

1 **AcaFinder: genome mining for anti-CRISPR associated genes**
2

3 *Bowen Yang¹, Jinfang Zheng¹ and Yanbin Yin^{1,*}*
4

5 *¹Nebraska Food for Health Center, Department of Food Science and Technology, University of*
6 *Nebraska - Lincoln, Lincoln, NE, 68508, USA*

7 # To whom correspondence should be addressed
8

9
10 Yanbin Yin
11 Tel: 1-402-472-4303
12 Email: yyin@unl.edu

13
14

15

16 **Abstract**

17

18 Anti-CRISPR (Acr) proteins are encoded by (pro)viruses to inhibit their host's CRISPR-Cas
19 systems. Genes encoding Acr and Aca (Acr associated) proteins often co-localize to form *acr-*
20 *aca* operons. Here, we present AcaFinder as the first Aca genome mining tool. AcaFinder can:
21 (i) predict Acas and their associated *acr-aca* operons using guilt-by-association (GBA); (ii)
22 identify homologs of known Acas using an HMM (Hidden Markov model) database; (iii) take
23 input genomes for potential prophages, CRISPR-Cas systems, and self-targeting spacers
24 (STSS); and (iv) provide a standalone program (<https://github.com/bowen920/AcaFinder>) and a
25 web server (<http://aca.unl.edu/Aca>). AcaFinder was applied to mining over 16,000 prokaryotic
26 and 142,000 gut phage genomes. After a multi-step filtering, 36 high-confident new Aca families
27 were identified, which is three times of the 12 known Aca families. Seven new Aca families were
28 from major human gut bacteria (Bacteroidota, Actinobacteria, Fusobacteria) and their phages,
29 while most known Aca families were from Proteobacteria and Firmicutes. A complex association
30 network between Acrs and Acas was revealed by analyzing their operonic co-localizations. It
31 appears very common in evolution that the same *aca* genes can recombine with different *acr*
32 genes and *vice versa* to form diverse *acr-aca* operon combinations.

33

34 **Importance**

35

36 At least four bioinformatics programs have been published for genome mining of Acrs since
37 2020. In contrast, no bioinformatics tools are available for automated Aca discovery. As the self-
38 transcriptional repressor of *acr-aca* operons, Aca can be viewed as anti-anti-CRISPRs, with a
39 great potential in the improvement of CRISPR-Cas technology. Although all the 12 known Aca
40 proteins contain a conserved Helix-Turn-Helix (HTH) domain, not all HTH-containing proteins
41 are Acas. However, HTH-containing proteins with an adjacent Acr homologs encoded in the
42 same genetic operon are likely Aca proteins. AcaFinder implements this guilt-by-association
43 (GBA) idea and the idea of using HMMs of known Acas for homologs into one software
44 package. Applying AcaFinder in screening prokaryotic and gut phage genomes reveals a
45 complex *acr-aca* operonic co-localization network between different families of Acrs and Acas.

46

47

48 Introduction

49
50 Viruses and mobile genetic elements (MGEs) have been in a constant arms race with their
51 prokaryote hosts for billions of years (1). To prevent viral infections, prokaryotes have evolved
52 various anti-viral defense systems, e.g., CRISPR-Cas, RM (restriction modification), TA (toxin
53 and anti-toxin), BREX (Bacteriophage Exclusion) systems (2). To survive, viruses also evolved
54 various anti-defense strategies (3). Among the known anti-defense systems, anti-CRISPRs
55 have received the greatest attention due to their applications in developing more controllable
56 and safer genome editing tools, e.g., CRISPR-Cas9 (4).

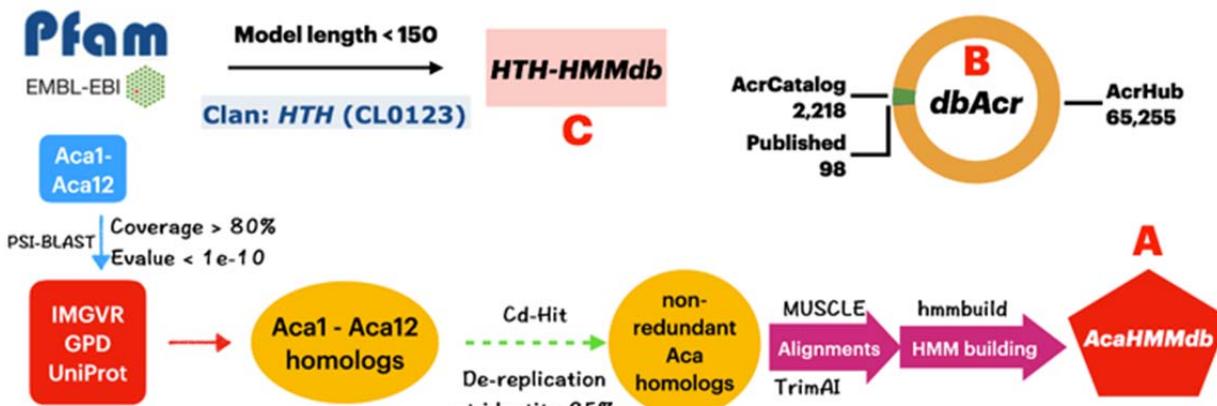
57
58 Anti-CRISPR (Acr) proteins were first discovered in 2013 from *Pseudomonas* phages and
59 prophages (5). They were found to successfully protect invading phages by inhibiting host's
60 CRISPR-Cas systems. These published Acrs are often encoded by (pro)viral genetic operons
61 that also contain genes of anti-CRISPR associated (Aca) proteins in the downstream of acr
62 genes (5-7). As of now, a total of 98 Acr proteins have been experimental characterized;
63 however, they do not share any significant sequence similarity and thus form 98 Acr protein
64 families. Most Acrs do not have conserved Pfam domains and thus have few sequence
65 homologs in the databases. In contrast, 12 Aca protein families have been defined and all of
66 them contain a conserved Helix-Turn-Helix (HTH) domain, commonly found in DNA-binding
67 proteins. Because Aca is more conserved and often co-exist with Acrs in operons, many of the
68 98 Acrs were actually identified by the guilt-by-association (GBA) idea followed by experimental
69 characterization, i.e., sequence similarity search of aca (HTH-containing) genes first and then
70 search for acr genes in the genomic operons of (pro)viruses.

71
72 Recent studies have shown that at least three Aca families negatively regulate Acr expression
73 (8-11). These Acas bind to the promoter regions of the *acr-aca* operons via their HTH domain,
74 leading to transcription repression of the operons (9, 10). This is reminiscent of the type II toxin
75 and anti-toxin (TA) systems, where the anti-toxin protein is also an HTH-containing
76 transcriptional repressor of the toxin. Therefore, Aca proteins could be viewed as anti-anti-
77 CRISPRs, with a great potential in the calibration of CRISPR-Cas technologies by modulating
78 the Acr modulators.

79
80 In the past three years, bioinformatics tools have been developed to aid in the discovery of
81 novel Acrs. These include tools as automated softwares screening query genomes or
82 ranking/scoring query proteins for Acr candidates, e.g., AcRanker, AcrFinder, PaCRISPR (12-
83 14). There are also online databases (Anti-CRISPRdb, AcrDB, AcrHub, AcrCatalog) for
84 experimentally verified Acrs, their homologs, and machine learning predicted Acrs (15-18). In
85 contrast, no automated bioinformatics tools are available for Aca discovery. This might be
86 because Acas have HTH domains and are easier to identify. However, not all HTH-containing
87 proteins are Acas. In fact, there are 328 HTH-related Pfam families forming the HTH clan (a
88 higher classification level than family) due to shared distant evolutionary homology. This makes
89 the HTH clan (Pfam clan ID: CL0123) the largest and probably also one of the most conserved
90 clan in the Pfam database. Therefore, the HTH sequence space is much larger than the Aca
91 sequence space, and finding HTH-contain proteins does not mean that Acas are found.

92
93 Here we report the first software package, AcaFinder, to allow automated genome mining for
94 reliable Acas. Two approaches are implemented to more confidently identify Acas given a query
95 genome or metagenome assembled genome. The first approach is based on guilt-by-
96 association (GBA), meaning that we identify homologs of known Acrs first and then search for
97 HTH-containing proteins in the acr gene neighborhood. The rational is that, HTH-containing

98 proteins are more likely to be real Acas if they are located in the same genetic operons as
99 known Acas or their homologs. The second approach is to build an HMM (hidden markov model)
100 database using a training data of the 12 known Aca families, and then search for Aca homologs
101 with this AcaHMMdb instead of Pfam HTH HMMs. In addition to the two implemented
102 approaches, AcaFinder also calls a CRISPR-Cas search tool (CRISPRCasTyper), a prophage
103 search tool (VIBRANT), and an in-house Self-targeting spacer (STS) searching process,
104 providing users with detailed information vital to the assessment of Aca predictions (19-22).
105
106 Features of AcaFinder include: (i) identify both potential Acas and their associated *acr-aca*
107 operons; (ii) identify Aca homologous proteins using the AcaHMMdb; (iii) provide potential
108 prophage regions, CRISPR-Cas systems, and STSs in the query genome; (iv) provide a
109 standalone software package that can run locally and a user-friendly web interface. The
110 webserver generates graphical representations of identified *acr-aca* operons with associated
111 CRISPR-Cas, prophage, and STS information in terms of genomic context. Lastly, using
112 AcaFinder, we have screened for potential Aca proteins in the RefSeq prokaryote genomes and
113 in the gut phage database (GPD) (23-26). We have performed a phylogenetic analysis to study
114 the sequence diversity and taxonomic distribution of a group of highly confident Aca predictions.
115
116


117 Materials and Methods

118 Build the AcaHMMdb

121 For Aca homology search, we built 12 Hidden Markov Models (HMMs) corresponding to the 12
122 published Aca protein families with the following steps (**Fig. 1A**):
123

- 124 (i) We downloaded the UniProt (27), IMGVR (24), and GPD protein databases;
125
- 126 (ii) We downloaded the 12 published Aca protein (Aca1-Aca12) sequences from
127 <https://tinyurl.com/anti-CRISPR> (28). Aca13 is excluded as it has no HTH domain, and not
128 validated for Aca functions. The 12 Aca sequences were used as the query to PSI-BLAST
129 search the three protein databases. Acr protein homologs with query coverage > 80% & Evalue
130 < 1e-10 & protein length < 150aa were considered as Aca(1-12)-like proteins;
131
- 132 (iii) Cd-Hit (29) was used to derePLICATE the Aca(1-12)-like proteins with an identity threshold <
133 95%;
134
- 135 (iv) Using MUSCLE (30), 12 multiple sequence alignments were created from the dereplicated
136 Aca(1-12)-like proteins along with the corresponding known Acas; the alignments were then
137 trimmed with TrimAI (31). The details of the alignment trimming are provided in **Table S1**;
138
- 139 (v) hmmbuild (32) was used to create 12 HMMs based on the 12 trimmed alignments; the 12
140 HMMs were combined into one file as the AcaHMMdb.
141

142

143 **Fig. 1. Three databases are built within AcaFinder.** (A) The workflow to build the
144 AcaHMMdb. Homologs of 12 known Acas were used in the construction of 12 HMMs. (B) The
145 data composition of the Acr database (dbAcr). (C) The making of HTH-HMM database. Pfam
146 database was downloaded and filtered for HTH HMMs that fit the set criteria (described in main
147 text).

148

149

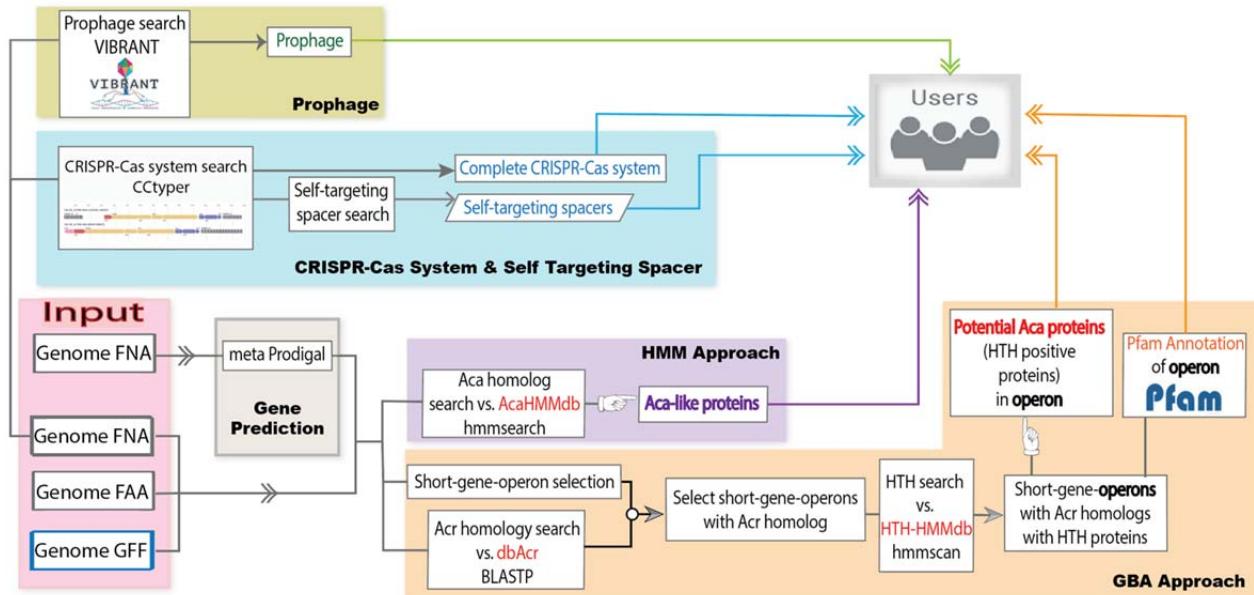
150 Collect Acr sequences to form the database of Acr (dbAcr)

151

152 For GBA search of Acas, we prepared a highly confident Acr database from two sources. The
153 first source contains protein sequences of 98 experimental characterized Acrs downloaded from
154 <https://tinyurl.com/anti-CRISPR> (28). The other source includes machine learning predicted Acr
155 sequences that are less than 200aa in length, and share no sequence similarity with the 98
156 known Acrs. Those include 2,218 Acr sequences from AcrCatalog (16), and 65,255 Acr
157 sequences from AcrHub (17). More detailed information can be found on the AcrCatalog and
158 AcrHub websites. Therefore, the dbAcr contains 98+2,218+65,255 Acr protein sequences (Fig.
159 1B).

160

161 Build the HTH-HMM database (HTH-HMMdb and its subset HTH-HMM_strictdb)


162

163 For GBA search of Acas, we also built an HTH HMM database. An HMMER search of the 12
164 known Acas against the Pfam database found that all of them have their best Pfam HMM match
165 from the HTH clan (clan ID: CL0123) (Table S2). Among them, 9 Acas matched HTH HMMs
166 with “HTH” in their Pfam family descriptions (e.g., HTH_24, HTH_3, HTH_29), and 3 Acas
167 matched HTH HMMs without “HTH” in their Pfam family descriptions (e.g., KORA, DUF1870,
168 YdaS_antitoxin).

169

170 Knowing that all known Acas match the HTH HMMs, we downloaded HMMs of the Pfam HTH
171 clan (CL0123). Only keeping HMMs with length < 150 aa (all 12 known Acas are shorter than
172 150 aa), we obtained in total 328 HMMs to form the HTH-HMM database (Fig. 1C). Another
173 more conservative database, the HTH-HMM_strictdb, was also built with only 89 Pfam HTH
174 HMMs that must have “HTH” in their family descriptions (e.g., HTH_24, HTH_3). Users have the
175 option to choose either the HTH-HMMdb or the HTH-HMM_strictdb for searching the gene
176 neighborhood of Acr homologs (see below).

177

178 **Fig. 2. AcaFinder workflow.** With provided input, AcaFinder proceeds to two Aca screening
179 routes: (1) HMM approach to find Aca homologous proteins (purple box) and (ii) GBA (guilt-by-
180 association) approach to find acr-aca operons (orange box), which must contain at least one Acr
181 homolog and one HTH-containing gene (Aca candidate). Complete CRISPR-Cas along with
182 STSs (blue box) and prophage regions (green box) are also searched from input genomic
183 sequences (described in main text). All generated results are combined and provided to the
184 users as tables and graphs.

185 186 **AcaFinder workflow**

187 Given a nucleotide sequence fna file, AcaFinder will call gene prediction tool Prodigal (33) to
188 generate a protein sequence faa file, and an associated gff (General Feature Format) file. In
189 addition, AcaFinder also allows users to submit their own annotation files (fna, faa, and gff files,
190 pink box, **Fig. 2**). After initial input, the workflow splits into two routes.

191 One route (purple box, **Fig. 2**) uses hmmsearch with the built-in AcaHMMdb as query and user
192 input faa file as database. Any HMM hits that passed set filters (HMM coverage > 60% & Evalue
193 < 1e-10) will be extracted as Aca-like proteins, which will be provided as outputs to the user.
194 The other route uses the GBA approach to find HTH-containing Aca candidates in the Acr gene
195 neighborhood (orange box, **Fig. 2**). Compared to the simple search for HTH-containing proteins,
196 this GBA approach considers the co-occurrence of acr and aca genes in the same genetic
197 operons. Thus, it adds a strong constraint in the identification of highly confident novel Aca
198 proteins. There are 3 consecutive steps:

199 Step 1: The input faa file will be used as query to DIAMOND blastp against the built-in dbAcr for
200 Acr homologs (coverage > 60%, Evalue < 1e-3). Once Acr homologs are determined, the input
201 fna file will be scanned for short-gene-operons (SGOs) by the following criteria: (i) At least one
202 acr homologous genes in the SGO; (ii) All genes on the same strand; (iii) All intergenic
203 distances < 250bp; and (iv) All genes have protein sequence length < 200aa (except that when
204

207 the Acr homologs are homologous to known Acrs that are longer than 200aa, e.g., AcrIIIB1
208 [249aa], AcrVA2 [322aa].
209
210 Step 2: Each SGO will be scanned for HTH-containing genes using hmmscan (HMM coverage
211 > 40%, Evalue < 1e-3) with the HTH-HMMdb or its subset HTH-HMM_strictdb as database.
212
213 Step 3: HTH-containing proteins (< 150aa) from SGOs will be output as candidate Acas. All
214 non-Aca and non-Acr genes in SGOs will be further annotated with Pfam database using
215 PfamScan. Information regarding each SGO, the contained Acr homolog, and candidate Acas
216 will be provided to the user.
217
218 In addition to the identification of Acas and *acr-aca* operons, AcaFinder will also scan the input
219 fna file for prophages, CRISPR-Cas systems, and self-targeting spacers (STSs). Bacterial
220 genomes carrying CRISPR-Cas systems and STSs are more likely to encode Acr/Aca proteins
221 to prevent genome self-destruction (34). Prokaryotic genome input will be scanned for complete
222 CRISPR-Cas systems (presence of both CRISPR arrays and Cas operons) with
223 CRISPRCasTyper (19). With the presence of complete CRISPR-Cas, blastn will be then
224 performed with all associated CRISPR spacers as query and user's input fna file as database
225 (**Fig. 2**) for STSs. CRISPR-Cas and STSs information will be also provided to users
226 independently, together with *acr-aca* operons from the previous step.
227
228 Acr/Aca genes are more likely to be found in prophages (35). In order to integrate prophage
229 information, VIBRANT (20) will be used in the search for prophage regions within user's
230 prokaryotic genomic input. All discovered prophage regions will be provided to the user as a
231 table, as well as VIBRANT's original outputs. *acr-aca* operons or Aca-like proteins that reside in
232 any of the identified prophages will be indicated.
233
234 AcaFinder does not report a prediction score. However, the CRISPR-Cas, STSs, and prophage
235 output from AcaFinder will allow users to further filter the predicted Acas. We recommend high-
236 quality Acas fit the following categories: (i) predicted by AcaHMMdb, i.e., high sequence
237 homology to the 12 known Acas; (ii) located within a predicted prophage region; (iii) from
238 genomes that contain complete CRISPR-Cas systems and STSs.
239
240

241 **Results**

242

243 **Performance evaluation of AcaFinder**

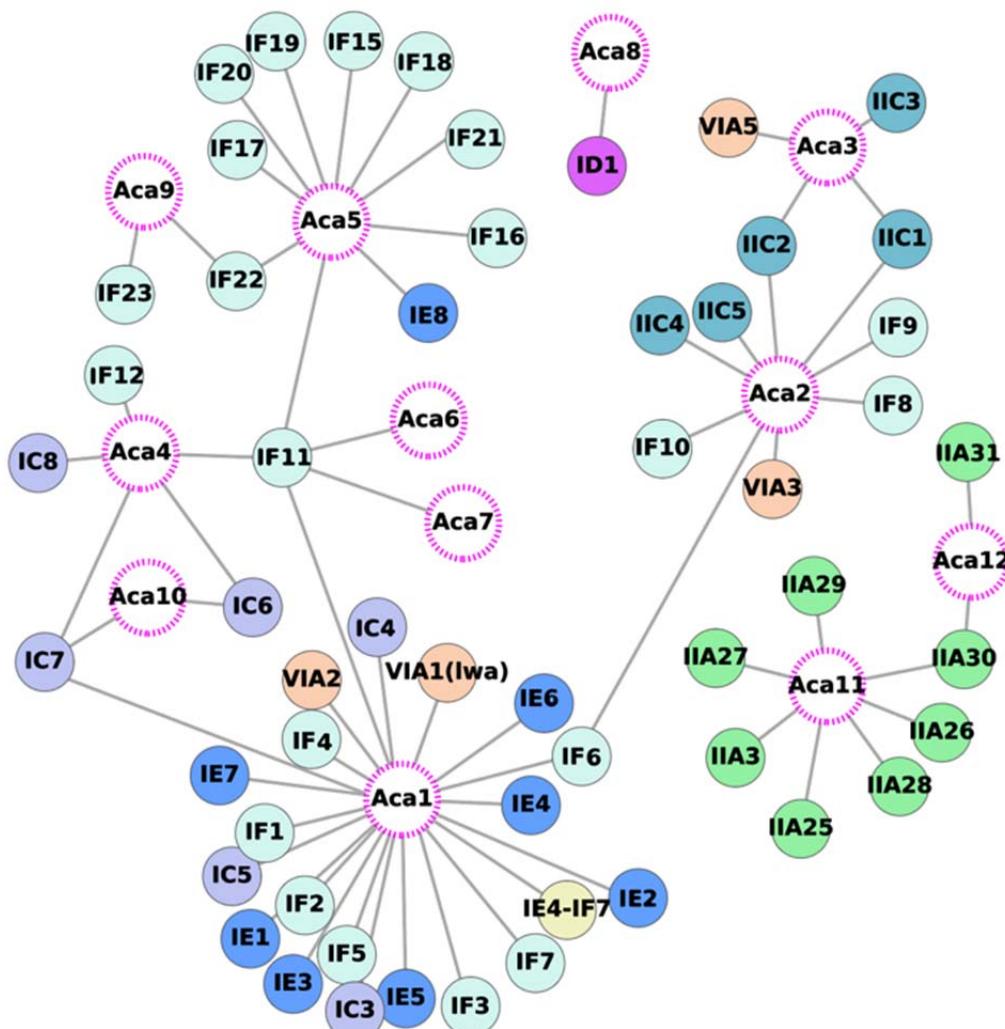
244

245 AcaFinder is the first computational tool for automated Aca identification. The AcaHMM
246 homology approach (**Fig. 2**) can identify Aca-like proteins sharing significant homology to the 12
247 known Acas. The GBA approach is more sensitive as it will identify all short HTH-containing
248 proteins that reside in the same genetic operons with homologs of published Acrs. To evaluate
249 the performance of AcaFinder, we have run it on the source genomes of the 12 known Acas.
250 For each of the 12 known Acas, the genomic sequences (fna file) as well as protein annotations
251 (faa, gff files) were downloaded from NCBI and used as input to run the AcaFinder.
252

253 Using the GBA approach (yellow box, **Fig. 2**), all 12 known Acas can be identified (**Table 1**),
254 giving the approach a recall of 100%. With the HMM approach (purple box, **Fig. 2**), 10/12
255 (83.3%) known Acas were identified using the default parameter setting (HMM coverage > 60%
256 & Evalue < 1e-10), which is designed to reduce false positives. As expected, when more

257 relaxed thresholds were used (coverage > 30% & Evalue < 1e-3), the two missed known Acas
258 (Aca6 and Aca9) were indeed found back (**Table S3**).
259

260 **Table 1: Test AcaFinder on genomes encoding the 12 known Acas**


Genome ID	Known Aca	Length (aa)	GenBank ID	Found by AcaFinder	Total Aca candidates found*	Found in leave one out**
GCF_000904095.1	Aca1	79	YP_007392343	Yes	1+4	N+N
GCF_000381965.1	Aca2	125	WP_019933869.1	Yes	1+4	N+N
GCF_001066195.1	Aca3	70	WP_049360086.1	Yes	3+2	N+Y
GCA_002194095.1	Aca4	67	OWI97558.1	Yes	8+5	N+N
GCF_000754765.1	Aca5	60	WP_039494319.1	Yes	4+2	N+N
GCF_000518385.1	Aca6	65	WP_035450933.1	Yes	2+5	N+N
GCF_001662305.1	Aca7	68	WP_064702654.1	Yes	3+1	N+Y
GCF_001725895.1	Aca8	55	YP_009272953.1	Yes	2+3	N+Y
GCF_004135975.1	Aca9	69	WP_129352084.1	Yes	2+1	N+Y
GCA_004745455.1	Aca10	65	TGC30851.1	Yes	3+4	Y+Y
GCF_000314775.2	Aca11	63	WP_009730540.1	Yes	12+7	N+Y
GCF_000526075.1	Aca12	140	WP_231458942.1	Yes	18+16	Y+Y

261 * two numbers: 1st is the Aca count from AcaHMM search, and 2nd is from GBA search. Details
262 are provided in Table S3; **two values: 1s is to indicate if the known Aca was identified from
263 AcaHMM search (Y=Yes, N=No), and 2nd is from GBA search.

264
265 In addition to recall (the true positives divided by all positives [12]), precision is also often
266 reported in bioinformatics tool evaluation. Precision is calculated as the true positives divided by
267 all predictions (true positives + false positives). However, the 12 known Acas only represent a
268 very tiny fraction of all the possible Acas that exist (36). Thus, it is not rational and acceptable to
269 treat all other predictions as false positives, i.e., those candidate Acas from AcaHMMdb search
270 and *acr-aca* operons from GBA search in the same genomes as the known Acas. In fact, it is
271 observed that one genome can encode multiple types of Acrs (37-39) and Acas (16, 40, 41). In
272 AcaFinder search results (**Table 1** and **Table S3**), all the source genomes encoding the 12
273 known Acas had additional Aca candidates identified. Currently, we do not know whether they
274 are real Acas or false positives, except that they have significant sequence similarity with known
275 Acas (E-value < 1e-10 & coverage > 60%) or are present in short gene operons (SGOs) that
276 also encode Acr homologs. However, in most cases, the GBA gives a smaller number of Aca
277 candidates, which may be more confident predictions given the strict SGO constraint (**Table 1**).
278

279 Although there are no other similar tools that can be compared, we sought to evaluate the
280 performance of AcaFinder's GBA approach using leave-one-out (LOO) experiments of the 12
281 known Acas. The idea of LOO is that we will remove one Aca in each experiment, more
282 specifically, by removing all published Acrs that are known to co-localize with that Aca from the
283 dbAcr. The co-localizations of Acr and Aca (**Fig. 3** and **Table S4**) were manually curated from
284 literature. For example, Aca2 has been shown to co-localize with AcrlF6, AcrlF8, AcrlF9,
285 AcrlF10, AcrlIC1, AcrlIC2, AcrlIC4, and AcrlIC5 in the literature (42-45). However, the known
286 co-localizations are obviously incomplete, and numerous unknown *acr-aca* co-localizations
287 remain to be characterized. In the LOO experiment of Aca2, we removed all known Acr
288 associates and then ran through the GBA route of the AcaFinder to see if Aca2 can be identified
289 in the source genome of Acas.

290

Fig. 3. Co-localizations of known Acrs and Acas curated from literature. The 12 published Aca families are shown in open circles with pink dotted edges; Acr families are shown in filled circles colored based on type. The detailed data can be found in **Table S4**.

294

The result (**Table 1**) shows that 7/12 known Acas were found in the LOO experiments (recall=58.3%), while Aca1, 2, 4, 5, 6 could not be found after removing Acrs known to co-localize with them. Note that the GBA approach has the assumption that aca genes of one family can be recruited to the gene neighborhood of different acr gene families, and *vice versa*. Therefore, if we remove all Acrs known to co-localize with an Aca, we will not find the Aca back, unless some other Acrs in dbAcr also co-localize with the Aca but such co-localizations have not been reported yet (i.e., not in **Fig. 3** and **Table S4**). Therefore, the reason that Acas1, 2, 4, 5, 6 failed to be found is because after removing Acrs known to co-localize with these Acas, no other Acrs in dbAcr can find them back. However, new Acrs are constantly being characterized. It is likely that continuously adding new Acrs in dbAcr will reveal more *acr-aca* co-localizations and improve the recall of AcaFinder in LOO experiments.

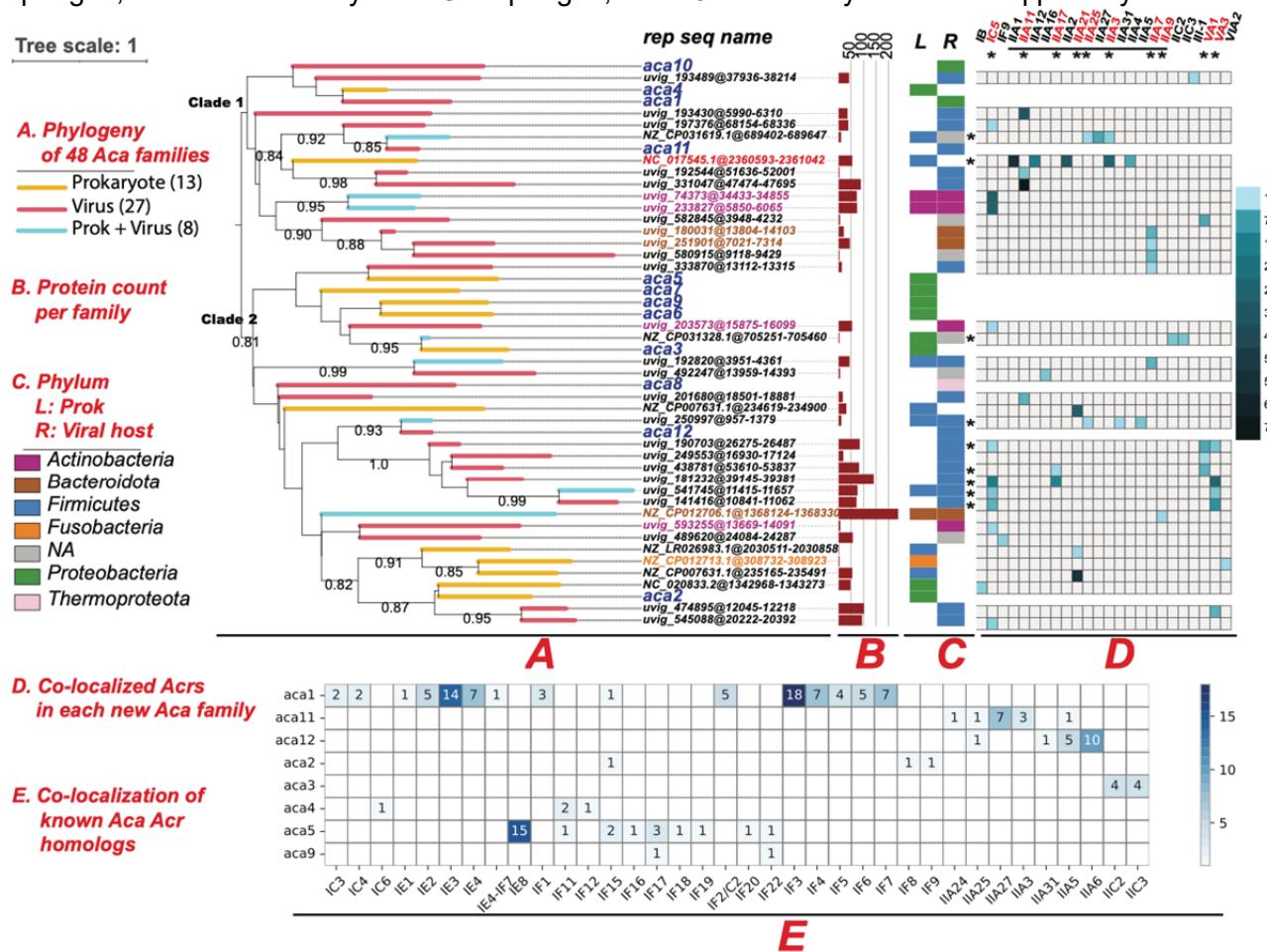
306

307 We have also run the LOO experiments to evaluate AcaFinder's AcaHMM approach as the
308 baseline. For each Aca, we removed its HMM from the AcaHMMdb and ran AcaFinder to see if
309 the Aca can be found by the remaining 11 Aca HMMs. As expected, only 2 Acas were found in

310 the LOO experiments (**Table 1**): Aca10 was identified by Aca1 HMM, and Aca12 by Aca11
311 HMM. Obviously, the AcaHMM approach is not good for finding novel Aca families, as between
312 different Aca families there are very low sequence similarities.
313

314 Utilities of AcaFinder webserver and standalone program

315
316 AcaFinder is provided as a standalone program and a webserver. Genomic sequences in fna,
317 faa, and gff files are accepted as input. Only providing a fna file is also allowed and
318 recommended, in which case, gff and faa files will be generated by running Prodigal (33).
319 Genomic data of archaea, bacteria, and viruses are all allowed. By providing the Virus flag (–
320 Virus), viral data will not run CCtyper for CRISPR-Cas scanning (STSs search also will not run),
321 nor VIBRANT for prophage prediction.
322


323 The AcaFinder website is powered by SQLite + Django + JavaScript + Apache + HTML. A help
324 page is available to provide users with step-by-step instructions on the usage of the webserver,
325 along with the interpretation of the outputs. Users can submit FASTA sequences of their
326 genomes (**Fig. S1A**). A prokaryotic genome on average takes 10 min of runtime, whereas a
327 virus genome/contig takes 1 min. Users can skip prophage and CRISPR-Cas searches, and the
328 job predicting Acas can finish in 1-2 min on average. The result page has tables showing
329 information on predicted Aca proteins and associated genes within the same *acr-aca* operons of
330 the GBA approach, and the Aca-like proteins from the AcaHMM approach (**Fig. S1B**). Prophage
331 and complete CRISPR-Cas system information will be provided if identified, also their
332 relationship with the predicted Acas and *acr-aca* operons will be indicated (**Fig. S1C**). Graphical
333 representations will be generated if the input is prokaryotic genome, showing where the aca
334 genes/operons are located on the input genome/contig(s), and how far they are from prophage
335 regions and CRISPR-Cas systems. If any STSs were found, a link will connect the CRISPR
336 spacer and the target region on the genome/contig(s) (**Fig. S1D**).
337

338 Genome mining for new Aca families

339
340 A total of 15,201 complete bacterial genome, 961 archaea genomes of the RefSeq database
341 (46) and 142,809 viral contigs of the human gut phage database (GPD) (47) were scanned with
342 AcaFinder using the GBA approach. We used the “–HTH-HMM_strictdb” flag for potential Aca
343 proteins/operons. To further increase the confidence level of predictions, we limited the
344 predicted Acas from RefSeq to genomes with complete CRISPR-Cas systems and within
345 prophage regions. To cluster predicted Acas into potential families, Cd-Hit (29) was used with a
346 40% sequence identity threshold, on the basis of proteins above this threshold are more likely to
347 share structure and function similarities (14). Cd-Hit clusters/families with a size ≥ 3 were
348 selected to filter out singletons and smaller size Aca families.
349

350 After all these processes a total of 1,422 Aca families were found (**Table S5** and **Fig. S2**). We
351 further selected Aca families that have at least one Aca member located next to homologs of the
352 98 experimentally characterized Acr proteins. Only 36 Aca families remained but were
353 considered to have a very high probability being true Aca families. Combining the representative
354 sequences of the 36 families and the 12 published Acas, a phylogenetic tree was constructed
355 using the multiple sequence alignment the 48 protein sequences (48, 49) (**Fig. 4A**). These
356 proteins form two major clades, and the 12 published Acas are spread across different clades of
357 the constructed tree (**Fig. 4A**, and **Fig. S2** for a larger tree with all 1,422 Aca families). This
358 indicates that the 12 published Aca proteins are of rather distant families, and also strengthens
359 the point that a large sequence diversity of Acas in nature awaits to be discovered. Some of the
360 new Aca families have large size (e.g., over 200 members, **Fig. 4B**), and the average family

361 size is 49. Among the 48 families, 8 contain members from both RefSeq prokaryotes and GPD
 362 phages, 27 are exclusively from GPD phages, and 13 exclusively from RefSeq prokaryotes.

363 **Fig. 4. Phylogenetic and taxonomic distribution of 48 Aca families.** The 36 new Aca family
 364 representatives plus 12 published Aca protein sequences were aligned with MAFFT. The
 365 phylogeny was built using FastTree and then visualized in the iTOL web server (50). (A) Branch
 366 colors represent Prokaryotic (yellow), Viral (red), or Prokaryotic + Viral (blue) protein content of
 367 each Aca family. Bootstrap values > 0.8 are shown beside the nodes; seq ID of each node are
 368 located to the right of the tree, with 12 published Aca highlighted in blue, and the predicted Acas
 369 printed in "Contig"@"genomic location" format (e.g., NZ_LR026983.1@2030511-2030858). (B)
 370 Protein counts of each family are presented as barplot (dark red); (C) Phyla of Aca proteins are
 371 displayed in two stacked bars, with one representing prokaryotic proteins (Left), the other viral
 372 proteins (Right). For Viral proteins, the hosts' phyla are displayed. The legend of the stacked
 373 barplot resides at the left most of the fig.; (D) The heatmap displays the member counts of the
 374 36 Aca families that are co-localized with homologs of the 89 known Acr families (columns) in
 375 genomic operons. Rows and columns are labeled with ** if they have multiple filled cells,
 376 meaning that Aca family is co-localized with more than one Acr families, and vice versa. (E) The
 377 heatmap shows the co-localization of protein homolog counts of known Aca families and
 378 homologs of the 89 known Acr families in genomic operons of RefSeq and GPD genomes.

379
 380 We have examined the taxonomic origin of the member proteins of each Aca family at the
 381 phylum level. The phylum of member proteins of RefSeq prokaryotes was plotted (L or left of
 382 **Fig. 4C**). However, most viral contigs of GPD were not assigned to a viral taxonomy group.

383 Hence, we plotted the phylum of their hosts (R or right stripe of **Fig. 4C**), which were determined
384 in the original paper of GPD (47). The 12 known Acas are from two phyla: Proteobacteria and
385 Firmicutes (except Aca8 from viruses of Thermoproteota archaea), while the 36 new Aca
386 families are distributed in three additional bacterial phyla and their phages (Bacteroidota,
387 Actinobacteria, Fusobacteria) known to be important human gut bacteria. Note that the 4 Aca
388 families of Actinobacteria are all co-localized with AcrlC5, and the 3 Aca families of Bacteroidota
389 origin are all co-localized with AcrlIA7 and IIA9 (**Fig. 4D**).
390

391 We have studied the co-localizations of Acas and Acrs in the same genetic operons. First, **Fig.**
392 **3** depicts all the known *acr-aca* co-localizations extracted from literature (**Table S4**), showing
393 that 9 (75%) of 12 known Aca families are co-localized with multiple known Acr families. Aca1,
394 Aca2, Aca5, Aca11 have 22, 9, 10, and 7 co-localized Acr families, respectively. Some Acas are
395 even co-localized with different Acr types (e.g., Aca1 with Acr type IE, IF, IC, and VIA). Similarly,
396 5 Acr families are co-localized with multiple Acas. For example, AcrlC7 is co-localized with Aca1,
397 Aca4, and Aca10, and AcrlF11 is with Aca1 and Acas 4-7 (**Fig. 3**). Although there are many
398 Acrs co-localizing with just one Aca, only three Acas co-localize with exclusively one Acr (Aca6-
399 AcrlF11, Aca7-AcrlF11, Aca8-AcrlD1).
400

401 In the attempt to expand these observations, a homology search against the RefSeq and GPD
402 genomes with known Aca and Acr proteins as query was performed using blastp (coverage >
403 80%, Evalue < 1e-10). Only Acr and Aca homologs present in the same SGOs were considered
404 as co-localizations, and their instances were recorded (**Fig. 4E, Table S6**). Most of the co-
405 localizations are already known (**Fig. 3**) but there are a few new ones (e.g., Aca1-AcrlF15,
406 Aca2-AcrlF15, Aca9-AcrlF17, Aca11-AcrlIA24, Aca12-AcrlIA5, Aca12-AcrlIA6, **Fig. 4E**). Data in
407 **Fig. 3** and **Fig. 4E** suggest that it is very common in evolution that the same aca genes
408 recombine with different acr genes and *vice versa* to form diverse *acr-aca* operon combinations.
409

410 We further examined the co-localizations of the 36 new Acas and known Acr homologs. We
411 found that 9 (25%) of the 36 new Aca families are co-localized with multiple Acr families, which
412 is different from known *acr-aca* co-localizations (**Fig. 3**). This is probably due to our stringent
413 filtering process for the 36 new Aca families. The new Aca family “NC_017545.1@2360593-
414 2361042” of Firmicutes has the most types of co-localized Acrs
415 (AcrlIA1+AcrlIA12+AcrlIA2+AcrlIA3+AcrlIA4, **Fig. 4D**). This suggests this Aca family has
416 evolved to regulate various subtype IIA Acr subfamilies in Firmicutes. We also found that 10
417 Acrs are co-localized with multiple new Aca families, compared to only 5 Acrs co-localizing with
418 multiple known Acas (**Fig. 3**). AcrlC5 is known to co-localize with Aca1 (**Fig. 3**) but co-localize
419 with 10 new Aca families from distant taxonomic groups (**Fig. 4D**). Similarly, AcrlIA11 co-
420 localize with 4, AcrlIA7 with 5, AcrVA1 with 4, AcrVA3 with 4 new Aca families. These diverse
421 Aca family co-localizations indicate these Acrs flexibility in accepting different Aca families as
422 transcriptional regulators.
423

424 Discussion

425
426 Anti-CRISPRs (Acrs) have been under extensive studies since the discovery in 2013. These
427 studies include various biotechnical and biomedical applications of Acrs, e.g., in genome editing,
428 with very promising success (4, 51). Compared to Acrs, Acas are under-researched, although
429 as anti-anti-CRISPRs, Acas also have great potentials in the development of genome editing
430 biotechnology. In addition, due to Aca’s association with Acrs, the study of Acas can assist the
431 continuous discovery of novel Acrs (5, 8).
432

433 AcaFinder is the first automated Aca prediction tool. A common practice in the discovery of the
434 12 published Acas is to search the Acr gene neighborhood for Pfam HTH-contain proteins (i.e.,
435 the GBA approach). AcaFinder implements this GBA approach and an Aca HMM approach (**Fig.**
436 **2**) as an automated computer program and webserver, and thus will assist anti-CRISPR
437 researchers to perform more rapid genome screening for Acas.
438

439 Because there are no other similar tools that we can compare AcaFinder with, to evaluate its
440 performance, we have conducted LOO (leave one out) experiments using the 12 known Acas.
441 The recall of the GBA approach in LOO experiments was 58.3%. This low recall is not surprising
442 because of the way LOO worked: removing all Acrs associated/co-localized with an Aca from
443 dbAcr and using other Acrs to find the Aca back. GBA requires the search for Acr homologs as
444 the first step. If the remaining Acrs in dbAcr do not have homologs in the gene neighborhood of
445 the tested Aca, then the Aca will not be found. Therefore, the GBA approach relies on the
446 assumption that the same Acr family can recombine with different Aca families to form *acr-aca*
447 operons in different genomes, and *vice versa*. This assumption is supported by the observations
448 made in **Fig. 3**, **Fig. 4D**, and **Fig. 4E**, which only represent a small fraction of possible *acr-aca*
449 associations in nature. Future characterization of more Acrs, Acas, and their co-localizations to
450 form genetic operons will undoubtedly reveal a much higher diversity of Acr and Aca
451 combinations and help improve the power of the GBA approach in AcaFinder.
452

453 AcaFinder has the following limitations: 1) The GBA approach relies on Acr references to locate
454 short-gene operons, thus certain Acas that do not have Acrs in proximity will be missed, and
455 that Acas predicted may be biased towards the Acrs used for reference; 2) The Aca HMM
456 approach relies on HMMs built from sequence alignments of known Aca homologs, thus novel
457 Acas that share little to none sequence similarity to any known Acas will likely be missed. The
458 drawbacks mentioned are due to the workflow design, which was intended to minimize false
459 positives. With the continuous characterization of novel Acrs and Acas, we plan to update
460 AcaFinder once a year to update the AcaHMMdb and dbAcr.
461
462

463 **Acknowledgements**

464
465 We thank the lab members for helpful discussions. This work was partially completed utilizing
466 the Holland Computing Center of the University of Nebraska–Lincoln, which receives support
467 from the Nebraska Research Initiative.
468

469 **Funding**

470
471 This work has been supported by the National Institutes of Health (NIH) awards [R21AI171952]
472 and [R01GM140370], the United States Department of Agriculture (USDA) award (58-8042-7-
473 089), and the Nebraska Tobacco Settlement Biomedical Research Enhancement Funds as part
474 of a start-up grant of UNL [2019-YIN] to Y.Y.
475

476 **Supplemental materials**

477
478 Table S1: Homolog sequence alignments trimming for HMM building of 12 known Acas
479 Table S2: PfamScan top hit of 12 known Acas
480 Table S3: AcaFinder performance evaluation on the genomes of 12 known Acas
481 Table S4: Aca associated Acrs from literature
482 Table S5: 1422 predicted high quality Aca families (representatives)

483 Table S6: Homologs of known Acrs and Acas co-localizations

484

485 Figure S1: Screenshots of AcaFinder job submission page and result page

486 Figure S2: Phylogeny of 1422 predicted Aca representative sequences + 12 known Aca

487 sequences

488

489 **References**

490

- 491 1. Stern A, Sorek R. 2011. The phage-host arms race: shaping the evolution of microbes. BioEssays : news and reviews in molecular, cellular and developmental biology 33:43-51.
- 492 2. Bernheim A, Sorek R. 2020. The pan-immune system of bacteria: antiviral defence as a community resource. Nature Reviews Microbiology 18:113-119.
- 493 3. Samson JE, Magadán AH, Sabri M, Moineau S. 2013. Revenge of the phages: defeating bacterial defences. Nature Reviews Microbiology 11:675-687.
- 494 4. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. 2020. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nature Methods 17:471-479.
- 495 5. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429-432.
- 496 6. Pawluk A, Bondy-Denomy J, Cheung Vivian HW, Maxwell Karen L, Davidson Alan R, Hendrix R. A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of *Pseudomonas aeruginosa*. mBio 5:e00896-14.
- 497 7. Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP, Bondy-Denomy J. 2020. Author Correction: Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer. Nature Microbiology 5:872-872.
- 498 8. Stanley SY, Borges AL, Chen K-H, Swaney DL, Krogan NJ, Bondy-Denomy J, Davidson AR. 2019. Anti-CRISPR-Associated Proteins Are Crucial Repressors of Anti-CRISPR Transcription. Cell 178:1452-1464.e13.
- 499 9. Birkholz N, Fagerlund RD, Smith LM, Jackson SA, Fineran PC. 2019. The autoregulator Aca2 mediates anti-CRISPR repression. Nucleic acids research 47:9658-9665.
- 500 10. Liu Y, Zhang L, Guo M, Chen L, Wu B, Huang H. 2021. Structural basis for anti-CRISPR repression mediated by bacterial operon proteins Aca1 and Aca2. Journal of Biological Chemistry 297:101357.
- 501 11. Shehreen S, Birkholz N, Fineran PC, Brown CM. 2022. Widespread repression of anti-CRISPR production by anti-CRISPR-associated proteins. Nucleic Acids Res doi:10.1093/nar/gkac674.
- 502 12. Yi H, Huang L, Yang B, Gomez J, Zhang H, Yin Y. 2020. AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses. Nucleic Acids Research 48:W358-W365.
- 503 13. Wang J, Dai W, Li J, Xie R, Dunstan RA, Stubenrauch C, Zhang Y, Lithgow T. 2020. PaCRISPR: a server for predicting and visualizing anti-CRISPR proteins. Nucleic Acids Research 48:W348-W357.
- 504 14. Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA, Minhas Fayyaz ul Amir A. 2020. Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Research 48:4698-4708.
- 505 15. Huang L, Yang B, Yi H, Asif A, Wang J, Lithgow T, Zhang H, Minhas Fayyaz ul Amir A, Yin Y. 2021. AcrDB: a database of anti-CRISPR operons in prokaryotes and viruses. Nucleic Acids Research 49:D622-D629.
- 506 16. Gussow AB, Park AE, Borges AL, Shmakov SA, Makarova KS, Wolf YI, Bondy-Denomy J, Koonin EV. 2020. Machine-learning approach expands the repertoire of anti-CRISPR protein families. Nature Communications 11:3784.

507

508

509

532 17. Wang J, Dai W, Li J, Li Q, Xie R, Zhang Y, Stubenrauch C, Lithgow T. 2020. AcrHub: an
533 integrative hub for investigating, predicting and mapping anti-CRISPR proteins. Nucleic
534 Acids Research 49:D630-D638.

535 18. Dong C, Hao G-F, Hua H-L, Liu S, Labena AA, Chai G, Huang J, Rao N, Guo F-B. 2017.
536 Anti-CRISPRdb: a comprehensive online resource for anti-CRISPR proteins. Nucleic Acids
537 Research 46:D393-D398.

538 19. Russel JaP-RRaM-MDaSSAaSSJ. 2020. CRISPRCasTyper: Automated Identification,
539 Annotation, and Classification of CRISPR-Cas Loci. The CRISPR Journal 3:462-469.

540 20. Kieft K, Zhou Z, Anantharaman K. 2020. VIBRANT: automated recovery, annotation and
541 curation of microbial viruses, and evaluation of viral community function from genomic
542 sequences. Microbiome 8:90.

543 21. Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA. 2018. Systematic discovery of
544 natural CRISPR-Cas12a inhibitors. Science 362:236-239.

545 22. Jiang F, Doudna JA. 2015. The structural biology of CRISPR-Cas systems. Current Opinion
546 in Structural Biology 30:100-111.

547 23. Pruitt KD, Tatusova T, Maglott DR. 2005. NCBI Reference Sequence (RefSeq): a curated
548 non-redundant sequence database of genomes, transcripts and proteins. Nucleic acids
549 research 33:D501-D504.

550 24. Roux S, Páez-Espino D, Chen IMA, Palaniappan K, Ratner A, Chu K, Reddy TBK, Nayfach
551 S, Schulz F, Call L, Neches RY, Woyke T, Ivanova NN, Eloé-Fadrosh EA, Kyrpides NC.
552 2021. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating
553 genomes of uncultivated viruses. Nucleic Acids Research 49:D764-D775.

554 25. Unterer M, Khan Mirzaei M, Deng L. 2021. Gut Phage Database: phage mining in the cave
555 of wonders. Signal Transduction and Targeted Therapy 6:193.

556 26. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova
557 E, Parks DH, Hugenholtz P, Segata N, Kyrpides NC, Finn RD. 2021. A unified catalog of
558 204,938 reference genomes from the human gut microbiome. Nature Biotechnology 39:105-
559 114.

560 27. UniProt C. 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res
561 49:D480-D489.

562 28. Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X,
563 Sontheimer EJ, Wiedenheft B. 2018. A Unified Resource for Tracking Anti-CRISPR Names.
564 The CRISPR Journal 1:304-305.

565 29. Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-
566 generation sequencing data. Bioinformatics (Oxford, England) 28:3150-3152.

567 30. Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and
568 space complexity. BMC Bioinformatics 5:113.

569 31. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated
570 alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972-1973.

571 32. Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity
572 searching. Nucleic Acids Research 39:W29-W37.

573 33. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal:
574 prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics
575 11:119.

576 34. Stanley SY, Maxwell KL. 2018. Phage-Encoded Anti-CRISPR Defenses, *Annual review of*
577 *genetics*.

578 35. Borges AL, Davidson AR, Bondy-Denomy J. 2017. The Discovery, Mechanisms, and
579 Evolutionary Impact of Anti-CRISPRs. Annual Review of Virology 4:37-59.

580 36. Pawluk A, Davidson AR, Maxwell KL. 2018. Anti-CRISPR: discovery, mechanism and
581 function. Nature Reviews Microbiology 16:12-17.

582 37. Pinilla-Redondo R, Shehreen S, Marino ND, Fagerlund RD, Brown CM, Sorensen SJ,
583 Fineran PC, Bondy-Denomy J. 2020. Discovery of multiple anti-CRISPRs highlights anti-
584 defense gene clustering in mobile genetic elements. *Nat Commun* 11:5652.

585 38. Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM, Rauch BJ, Walton RT, Berry JD,
586 Joung JK, Kleinstiver BP, Bondy-Denomy J. 2018. Discovery of widespread type I and type
587 V CRISPR-Cas inhibitors. *Science* 362:240-242.

588 39. Song G, Zhang F, Tian C, Gao X, Zhu X, Fan D, Tian Y. 2022. Discovery of potent and
589 versatile CRISPR-Cas9 inhibitors engineered for chemically controllable genome editing.
590 *Nucleic Acids Res* 50:2836-2853.

591 40. Yin Y, Yang B, Entwistle S. 2019. Bioinformatics Identification of Anti-CRISPR Loci by Using
592 Homology, Guilt-by-Association, and CRISPR Self-Targeting Spacer Approaches.
593 *mSystems* 4:e00455-19.

594 41. Song G, Zhang F, Tian C, Gao X, Zhu X, Fan D, Tian Y. 2022. Discovery of potent and
595 versatile CRISPR-Cas9 inhibitors engineered for chemically controllable genome editing.
596 *Nucleic Acids Research* 50:2836-2853.

597 42. Pawluk A, Staals RHJ, Taylor C, Watson BNJ, Saha S, Fineran PC, Maxwell KL, Davidson
598 AR. 2016. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial
599 species. *Nature Microbiology* 1:16085.

600 43. Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J, Edraki A, Shah M,
601 Sontheimer EJ, Maxwell KL, Davidson AR. 2016. Naturally Occurring Off-Switches for
602 CRISPR-Cas9. *Cell* 167:1829-1838.e9.

603 44. Jooyoung Lee and Aamir Mir and Alireza Edraki and Bianca Garcia and Nadia Amrani and
604 Hannah ELalGaAPaRlaXD. 2018. Potent Cas9 Inhibition in Bacterial and Human Cells by
605 AcrlIC4 and AcrlIC5 Anti-CRISPR Proteins. *mBio* 9:e02321-18.

606 45. Lin P, Qin S, Pu Q, Wang Z, Wu Q, Gao P, Schettler J, Guo K, Li R, Li G, Huang C, Wei Y,
607 Gao GF, Jiang J, Wu M. 2020. CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and
608 Mammalian Cells. *Molecular Cell* 78:850-861.e5.

609 46. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B,
610 Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V,
611 Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D,
612 Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM,
613 Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A,
614 Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu
615 W, Landrum MJ, Kimchi A, et al. 2016. Reference sequence (RefSeq) database at NCBI:
616 current status, taxonomic expansion, and functional annotation. *Nucleic acids research*
617 44:D733-D745.

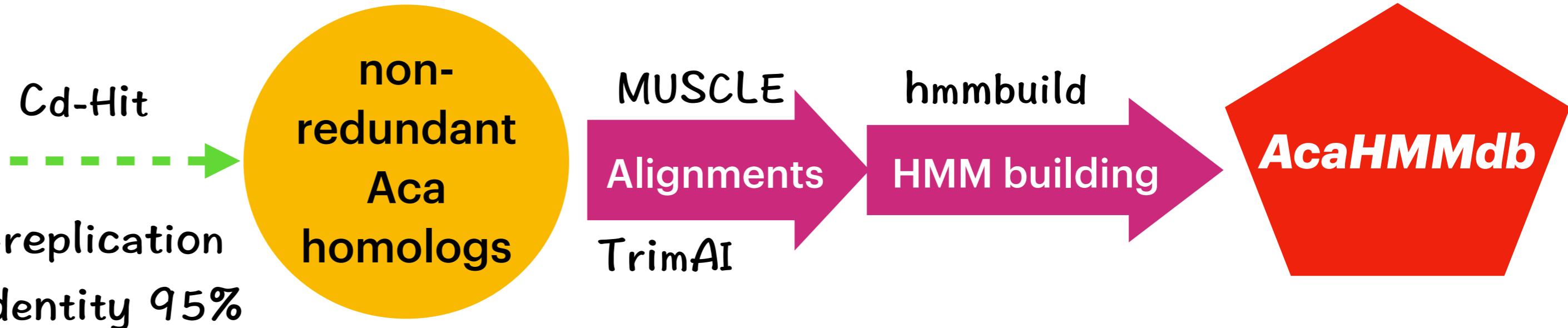
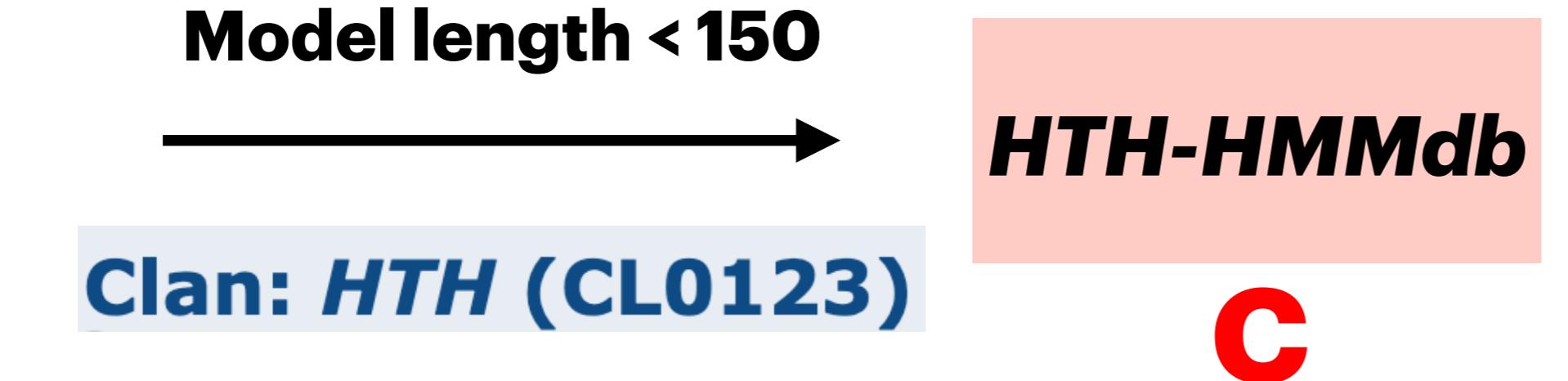
618 47. Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. 2021. Massive
619 expansion of human gut bacteriophage diversity. *Cell* 184:1098-1109.e9.

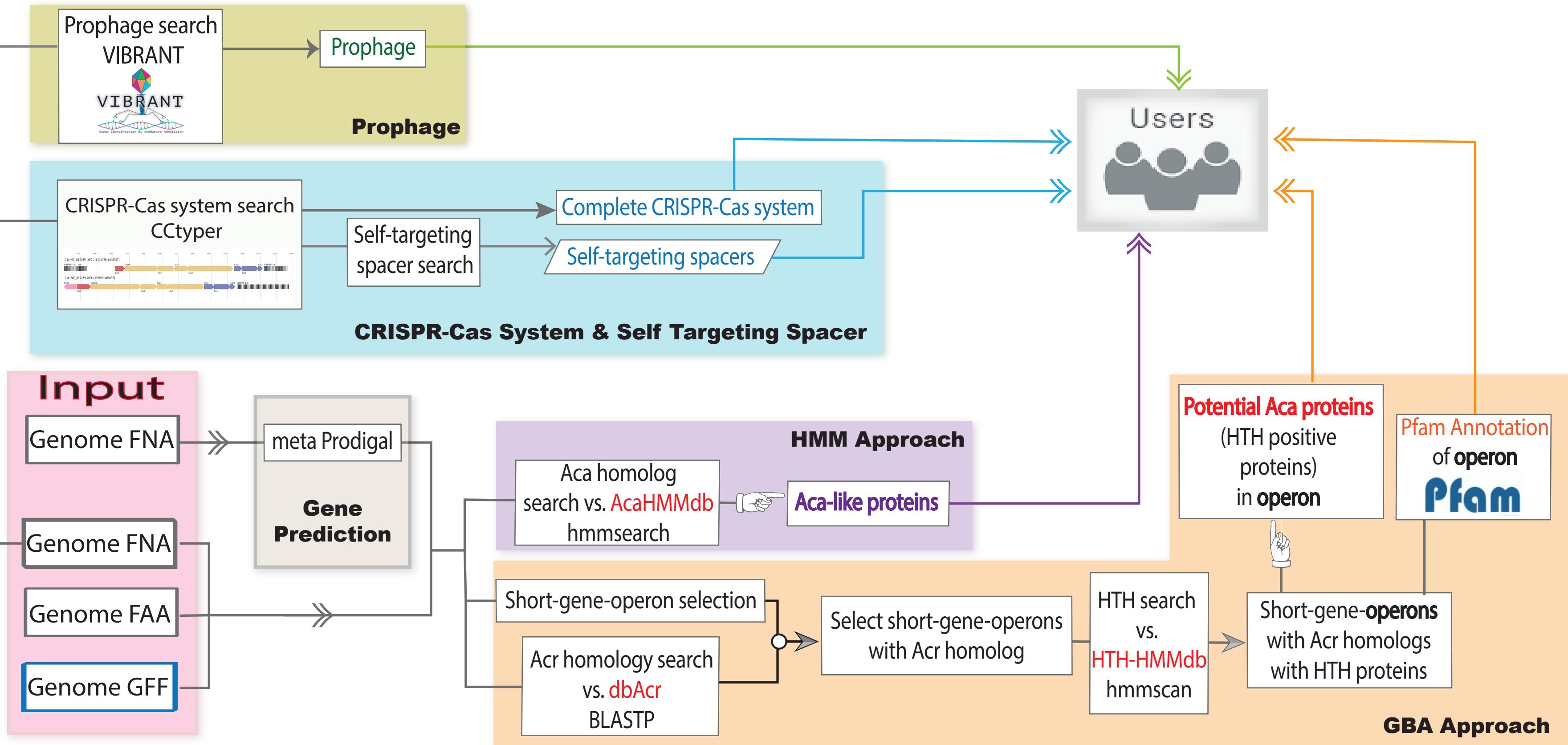
620 48. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees
621 for large alignments. *PloS one* 5:e9490-e9490.

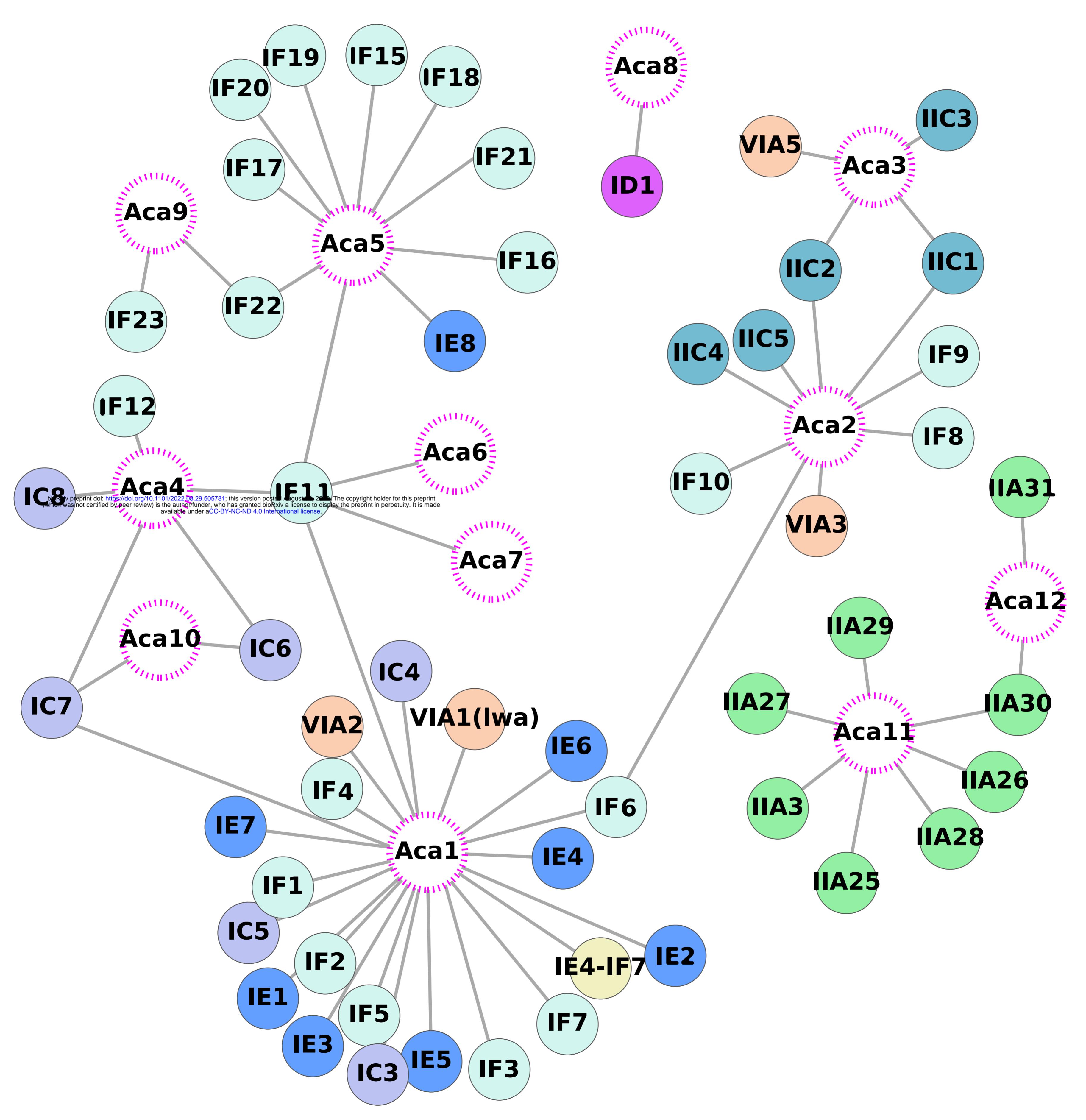
622 49. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
623 improvements in performance and usability. *Molecular biology and evolution* 30:772-780.

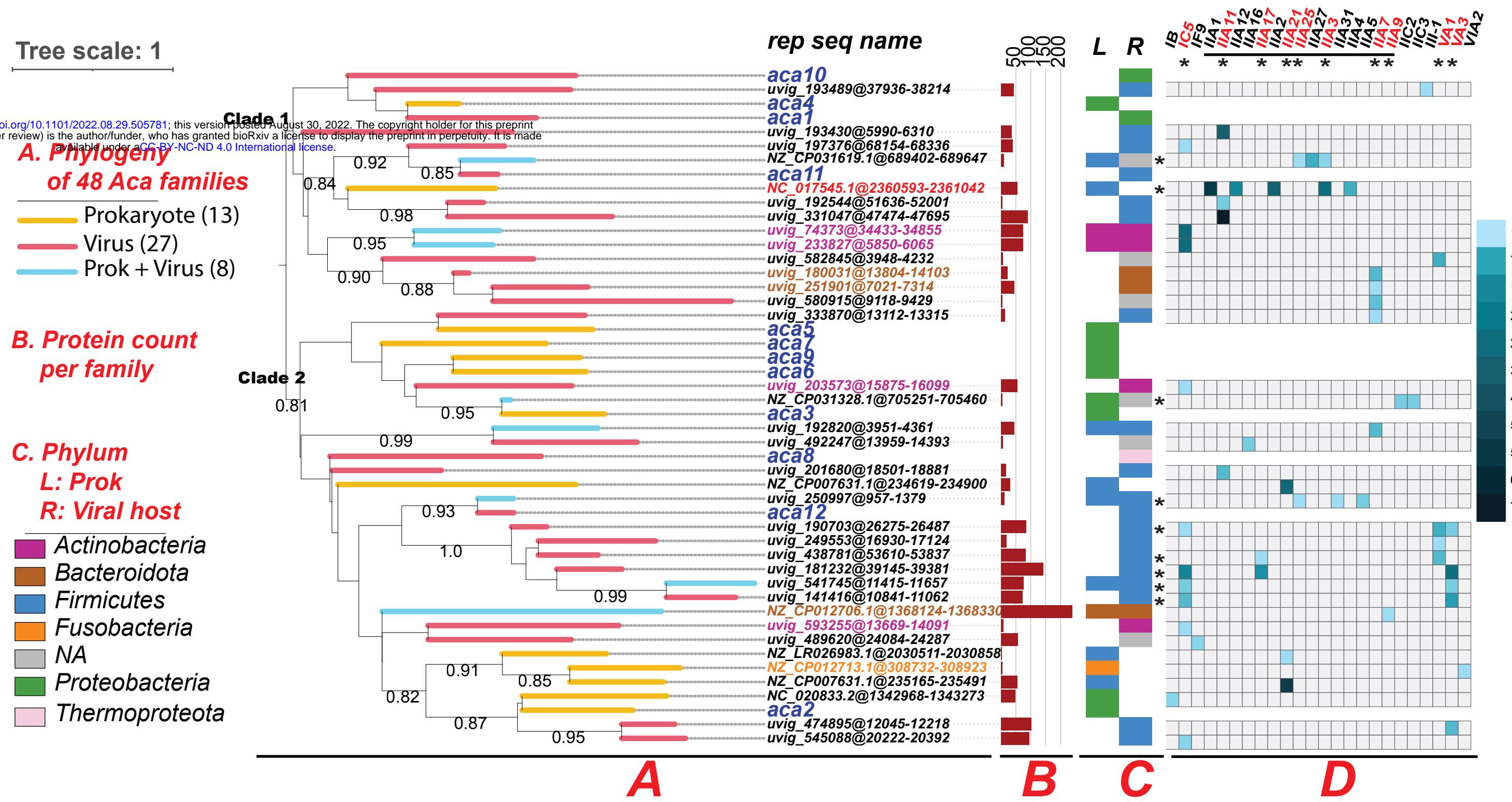
624 50. Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new
625 developments. *Nucleic Acids Res* 47:W256-W259.

626 51. Nakamura M, Srinivasan P, Chavez M, Carter MA, Dominguez AA, La Russa M, Lau MB,
627 Abbott TR, Xu X, Zhao D, Gao Y, Kipniss NH, Smolke CD, Bondy-Denomy J, Qi LS. 2019.
628 Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells.
629 *Nature Communications* 10:194.

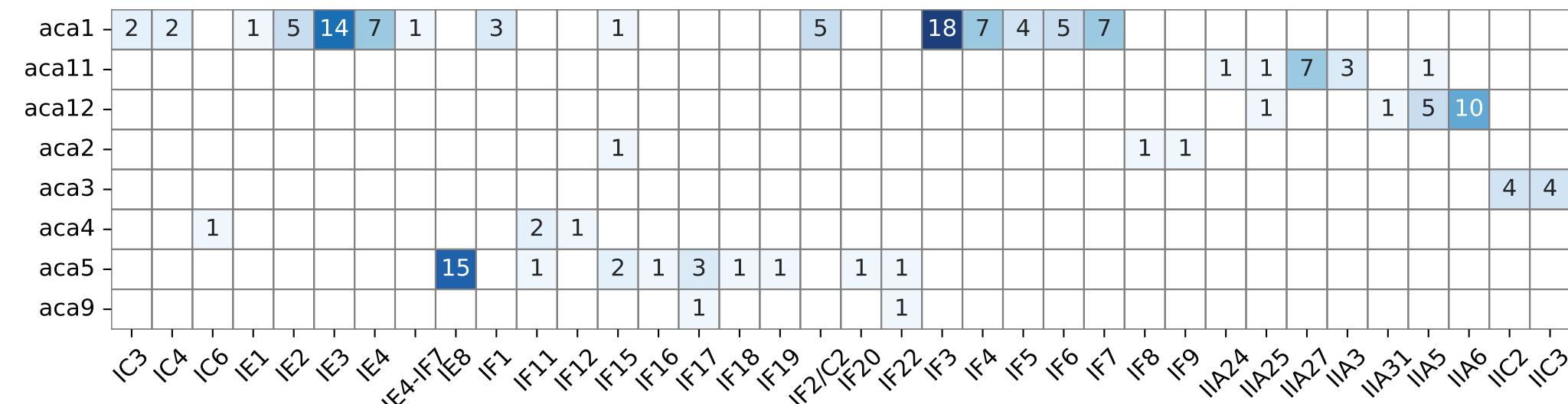


630




Aca1-
Aca12


PSI-BLAST
Coverage > 80%
Evalue < 1e-10

IMGVR
GPD
UniProt



D. Co-localized Acrs in each new Aca family

E. Co-localization of known Aca Acr homologs

E