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ABSTRACT

Background: Several studies have evaluated whether depressed persons have older
appearing brains than their nondepressed peers. However, the estimated neuroimaging-
derived “brain age gap” has varied from study to study, likely driven by differences in training
and testing sample (size), age range, and used modality/features. To validate our previously
developed ENIGMA brain age model and the identified brain age gap, we aim to replicate
the presence and effect size estimate previously found in the largest study in depression to
date (N=2,126 controls & N=2,675 cases; +1.08 years [SE 0.22], Cohen’s d=0.14, 95% CI:
0.08-0.20), in independent cohorts that were not part of the original study.

Methods: A previously trained brain age model (www.photon-ai.com/enigma_brainage)

based on 77 FreeSurfer brain regions of interest was used to obtain unbiased brain age
predictions in 751 controls and 766 persons with depression (18-75 years) from 13 new
cohorts collected from 20 different scanners.

Results: Our ENIGMA MDD brain age model generalized reasonably well to controls from
the new cohorts (predicted age vs. age: r = 0.73, R?*=0.47, MAE=7.50 years), although the
performance varied from cohort to cohort. In these new cohorts, on average, depressed
persons showed a significantly higher brain age gap of +1 year (SE 0.35) (Cohen’s
d =0.15, 95% CI: 0.05-0.25) compared with controls, highly similar to our previous
finding.

Conclusions: This study further validates our previously developed ENIGMA brain age
algorithm. Importantly, we replicated the brain age gap in depression with a comparable
effect size. Thus, two large-scale independent mega-analyses across in total 32 cohorts and
>3,400 patients and >2,800 controls worldwide show reliable but subtle effects of brain aging
in adult depression.
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1. INTRODUCTION

Recently, considerable literature has emerged around the theme of human aging. Aging is
accompanied by complex biological changes, such as linear and nonlinear brain structural
changes (Anderton, 2002). Machine learning algorithms can leverage these age-related
brain patterns to predict chronological age, to explain individual differences in aging. If
(structural) magnetic resonance imaging (MRI) data are used as input for these algorithms,
the output can be considered as an estimate of brain-based biological age, or, predicted
brain age (Cole and Franke, 2017). Over the past decade there has been an exponential
increase in studies investigating brain age (Baecker et al., 2021), with this metric being used
to quantify one’s brain health state, as well as risk for aging-related diseases and mortality
(Cole et al., 2018). These are important indicators of neurodegenerative diseases such as
Alzheimer’s or multiple sclerosis; however, these risks are also commonly increased (albeit

to a lesser extent) in major depressive disorder (MDD) (Penninx, 2017).

The estimated neuroimaging-derived “brain age gap” (predicted brain age minus
chronological age, i.e., brain-predicted age difference, or, brain-PAD) in depression varies
across studies in terms of both effect size and statistical significance. These differences are
likely driven by differences in sample properties (e.g., age range), but also training and
testing sample (size), and methods used (e.g., modality/features). A recent systematic
review and meta-analysis summarized that the majority (4 out of 7) of the existing studies of
brain-PAD in depression did not establish a significant case-control difference (Ballester et
al.,, 2022). Yet, effects were compatible across studies; thus, all studies identified a higher
average brain age gap in depression compared to controls, with a pooled effect of
approximately +1 year of added aging, although estimated gaps ranged from 0.13 to 4.92
years. Our previous ENIGMA MDD consortium study, the largest study of brain age in
depression to date (N=2,126 controls and N=2,675 patients), showed a +1.08 year higher

brain-PAD in depression (Cohen’s d=0.14), but with no evidence that this effect was driven
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by specific (clinical) characteristics such as age, age of onset, recurrence status, remission
status, or antidepressant use (Han et al., 2021a). The subsequent addition of new cohorts
to the ENIGMA MDD consortium since our previous brain age study provides us with an
unique opportunity to perform an independent replication study in new data to validate our
developed algorithm, as well as determine whether depression is consistently associated
with older appearing brains (Wrigglesworth et al., 2021). Studying the impact of depressive
psychopathology on age-related structural brain patterns may help to explain why persons
with depression have an increased risk for poorer brain and physical health compared to

their nondepressed peers.

Our ENIGMA brain age algorithm was trained on 952 male and 1,236 female healthy
controls from 19 cohorts. We used 77 FreeSurfer-derived ROI features (34 cortical
thickness, 34 cortical surface area, 7 subcortical volumes, lateral ventricles, and intracranial
volume) to predict chronological age using ridge regression. While other existing (deep
neural network) algorithms may potentially provide more accurate predictions (Lombardi et
al., 2020), most of them rely on using higher-dimensional imaging data as input (e.g., raw
scans, individual-level voxels, or vertices). Within the ENIGMA consortium, many cohorts
have shared data in the form of brain-derived summary measures (i.e., FreeSurfer brain
regions of interest, or ROIs). The current FreeSurfer ROIs method is thus one of the more
practical ways to perform a large multisite brain age mega-analysis in depression, facilitated
by the collaborative nature of the ENIGMA MDD working group. Our first study showed good
out-of-sample generalization to new and unseen controls and patients from the same
cohorts as the model was trained on, as well as completely independent controls from
cohorts not included in training (i.e., ENIGMA Bipolar Disorder controls)(Han et al., 2021a).
Additionally, other ENIGMA studies have further demonstrated the validity of this model
(Clausen et al., 2022), identifying a higher brain-PAD in schizophrenia (Constantinides et al.,

2022).
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This study aims to further validate the ENIGMA FreeSurfer ROI-based brain age prediction
method, by evaluating the performance of our algorithm in 13 new and unseen cohorts of
individuals with depression collected from 20 independent scanners. Importantly, we aim to
contribute to the growing area of brain age research by attempting to replicate the magnitude
of the brain age gap difference previously reported by the ENIGMA-MDD consortium

between persons with depression (N=766) and controls (N=751) using this method.

2. METHODS

Samples

Thirteen independent cohorts (N=1,517) from the ENIGMA MDD working group with data
from people with major depression and controls (18-75 years old) participated in this
replication study. Cohort-specific details on demographics, basic clinical characteristics, and
exclusion criteria can be found in the Supplement. All sites obtained approval from their
local institutional review boards and ethics committees. All study participants provided

written informed consent.

ENIGMA brain age prediction model

Model development is described in more detail in (Han et al.,, 2021a), but in short, ridge
regression was used to predict age from 77 FreeSurfer-derived features (7 subcortical
volumes, 34 cortical thickness regions, 34 cortical surface area regions, lateral ventricles
and intracranial volume) in healthy controls (no history of mental or neurological illness).
Separate models were trained for male (N=952) and female (N=1,236) controls. The

ENIGMA brain age model is publicly available (www.photon-ai.com/enigma_brainage) and

was applied to the independent new ENIGMA MDD cohorts included in the current study. A

schematic overview is displayed in Figure 1.
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Training sample

Controls: N=4,313

Features
34 cortical thickness
34 cortical surface area
7 subcortical volumes
Lateral ventricles & ICV

Training Replication Training Replication
Controls: Controls: N=252 Controls: Controls: N=499
N=052 MDD: N=268 N=1,236 MDD: N=498

v r v

Ridge regression Apply coefficients Ridge regression
10-fold cross-validati idation 10-fold idati

Web-based tool available at: https://www.photon-ai.com/enigma brainage

4

Apply coefficients
Independent validation

Figure 1. Schematic overview of features used and data used to train the ENIGMA brain age
model. Learned sex-specific ridge regression coefficients were applied to the current independent
replication test data.

Model generalization

The ENIGMA brain age prediction model has previously been validated in 646 unseen male
and 757 unseen female control samples from 23 independent scanners that were not part of
the training data (Han et al., 2021a), as well as in other disease working groups of ENIGMA
(Clausen et al., 2022; Constantinides et al., 2022). In the current study, model generalization
was evaluated in control samples collected from 20 additional independent scanners (N=252
males and N=499 females). To assess model performance in these data acquired from
completely independent cohorts, we calculated (1) mean absolute error (MAE), (2) weighted
MAE (i.e., W\MAE, an age range informed metric; ), (3) Pearson
correlation coefficients between predicted brain age and chronological age, and (4) the
proportion of the variance explained by the model (R?. R? was calculated using the caret

package according to the formula:
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_ =1 i —9)?
n

RZ=1
=1 i—y?

Where n is the number of subjects, y is the chronological age, ¥ is the predicted age, and y

is the average age of subjects in the test set. Please note that according to this formula, R?
can be negative, even if a correlation between age and predicted age is positive. This
happens when model predictions have larger errors than predicting the average age, such

as when predictions are biased or have a relatively large variance.

Statistical analyses

A mega-analytic approach was taken to replicate the presence and size of the brain age gap
in depression by pooling data across all thirteen new cohorts. The brain age gap (predicted
brain-based age minus chronological age, or, brain-PAD) was calculated for each individual
and used as the outcome variable in analyses comparing the difference between brain-PAD
in people with depression and controls and examining associations between brain-PAD and
clinical characteristics. Each dependent measure of the i individual at j" scanning site was

modeled as follows:

1. Brain-
PAD;[1="lintercept 1+ 1R1(Dx) 1+~ Ba(sex)[1+[1Bs(age) 1+ Bi(age®) 1+ 1Rs(Dx[1x[ag
e) 1+ 1Bs(Dx 1xI1sex) 1+ 1B7(agel1x[1sex)1+[1Bg(Dx 'x lagel1xIsex)[ 1+ U; 1+ 1g;
2. Brain-
PAD;="lintercept 1+By(Dx) 1+~ Ba(sex) 1+ Bs(age) 1+~ Bi(age®) 1+ 1Bs(DxI1xag
e) 1+11Be(Dx 1xIIsex) + U; +I1g;
3. Brain-

PAD;L=_lintercept_J+LIB,(Dx) I+ _Ra(sex)+LBs(age) I+ Bs(age®) I+LIU;LI+_g;

Intercept, Dx (MDD diagnosis), sex, and all age effects were fixed. The terms U; and g; are

normally distributed and represent the random intercept attributed to the scanning site and
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the residual error, respectively. Standardized Cohen’s d was calculated to indicate the size
of the effect. Within the patient group, we also used linear mixed models to examine brain-
PAD associations with clinical characteristics (i.e., recurrence status [first versus recurrent
episode], antidepressant (AD) status [taking AD yes/no at time of scanning], remitted status
[acute versus remitted], age of onset of depression [categorized as: early, <26 years; middle
adulthood, >25 and <56 years; and late adulthood onset, >55 years]). In addition to the
mega-analytic approach, a meta-analytic approach was also performed to provide further
insights into the generalization of the ENIGMA brain age model and case-control difference
in individual cohorts. Exploratory effects of cohort specific characteristics (i.e., sample size,
mean age, proportion of females) but also potential (scan) technical moderators (i.e.,
FreeSurfer version, field strength, scanner vendor, performance accuracy metrics [MAE, R?])
on the brain-PAD outcome were examined by random effects meta-regressions analyses
using the metafor package in R (a more detailed description on methods can be found in the
Supplementary Methods). Replication analyses were tested one-sided, whereas analyses
within the patient group and meta-regressions were tested two-sided. All statistical tests

were considered significant at p<0.05.

3. RESULTS

3.1. Participants

Participant characteristics are presented in Table 1. Thirty individuals from one cohort were
excluded from the study based on having >10% missing structural brain ROIls data. Two
individuals >75 years old from another cohort were also excluded from this study, given that
the model was trained on data restricted within 18-75 years. Eight persons showed a brain-
PAD with a calculated Z-score >3 (i.e., >3SD away from the global mean) and were
excluded from analysis. In total, we included data from N=1,517 participants, including
N=751 controls (66% females) and N=766 persons with (current) MDD (65% females). The

Supplement includes cohort-specific information on participants (Table S1), image
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acquisition and processing (Table S2) and instruments used for depression ascertainment

(Table S3).

3.2. Brain age prediction performance

Model generalizability was evaluated in the healthy control samples. Both pooled and cohort-
specific model performances are presented in Table 2. While the generalization power
varied from cohort to cohort, the pooled performance accuracy was comparable to the out-
of-sample generalizability previously reported in (Han et al., 2021a), with current metrics
between predicted brain age and chronological age of Pearson’s r=0.73, R?=.47, MAE=7.50
years, and \MAE=0.13. Figure 2 shows the predicted brain age against chronological age
per cohort (separate regression lines for controls and patients). Cohorts showing a negative
R? showed negative mean cortical thickness deviations compared to the grand mean of
combined cohorts (Supplementary Figure S1). Performance metrics in patient samples can

also be found in the Supplementary Table S4.
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Table 1. Participant Characteristics per Diagnostic Group.

Characteristic N Controls, N = 751* MDD, N = 766"
Cohort AFFDIS 49 20 (2.7%) 29 (3.8%)
CSAN 107 49 (6.5%) 58 (7.6%)
DCHS| 70 54 (7.2%) 16 (2.1%)
FIDMAG [ 69 34 (4.5%) 35 (4.6%)
Hiroshima | 315 167 (22%) 148 (19%)
TiPS| 105 75 (10.0%) 30 (3.9%)
MOODS [ 96 32 (4.3%) 64 (8.4%)
MOTAR | 108 68 (9.1%) 40 (5.2%)
NESDA [ 219 65 (8.7%) 154 (20%)
Novo | 128 52 (6.9%) 76 (9.9%)
Singapore 40 17 (2.3%) 23 (3.0%)
SoCAT | 179 100 (13%) 79 (10%)
StanfFAA [ 32 18 (2.4%) 14 (1.8%)
Chronological age (years) 1,517 | 38.80 +12.89 (17.00-73.00) [ 39.82 + 12.70 (18.00-73.00)
Predicted brain age (years) 1,517 41.75 + 10.79 (14.78-74.60) 43.94 + 10.65 (15.22-75.66)
Brain-PAD (years) 1,517 | 2.95+8.89 (-25.31-31.39) 4.12 + 9.86 (-25.19-32.40)
Sex Female 1,517 499 (66%) 498 (65%)
Recurrent status First [ 1,130 225 (38%)
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Recurrent 375 (62%)
Antidepressant use AD-free | 1,131 357 (59%)
AD-using 244 (41%)
Remitted status Remitted | 1,004 41 (7.5%)
Acute 508 (93%)
FreeSurfer version 5 1,517 468 (62%) 490 (64%)
6 134 (18%) 139 (18%)
7 149 (20%) 137 (18%)
Field strength 1.5T | 1,517 34 (4.5%) 35 (4.6%)
3T 717 (95%) 731 (95%)
Scanner vendor GE 1,517 104 (14%) 125 (16%)
Philips 182 (24%) 281 (37%)
Siemens 465 (62%) 360 (47%)

n (%); Mean + SD (Minimum-Maximum)
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Table 2. Generalizability to independent control cohorts.

r R* MAE SD wMAE RMSE | Brain-PAD SD
Pooled 0.73 0.47 7.51 5.59 0.13 9.36 2.95 8.89
AFFDIS 0.78 0.52 6.99 4.37 0.17 8.18 3.32 7.67
CSAN 0.80 0.60 6.11 4.64 0.16 7.64 2.30 7.36
DCHS 0.44 -3.14 12.26 7.97 0.44 14.58 11.76 8.70
FIDMAG 0.73 0.48 6.72 4.91 0.16 8.28 2.42 8.04
Hiroshima 0.75 0.55 6.67 4.75 0.14 8.18 -0.13 8.21
TiPs 0.84 0.61 7.58 5.81 0.14 9.52 3.58 8.88
MOODS 0.67 0.44 7.85 5.43 0.17 9.50 0.07 9.65
MOTAR 0.82 0.64 7.23 4.72 0.14 8.62 -1.74 8.50
NESDA 0.76 -0.35 9.51 6.03 0.26 11.23 8.99 6.78
Novo 0.49 -0.02 6.93 5.34 0.18 8.72 3.90 7.87
Singapore 0.12 -2.02 5.86 5.34 0.31 7.82 -0.17 8.05
SoCAT 0.84 0.62 6.64 5.07 0.14 8.34 3.83 7.45
StanfFAA 0.35 0.01 8.07 5.89 0.24 9.90 1.14 10.11

Abbreviations: MAE, mean absolute error; SD, standard deviation; ,MAE, weighted MAE (MAE -+
age range of sample); RMSE, root mean squared error; brain-PAD, brain-predicted age difference
(predicted brain age - chronological age).
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3.3. Replication of higher brain age in depression

On average, depressed persons showed a significantly higher brain-PAD of +0.99 (SE 0.35)
years (Cohen’s d”=70.15, 95% CI: 0.04-0.25) compared with controls (p<0.01), Figure 3.
No significant three-way interaction between diagnosis by age and by sex, nor significant
two-way interactions (diagnosis by age or diagnosis by sex) were found. The supplementary
meta-analytic approach resulted in a slightly higher but similar pooled brain-PAD of +1.20
years and associated effect size of Cohen’s d=0.19 between cases and controls (1°=52.6%,

indicating moderate heterogeneity). Forest plots are depicted in Supplementary Figure S2.

3.4. Patient group analyses and meta-regressions with moderators

No significant differences in brain-PAD were found between patient subgroups (recurrent
versus first episode depression [b=0.00 years, p=0.99], AD-free versus AD-using patients
[b=0.83 years, p=0.20], acute versus remitted depression [b=-1.07 years, p=0.43], or age of
onset of depression in middle [b=0.55, p=0.49] or late adulthood [b=0.84, p=0.66] compared
to early onset). The meta-regressions with sample size, mean age, proportion of females,
proportion of first/recurrent episode patients, proportion of AD-free/AD-using patients,
proportion of remitted/acute patients, field strength and performance accuracy metrics (MAE,
R?) did not significantly moderate the Cohen’s d effect size estimates of brain-PAD (all
QMp’s>0.05, Supplementary Table S6), but significant moderating effects of FreeSurfer
version 5 (d=0.20, p=0.02) and version 6 (d=0.40, p=0.005) and Philips scanner vendor

(d=0.50, p<0.0001) were found (Figure S3 and Figure S4 in the Supplement).
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Table 3. Pooled performance accuracy and case-control difference in brain-PAD.

# Cohorts r R? MAE SD wMAE Brain-PAD SD b p Cohen's se 95% CI lower 95% Cl upper
(in years) d
All controls 13 0.73 0.47 7.51 5.59 0.13 2.95 8.89 0.99 0.003 0.15 0.05 0.04 0.25

Performance metrics were calculated in controls. Regression coefficient b is obtained through a linear mixed model with fixed effects for age,
age?, and sex and random effects for scanning site.
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Figure 2. Brain age prediction using the ENIGMA algorithm in 13 new and unseen cohorts from 20 different scanners. Predicted brain
age against chronological age per cohort. Separate regression lines are plotted for controls (black) and persons with depression (red). Diagonal
dashed line reflects the line of identity (x=y).
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Figure 3. Replication of the brain age gap difference between controls and persons
with depression. Brain-PAD (predicted brain age minus chronological age) in persons with
major depressive disorder (MDD) and controls. Group-level analyses showed significantly
higher brain-PAD in persons with MDD than controls in pooled samples of thirteen cohorts
(b=0.99 years, p=0.003). The brain-PAD estimates are adjusted for chronological age, age?,
sex and scanning site.
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4. DISCUSSION

The current study replicated the finding that persons with depression reliably show older
appearing brains, with a similar estimated gap and associated effect size (+1 year, Cohen’s
d=0.14) as previously found in our largest mega-analysis of brain age in depression to date
(+1.08 years, Cohen’s d=0.14) (Han et al., 2021a). While the generalization of our algorithm
varied from cohort to cohort, pooled metrics were comparable to the performance accuracy
found in the out-of-test samples in the original study. Importantly, post-hoc sensitivity
analyses revealed that the exclusion of cohorts showing poor generalization did not change
our replication findings (Supplement). In addition, a meta-analytic approach resulted in a
highly similar pooled effect size (+1.20 years, Cohen’s d=0.19), providing robust evidence for
significant but subtle age-related structural brain patterns in depression compared to

controls.

The current multi-site replication study provides further evidence that the brain age gap in
depression is an estimated +1 year (Cohen’s d=0.14), consistent with our previous mega-
analysis in 19 other cohorts (Han et al., 2021a) and another meta-analysis including an
additional 6 studies (Ballester et al., 2022). Taken together, the impact of depression on age-
related structural brain differences thus seems to be rather subtle. However, it is important to
note that the small, pooled effect size did not result from consistent small effects in each
individual cohort, as can be seen from the forest plots of the meta-analyses in
Supplementary Figure S2. Instead, the subtlety of the effect seemed to be driven by the
fact that four of the cohorts showed larger positive effects (Cohen’s d’s ranging from 0.40 to
0.67, mean=0.50), whereas remaining cohorts showed no significant effects. However,
Supplementary Table S6 shows that effect sizes were not related to model generalization
(i.e., small, or negative effect sizes were not only observed in cohorts showing poor
performance accuracy). While negative R? observed in some cohorts can likely be explained

by lower values of the cortical thickness features in those particular cohorts (Supplementary
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Figure S1), the inconsistency in effect sizes between cohorts may rather be due to other
sources of variation unrelated to basic cohort or clinical characteristics such as first episode
vS. recurrent, antidepressant free vs. antidepressant using or acute vs. remitted patients, as
we did not observe any differences between these subgroups. The current study did
however examine several potential technical sources of bias such as field strength, scanner
vendor, and FreeSurfer version. In terms of scan technical moderators, we found that image
acquisition with a Philips scanner (in contrast to Siemens or General Electric vendors) and
FreeSurfer version for preprocessing images (v5 and v6, in contrast to v7) showed
significant moderating effects on the effect size of the case-control difference in the brain
age gap (Supplementary Figures S3 and S4). While scanner manufacturer and FreeSurfer
pipeline differences may potentially lead to (small) non-negligible differences in cortical
thickness, surface area, and volume (Potvin et al., 2016), it is unlikely that effects would be
differential in cases versus controls within the same cohorts. These effects were corrected
for in the mega-analysis and it seems more plausible that other heterogeneous
demographic, psychosocial, clinical, or biological cohort-specific characteristics, which we

did not measure, coincided with the scanner vendor variable (i.e., biological sampling bias).

A recent systematic review, for example, suggests a role for epigenetic factors, and work
investigating whether (genetic risk) for epigenetic aging contributes to the brain-PAD metric
is underway in the ENIGMA consortium. While other literature suggests differential brain
aging effects in older adults compared to middle-aged adults (i.e., only significantly higher
brain-PAD in geriatric sample)(Christman et al., 2020), females and males (i.e., brain-PAD
only associated with depressive severity in males)(Dunlop et al., 2021), or stage-dependent
relationships with depression (i.e., only occurring at illness onset)(Han et al., 2021), we did
not confirm this in the current study. Furthermore, detailed information on ethnicity,
socioeconomic and psychosocial variance were not available and its impact on (the
performance of the) brain age (prediction model) could not be evaluated in more detail here.

However, an independent study including the NESDA cohort showed selectively older
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appearing brains in those with high somatic symptom severity (Han et al., 2021b). Future
studies with more detailed (clinical) characterization (e.g., individual or clusters of depressive
symptoms) are needed to gain more insight into which factors consistently contribute to the

brain-PAD metric.

A major strength of this replication study is the harmonized approach of data preprocessing,
quality checking, and brain age prediction algorithm across cohorts, potentially limiting the
sources of bias that may stem from these decisions. This study is therefore a good example
of the advantage of consortium efforts and collaborative team science. A note of caution is
however due, since within individual cohorts, the case-control difference may not be
consistent, present, or significant, also explaining the inconsistent findings across individual
studies (Ballester et al., 2022). Unfortunately, due to a lack of harmonized clinical,
demographic, and psychosocial information in consortia like ENIGMA MDD, we are limited in
our ability to identify factors that could explain the variance in brain-PAD between cohorts.
Finally, while the brain age predictions may be more accurate with higher-dimensional data
from multimodal sources, it remains an open question whether models with improved
performance accuracy show increased sensitivity in detecting subsequent associations with

clinical psychopathology.

5. CONCLUSION

This replication study using data from 13 cohorts around the world confirmed our previous
findings that persons with major depressive disorder show advanced brain aging compared
to controls by approximately +1 year. Thus, two large-scale independent but harmonized
mega-analyses across 32 cohorts and >3,400 patients and >2,800 controls show a reliable
but subtle pattern of brain aging in adult depression. It is important to note that the small,
pooled effect is not due to consistent small effects across cohorts but may be driven in part
by the heterogeneity across scanning sites. Although we did not find a relation between

basic patient properties and the effect size difference in the brain age gap, future work is
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needed to examine which clinical or biological characteristics may underlie the individual
variation in the brain age gap.
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