

1 **Host network-based discovery of critical regulators of innate immunity, virus growth, and**
2 **pathogenesis in influenza virus infection (131 characters)**

3

4 **Authors:**

5 Amie J. Eisfeld^{1‡,*}, Shufang Fan^{1‡}, Hongyu Rao¹, Backiyalakshmi Ammayappan
6 Venkatachalam¹, Danielle Westhoff Smith^{1,13}, Peter J. Halfmann¹, Kevin B. Walters^{1,14}, Sharmila
7 Nair^{2,15}, Larissa B. Thackray², Jacob F. Kocher⁵, Amy C. Sims^{5,16}, Hugh D. Mitchell⁷, Gabriele
8 Neumann¹, Volker Blank^{8,9,10}, Katrina M. Waters⁷, Ralph S. Baric^{5,6}, Michael S. Diamond^{2,3,4},
9 Yoshihiro Kawaoka^{1,11,12,*}

10

11 **Affiliations:**

12 ¹Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, WI, USA

13 ²Departments of Medicine, ³Pathology & Immunology, and ⁴Molecular Microbiology, Washington
14 University School of Medicine, Saint Louis, MO, USA

15 ⁵Departments of Epidemiology, and ⁶Microbiology and Immunology, University of North Carolina
16 at Chapel Hill, North Carolina, USA

17 ⁷Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest
18 National Laboratory (PNNL), Richland, WA, USA

19 ⁸Lady Davis Institute for Medical Research, ⁹Department of Medicine, and ¹⁰Department of
20 Physiology, McGill University, Montreal, Quebec, Canada

21 ¹¹Department of Microbiology and Immunology, Institute of Medical Science, University of
22 Tokyo, Tokyo, Japan

23 ¹²The Research Center for Global Viral Diseases, National Center for Global Health and
24 Medicine Research Institute, Tokyo, Japan.

25 ¹³Current affiliation: Department of Surgery, University of Minnesota, Minneapolis, MN, USA

26 ¹⁴Current affiliation: Integrated Research Facility at Fort Detrick, National Institute of Allergy and
27 Infectious Diseases, National Institutes of Health, Frederick, MD, USA

28 ¹⁵Current affiliation: Department of Microbiology and Immunology, University of Louisville,
29 Louisville, Kentucky, USA

30 ¹⁶Current affiliation: Nuclear, Chemistry, and Biosciences Division; National Security Directorate,
31 PNNL, Richland, WA, USA

32

33 **Other footnotes:**

34 [‡]These authors contributed equally.

35 ^{*}Corresponding authors

36

37 **Address correspondence to**

38 Amie J. Eisfeld, amie.eisfeld@wisc.edu

39 Yoshihiro Kawaoka, yoshihiro.kawaoka@wisc.edu

40 **ABSTRACT**

41 Innate immunity is protective against viruses, but also can facilitate pathological infection
42 responses. Despite intensive research, our understanding of the mechanisms that regulate
43 innate immunity in virus infection remains incomplete. Systems biology-based data-driven
44 modeling approaches hold substantial promise toward discovery of crucial innate immune
45 signaling regulators, yet model-derived predictions are almost completely unexplored. Here, we
46 carried out systematic experimental validation of candidate regulators predicted by a
47 transcriptional association network model of influenza virus-infected cells. We identified dozens
48 of novel innate immune signaling regulators with potent effects on the replication of influenza
49 and other viruses, and importantly, we established the biological relevance of a validated
50 regulator *in vivo*. Collectively, these findings aid in clarifying mechanisms of influenza virus
51 pathogenicity and might lead to innovative approaches for treating influenza virus disease.
52 Similar data-driven modeling strategies may be applicable for the study of other pathogen
53 systems or immunological disorders. (146 words)

54 **INTRODUCTION**

55 Influenza viruses pose an ongoing threat to global public health, causing up to 5 million
56 cases of severe disease and 0.65 million deaths annually¹. Unpredictable but recurrent
57 pandemics are typically associated with higher morbidity and mortality², and sporadic zoonotic
58 infections with high fatality rates occur in laboratory-confirmed cases (e.g., 56% and 39% for
59 highly pathogenic H5N1 and H7N9 avian virus strains, respectively)³. Currently, influenza
60 management with available countermeasures is challenging due to sub-optimal vaccine
61 efficacy, vaccine mismatches, and development of antiviral resistance^{4,5}. The discovery of novel
62 host regulators of virus growth and inflammation, which presumably are less susceptible to the
63 selective pressures that give rise to drug resistance, may facilitate host-targeted intervention
64 strategies to curb human morbidity and mortality in future epidemics, pandemics, and zoonotic
65 outbreaks.

66 Cell autonomous innate immune signaling (*i.e.*, the intrinsic antiviral and pro-inflammatory
67 signaling pathways activated by virus infection in all cell types) limits virus growth and spread in
68 respiratory epithelium at the initial site of influenza virus infection and generates inflammatory
69 signals that communicate infection to the immune system^{6,7}. Pattern recognition receptors
70 (PRRs), including Toll-like receptors (TLRs; primarily TLR3 in respiratory epithelium) and
71 DDX58 (a RIG-I-like receptor), detect influenza virus RNA and trigger production of type I and
72 type III interferons (IFNs), cytokines, and other pro-inflammatory mediators via the IRF3, IRF7,
73 and NF κ B transcription factors⁸. Subsequently, secreted IFNs bind to their receptors to mediate
74 autocrine and paracrine signaling and activate expression of hundreds of IFN-stimulated genes
75 (ISGs) via STAT1, STAT2, and IRF9 transcription factors. ISG-encoded proteins that directly
76 interfere with influenza virus replication in human cells include MX1, PKR, TRIM22, IFITM1,
77 IFITM2, IFITM3, ISG15, OAS3, RSAD2 (also known as viperin), BST2 (also known as tetherin),
78 and ISG20, among others⁸. Other influenza virus-associated stimuli activate a third PRR—

79 NLRP3, a NOD-like receptor—leading to IL1B and IL18 cleavage and secretion⁹. Cytokines,
80 chemokines, and pro-inflammatory mediators stimulated by all three PRR pathways promote
81 leukocyte recruitment, proliferation, and differentiation in the lung, aiding viral clearance, tissue
82 repair, and development of long-term immunity^{6,7,9}. PRR-dependent signaling also may activate
83 programmed cell death, presumably as a mechanism to prevent virus spreading⁹⁻¹³, and
84 excessive or prolonged PRR activation may substantially elevate pro-inflammatory cytokine
85 levels, inducing cell death in both infected and bystander cells and contributing to
86 immunopathology and fatal outcomes^{11,14,15}. While much is known about the relationships
87 between cell autonomous innate immunity, virus growth, and mechanisms of viral pathogenesis,
88 gaps in knowledge still exist, and additional regulators of antiviral and pro-inflammatory
89 signaling have yet to be discovered.

90 Data-driven modeling, which uses mathematical analyses and computational algorithms to
91 infer biological relationships within large-scale ‘omics profiling data, is a powerful tool for
92 unbiased prediction of candidate regulators of immunological responses^{16,17}, and coupled with
93 experimental validation, has potential to reveal novel or unexpected biological insights for
94 diverse phenotypes in various model systems. For example, Amit *et al.*¹⁸ used a data-driven
95 transcriptional regulatory network model combined with RNA interference (RNAi) perturbations
96 to predict and validate regulatory functions of >100 transcription factors, chromatin modifiers,
97 and RNA binding proteins in pathogen-sensing pathways in human dendritic cells. We¹⁹⁻²² and
98 others²³⁻²⁵ have used data-driven modeling to evaluate influenza virus-induced host responses
99 and predict candidate regulators of virus replication, cell autonomous innate immune signaling,
100 or influenza pathogenicity. However, only a few model-based candidate regulator predictions
101 have been tested for effect(s) on influenza infection-associated phenotype(s)^{19,20,22,23}, and none
102 of the models has been validated extensively at the experimental level.

103 Previously, we established a host response transcriptional association network model of
104 influenza virus-infected cells, devised a network-based ranking strategy to identify candidate
105 regulators of influenza virus growth and pathogenesis, and validated our ranking strategy by
106 using computational methods²¹. Here, we carried out systematic experimental validation of top
107 regulator candidates predicted by this approach, most of which have no well-established role in
108 innate immunity in viral infections. We found that a high proportion of candidate host gene
109 regulators exhibit antiviral activity against influenza virus, and that most of the antiviral factors
110 also regulate cell autonomous innate immune signaling. We also showed that a subset could
111 regulate growth of representative viruses from *Coronaviridae*, *Filoviridae*, and/or *Flaviviridae*
112 families. For one antiviral factor (NFE2L3), we demonstrated its ability to limit influenza disease
113 pathogenicity in mice. Our results indicate that candidate host gene regulators predicted from
114 our host transcriptional association network model affect virus growth and disease pathogenesis
115 and may possess conserved activity in response to infection with diverse viruses.

116 **RESULTS**

117 **Host network model and candidate regulator prioritization.** In a previous study²¹, we
118 inferred a host transcriptional association network model from genome-wide transcriptional
119 quantification data of human bronchial epithelial cells responding to infection by either a 2009
120 pandemic H1N1 influenza virus (pH1N1) or a highly pathogenic H5N1 avian influenza virus
121 (H5N1). The inferred network comprised 11,588 transcripts, each represented by a node, with
122 edges between nodes representing the pairwise expression relationship between transcripts
123 (**Fig. 1a**) and the cumulative relationships of all nodes and edges giving rise to the network's
124 global configuration (*i.e.*, its 'topology'). Two important topological components within the
125 network are 'hub nodes', which have many associated edges (*i.e.*, are highly connected to other
126 transcripts), and 'bottleneck nodes', which have a high number of shortest paths between pairs
127 of nodes passing through them (*i.e.*, they connect large groups of transcripts in different network
128 regions)²⁶ (**Fig. 1a**). Both node types represent critical points in the network; specifically, hub
129 node perturbation may disrupt expression of large groups of associated transcripts, whereas
130 bottleneck node perturbation may isolate linked network regions and prevent information flow.

131 We previously hypothesized that hub nodes and/or bottleneck nodes would comprise
132 transcripts derived from genes important for regulating transcriptional programs activated by
133 influenza virus infection, including cell autonomous innate immune signaling, and therefore
134 would impact influenza infection outcomes. To examine this possibility, we ranked nodes by
135 degree scores (for hub-like activity), betweenness scores (for bottleneck-like activity), and a
136 combined degree-betweenness score; and for nodes at the top of each ranked list, we
137 determined enrichment for known regulators of influenza virus replication or pathogenicity²¹.
138 Indeed, we found that nodes with high rankings in both hub-like and bottleneck-like topology
139 (*i.e.*, 'hub-bottleneck nodes', hereafter referred to as 'HB nodes', 'HB genes', or 'HB candidate
140 genes') (**Fig. 1a**) are highly enriched for influenza infection regulators²¹. Based on these

141 observations, we further hypothesized that host factors that have not been reported to regulate
142 influenza virus growth and/or cell autonomous innate immunity may be enriched among high-
143 ranked HB nodes. Here, we tested this hypothesis experimentally by focusing on 50 high-
144 ranked HB genes (representing the 0.01—4.91 percentiles, or HB ranks 2—569, of all network
145 nodes; we did not include the top-ranked HB candidate gene, RPSAP44, a pseudogene, due to
146 the lack of available perturbation reagents) (**Supplementary Table 1a**), and for comparison, 22
147 low-ranked HB genes (representing the 99.28—99.99 percentiles, or HB ranks 11505—11587,
148 of all network nodes) (**Supplementary Table 1b**), which served as controls.

149 **High-ranked HB genes possess attributes consistent with wide-ranging regulatory**
150 **roles in influenza virus infection.** To better understand how HB genes may regulate influenza
151 infection and pathogenesis, we used Metascape²⁷ to identify established functions of high- and
152 low-ranked HB gene sets. High-ranked HB genes are enriched ($p < 0.01$) for pathway, biological
153 process, or gene set terms related to innate immunity or cell fate determination (**Fig. 1b** and
154 **Supplementary Table 1c**; 29 of the 50 high-ranked HB genes are associated with at least one
155 term), whereas low-ranked HB genes exhibit minimal functional enrichment (**Supplementary**
156 **Fig. 1a** and **Supplementary Table 1d**). For high-ranked HB genes, enriched terms include
157 pathways and processes associated with PRR activation ('IFN signaling', 'NLR signaling', and
158 'NF κ B signaling'), control of influenza virus growth ('regulation of MAPK cascade' and 'cell
159 cycle')^{28,29}, or regulation of autophagy and/or apoptosis ('regulation of JNK cascade' and
160 'extrinsic apoptotic pathway')^{11,30,31} in influenza virus-infected cells. These observations indicate
161 that a portion of high-ranked HB genes has strong links to—and may regulate—cellular
162 signaling networks with important pro-viral, antiviral, or pro-inflammatory functions. Other high-
163 ranked HB genes lacking association with enriched functional terms may possess unknown
164 connections to the same signaling networks or have other unappreciated roles in viral infection.

165 To expand on this analysis, we manually integrated enrichment analyses with detailed
166 literature mining to assign specific functions to individual HB genes and grouped them by their
167 overall transcript expression trends in pH1N1 and H5N1 infected cells (**Fig. 1c** and
168 **Supplementary Fig. 1b**; \log_2 fold-change and false discovery rate-adjusted q-values for HB
169 gene transcripts are provided in **Supplementary Tables 1e** and **1f**). Among the high-ranked HB
170 genes are seven known regulators of cell autonomous innate immune signaling in influenza
171 virus-infected epithelial cells, all of which also affect virus replication and/or pathogenicity
172 (*DDX58*, *NLRP3*, *NMI*, *TNF*, *TNFAIP3*, *TAP1*, and *ZNFX1*)^{6,7,9,32-39}, and six other genes
173 previously implicated in the regulation of influenza virus growth (*HLA-B*, *PLK3*, *CIT*, *EIF4A2*,
174 *ISG20* and *PML*)⁴⁰⁻⁴⁶. In contrast, none of the low-ranked HB genes has established roles in
175 regulating influenza virus infection outcomes.

176 For high-ranked HB genes, we identified five unique virus-induced transcript expression
177 clusters, and within each cluster, we observed HB genes with related biological functions (see
178 **Fig. 1c**):

179 • **Cluster 1** (C1, light blue; upregulated by both pH1N1 and H5N1 infections) includes genes
180 that are transcriptionally activated by NF κ B (*TNF*, *TNFAIP3*, *CD69*, *SAA2*)⁴⁷, suggesting
181 roles in inflammatory responses. A portion of cluster members are regulators of
182 inflammatory signaling (three are immunosuppressive), but other genes are less clearly
183 linked to inflammation, with roles in regulating protein translation or lipid metabolism (**Fig.**
184 **1c**).

185 • **Cluster 2** (C2, pink; upregulated by pH1N1 and downregulated by H5N1 infection) includes
186 multiple ISGs that are transcriptionally activated by pH1N1 but suppressed by H5N1
187 (*DDX58*, *IL4I1*, *ISG20*, *NMI*, *PARP12*, *TAP1*, and *ZNFX1*)^{48,49}. Cluster members have
188 various roles in innate immune signaling in influenza virus infections and other contexts and

189 include several potent influenza virus restriction factors and pathogenicity regulators (**Fig. 1c**).
190

191 • **Cluster 3** (C3, green; downregulated by both pH1N1 and H5N1 infections) includes genes
192 that regulate cell fate, including cell cycle progression, cell differentiation, and apoptosis.
193 Most cluster members lack known roles in influenza virus infection or innate immune
194 signaling (**Fig. 1c**).

195 • **Cluster 4** (C4, orange; downregulated by pH1N1 and upregulated by H5N1 infection)
196 includes three major regulators of membrane trafficking and secretion, of which two have
197 clear pro-inflammatory functions. To date, none are linked to influenza virus infection or
198 pathogenicity (**Fig. 1c**).

199 • **Cluster 5** (C5, gray; minimal expression changes in both pH1N1 and H5N1 infections)
200 genes have no common functions, but include individual regulators of translation, DNA
201 repair, or reactive oxygen species production (**Fig. 1c**).

202 In contrast, low-ranked HB genes exhibit less prominent expression changes in pH1N1
203 influenza virus infections and a distinct distribution among expression clusters (*i.e.*, few exhibit
204 C1, C2, or C3 expression, while more than half are members of C5) (**Supplementary Fig. 1b**).
205 These observations highlight substantial differences in the characteristics of high-ranked and
206 low-ranked HB genes and support the notion that HB gene rankings partition host genes with
207 unique regulatory effects on influenza virus infection and pathogenicity.

208 **An siRNA library for use in functional screening assays.** To perturb the expression of
209 HB genes, we used small interfering RNAs (siRNAs) to suppress the expression of HB genes (4
210 unique siRNAs per gene) (**Fig. 2a**). To ensure that siRNAs functioned correctly, we assayed
211 siRNA effects on target gene knockdown and cellular viability and excluded siRNAs that did not
212 appreciably reduce target mRNA expression (fold-change ≤ -1.4), or that caused a substantial

213 reduction in intracellular ATP levels ($\geq 30\%$), a proxy for loss of cellular viability. In all
214 subsequent analyses, we included only HB genes for which ≥ 2 siRNAs targeting the same
215 gene passed the target gene knockdown and viability criteria. In total, this comprised all 50 high-
216 ranked HB genes and 9 (of 22) low-ranked HB genes (**Supplementary Table 2a**).

217 **A high proportion of high-ranked HB genes are regulators of influenza virus growth.**
218 Next, we used siRNA passing the criteria described above to evaluate the effects of HB genes
219 on pH1N1 or H5N1 virus replication. Importantly, for both pH1N1 and H5N1 infections, we
220 observed consistent peak virus titers in cells treated with a non-targeting negative control
221 siRNA, and consistently reduced virus titers (≥ 100 -fold) in cells treated with a positive control
222 siRNA targeting the influenza nucleoprotein (NP) mRNA (**Fig. 2b**). To assess the global effect of
223 siRNAs targeting HB genes, we plotted the average \log_2 fold-change in virus titer (relative to
224 non-targeting siRNA-treated cells) versus significance. For high-ranked HB candidate genes,
225 scatter plots show a wide range of differences for both pH1N1 (fold-change range = -95.6 to
226 +62.4) and H5N1 (fold-change range = -96.2 to +2.9), although changes in pH1N1 titers exhibit
227 greater overall spread and more even distribution across positive and negative values
228 compared to changes in H5N1 titers (**Fig. 2c** and **Supplementary Table 2a**). These
229 observations suggested that high-ranked HB genes possess both pro-viral and antiviral factors.

230 To identify pro-viral and antiviral factors, we classified HB gene ‘hits’ from our virus
231 replication datasets by using the following criteria: (i) the majority of siRNAs targeting a single
232 HB gene must induce a statistically significant ($p < 0.05$) change in mean virus titer in the same
233 direction; (ii) at least one of those siRNAs must induce $\geq (\pm)$ 6-fold change in virus replication;
234 and (iii) the remaining siRNAs must induce $\geq (\pm)$ 3-fold change in virus replication (also see
235 **Supplementary Table 2b**). Strikingly, we identified 29 high-ranked HB genes (58% of those
236 evaluated) whose knockdown potently and consistently affected pH1N1 replication, including 21
237 anti-viral and 8 pro-viral hits (**Fig. 2d**, left panel). Among the hits are top-ranked HB genes

238 previously shown to have anti-viral (*DDX58*)⁸ or pro-viral (*C/IT*)^{44,50} effects on influenza virus
239 replication, and siRNAs targeting these genes resulted in the same outcomes in our assay,
240 providing internal validation controls. Most of the other pH1N1 hits have no established link to
241 influenza virus replication (**Fig. 1c**), strongly suggesting that HB nodes derived from
242 transcriptional association networks are rich in novel pro-viral and antiviral regulators of
243 influenza virus replication. Notably, hits encompassed HB genes from all five expression
244 clusters (**Fig 2d**, see the colored squares at the top of the panel and compare to **Fig. 1c**).

245 When we applied the same selection criteria (**Supplementary Table 2b**) to our H5N1 siRNA
246 dataset, we found fewer hits (2 of the 50 evaluated high-ranked HB genes; **Fig. 2d**, right panel).
247 Although the reduced number of hits could indicate differences in host regulation of pH1N1 and
248 H5N1 infection, it is also possible that the effects of siRNA treatment were obscured by higher
249 replication levels in H5N1 infections (**Fig. 2b**) or are due to differences in virus-induced changes
250 in HB gene expression (**Fig. 1c**). Therefore, for a subset of the high-ranked HB genes that
251 exhibited antiviral effects in pH1N1 siRNA assays, we determined the effect of transient, cDNA-
252 mediated ectopic expression on H5N1 multi-cycle replication. For three HB genes (*HOXB6*,
253 *PCGF5*, and *SALL2*) out the six we tested, ectopic expression did not affect cell viability
254 (**Supplementary Fig. 2a** and **2b**), but significantly reduced H5N1 titers at either 24 h
255 (**Supplementary Fig. 2c**, top) or 48 h (**Supplementary Fig. 2c**, bottom) post-infection.
256 Therefore, high-ranked HB hits include novel regulators of both pH1N1 and H5N1 growth.

257 In contrast to high-ranked HB genes, few low-ranked HB genes affected pH1N1 or H5N1
258 replication; we identified only two genes with pro-viral effects in pH1N1 infections and none with
259 antiviral effects (**Fig. 2e** and **Supplementary Table 2a**). Importantly, the hit-rate for high-ranked
260 HB genes (58%) is higher than the hit rate for low-ranked HB genes (22.2%) ($p = 0.052$,
261 Fisher's exact test), indicating that high-ranked HB genes are enriched for influenza virus
262 growth regulators (**Fig. 2f**). Altogether, our results indicate that HB rank-based predictions are

263 predictive of host genes that regulate influenza virus replication and reveal multiple host genes
264 with previously undiscovered pro-viral or antiviral effects.

265 **A subset of antiviral HB genes enhances cell autonomous innate immune signaling.**
266 To clarify how top-ranked HB genes exert their effects on influenza virus growth, we performed
267 two additional, complementary siRNA screens to determine the effects of HB gene knockdown
268 on regulation of cell autonomous innate immune signaling. For these studies, we developed
269 A549 cell lines that stably express a luciferase reporter gene under the control of either the
270 human *IFNB1* (A549-IFNB1-Luc) (**Supplementary Fig. 3a**) or NF κ B-dependent (A549-NF κ B-
271 Luc) (**Supplementary Fig. 3b**) promoter. Importantly, induction of reporter gene expression in
272 both cell lines is dependent on essential regulators of each cognate signaling pathway: DDX58,
273 IRF3, and IRF7 for A549-IFNB1-Luc cells (**Supplementary Fig. 3a**); or NFKB1 and RELA for
274 A549-NF κ B-Luc cells (**Supplementary Fig. 3b**).

275 To determine the effects of HB genes on *IFNB1* or NF κ B-dependent gene expression, we
276 transfected A549-IFNB1-Luc or A549-NF κ B-Luc cells with siRNAs targeting HB genes and
277 measured luciferase activity in mock (phosphate-buffered saline, PBS)-treated or stimulated
278 cells (**Supplementary Table 3a** and **3b**). In A549-IFNB1-Luc cells treated with PBS or
279 stimulated with polyinosine-polycytidylic acid (poly(I:C); a synthetic analog of dsRNA that
280 activates antiviral PRRs [TLR3, DDX58, and EIF2AK2]), a positive control siRNA (targeting
281 *IRF3* expression) consistently reduced luciferase activity compared to cells treated with the non-
282 targeting negative control siRNA ($p < 0.01$) (**Supplementary Fig. 3c**, left panel [PBS-stimulated
283 cells]; **Fig. 3a**, left panel [poly(I:C)-stimulated cells]). We observed a similar outcome in A549-
284 NF κ B-Luc cells treated with PBS or stimulated with TNF (which strongly activates NF κ B) and
285 treated with a positive control siRNA (targeting *RELA* expression) versus the non-targeting
286 control ($p < 0.001$) (**Supplementary Fig. 3c**, right panel [PBS-stimulated cells]; **Fig. 3a**, right
287 panel [TNF-stimulated cells]). To assess the global effects of siRNAs targeting HB candidates,

288 we plotted the average \log_2 fold-change in luciferase activity (relative to non-targeting siRNA-
289 treated cells) versus significance. For cells treated with siRNAs targeting HB genes and
290 stimulated with PBS, this revealed minimal overall activation, demonstrating that siRNA
291 treatment did not broadly stimulate cell autonomous innate immune signaling in a non-specific
292 manner (**Supplementary Fig. 3d**). However, like the global effects of HB gene siRNAs on
293 influenza virus replication (**Fig. 2c**), we observed a range of changes in luciferase activity in
294 poly(I:C)-treated A549-IFNB1-Luc (fold-change range = -15.3 to +6.4) or TNF-treated A549-
295 NF κ B-Luc (fold-change range = -24.6 to +32.1) cells (**Fig. 3b**). We identified both positive and
296 negative regulators among the hit genes for each pathway (see **Supplementary Table 3a** for
297 A549-IFNB1-Luc data, **Supplementary Table 3b** for A549-NF κ B-Luc data, and **Supplementary**
298 **Table 3c** for reporter cell line hit selection criteria).

299 Next, we examined the overlap of hit genes identified from our pH1N1 replication, IFNB1
300 signaling, and NF κ B signaling assays (**Fig. 3c**) and identified HB genes with signaling effects
301 that might explain antiviral activity. Among high-ranked HB genes with antiviral activity, we
302 observed six groups with unique IFNB1 and NF κ B regulatory activity, of which a subset
303 exhibited consistent effects on virus growth and cell autonomous innate immune signaling (**Fig.**
304 **3d**). Group 1 (**Fig. 3d (i)**) includes 3 antiviral genes (*SEMA3A*, *HCP5*, and *SLC16A2*) that did
305 not affect IFNB1 or NF κ B signaling in our assays, suggesting they may directly interfere with an
306 essential step in influenza infection or affect another signaling pathway to repress replication.
307 Group 2 (**Fig. 3d (ii)**) consists of a single antiviral gene (*NM*) that positively regulates *IFNB1*
308 expression (*i.e.*, knockdown suppresses luciferase activity), and Group 3 (**Fig. 3d (iii)**)
309 comprises 9 genes (*NFE2L3*, *DDX58*, *SEMA7A*, *IL4I1*, *PLK3*, *ZNFX1*, *UBL3*, *SDCBP*, and
310 *L3MBTL2*) that positively regulate both *IFNB1* and NF κ B-dependent gene expression. Group 2
311 and group 3 genes may impose antiviral effects by promoting PRR activation, which stimulates
312 both anti-viral (*IFNB1*) and pro-inflammatory (NF κ B-dependent) gene expression. Group 4 (**Fig.**

313 **3d (iv)**) consists of 4 antiviral genes (*HOXB6*, *SALL2*, *ID1*, and *YRDC*) that positively regulate
314 NF κ B-dependent, but not *IFNB1*, gene expression. Group 4 genes may mediate antiviral effects
315 through pro-inflammatory signaling independent of PRR activation. Group 5 (**Fig. 3d (v)**)
316 includes 2 antiviral genes (*PCGF5* and *TAP1*) that positively regulate either *IFNB1* or NF κ B-
317 dependent gene expression and negatively regulate the other pathway; and group 6 (**Fig. 3d**
318 **(vi)**) includes 2 antiviral genes (*PARP12* and *CPT1C*) that negatively regulate one or both
319 pathways. Altogether, the antiviral activity of 14 high-ranked HB genes (groups 2, 3, and 4; **Fig.**
320 **3d (ii), (iii), and (iv)**) may be explained by their ability to positively regulate antiviral and/or pro-
321 inflammatory signaling pathways; with the exception of *DDX58*⁸ and *ZNFX1*³⁸, none is reported
322 to regulate innate immune signaling in influenza virus-infected cells. Regarding high-ranked HB
323 genes with pro-viral activity (8 in total, **Fig. 2d** and **3c**), only 2 exhibit consistent effects on viral
324 growth and cell autonomous innate immunity (i.e., knockdown suppresses virus growth and
325 upregulates luciferase activity in reporter cells): *CIT* negatively regulates *IFNB1* signaling and
326 *CD69* negatively regulates both *IFNB1* and NF κ B signaling (**Supplementary Table 3**).
327 Therefore, *CIT* and *CD69* may promote virus replication by suppressing PRR signaling. While
328 *CIT* is reported to have pro-viral activity in influenza infections^{44,50}, it is not known to regulate
329 innate immune signaling pathways.

330 To confirm the ability of high-ranked HB genes to regulate cell autonomous innate immune
331 signaling, we transiently expressed cDNAs of a subset of antiviral HB genes (*NFE2L3* and
332 *UBL3*, group 3; *HOXB6* and *SALL2*, group 4; and *PCGF5*, group 6)—along with plasmids
333 encoding *IFNB1*, NF κ B-dependent, or IFN-stimulated response element (ISRE) promoter-
334 reporter cassettes—and measured luciferase activity in stimulated cells. We confirmed positive
335 regulation of *IFNB1* expression for *NFE2L3* and *UBL3* and showed that one variant of *SALL2*
336 has similar regulatory effects (**Fig. 3e**). Ectopic expression of all three of these cDNAs also
337 upregulated ISG expression (determined by ISRE-dependent luciferase reporter activity), the

338 direct downstream target of type I IFN, further supporting their ability to positively regulate
339 antiviral signaling (**Fig. 3e**). NFE2L3, PCGF5, and both SALL2 variants (but not UBL3) also
340 positively regulated NF κ B-dependent gene expression activated by either TNF or IFNB1 (**Fig.**
341 **3f**). Collectively, these analyses suggest that high-ranked HB genes regulate influenza virus
342 replication by modulating the activation of host antiviral and inflammatory signaling pathways,
343 which is consistent with their predicted ability to regulate the host transcriptional network in
344 response to influenza virus infection.

345 **Hub-bottleneck genes exhibit partially overlapping regulation of diverse viruses.** As
346 many of the pro-viral and antiviral genes identified in our siRNA screens have no identified roles
347 in regulating virus replication, we wondered whether they might also regulate infection of other
348 viruses. Therefore, we selected 18 high-ranked HB gene hits with the following characteristics
349 for additional studies with other viruses: they (*i*) represent HB gene transcriptional expression
350 clusters C1—C4; (*ii*) have high antiviral or pro-viral activity in influenza virus infection; (*iii*)
351 exhibit a variety of innate immunity regulation phenotypes; and (*iv*) include factors with no
352 known role in regulating virus replication or innate immune signaling. Virus growth, IFNB1, and
353 NF κ B-dependent gene expression phenotypes of the selected HB gene hits are summarized in
354 **Supplementary Table 4a.**

355 We assayed the effect of siRNA-mediated knockdown of the 18 selected HB genes on multi-
356 cycle replication of four additional viruses, including an H3N2 influenza strain
357 (A/Yokohama/2017/2003), a biologically-contained Ebola- Δ VP30 virus (EBOV)⁵¹, West Nile
358 virus (WNV), and Middle East respiratory syndrome coronavirus (MERS-CoV) (**Supplementary**
359 **Table 4b, 4c, and 4d**). This diverse group includes other respiratory pathogens (H3N2 and
360 MERS-CoV), a neurotropic virus (WNV), and a systemic virus (EBOV); as well as viruses with
361 either negative-sense (H3N2 and EBOV) or positive-sense (WNV and MERS-CoV) RNA
362 genomes, each possessing unique strategies for genome replication. As expected, most high-

363 ranked HB genes regulated H3N2 replication in a manner similar to pH1N1 (**Fig. 4a** and **4b**),
364 suggesting multiple genes with conserved effects across different influenza viruses.
365 Remarkably, the effects of more than half of the evaluated high-ranked HB genes were similar
366 between pH1N1 or H3N2 and EBOV (**Fig. 4b**), suggesting that a subset of pro-viral and antiviral
367 HB genes could similarly affect the replication of some negative-sense RNA viruses. We
368 observed less similarity between influenza viruses and WNV, although several genes exhibited
369 overlapping pro-viral activity for WNV, influenza viruses, and EBOV (*PML*, *HLA-C*, *HLA-E*, and
370 *ARL3*) (**Fig. 4b**). There was little similarity in functional activities of high-ranked HB genes in
371 MERS-CoV infection and any other virus tested here (**Fig. 4b**). Therefore, high-ranked HB
372 genes identified from influenza virus infections have partially overlapping regulatory effects on
373 growth of diverse viruses, suggesting some could be exploited for development of broad-
374 spectrum antiviral treatments; and that in-depth analysis of host genes with unique effects on
375 growth of different viruses may reveal important differences in viral pathogenicity mechanisms.

376 **Nfe2l3 regulates pH1N1 replication and cytokine production *in vivo*.** In our final set of
377 experiments, we examined whether a high-ranked HB gene with effects on influenza virus
378 growth and host response signaling *in vitro* similarly regulated these phenotypes *in vivo*. We
379 focused on NFE2L3, which exhibited potent antiviral effects (**Fig. 2b**), positive regulation of type
380 I IFN and NFkB activation at levels similar to that of DDX58 (**Fig. 3d-f**), and conserved antiviral
381 activity against two influenza virus strains and EBOV *in vitro* (**Fig. 4b**). We inoculated female
382 wild-type (WT) and *Nfe2l3* knockout (KO)⁵² mice with a sub-lethal dose of pH1N1 (10^4 plaque-
383 forming units [pfu] per mouse) and monitored body weight for 16 days. Whereas WT and KO
384 mice exhibited similar body weight loss over the first 8 days after infection, average body
385 weights diverged during the latter 8 days of infection as WT mice recovered more quickly (**Fig.**
386 **5a**). A mixed effects model indicated that average daily body weights were significantly different

387 between WT and KO mice on days 13-16 post infection ($p < 0.05$). These results are consistent
388 with the possibility that Nfe2l3 has protective antiviral effects *in vivo*.

389 To determine whether Nfe2l3 regulates virus growth and activation of antiviral and pro-
390 inflammatory signaling pathways *in vivo*, we inoculated female WT and KO mice with pH1N1
391 (10^4 pfu) and collected tissues at 4 and 8 days post-infection for virus titration (nasal turbinates
392 and lungs) and multiplex cytokine analysis (lungs). Similar to the effects of NFE2L3 *in vitro*, we
393 observed increased pH1N1 virus titers in nasal turbinate tissues at day 4 post-infection in mice
394 lacking *Nfe2l3* expression (**Fig. 5b**; $p = 0.0124$), and reduced CCL2 (a pro-inflammatory
395 cytokine expressed by airway epithelial cells in influenza virus infection^{6,7}) and type I IFN in lung
396 tissues at days 4 and 8 post-infection, respectively (**Fig. 5c** and **5d**; $p < 0.05$). Together, these
397 results indicate that Nfe2l3 possesses antiviral activity and promotes antiviral and inflammatory
398 gene production *in vivo* and suggest that antiviral effects are mediated through cell autonomous
399 innate immune signaling networks that activate type I IFN and NF κ B-dependent gene
400 expression. Therefore, we have demonstrated that a candidate HB regulator predicted by
401 computational analysis of host transcriptional network responses *in vitro* promotes similar
402 phenotypes and regulates influenza virus pathogenicity *in vivo*.

403 **DISCUSSION**

404 Influenza virus disease severity is driven by virus growth in target tissues and host-
405 dependent immunopathology. To identify key host factors that modulate these
406 pathophysiological processes, we systematically tested computationally predicted regulators of
407 influenza infection outcomes in experimental systems. In our prior work, we identified and
408 prioritized candidate host regulators by using the topological features of a transcriptional
409 association network model (*i.e.*, genes with both high hub-like and high bottleneck-like activity,
410 or HB genes)²¹. Here, we validated dozens of high-ranked HB candidate genes (predicted by
411 our model) as *bona fide* regulators of influenza virus growth and demonstrated that most HB
412 genes mediate their effects through activation of IFNB1 and/or NF κ B-dependent gene
413 expression. We extended these findings by determining the activity of selected antiviral and pro-
414 viral HB genes in infections with a set of unrelated RNA viruses, which indicated that some HB
415 genes have partially overlapping growth regulatory activity across multiple virus families. We
416 also demonstrated that a high-ranked antiviral HB gene (*NFE2L3/Nfe2l3*) similarly regulated
417 virus replication, IFNB1 activation, and NF κ B-dependent gene expression in human cells and
418 mouse lung, and that this HB gene limits influenza disease severity in mice. Collectively, our
419 results validate our HB node-based candidate regulator prioritization strategy, underscore the
420 biological importance of high-ranked HB genes in influenza virus pathogenicity, and identify host
421 factors with previously unknown roles in regulating virus growth and cell autonomous innate
422 immunity.

423 A principal goal of this study was to test the hypothesis that high-ranked HB genes are more
424 likely to possess key roles in influenza infection outcomes compared to low-ranked HB genes,
425 and our findings unambiguously support this concept. High-ranked HB genes comprise a
426 substantial group of host factors that prominently and consistently regulate influenza virus
427 growth, including 21 antiviral and 8 pro-viral genes (29 hits out of 50 tested genes, or a hit rate

428 of 58%), and are enriched for influenza virus growth regulators compared to low-ranked HB
429 genes. Among the 29 high-ranked HB genes with antiviral or pro-viral activity, 16 also regulate
430 cell autonomous innate immune signaling activity in a manner consistent with their effects on
431 virus replication (14 antiviral HB genes and 2 pro-viral HB genes), and most have no previously
432 reported role in regulating virus growth or virus-induced antiviral or inflammatory responses.
433 Thus, our findings establish that prioritizing host genes by HB node rankings is an effective
434 strategy for identifying regulators of influenza infection outcomes, and we suggest that similar
435 strategies could be implemented to further explore influenza disease mechanisms or to
436 investigate other infectious or non-infectious diseases where immunopathology has a central
437 role in pathogenesis.

438 While a few of the novel regulators of influenza virus growth and cell autonomous innate
439 immune signaling have been linked to regulation of antiviral or inflammatory signaling in other
440 contexts (NFE2L3, NMI, SEMA7A, SDCBP)⁵²⁻⁶⁰ or adaptive immunity (IL4I1, ID1, CD69, UBL3,
441 PLK3)⁶¹⁻⁶⁵, others have no links to immune responses (L3MBTL2, YRDC, HOXB6, SALL2, and
442 CIT). Determining how these host factors regulate antiviral and pro-inflammatory signaling to
443 control influenza virus growth may lead to insights into influenza disease pathogenesis, as well
444 as a better understanding of the pathways and factors that regulate host innate immunity. For
445 example, several antiviral HB genes that activate both IFNB1 and NFkB-dependent gene
446 expression (likely via PRR signaling, e.g., RIG-I), also regulate DNA damage responses (*i.e.*,
447 NFE2L3⁶⁶, L3MBTL2⁶⁷, and PLK3⁶⁸). Recent studies have revealed links between DNA damage
448 and innate immunity⁶⁹⁻⁷², including a crucial role for the non-homologous end-joining protein,
449 XRCC4, in potentiating type I IFN expression via RIG-I and protecting against influenza
450 pathogenicity in the mouse model⁷³. We suggest that NFE2L3, L3MBTL2, and/or PLK3 may
451 represent additional links between DNA damage and innate immune signaling in response to
452 viral infection, a possibility that needs to be examined more thoroughly.

453 Antiviral HB genes that have different effects on innate immune signaling also have different
454 functional attributes (summarized in **Fig. 6**). For example, HB genes that induce antiviral activity
455 via PRR signaling (positively regulating both IRF3/IRF7 and NF κ B) (**Fig. 6**, center) are members
456 of HB gene expression clusters C2 (pink), C4 (orange), or C5 (gray), which are differentially
457 expressed between pH1N1 and H5N1 infections (*i.e.*, upregulated in one condition and
458 downregulated [or not induced] in the other); are widely localized among different cellular
459 organelles (including the nucleus, cytoplasm, Golgi apparatus, mitochondria, plasma
460 membrane, and extracellular exosomes); and possess diverse biological functions. In contrast,
461 HB genes that may promote antiviral activity by activating pro-inflammatory signaling
462 independent of PRRs (positively regulating only NF κ B and not IFNB1) (**Fig. 6**, left) are members
463 of HB expression clusters C1 (light blue) or C3 (green), which are similarly expressed in both
464 pH1N1 and H5N1 infections (*i.e.*, upregulated or downregulated in both conditions), and
465 comprise mostly nuclear factors with established roles in regulating non-immune gene
466 expression. Although the implications of these observations are presently unclear, we suggest
467 that virus-induced expression patterns, cellular localizations, biological functions, and/or
468 phenotypic effects of high-ranked HB genes may be linked, and that this phenomenon might be
469 exploited to improve network-based predictions of candidate regulators in future studies.

470 In summary, we have demonstrated that transcriptional association network topology
471 predicts host factor control of influenza virus growth through regulation of cell autonomous
472 innate immune signaling, and we have identified a high priority list of virus growth and innate
473 immunity regulators for in-depth analysis in future studies. Ultimately, this work expands our
474 knowledge of the relationships between host transcriptional networks and regulation of influenza
475 virus growth and virus-induced disease and may facilitate future development of antiviral
476 countermeasures.

477 **MATERIALS AND METHODS**

478 All assays associated with commercially available kits or reagents were carried out
479 according to the manufacturers' instructions.

480 **Bioinformatics.** We employed the web-based Metascape portal (<http://metascape.org>)²⁷ to
481 infer enriched GO biological processes, KEGG pathways, Reactome gene sets, and canonical
482 pathways in high-ranked and low-ranked HB gene sets. To assign individual functions of HB
483 genes, we manually integrated Metascape results and information obtained by literature mining
484 in the Entrez Pubmed database (<https://pubmed.ncbi.nlm.nih.gov/>).

485 **Microarray datasets.** Transcript expression data are derived from the same datasets that
486 we previously used for HB gene identification and were statistically processed previously^{21,48,74}.
487 Briefly, genome-wide changes in transcript expression were determined by microarray analysis
488 (Agilent Technologies, Inc.) in human bronchial epithelial cells (Calu-3) infected with pH1N1
489 (A/California/04/2009) (multiplicity of infection [moi] = 3 plaque-forming units [pfu] per cell; 0, 3,
490 7, 12, 18, 24, 30, 36, and 48 h post-infection) or H5N1 (A/Vietnam/1203/2004) (moi = 1 pfu per
491 cell; 0, 3, 7, 12, 18, 24 h post-infection), and \log_2 expression ratios and false-discovery (FDR)
492 rate-adjusted q-values were determined compared to time-matched mock-infected controls. The
493 \log_2 expression ratios and FDR-adjusted q-values of the selected high- and low-ranked HB
494 genes are provided in **Supplementary Table 1e** and **Supplementary Table 1f**, respectively.

495 **Cell lines.** We purchased A549 (human lung epithelial), 293T (human embryonic kidney
496 epithelial), Huh7 (human hepatocellular carcinoma), BHK-21 (Syrian golden hamster kidney
497 fibroblast), and Vero (African green monkey kidney epithelial) cell lines from the American Type
498 Culture Collection (ATCC), and we used an in-house clone of the Madin-Darby canine kidney
499 (MDCK) cell line adapted to grow in newborn calf serum (NCS) and support efficient influenza
500 virus replication. To propagate cell lines, we used Eagle's minimum essential medium (MEM)
501 containing 5% NCS (MDCK); a 1:1 mix of Dulbecco's modified Eagle's medium (DMEM) and

502 Ham's F12 medium (DMEM/F12) containing 10% fetal bovine serum (FBS) (A549); DMEM
503 containing 10% FBS (293T and Huh7); or MEM containing 10% FBS (BHK-21 and Vero). We
504 also used Vero 76 and Huh7 cells stably expressing the Ebola VP30 protein (Vero-VP30 and
505 Huh7-VP30 cells, respectively), described previously^{51,75}, which we propagated in MEM
506 containing 10% FBS (Vero-VP30) or DMEM containing 10% FBS (Huh7-VP30). We
507 supplemented all cell propagation media with L-glutamine and antibiotics, and cell lines were
508 grown at 37°C in an atmosphere of 5% CO₂. To ensure experimental reproducibility, we
509 routinely monitored cell cultures for mycoplasma contamination, and periodically restarted cell
510 lines from cryopreserved early passage aliquots.

511 **Viruses.** The pH1N1 and H5N1 virus strains used throughout the study included influenza
512 A/Oklahoma/VIR09-1170038L3/2009 (H1N1; 'OK38L3') and influenza A/Vietnam/1203/2004
513 (H5N1; 'VN1203'), originally provided by the United States (US) Centers for Disease Control
514 and Prevention (CDC)). We generated pH1N1 and H5N1 virus stocks by passaging the original
515 isolate (OK38L3) or a reverse genetics supernatant (VN1203)^{76,77} once in MDCK cells, as
516 previously described⁷⁸, and the same virus stocks were used for all siRNA screening, cDNA
517 ectopic expression, or mouse infection experiments. In some siRNA experiments, we used the
518 following additional viruses: a seasonal H3N2 influenza virus strain (A/Yokohama/2017/2003;
519 'YK2017')⁷⁹; a biologically contained EBOV (Ebola-ΔVP30), which expresses green fluorescent
520 protein in the place of the essential Ebola VP30 protein, and replicates only in cells expressing
521 the Ebola VP30 protein⁵¹; a recombinant molecular clone of MERS-CoV based on the EMC2012
522 strain⁸⁰; and WNV New York 1999 clone 382-99⁸¹. We generated virus stocks by passaging
523 reverse genetics supernatants (H3N2, Ebola-ΔVP30, MERS-CoV), as previously described^{51,78-}
524 ⁸⁰; or by electroporation of *in vitro* transcribed RNA into BHK-21 cells, as previously
525 described^{82,83}, followed by passaging once in Vero cells (WNV). In other studies, we generated
526 a Sendai virus stock (Enders strain) by passaging the isolate once in 10-day-old embryonated

527 chicken eggs. To quantify all stock virus titers, we used standard plaque assays or focus
528 forming unit (ffu) assays, as appropriate.

529 **siRNAs.** We included the same non-targeting negative control (AllStars Negative Control
530 siRNA, Qiagen) and transfection efficiency control (AllStars Hs Cell Death Control siRNA,
531 Qiagen) in all siRNA assays. The non-targeting control has no homology to any known
532 mammalian gene, elicits minimal non-specific effects, and does not affect influenza virus
533 replication. The transfection efficiency control is blend of highly potent siRNAs targeting
534 ubiquitously expressed human genes that are essential for cell survival and induces a cell death
535 phenotype visible by light microscopy within 48 h (293T and A549 cells) or 72 h (Huh7 cells) (in
536 all three cell types, this phenotype manifests as rounded cell morphology and detachment from
537 the monolayer). We also used the following positive control siRNAs in appropriate assays: a
538 previously described siRNA (NP-1496; referred to as 'NP' in the figures) that targets influenza
539 nucleoprotein mRNA and inhibits influenza virus replication^{84,85} (we provided the sequence to
540 Integrated DNA Technologies [IDT], Inc., for synthesis); a pre-designed siRNA targeting the
541 cellular *NPC1* gene, which inhibits EBOV replication (*NPC1* is required for efficient Ebola virus
542 entry^{86,87}); pre-designed siRNAs targeting cellular genes required for type I IFN activation
543 (*DDX58*, *IRF3*, and *IRF7*); and pre-designed siRNAs targeting cellular genes required for NF κ B
544 activation (*RELA* and *NFKB1*). For the 50 high-ranked HB genes and 22 low-ranked HB genes,
545 we obtained FlexiTube GeneSolution siRNA sets (Qiagen), comprising four unique, pre-
546 designed siRNAs targeting each candidate gene mRNA (288 individual siRNAs in total). A list of
547 all siRNAs (including product numbers and sequences, where applicable and available) is
548 provided in **Supplementary Table 5a**.

549 **Plasmids.** For a subset of high-ranked HB hit genes, we performed complementary gene
550 perturbation studies in cells transiently overexpressing exogenous HB gene cDNAs. We
551 purchased plasmids expressing these cDNAs, as well as a negative control plasmid (pCMV6-

552 Entry) lacking a cDNA insert (OriGene Technologies, Inc.). A list of all plasmids encoding HB
553 gene cDNAs (including product numbers, vector backbones, epitope tag placements, and the
554 predicted molecular weights of proteins derived from the cDNAs) are provided in
555 **Supplementary Table 5b**. In other studies, we used plasmids encoding cellular promoter-
556 driven firefly luciferase reporter cassettes to assay the activation of type I IFN expression
557 (pIFNB1-Luc), ISG expression (pISRE-Luc), or NF κ B-dependent gene expression (pNF κ B-Luc).
558 We purchased the pISRE-Luc and pNF κ B-Luc plasmids (Stratagene Products Division, Agilent
559 Technologies, Inc.). To create pIFNB1-Luc, we PCR-amplified the human *IFNB1* gene promoter
560 (including 125 base pairs upstream of the ATG start site) from Huh7 genomic DNA and inserted
561 the promoter element upstream of the firefly luciferase open reading frame in the pGL2-Basic
562 vector (Promega Corp.). In all cases, we isolated fresh plasmid DNA for use in transfection
563 experiments by using the PureLinkTM HiPure Plasmid Maxiprep Kit (Invitrogen, Thermo Fisher
564 Scientific Corp.). This method minimizes lipopolysaccharide contamination in plasmid DNA
565 extracted from *Escherichia coli* and reduces non-specific PRR pathway activation in plasmid
566 DNA transfections of mammalian cells. In addition, we used Sanger sequencing to verify that
567 plasmids encoded the correct cDNA inserts, in-frame epitope tags, and/or promoter-luciferase
568 cassettes prior to use in any experiments.

569 **Reporter cell lines.** For siRNA screening studies, we created A549 cell lines stably
570 expressing *IFNB1* promoter-luciferase or NF κ B promoter-luciferase cassettes ('A549-IFNB1-
571 Luc' or 'A549-NF κ B-Luc', respectively). Briefly, we co-transfected low-passage A549 cells with
572 pIFNB1-Luc or pNF κ B-Luc and a linear hygromycin DNA fragment flanked by the SV40
573 promoter and polyadenylation signal (Clontech Laboratories, Inc.) by using the TransIT LT-1
574 transfection reagent (Mirus Bio LLC). Two days later, we trypsinized the transfected cells, plated
575 them under limiting dilution, and carried out selection by continuously culturing cells in 1:1
576 DMEM/F12 containing 10% FBS, glutamine, an antibiotic mixture, and 500 μ g/ml hygromycin

577 (Sigma-Aldrich). Subsequently, we screened hygromycin-selected cell clones for the
578 appropriate pathway activation, and for each reporter cell type, identified a clone exhibiting ≥ 10 -
579 fold increased luciferase activity after stimulation, and cryo-preserved low-passage aliquots for
580 future use. To propagate A549-IFNB1-Luc and A549-NF κ B-Luc cells, we used 1:1 DMEM/F12
581 containing 10% FBS, glutamine, a penicillin/streptomycin mixture, and 200 μ g/ml hygromycin.

582 **siRNA and plasmid DNA transfections.** We performed transfections for all phenotypic
583 assays in 24-well plates seeded with 8×10^4 cells per well. For siRNAs, we transfected cells two
584 hours after seeding by using the Lipofectamine RNAiMAX reagent (Invitrogen, Thermo Fisher
585 Scientific Corp.) and 20 nM (final concentration per well) of a single siRNA. For plasmids, we
586 transfected cells 16 h after seeding by using FuGene HD transfection reagent (Promega Corp.)
587 and either 0.2 μ g of DNA (for plasmids encoding HB gene cDNAs used in multi-cycle influenza
588 virus growth assays) or 0.6 μ g of DNA (0.5 μ g of plasmids encoding HB gene cDNAs plus 0.1
589 μ g of pIFNB1-Luc, pISRE-Luc, or pNF κ B-Luc for luciferase reporter assays, viability assays,
590 and immunoblotting). To allow for target gene knockdown or protein accumulation prior to
591 initiating phenotypic analyses, we incubated cells with plasmid DNA transfection complexes for
592 48 h; or siRNA transfection complexes for 48 h (for viability assays or multi-cycle virus growth
593 assays with influenza viruses in A459 cells), 60 h (for multi-cycle virus growth assays with WNV
594 in A549 cells), or 72 h (for viability assays or multi-cycle growth assays with Ebola- Δ VP30 or
595 MERS-CoV in Huh7 cells). For siRNA experiments, we verified high transfection efficiency by
596 visually comparing cells treated with non-targeting and transfection efficiency controls prior to
597 proceeding with further analyses.

598 **Viability assay.** To determine how HB gene perturbation affects cellular viability, we
599 assayed total intracellular ATP levels in A549, 293T, or Huh7 cells by using the CellTiter-Glo kit
600 (Promega Corp.) and a Tecan plate reader.

601 **Quantitative real-time PCR.** To confirm siRNA-mediated HB gene knockdown, we used
602 quantitative real-time PCR (qRT-PCR) to measure target mRNA levels (in triplicate) in total RNA
603 extracted from A549 cells by using the RNeasy Mini kit (Qiagen). We performed first-strand
604 cDNA synthesis with the QuantiTect reverse transcription kit (Qiagen); carried out qRT-PCR
605 reactions with gene-specific SYBR green-based primer assays (either QuantiTect assays from
606 Qiagen or PrimeTime assays from IDT, Inc.) and PowerUp SYBR green master mix (Applied
607 Biosystems, Thermo Fisher Scientific Corp); and quantified mRNA levels with the QuantStudio 6
608 Flex Real-Time PCR System (Applied Biosystems). For each high-ranked and low-ranked HB
609 candidate gene, we determined relative mRNA quantities by using the comparative threshold
610 cycle ($\Delta\Delta Ct$) method, with the GAPDH gene serving as the endogenous reference and RNA
611 from non-targeting control siRNA-treated cells serving as the calibrators. A list of all qRT-PCR
612 primer assays (including the primer assay types and product numbers) is provided in
613 **Supplementary Table 5c.**

614 **Immunoblotting.** To confirm cDNA overexpression, we used immunoblotting to assess HB
615 protein levels in total proteins extracted from 293T cells by using NP40 lysis buffer (10 mM Tris-
616 HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, and 1% Igepal CA-630) containing a 1X protease
617 inhibitor cocktail (cComplete Mini EDTA-Free, Roche). We separated proteins by sodium dodecyl
618 sulfate (SDS) polyacrylamide gel electrophoresis (PAGE), transferred them to polyvinylidene
619 fluoride (PVDF) membranes (Invitrogen, Thermo Fisher Scientific Corp.), and performed blotting
620 with a monoclonal anti-Flag M2 (cat. no. F1804, Sigma-Aldrich) or polyclonal anti-NFE2L3 (cat.
621 no. ab11136, Abcam) primary antibodies, and horseradish peroxidase-conjugated secondary
622 antibodies (Invitrogen). Immunoblots were developed with SuperSignal West Femto substrate
623 (Thermo Fisher Scientific Corp.) and an AlphaImager (Alpha Innotech).

624 **Multi-cycle virus growth assays.** After washing siRNA- or plasmid-transfected cells twice
625 with phosphate-buffered saline (PBS), we inoculated cells with fresh medium containing a moi

626 of 0.001 pfu/ffu per cell (pH1N1 and H3N2 influenza viruses, MERS-CoV, and WNV), 0.0001
627 pfu/ffu per cell (H5N1 influenza virus and Ebola- Δ VP30) and collected supernatants for virus
628 quantification at 24 h (WNV and H5N1), 48 h (pH1N1, H3N2, and H5N1), or 72 h (Ebola- Δ VP30
629 and MERS-CoV) post-infection. Virus growth assays in A549 cells were performed in 1:1
630 DMEM/F12 medium supplemented with 0.6% bovine serum albumin fraction V (Sigma-Aldrich)
631 and 0.2 μ g/ml of N-tosyl-L-phenylalanine chloromethyl ketone (TPCK)-treated trypsin
632 (Worthington Biochemical Corp.) (influenza viruses); or DMEM containing 2% FBS (WNV). Virus
633 growth assays in Huh7 cells were carried out in the same media used for cell propagation
634 (Ebola- Δ VP30 and MERS-CoV). To quantify the effects of HB gene perturbation on virus
635 growth, we used standard pfu or ffu assays, as appropriate.

636 **Luciferase reporter assays.** After washing siRNA- or plasmid-transfected cells once with
637 PBS, we stimulated reporter gene expression as described below, incubated cells for 24 h, and
638 then measured luciferase activity in cell lysates by using the Steady-Glo luciferase assay
639 system (Promega Corp.) and a Tecan plate reader. Cells were stimulated as follows (in all
640 cases, hygromycin was excluded from stimulation media): (i) For A549-IFNB1-Luc cells treated
641 with siRNAs or 293T cells transfected with plasmids, we stimulated type I IFN expression by
642 either infecting with Sendai virus (moi = 10 pfu per cell) or transfecting with 1 μ g per well of
643 polyinosine-polycytidylic acid (poly(I:C), Sigma-Aldrich) via the LT-1 transfection reagent (Mirus
644 Bio LLC) in A549 or 293T cell propagation medium; (ii) For A549-NF κ B-Luc cells treated with
645 siRNAs or 293T cells transfected with plasmids, we stimulated NF κ B-dependent gene
646 expression by treating cells with purified human TNF (100 ng per ml; Cell Signaling Technology,
647 Inc.) in 1X Opti-MEM reduced serum media (Gibco Life Sciences) containing 0.25% BSA
648 fraction V; and (iii) For 293T cells transfected with plasmids, we stimulated ISG expression by
649 treating cells with purified human IFNB1 (1,000 U per ml; PBL Assay Science) in 1X Opti-MEM
650 containing 0.25% BSA fraction V. For all siRNA transfection experiments, we also carried out

651 mock-stimulations. Mock stimulation protocols included treatment with fresh A549 growth
652 medium lacking Sendai virus, transfection with LT-1 transfection reagent lacking poly(I:C), or
653 treatment with Opti-MEM lacking purified human IFNB1 or TNF.

654 ***Nfe2l3* knockout mouse breeding.** *Nfe2l3* knockout (KO) mice were generated
655 previously⁵². Briefly, they were derived from 129S6 embryonic cells, backcrossed to C57BL/6J
656 mice (strain #000664, The Jackson Laboratory) nine times, inbred for 8 generations,
657 backcrossed to C57BL/6J three more times, inbred for 2 generations, and back-crossed to
658 C57BL/6J one final time. We used heterozygous breeder pairs (*Nfe2l3* ^(+/-)) from the final
659 backcross to establish a breeding colony for the current study. For five progeny mice generated
660 from the breeder pairs, we carried out genome scanning analysis with two unique single
661 nucleotide polymorphism (SNP) panels (The Jackson Laboratory) that detect either 150 SNPs
662 polymorphic between C57BL/6 and 129S1/Svlm strains (panel 1) or 150 SNPs polymorphic
663 between C57BL/6J and C57BL/6NJ strains (panel 2). Progeny mice were completely
664 homogenous, possessing 100% C57BL/6 SNPs (panel 1) and 100% C57BL/6J SNPs (panel 2).
665 Therefore, we inbred the mice over four additional generations to produce WT and KO
666 littermates for influenza virus pathogenicity studies. Subsequently, we carried out one additional
667 backcross to C57BL/6J mice, and heterozygous progeny were inbred for two more generations
668 to produce WT and KO littermates for tissue collection experiments.

669 ***Nfe2l3* genotyping.** Genomic DNA was released from mouse tail biopsies by incubation in
670 DirectPCR Lysis Reagent (Tail) (Viagen Biotech, Inc.) at 85°C, and used directly for standard
671 PCR reactions (50 µl total volume), including 2 µl of the lysed genomic DNA template, 5%
672 DMSO, and three primers: M2 5'HOM-F (5' CCAGACCAGGTTGGCTTGGT), M2 3'HOM-R (5'
673 GGGTCACCACAGACTAGTACT), and M2 9512-R (5' TGGGATGGGGTGTAAAGAGA). Cycling
674 conditions were as follows: (i) 94°C for 2'; (ii) 30 cycles of 94°C for 30", 62°C for 30", and 72°

675 for 1'; and **(iii)** 72°C for 10'. PCR amplicons (WT ~460 bp and KO ~320 bp) were evaluated by
676 0.7% agarose gel electrophoresis.

677 **Mouse infections and sample collection.** We anesthetized groups of 8-10-week-old
678 female WT and KO mice by intraperitoneal (i.p.) injection of ketamine and dexmedetomidine
679 (45-75 mg/kg ketamine + 0.25-1 mg/kg dexmedetomidine), performed intranasal inoculation
680 with 50 µl of PBS ('mock') or PBS containing serial dilutions of OK38L3, and then reversed
681 dexmedetomidine by i.p. injection of atipamezole (0.1-1 mg/kg). We monitored individual mouse
682 body weights and survival daily for up to 16 days, and humanely euthanized mice at the end of
683 the observation period, at designated time points (for tissue collection) or when mice exhibited
684 severe clinical symptoms. We obtained nasal turbinate and lung tissues after euthanizing mice
685 and froze all tissue portions at -80°C in the absence of buffer until further analysis.

686 **Virus titration in mouse tissues.** For virus titration, we thawed and weighed nasal
687 turbinates or lung tissue portions (right superior lobes), and then homogenized tissues in 1 ml
688 PBS containing a penicillin/streptomycin mixture by using a TissueLyser II (Qiagen) at 30-Hz
689 oscillation frequency for 3 min. We centrifuged homogenates to remove debris (10,000 x g for
690 10 minutes), quantified virus titers (pfu) in clarified homogenate supernatants by using standard
691 plaque assays in MDCK cells, and normalized the titers to pfu per gram of nasal turbinate or
692 lung tissue.

693 **Cytokine quantification in lung tissues.** For cytokine quantification, we prepared clarified
694 homogenate supernatants of lung tissues (right inferior lobes) as for virus titration, except that
695 the homogenization buffer included a 1X protease inhibitor cocktail (cComplete Mini EDTA-free,
696 Roche) and the volume was 500 µl. We quantified cytokine concentrations with the Bio-Plex Pro
697 Mouse Cytokine 23-plex Assay and the Bio-Plex 200 system (Bio-Rad Laboratories, Inc.), or
698 with VeriKine Mouse Interferon Alpha or Beta ELISA kits (PBL Assay Science) and a Tecan

699 plate reader. Cytokine concentrations were normalized to picograms (pg) per gram of lung
700 tissue.

701 **Statistical analyses.** Enrichment *p*-values for biological pathway and process terms were
702 determined by the Metascape web tool²⁷ and transformed to (—) log *p*-value enrichment scores
703 for graphical representation. All other statistical tests were performed by using GraphPad Prism
704 version 8.0.0 for Windows (GraphPad Software). To compare the means of pH1N1 or H5N1
705 virus titers in negative control and NP siRNA treated cells, we log₁₀-transformed virus titer
706 values and used unpaired, two-tailed t-tests with a Welch's correction. For siRNA experiments
707 assessing the effect of HB candidate gene knockdown on multi-cycle virus growth or host
708 pathway activation (via promoter-reporter assays), we compared the means of log₁₀-
709 transformed virus titers or luciferase values (relative light units, RLU) between replicates of
710 individual test conditions (*i.e.*, cells perturbed by an siRNA targeting a HB gene mRNA) and
711 batch-specific negative controls by using unpaired, two-tailed t-tests, followed by a Holm-Sidak
712 post-test to calculate multiplicity-adjusted *p*-values. For graphical representation, we calculated
713 log₂-transformed virus titer or luciferase RLU ratios for individual test siRNAs (*i.e.*, mean test
714 siRNA titer or luciferase values versus mean negative control siRNA titer or luciferase values).
715 To determine whether the hit rate of high-ranked HB candidate genes differed from that of low-
716 ranked HB candidates, we generated a contingency table and compared the distribution of hits
717 and non-hits in pH1N1 infections by using a one-sided Fisher's exact test.

718 For cDNA experiments assessing the effect of HB candidate gene overexpression on multi-
719 cycle H5N1 virus growth, we compared the means of log₁₀-transformed virus titers between
720 replicates of individual test conditions (*i.e.*, cells transfected with a plasmid expressing an HB
721 cDNA) and the time-matched negative control by using ordinary one-way analysis of variance
722 (ANOVA). For cDNA experiments assessing the effect of HB candidate gene overexpression on
723 host pathway activation, we combined data from two or three biological replicate experiments,

724 each with three technical replicates. First, within each experiment, we normalized each replicate
725 luciferase activity value by dividing by the mean luciferase activity value of the negative controls.
726 Then, we \log_{10} -transformed and aggregated the normalized replicate values for each test
727 condition across replicate experiments and compared the means of test and negative control
728 conditions by using ordinary one-way ANOVA with a multiplicity correction.

729 To compare body weights of *Nfe2l3* WT and KO mice infected with pH1N1, we \log_{10} -
730 transformed weight ratios for each mouse at each time point, and then compared group weight
731 loss profiles by using a mixed effects model with a Geisser-Greenhouse correction. This
732 analysis generated a *p*-value for the overall effects of *Nfe2l3* expression on mouse body weight
733 loss, as well as *p*-values for effects observed at each time point. In WT and KO mice, we
734 compared means of \log_{10} -transformed virus titers in nasal turbinate or lung tissues by using
735 unpaired, two-tailed t-tests; and means of \log_{10} -transformed cytokine concentrations by using
736 unpaired, two-tailed t-tests followed by a Holm-Sidak post-test.

737 **Data availability.** Transcriptomics datasets were previously reported^{21,48,74} and deposited in
738 the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO;
739 <https://www.ncbi.nlm.nih.gov/geo/>) (accession numbers GSE37571 and GSE28166). All
740 processed datasets generated in this study are reported in **Supplementary Tables**, and
741 associated raw data are available upon request.

742 **Biosafety.** All work with influenza viruses, Sendai virus, and the biologically-contained
743 Ebola- Δ VP30 virus was performed at the University of Wisconsin (UW)-Madison. *In vitro*
744 experiments with pH1N1 or H3N2 influenza viruses or Sendai virus were performed in biosafety
745 level 2+ (BSL-2+) containment; *in vitro* experiments with H5N1 influenza virus were performed
746 in an animal-enhanced biosafety level 3+ (ABSL-3+) containment laboratory; and *in vivo*
747 experiments with pH1N1 were performed in an animal-enhanced BSL-2 (ABSL-2) laboratory.
748 Experiments involving the biologically-contained Ebola- Δ VP30 virus were carried out in BSL-2+

749 containment, under approval by the UW-Madison Institutional Biosafety Committee, the US
750 CDC, and the US National Institutes of Health. *In vitro* experiments with MERS-CoV or WNV
751 were performed in BSL-3 containment laboratories at the University of North Carolina at Chapel
752 Hill (UNC-Chapel Hill) or Washington University in St. Louis (WUSTL), respectively. The US
753 CDC and/or the US Department of Agriculture approved the use of BSL-2+, ABSL-2, BSL-3,
754 and ABSL-3+ containment facilities at the UW-Madison, the UNC-Chapel Hill, and WUSTL.

755 **Ethics statement.** All animal experiments and procedures were approved by the UW-
756 Madison School of Veterinary Medicine Animal Care and Use Committee (protocol # V006426-
757 A04) under relevant institutional and American Veterinary Association guidelines.

758 **ACKNOWLEDGEMENTS**

759 This study was funded by grant U19AI106772 from the National Institute of Allergy and
760 Infectious Diseases, National Institutes of Health (USA); grants JP18am001007,
761 JP18fm0108006, JP17fk0108202, JP18fk0108104, JP19fm0108006, JP22wm0125002, and
762 JP22fk0108626 from the Japan Agency for Medical Research and Development; and grants
763 JP16H06429, JP16K21723, and JP16H06434 from the Ministry of Education, Culture, Science,
764 Sports, and Technology of Japan. Pacific Northwest National Laboratory is a multi-program
765 laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-
766 76RL01830. The authors would like to thank Zachary Najacht and Daniel Beechler for technical
767 assistance.

768

769 **CONFLICTS OF INTEREST STATEMENT**

770 The authors do not have any conflicts of interest to declare.

771 REFERENCES

- 772 1 WHO. *Influenza (Seasonal) Fact Sheet*, <[https://www.who.int/news-room/fact-sheets/detail/influenza-\(seasonal\)](https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal))> (2018).
- 773 2 Saunders-Hastings, P. R. & Krewski, D. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. *Pathogens* **5**, doi:10.3390/pathogens5040066 (2016).
- 774 3 WHO. *Avian Influenza Weekly Update Number 852*, <https://www.who.int/docs/default-source/wpro---documents/emergency/surveillance/avian-influenza/ai_20220708.pdf?sfvrsn=5bc7c406_7> (2022).
- 775 4 Davidson, S. Treating Influenza Infection, From Now and Into the Future. *Front Immunol* **9**, 1946, doi:10.3389/fimmu.2018.01946 (2018).
- 776 5 Kotey, E. *et al.* Current and Novel Approaches in Influenza Management. *Vaccines (Basel)* **7**, doi:10.3390/vaccines7020053 (2019).
- 777 6 Newton, A. H., Cardani, A. & Braciale, T. J. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. *Semin Immunopathol* **38**, 471-482, doi:10.1007/s00281-016-0558-0 (2016).
- 778 7 Tavares, L. P., Teixeira, M. M. & Garcia, C. C. The inflammatory response triggered by Influenza virus: a two edged sword. *Inflamm Res* **66**, 283-302, doi:10.1007/s00011-016-0996-0 (2017).
- 779 8 Villalon-Letelier, F., Brooks, A. G., Saunders, P. M., Londrigan, S. L. & Reading, P. C. Host Cell Restriction Factors that Limit Influenza A Infection. *Viruses* **9**, doi:10.3390/v9120376 (2017).
- 780 9 Tate, M. D. & Mansell, A. An update on the NLRP3 inflammasome and influenza: the road to redemption or perdition? *Curr Opin Immunol* **54**, 80-85, doi:10.1016/j.coim.2018.06.005 (2018).
- 781 10 Lee, S., Hirohama, M., Noguchi, M., Nagata, K. & Kawaguchi, A. Influenza A Virus Infection Triggers Pyroptosis and Apoptosis of Respiratory Epithelial Cells through the Type I Interferon Signaling Pathway in a Mutually Exclusive Manner. *J Virol* **92**, doi:10.1128/JVI.00396-18 (2018).
- 782 11 Davidson, S., Crotta, S., McCabe, T. M. & Wack, A. Pathogenic potential of interferon alphabeta in acute influenza infection. *Nat Commun* **5**, 3864, doi:10.1038/ncomms4864 (2014).
- 783 12 Balachandran, S. *et al.* Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway. *J Virol* **74**, 1513-1523, doi:10.1128/jvi.74.3.1513-1523.2000 (2000).
- 784 13 Weiss, R. *et al.* Interleukin-24 inhibits influenza A virus replication in vitro through induction of toll-like receptor 3 dependent apoptosis. *Antiviral Res* **123**, 93-104, doi:10.1016/j.antiviral.2015.09.005 (2015).
- 785 14 Tate, M. D. *et al.* Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. *Sci Rep* **6**, 27912, doi:10.1038/srep27912 (2016).
- 786 15 Le Goffic, R. *et al.* Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. *PLoS Pathog* **2**, e53, doi:10.1371/journal.ppat.0020053 (2006).
- 787 16 Kidd, B. A., Peters, L. A., Schadt, E. E. & Dudley, J. T. Unifying immunology with informatics and multiscale biology. *Nat Immunol* **15**, 118-127, doi:10.1038/ni.2787 (2014).

- 818 17 Fong, L. E., Munoz-Rojas, A. R. & Miller-Jensen, K. Advancing systems immunology
819 through data-driven statistical analysis. *Curr Opin Biotechnol* **52**, 109-115,
820 doi:10.1016/j.copbio.2018.03.009 (2018).
- 821 18 Amit, I. *et al.* Unbiased reconstruction of a mammalian transcriptional network mediating
822 pathogen responses. *Science* **326**, 257-263, doi:10.1126/science.1179050 (2009).
- 823 19 Chasman, D. *et al.* Integrating Transcriptomic and Proteomic Data Using Predictive
824 Regulatory Network Models of Host Response to Pathogens. *PLoS Comput Biol* **12**,
825 e1005013, doi:10.1371/journal.pcbi.1005013 (2016).
- 826 20 McDermott, J. E. *et al.* The effect of inhibition of PP1 and TNFalpha signaling on
827 pathogenesis of SARS coronavirus. *BMC Syst Biol* **10**, 93, doi:10.1186/s12918-016-
828 0336-6 (2016).
- 829 21 Mitchell, H. D. *et al.* A network integration approach to predict conserved regulators
830 related to pathogenicity of influenza and SARS-CoV respiratory viruses. *PLoS One* **8**,
831 e69374, doi:10.1371/journal.pone.0069374 (2013).
- 832 22 Mitchell, H. D. *et al.* The Role of EGFR in Influenza Pathogenicity: Multiple Network-
833 Based Approaches to Identify a Key Regulator of Non-lethal Infections. *Front Cell Dev
834 Biol* **7**, 200, doi:10.3389/fcell.2019.00200 (2019).
- 835 23 Forst, C. V. *et al.* Integrative gene network analysis identifies key signatures, intrinsic
836 networks and host factors for influenza virus A infections. *NPJ Syst Biol Appl* **3**, 35,
837 doi:10.1038/s41540-017-0036-x (2017).
- 838 24 Gitter, A. & Bar-Joseph, Z. Identifying proteins controlling key disease signaling
839 pathways. *Bioinformatics* **29**, i227-236, doi:10.1093/bioinformatics/btt241 (2013).
- 840 25 Jain, S., Gitter, A. & Bar-Joseph, Z. Multitask learning of signaling and regulatory
841 networks with application to studying human response to flu. *PLoS Comput Biol* **10**,
842 e1003943, doi:10.1371/journal.pcbi.1003943 (2014).
- 843 26 Yu, H., Kim, P. M., Sprecher, E., Trifonov, V. & Gerstein, M. The importance of
844 bottlenecks in protein networks: correlation with gene essentiality and expression
845 dynamics. *PLoS Comput Biol* **3**, e59, doi:10.1371/journal.pcbi.0030059 (2007).
- 846 27 Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of
847 systems-level datasets. *Nat Commun* **10**, 1523, doi:10.1038/s41467-019-09234-6
848 (2019).
- 849 28 Pleschka, S. *et al.* Influenza virus propagation is impaired by inhibition of the
850 Raf/MEK/ERK signalling cascade. *Nat Cell Biol* **3**, 301-305, doi:10.1038/35060098
851 (2001).
- 852 29 He, Y. *et al.* Influenza A virus replication induces cell cycle arrest in G0/G1 phase. *J Virol*
853 **84**, 12832-12840, doi:10.1128/JVI.01216-10 (2010).
- 854 30 Hrincius, E. R. *et al.* CRK adaptor protein expression is required for efficient replication
855 of avian influenza A viruses and controls JNK-mediated apoptotic responses. *Cell
856 Microbiol* **12**, 831-843, doi:10.1111/j.1462-5822.2010.01436.x (2010).
- 857 31 Zhang, J. *et al.* Role of c-Jun terminal kinase (JNK) activation in influenza A virus-
858 induced autophagy and replication. *Virology* **526**, 1-12, doi:10.1016/j.virol.2018.09.020
859 (2019).
- 860 32 Matikainen, S. *et al.* Tumor necrosis factor alpha enhances influenza A virus-induced
861 expression of antiviral cytokines by activating RIG-I gene expression. *J Virol* **80**, 3515-
862 3522, doi:10.1128/JVI.80.7.3515-3522.2006 (2006).
- 863 33 Veckman, V. *et al.* TNF-alpha and IFN-alpha enhance influenza-A-virus-induced
864 chemokine gene expression in human A549 lung epithelial cells. *Virology* **345**, 96-104,
865 doi:10.1016/j.virol.2005.09.043 (2006).

- 866 34 Feng, W. *et al.* Influenza a virus NS1 protein induced A20 contributes to viral replication
867 by suppressing interferon-induced antiviral response. *Biochem Biophys Res Commun*
868 **482**, 1107-1113, doi:10.1016/j.bbrc.2016.11.166 (2017).
- 869 35 Maelfait, J. *et al.* A20 (Tnfaip3) deficiency in myeloid cells protects against influenza A
870 virus infection. *PLoS Pathog* **8**, e1002570, doi:10.1371/journal.ppat.1002570 (2012).
- 871 36 Onose, A. *et al.* An inhibitory effect of A20 on NF-kappaB activation in airway epithelium
872 upon influenza virus infection. *Eur J Pharmacol* **541**, 198-204,
873 doi:10.1016/j.ejphar.2006.03.073 (2006).
- 874 37 Xia, Z. *et al.* Inducible TAP1 Negatively Regulates the Antiviral Innate Immune
875 Response by Targeting the TAK1 Complex. *J Immunol* **198**, 3690-3704,
876 doi:10.4049/jimmunol.1601588 (2017).
- 877 38 Wang, Y. *et al.* Mitochondria-localised ZNFX1 functions as a dsRNA sensor to initiate
878 antiviral responses through MAVS. *Nat Cell Biol* **21**, 1346-1356, doi:10.1038/s41556-
879 019-0416-0 (2019).
- 880 39 Ouyang, W. *et al.* NMI Facilitates Influenza A Virus Infection by Promoting Degradation
881 of IRF7 through TRIM21. *Am J Respir Cell Mol Biol* **65**, 30-40, doi:10.1165/rcmb.2020-
882 0391OC (2021).
- 883 40 Watanabe, T. *et al.* Influenza virus-host interactome screen as a platform for antiviral
884 drug development. *Cell Host Microbe* **16**, 795-805, doi:10.1016/j.chom.2014.11.002
885 (2014).
- 886 41 Pohl, M. O. *et al.* Identification of Polo-like kinases as potential novel drug targets for
887 influenza A virus. *Sci Rep* **7**, 8629, doi:10.1038/s41598-017-08942-7 (2017).
- 888 42 Slaine, P. D., Kleer, M., Smith, N. K., Khaperskyy, D. A. & McCormick, C. Stress
889 Granule-Inducing Eukaryotic Translation Initiation Factor 4A Inhibitors Block Influenza A
890 Virus Replication. *Viruses* **9**, doi:10.3390/v9120388 (2017).
- 891 43 Yanguze, E. *et al.* Functional impairment of eIF4A and eIF4G factors correlates with
892 inhibition of influenza virus mRNA translation. *Virology* **413**, 93-102,
893 doi:10.1016/j.virol.2011.02.012 (2011).
- 894 44 Konig, R. *et al.* Human host factors required for influenza virus replication. *Nature* **463**,
895 813-817, doi:10.1038/nature08699 (2010).
- 896 45 Qu, H. *et al.* Influenza A Virus-induced expression of ISG20 inhibits viral replication by
897 interacting with nucleoprotein. *Virus Genes* **52**, 759-767, doi:10.1007/s11262-016-1366-
898 2 (2016).
- 899 46 Li, W. *et al.* Differential suppressive effect of promyelocytic leukemia protein on the
900 replication of different subtypes/strains of influenza A virus. *Biochem Biophys Res
901 Commun* **389**, 84-89, doi:10.1016/j.bbrc.2009.08.091 (2009).
- 902 47 Ahn, K. S. & Aggarwal, B. B. Transcription factor NF-kappaB: a sensor for smoke and
903 stress signals. *Ann N Y Acad Sci* **1056**, 218-233, doi:10.1196/annals.1352.026 (2005).
- 904 48 Menachery, V. D. *et al.* Pathogenic influenza viruses and coronaviruses utilize similar
905 and contrasting approaches to control interferon-stimulated gene responses. *MBio* **5**,
906 e01174-01114, doi:10.1128/mBio.01174-14 (2014).
- 907 49 Menachery, V. D. *et al.* MERS-CoV and H5N1 influenza virus antagonize antigen
908 presentation by altering the epigenetic landscape. *Proc Natl Acad Sci U S A* **115**, E1012-
909 E1021, doi:10.1073/pnas.1706928115 (2018).
- 910 50 Tripathi, S. *et al.* Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a
911 Role for UBR4 in Virus Budding. *Cell Host Microbe* **18**, 723-735,
912 doi:10.1016/j.chom.2015.11.002 (2015).
- 913 51 Halfmann, P. *et al.* Generation of biologically contained Ebola viruses. *Proc Natl Acad
914 Sci U S A* **105**, 1129-1133, doi:10.1073/pnas.0708057105 (2008).

- 915 52 Derjuga, A. *et al.* Complexity of CNC transcription factors as revealed by gene targeting
916 of the Nrf3 locus. *Mol Cell Biol* **24**, 3286-3294, doi:10.1128/mcb.24.8.3286-3294.2004
917 (2004).
- 918 53 Fairfax, B. P. *et al.* Innate immune activity conditions the effect of regulatory variants
919 upon monocyte gene expression. *Science* **343**, 1246949, doi:10.1126/science.1246949
920 (2014).
- 921 54 Lee, M. N. *et al.* Common genetic variants modulate pathogen-sensing responses in
922 human dendritic cells. *Science* **343**, 1246980, doi:10.1126/science.1246980 (2014).
- 923 55 Zhu, M., John, S., Berg, M. & Leonard, W. J. Functional association of Nmi with Stat5
924 and Stat1 in IL-2- and IFNgamma-mediated signaling. *Cell* **96**, 121-130,
925 doi:10.1016/s0092-8674(00)80965-4 (1999).
- 926 56 Xiahou, Z. *et al.* NMI and IFP35 serve as proinflammatory DAMPs during cellular
927 infection and injury. *Nat Commun* **8**, 950, doi:10.1038/s41467-017-00930-9 (2017).
- 928 57 Garcia-Areas, R., Libreros, S. & Iragavarapu-Charyulu, V. Semaphorin7A: branching
929 beyond axonal guidance and into immunity. *Immunol Res* **57**, 81-85,
930 doi:10.1007/s12026-013-8460-5 (2013).
- 931 58 Bury, M. *et al.* NFE2L3 Controls Colon Cancer Cell Growth through Regulation of DUX4,
932 a CDK1 Inhibitor. *Cell Rep* **29**, 1469-1481 e1469, doi:10.1016/j.celrep.2019.09.087
933 (2019).
- 934 59 Majer, O., Liu, B., Kreuk, L. S. M., Krogan, N. & Barton, G. M. UNC93B1 recruits
935 syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. *Nature* **575**, 366-370,
936 doi:10.1038/s41586-019-1612-6 (2019).
- 937 60 Saliba, J. *et al.* Loss of NFE2L3 protects against inflammation-induced colorectal cancer
938 through modulation of the tumor microenvironment. *Oncogene* **41**, 1563-1575,
939 doi:10.1038/s41388-022-02192-2 (2022).
- 940 61 Castellano, F. & Molinier-Frenkel, V. An Overview of L-Amino Acid Oxidase Functions
941 from Bacteria to Mammals: Focus on the Immunoregulatory Phenylalanine Oxidase
942 IL4I1. *Molecules* **22**, doi:10.3390/molecules22122151 (2017).
- 943 62 Papaspyridonos, M. *et al.* Id1 suppresses anti-tumour immune responses and promotes
944 tumour progression by impairing myeloid cell maturation. *Nat Commun* **6**, 6840,
945 doi:10.1038/ncomms7840 (2015).
- 946 63 Cibrian, D. & Sanchez-Madrid, F. CD69: from activation marker to metabolic gatekeeper.
947 *Eur J Immunol* **47**, 946-953, doi:10.1002/eji.201646837 (2017).
- 948 64 Liu, H. *et al.* Ubiquitin-like protein 3 (UBL3) is required for MARCH ubiquitination of
949 major histocompatibility complex class II and CD86. *Nat Commun* **13**, 1934,
950 doi:10.1038/s41467-022-29524-w (2022).
- 951 65 Bostik, P., Dodd, G. L., Villinger, F., Mayne, A. E. & Ansari, A. A. Dysregulation of the
952 polo-like kinase pathway in CD4+ T cells is characteristic of pathogenic simian
953 immunodeficiency virus infection. *J Virol* **78**, 1464-1472, doi:10.1128/jvi.78.3.1464-
954 1472.2004 (2004).
- 955 66 Siegenthaler, B. *et al.* Nrf3 promotes UV-induced keratinocyte apoptosis through
956 suppression of cell adhesion. *Cell Death Differ* **25**, 1749-1765, doi:10.1038/s41418-018-
957 0074-y (2018).
- 958 67 Nowsheen, S. *et al.* L3MBTL2 orchestrates ubiquitin signalling by dictating the
959 sequential recruitment of RNF8 and RNF168 after DNA damage. *Nat Cell Biol* **20**, 455-
960 464, doi:10.1038/s41556-018-0071-x (2018).
- 961 68 Xie, S. *et al.* Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at
962 least in part via the p53 pathway. *J Biol Chem* **276**, 43305-43312,
963 doi:10.1074/jbc.M106050200 (2001).

- 964 69 Feng, X. *et al.* ATR inhibition potentiates ionizing radiation-induced interferon response
965 via cytosolic nucleic acid-sensing pathways. *EMBO J* **39**, e104036,
966 doi:10.15252/embj.2019104036 (2020).
- 967 70 Hartlova, A. *et al.* DNA damage primes the type I interferon system via the cytosolic
968 DNA sensor STING to promote anti-microbial innate immunity. *Immunity* **42**, 332-343,
969 doi:10.1016/j.jimmuni.2015.01.012 (2015).
- 970 71 Gehrke, N. *et al.* Oxidative damage of DNA confers resistance to cytosolic nuclease
971 TREX1 degradation and potentiates STING-dependent immune sensing. *Immunity* **39**,
972 482-495, doi:10.1016/j.jimmuni.2013.08.004 (2013).
- 973 72 Ding, S. *et al.* STAG2 deficiency induces interferon responses via cGAS-STING pathway
974 and restricts virus infection. *Nat Commun* **9**, 1485, doi:10.1038/s41467-018-03782-z
975 (2018).
- 976 73 Guo, G. *et al.* Reciprocal regulation of RIG-I and XRCC4 connects DNA repair with RIG-I
977 immune signaling. *Nat Commun* **12**, 2187, doi:10.1038/s41467-021-22484-7 (2021).
- 978 74 Li, C. *et al.* Host regulatory network response to infection with highly pathogenic H5N1
979 avian influenza virus. *J Virol* **85**, 10955-10967, doi:10.1128/JVI.05792-11 (2011).
- 980 75 Hill-Batorski, L., Halfmann, P., Neumann, G. & Kawaoka, Y. The cytoprotective enzyme
981 heme oxygenase-1 suppresses Ebola virus replication. *J Virol* **87**, 13795-13802,
982 doi:10.1128/JVI.02422-13 (2013).
- 983 76 Neumann, G. *et al.* Generation of influenza A viruses entirely from cloned cDNAs. *Proc
984 Natl Acad Sci U S A* **96**, 9345-9350, doi:10.1073/pnas.96.16.9345 (1999).
- 985 77 Watanabe, T., Watanabe, S., Kim, J. H., Hatta, M. & Kawaoka, Y. Novel approach to the
986 development of effective H5N1 influenza A virus vaccines: use of M2 cytoplasmic tail
987 mutants. *J Virol* **82**, 2486-2492, doi:10.1128/JVI.01899-07 (2008).
- 988 78 Eisfeld, A. J., Neumann, G. & Kawaoka, Y. Influenza A virus isolation, culture and
989 identification. *Nat Protoc* **9**, 2663-2681, doi:10.1038/nprot.2014.180 (2014).
- 990 79 Li, C., Hatta, M., Watanabe, S., Neumann, G. & Kawaoka, Y. Compatibility among
991 polymerase subunit proteins is a restricting factor in reassortment between equine H7N7
992 and human H3N2 influenza viruses. *J Virol* **82**, 11880-11888, doi:10.1128/JVI.01445-08
993 (2008).
- 994 80 Scobey, T. *et al.* Reverse genetics with a full-length infectious cDNA of the Middle East
995 respiratory syndrome coronavirus. *Proc Natl Acad Sci U S A* **110**, 16157-16162,
996 doi:10.1073/pnas.1311542110 (2013).
- 997 81 Beasley, D. W. *et al.* Envelope protein glycosylation status influences mouse
998 neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. *J Virol* **79**, 8339-
999 8347, doi:10.1128/JVI.79.13.8339-8347.2005 (2005).
- 1000 82 Anishchenko, M. *et al.* Generation and characterization of closely related epizootic and
1001 enzootic infectious cDNA clones for studying interferon sensitivity and emergence
1002 mechanisms of Venezuelan equine encephalitis virus. *J Virol* **78**, 1-8,
1003 doi:10.1128/jvi.78.1.1-8.2004 (2004).
- 1004 83 Liljestrom, P., Lusa, S., Huylebroeck, D. & Garoff, H. In vitro mutagenesis of a full-length
1005 cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein
1006 modulates virus release. *J Virol* **65**, 4107-4113 (1991).
- 1007 84 Ge, Q. *et al.* RNA interference of influenza virus production by directly targeting mRNA
1008 for degradation and indirectly inhibiting all viral RNA transcription. *Proc Natl Acad Sci U
1009 S A* **100**, 2718-2723, doi:10.1073/pnas.0437841100 (2003).
- 1010 85 Eisfeld, A. J., Kawakami, E., Watanabe, T., Neumann, G. & Kawaoka, Y. RAB11A is
1011 essential for transport of the influenza virus genome to the plasma membrane. *J Virol*
1012 **85**, 6117-6126, doi:10.1128/JVI.00378-11 (2011).

- 1013 86 Carette, J. E. *et al.* Ebola virus entry requires the cholesterol transporter Niemann-Pick
1014 C1. *Nature* **477**, 340-343, doi:10.1038/nature10348 (2011).
1015 87 Cote, M. *et al.* Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola
1016 virus infection. *Nature* **477**, 344-348, doi:10.1038/nature10380 (2011).
1017

1018 **FIGURE LEGENDS**

1019 **Figure 1. Attributes of high-ranked HB genes.** (a) The panel depicts spatial organization of a
1020 simple transcriptional association network example, including 'hub' nodes (with a high number
1021 of associated edges), 'bottleneck' nodes (with a high number of shortest paths between all pairs
1022 of nodes passing through them), and 'HB nodes' (with both hub-like and bottleneck-like
1023 characteristics). (b) For 50 high-ranked HB genes (**Supplementary Table 1a**), the graph shows
1024 representative enriched functional terms and enrichment scores ($-\log_{10} p$ -values) determined
1025 by the web-based Metascape tool (also see **Supplementary Table 1c**). The number of genes
1026 comprising each enriched functional term is indicated above each bar on the graph. (c) The
1027 panel shows individual functions of high-ranked HB genes (if known) (**top**) and their expression
1028 in Calu-3 cells infected with pH1N1 (A/California/04/2009) or H5N1 (A/Vietnam/1203/2004)
1029 (**bottom**) (also see **Supplementary Table 1e**). HB genes were assigned to expression clusters
1030 (C1, C2, C3, C4, or C5), defined by trajectories of expression (significant upregulation or
1031 downregulation) in pH1N1 and H5N1 infections, and cluster membership is indicated by the
1032 colored bars above the function and expression sub-panels. HB gene ranks (**Supplementary**
1033 **Table 1a**) are shown between the function and expression sub-panels, and a heat map key is
1034 given at the bottom left.

1035

1036 **Figure 2. An RNAi screen to discover HB genes that regulate influenza virus growth.** (a)
1037 The panel provides an overview of our siRNA-based strategy to perturb HB gene expression
1038 (**left**), and the phenotypic assays performed in siRNA-treated cells (**right**). (b) Graphs show
1039 pH1N1 (A/Oklahoma/VIR09-1170038L3/2009) (**left**) or H5N1 (A/Vietnam/1203/2004) (**right**)
1040 virus titers in A549 cells treated with negative control siRNA (neg) or an siRNA targeting the
1041 influenza nucleoprotein (NP) mRNA. Mean titers of negative control and NP siRNA-treated cells
1042 were compared by using a two-tailed, unpaired t-test with Welch's correction, and the resultant

1043 *p*-values are indicated on the graphs. The data in the left and right panels represent 9 and 7
1044 independent experiments, respectively. (c) Volcano scatter plots depict log₂-transformed mean
1045 virus titer ratios (x-axis) versus (—) log₁₀ *p*-values (y-axis) for cells treated with siRNAs targeting
1046 50 high-ranked HB genes (2-4 siRNAs per gene) and assayed (in triplicate) for effects on
1047 pH1N1 (**left**) or H5N1 (**right**) virus growth (**Supplementary Table 2a**). To determine ratios, we
1048 compared mean titer values for HB gene siRNA- and negative control siRNA-treated cells, and
1049 *p*-values were calculated by using by using two-tailed, unpaired t-tests. In each plot, a data point
1050 represents the outcome for a single HB gene siRNA, the shaded areas demarcate \pm 5-fold
1051 change in virus titer, and a solid horizontal line indicates *p* = 0.05. Each siRNA was evaluated in
1052 one experiment for each virus, and complete datasets were collected in a series of 5 and 3
1053 independent experiments for pH1N1 and H5N1, respectively, and pooled to generate the plots.
1054 (d) The graphs summarize hit genes in pH1N1 (**left**) and H5N1 (**right**) virus growth assays,
1055 identified as described in **Supplementary Table 2b** by using the data shown in panel (c). Blue
1056 or red data points represent mean titer ratios for each individual siRNA contributing to the hit
1057 phenotype (derived from 2-4 siRNAs per HB gene and 3 replicate values per siRNA), gray bars
1058 represent grand mean titer ratios, and vertical connectors show the siRNA effect range. Hits are
1059 grouped according to expression clusters described in **Fig. 1c**, with cluster membership
1060 indicated at the top of the graph and a key shown at the right. fc, fold change. (e) We evaluated
1061 siRNAs targeting 9 low-ranked HB genes in pH1N1 and H5N1 virus growth assays and
1062 identified hit genes exactly as described for high-ranked HB genes. Volcano scatter plots
1063 (representing pooled data from 4 experiments for each virus) and the hit gene summary graph
1064 are presented as described in panels (c) and (d). (f) The graph shows the distribution of hits
1065 and non-hits for high- and low-ranked HB genes in the pH1N1 virus growth assay. The
1066 distributions were compared by using a one-sided Fisher's Exact test, and the resultant *p*-value
1067 is shown on the panel.

1068

1069 **Figure 3. Complementary RNAi screens to identify HB genes that regulate cell**
1070 **autonomous innate immune signaling.** We used siRNAs to perturb HB gene expression in
1071 luciferase reporter cell lines and then measured luciferase activity (relative light units, RLU) after
1072 stimulation. We used poly(I:C) to stimulate A549-IFNB1-Luc cells and TNF to stimulate A549-
1073 NF κ B-Luc cells. **(a)** Graphs show RLU values in A549-IFNB1-Luc (**left**) or A549-NF κ B-Luc
1074 (**right**) cells treated with control siRNAs and stimulated as described. Mean RLU values of cells
1075 treated with negative control siRNA (neg) and siRNA targeting expression of either *IRF3* or the
1076 *RELA* component of the NF κ B transcription factor were compared by using two-tailed, unpaired
1077 t-tests, and the resultant fold changes and *p*-values are indicated on the graphs. The data in the
1078 left and right panels each represent 4 independent experiments. **(b)** Volcano scatter plots depict
1079 log₂-transformed mean RLU ratios (x-axis) versus (—) log₁₀ *p*-values (y-axis) for reporter cells
1080 treated with siRNAs targeting 50 high-ranked HB genes (2-4 siRNAs per gene), stimulated as
1081 indicated, and assayed (in triplicate) for effects on IFNB1 (**left**) or NF κ B (**right**) activation
1082 (**Supplementary Table 3a** and **3b**). To determine ratios, we compared mean RLU values for
1083 HB gene siRNA- and negative control siRNA-treated cells, and *p*-values were calculated by
1084 using by using two-tailed, unpaired t-tests. In each plot, a data point represents the outcome for
1085 a single HB gene siRNA, the shaded areas demarcate \pm 1.6-fold change in RLU, and a solid
1086 horizontal line indicates *p* = 0.05. Each siRNA was evaluated in one experiment in each reporter
1087 cell line, and complete datasets were collected in a series of 4 independent experiments for
1088 each cell line and pooled to generate the plots. **(c)** Hit genes in the IFNB1 and NF κ B assays
1089 were identified as described in **Supplementary Table 3c** by using the data shown in panel **(b)**.
1090 The Venn diagram shows the number of high-ranked HB gene hits that overlap between
1091 pH1N1, IFNB1, and NF κ B assays (black text); and for pH1N1 hits, we designate the number of
1092 antiviral and pro-viral genes in pink and blue text, respectively (also see **Fig. 2d**). **(d)** The graph

1093 summarizes IFNB1 (green, **center**) and NF κ B (purple, **right**) hits and non-hits for high-ranked
1094 HB genes exhibiting antiviral activity in the pH1N1 assay (21 genes; for ease of reference, mean
1095 titer ratios from the pH1N1 assay [see **Fig. 2d**] are shown in blue at the **left**). Blue, green, and
1096 purple data points represent mean ratios for each individual siRNA contributing to the hit
1097 phenotype (derived from 2-4 siRNAs per HB gene and 3 replicate values per siRNA), bars
1098 represent grand mean ratios, and vertical connectors show the siRNA effect range. A ratio value
1099 of 0 indicates a non-hit in either the IFNB1 or NF κ B assays. Groups i—vi, (designated at the
1100 right) are discussed in the text of the **Results**. (e) & (f) Graphs show pooled RLU ratios of 293T
1101 cells ectopically expressing selected antiviral HB gene cDNAs along with pIFNB1-Luc or pISRE-
1102 Luc (3 independent experiments, 3 replicates per experiment) (e), or pNF κ B-Luc (2 independent
1103 experiments, 3 replicates per experiment) (f). Cells were stimulated as indicated on the figure
1104 panels. Bars represent the grand mean RLU ratios for all replicate values of each HB gene
1105 cDNA, with individual replicates shown by circular data points and the effect range for each hit
1106 gene indicated by the vertical connectors. Mean RLU values of the negative control (“Vector”)
1107 and HB gene cDNA-treated cells were compared by using ordinary one-way ANOVA with a
1108 multiplicity adjustment, and significant differences are indicated by asterisks on the figure
1109 panels.

1110

1111 **Figure 4. Effects of high-ranked HB genes on growth of diverse viruses.** (a) For a selected
1112 set of 18 high-ranked HB genes that regulate pH1N1 virus growth, we determined the effects of
1113 siRNA treatment on growth of four other viruses: an H3N2 influenza virus ('H3N2'), Ebola-
1114 Δ VP30 virus ('EBOV'), West Nile virus ('WNV'), and Middle East respiratory syndrome
1115 coronavirus ('M-CoV') (see **Supplementary Tables 4a** and **4b**). For each virus tested, the
1116 graph shows the number of hit genes with pro-viral or anti-viral effects and the number of non-
1117 hit genes with no effect on virus growth (hit selection criteria are described in **Supplementary**

1118 **Table 4c).** Corresponding numbers of pro-viral, antiviral, and non-hit genes from the pH1N1 and
1119 H5N1 siRNA screens (see **Supplementary Table 2a**) are given for comparison. **(b)** For each
1120 virus, the heat map shows the \log_2 mean virus titer ratio (versus negative control) for the active
1121 siRNA with the strongest effect on virus replication (a heat map key is given at the lower right). If
1122 none of the siRNAs targeting a single gene met the hit selection criteria (**Supplementary Table**
1123 **4c**), then the \log_2 mean virus titer ratio is represented as 0 (white) on the heat map. For H3N2,
1124 EBOV, and M-CoV, each siRNA was evaluated in triplicate in one experiment, and complete
1125 datasets were collected in a series of independent experiments (H3N2 and EBOV, 2
1126 independent experiments per virus; M-CoV, 5 independent experiments). For WNV, each siRNA
1127 was evaluated in two independent experiments with 3-4 replicates per experiment. Data from
1128 pH1N1 and H5N1 screens (see **Supplementary Table 2a**) are given for comparison. HB target
1129 genes are grouped according to the expression clusters identified in **Fig. 1c**, which are indicated
1130 by the colored bars at the left of the heat map and a key at the right.

1131

1132 **Figure 5. Influenza pathogenesis in *Nfe2l3* knockout mice.** **(a)** Groups of female wild-type
1133 (WT; n = 4) or *Nfe2l3* knockout (KO; n = 3) mice were inoculated with 10^4 pfu of influenza
1134 A/Oklahoma/VIR09-1170038L3/2009 (H1N1) and body weights were measured daily for 16
1135 days. The graph depicts the average body weights for each group (expressed as a percentage
1136 of the body weight at the start of the experiment), with variation represented by standard
1137 deviation. Group weight loss profiles were compared by using a mixed effects model with a
1138 Geisser-Greenhouse correction, which generated a *p*-value for the overall effects of *Nfe2l3*
1139 expression on mouse body weight loss, as well as *p*-values for effects observed at each time
1140 point (both are given on the figure panel). One *Nfe2l3* KO mouse succumbed to the infection at
1141 13 days post-inoculation. **(b)**—**(d)** Groups of female WT or *Nfe2l3* KO mice were inoculated with
1142 phosphate-buffered saline (PBS) or 10^4 pfu of influenza A/Oklahoma/VIR09-1170038L3/2009

1143 (H1N1) and euthanized on day 4 or day 8 post-inoculation for respiratory tissue collection (3
1144 mice were inoculated with PBS or influenza virus for each mouse strain at each time point).
1145 Panel **(b)** shows virus titers in nasal turbinate and lung tissues in pH1N1 infections; and panel
1146 **(c)** and **(d)** show CCL2 or IFN α expression, respectively, in lungs of PBS-treated or pH1N1-
1147 infected mice. Error bars represent standard deviation, and p -values were calculated by using
1148 unpaired, two-tailed t-tests, and significant values ($p < 0.05$) are indicated on the figure panels.
1149 ns, not significant. The data in panel **(a)** and panels **(b)**—**(d)** were collected in 2 independent
1150 experiments.

1151

1152 **Figure 6. Functional summary of high-ranked HB genes that consistently regulate**
1153 **influenza virus growth and cell autonomous innate immune signaling.** For high-ranked HB
1154 genes with pro-viral or antiviral activity that can be explained by effects on IFNB1 and/or NFkB
1155 activation we summarize expression in influenza virus-infected cells, cellular localization, effect
1156 on virus replication, and effects on antiviral and pro-inflammatory gene expression. HB genes
1157 centered on a single vertical gray bar have similar effects on IFNB1 and NFkB signaling. A key
1158 is provided at the right. Some HB gene proteins may exhibit additional subcellular localizations
1159 not shown in the figure. ER, endoplasmic reticulum.

1160 **SUPPLEMENTARY FIGURE LEGENDS**

1161 **Supplementary Figure 1. Attributes of low-ranked HB genes.** (a) For 22 low-ranked HB
1162 genes (**Supplementary Table 1b**), the graph shows representative enriched functional terms
1163 and enrichment scores ($-\log_{10} p$ -values) determined by the web-based Metascape tool (also
1164 see **Supplementary Table 1d**). (b) The panel shows individual functions of low-ranked HB
1165 genes (if known) (**top**) and their expression in Calu-3 cells infected with pH1N1
1166 (A/California/04/2009) or H5N1 (A/Vietnam/1203/2004) (**bottom**) (also see **Supplementary**
1167 **Table 1f**). HB gene expression clusters (C1, C2, C3, and C5; the same as those described for
1168 high-ranked HB genes (**Fig. 1c**)) are indicated above both the function and expression sub-
1169 panels, HB gene ranks (see **Supplementary Table 1a**) are shown between the sub-panels, and
1170 a heat map key is given at the bottom left.

1171

1172 **Supplementary Figure 2. H5N1 virus growth in cells transiently overexpressing high-**
1173 **ranked HB genes with antiviral activity against pH1N1.** (a) The panel depicts representative
1174 immunoblots of 293T cell lysates after transfection with an empty vector or plasmids expressing
1175 HB gene cDNAs carrying the Flag epitope tag (**left**) or lacking any epitope tag (**right**). Open
1176 circles indicate the full-length overexpressed protein for each HB gene (estimated molecular
1177 weights are provided in **Supplementary Table 5b**). Comparable results were observed in 4
1178 other independent experiments. (b) The panel shows the mean viability ratios of 293T cells
1179 transfected with plasmids expressing HB gene cDNAs or an empty vector (negative control). We
1180 used the luciferase-based Cell Titer Glo assay (Promega) to measure intracellular ATP levels
1181 and calculated ratios for each HB cDNA versus the empty vector. The plotted data represent
1182 pooled data from 3 independent experiments, each with 3 replicates per cDNA. (c) 293T cells
1183 transfected with plasmids expressing HB genes were inoculated with influenza
1184 A/Vietnam/1203/2004 (H5N1) at a multiplicity of infection of 0.0005, and supernatants were

1185 collected for virus titration by plaque assay at 24 h (**top**) or 48 h (**bottom**) post-infection. In both
1186 plots, individual replicate titer values (3 per cDNA at each time point) are represented by the red
1187 dots, gray bars show the mean titer, and variation is represented by standard deviation. At each
1188 time point, mean titers of cells transfected with HB cDNAs were compared to that of empty
1189 vector transfections by using ordinary one-way ANOVA, and significant *p*-values are indicated
1190 on the figure panels. All data shown in panel **(c)** were collected in one experiment. fc, fold
1191 change.

1192

1193 **Supplementary Figure 3. Generation and validation of type I IFN and NF κ B promoter**
1194 **reporter cell lines.** **(a)** and **(b)** depict generation and validation of A549-IFNB1-Luc or A549-
1195 NF κ B-Luc cell lines, respectively. In each panel, the left-most segment shows a conceptual
1196 overview of the promoter (PR)-reporter cassette and a simple flow chart of promoter stimulation
1197 and activation measurement. The graphs at the right show promoter activation levels (relative
1198 light units, RLU) in mock-stimulated or stimulated cell clones treated with non-targeting control
1199 siRNAs (black bars) or siRNAs targeting specific components of each signaling pathway
1200 (colored bars) (three replicates per siRNA treatment and stimulation condition). The data were
1201 collected in two independent experiments (one experiment per cell line). Mean RLU were
1202 compared by using unpaired, two-tailed Student's t-tests and *p*-values are indicated on the
1203 graphs. **(c)** Graphs show RLU values in unstimulated A549-IFNB1-Luc (**left**) or A549-NF κ B-Luc
1204 (**right**) cells treated with control siRNAs. Mean RLU values of cells treated with negative control
1205 siRNA (neg) and siRNA targeting either IRF3 or the RELA component of the NF κ B transcription
1206 factor were compared by using two-tailed, unpaired t-tests, and the resultant fold changes and
1207 *p*-values are indicated on the graphs. The data in the left and right panels each represent 4
1208 independent experiments. **(d)** Volcano scatter plots depict log₂-transformed mean RLU ratios (*x*-
1209 axis) versus (—) log₁₀ *p*-values (*y*-axis) for unstimulated reporter cells treated with siRNAs

1210 targeting 50 high-ranked HB genes (2-4 siRNAs per gene) and assayed (in triplicate) for effects
1211 on IFNB1 (**left**) or NF κ B (**right**) activation (**Supplementary Table 3a** and **3b**). To determine
1212 ratios, we compared mean RLU values for HB gene siRNA- and negative control siRNA-treated
1213 cells, and *p*-values were calculated by using two-tailed, unpaired t-tests. In each plot, a
1214 data point represents the outcome for a single HB gene siRNA, the shaded areas demarcate +/-
1215 1.6-fold change in RLU, and a solid horizontal line indicates *p* = 0.05. Each siRNA was
1216 evaluated in one experiment in each reporter cell line, and complete datasets were collected in
1217 a series of 4 independent experiments for each cell line and pooled to generate the plots.

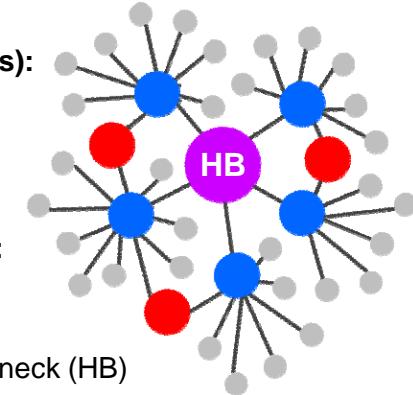
1218

1219 **LIST OF SUPPLEMENTARY TABLES**

- 1220 • **Supplementary Table 1. HB gene ranks, expression, and functional enrichment.**
- 1221 • **Supplementary Table 2. pH1N1 and H5N1 siRNA screening data and hit**
1222 **identification for high- and low-ranked HB genes.**
- 1223 • **Supplementary Table 3. A549-IFNB1-Luc or A549-NF κ B-Luc screening data and hit**
1224 **identification for high-ranked HB genes.**
- 1225 • **Supplementary Table 4. Other human virus siRNA screening data and hit**
1226 **identification for selected high-ranked HB genes.**
- 1227 • **Supplementary Table 5. Reagents (siRNAs, qRT-PCR primers, and cDNAs).**

Figure 1

a. Transcriptional Association Network

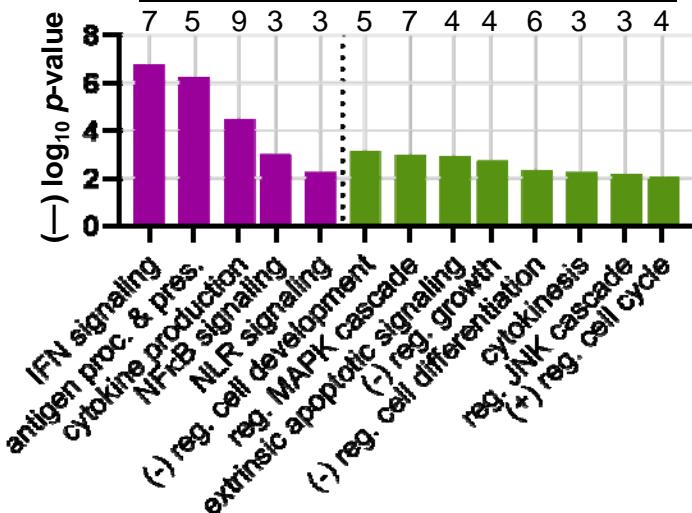

Simplified Example of a Sub-Network

Edges
(relationships):

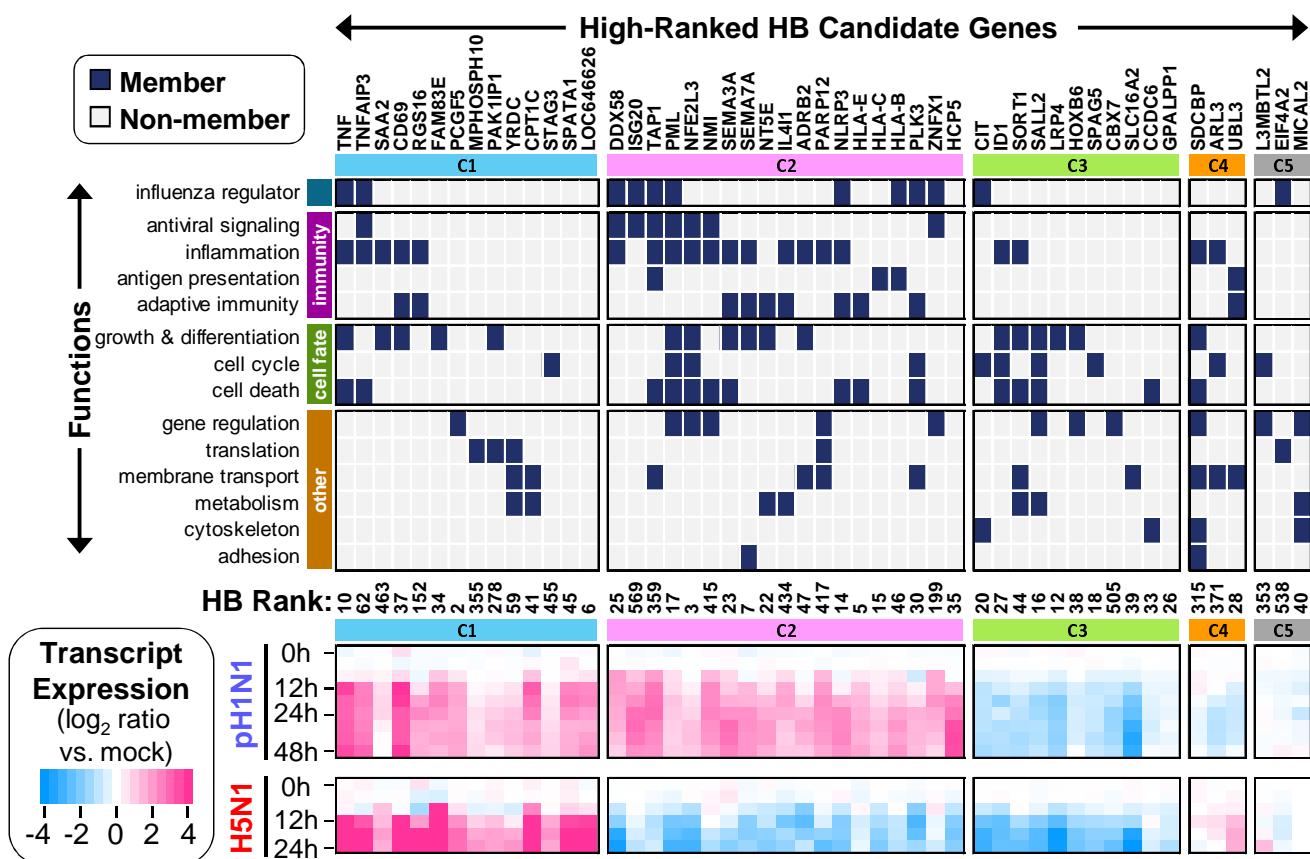
— related
expression

Nodes
(transcripts):

- Hub
- Bottleneck
- Hub-Bottleneck (HB)
- Neighbors



b. Functional Enrichment


High-Ranked HB Candidate Genes

■ innate immunity ■ cell fate

HB genes per functional term:

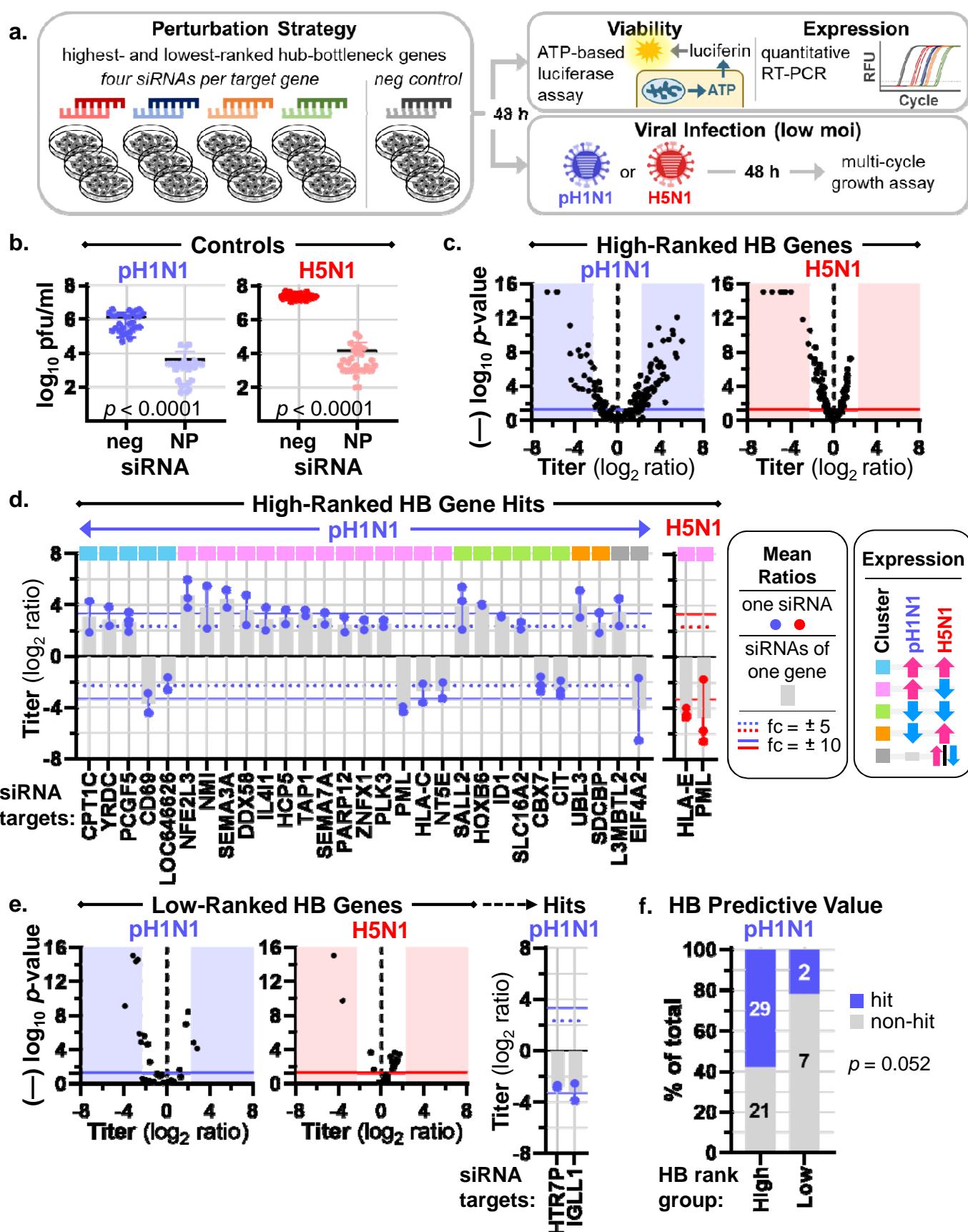

c.

Figure 1. Attributes of high-ranked HB genes.

- (a)** The panel depicts spatial organization of a simple transcriptional association network example, including 'hub' nodes (with a high number of associated edges), 'bottleneck' nodes (with a high number of shortest paths between all pairs of nodes passing through them), and 'HB nodes' (with both hub-like and bottleneck-like characteristics).
- (b)** For 50 high-ranked HB genes (**Supplementary Table 1a**), the graph shows representative enriched functional terms and enrichment scores ($-\log_{10}$ p-values) determined by the web-based Metascape software (also see **Supplementary Table 1c**). The number of genes comprising each enriched functional term is indicated above each bar on the graph.
- (c)** The panel shows individual functions of high-ranked HB genes (if known) (**top**) and their expression in Calu-3 cells infected with pH1N1 (A/California/04/2009) or H5N1 (A/Vietnam/1203/2004) (**bottom**) (also see **Supplementary Table 1e**). HB genes were assigned to expression clusters (C1, C2, C3, C4, or C5), defined by trajectories of expression (significant upregulation or downregulation) in pH1N1 and H5N1 infections, and cluster membership is indicated by the colored bars above the function and expression sub-panels. HB gene ranks (**Supplementary Table 1a**) are shown between the function and expression sub-panels, and a heat map key is given at the bottom left.

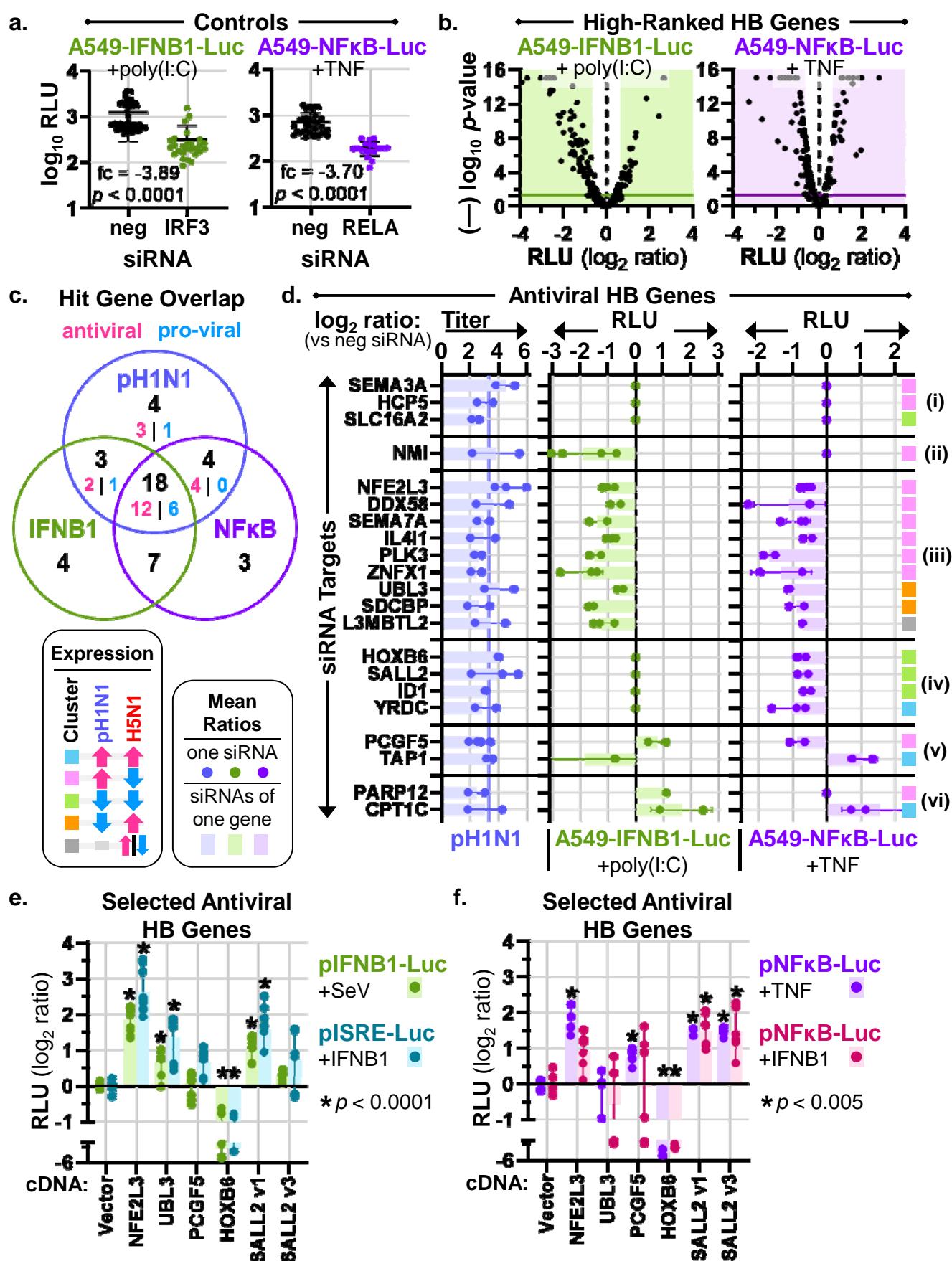

Figure 2

Figure 2. An RNAi screen to discover HB genes that regulate influenza virus growth.

- (a) The panel provides an overview of our siRNA-based strategy to perturb HB gene expression (**left**), and the phenotypic assays performed in siRNA-treated cells (**right**).
- (b) Graphs show pH1N1 (A/Oklahoma/VIR09-1170038L3/2009) (**left**) or H5N1 (A/Vietnam/1203/2004) (**right**) virus titers in A549 cells treated with negative control siRNA (neg) or an siRNA targeting the influenza nucleoprotein (NP) mRNA. Mean titers of negative control and NP siRNA-treated cells were compared by using a two-tailed, unpaired t-test with Welch's correction, and the resultant *p*-values are indicated on the graphs. The data in the left and right panels represent 9 and 7 independent experiments, respectively.
- (c) Volcano scatter plots depict \log_2 -transformed mean virus titer ratios (x-axis) versus (—) $\log_{10} p$ -values (y-axis) for cells treated with siRNAs targeting 50 high-ranked HB genes (2-4 siRNAs per gene) and assayed (in triplicate) for effects on pH1N1 (**left**) or H5N1 (**right**) virus growth (**Supplementary Table 2a**). To determine ratios, we compared mean titer values for HB gene siRNA- and negative control siRNA-treated cells, and *p*-values were calculated by using two-tailed, unpaired t-tests. In each plot, a data point represents the outcome for a single HB gene siRNA, the shaded areas demarcate \pm 5-fold change in virus titer, and a solid horizontal line indicates *p* = 0.05. Each siRNA was evaluated in one experiment for each virus, and complete datasets were collected in a series of 5 and 3 independent experiments for pH1N1 and H5N1, respectively, and pooled to generate the plots.
- (d) The graphs summarize hit genes in pH1N1 (**left**) and H5N1 (**right**) virus growth assays, identified as described in **Supplementary Table 2b** by using the data shown in panel (c). Blue or red data points represent mean titer ratios for each individual siRNA contributing to the hit phenotype (derived from 2-4 siRNAs per HB gene and 3 replicate values per siRNA), gray bars represent grand mean titer ratios, and vertical connectors show the siRNA effect range. Hits are grouped according to expression clusters described in **Fig. 1c**, with cluster membership indicated at the top of the graph and a key shown at the right. fc, fold change.
- (e) We evaluated siRNAs targeting 9 low-ranked HB genes in pH1N1 and H5N1 virus growth assays and identified hit genes exactly as described for high-ranked HB genes. Volcano scatter plots (representing pooled data from 4 experiments for each virus) and the hit gene summary graph are presented as described in panels (c) and (d).
- (f) The graph shows the distribution of hits and non-hits for high- and low-ranked HB genes in the pH1N1 virus growth assay. The distributions were compared by using a one-sided Fisher's Exact test, and the resultant *p*-value is shown on the panel.

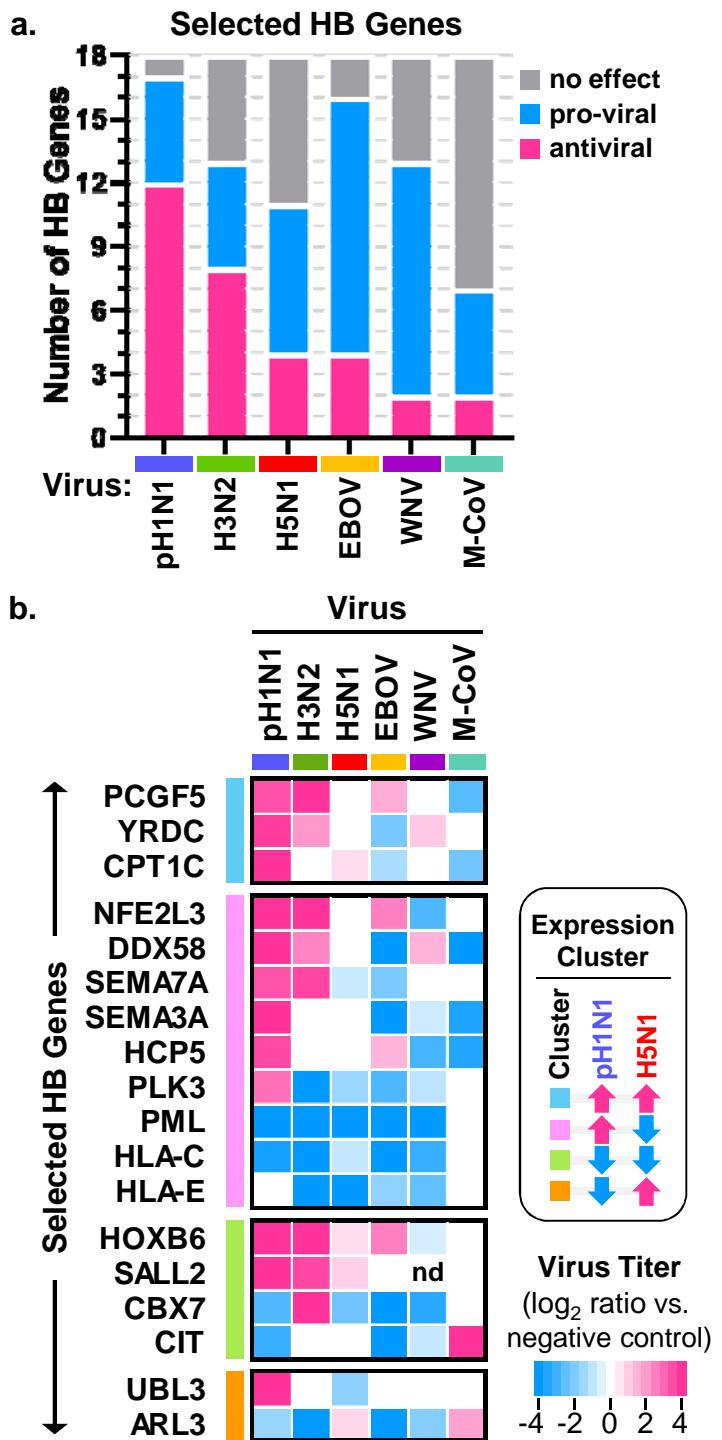

Figure 3

Figure 3. Complementary RNAi screens to identify HB genes that regulate cell autonomous innate immune signaling. We used siRNAs to perturb HB gene expression in luciferase reporter cell lines and then measured luciferase activity (relative light units, RLU) after stimulation. We used poly(I:C) to stimulate A549-IFNB1-Luc cells and TNF to stimulate A549-NF κ B-Luc cells.

- (a) Graphs show RLU values in A549-IFNB1-Luc (**left**) or A549-NF κ B-Luc (**right**) cells treated with control siRNAs and stimulated as described. Mean RLU values of cells treated with negative control siRNA (neg) and siRNA targeting expression of either *IRF3* or the *RELA* component of the NF κ B transcription factor were compared by using two-tailed, unpaired t-tests, and the resultant fold changes and *p*-values are indicated on the graphs. The data in the left and right panels each represent 4 independent experiments.
- (b) Volcano scatter plots depict log₂-transformed mean RLU ratios (x-axis) versus (—) log₁₀ *p*-values (y-axis) for reporter cells treated with siRNAs targeting 50 high-ranked HB genes (2-4 siRNAs per gene), stimulated as indicated, and assayed (in triplicate) for effects on IFNB1 (**left**) or NF κ B (**right**) activation (**Supplementary Table 3a** and **3b**). To determine ratios, we compared mean RLU values for HB gene siRNA- and negative control siRNA-treated cells, and *p*-values were calculated by using two-tailed, unpaired t-tests. In each plot, a data point represents the outcome for a single HB gene siRNA, the shaded areas demarcate \pm 1.6-fold change in RLU, and a solid horizontal line indicates *p* = 0.05. Each siRNA was evaluated in one experiment in each reporter cell line, and complete datasets were collected in a series of 4 independent experiments for each cell line and pooled to generate the plots.
- (c) Hit genes in the IFNB1 and NF κ B assays were identified as described in **Supplementary Table 3c** by using the data shown in panel (b). The Venn diagram shows the number of high-ranked HB gene hits that overlap between pH1N1, IFNB1, and NF κ B assays (black text); and for pH1N1 hits, we designate the number of antiviral and pro-viral genes in pink and blue text, respectively (also see **Fig. 2d**).
- (d) The graph summarizes IFNB1 (green, **center**) and NF κ B (purple, **right**) hits and non-hits for high-ranked HB genes exhibiting antiviral activity in the pH1N1 assay (21 genes; for ease of reference, mean titer ratios from the pH1N1 assay [see **Fig. 2d**] are shown in blue at the **left**). Blue, green, and purple data points represent mean ratios for each individual siRNA contributing to the hit phenotype (derived from 2-4 siRNAs per HB gene and 3 replicate values per siRNA), bars represent grand mean ratios, and vertical connectors show the siRNA effect range. A ratio value of 0 indicates a non-hit in either the IFNB1 or NF κ B assays. Groups i—vi, (designated at the right) are discussed in the text of the **Results**.
- (e) & (f) Graphs show pooled RLU ratios of 293T cells ectopically expressing selected antiviral HB gene cDNAs along with pIFNB1-Luc or pISRE-Luc (3 independent experiments, 3 replicates per experiment) (e), or pNF κ B-Luc (2 independent experiments, 3 replicates per experiment) (f). Cells were stimulated as indicated on the figure panels. Bars represent the grand mean RLU ratios for all replicate values of each HB gene cDNA, with individual replicates shown by circular data points and the effect range for each hit gene indicated by the vertical connectors. Mean RLU values of the negative control (“Vector”) and HB gene cDNA-treated cells were compared by using ordinary one-way ANOVA with a multiplicity adjustment, and significant differences are indicated by asterisks on the figure panels.

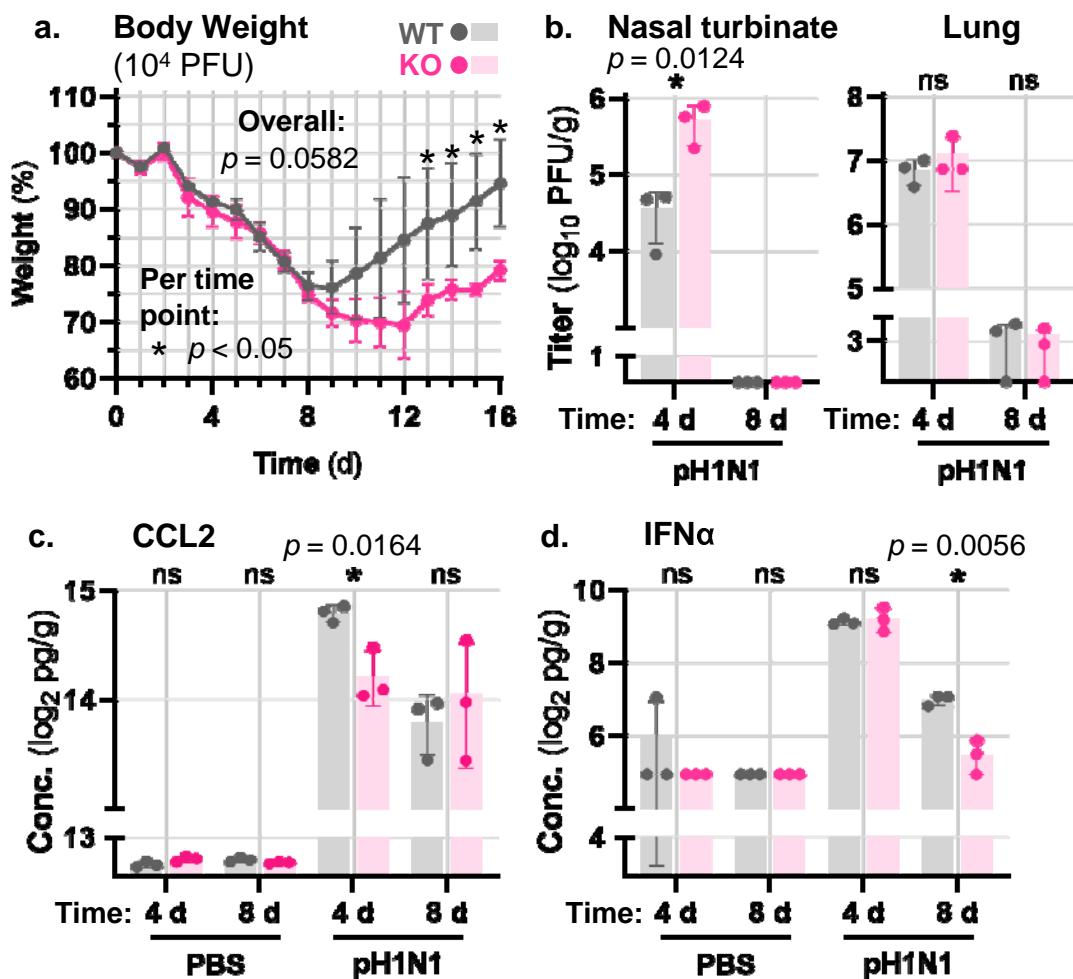
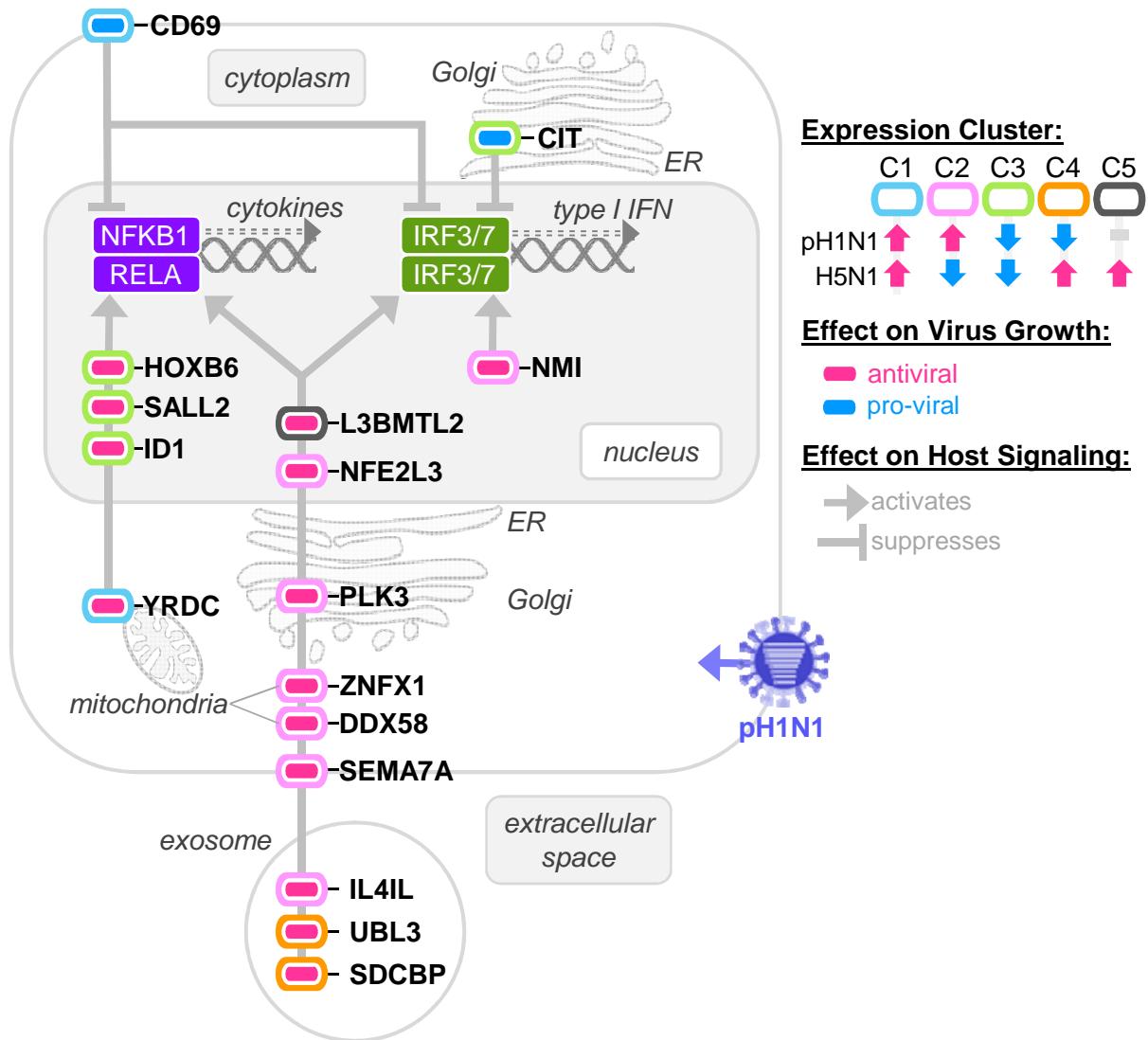

Figure 4

Figure 4. Effects of high-ranked HB genes on growth of diverse viruses.

- (a)** For a selected set of 18 high-ranked HB genes that regulate pH1N1 virus growth, we determined the effects of siRNA treatment on growth of four other viruses: an H3N2 influenza virus ('H3N2'), Ebola-ΔVP30 virus ('EBOV'), West Nile virus ('WNV'), and Middle East respiratory syndrome coronavirus ('M-CoV') (see **Supplementary Tables 4a** and **4b**). For each virus tested, the graph shows the number of hit genes with pro-viral or anti-viral effects and the number of non-hit genes with no effect on virus growth (hit selection criteria are described in **Supplementary Table 4c**). Corresponding numbers of pro-viral, antiviral, and non-hit genes from the pH1N1 and H5N1 siRNA screens (see **Supplementary Table 2a**) are given for comparison.
- (b)** For each virus, the heat map shows the \log_2 mean virus titer ratio (versus negative control) for the active siRNA with the strongest effect on virus replication (a heat map key is given at the lower right). If none of the siRNAs targeting a single gene met the hit selection criteria (**Supplementary Table 4c**), then the \log_2 mean virus titer ratio is represented as 0 (white) on the heat map. For H3N2, EBOV, and M-CoV, each siRNA was evaluated in triplicate in one experiment, and complete datasets were collected in a series of independent experiments (H3N2 and EBOV, 2 independent experiments per virus; M-CoV, 5 independent experiments). For WNV, each siRNA was evaluated in two independent experiments with 3-4 replicates per experiment. Data from pH1N1 and H5N1 screens (see **Supplementary Table 2a**) are given for comparison. HB target genes are grouped according to the expression clusters identified in **Fig. 1c**, which are indicated by the colored bars at the left of the heat map and a key at the right.

Figure 5


Figure 5. Influenza pathogenesis in *Nfe2/3* knockout mice.

(a) Groups of female wild-type (WT; n = 4) or *Nfe2/3* knockout (KO; n = 3) mice were inoculated with 10⁴ pfu of influenza A/Oklahoma/VIR09-1170038L3/2009 (H1N1) and body weights were measured daily for 16 days. The graph depicts the average body weights for each group (expressed as a percentage of the body weight at the start of the experiment), with variation represented by standard deviation. Group weight loss profiles were compared by using a mixed effects model with a Geisser-Greenhouse correction, which generated a p-value for the overall effects of *Nfe2/3* expression on mouse body weight loss, as well as p-values for effects observed at each time point (both are given on the figure panel). One *Nfe2/3* KO mouse succumbed to the infection at 13 days post-inoculation.

(b)—(d) Groups of female WT or *Nfe2/3* KO mice were inoculated with phosphate-buffered saline (PBS) or 10⁴ pfu of influenza A/Oklahoma/VIR09-1170038L3/2009 (H1N1) and euthanized on day 4 or day 8 post-inoculation for respiratory tissue collection (3 mice were inoculated with PBS or influenza virus for each mouse strain at each time point). Panel **(b)** shows virus titers in nasal turbinate and lung tissues in pH1N1 infections; and panel **(c)** and **(d)** show CCL2 or IFNa expression, respectively, in lungs of PBS-treated or pH1N1-infected mice. Error bars represent standard deviation, and p-values were calculated by using unpaired, two-tailed t-tests, and significant values (p < 0.05) are indicated on the figure panels. ns, not significant.

The data in panel **(a)** and panels **(b)—(d)** were collected in 2 independent experiments.

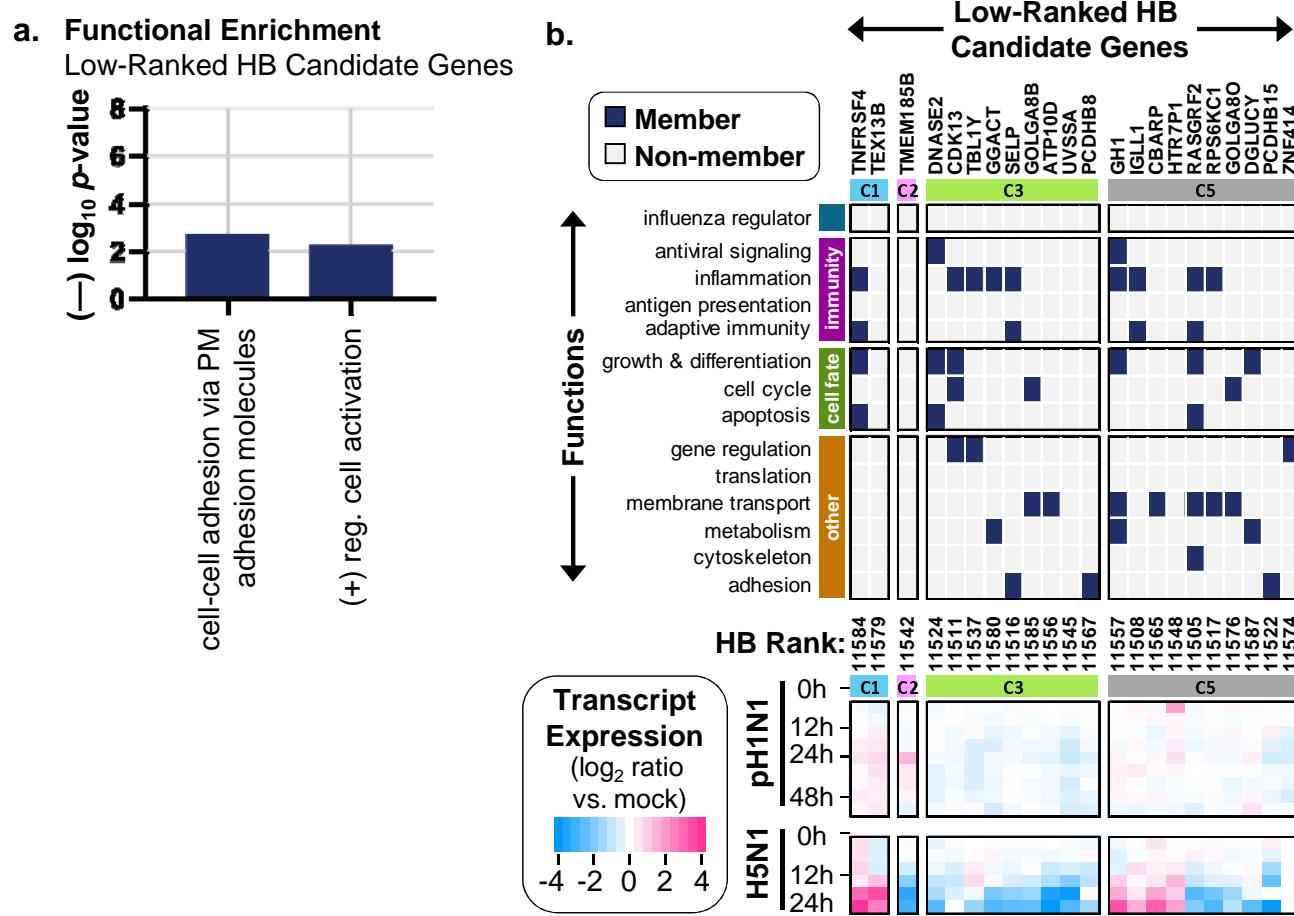
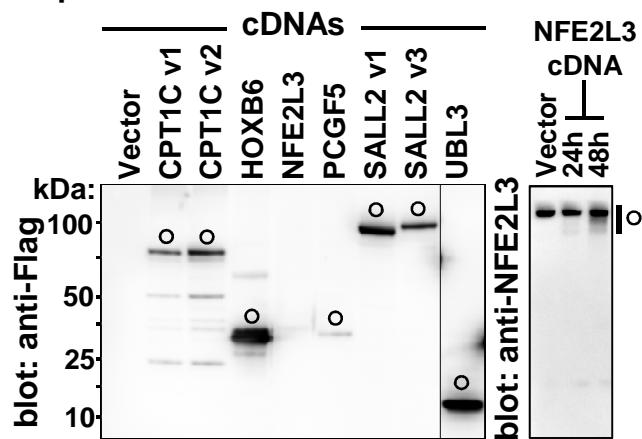

Figure 6

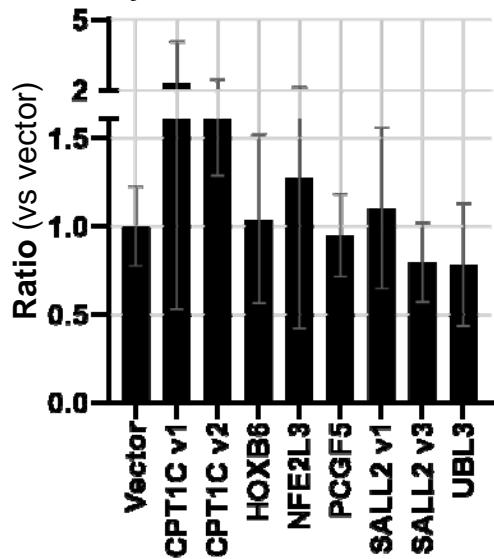
Figure 6. Functional summary of high-ranked HB genes that consistently regulate influenza virus growth and cell autonomous innate immune signaling.

For high-ranked HB genes with pro-viral or antiviral activity that can be explained by effects on IFNB1 and/or NFkB activation we summarize expression in influenza virus-infected cells, cellular localization, effect on virus replication, and effects on antiviral and pro-inflammatory gene expression. HB genes centered on a single vertical gray bar have similar effects on IFNB1 and NFkB signaling. A key is provided at the right. Some HB gene proteins may exhibit additional subcellular localizations not shown in the figure. ER, endoplasmic reticulum.

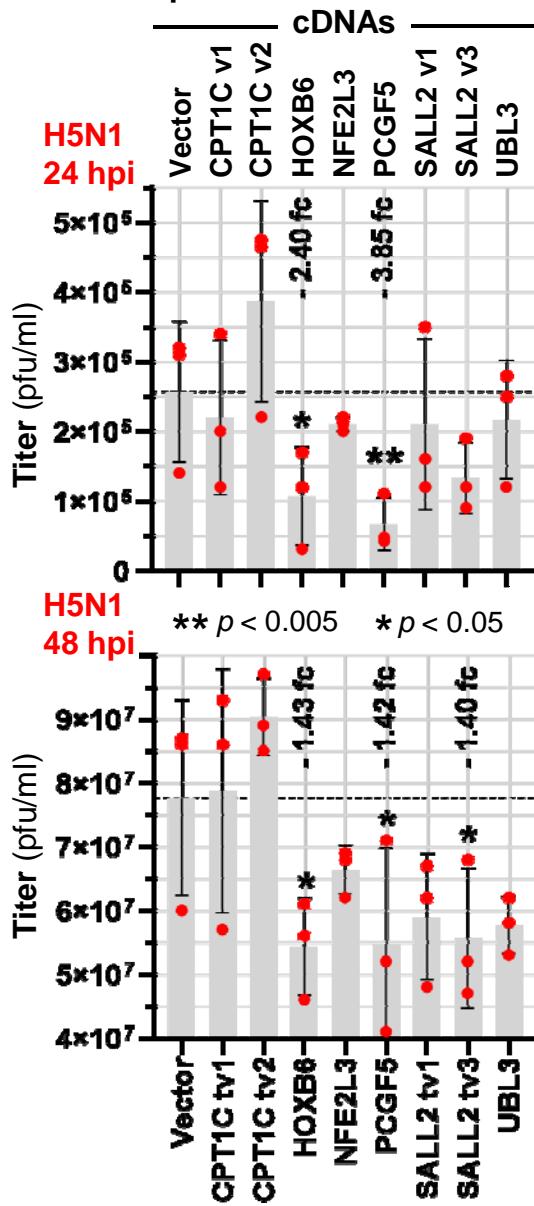
Supplementary Figure 1


Supplementary Figure 1. Attributes of low-ranked HB genes.

(a) For 22 low-ranked HB genes (**Supplementary Table 1b**), the graph shows representative enriched functional terms and enrichment scores ($-\log_{10} p$ -values) determined by the web-based Metascape software (also see **Supplementary Table 1d**).

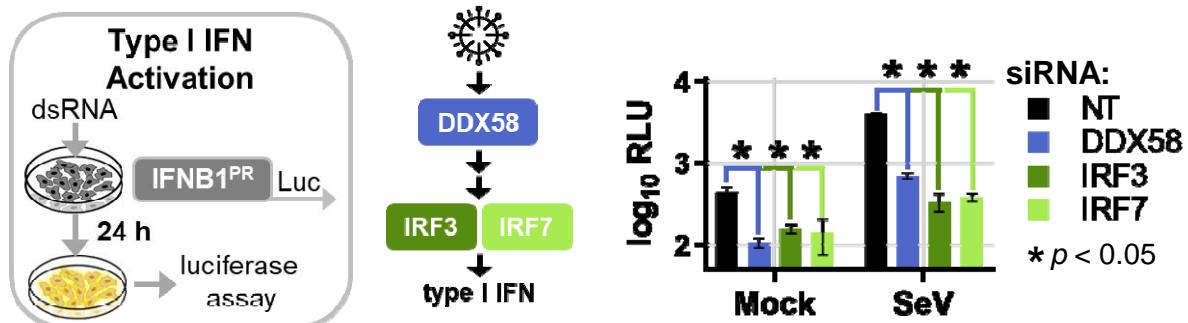

(b) The panel shows individual functions of low-ranked HB genes (if known) (**top**) and their expression in Calu-3 cells infected with pH1N1 (A/California/04/2009) or H5N1 (A/Vietnam/1203/2004) (**bottom**) (also see **Supplementary Table 1f**). HB gene expression clusters (C1, C2, C3, and C5; the same as those described for high-ranked HB genes (**Fig. 1c**)) are indicated above both the function and expression sub-panels, HB gene ranks (see **Supplementary Table 1a**) are shown between the sub-panels, and a heat map key is given at the bottom left.

Supplementary Figure 2

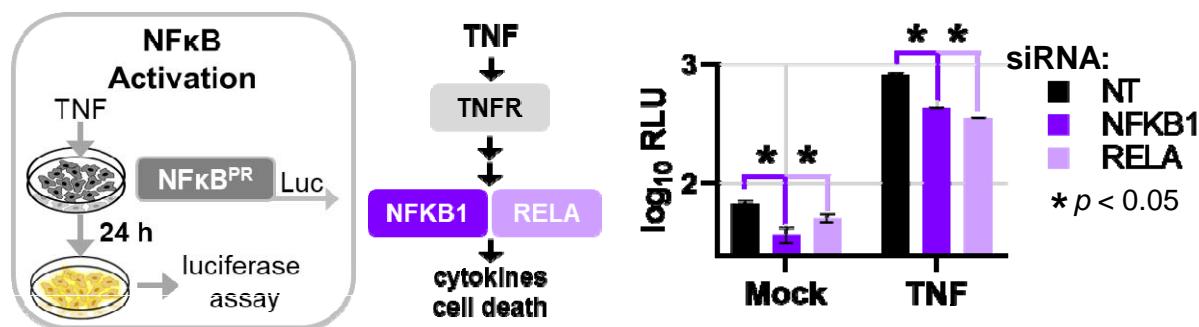

a. Expression

b. Viability

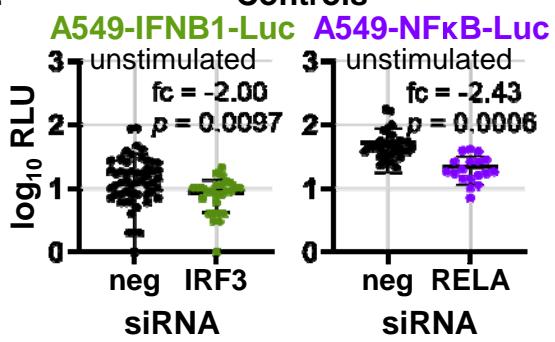
c. Virus Replication

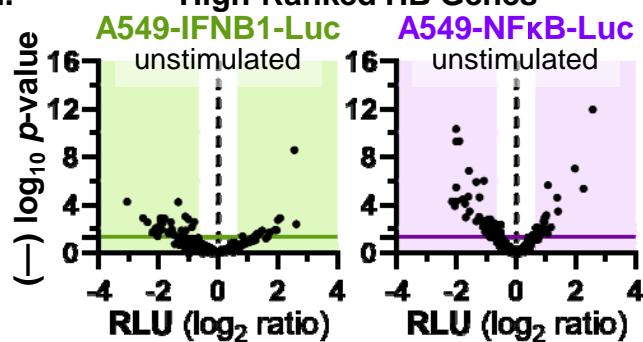


Supplementary Figure 2. H5N1 virus growth in cells transiently overexpressing high-ranked HB genes with antiviral activity against pH1N1.


- (a) The panel depicts representative immunoblots of 293T cell lysates after transfection with an empty vector or plasmids expressing HB gene cDNAs carrying the Flag epitope tag (**left**) or lacking any epitope tag (**right**). Open circles indicate the full-length overexpressed protein for each HB gene (estimated molecular weights are provided in **Supplementary Table 5b**). Comparable results were observed in 4 other independent experiments.
- (b) The panel shows the mean viability ratios of 293T cells transfected with plasmids expressing HB gene cDNAs or an empty vector (negative control). We used the luciferase-based Cell Titer Glo assay (Promega) to measure intracellular ATP levels and calculated ratios for each HB cDNA versus the empty vector. The plotted data represent pooled data from 3 independent experiments, each with 3 replicates per cDNA.
- (c) 293T cells transfected with plasmids expressing HB genes were inoculated with influenza A/Vietnam/1203/2004 (H5N1) at a multiplicity of infection of 0.0001, and supernatants were collected for virus titration by plaque assay at 24 h (**top**) or 48 h (**bottom**) post-infection. In both plots, individual replicate titer values (3 per cDNA at each time point) are represented by the red dots, gray bars show the mean titer, and variation is represented by standard deviation. At each time point, mean titers of cells transfected with HB cDNAs were compared to that of empty vector transfections by using ordinary one-way ANOVA, and significant *p*-values are indicated on the figure panels. All data shown in panel (c) were collected in one experiment. fc, fold change.

Supplementary Figure 3


a. A549-IFNB1-Luc


b. A549-NFkB-Luc

c. Controls

d. High-Ranked HB Genes

Supplementary Figure 3. Generation and validation of type I IFN and NF κ B promoter reporter cell lines.

(a) and (b) depict generation and validation of A549-IFNB1-Luc or A549-NF κ B-Luc cell lines, respectively. In each panel, the left-most segment shows a conceptual overview of the promoter (PR)-reporter cassette and a simple flow chart of promoter stimulation and activation measurement. The graphs at the right show promoter activation levels (relative light units, RLU) in mock-stimulated or stimulated cell clones treated with non-targeting control siRNAs (black bars) or siRNAs targeting specific components of each signaling pathway (colored bars) (three replicates per siRNA treatment and stimulation condition). The data were collected in two independent experiments (one experiment per cell line). Mean RLU were compared by using unpaired, two-tailed Student's t-tests and p -values are indicated on the graphs.

(c) Graphs show RLU values in unstimulated A549-IFNB1-Luc (**left**) or A549-NF κ B-Luc (**right**) cells treated with control siRNAs. Mean RLU values of cells treated with negative control siRNA (neg) and siRNA targeting either IRF3 or the RELA component of the NF κ B transcription factor were compared by using two-tailed, unpaired t-tests, and the resultant fold changes and p -values are indicated on the graphs. The data in the left and right panels each represent 4 independent experiments.

(d) Volcano scatter plots depict log₂-transformed mean RLU ratios (x-axis) versus (—) log₁₀ p -values (y-axis) for unstimulated reporter cells treated with siRNAs targeting 50 high-ranked HB genes (2-4 siRNAs per gene) and assayed (in triplicate) for effects on IFNB1 (**left**) or NF κ B (**right**) activation (**Supplementary Table 3a and 3b**). To determine ratios, we compared mean RLU values for HB gene siRNA- and negative control siRNA-treated cells, and p -values were calculated by using two-tailed, unpaired t-tests. In each plot, a data point represents the outcome for a single HB gene siRNA, the shaded areas demarcate +/- 1.6-fold change in RLU, and a solid horizontal line indicates $p = 0.05$. Each siRNA was evaluated in one experiment in each reporter cell line, and complete datasets were collected in a series of 4 independent experiments for each cell line and pooled to generate the plots.