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ABSTRACT

Differential gene expression analysis using RNA sequencing (RNA-seq) datais a standard
approach for making biological discoveries. Ongoing large-scale efforts to process and normalize
publicly available gene expression data enable rapid and systematic reanalysis. While several
powerful tools systematically process RNA-seq data, enabling their reanalysis, few resources
systematically recompute differentially expressed genes (DEGS) generated from individual
studies. We developed arobust differential expression analysis pipeline to recompute 3162
human DEG lists from The Cancer Genome Atlas, Genotype-Tissue Expression Consortium, and
142 studies within the Sequence Read Archive. After measuring the accuracy of the recomputed
DEG lists, we built the Differential Expression Enrichment Tool (DEET), which enables users to
interact with the recomputed DEG lists. DEET, available through CRAN and RShiny,
systematically queries which of the recomputed DEG lists share similar genes, pathways, and TF
targets to their own genelists. DEET identifies relevant studies based on shared results with the

user's gene lists, ading in hypothesis generation and data-driven literature review.
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Highlights

By curating metadata from uniformly processed human RNA-seq studies, we created a database
of 3162 differential expression analyses.

These analyses include TCGA, GTEX, and 142 unique studiesin SRA, involving 985 distinct

experimental conditions.

The Differential Expression Enrichment Tool (DEET) allows users to systematically compare
their gene liststo this database.
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INTRODUCTION

RNA sequencing (RNA-seq) is commonly used to measure genome-wide transcriptional
abundance within and across biological samples (1). RNA-seq experiments typically compare
RNA transcript abundances between two or more groups to calculate differentially expressed
genes (DEGsS) (2). Interpreting DEG results often involves gene ontology (GO) enrichment (3—
5), public gene co-expression network comparisons using amyriad of tools such GeneM ANIA
and EnrichR (6, 7), and directly comparing results to published studies. Currently, hundreds of
thousands of human RNA-seq samples are publicly available within the Sequence Read Archive
(SRA) (8, 9), and accessing these data efficiently and meaningfully is an important step in RNA-

seq analysis.

Advances in large-scale analyses of publicly available RNA-seq data make it possible to
interact with public data (5-7) systematically. Reprocessing publicly available RNA-seq data
before interpreting their resultsis essential because of technical variation inherent to the
experimental and analytical steps of an RNA-seq study. Large-scale projects like recount, toil-
recompute, and ARCH$4 (10-13), remove unwanted variation in analysis by developing and
applying efficient computational strategiesto consistently align and enumerate RNA-seq data
across tens of thousands of samples simultaneously (10-13). Briefly, recount2 stores consistently
reprocessed RNA-seq data from ~70,000 samples. Of these samples, ~20,000 of them originated
from consortia with complete metadata, with 9,538 samples from The Cancer Genome Atlas
(TCGA) (14, 15) and 11,284 samples from the Genotype-Tissue Expression Consortium (GTEX)
(16). Modern public consortia of re-reprocessed RNA-seq data now combine to store over a

million human and mouse RNA-seq samples (10, 12). Using recount, ARCH34, and other
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consistently processed RNA-seq databases, researchers can download and compare RNA-seq
samplesto their data (17, 18) without worrying about any technical heterogeneity in RNA-seq

dataanalysis.

High-quality metadata is fundamental to analyzing consistently processed RNA-seq data
properly. However, metadata is not always consistently stored. For example, Ellis et al., 2018
analyzed the metadata of 49,564 human RNA-seq samples stored with the Sequence Read
Archive (SRA) and found that sex was only reported in 3640 (7.3%) of those samples (19). The
Gene Expression Omnibus (GEO) and ArrayExpress (20, 21) provide guidelines and greatly
facilitate the submission of RNA-seq data and associated metadata. MetaSRA also improved the
organization of public metadata by devel oping a semi-automated metadata normalization process
to convert published metadata to a format comparable to metadata stored in the Encyclopedia of
DNA Elements (ENCODE) (22, 23). While these efforts and others facilitate the pairing of
RNA-seq studies with metadata, there are still considerable inconsi stencies in metadata between
datasets regarding metadata organization and sample missingness. One solution to the problem
of incomplete metadata was addressed by Ellis et al., 2018 using the PhenoPredict (19) package
to improve the metadata within recount2 (11). Specifically, PhenoPredict (19) trained a metadata
classifier from TCGA and GTEx RNA-seq data stored within recount2 before annotating the
remaining ~50,000 SRA samples within recount2, resulting in uniform metadata across
recount2. Additional projects like recount-brain use athird party to manually annotate a
consistent set of metadata for brain RNA-seq samples within recount (24). Together, consi stent
RNA-seq count data and metadata allow for the development of pipelines to conduct high-

throughput differential expression anaysis.
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Several existing robust methodologies allow for querying extensive systematically
processed RNA-seq data. For example, Enrichr and the Expression Atlas from ArrayExpress
allow for the systematic querying of genelists (7, 25). Enrichr included co-expression from
consistently reprocessed RNA-seq datain ARCH3A (12, 25), while GenomicSuperSignatures
applies aprincipal component analysis approach to 536 studies to study-associated gene-
expression patterns (26). Two other tools have also reprocessed DEG liststo aid in biological
discovery. Specifically, The Expression Atlas (25, 27) contains co-expression and DEGs from
many species and experiments, including over 330 pairwise DE comparisons from human RNA-
seq alone. Secondly, Crow et al., 2019 used 635 pairwise human DE comparisons from
consistently processed microarray data from Gemma database to better understand common
distributions of DEGs (28, 29). These methods highlight the value of uniformly processed RNA-
seq data, metadata, and differential expression; however, there is still a considerable need for

larger-scale atlases of interactive DE.

In this study, we describe the Differential Expression Enrichment Tool (DEET), a
database and bioinformatic package that allows usersto query systematically generated
differential gene expression results from published RNA-seq studies. DEETSs database contains
3,162 consistently processed human pairwise differential gene expression comparisons from
studies within recount2 (11), spanning 99 tissues, 55 cell lines, and 985 conditions (486 from
SRA, 433 from TCGA, 66 from GTEXx). DEET allows users to input alist of genes with relevant
coefficients (e.g., p-value, fold-change, GWAS effect size) to systematically query the gene
expression and pathway enrichment profiles of thousands of consistent gene lists through gene
set enrichment and correlational analyses. DEET and its database can be accessed via afreely-

available library of DE comparisons, R package
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(https://cran.rstudio.com/web/packages/ DEET/index.html), and Shiny App (https://wilsonlab-

sickkids-uoft.shinyapps.io/ DEET-shiny/).

MATERIALSAND METHODS

The purpose of the Differential Expression Enrichment Tool (DEET) is to facilitate
comparing user-defined lists of differentially expressed genes (DEGSs) against a uniformly
computed and annotated compendium of DEGs (Figure 1A-B). To build the DEET database, we
computed a compendium of 3162 unique, consistently processed human DEG comparisons, and
devel oped supporting software (R package and Shiny app) to interact with the DEG
compendium. For each pairwise comparison, DEGs were identified using a custom pipeline that
uses factor analysis of metadata and DESeg2 for differential analysis. Next, for each DEGs lit,
DEET performs GO term and TF target enrichment analysis. The pre-computed DEGs and

enrichment results are stored in DEET.

Data acquisition

All RNA-seq count data were acquired from the "recount” R package using the
"download_study" function with default parameters (11). Metadata from studies with the SRA,

TCGA, and GTEXx were acquired from multiple sources.

SRA. Metadata for studies within SRA was acquired by using the "all_metadata’
function in the “recount” R package and supplemented with the "human_matrix_v9.h5" filein

Arch$4 (8, 11, 12). Samples stored within recount-brain (24) was further supplemented with
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"add _metadata(source = "recount_brain_v2")" using the "recount” R package (11). Specifically,
we extracted overlaid sample metadata in recount2 and Arch$S4 by their "geo_accession”. We
then added the "title" variable from Archs4 to the metadata stored in recount2 (11, 12, 19)
(Supplementary File S1). Lastly, we downloaded brief descriptions of each study from the DRA

compendium (https./trace.ddbj.nig.ac.jp/DRA Search/).

TCGA. Metadata for The Cancer Genome Atlas (TCGA) was acquired from the

"recount”" R package using the "all_metadata’ function (11, 15).

GTEX. Publicly available metadata for the Genotype-Tissue Expression (GTEX)
consortium was acquired with the "all_metadata’ function (11, 16). Privately available metadata
for GTEx was acquired using doGap (phs000424.v9) with all required ethical approvals and data

protection.

M etadata pre-processing

We needed to streamline the metadata with SRA, GTEX, and TCGA before we could
perform differential analysis within each study and tissue. Streamlined metadata in combination
with consistently reprocessed RNA-seq count data allowed for high-throughput differential

expression analysis within each sample source.

SRA. Metadata across different studies submitted to SRA isinherently inconsistent.
Accordingly, within SRA, we focused on metadata compatible with the PhenoPredict R package
(19). These compatible metadata variables are tissue, cell type, sample source, sex, and
sequencing strategy. Specifically, if the authors reported values for these variables, then

PhenoPredict converted the consistent variable names across datasets (e.g., “reported tissue’, and
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they are populated with the reported value. PhenoPredict also matches reported metadata with
predicted metadata variables based on the RNA-seq profile of each sample trained on the
metadata and RNA-seq profiles within GTEXx (19). For the DEET database, we used the author’s

reported metadata value and the predicted metadata if the reported metadata was unavailable.

TCGA. Metadata was first manually processed to remove possible inconsistencies. Specifically,
we manually adjusted and merged drug names based on spelling errors and generic and brand
names, respectively (e.g., ibuprofen vs. Advil). Variables where values contained different units
(e.g., body temperature measured in Celsius vs. Fahrenheit) were also corrected so that every
value adhered to the most common unit. For example, if the mgority of body temperatures were
reported in Celsius, then every sample changed their reported body temperature to Celsius.
Missingness of continuous variables was populated with a mean imputation stratified by sex.

Missingness of categorical variables was populated with an “unknown” label.

GTEx. We did not detect metadata requiring manual corrections within GTEXx. Like TCGA,
missing continuous variables were populated with a mean imputation stratified by sex, and

missing categorical variables were populated with an “unknown” label.

Comparison excluson and inclusion criteriafor the DEET database

Several criterianeeded to be met for a comparison to be included in the DEET database.
These inclusion and exclusion criteria were consistent across TCGA, SRA, and GTEXx.
Comparisons were filtered if they had fewer than three biological replicates in each condition, if
conditions were generic identifications (e.g., Patient ID 1-5 vs. 6-10), if conditions were

compared across different tissues, or if the comparison had a complete stratification of metadata
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(e.g., al “drug-control” were female and all “drug-treated” were male). Time-series and stepwise
dosage comparisons kept the original reference point to each timepoint and stepwise timepoints
while non-linear timepoints (e.g., Time-2 vs. Time-4 if Time-3 was present) were filtered.
Comparisons where one condition was “NA” or “unknown” were filtered for interpretability.
Lastly, studies with more than three comparisons were filtered so that each treatment was only
compared to an untreated control (e.g., each TCGA-drug was compared to the untreated
condition). We removed these “treatment-a vs. treatment-b” comparisons to avoid having DEET
be primarily populated with permutations of DE comparisons that are challenging to interpret.
Studies with three comparisons (i.e., Control, Treatment 1, and Treatment 2) include every
pairwise difference, including Treatment 1 vs. Treatment 2, asit only added one extra
comparison. Lastly, after DE was performed (See “High-throughput differential expression

analysis’), comparisons with more than 10,000 DEGs and fewer than 5 DEGs were filtered.

While the exclusion criterion for comparisons originating from TCGA, SRA, and GTEX

was the same, the inclusion criteriafor comparisons originating from these sources differed/

SRA. SRA isarepository of unique studies. Therefore, comparison variables across
studiesin SRA were inconsistent. Comparisons were included in DEET if they passed the

general exclusion criterion. The remaining comparisons were then paired with the description of

each study found within the DRA Search (https://ddbj.nig.ac.jp/search). Comparisons reflecting
the study description are included, and comparisons that do not reflect the study description are
flagged and only included if the comparison was not confounded by the primary comparison.
Five of these studies, SRP043162 (30), SRP063978 (31), SRP063980 (31), SRP064561 (32),

SRP067214 (33), and SRP050892 (34), each had multiple timepoints and tissues with two
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conditions (98 comparisons total). Our high-throughput pipelines would have treated these
features as blocking factors instead of variables to stratify pairwise comparisons. Accordingly,
we completed these DE comparisons manually and provided them with the " SRA-manual™
source identification. Lastly, 14 studies (21 comparisons) had their metadata manually
supplemented with the recount-brain (24) dataset. M etadata from recount-brain (24) did not
influence how DEs were calculated, but it did influence how these DE comparisons were

described.

TCGA. Over 10,000 samples contained sample information mapped to the same
metadata table. Accordingly, variables from this curated TCGA metadata table were manually
selected for their potential to provide biologically meaningful comparisons. Specifically, we
included variables describing the tumour such as tumour presence, reoccurrence, stage, grade,
histological diagnosis, and subdivision. In addition, we included variables describing tumour
treatment (e.g., follow-up, drug treatment, and surgery performed). Variables specific to
individual cancer types (e.g., Estrogen receptor positivity, KRAS mutation presence) were
included and automatically filtered from irrelevant cancers due to DEET’ s database exclusion
criterion because other tumour types contained missing or unknown cancers. In addition, we
included ordinally annotated medical conditions (e.g., presence of diabetes, presence of heart
disease, chronic pancrestitis). Lastly, population-level variables, namely sex and weight, were
included. Weight was compared using body massindex (BMI) and was grouped into broad
categories provided by the Centre for Disease Control and Prevention

(https://www.cdc.qgov/healthywel ght/assessi ng/bmi/adult  bmi/index.html).

10
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GTEX. Likein TCGA, metadata variables within GTEx were chosen from GTEX's

library of clinical variables (https:.//www.nchi.nlm.nih.gov/projects/gap/cgi-

bin/GetListOf AllObjects.cqi ?study _id=phs000424.v4.pl1& object type=variable) for their ability

toyield interpretable DE. Firstly, al clinical ordinal variables (e.g., presence of pneumonia at the
time of death - yes or no) were included. Population variables, namely sex, age, race, BMI (with
the same criteriaasin TCGA), and Hardy Scale (i.e., death circumstances), were aso included.

Ages were binned into 20-year periods (i.e., 20-39, 40-59, and 60-79 years).

High-throughput differential expression analysis

Each pairwise comparison has a different number of samples, different sample
stratification, and potentially different combinations of categorical and continuous metadata to
control for. Furthermore, each major source of samples contained a different set of metadata to
control for (Figure 1A). Accordingly, our high-throughput differential analysis pipelines needed
to beflexible for different experimental designs and variability in metadata. We used the

variables below to account for population-level metadata within SRA, TCGA, and GTEX.

SRA. We control for tissue or cell type, sequence strategy, and sex.

TCGA. We control for tissue source, age, histological subtype, and sex.

GTEXx. We control for age, time passed until sample freezing, Hardy Scale, and sex.

If we are measuring DEGs in a variable that we typically control for, for example, sex
differences, then we do not control for sex in that comparison. We accounted for the variability

in experimental designs within the DEET database by applying automated correspondence

11
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analysis to each comparison. Specifically, continuous metadata (e.g., age, sample freezing time,
etc.) underwent an Escoffier transformation using the "ours" R package (35, 36). Categorical
metadata (e.g., sex, tissue, etc.) underwent a digjunctive transformation using the "ours' R
package. We then reduced these metadata into a smaller set of explanatory variables with a
correspondence analysis (CA) using the "epCA" function in ExPosition (35). We used a
correspondence analysis instead of aprincipal component analysis (PCA) because the metadata
used to control for comparisons within DEET were mixed (i.e., continuous, and categorical).
Then, we generated a Screeplot of the eigenvectors for every CA and every comparison. We
picked the number of components using the elbow of each graph. Together, every pairwise

comparison controlled for variables appropriate to the variation in their metadata.

Differential gene expression analysis for all pairwise comparisons was completed with
the likelihood ratio test in the DESeq2 R package (2). The appropriate number of factors as
measured by the CA were used to reduce DE. Genes were considered differentially expressed if
they had an FDR-adjusted p-value < 0.05. The "downregulated” group was decided

alphabetically, as not all comparisons had a clear "case" and "control”.

Next, we performed pathway enrichment for every pairwise DE comparison. Specifically, we
inputted all genes in each comparison into ActivePathways (37). We selected genes detected in
each comparison as the statistical background. Genes with an FDR-adjusted p-value <0.05 were
labeled significant. Enriched pathways included both up-regulated and down-regulated genes.

For both pathway and TF enrichment, we used an FDR-adjusted p-value to correct for enriched
pathways. All pathways, regardless of significance, were returned. Pathways were derived from a

homogeneous gene-set database (http://download.baderlab.ora/EM _Genesets/). Specifically, we
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used the “Human_GO_AllPathways with_GO _iea June 01 2021 symbo.gmt” pathway
enrichment file, where we included paths with 15-2000 genes. Transcription factor (TF) targets
were derived from the “Human_TranscriptionFactors MSigdb_June 01 2021 symbol.gmt” TF

target file, where we included TFs with 15-5000 genes.

Display of the differential expression comparisonswithin the DEET database.

Every comparison was named using the following format: Study 1D: Cell/Tissue type.
condition 1 vs condition 2. When available, cell and tissue types were identified from internal
metadata and the study summaries from the DRA compendium otherwise. In addition, for every
pai rwise comparison, the study name, source (SRA, TCGA, GTEx, and SRA-manual) (8, 15,
16), description from the DRA compendium, the number of samples (total, up-condition, and
down-condition), samples (total, up-condition, down-condition), tissue (including tumour from
TCGA), number of DEs (total, up-condition, down-condition), age (mean +- sd), sex, top 15
DEGs - up, top 15 DEGs - down, top 5 enriched pathways, and top 5 enriched TFs
(Supplementary File S1) are provided. PubMed IDs are also available for studies selected from
SRA. Lastly, each pairwise comparison was given an overall category based on a DE category
list decided in Crow et al., 2019 (29). We also added the additional categories of sex, age, and
combinations of categories (e.g., treatment + timepoint) to accommodate our additional

comparisons.

Comparing DE comparisonsin the DEET database against their original studies

We compared a subset of the pairwise DE comparisons we recomputed against the same

comparisons stored within the supplemental data of their original studies.
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SRA. DEGs from Lin41 treatments vs. control in ESCs were obtained from Supplementary file
S2 from Worringer et al., 2014 (38). DEGs from timepoints after FOXM1 inhibition MCF-7

cells were obtained from the GEO file (GSE58626) associated with Gormally et al., 2014 (39).

TCGA. Sex differencesin DEGs for twelve different cancers summarized in Table 1 of Yaun et

al., 2016 (40) were obtained by contacting the authors directly.

GTEX. Sex differencesin DEGs for seventeen tissues were obtained from Supplementary Table

3 from Lopez-Ramos et al., 2020 (41),

For all comparisonsin the DEET database and the original study, we applied an absolute-
value fold change cutoff of 1.5 and an FDR-adjusted p-value < 0.05 cutoff. For each matching
comparison, we evaluated the over-representation of overlapping DEGs between the original
study and DEET's evaluation of DEGs with a Fisher's Exact-test of overlapping genes using
“cellmarker_enrich” in the scMappR R package (42, 43), where the background is the number of
genes detected in the original study. We then tested whether applying the DEET enrichment tool
to each original DE comparison would enrich for their analogous DEG comparison within the
DEET database. We outputted the rank that the analogous comparison was enriched. If the
analogous comparison was not ranked one (i.e., the most enriched study), we outputted whether
every more strongly enriched comparison contained the same primary variable (e.g., sex
differences in adifferent tissue). Then, we measured the log2(Fold-change) similarity of genes
that overlapped between the two studies using a Pearson's correlation. P-values for these
Fisher's-exact tests and correlations were FDR corrected, and the log2(Fold-change) of the genes
designated as DE in the original study or the DEET database were plotted using the "ggplot2" R

package (44).
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| mplementation

We provide an R package, DEET, and Shiny applet that allows users to query alist of
their genes against our 3162 consistently computed DEG lists. The DEET R package, can be
ingtalled from CRAN (Supplementary File S2; page 1), and the Shiny applet can be found at
(https://wilsonlab-si ckkids-uoft.shinyapps.io/ DEET-shiny/). We also provide a workflow for
users to query and visualize their DEGs against the DEET database (Supplementary File S1). We
only query significant DEGs in the DEET R package and Shiny App. Both data sets can be
downloaded with the DEET _data download() function in the R package. The DEGs from each
pai rwise comparison within the DEET database are also stored in the gene-matrix transpose
(*.gmt) format, allowing users to incorporate the DEET database with other pathway enrichment

tools such as g:Profiler and GSEA (3, 4).

The primary function of the DEET R package isto allow users to query their list of DEGs
against the consistently computed DEGs within the DEET database by using the function
DEET _enrich(). The optimal input into DEET's enrichment function, DEET_enrich(), isadata
frame of genes (human gene symbols) with an associated p-value and coefficient (e.g., Fold-
change) in conjunction with alist of genes designating the statistical background. First, DEET
internally applies ActivePathways (37) function to the user's gene list to identify enriched GO's
and TF's using the same GO and TF datasets stored within the DEET database. DEET then uses
ActivePathways (37) again to compute the enrichment of DEET comparisons at the gene, GO,
and TF levels. ActivePathways (37) used all detected genes as the statistical background,
Brown's p-value fusion method, and an FDR-adjusted p-value cutoff of 0.05. Then,

DEET _enrich() enriches the users' inputted genes, pathways, and TF targets against the DEET
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database’ s DEGs, pathways, and TF targets. Then, DEET_enrich() computes the Spearman's and

Pearson's correlation between the coefficients of the user's gene list and the log2(Fold-change) of

DEGs within enriched pairwise comparisons in the DEET database. Finally, the p-values of these
correlations are corrected with an FDR correction. Together, DEET's enrichment tool returns

significantly enriched studies based on overlapping DEGs, pathways, and TFs.

Optionally, DEET _enrich() may be used with a generic genelist (i.e., without P-values or
coefficients). We assume an inputted list is unordered or in decreasing order of significance. If
the genelist is ordered, we evenly space their p-value, with the least significant p-value being
0.049. The Pearson'’s correlation between the inputted gene list and the DEGs within the DEET
database is excluded. If the inputted gene list is unordered, then all p-values are set to 0.049, and
both Spearman's and Pearson's correlations between the users' inputted genes and the DEGs
within the DEET database are excluded. If users do not provide a background set of genes, we

assume the background set is all genes detected within the DEET database.

The DEET R package also contains plotting functions to summarize the most significant
studies based on each enrichment test and correlation within DEET _enrich(). The
process and_plot DEET _enrich() function plots barplots of the most enriched studies based on
gene set enrichment (ActivePathways (37) ) of the studies enriched studies based on overlapping
DEGs, pathways, and TF targets. DEET also generates scatterplots of the most enriched studies
based on Spearman’ s correlation analysis. All plots are generated using ggplot2 (44), and
DEET _enrich() returns the ggplot2 (44) objects for each plot to allow researchers to customize

plots further.
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Lastly, the DEET R package contains afunction called DEET _feature_extract(), allowing
researchers to identify genes whose log2Fold-change is associated with a response variable (e.g.,
fold-change of the gene of interest, and whether the study investigates cancer, etc.). Genes are
extracted by calculating the coefficients from a Gaussian family elastic net regression using the
“glmnet” R package (45, 46) and Spearman’ s correlation between every gene and the response
variable. If the response variable is categorical (e.g., comparison category), features are extracted
by calculating the coefficients from a multinomial family elastic net regression and an ANOV A
(47) between each category within the response variable. Lastly, if the response variableis
ordina (e.g., enriches for TNFa pathway yes/no, Cancer study yes/no, etc.), features are
extracted using a binomial family elastic net regression and a Wilcoxon’ s test (48) between the

two categories within the response variable.
Clustering of studieswithin the DEET database

Pairwise correlation analysis was completed within every study in the DEET database.
Specifically, wetook genes DE in at least one of the studies for each pair of studies and
completed a Pearson’s correlation of their FDR-adjusted p-values. The R? of these pairwise
correlations were populated into a correlation matrix. We then computed the Euclidean distance
matrix of the absolute value of the correlation matrix before performing a hierarchical clustering
correlation matrix using the Ward.D (49) method and with a height cut-off of 100. The
correlation matrix was clustered and plotted with the Pheatmap R package (44, 49). Median
proportions of overlapping DEGs within each cluster were calculated by making a comparison-
by-comparison matrix and populating it with the number of intersecting genes. Then, each row of

the matrix was divided by the number of DEs in that row’s comparison. The median of this
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matrix was then calculated and represented by the barplot. For example, a value of 0.075 for
cluster 5 meansthat “on average, a comparison within cluster 5 will share 7.5% of their DEGs
with another comparison within cluster 5”. Finally, we annotated the biological and hallmark

gene-sets for each cluster using ActivePathways, using Brown'’s p-value fusion method.

Case Study: Evaluating TNFa responsein human endothelial cells

We acquired the full edgeR results of differential expression analysis in both the intronic
RNA-seq and exonic RNA-seq from the original authors of Alizada et al., 2021 (50, 51). All
detected genesin Alizada et al., 2021 (51) were used as the statistical background. Genes were
separated into up-regulated and down-regulated based on false-discovery rate using the authors
cut-offs of FDR < 0.1 and absolute-value log2(Fold-change) of 0.6. Then, each gene list was
inputted into the DEET _enrich() function using default parameters. We also generated matrices
of all FDR-adjusted p-values where each row is a gene, and each column is an RNA-seq type
(i.e., intronic RNA-seq and exonic RNA-seq). Genes with alog2(Fold-change) > 0 had their
FDR set to 1 to focus on downregulated genes. These matrices were inputted into
ActivePathways (37) using default parameters. The *gmit file inputted into ActivePathways was
the full list of DEGs stored within the DEET database and can be accessed with

DEET_data_download().
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RESULTS

Summary of the Differential Expression Enrichment Tool: Atlasand R package

The Differential Expression Enrichment Tool (DEET) facilitates hypothesis generation
and provides biological insight from user-defined differential gene expression results. To use
DEET, usersinput alist of genes with an associated p-value and summary statistic (i.e., fold-
change). DEET performs GO term- and TF target-enrichment analysis using this gene list. DEET
compares a) the gene list itself against a database of the precomputed DEGs within this study and
b) enriched GO terms and potential regulatory TFs with precomputed enrichment results. DEET
returns a set of RNA-seq experiments with similar results together with the genes and pathways
responsible for the overlap between studies. Finally, DEET provides functions to visualize and

report enrichments.

DEET interacts with a consistent set of 3162 human DE analyses that we calculated.
Specifically, the total of 3162 comparisons were selected based on sample numbers and the
interpretability of the comparisons. In total, 405 studiesin recount2, the reprocessed RNA-seq
count data used to recompute these DEG sets, contained at |east five samples and one variable
with two or more groups. After study filtering, 142 of these 405 studies remained to recompute
differential analysis. Specifically, 162 studies were filtered due to insufficient sample size in one
group and/or improper dispersionsin DESeg2. The remaining 98 studies were filtered because
their metadata variables with multiple conditions did not meet the DEET databases inclusion
criteria (see “Materials and Methods’ for details). Briefly, these criteriaincluded study-
relatedness, metadata stratification, confounding, studies containing bulk or cell-sorted RNA-seq

rather than single-cell biosamples, and interpretability of comparisons. Additionally, only
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potentially meaningful DE comparisons from within the original study and tissue (e.g., TCGA
samples were not compared to GTEx samples, liver samples were not compared to kidney
samples) were included (Figure 1A). It isimportant to note that filtered studies were not
necessarily intended for differential analysis, and there was not an inherent flaw in the original
studies but an incompatibility with DEET. Lastly, while no entire study was filtered because of
the number of DEGs, 246 comparisons were filtered for containing more than 10,000 or fewer

than 5 DEGs.

Comparisonsin GTEx (N = 1594 comparisons) (16) and TCGA (N = 957 comparisons)
(15) were chosen based on whether the metadata had discrete optionsin their clinical metadata
sheets. The primary variable comparisons from SRA (N = 611 comparisons across 142 studies)
(8) were chosen based on their relationship to the author’ s reported study description, which we
added to DEET's metadata. To provide an overview of the 985 types of DE comparisonsin the
DEET database, we sorted comparisons into 26 combinations of DE categories originally defined

by Crow et al., 2019 (29), with most categories related to “disease” or “treatment” (Figure 1C).

DEET uses aranked hypergeometric test provided by ActivePathways to compare user-
provided gene list to pre-computed DEGs, (37). Unlike the gene sets stored within GO and
pathway databases, the gene lists used by DEET are weighted by p-value and fold-change. DEET
correlates the DEG coefficients with the fold-changes of a user's DEG list and testsif other
studies are changing in asimilar pattern. Lastly, DEET uses enriched GOs and TFs based on the
user’s genelist to identify studies with similar pathway enrichments using the hypergeometric
test in ActivePathways (37). Lastly, DEET provides software for data visualization of enriched

genelists.
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Global patternsof differentially expressed geneswithin the DEET database

We first investigated the number of samples within each comparison within the DEET
database. Specifically, we found amedian of 127, 141, and 12 samples per comparison from
TCGA, GTEX, and SRA sources, respectively. After accounting for the ratio of samplesin each
condition (see “Materials and Methods’ for details), there was a“scaled” sample size of 26, 13,
and 7. As expected, we found that the number of DEGs was positively correlated with the ratio-
scaled number of samplesin every source (Supplementary Figure S1). Furthermore, when
accounting for the ratio in sample size, the variance in the total number of DEGs al so decreases

as the sample size increases (Supplementary Figure S2).

Previoudly, Crow et al., 2019 used 635 pairwise human DE comparisons from
consistently processed microarray data from the Gemma database (28, 29). To develop a“DE
prior” statistic, a multifunctionality analysis optimizing the rank (52) of common DEGs that
were predictive of gene expression in most studies was used (29). Their DE prior highlighted that
genes related to sex, cellular response, extracellular matrix, and inflammation were commonly
DE regardless of comparison, while housekeeping genes were uncommonly DE. Furthermore,
due to the unbiased nature of the DE comparisons used to predict their DE prior, they predicted
these DEGs to be robust across consortia. Therefore, we generated a DE prior for the DEET
database to be able to compare whether the overall patterns of differential expression within the

DEET database replicate those in Crow et al., 2019.

We found that building a DE prior from the DEGs stored within the DEET database
yielded a correlated ranking of DEGs (p-value = 2.64 x 10", rho = 0.215) to the DE prior in

Crow et al., 2019. Furthermore, the top 1% of DE genesin each "DE prior" list were
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significantly overlapping (FDR-adjusted p-value = 1.37 x 10*8, OR = 15.3), with 26 overlapping
genes primarily related to the Y chromosome and inflammation (Figure 1D, Supplementary
Figure S3). We then repeated thisanalysis at 1% intervals. We found that the top 10% of genes
significantly overlapped between the “DE prior” from Crow et al., 2019 (29) and the DE prior
from the DEET database (Figure 1D, Supplementary Figure S3). Together, the global patterns of

DEG frequency within the DEET database replicate established differential expression patterns.
Distribution of DEG comparisons and pathwayswithin the DEET database

After profiling the DEGs within the DEET database, we investigated how the 3162
comparisons clustered based on their DE profile. We expected comparisonsto be clustered by
shared underlying biology and experimental design; however, many comparisons originate from
population-level comparisons in large consortium datasets (e.g., age, sex, time of death, presence
of pneumonia, etc., in GTEX). Accordingly, population versus experimental RNA-seq designs,
such asthose found in SRA, may also drive cluster structure. We indeed found that the
comparison source played a substantial role in cluster formation, with 7/23 clusters composed
entirely from GTEx comparisons and 1/23 clusters composed exclusively of TCGA comparisons
(Supplementary Figure SAA-B, Supplementary File S1). While TCGA is a population-level
cohort, much of the metadata stored within TCGA is related to specific treatments (i.e., drug
treatment). Like the sample source, the tissue of origin within the DE comparison also
contributed to cluster identification. For example, clusters 20 and 24 were composed almost
exclusively of GTEx comparisonsin EBV-transformed lymphocytes, and clusters 22 and 23
contained almost exclusively GTEX comparisons in different brain regions (Supplementary

Figure 4B).
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We investigated how many DEGs overlap between all pairwise comparisonswithin a
cluster. We found that clusters primarily annotated by shared experimental design (i.e., clusters
1,3,4,5, 6,7, and 16) shared an average of 22.0% (4.8%-44.4%) of their DEGs with another
comparison within the same cluster (Supplementary Figure 4C). In contrast, clusters defined by
source (TCGA, GTEXx, and SRA) or tissue only shared 7.1% (3.9%-14.2%) of their DEGs with
another comparison within the same cluster, which is significantly less (one-tailed Student’st-
test, p = 0.035) (Supplementary Figure 4C). Using ActivePathways (37) which allows for data
fusion of p-values merging across different DE comparisons before conducting gene set
enrichment, we annotated each cluster with GO (Supplementary Figure 4D) and the 50 Hallmark
gene sets (Supplementary Figure 4E). Many clusters contained enrichment for development and
immune response pathways in the Hallmark and the GO gene sets. For example, the “Humoral
immune response”’ gene ontology was in the top 5 most enriched pathways for 7/23 clusters
(Supplementary Figure 4D), and the *Inflammatory response” was in the top 5 most enriched
Hallmarksin 12/23 clusters (Supplementary Figure 4E). In addition, the “Kras signaling - down”
hallmark gene set was in the top 5 most enriched gene setsin 21/23 clusters (Supplementary
Figure 4E). This strong and consistent enrichment of KRAS signaling likely reflects abias
towards cancer-related experiments in the DEET database. Specifically, there are 957
comparisons from TCGA, and all considered at least cancer-related, 47 comparisonsin GTEx
investigating cancer, and 134 comparisons in SRA where “cancer” or “tumour” were part of the

DE comparison name or description.

Differential expressed geneswithin the DEET databasereflect the findingsin the original

studies
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We next evaluated how the gene lists within the DEET database reflect the DEGs
reported in the original studies. We chose publicly available comparisons from each primary
source within the DEET database (GTEX, TCGA, and SRA). To verify if our DE comparisons
made from GTEXx data correspond to previously published analyses, we compared the pairwise
analysis of sex differences within 17 tissues to what was reported in the original study (Lopez-
Ramos et al., 2020) (41). To verify our DE analysis of TCGA data, we compared our results for
the pairwise sex differences within the 12 tumour types to what was reported in the original
study (Yuan et al., 2016) (40). To verify our comparisonsin SRA, we chose two studies: DEGs
measured from @) MCF-7 cells after FOXM 1 inhibition (control t=0 vs. 3, 6, and 9 hours)
(Gormally et al., 2014) (39) and b) Lin41-1 knockdown, and Lin41-2 knockdown in human
embryonic stem cells (Worringer et al., 2014) (38). As expected, we found that each DEG list
obtained from the original study either enriched for its own comparison as the single most
enriched gene list (6/6 comparisons from SRA, 4/12 comparisons from TCGA, 12/17
comparisons from GTEX) or enriched for a study within the same source and comparison type
but in adifferent tissue. For example, sex differences in glioblastoma multiforme (GBM) stored
within the supplementary files of Yuan et al., 2016 enriched for DEET-computed sex differences
in Glioblastoma (GBM), the fifth most significant comparison, while the most significantly
enriched comparison was sex differences in Uveal melanoma (UVM) within the TCGA cohort
(15) (Supplementary Table S1). We also found that every pairwise comparison from these
studies had a highly significant overlap in DEGs and highly correlated fold-changesin
overlapping DEGs (Supplementary Table S1, Supplementary Figure S5). We captured 31.4%-

87.1% of the original DEGs, which isin line with differences that can occur when comparing
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any two commonly used differential analysis approaches to the same RNA-seq count matrix

(53).

Lastly, when looking at the total number of DEGs, we found a similar number or, in most
cases, more DEGs between all the comparisons within the DEET database compared to the
original studies (Supplementary Table S1). Differences in alignment, gene counting and
normalization, and differential analysis all influence gene DEG detections and dispersions, thus
impacting the total number of DEGs. In particular, DEET-specific non-coding DEG detection
partially explains why DEET detects more DEGs than many of the original comparisons.
Specifically, DEET-specific DEGs are, on average, 6.8x (0.65-36.3) more likely to be non-
coding genes than DEGs shared between the DEET database and the original study
(Supplementary Figure S6). Overall, the automated differential pipeline DEET used to calculate

DEGs accurately captured the DEGs from their original studies.

DEET identifies relevant studieswhen applied to TNFa-mediated inflammation

To demonstrate how DEET can be used to explore user-generated DEG lists, we took our
lab’s previously published analysis of human aortic endothelial cells (HAOEC) treated with
proinflammatory cytokine tumour necrosis factor-alpha (TNF) (51). TNFa stimulation activates
the transcription factor complex NF-xB and drives rapid proinflammatory gene expression. This
study has a45-minute post-TNF treatment versus untreated comparison. Two DEG lists were
generated: one conventional comparison looking at exonic RNA and another comparing intronic

RNA (which can be used as a proxy for actively regulated genes (51)).
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We applied DEET’ s enrichment tool function to both the intronic- and exonic-calcul ated,
TNFa-induced (upregulated) DEGs. We found that both intronic- and exonic-derived DEGs from
Alizadaet al., 2021 (51) retrieve comparisons related to TNFa treatment and bacterial infection
(Figure 2A, Supplementary Figure S7). For example, the top 15 most enriched studies from each
list include studies measuring gene expression after <1h of TNFatreatment (TNFatreatment to

breast cancer cells for 40 minutes (54) and TNFa treatment to neutrophils for one hour (55)).

One important motivation for using DEET isto facilitate identifying new connections
between one’ s gene list and other studies that do not share a common experimental design. For
example, the above DEET analysis of TNFa-treated endothelial cells returned a methods-based
study looking at the effect of overexpressing NF-kB subunits RELA and NFKB1 in HEK293
cells (56) and another study of macrophages infected with Mycobacterium abscesses (57). We
also retrieved a study that, at first glance, did not contain an obvious connection to
proinflammatory gene responses but rather investigated differences in gene expression after
FOXM1 inhibition in MCF7 breast cancer cellsfor O (naive) vs. 6 hours (39) (Figure 2A). We
found a significant overlap of DEGs whose fold-changes were correlated (153 genes, R? = 0.318,
FDR-adjusted p-value = 1.849 x 10 (Figure 2B). While FOXM1 is often studied as a
transcription factors that plays arolein proliferation and differentiation (39), previous studies
link FOXM1 to TNF signaling through extensive chromatin co-localization of FOXM1 and NF-
kB (58). These 153 overlapping genes significantly enrich the “TNFa signaling via NFKB”
hallmark gene set (54 genes, FDR-adjusted p-value = 2.175 x 10%). Lastly, DEET isalso
designed to identify significantly associated comparisons based on overlapping GO and TF-
target terms obtained from user-submitted DEG lists. Using the above NF-xB DEG list and

associated GO and TF-target terms, we identified additional DEG comparisons within the DEET
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dataset driven by GO terms “ TNFa signaling via NF-kB”, “Response to lipopolysaccharide”, and

“response to molecule of bacterial origin” (Figure 2C, D).

To further demonstrate the potential use of DEET and to provide an example where
DEET was ableto reveal novel biological insghts that might be missed by transitional pathway
enrichment analysis, we queried the list of genes downregulated after TNFa treatment. Such
downregulated genes are known to have a weaker signal than upregulated genes and are often
related to genes involved in cell-type-specific processes (59). We identified seven enriched
comparisons using downregulated genes identified by integrating exonic and intronic DEGs (37).
Interestingly, one comparison investigated breast cancer cells with both estradiol and TNFa
treatment for 40 minutes (54), and another which investigated “11-18" lung adenocarcinoma cell
line after pharmacological activation and inactivation of NF-kB (60) (Supplementary Figure
S8). In contrast, traditional Gene Ontology enrichment (61) only identified pathways related to
cell-lineage specificity (Supplementary Figure S8). We then investigated whether the seven
overlapping genes between Alizada et al., 2021's (51) downregulated genes and SRP044608
(estradiol + TNFatreatment) (54) have been previously linked to TNFain the literature. Two
overlapping genes, TXNIP (62) and SMAD7 (63) are negatively correlated with TNFa treatment,

and the other genes expressed based on TNFa varied based on the biological context (64—68).

DEET identifiesindividual gene-gene associations across datasets

Lastly, DEGs that show correlated expression changes across different conditions are
more likely to be part of the same biological pathway and undergo shared gene regulation (3,
69). We can leverage the associations of fold-changes between genes across all the comparisons

in the DEET database to identify genes that may be under the same regulation. Specifically, the
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DEET feature extract() function detects genes associated with an input variable that can be
assigned to every comparison (e.g., a gene of interest, whether the comparison investigated
cancer, etc.) using an eastic net regression (45) in conjunction with correlation analysis to
determine what genes are associated with the input variable. To showcase this application of
DEET, we looked for genes whose fold changes are correlated with that of the TNFa encoding
gene TNF. The 14 genesretrieved by DEET were enriched for “TNFa signaling viaNFkB” more
than any other gene ontology (FDR-adjusted p-value = 4.09 x 10™) (Supplementary Figure
S9A) and included well-known TNFa signaling genes NFKBIA (rank 2) and SEMA4A (rank 6)
and (Supplementary Figure 9B).

Interestingly, the top-ranked gene was CCDC7 (Supplementary 9B), a gene that is not
annotated as a hallmark of TNFa signaling. Supporting the relevance of this hit, CCDC7 has
been shown to ssimultaneously activate interleukin-6 and the vascular endothelial growth factor
(70), which TNFa can also do (71-73). Notably, comparisons within the DEET database where
both CCDC7 and TNF are DE did not include studies investigating short-term TNFa treatment.
Instead, they included studies involving tumour vs. non-tumour, bacterial infection, and Crohn’s
disease. Together, this vignette demonstrates how DEET can be used to obtain meaningful

information from DEG comparisons made from uniformly processed public RNA-seq data.

DISCUSSION

The Differential Expression Enrichment Tool (DEET) allows users to compare their DE
gene liststo a curated atlas of 3162 DEG comparisons originating from GTEX, (16), TCGA (14),

and studies within SRA (74). We envision DEET to be used alongside established and emerging
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tools that leverage uniformly processed data to allow users to discover biological patterns within

their RNA-seq data (e.g. (7, 26, 27)).

A major challenge for implementing atool like DEET, which investigates differential
gene expression resultsin public data (29), liesin the scalability and consistency of publicly
available metadata. We were able to build the DEET database because the PhenoPredict (19) tool
annotated necessary metadata across every sample within SRA. However, there was considerable
manual curation and study filtering even with this consistent annotation. The first magor way to
improve these annotations are with the continued development and use of metadata prediction
algorithms like PhenoPredict (19), automated algorithms of existing metadata within SRA (8)

likein MetaSRA (23) and ffq (https://github.com/pachterlab/ffg). The second major way to

improve these annotations will be through community- and consortium-driven manual annotation
of metadata such as the Biostudies and GEOM etaCuration tools (75) and (76). In the context of
differential analysis, allowing researchers to report which variables are the experimental,
stratifying, blocking, and covariate variables will be invaluable for tools like DEET to
encompass larger uniformly processed datasets such as those provided by RNASeg-er (76),
recount3 (10), ARCH$4 (12), and refine.bio (https://www.refine.bio/) which collectively

contains more RNA-seq studies from human and non-human species (10, 12).

Including model organism studies into differential gene expression databases is of great
value given the greater diversity and controlled nature of study designs (i.e., tissue types,
experimental variables, genetic backgrounds) which are not possible for human studies. In
addition, public RNA-seq from model organismswill contain many smaller-scale, hypothesis-

driven experiments compared to TCGA, and GTEXx. Future developments of DEET would extend
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its database to searchable, consistently analyzed, and curated differential expression analyses
collected from multiple speciesin Expression Atlas (27). Lastly, extending DEET to be able to
search differential comparisons derived from consistent experiments beyond RNA-seq would be
alogical next step to harness ongoing efforts for systematic analysis of public datafrom different
genomic techniques such as sScRNA-seq (20, 77), accessible chromatin profiling (ATAC-
seq/DNAse-seq) (78, 79), and protein-DNA interactions mapping (ChlP-seq and in the future
CUT&RUN/TAG) (80-83). In summary, by allowing usersto rapidly connect their gene liststo
acurated set of uniformly processed differential gene expression analyses, tools like DEET will

facilitate access to the treasure trove of public RNA-seq data

30


https://doi.org/10.1101/2022.08.29.505468
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505468; this version posted August 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

DATA AVAILABILITY:
Supplementary Data:

Code and data to regenerate the figures within this dataset can be found at figshare

(https://doi.ora/10.6084/m9.figshare.20427774.v1). Code and data to rebuild the DEET database

can be found at figshare, however dbGap protected data in these code are excluded

(https://doi.org/10.6084/m9.figshare.20425464.v1). A stable dataset of the DEET database at the

time of submission can be found on zenodo

(https.//zenodo.org/record/6954162#.Y uv3f3bM I2w). The developmental dataset of the DEET

database can be found at (http://wilsonlab.oro/public/DEET data).
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Figure 1. Overview of the Differentia Expression Enrichment Tool (DEET). A) Schematic of

how the consgistently processed DEGs were computed and annotated. B) Flowchart of DEET’s

33


https://doi.org/10.1101/2022.08.29.505468
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.505468; this version posted August 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

primary analysis. C) Barplot of the number of comparisons from each DEG-comparison category
in DEET. Categories plotted were derived from the categories labeling 635 pairwise DE
comparisons from Microarray studiesin the Gemma database (Crow et al., 2019). We added sex,
developmental staging, and combinations of treatments as additional categories. Bars are
coloured by source (i.e.,, GTEx, TCGA, and SRA). D) Scatterplot showing the odds ratio of
overlapping common DEGs between the DEET database and Crow et al., 2019. The X-axis
represents the proportion of included genes, ranked from maost common to least common. For
example, the"1%" point includes genesin the top 1% most common in either DEET or Crow et
a., 2019. The Y -axis represents the odds ratio of over-representation of shared genes at each
increment. Pointsin red represent increments with a significant over-representation of shared

DEGs between the DEET database and Crow et al., 2019.
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Figure 2. Summary of the DEET’ s function applied to upregulated DEGs after TNFa treatment
in Human Aortic endothelial cells (HAOECS) for 45 minutes from Alizada et al., 2021. A)
Barplot of the top 15 most enriched pairwise comparisons based on overlapping DEGs from
intronic RNA-seg. Rows are different comparisons within DEET, and the barplot isthe -
log10(FDR-adjusted p-value) of gene set enrichment computed by ActivePathways. B)
Scatterplot of the log2(Fold-changes) of the upregulated DEGsin Alizada et al., 2021 from
intronic RNA-seq (x-axis) vs. the DEGs in SRP043379 between 0 (naive) and 6 hours of
FOXM1 inhibition (y-axis). Points are individual genes. Grey points are only DE in one study,
purple points are DE in the same direction between studies, and orange points are DE in the
opposite direction. C) Barplot of the top 10 most enriched pairwise comparisons based on
overlapping biological pathways from intronic RNA-seq. Rows are different comparisons within
DEET, and the barplot is the -log10(FDR-adjusted p-value) of path-set enrichment. D) Barplot of
the top 10 most enriched pairwise comparisons based on overlapping TFs from intronic RNA-
seg. Rows are different comparisons within DEET, and the barplot is the -log10(FDR-adjusted p-
value) of the TF-set. For A, C, and D, comparisons annotated with a blue symbol are treatments
of TNFain different cell-lines. Comparisons annotated with a yellow symbol originate from
infection and immune disorders studies. Comparisons annotated with an orange symbol originate
from SRP043378, Gormally et al., 2014, which investigates differences in gene expression in

MCF-7 after FOXM1 inhibition for O (naive) 3, 6, and 9 hours.
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