(1, 69) = 5.94$, $p = 0.017$ for *Cxcr3*-KO effect (D); $F(1, 69) = 16.3$, $p = 0.0001$ for ΔNLS effect (E). Bonferroni's post-test: # $p < 0.01$ vs. Con / *Cxcr3*-WT, # $p < 0.05$ vs. ΔNLS / *Cxcr3*-WT. Student's *t* test with Welch's correction: *** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$ vs. Other. No significant preference for target (NS). (F) Mice were assessed for swim speeds in the 24 h probe trial.