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ABSTRACT 
 
Background: Several studies have evaluated whether depressed persons have older 

appearing brains than their nondepressed peers. However, the estimated neuroimaging-

derived “brain age gap” has varied from study to study, likely driven by differences in training 

and testing sample (size), age range, and used modality/features. To validate our previously 

developed ENIGMA brain age model and the identified brain age gap, we aim to replicate 

the presence and effect size estimate previously found in the largest study in depression to 

date (N=2,126 controls & N=2,675 cases; +1.08 years [SE 0.22], Cohen’s d=0.14, 95% CI: 

0.08-0.20), in independent cohorts that were not part of the original study.    

Methods: A previously trained brain age model (www.photon-ai.com/enigma_brainage) 

based on 77 FreeSurfer brain regions of interest was used to obtain unbiased brain age 

predictions in 751 controls and 766 persons with depression (18-75 years) from 13 new 

cohorts collected from 20 different scanners.  

Results: Our ENIGMA MDD brain age model generalized reasonably well to controls from 

the new cohorts (predicted age vs. age: r = 0.73, R2=0.47, MAE=7.50 years), although the 

performance varied from cohort to cohort. In these new cohorts, on average, depressed 

persons showed a significantly higher brain age gap of +1 year (SE 0.35) (Cohen’s 

d�=�0.15, 95% CI: 0.05–0.25) compared with controls, highly similar to our previous 

finding. 

Conclusions: This study further validates our previously developed ENIGMA brain age 

algorithm. Importantly, we replicated the brain age gap in depression with a comparable 

effect size. Thus, two large-scale independent mega-analyses across in total 32 cohorts and 

>3,400 patients and >2,800 controls worldwide show reliable but subtle effects of brain aging 

in adult depression.   

Keywords: brain age; replication study; depression; ENIGMA consortium; biological aging  
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1. INTRODUCTION 

 
Recently, considerable literature has emerged around the theme of human aging. Aging is 

accompanied by complex biological changes, such as linear and nonlinear brain structural 

changes (Anderton, 2002). Machine learning algorithms can leverage these age-related 

brain patterns to predict chronological age, to explain individual differences in aging. If 

(structural) magnetic resonance imaging (MRI) data are used as input for these algorithms, 

the output can be considered as an estimate of brain-based biological age, or, predicted 

brain age (Cole and Franke, 2017). Over the past decade there has been an exponential 

increase in studies investigating brain age (Baecker et al., 2021), with this metric being used 

to quantify one’s brain health state, as well as risk for aging-related diseases and mortality 

(Cole et al., 2018). These are important indicators of neurodegenerative diseases such as 

Alzheimer’s or multiple sclerosis; however, these risks are also commonly increased (albeit 

to a lesser extent) in major depressive disorder (MDD) (Penninx, 2017).  

  
The estimated neuroimaging-derived “brain age gap” (predicted brain age minus 

chronological age, i.e., brain-predicted age difference, or, brain-PAD) in depression varies 

across studies in terms of both effect size and statistical significance. These differences are 

likely driven by differences in sample properties (e.g., age range), but also training and 

testing sample (size), and methods used (e.g., modality/features). A recent systematic 

review and meta-analysis summarized that the majority (4 out of 7) of the existing studies of 

brain-PAD in depression did not establish a significant case-control difference (Ballester et 

al., 2022). Yet, effects were compatible across studies; thus, all studies identified a higher 

average brain age gap in depression compared to controls, with a pooled effect of 

approximately +1 year of added aging, although estimated gaps ranged from 0.13 to 4.92 

years. Our previous ENIGMA MDD consortium study, the largest study of brain age in 

depression to date (N=2,126 controls and N=2,675 patients), showed a +1.08 year higher 

brain-PAD in depression (Cohen’s d=0.14), but with no evidence that this effect was driven 
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by specific (clinical) characteristics such as age, age of onset, recurrence status, remission 

status, or antidepressant use (Han et al., 2021a). The subsequent addition of new cohorts  

to the ENIGMA MDD consortium since our previous brain age study provides us with an 

unique opportunity to perform an independent replication study in new data to validate our 

developed algorithm, as well as determine whether depression is consistently associated 

with older appearing brains (Wrigglesworth et al., 2021). Studying the impact of depressive 

psychopathology on age-related structural brain patterns may help to explain why persons 

with depression have an increased risk for poorer brain and physical health compared to 

their nondepressed peers.  

 

Our ENIGMA brain age algorithm was trained on 952 male and 1,236 female healthy 

controls from 19 cohorts. We used 77 FreeSurfer-derived ROI features (34 cortical 

thickness, 34 cortical surface area, 7 subcortical volumes, lateral ventricles, and intracranial 

volume) to predict chronological age using ridge regression. While other existing (deep 

neural network) algorithms may potentially provide more accurate predictions (Lombardi et 

al., 2020), most of them rely on using higher-dimensional imaging data as input (e.g., raw 

scans, individual-level voxels, or vertices). Within the ENIGMA consortium, many cohorts 

have shared data in the form of brain-derived summary measures (i.e., FreeSurfer brain 

regions of interest, or ROIs). The current FreeSurfer ROIs method is thus one of the more 

practical ways to perform a large multisite brain age mega-analysis in depression, facilitated 

by the collaborative nature of the ENIGMA MDD working group. Our first study showed good 

out-of-sample generalization to new and unseen controls and patients from the same 

cohorts as the model was trained on, as well as completely independent controls from 

cohorts not included in training (i.e., ENIGMA Bipolar Disorder controls)(Han et al., 2021a). 

Additionally, other ENIGMA studies have further demonstrated the validity of this model 

(Clausen et al., 2022), identifying a higher brain-PAD in schizophrenia (Constantinides et al., 

2022).   
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This study aims to further validate the ENIGMA FreeSurfer ROI-based brain age prediction 

method, by evaluating the performance of our algorithm in 13 new and unseen cohorts of 

individuals with depression collected from 20 independent scanners. Importantly, we aim to 

contribute to the growing area of brain age research by attempting to replicate the magnitude 

of the brain age gap difference previously reported by the ENIGMA-MDD consortium 

between persons with depression (N=766) and controls (N=751) using this method.  

 

2. METHODS 
 
Samples  

Thirteen independent cohorts (N=1,517) from the ENIGMA MDD working group with data 

from people with major depression and controls (18-75 years old) participated in this 

replication study. Cohort-specific details on demographics, basic clinical characteristics, and 

exclusion criteria can be found in the Supplement. All sites obtained approval from their 

local institutional review boards and ethics committees. All study participants provided 

written informed consent. 

 

ENIGMA brain age prediction model  

Model development is described in more detail in (Han et al., 2021a), but in short, ridge 

regression was used to predict age from 77 FreeSurfer-derived features (7 subcortical 

volumes, 34 cortical thickness regions, 34 cortical surface area regions, lateral ventricles 

and intracranial volume) in healthy controls (no history of mental or neurological illness). 

Separate models were trained for male (N=952) and female (N=1,236) controls. The 

ENIGMA brain age model is publicly available (www.photon-ai.com/enigma_brainage) and 

was applied to the independent new ENIGMA MDD cohorts included in the current study. A 

schematic overview is displayed in Figure 1.  
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Figure 1. Schematic overview of features used and data used to train the ENIGMA brain age 
model. Learned sex-specific ridge regression coefficients were applied to the current independent 
replication test data.  
 
 
Model generalization  

The ENIGMA brain age prediction model has previously been validated in 646 unseen male 

and 757 unseen female control samples from 23 independent scanners that were not part of 

the training data (Han et al., 2021a), as well as in other disease working groups of ENIGMA 

(Clausen et al., 2022; Constantinides et al., 2022). In the current study, model generalization 

was evaluated in control samples collected from 20 additional independent scanners (N=252 

males and N=499 females). To assess model performance in these data acquired from 

completely independent cohorts, we calculated (1) mean absolute error (MAE), (2) weighted 

MAE (i.e., wMAE, an age range informed metric; ), (3) Pearson 

correlation coefficients between predicted brain age and chronological age, and (4) the 

proportion of the variance explained by the model (R2). R2 was calculated using the caret 

package according to the formula: 
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Where 
 is the number of subjects, y is the chronological age, �� is the predicted age, and � 

is the average age of subjects in the test set. Please note that according to this formula, �� 

can be negative, even if a correlation between age and predicted age is positive. This 

happens when model predictions have larger errors than predicting the average age, such 

as when predictions are biased or have a relatively large variance. 

 
Statistical analyses  
 
A mega-analytic approach was taken to replicate the presence and size of the brain age gap 

in depression by pooling data across all thirteen new cohorts. The brain age gap (predicted 

brain-based age minus chronological age, or, brain-PAD) was calculated for each individual 

and used as the outcome variable in analyses comparing the difference between brain-PAD 

in people with depression and controls and examining associations between brain-PAD and 

clinical characteristics. Each dependent measure of the ith individual at jth scanning site was 

modeled as follows: 

 

1. Brain-

PADij�=�intercept�+�β1(Dx)�+�β2(sex)�+�β3(age)�+�β4(age2)�+�β5(Dx�×�ag

e)�+�β6(Dx�×�sex)�+�β7(age�×�sex)�+�β8(Dx�×�age�×�sex)�+�Uj�+�εij 

2. Brain-

PADij�=�intercept�+�β1(Dx)�+�β2(sex)�+�β3(age)�+�β4(age2)�+�β5(Dx�×�ag

e)�+�β6(Dx�×�sex) + Uj�+�εij 

3. Brain-

PADij�=�intercept�+�β1(Dx)�+�β2(sex)�+�β3(age)�+�β4(age2)�+�Uj�+�εij 

 

Intercept, Dx (MDD diagnosis), sex, and all age effects were fixed. The terms Uj and εij are 

normally distributed and represent the random intercept attributed to the scanning site and 
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the residual error, respectively. Standardized Cohen’s d was calculated to indicate the size 

of the effect. Within the patient group, we also used linear mixed models to examine brain-

PAD associations with clinical characteristics (i.e., recurrence status [first versus recurrent 

episode], antidepressant (AD) status [taking AD yes/no at time of scanning], remitted status 

[acute versus remitted], age of onset of depression [categorized as: early, <26 years; middle 

adulthood, >25 and <56 years; and late adulthood onset, >55 years]). In addition to the 

mega-analytic approach, a meta-analytic approach was also performed to provide further 

insights into the generalization of the ENIGMA brain age model and case-control difference 

in individual cohorts. Exploratory effects of cohort specific characteristics (i.e., sample size, 

mean age, proportion of females) but also potential (scan) technical moderators (i.e., 

FreeSurfer version, field strength, scanner vendor, performance accuracy metrics [MAE, R2]) 

on the brain-PAD outcome were examined by random effects meta-regressions analyses 

using the metafor package in R (a more detailed description on methods can be found in the 

Supplementary Methods). Replication analyses were tested one-sided, whereas analyses 

within the patient group and meta-regressions were tested two-sided. All statistical tests 

were considered significant at p<0.05.  

 
3. RESULTS 

 
3.1. Participants  

Participant characteristics are presented in Table 1. Thirty individuals from one cohort were 

excluded from the study based on having >10% missing structural brain ROIs data. Two 

individuals >75 years old from another cohort were also excluded from this study, given that 

the model was trained on data restricted within 18-75 years. Eight persons showed a brain-

PAD with a calculated Z-score >3 (i.e., >3SD away from the global mean) and were 

excluded from analysis. In total, we included data from N=1,517 participants, including 

N=751 controls (66% females) and N=766 persons with (current) MDD (65% females). The 

Supplement includes cohort-specific information on participants (Table S1), image 
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acquisition and processing (Table S2) and instruments used for depression ascertainment 

(Table S3).  

 
3.2. Brain age prediction performance  

Model generalizability was evaluated in the healthy control samples. Both pooled and cohort-

specific model performances are presented in Table 2. While the generalization power 

varied from cohort to cohort, the pooled performance accuracy was comparable to the out-

of-sample generalizability previously reported in (Han et al., 2021a), with current metrics 

between predicted brain age and chronological age of Pearson’s r=0.73, R2=.47, MAE=7.50 

years, and wMAE=0.13. Figure 2 shows the predicted brain age against chronological age 

per cohort (separate regression lines for controls and patients). Cohorts showing a negative 

R2 showed negative mean cortical thickness deviations compared to the grand mean of 

combined cohorts (Supplementary Figure S1). Performance metrics in patient samples can 

also be found in the Supplementary Table S4.   
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Table 1. Participant Characteristics per Diagnostic Group.  

Characteristic N Controls, N = 7511 MDD, N = 7661 

Cohort                      AFFDIS 49 20 (2.7%) 29 (3.8%) 

CSAN 107 49 (6.5%) 58 (7.6%) 

DCHS 70 54 (7.2%) 16 (2.1%) 

FIDMAG 69 34 (4.5%) 35 (4.6%) 

Hiroshima 315 167 (22%) 148 (19%) 

TiPS 105 75 (10.0%) 30 (3.9%) 

MOODS 96 32 (4.3%) 64 (8.4%) 

MOTAR 108 68 (9.1%) 40 (5.2%) 

NESDA 219 65 (8.7%) 154 (20%) 

Novo 128 52 (6.9%) 76 (9.9%) 

Singapore 40 17 (2.3%) 23 (3.0%) 

SoCAT 179 100 (13%) 79 (10%) 

StanfFAA 32 18 (2.4%) 14 (1.8%) 

Chronological age (years) 1,517 38.80 ± 12.89 (17.00-73.00) 39.82 ± 12.70 (18.00-73.00) 

Predicted brain age (years) 1,517 41.75 ± 10.79 (14.78-74.60) 43.94 ± 10.65 (15.22-75.66) 

Brain-PAD (years) 1,517 2.95 ± 8.89 (-25.31-31.39) 4.12 ± 9.86 (-25.19-32.40) 

Sex                      Female 1,517 499 (66%) 498 (65%) 

Recurrent status             First 1,130  225 (38%) 
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Recurrent   375 (62%) 

Antidepressant use   AD-free 1,131  357 (59%) 

AD-using   244 (41%) 

Remitted status       Remitted 1,004  41 (7.5%) 

Acute   508 (93%) 

FreeSurfer version              5 1,517 468 (62%) 490 (64%) 

6  134 (18%) 139 (18%) 

7  149 (20%) 137 (18%) 

Field strength            1.5T 1,517 34 (4.5%) 35 (4.6%) 

3T  717 (95%) 731 (95%) 

Scanner vendor           GE 1,517 104 (14%) 125 (16%) 

Philips  182 (24%) 281 (37%) 

Siemens  465 (62%) 360 (47%) 

1
 n (%); Mean ± SD (Minimum-Maximum) 
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Table 2. Generalizability to independent control cohorts.  

 r R2 MAE SD wMAE RMSE Brain-PAD SD 

Pooled 0.73 0.47 7.51 5.59 0.13 9.36 2.95 8.89 

AFFDIS 0.78 0.52 6.99 4.37 0.17 8.18 3.32 7.67 

CSAN 0.80 0.60 6.11 4.64 0.16 7.64 2.30 7.36 

DCHS 0.44 -3.14 12.26 7.97 0.44 14.58 11.76 8.70 

FIDMAG 0.73 0.48 6.72 4.91 0.16 8.28 2.42 8.04 

Hiroshima 0.75 0.55 6.67 4.75 0.14 8.18 -0.13 8.21 

TiPs 0.84 0.61 7.58 5.81 0.14 9.52 3.58 8.88 

MOODS 0.67 0.44 7.85 5.43 0.17 9.50 0.07 9.65 

MOTAR 0.82 0.64 7.23 4.72 0.14 8.62 -1.74 8.50 

NESDA 0.76 -0.35 9.51 6.03 0.26 11.23 8.99 6.78 

Novo 0.49 -0.02 6.93 5.34 0.18 8.72 3.90 7.87 

Singapore 0.12 -2.02 5.86 5.34 0.31 7.82 -0.17 8.05 

SoCAT 0.84 0.62 6.64 5.07 0.14 8.34 3.83 7.45 

StanfFAA 0.35 0.01 8.07 5.89 0.24 9.90 1.14 10.11 

Abbreviations: MAE, mean absolute error; SD, standard deviation; wMAE, weighted MAE (��� �

 ��� 	�
�� �� 
�����); RMSE, root mean squared error; brain-PAD, brain-predicted age difference 
(predicted brain age - chronological age).  
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3.3. Replication of higher brain age in depression 

On average, depressed persons showed a significantly higher brain-PAD of +0.99 (SE 0.35) 

years (Cohen’s d�=�0.15, 95% CI: 0.04–0.25) compared with controls (p<0.01), Figure 3. 

No significant three-way interaction between diagnosis by age and by sex, nor significant 

two-way interactions (diagnosis by age or diagnosis by sex) were found. The supplementary 

meta-analytic approach resulted in a slightly higher but similar pooled brain-PAD of +1.20 

years and associated effect size of Cohen’s d=0.19 between cases and controls (I2=52.6%, 

indicating moderate heterogeneity). Forest plots are depicted in Supplementary Figure S2.  

 

3.4. Patient group analyses and meta-regressions with moderators 

No significant differences in brain-PAD were found between patient subgroups (recurrent 

versus first episode depression [b=0.00 years, p=0.99], AD-free versus AD-using patients 

[b=0.83 years, p=0.20], acute versus remitted depression [b=-1.07 years, p=0.43], or age of 

onset of depression in middle [b=0.55, p=0.49] or late adulthood [b=0.84, p=0.66] compared 

to early onset). The meta-regressions with sample size, mean age, proportion of females, 

proportion of first/recurrent episode patients, proportion of AD-free/AD-using patients, 

proportion of remitted/acute patients, field strength and performance accuracy metrics (MAE, 

R2) did not significantly moderate the Cohen’s d effect size estimates of brain-PAD (all 

QMp’s>0.05, Supplementary Table S6), but significant moderating effects of FreeSurfer 

version 5 (d=0.20, p=0.02) and version 6 (d=0.40, p=0.005) and Philips scanner vendor 

(d=0.50, p<0.0001) were found (Figure S3 and Figure S4 in the Supplement). 
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Table 3. Pooled performance accuracy and case-control difference in brain-PAD.  

 # Cohorts r R2 MAE SD wMAE Brain-PAD SD b  

(in years) 

p Cohen's 

d 

se 95% CI lower 95% CI upper 

All controls 13 0.73 0.47 7.51 5.59 0.13 2.95 8.89 0.99 0.003 0.15 0.05 0.04 0.25 

Performance metrics were calculated in controls. Regression coefficient b is obtained through a linear mixed model with fixed effects for age, 
age2, and sex and random effects for scanning site.  
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Figure 2. Brain age prediction using the ENIGMA algorithm in 13 new and unseen cohorts from 20 different scanners. Pred
age against chronological age per cohort. Separate regression lines are plotted for controls (black) and persons with depression (red)
dashed line reflects the line of identity (x=y).  
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Figure 3. Replication of the brain age gap difference between controls and persons 
with depression. Brain-PAD (predicted brain age minus chronological age) in persons with 
major depressive disorder (MDD) and controls. Group-level analyses showed significantly 
higher brain-PAD in persons with MDD than controls in pooled samples of thirteen cohorts 
(b=0.99 years, p=0.003). The brain-PAD estimates are adjusted for chronological age, age2, 
sex and scanning site.  
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4. DISCUSSION 

 
The current study replicated the finding that persons with depression reliably show older 

appearing brains, with a similar estimated gap and associated effect size (+1 year, Cohen’s 

d=0.14) as previously found in our largest mega-analysis of brain age in depression to date 

(+1.08 years, Cohen’s d=0.14) (Han et al., 2021a). While the generalization of our algorithm 

varied from cohort to cohort, pooled metrics were comparable to the performance accuracy 

found in the out-of-test samples in the original study. Importantly, post-hoc sensitivity 

analyses revealed that the exclusion of cohorts showing poor generalization did not change 

our replication findings (Supplement). In addition, a meta-analytic approach resulted in a 

highly similar pooled effect size (+1.20 years, Cohen’s d=0.19), providing robust evidence for 

significant but subtle age-related structural brain patterns in depression compared to 

controls.  

 

The current multi-site replication study provides further evidence that the brain age gap in 

depression is an estimated +1 year (Cohen’s d=0.14), consistent with our previous mega-

analysis in 19 other cohorts (Han et al., 2021a) and another meta-analysis including an 

additional 6 studies (Ballester et al., 2022). Taken together, the impact of depression on age-

related structural brain differences thus seems to be rather subtle. However, it is important to 

note that the small, pooled effect size did not result from consistent small effects in each 

individual cohort, as can be seen from the forest plots of the meta-analyses in 

Supplementary Figure S2. Instead, the subtlety of the effect seemed to be driven by the 

fact that four of the cohorts showed larger positive effects (Cohen’s d’s ranging from 0.40 to 

0.67, mean=0.50), whereas remaining cohorts showed no significant effects. However, 

Supplementary Table S6 shows that effect sizes were not related to model generalization 

(i.e., small, or negative effect sizes were not only observed in cohorts showing poor 

performance accuracy). While negative R2 observed in some cohorts can likely be explained 

by lower values of the cortical thickness features in those particular cohorts (Supplementary 
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Figure S1), the inconsistency in effect sizes between cohorts may rather be due to other 

sources of variation unrelated to basic cohort or clinical characteristics such as first episode 

vs. recurrent, antidepressant free vs. antidepressant using or acute vs. remitted patients, as 

we did not observe any differences between these subgroups. The current study did 

however examine several potential technical sources of bias such as field strength, scanner 

vendor, and FreeSurfer version. In terms of scan technical moderators, we found that image 

acquisition with a Philips scanner (in contrast to Siemens or General Electric vendors) and 

FreeSurfer version for preprocessing images (v5 and v6, in contrast to v7) showed 

significant moderating effects on the effect size of the case-control difference in the brain 

age gap (Supplementary Figures S3 and S4). While scanner manufacturer and FreeSurfer 

pipeline differences may potentially lead to (small) non-negligible differences in cortical 

thickness, surface area, and volume (Potvin et al., 2016), it is unlikely that effects would be 

differential in cases versus controls within the same cohorts. These effects were corrected 

for in the mega-analysis and it seems more plausible that other heterogeneous 

demographic, psychosocial, clinical, or biological cohort-specific characteristics, which we 

did not measure, coincided with the scanner vendor variable (i.e., biological sampling bias).  

 

A recent systematic review, for example, suggests a role for epigenetic factors, and work 

investigating whether (genetic risk) for epigenetic aging contributes to the brain-PAD metric 

is underway in the ENIGMA consortium. While other literature suggests differential brain 

aging effects in older adults compared to middle-aged adults (i.e., only significantly higher 

brain-PAD in geriatric sample)(Christman et al., 2020), females and males (i.e., brain-PAD 

only associated with depressive severity in males)(Dunlop et al., 2021), or stage-dependent 

relationships with depression (i.e., only occurring at illness onset)(Han et al., 2021), we did 

not confirm this in the current study. Furthermore, detailed information on ethnicity, 

socioeconomic and psychosocial variance were not available and its impact on (the 

performance of the) brain age (prediction model) could not be evaluated in more detail here. 

However, an independent study including the NESDA cohort showed selectively older 
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appearing brains in those with high somatic symptom severity (Han et al., 2021b). Future 

studies with more detailed (clinical) characterization (e.g., individual or clusters of depressive 

symptoms) are needed to gain more insight into which factors consistently contribute to the 

brain-PAD metric.  

 

A major strength of this replication study is the harmonized approach of data preprocessing, 

quality checking, and brain age prediction algorithm across cohorts, potentially limiting the 

sources of bias that may stem from these decisions. This study is therefore a good example 

of the advantage of consortium efforts and collaborative team science. A note of caution is 

however due, since within individual cohorts, the case-control difference may not be 

consistent, present, or significant, also explaining the inconsistent findings across individual 

studies (Ballester et al., 2022). Unfortunately, due to a lack of harmonized clinical, 

demographic, and psychosocial information in consortia like ENIGMA MDD, we are limited in 

our ability to identify factors that could explain the variance in brain-PAD between cohorts. 

Finally, while the brain age predictions may be more accurate with higher-dimensional data 

from multimodal sources, it remains an open question whether models with improved 

performance accuracy show increased sensitivity in detecting subsequent associations with 

clinical psychopathology.  

 
5.  CONCLUSION 

 
This replication study using data from 13 cohorts around the world confirmed our previous 

findings that persons with major depressive disorder show advanced brain aging compared 

to controls by approximately +1 year. Thus, two large-scale independent but harmonized 

mega-analyses across 32 cohorts and >3,400 patients and >2,800 controls show a reliable 

but subtle pattern of brain aging in adult depression. It is important to note that the small, 

pooled effect is not due to consistent small effects across cohorts but may be driven in part 

by the heterogeneity across scanning sites. Although we did not find a relation between 

basic patient properties and the effect size difference in the brain age gap, future work is 
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needed to examine which clinical or biological characteristics may underlie the individual 

variation in the brain age gap.  
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