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Abstract
High-grade serous ovarian carcinoma (HGSOC) is characterised by recurrence,
chemotherapy resistance and overall poor prognosis. Genetic heterogeneity of tumour
cells and the microenvironment of the tumour have been hypothesised as key
determinants of treatment resistance and relapse. Here, using a combination of spatial
and single cell transcriptomics (10x Visium and Chromium platforms), we examine
tumour genetic heterogeneity and infiltrating populations of HGSOC samples from eight
patients with variable response to neoadjuvant chemotherapy. By inferring gross copy
number alterations (CNAs), we identified distinct tumour subclones co-existing within
individual tumour sections. These tumour subclones have unique CNA profiles and
spatial locations within each tumour section, which were further validated by
ultra-low-pass whole genome sequencing. Differential expression analysis between
subclones within the same section identified both tumour cell intrinsic expression
differences and markers indicative of different infiltrating cell populations. The gene sets
differentially expressed between subclones were significantly enriched for genes
encoding plasma membrane and secreted proteins, indicative of subclone-specific
microenvironments. Furthermore, we identified tumour derived ligands with variable
expression levels between subclones that correlated or anticorrelated with various
non-malignant cell infiltration patterns. We highlight several of these that are potentially
direct tumour-stroma/immune cell relationships as the non-malignant cell type
expresses a cognate receptor for the tumour derived ligand. These include predictions
of CXCL10-CXCR3 mediated recruitment of T and B cells to associate with the
subclones of one patient and CD47-SIRPA mediated exclusion of macrophages from
association with subclones of another. Finally, we show that published HGSOC
molecular subtype signatures associated with prognosis are heterogeneously
expressed across tumour sections and that areas containing different tumour subclones
with different infiltration patterns can match different subtypes. Our study highlights the
high degree of intratumoural subclonal and infiltrative heterogeneity in HGSOC which
will be critical to better understand resistance and relapse.
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Introduction
Ovarian cancer is the eighth leading cause of cancer deaths in women worldwide 1.
High-grade serous ovarian carcinoma (HGSOC) is the most common and lethal
histologic subtype, accounting for 70-80% of ovarian cancer deaths 2. HGSOC is
thought to be derived from both fallopian tube and ovarian surface epithelium 3,4 and
genomically, is characterised by almost universal TP53 mutations and copy number
alterations (CNAs) 5–8. Notably, although several chromosomal regions are recurrently
altered 5, and multiple genes (FAT3, CSMD3, BRCA1, BRCA2, NF1, CDK12, GABRA6,
RB1, NF1, PTEN and RAD51B) are recurrently disrupted, HGSOC genomes are highly
heterogeneous with most of the above alterations only found in a small fraction of
tumours 5,9–12. Also, due to a high degree of chromosomal instability 13, most HGSOCs
are polyclonal 14,15. As the cancer progresses and metastasises, clonal diversity
increases which is associated with worse prognosis and development of
chemoresistance 8,9,13,16,17.

In addition to intratumoural clonal heterogeneity, HGSOC tumours contain a diverse
range of non-malignant cell types. Recently, several single-cell RNA-sequencing
(scRNA-seq) studies of primary and metastatic tumours have described the cell types
that make up the HGSOC tumour microenvironment 18–23. With these single cell profiles
it is now apparent that previously reported transcriptional subtypes of HGSOC based on
bulk expression measurements (mesenchymal (C1.MES), immunoreactive (C2.IMM),
differentiated (C4.DIF), and proliferative (C5.PRO)) which are associated with
differences in prognosis 24 largely reflect the degree of immune cell infiltration and the
abundance of fibroblasts 19, rather than inherent differences in tumour cells. To
determine how these non-malignant cell types might influence tumour growth and
prognosis, several groups have predicted ligand-receptor interactions between stromal,
immune and tumour cell populations 23,25. Lastly, copy number alterations can be
inferred from scRNA-seq data and this strategy has been used to identify CNAs in
HGSOC tumour cells 19,21 and reveal subclones with different CNAs 25.

Here we have used spatial transcriptomics (10x Genomics Visium) of HGSOC tumours
to reveal the relationship between tumour subclonal genotypes and infiltration patterns
by non-malignant cell types. Using CNA inference, we predict multiple regionally distinct
subclones within small tumour sections (< 6.5mm2) and show that they often have
different patterns of infiltration that correspond to previously described molecular
subtypes. By integration with scRNA-seq data, we identify tumour cell derived ligands
that are differentially expressed between subclones and correlated or anticorrelated with
the degree of infiltration by non-malignant cell types expressing cognate receptors for
the ligands. This provides a likely link between subclonal genotype differences and
differential infiltration patterns.
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Results
Spatial gene expression of HGSOC tumours
Visium spatial transcriptomics technology uses a grid of ~5,000 55µm spots containing
uniquely barcoded oligo-dT primers for cDNA synthesis placed 100µm from each other
to spatially sample RNAs from an overlaid tissue section. Here, we used Visium
technology on sections of primary tumours collected during interval debulking surgery
from eight HGSOC patients to explore their cellular composition and tumour
microenvironments. The tumour samples were collected from HGSOC patients who
underwent taxane- and platinum-based neoadjuvant chemotherapy (Supplementary
Figure S1) and included three patients with poor chemotherapy response score (CRS1:
patients 1, 7 & 8), three with good response (CRS3: patients 2, 3 & 5) and two with a
partial response (CRS2: patients 4 & 6) 26. Across the eight patient samples, the number
of Visium spots yielding data ranged from 1,501 to 3,584 per section, with a total of
19,990 spots detected in the dataset and a median of 2,459 genes (5,882 unique
molecular identifiers, UMIs) detected per spot (Supplementary Table ST1). Gene
expression clustering of the spots in each section identified eight to ten clusters per
sample. Strikingly, the spatial distribution of the identified clusters largely mirrored
morphologically distinct regions of the sections seen after haematoxylin and eosin
(H&E) staining (Figure 1a-b). For instance, the clusters shown in orange and yellow for
patient 1 in Figure 1b correspond to areas at the top and bottom of the tissue section
that are visually distinct from the rest of the section on the H&E staining image (Figure
1a). This indicates that underlying these different morphologies are different proportions
of cell types and states with different gene expression patterns.

To map the location of individual cell types across each section and annotate regions as
tumour or non-tumour, we performed single-cell RNA sequencing (scRNA-seq) on five
additional post neoadjuvant chemotherapy HGSOC samples (Supplementary Figure
S1). The scRNA-seq data were processed as described in Methods and integrated into
one dataset (17,192 cells in total, with a median of 775 genes and 2,002 UMIs per cell)
using Seurat 27. Cells were assigned seven top-level cell type annotations using
scMatch 28 with a previously published ovarian cancer single cell dataset as a reference
21, followed by sub-clustering for 12 fine-grain cell types (Methods, Supplementary
Figures S2-3, Supplementary Table ST2). From this, a tumour cell cluster and eleven
non-malignant cell types including endothelial cells, B/Plasma cells, T cells,
macrophages, mesothelial cells, myofibroblasts, and five fibroblast populations fibro1
(EIF4A3, STAR), fibro2 (RBP1, DCN), fibro3 (RAMP1, CFD), fibro4 (CCL2), fibro5 (FN1,
COL3A1) were identified. We next extracted gene lists specific for each of the 12 cell
types and used Giotto 29 to examine their spatial distribution across each Visium section
(Methods). We also used three manually curated gene lists for neutrophils, mast cells
and adipocytes as these cell types have been reported to be present in HGSOC 30–32 but
were not observed in our scRNA-seq data. This analysis revealed distinct areas in each
section with strong enrichment or depletion of tumour cells that likely correspond to the
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malignant and non-malignant areas of the section (Figure 1c). Notably, correlations
between the cell type specific Giotto scores indicated co-localisation of some cell types
(e.g., fibroblast, endothelial cell and myofibroblast scores correlated strongly with each
other) and a strong anticorrelation between tumour cell scores and mast cells,
adipocyte, B/plasma cell, neutrophil, fibroblast, myofibroblast and endothelial cell scores
(Supplementary Figure S4). Only the mesothelial cells score had a positive correlation
with the tumour cell scores, while macrophages and T cells appeared to be equally
distributed in tumour and non-tumour regions (Supplementary Figure S4). Amongst
the non-malignant cell types, endothelial cells, myofibroblasts, fibroblasts (fibro5),
macrophages and B/Plasma cells were commonly enriched in the sections and their
spatial patterns indicated strong within-sample heterogeneity (Supplementary Figure
S5). In a supplementary analysis we noted that genes more highly expressed in the
malignant areas of the three good response samples were predominantly expressed in
B cells, T cells, macrophages, and fibro5, whereas the genes overexpressed in the
malignant areas of the three poor response samples were more highly expressed in
tumour cells or myofibroblasts (Supplementary Note 1). This is in agreement with
previous antibody studies correlating B and T cell infiltration with improved survival 33,34.
In summary, the Visium data clearly identified morphologically distinct areas of each
tumour with gene expression indicative of differences in tumour cell content and
infiltrating cell populations.

Tumour subclones with unique CNAs and spatial locations
Copy number alterations (CNAs) are ubiquitous in HGSOC5, therefore we applied
inferCNV, which detects differences in average relative expression levels for a sliding
window of 101 genes 35, to predict CNAs for each spot and cluster spots by similar CNA
profiles. Analysis of the Visium data from patient 1 predicted multiple large alterations
including amplifications of parts of chromosomes 8, 12, and 20 and deletions of parts of
chromosomes 6 and 19 (Figure 2). Clustering of spots by their inferCNV profiles
identified nine clusters, of which seven appear to be malignant, one non-malignant and
one with a weaker CNV signal indicative of a mixture of tumour cells and a high
proportion of non-malignant cells (Figure 2b). Projection of the inferCNV clusters back
onto the Visium slide (Figure 2a) revealed clear spatial separation of non-malignant
(yellow), and malignant inferCNV clusters; it also revealed that the potential mixed
cluster with weaker CNA signal (green) was localised to the border between the
malignant and non-malignant regions. The inferCNV-based prediction of malignant and
non-malignant areas was in agreement with the Giotto tumour cell enrichment score
distribution (Figure 1c).

In addition to the multiple CNAs that were common across all predicted malignant
inferCNV clusters in patient 1, we also observed that three of these clusters had large
cluster-specific predicted CNAs. One cluster, localised to the top of the section (shown
in blue in Figure 2a), has stronger evidence of deletion at chr4 than the other malignant
clusters (Figure 2b). Similarly, the cluster shown in red (Figure 2a-b) has stronger
evidence of amplification at chr19 and the corresponding spots are confined to an area
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in the middle of the tissue section. Lastly, the cluster shown in brown has stronger
evidence of deletion at chr5 than the other malignant clusters (Figure 2a-b).

To validate the cluster-specific CNAs predicted for patient 1, we performed whole
genome amplification and ultra-low-pass whole genome sequencing of microdissected
regions corresponding to the putative blue, red, and brown tumour subclones and a
non-malignant control region (yellow) identified in Figure 2a-b (Methods). For each
cluster, multiple small tissue fragments were isolated from an adjacent section to that
profiled by Visium (Figure 2c). We used ichorCNV 36 to pinpoint large-scale copy
number alterations in the DNA isolated from each region. This approach validated both
the CNAs predicted to be common to all tumour spots (large amplifications at
chromosomes 8, 12, and 20, and the deletions at chromosomes 6 and 19, Figure 2d)
and the subclone-specific alterations (the chr4 deletion, chr19 amplification, and chr5
deletion in the blue, red, and brown malignant clusters, respectively, Figure 2d). Thus,
we concluded that the blue, red and brown areas of the tissue section shown in Figure
2a contain tumour subclones which are closely related with many shared CNAs but
have acquired additional specific CNAs. A supplementary analysis comparing ichorCNV
signals from different fragments in the same cluster highlighted likely further clonal
heterogeneity in the blue, red, and brown clusters (Supplementary Figure S6).

For all eight samples, inferCNV predicted CNAs in regions that co-located with the
Giotto tumour signal (Figure1 c-d). For six samples, inferCNV analysis predicted
multiple potential tumour subclones (Supplementary Figures S7, S9-S12). For the
remaining two sections, there were only small malignant areas with homogeneous
CNAs predicted (Supplementary Figures S8, S13). Notably, there were few common
alterations between patients (Supplementary Figure S14). For instance, the
chr8:42541155-143878464, chr12:66765-47833132 and chr12:55817919-71667725
amplifications were only observed in patient 1 while the chr1:923928-15220480,
chr1:23743155-28769775 and chr3:138944224-197956610 amplifications were specific
to patient 3.

We next compared regions predicted to be amplified by inferCNV to recurrent
amplifications identified in the 579 HGSOC tumour genomes sequenced by the TCGA
(data was accessed from cBioPortal 37). Significantly, 188 of the 469 genes recurrently
amplified in at least 20% of the TCGA HGSOC genomes overlap the 1,742 genes
predicted to be amplified in at least one of our Visium samples (hypergeometric test
p-value of 1.4*10-35). Similarly, 7 of 10 cytobands recurrently amplified in at least 20% of
the TCGA HGSOC genomes were also predicted as amplified in at least one of our
samples (Supplementary Table ST3). Our results extend previous studies on the
polyclonality of HGSOC, revealing that even within a small area of <6.5mm2, multiple
tumour subclones can be observed. Capturing this level of genetic heterogeneity will be
a critical challenge for designing disease relevant cell, organoid and engraftment
models of HGSOC.
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Different subclones from the same tumour can match
different molecular subtypes.
In 2008, Tothill et al. 24 used bulk gene expression to describe four molecular HGSOC
subtypes observed in pre-treatment samples: mesenchymal (C1.MES), immunoreactive
(C2.IMM), differentiated (C4.DIF), and proliferative (C5.PRO) subtypes. Patients with
C2.IMM and C4.DIF have been shown to have generally more favourable outcomes,
while C1.MES and C5.PRO have poorer outcomes 24,38. However, there is still no
consensus on their reproducibility and clinical significance 39,40. Most recently, a 55 gene
predictor, the PrOTYPE (predictor of high-grade serous ovarian carcinoma molecular
subtype) assay 38, has been developed to classify treatment-naïve primary tubo-ovarian
HGSOC samples into these molecular subtypes. We used Seurat 27 to calculate module
scores (AddModuleScore function) for each of these subtypes across the Visium slides
using lists of subtype-enriched genes identified by PrOTYPE. This revealed that several
subtypes were predicted to co-exist within several of our Visium sections (Figure 3,
Supplementary Figures S7-13, S15) and that different inferCNV clusters within the
same sample may correspond to different subtypes associated with different clinical
outcomes. For example, the red and the blue inferCNV clusters observed in patient 5
(Figure 3a) have scores indicative of good outcome (high C4.DIF and low C1.MES),
whereas the brown, grey, pink and purple clusters, in contrast, have low C4.DIF and
high C1.MES scores (Figure 3b,c). Similarly, the brown and red clusters observed in
patient 2 have lower C1.MES and higher C4.DIF scores than other clusters
(Supplementary Figure S7). Notably, non-malignant areas consistently had higher
C1.MES and lower C4.DIF scores. Our results suggest that classification of a tumour
based on a bulk expression profile into the four previously described subtypes will
depend highly on the area of tumour taken, the combination of subclones sampled and
the patterns of infiltration by non-malignant cell types.

Gene expression differences between tumour subclones
InferCNV analysis predicted multiple malignant clusters for six of the eight samples
profiled. To evaluate their heterogeneity, we first performed differential gene expression
analysis between all pairs of predicted malignant clusters identified within each sample
and merged together clusters with fewer than ten differentially expressed genes
between them. In patient 7, this resulted in all four malignant inferCNV clusters being
merged together. For the remaining five samples, between two and five clusters
containing malignant subclones were obtained after merging. We then repeated the
differential gene expression analysis for these merged clusters and the resulting tables
shown in Supplementary Table ST4 were used for the analyses described below.

Across the five samples, between 257 and 873 genes differentially expressed between
subclone-containing clusters were identified (Supplementary Table ST5). Notably, four
of these gene lists were enriched for genes encoding cell surface or secreted proteins 41

(hypergeometric test p-value < 0.05), which suggests that these tumour subclones have
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different tumour microenvironments. As expected, comparing the differentially
expressed genes with cell type specific expression from our scRNA-seq dataset showed
that both altered gene expression between cancer cell subclones and differences in
infiltration with non-malignant cell types contribute to differential expression between
malignant inferCNV clusters (Supplementary Tables ST4-5). Examining the expression
of the combined list of all 1,495 subclone differentially expressed genes in the
scRNA-seq data revealed 41% (609 genes) were most highly expressed in tumour cells
and 58% were most highly expressed in other cell types (55 genes in T cells, 44 in
B/Plasma cells, 209 in macrophages, 94 in endothelial cells, 105 in mesothelial cells, 63
in myofibroblasts, 32 in fibro1, 23 in fibro2, 66 in fibro3, 34 in fibro4, and 144 in fibro5).
The remaining 1% (17 genes) were not detected in our scRNA-seq dataset. Notably,
many of the tumour cell differentially expressed genes were within subclone specific
CNAs (Supplementary Figure S16-20). For example, eight of the tumour expressed
genes (FBN3, NDUFA7, ILF3, PRDX2, NR2F6, SUGP2, LPAR2, PDCD5) from the red
subclone of patient 1 are located in the validated red subclone-specific amplification on
chr19 (Supplementary Figure S16).

We next examined the subclones of patient 1 in more detail. A total of 257 genes were
differentially expressed between any of the red, purple, brown, blue or the merged
grey_beige_pink clusters and 71 of these were most highly expressed in tumour cells
(Supplementary Table ST4). We identified 83 genes most highly expressed in the
predicted blue subclone (defined as being differentially up-regulated in the blue
subclone in at least one of the pairwise comparisons and having the highest expression
level in the blue subclone when compared to all other subclones). Of these, 23 are most
highly expressed in tumour cells and 58 have the highest expression in other
(non-malignant) cell types, indicating the blue subclone tumour microenvironment has
higher levels of macrophages (18 genes) and myofibroblasts (9 genes). In contrast, 43
of the 91 genes more highly expressed in the red cluster were most highly expressed in
tumour cells and only two and three genes were from macrophages or myofibroblasts,
respectively. Notably, amongst the genes more highly expressed in the blue cluster,
both tumour expressed genes (CHI3L1, CLU, SLPI) and genes from other cell types
(GPNMB, MGP, CRYAB, GPX3, MFAP4) have been previously associated with poor
prognosis and chemotherapy resistance in ovarian or other cancer types 42–53.

Taken together, our results show that the gene expression differences between different
tumour subclone-containing clusters are explained by both the differences in tumour cell
intrinsic expression as well as different patterns of immune and stromal cell infiltration.
For the tumour cell intrinsic genes expressed at different levels in different subclones we
find evidence that at least a subset is located directly within regions of copy number
alteration. Finally, we find that the differentially expressed gene lists are enriched for cell
surface or secreted proteins, which suggests that tumour subclones can have different
tumour microenvironments.
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Cell-to-cell communication underlying different infiltration
patterns
Given the enrichment of genes encoding secreted and plasma membrane proteins in
the previous analysis, we next sought to examine whether differences in ligand
expression in tumour cells and their interactions with cognate receptors expressed on
non-malignant cell types might explain the different subclone-specific infiltration patterns
predicted by Giotto. For this analysis, ligands and cognate receptors from
connectomeDB2020 were used 54.

For the five samples with subclones, we first extracted all ligands that were differentially
expressed between the subclones. This yielded 45, 38, 14, 109 and 84 subclonally
differentially expressed ligands from patients 1, 2, 4, 5 and 6, respectively. We next
annotated each ligand as most likely tumour-derived or microenvironment-derived using
our scRNA-seq data based on a cell type with the highest expression level. After
removing those with the highest expression in a non-malignant cell type, 9, 11, 4, 25,
and 24 putative tumour intrinsic ligands remained, respectively, that were most highly
expressed in tumour cells or plausibly subclone-specific (as they were not detected in
any of the cell types identified in the scRNA-seq dataset) (Supplementary Table ST6).
Importantly, expression of these ligands in a larger recently published metastatic
ovarian cancer scRNA-seq dataset 25 further confirms their tumour cell specificity
(Supplementary Figure S21).

To determine whether some of these ligands may influence the different non-malignant
cell infiltration patterns reported by Giotto (Supplementary Figures S5, S22), we first
calculated correlation between expression levels of each ligand and Giotto enrichment
scores for each cell type across all malignant spots in each of the five samples
(Supplementary Table ST7). The expectation for this analysis was that tumour cell
derived ligands would be i) correlated with the Giotto tumour cell enrichment scores and
ii) correlated or anticorrelated with the Giotto enrichment scores of non-malignant cell
types for which the ligand directly or indirectly influenced their infiltration patterns.
Reassuring us of the approach, expression of all but two ligands (FGF19 in patient 1
and ANXA1 in patient 5) was positively and significantly (FDR < 0.05) correlated with
the Giotto tumour cell enrichment scores in at least one sample. This analysis also
revealed many non-malignant cell infiltration patterns that were correlated or
anticorrelated with tumour cell derived ligand expression levels. For example, B/Plasma
cell infiltration was strongly anticorrelated with CD24, FGF19, CD9 and LAMA5
expression, T cell infiltration was correlated with the expression of SLPI, while
macrophage infiltration showed anticorrelation with FGF19 and positive correlation with
multiple ligands (SLPI, SLURP1, CD9, LCN2, L1CAM, CD24) in patient 1.

To identify ligand-receptor pairs that may directly regulate the different infiltration
patterns observed in Supplementary Figure S22, we selected ligands with significant
correlation to a Giotto cell type enrichment score in Supplementary Table ST7 and
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examined whether any cognate receptor was expressed in the same cell type. For the
rest of the manuscript, we only focus on ligand-receptor pairs where the correlation
between ligand expression and Giotto enrichment score of a target cell type is ≥ 0.1 or ≤
-0.1 (and significant with FDR < 0.05) and a cognate receptor for the ligand is detected
in at least 10% of the cells of the same cell type (Supplementary Table ST8).

In total, 17 ligands were significantly correlated or anticorrelated with at least one
non-malignant cell type expressing a cognate receptor and 37 tumour ligand-target cell
pairs were observed across the five patients (Table 1). Of these tumour-derived-
ligand-target-cell pairs, 26 were only observed as significant in one patient, four were
significant and consistently correlated or anticorrelated in different patients, and seven
(involving L1CAM, LAMA5, SLPI and MMP7) were correlated in some patients but
anticorrelated in others.

Several of these tumour ligand-target cell predictions are already implicated in HGSOC
prognosis and tumour infiltration patterns. For example, in patient 5, CXCL10 ligand
expression strongly correlates with T cell scores and more weakly with B/Plasma cell
scores and both cell types express the cognate receptor CXCR3 (Figure 4a-c, f). We
further examined the expression of CXCL10 and CXCR3 in a recently published
scRNA-seq dataset comprising 51,786 cells from metastatic ovarian cancer samples 25,
where, similarly to our dataset, CXCL10 was detected in multiple cell types, but
appeared more prevalent in the tumour cells, while CXCR3 was detected mostly in T,
NK, and dendritic cells (Supplementary Figure S23). Notably, CXCL10 is a
chemoattractant and its expression correlates with tumour infiltrating lymphocytes (TILs)
in HGSOC and doubled overall survival 55. Similarly, in patient 1 and patient 2, CD24
expression is anticorrelated with the Giotto scores for endothelial cells which express
the cognate receptor SELP. In support of this anticorrelation, knockout of CD24 in mice
results in increased neovascularization of retina revealing a possible inhibitory role of
CD24 in angiogenesis 56. Notably, high cytoplasmic CD24 expression is associated with
poor prognosis of HGSOC 57.

For patient 2, CD47 expression is significantly anticorrelated with the Giotto scores for
macrophages which express the cognate receptor SIRPA (Figure 4d-f). Similarly, in the
Zhang et al. dataset 25, CD47 was more specific to tumour cells (Supplementary
Figure S23). CD47 over-expression in HGSOC has been previously reported as
potentially associated with poor prognosis 58,59. CD47 plays an important role by sending
an antiphagocytic signal via SIRPA to tumour associated macrophages which can be
targeted by anti-CD47 agents 60. Consistent with the anticorrelation observed in our
analysis, anti-CD47 monoclonal antibody treatment was shown to increase macrophage
infiltration of tumours in a HGSOC xenograft model 61.

Taken together, our results indicate that tumour subclones are prevalent in HGSOC and
that they may directly influence the infiltration patterns of non-malignant cell types by
differential expression of ligands.
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Discussion
Here, we have used Visium spatial transcriptomics to study tumour heterogeneity in
HGSOC samples from eight patients who underwent platinum and taxane-based
neoadjuvant chemotherapy. Copy number inference helped delineate tumour regions
from non-malignant areas but also revealed subclonal heterogeneity in five of the eight
samples studied. Our work mirrors a recent report of spatially restricted subclones
observed via spatial inferred CNVs (siCNVs)62. For one sample, microdissection and
ultra-low-pass whole genome sequencing confirmed the presence of subclone-specific
CNAs. Finding evidence of multiple subclones in small 6.5mm2 sections suggests there
is an even higher degree of intratumoural subclonal heterogeneity than previously
appreciated. Seeking to independently validate this observation we performed inferCNV
analysis of Visium data from a complementary study on 12 treatment naive HGSOC
samples 63. Patient-specific CNAs were clearly identified but no subclones were
predicted (Supplementary Figure S24). The most likely explanation for the
discrepancy is that the sections in the other study were too small to sample multiple
tumour clones (a median of 364 spots per sample) in comparison to our sections (a
median of 2,507 spots per sample). Notably, Schwarz et al. have reported intratumoural
clonal heterogeneity is present in pre-treatment samples and correlates with
post-chemotherapy survival outcomes of HGSOC patients 8. Using pre- and
post-treatment samples, they find evidence of clonal expansion and that patients with
higher clonal expansion had poorer outcomes. Zhang et al. similarly observed evidence
of clonal expansion in neoadjuvant chemotherapy treated samples with selection for
tumour cells with what they refer to as a high stress-associated score which they show
is associated with poor progression-free survival using deconvoluted RNA-seq data of a
larger TCGA cohort 25. Notably, many of the subclonally differentially expressed genes
that we identified have previously been associated with HGSOC prognosis and
chemotherapy response. This reinforces the position that subclones are prevalent in
HGSOC, that they have differential sensitivity to chemotherapy and, thus, may lead to
recurrence and relapse.

We also find that, in addition to genes differentially expressed by tumour subclones,
approximately 58% of genes differentially expressed between the inferCNV clusters
containing these subclones are from non-malignant cell types (the most abundant being
20% from fibroblasts and 14% from macrophages). This is also reflected in the
substantial differences in the infiltration patterns observed from the Giotto analysis
(Supplementary Figure S22). These analyses show that different tumour subclones
can have different microenvironments which can correspond to different previously
reported molecular subtypes (Figure 3). This builds upon observations by Schwede et
al. and Izar et al. that these subtype signatures are more a reflection of stromal content
rather than underlying tumour cell differences 40 with the immunoreactive and
mesenchymal subtypes indicative of the abundance of immune infiltrates and fibroblasts
respectively rather than distinct subsets of malignant cells 19.
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Next our focus turned to why different sets of non-malignant cell types are associated
with subclones that have different copy number alterations. Our analyses revealed an
over-representation of plasma membrane and secreted proteins in the sets of
subclonally differentially expressed genes. Examining this further, we identified sets of
ligands differentially expressed by subclones that were correlated or anticorrelated with
infiltration of a non-malignant cell type. We then highlighted a subset of ligands where
the cognate receptor was expressed in the same non-malignant cell type suggesting the
tumour subclone may directly influence the observed infiltration pattern (Table 1, Figure
4). Others have previously attempted to relate tumour-expressed ligands to differences
in infiltration patterns 64–66; however, to our knowledge, this is the first study to
demonstrate that subclones express different ligands which then influence
non-malignant cell infiltration. Notably, these associations were largely patient- or
subclone-specific. For example, the correlation between tumour-derived CXCL10 and
infiltration of CXCR3-expressing T cells and B/plasma cells was only observed in
subclones of one patient (Figure 4). A similar association between CXCL16 expressing
tumour cells and CXCR6 expressing T cells has been reported in patients with highly
infiltrated tumours 22.

In closing, there are several limitations of our study that will need to be addressed in the
future using new technologies and by studying multiple tumour regions from larger
cohorts of patients. The first is that the current resolution of the Visium spatial
technology is not at the level of a single cell, thus, we needed to infer which cell types
are present under a spot based on projection of marker genes from scRNA-seq data.
With single-cell resolution cDNA-based spatial transcriptomics (e.g Slide-seq 67,
STOmics 68, VisiumHD), it will become possible to directly identify which cells are
expressing these genes. The second limitation is that we have inferred copy number
alterations and subclones based on transcriptome data. Methods that directly provide
spatial genomic information (e.g., Slide-DNA-seq 69) would improve our ability to call
smaller alterations and single nucleotide variants missed in our data. The last limitation
is the size of the cohort considered. There was little overlap between CNAs observed in
each of the eight patients and only modest overlap with CNAs reported by the TCGA.
For five of the patients, we confidently observed subclones with different CNAs.
Non-malignant infiltration patterns of the tumour regions varied substantially between
patients and subclones. For example, substantial infiltration by T cells and neutrophils
was only observed in subclones of one patient while subclones with strong or weak
macrophage infiltration were observed for all patients with subclones. Similarly, we
observed subclone-specific ligand expression patterns (e.g., CXCL10 in subclones of
one patient).

Our results further highlight the high degree of interpatient and intrapatient
heterogeneity seen in HGSOC. This heterogeneity is clinically important as it likely
explains resistance and recurrence even after an initial good response. It will be critical
moving forward that we better capture the subclonal populations present in each patient
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and relate that back to their tumour microenvironments and ultimately drug sensitivities
and prognosis.

Methods
Ovarian tumour samples and consent

High-grade serous ovarian tumours from eight patients diagnosed with stage III-IV
cancers were included in this study. Patients were treated with 3-6 cycles of
platinum-based chemotherapy. All tumour samples were derived from ovarian sites
during interval debulking surgery. Fresh tumours were either collected in RPMI
(ThermoFisher Scientific) supplemented with penicillin and streptomycin (Sigma) for
single-cell dissociation or immediately snap-frozen and stored in -80°C tumour bank
until retrieved for Visium experiments.

The chemotherapy response scores (CRS, 3 tier) for each patient were determined as
previously described (PMID: 26124480) by assessing the largest (macroscopic) omental
tumour deposit for features of regression based on the following: score 1 (no/minimal
tumour response), score 2 (partial tumour response) and score 3 (complete/near
complete response, cell groups measuring <2mm each, or no residual tumour) 26.

The study was approved by St John of God Health Care (SJGHC), The University of
Western Australia (UWA) and Curtin University Human Research Ethics Committees
(#1217 and RA/4/20/5784). All participants were given information about the study and
provided written informed consent before enrolment.

Single-cell suspension for scRNA-seq

HGSOC tumour were dissociated using the tumour dissociation kit 2, human, from
Miltenyi Biotec [130-095-929] as per manufacturers’ instruction. Tumour tissue (0.2 – 1
g) was cut into small pieces of 2-4 mm and placed into a gentleMACS C-tube [Miltenyi
Biotech; 130-093-237] containing the enzyme mix from the kit. The tube was then
placed onto the gentleMACS octo dissociator (Miltenyi Biotech) and processed using
the 37C_h_TDK_1 program with the associated incubation times indicated in the
protocol. Complete tissue dissociation was confirmed by the absence of visible tissue
chunks. The resulting tumour homogenate was filtered using a 70-μm MACS
SmartStrainer and washed with RPMI. Cell suspension was further filtered through
40-µm strainers to remove cell clumps. The viability was assessed by ReadyProbe Cell
Viability Imaging Kit (ThermoFisher Scientific) to ensure the viability was >90%.
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Single-cell RNA-seq profiling
Cryostored cells were rapidly thawed in a water bath set at 37 C. 1mL of Media
(RPMI1640 +10%FBS) was then added to the cells, which were then mixed and
transferred to a 15mL falcon tube. The cryovial was then rinsed with another 1mL of
media which was subsequently added to the 15mL falcon tube in a dropwise fashion.
7mL of media was then added to the falcon tube dropwise using a serological pipette.
The cells were then centrifuged at 300g for 5 minutes. The supernatant was removed,
leaving behind 1mL of media, and another 1mL of media was added and the cells were
resuspended. 2mL of DPBS+0.04%BSA was then added to the cells, followed by
another centrifugation at 300g for 5 minutes. The supernatant was then removed and
the cells were resuspended in 1mL of DPBS+0.04%BSA and then subsequently run
through a 40uM filter. Cells were then counted and viability was checked using the
Countess II automated cell counter and the readyprobes red/blue viability kit (Thermo
Fisher Scientific). Libraries were prepared in accordance with the protocol for 10x
Chromium Single Cell 3’ v2 (10x Genomics). Sequencing was performed on a NovaSeq
6000 (Illumina).

Visium spatial transcriptomic profiling

Frozen tissue fragments were embedded in Tissue-Tek O.C.T. Compound (25608-930,
VWR) according to the Visium Spatial Protocols – Tissue Preparation Guide (CG000240
Rev A, 10x Genomics) and stored immediately at -80°C until further use. Hematoxylin
and eosin staining of 10µm cryosections from each O.C.T. block were assessed by a
pathologist to confirm tissue type and tumour content. Samples with adequate tumour
content were selected for use in the gene expression workflow.

To assess the quality of the selected tissue blocks, RNA was isolated from serial
sectioned tissues totalling 80µM thickness and its RNA integrity number (RIN) was
calculated using the Agilent 4200 TapeStation system. Samples which had a RIN ≥7
were considered good quality and selected to proceed with the experiment. Each
Visium Spatial Gene Expression Slide (2000233, 10x Genomics) was used to analyse
up to four tissue samples, i.e. one section per sample block. Of the four samples, one
block was randomly selected for tissue optimisation using a Visium Spatial Tissue
Optimisation Slide (3000394, 10X Genomics). Serial tissue sections at 10µM thickness
were placed on seven capture squares of the pre-chilled tissue optimisation slide with
the remaining square left empty. Different tissue permeabilization times were tested on
6 of the sections at 10-minute intervals to a maximum of 60 minutes. The remaining
tissue section represented a negative control for permeabilisation while the empty well
served as a positive control to which a reference RNA was added (QS064, Life
Technologies). The optimal permeabilisation time point was 30 minutes and was
therefore used as the permeabilisation time on the gene expression samples.

A Nikon Eclipse Ni-U microscope with a 10x objective in large scale imaging mode
(Nikon, NIS-Elements AR 5.21.00) was used to take brightfield images of the Visium
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Spatial Tissue Optimisation and Gene Expression slides. The same settings were used
to collect fluorescent images of the optimisation slides via a Texas Red HYQ filter cube
at 1.5 seconds exposure time. Images were automatically stitched via blending with a
10% tile overlap. Original files were saved as the default ‘.ND2’ format and exported to
‘.tiff’ or ‘.jpeg’ using NIS-Elements AR or ImageJ, respectively.

Libraries were prepared according to the Visium Gene Expression User Guide
(CG000239, Rev A, 10X Genomics) and pooled to a final library concentration of 1.8nM.
The samples were loaded on a NovaSeq 6000 System (Illumina) using NovaSeq 6000
SP Reagent kit (200 cycles, 20040326, Illumina) and sequenced at a depth of
approximately 150M reads per sample. The read protocol was set as the following: read
1 at 28 cycles, i7 index read at 10 cycles, i5 index read at 10 cycles and read 2 at 120
cycles.

Manual image alignment and spot selection of the H&E brightfield images was
performed in the Loupe Browser.

Ultra-low-pass DNA sequencing

Frozen tissue was sectioned (10 μm) and mounted to standard superfrost slides,
methanol fixed, stained with hematoxylin and eosin, and scanned on a CellCelector
(ALS). Using the CellCelector, the long edge of a 150 μm glass capillary was used to
mechanically scrape small tissue sections from the slide which were aspirated and
deposited in 1 μL of PBS (10 mM Phosphate, 2.68 mM Potassium Chloride, 140 mM
Sodium Chloride, 18912014, Thermo Fisher Scientific) in 0.2 mL PCR tubes
(Eppendorf). Tissue sections were subjected to whole genome amplification using the
Ampli1 WGA Kit (Silicon Biosystems) to the manufacturer's instructions. Following
amplification, 400 bp sequencing libraries were constructed using the Ampli1 Low-Pass
Whole Genome Sequencing Kit for Ion Torrent (Silicon Biosystems) to the
manufacturer's instructions. Libraries were diluted to 50 pM, loaded into an Ion Chef for
template preparation and loading into an Ion 530 chip, and then sequenced for 525
flows on an Ion S5 (Thermo Fisher Scientific). Sequencing data was aligned to hg38
and indexed using Torrent Server (V 5.16) with depths ranging from 0.1 to 0.3x.
Following alignment and indexing, .wig files were generated using readCounter in 1 Mb
windows from HMM Copy Utils [https://github.com/shahcompbio/hmmcopy_utils].
IchorCNA (v0.2.0) 36 was used to detect somatic copy number alterations with 1 Mb bins
and the run parameters set to “--ploidy “c(2,3,4)”, --normal “c(0.05)”, --includeHOMD
False, --chrTrain “c(1:22)”, and --estimateScPrevalence False. The non-malignant
yellow regions observed for patient 1 were used to construct a panel of normals using
IchorCNA’s createPanelOfNormals.R script.
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Single-cell RNA-seq data analysis

scRNA-seq data processing

FASTQ files were processed using Cell Ranger 3.0.2 with
refdata-cellranger-GRCh38-3.0.0 reference. Raw gene-barcode matrices from Cell
Ranger output were used for downstream processing. Cells were distinguished from
background noise using EmptyDrops 70. Genes detected in a minimum of 3 cells were
retained; cells with at least 500 genes, at least 1000 UMIs and under 15% of
mitochondrial reads were retained. Seurat v3 was used for sample normalisation
(SCTransform, mitochondrial and ribosomal mapping percentage were regressed out),
integration (anchor-based method with 3000 variable genes), dimensionality reduction
and clustering (using first 30 principal components), and differential expression analysis
(Wilcoxon test) 71.

Inferring cell identity

To infer cell identities, we first performed a reference-based annotation using scMatch 28

and a reference dataset from Olbrecht et al. ovarian cancer samples 21. To construct the
reference dataset, we obtained gene counts and cell types reported in 21; counts were
normalised to cell library size and averaged within each cell type to derive reference
vectors for scMatch. We then used scMatch with parameters --testMethod s
--keepZeros n to label each individual cell with the closest cell type identity from the
reference dataset. This resulted in seven major cell types: tumour cells, fibroblasts,
ovarian stroma, endothelial cells, monocytes, T cells, and B cells. We then examined
expression of differential expressed and cell type marker genes in these seven cell
types and based on this relabelled two of them to better reflect the cell identity (B cells
to B/Plasma cells based on the expression of IGHG1, IGHG3, JCHAIN; monocytes to
macrophages based on the expression of CCL3, CXCL8, HLA-DRA) (Supplementary
Figure S2a, b).

Cells labelled as ovarian stroma and fibroblasts formed multiple visually distinct cell
groups. To explore possible subtypes, we extracted these cells from the dataset and
reran principal component and clustering analysis for this subset. We identified ten
clusters (Supplementary Figure S2c, d). Cell identities were assigned to these clusters
based on their specific differentially expressed genes and cell type gene markers.

Cluster 1 was characterised by high expression of contractile genes including TAGLN,
ACTA2, MYL9, MYH11, PLN and was labelled Myofibroblasts. Cluster 6 was labelled
Mesothelial cells based on CALB2, MSLN, SLPI, KRT8, KRT18 expression, as per Qian
et al. 72 and Olbrecht et al. 21. Cluster 3 showed high expression of COL1A1, COL1A2,
COL3A1, SPARC, FN1 and was labelled Fibro5 (FN1, COL3A1). In Cluster 8, CFD and
RAMP1 were the top DEGs, and the cluster was labelled Fibro3 (RAMP1, CFD) - these
cells might correspond to adipogenic fibroblasts, as per Qian et al. 72 and Olbrecht et al.
21. Cluster 7 specifically overexpressed CCL2 and we labelled it Fibro4 (CCL2). Cluster
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2 did not have genes strongly overexpressed with logFC > 1, but overexpressed LUM,
DCN, GSN with logFC >= 0.5 and was labelled Fibro2 (RBP1, DCN). Cluster 0 and
Cluster 5 were labelled Fibro1 (EIF4A3, STAR).

Cluster 4 showed high expression of stress response-related genes, such as HSPA6,
HSPA1B, DNAJB1, HSPA1A, hence we assumed it corresponded to cells showing
strong stress response and removed it from the downstream analysis. Finally, Cluster 9
had high expression of genes normally expressed in immune cells, such as B2M, CCL5,
HLA-A, HLA-B, CXCR4, and these cells co-clustered with T cells in the superset, hence,
we concluded this cluster corresponded to doublets and removed it from the
downstream analysis.

Visium data processing

FASTQ files were processed using Space Ranger 1.0.0 with GRCh38-3.0.0 reference in
the manual alignment mode. Filtered gene-barcode matrices from Space Ranger output
were used for downstream analyses; barcodes with less than 400 genes were excluded.
Seurat v3 was used for sample normalisation (SCTransform, mitochondrial and
ribosomal mapping percentage were regressed out), individual sample clustering (using
first 30 principal components), integration (anchor-based method with 3000 variable
genes), dimensionality reduction and clustering (using first 30 principal components),
and differential expression analysis (Wilcoxon test) 71.

CNA inference

Identification of background spots

Gene expression data from all eight Visium samples were analysed together using
Seurat v3 71. We performed normalisation using SCTransform 73 and regressed out the
percentage of mitochondrial and ribosomal counts. Then an anchor-based dataset
integration was performed with 3000 features, followed by clustering and UMAP
projection using 30 first principal components. We identified seven top-level clusters at
resolution 0.2 and used FindMarkers function to compute differentially expressed
genes.

Manual curation of differentially expressed genes identified two clusters (clusters 2 and
6) corresponding to stromal tissues (expressing DCN, TAGLN, ACTA2, VWF and other
markers, see Supplementary Figure S25). We next performed one more round of
analysis to refine those two clusters. First, the spots corresponding to the two clusters
were extracted into a separate candidate stromal dataset and normalisation, integration,
and downstream analysis were repeated as above. In this candidate stromal dataset,
we identified seven clusters at resolution 0.6. One of these clusters showed higher
expression of cancer genes (Clusters 3, Supplementary Figure S25d,e) and the
corresponding spots were excluded from the stromal dataset.
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Initially, this stromal dataset was used as a background for CNA inference; however, in
the downstream analyses we found that the predicted malignant and non-malignant
tissue areas were intermixed (with no clear zonation) in two out of the eight tissue
sections; one more tissue section had large necrotic areas. To reduce possible noise
due to the background spot set used for CNA inference, we excluded spots
corresponding to these three samples (patient 2, 6 & 7) from the stromal dataset and
used the remaining 2,772 spots from the remaining 5 samples as a background for
inferCNV inference reported here.

inferCNV

inferCNV 35 was run for each sample independently using stromal spots defined above
as a background with the following parameters: cutoff=0.1, denoise=T, HMM=F. Spots
in each sample were clustered using the default parameters and the dendrogram was
split into clusters with visually distinctive CNA profiles.

Cell type enrichment analysis
We used Giotto 29 to estimate cell type enrichment across different spots in each of the
Visium samples. To identify gene sets for the enrichment analysis, we started with our
scRNA-seq dataset. First, differentially expressed genes were calculated pairwise for
each possible pair of the 12 cell types. This was done using the FindMarkers function in
Seurat with the minimum detection rate threshold of 0.5. For each cell type, we then
selected genes that passed the thresholds of logFC >= 0.5 and FDR < 0.05 in at least
10 out of the 11 pair-wise tests (i.e. genes that were significantly differentially
over-expressed in that cell type when compared to at least 10 of the other cell types).
We next removed genes that were identified this way for more than one cell type. This
approach failed to identify suitable gene sets for four of the cell types (Fibro4 (CCL2)
(identified 1 gene only), Fibro3 (RAMP1, CFD) (identified 4 genes only), Fibro2 (RBP1,
DCN) and Fibro1 (EIF4A3, STAR) - no genes identified). We then manually curated the
gene lists for T cells, B cells, and macrophages; we removed non-specific genes based
on their expression in other cell types in the FANTOM5 dataset 74 and added alternative
markers that should be specific to those cell types. We also included additional
manually curated gene lists for neutrophils, mast cells and adipocytes. See
Supplementary Table ST9 for the final table with genes used for the cell type
enrichment analysis and Supplementary Figure S26 for the expression of these genes
in our scRNA-seq dataset. Genes obtained in this manner were then used as input for
the PAGE algorithm in Giotto, which calculated enrichment scores for the corresponding
cell types for each Visium spot.

TCGA recurrent alterations comparison
TCGA CNA data were downloaded from cBioPortal (www.cbioportal.org) from Ovarian
Serous Cystadenocarcinoma (TCGA, Firehose Legacy) dataset. CNA genes reported
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for 579 samples were filtered using the frequency of 20% as a threshold. For this
comparison, genes predicted to be amplified in our Visium samples were selected with
the threshold of >= 1.1 imposed on inferCNV signal averaged across spots in each of
inferCNV-based clusters. Note, deletions were not tested as recurrent deletions are rare
(there are no regions or genes reported as recurrently deleted in at least 20% of the
TCGA HGSOC genomes).

Data availability
All data analysed within this manuscript are publicly available from the Gene Expression
Omnibus (GEO) repository with the primary accession code GSE211956.
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Figure legends
Figure 1. Visium profiles of eight HGSOC samples. Shown are a) hematoxylin and
eosin stained tissue sections, b) gene expression-based clusters mapped onto the
tissue sections, c) tumour cell enrichment scores calculated using Giotto 29. Red
indicates enrichment, blue depletion, d) InferCNV clusters. Yellow spots in patients 1, 3,
4, 5, 8 correspond to non-malignant regions, green corresponds to border regions, other
colours correspond to putative tumour subclones.

Figure 2. Copy number analysis reveals tumour subclones with spatially
restricted patterns. a) Projection of spot clusters identified by inferCNV onto the tissue
section for patient 1 b) Heatmap generated by inferCNV showing inferred CNA profiles
of Visium spots for patient1. Horizontal black lines separate clusters identified by
inferCNV; colours on the left correspond to colours used in panel (a). Red corresponds
to predicted amplification, blue to predicted deletion. c) Adjacent tissue section adjacent
from patient 1 showing areas collected for low pass whole genome sequencing. Colours
of circles correspond to the colours of inferCNV clusters. d) ichorCNV CNA profiles of
the blue, red, and brown malignant clusters. Green indicates 1 copy, blue 2 copies,
brown 3 copies, red 4+ copies. Note, for the WGS of the blue, red, brown and
non-malignant yellow clusters, 3, 2, 2 and 3 fragments were microdissected from each
cluster, respectively. Tumour fraction and ploidy estimates from ichorCNV are indicated
above each clone.

Figure 3. Intra-tumour heterogeneity observed in patient 5. a) Map of inferCNV
clusters; yellow corresponds to normal tissue, other colours correspond to different
malignant inferCNV clusters. b, c) Module scores calculated using AddModuleScore
function in Seurat for genes overexpressed in four HGSOC molecular subtypes; shown
in inferCNV clusters with median values indicated (b) and for each spot on the Visium
slide (c).

Figure 4. Selected ligand-receptor pairs potentially involved in maintaining
tumour microenvironment. a) Overlayed expression of CXCL10 (red) and CXCR3
(green) in Visium data from patient 5. b, c) Giotto cell type enrichment scores for
B/Plasma and T cells in Visium data from patient 55. d) Overlayed expression of CD47
(red) and SIRPA (green) in Visium data from patient 2. e) Giotto cell type enrichment
scores for macrophages in Visium data from patient 2. f) Expression of these ligands
and receptors in the scRNA-seq dataset.
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Tables
Table 1. Correlations between tumour derived ligands and infiltrating cell types
expressing cognate receptors. Summarises putative tumour intrinsic ligands (that were most
highly expressed in tumour cells or plausibly subclone specific); non-malignant cell types with
their respective Spearman correlation coefficients between Giotto enrichment score and ligand
expression (filtered at ≥ 0.1 or ≤ -0.1 with FDR < 0.05); receptors detected in at least 10% of the
target cells. Patient numbers are indicated in brackets.

Ligand Target cell Receptors in
target

Correlations
(patient)

Anticorrelations
(patient)

ANXA1 Macrophages FPR1 0.3 (P5)
ANXA2 Endothelial cells ROBO4 0.12 (P6)

Macrophages TLR2 0.52 (P5), 0.15 (P6)
BMP7 Endothelial cells BMPR2, ENG -0.12 (P6)

Fibro5 (FN1,
COL3A1)

BMPR2, ENG -0.24 (P6)

CD24 Endothelial cells SELP -0.13 (P2), -0.12
(P1)

CD47 Macrophages SIRPA -0.16 (P2)
Mesothelial cells SIRPA 0.1 (P5)

CDH1 B/Plasma cells ITGB7 -0.13 (P6)
CP Mesothelial cells SLC40A1 0.13 (P2)
CXCL10 B/Plasma cells CXCR3 0.16 (P5)

T cells CXCR3 0.26 (P5)
FGF19 Fibro5 (FN1,

COL3A1)
FGFR1 -0.1 (P1)

Mesothelial cells FGFR1 0.12 (P1)
HMGB1 Macrophages HAVCR2, THBD -0.18 (P5)

Myofibroblasts THBD 0.14 (P5)
L1CAM Endothelial cells CD9, ITGA5 0.1 (P1)

Fibro5 (FN1,
COL3A1)

CD9, CNTN1,
ITGAV

-0.2 (P6)

Macrophages CD9, ITGA5 0.25 (P1) -0.24 (P5)
Myofibroblasts CD9 0.15 (P1), 0.19 (P5) -0.11 (P6)
T cells CD9 0.12 (P5) -0.11 (P6)

LAMA5 Endothelial cells BCAM -0.12 (P2)
Myofibroblasts BCAM 0.23 (P5) -0.12 (P2)

LTBP3 Fibro5 (FN1,
COL3A1)

ITGB5 0.21 (P6)

MMP7 B/Plasma cells CD44 -0.18 (P5), -0.14
(P4)

Fibro5 (FN1,
COL3A1)

CD151, CD44 -0.13 (P5)

Macrophages CD151, CD44 0.14 (P4)
Mesothelial cells CD151 0.11 (P5) -0.14 (P4)
T cells CD44 -0.12 (P5)

RELN Macrophages ITGB1 -0.14 (P5)
T cells ITGB1 0.13 (P5)

SEMA3B Fibro5 (FN1,
COL3A1)

NRP2 -0.1 (P6)

SLPI Endothelial cells PLSCR1, PLSCR4 0.13 (P1) -0.16 (P2)
Fibro5 (FN1,
COL3A1)

PLSCR1, PLSCR4 -0.23 (P2)

Macrophages PLSCR1 0.35 (P1) -0.44 (P5), -0.24
(P2), -0.12 (P6)

Mesothelial cells PLSCR1, PLSCR4 0.13 (P2)
Myofibroblasts PLSCR1 0.2 (P1), 0.23 (P5)
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Supplementary Materials
Supplementary Tables

Supplementary Table ST1: Sample information for Visium and scRNA-seq samples.

Supplementary Table ST2: Cell type labels assigned to individual cells in the
scRNA-seq dataset.

Supplementary Table ST3: Cytobands recurrently amplified in at least 20% of the
TCGA HGSOC genomes.

Supplementary Table ST4: Differentially expressed genes (DEGs) calculated between
all possible pairs of putative malignant subclones identified within each Visium sample.
Seurat FindMarkers function was used with logfc.threshold = 0.5, min.pct = 0.5 and
otherwise default parameters.

Supplementary Table ST5: Summary for DEGs shown in Supplementary Table ST4.

Supplementary Table ST6: Ligands selected for each sample for cell-to-cell
communication analysis.

Supplementary Table ST7: Correlation between expression levels of selected ligands
and Giotto enrichment scores for each cell type, calculated across all malignant spots in
each of five Visium samples.

Supplementary Table ST8: Selected ligand-receptor pairs in five Visium samples.
Includes average expression of each ligand in each putative malignant subclone,
correlation between ligand expression and Giotto enrichment scores for non-malignant
cell types calculated across all malignant spots and filtered to have correlation
coefficient of ≥ 0.1 or ≤ -0.1 with FDR < 0.05, average expression and detection rate of
the cognate receptor in the same cell type.

Supplementary Table ST9: Gene signature table used for Giotto cell type enrichment
analysis. Each column corresponds to one cell type, the value of 1 indicates that the
corresponding gene was included for the corresponding cell type.

Supplementary Table ST10: Genes differentially expressed between malignant spots
of Visium samples of CRS1 and CRS3 patients.
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Supplementary Figures

Supplementary Fig. S1: Study design. Samples were collected during interval
debulking surgery from patients who underwent 3-4 cycles of platinum and taxane
treatment. Eight samples were profiled using 10x Genomics Visium and five samples
using 10x Genomics 3’ Gene Expression solution.

Supplementary Fig. S2: Annotation of the single-cell RNA-seq HGSOC dataset. a)
UMAP showing top-level cell type annotations inferred by scMatch with Olbrecht et al.
reference dataset. b) Differentially expressed genes (DEGs) identified in the top-level
cell types; top DEGs based on the ratio of detection rates are shown for each cell type.
c) UMAP showing subclustering of fibroblasts and stromal cells. d) DEGs identified in
the subclusters shown in (c); top DEGs based on the ratio of detection rates are shown
for each cell type.

Supplementary Fig. S3: Fine-grain annotations of the scRNA-seq dataset. a)
UMAP showing 12 cell types. b) Top differentially expressed genes (DEGs)
over-expressed in each of the cell types, ranked based on logFC. c) Top DEGs
over-expressed in each of the cell types, ranked based on the ratio of detection rates.
DEGs were calculated for each cell type vs all other cells.

Supplementary Fig. S4: Correlation between Giotto cell type enrichment scores
across all Visium samples and spots.

Supplementary Fig. S5: Giotto cell type enrichment scores for eleven cell
populations in Visium samples.

Supplementary Fig. S6: ​​Validation of inferCNV predictions using ultra-low-pass
whole genome sequencing. IchorCNV analysis was performed for each of the
numbered regions separately, using tongue tissue as a background. IchorCNV CNA
profiles are shown for each region, where green indicates 1 copy, blue 2 copies, brown
3 copies, red 4+ copies.

Supplementary Fig. S7: Visium data summary for patient 2. a) Heatmap generated
by inferCNV showing inferred CNA profiles of Visium spots. Horizontal black lines
separate clusters identified by inferCNV. Red corresponds to predicted amplification,
blue to predicted deletion. b) Projection of spot clusters identified by inferCNV onto the
tissue section. c, d) Module scores calculated using AddModuleScore function in Seurat
for genes overexpressed in four HGSOC molecular subtypes; shown in malignant
inferCNV clusters with median values indicated (c) and for each spot on the Visium
slide (d).

Supplementary Fig. S8: Visium data summary for patient 3. a) Heatmap generated
by inferCNV showing inferred CNA profiles of Visium spots. Horizontal black lines
separate clusters identified by inferCNV. Red corresponds to predicted amplification,
blue to predicted deletion. b) Projection of spot clusters identified by inferCNV onto the
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tissue section. c, d) Module scores calculated using AddModuleScore function in Seurat
for genes overexpressed in four HGSOC molecular subtypes; shown in malignant
inferCNV clusters with median values indicated (c) and for each spot on the Visium
slide (d).

Supplementary Fig. S9: Visium data summary for patient 4. a) Heatmap generated
by inferCNV showing inferred CNA profiles of Visium spots. Horizontal black lines
separate clusters identified by inferCNV. Red corresponds to predicted amplification,
blue to predicted deletion. b) Projection of spot clusters identified by inferCNV onto the
tissue section. c, d) Module scores calculated using AddModuleScore function in Seurat
for genes overexpressed in four HGSOC molecular subtypes; shown in malignant
inferCNV clusters with median values indicated (c) and for each spot on the Visium
slide (d).

Supplementary Fig. S10: Visium data summary for patient 5. a) Heatmap generated
by inferCNV showing inferred CNA profiles of Visium spots. Horizontal black lines
separate clusters identified by inferCNV. Red corresponds to predicted amplification,
blue – predicted deletion. b) Projection of spot clusters identified by inferCNV onto the
tissue section. c, d) Module scores calculated using AddModuleScore function in Seurat
for genes overexpressed in four HGSOC molecular subtypes; shown in inferCNV
clusters with median values indicated (c) and for each spot on the Visium slide (d).
Note, panels b, c, d are duplicating Figure 3.

Supplementary Fig. S11: Visium data summary for patient 6. a) Heatmap generated
by inferCNV showing inferred CNA profiles of Visium spots. Horizontal black lines
separate clusters identified by inferCNV. Red corresponds to predicted amplification,
blue to predicted deletion. b) Projection of spot clusters identified by inferCNV onto the
tissue section. c, d) Module scores calculated using AddModuleScore function in Seurat
for genes overexpressed in four HGSOC molecular subtypes; shown in malignant
inferCNV clusters with median values indicated (c) and for each spot on the Visium
slide (d).

Supplementary Fig. S12: Visium data summary for patient 7. a) Heatmap generated
by inferCNV showing inferred CNA profiles of Visium spots. Horizontal black lines
separate clusters identified by inferCNV. Red corresponds to predicted amplification,
blue to predicted deletion. b) Projection of spot clusters identified by inferCNV onto the
tissue section. c, d) Module scores calculated using AddModuleScore function in Seurat
for genes overexpressed in four HGSOC molecular subtypes; shown in malignant
inferCNV clusters with median values indicated (c) and for each spot on the Visium
slide (d).

Supplementary Fig. S13: Visium data summary for patient 8. a) Heatmap generated
by inferCNV showing inferred CNA profiles of Visium spots. Horizontal black lines
separate clusters identified by inferCNV. Red corresponds to predicted amplification,
blue to predicted deletion. b) Projection of spot clusters identified by inferCNV onto the
tissue section. c, d) Module scores calculated using AddModuleScore function in Seurat
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for genes overexpressed in four HGSOC molecular subtypes; shown in malignant
inferCNV clusters with median values indicated (c) and for each spot on the Visium
slide (d).

Supplementary Fig. S14: Summary of inferCNV signal predicted in eight Visium
samples. Each panel shows one chromosome. InferCNV signal was averaged for each
sample across all malignant spots. Genomic areas with InferCNV signal above 1.1 were
considered amplified for the between-sample and TCGA dataset comparisons.

Supplementary Fig. S15: Visium data summary for patient 1. Module scores
calculated using AddModuleScore function in Seurat for genes overexpressed in four
HGSOC molecular subtypes; shown in malignant inferCNV clusters with median values
indicated (a) and for each spot on the Visium slide (b).

Supplementary Fig. S16: Location of subclone differentially expressed genes
mapped to selected subclone-specific CNAs in patient 1. InferCNV signal is shown
for selected chromosomes after averaging across all spots in each of the subclones.
Vertical dashed lines indicate genomic positions of genes most highly expressed in the
red subclone (defined as being differentially up-regulated in the red subclone in at least
one of the pairwise comparisons and having the highest expression level in the red
subclone when compared to all other subclones).

Supplementary Fig. S17: Location of subclone differentially expressed genes
mapped to selected subclone-specific CNAs in patient 2. InferCNV signal is shown
for selected chromosomes after averaging across all spots in each of the subclones.
Vertical dashed lines indicate genomic positions of genes most highly expressed in the
brown_red subclone (defined as being differentially up-regulated in the brown_red
subclone in at least one of the pairwise comparisons and having the highest expression
level in the brown_red subclone when compared to all other subclones).

Supplementary Fig. S18: Location of subclone differentially expressed genes
mapped to selected subclone-specific CNAs in patient 4. InferCNV signal is shown
for selected chromosomes after averaging across all spots in each of the subclones.
Vertical dashed lines indicate genomic positions of genes most highly expressed in the
brown subclone (defined as being differentially up-regulated in the brown subclone in at
least one of the pairwise comparisons and having the highest expression level in the
brown subclone when compared to all other subclones).

Supplementary Fig. S19: Location of subclone differentially expressed genes
mapped to selected subclone-specific CNAs in patient 5. InferCNV signal is shown
for selected chromosomes after averaging across all spots in each of the subclones.
Vertical dashed lines indicate genomic positions of genes most highly expressed in the
red (a) or blue (b) subclone (defined as being differentially up-regulated in the
corresponding subclone in at least one of the pairwise comparisons and having the
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highest expression level in the corresponding subclone when compared to all other
subclones).

Supplementary Fig. S20: Location of subclone differentially expressed genes
mapped to selected subclone-specific CNAs in patient 6. InferCNV signal is shown
for selected chromosomes after averaging across all spots in each of the subclones.
Vertical dashed lines indicate genomic positions of genes most highly expressed in the
red (a) or blue (b) subclone (defined as being differentially up-regulated in the
corresponding subclone in at least one of the pairwise comparisons and having the
highest expression level in the corresponding subclone when compared to all other
subclones).

Supplementary Fig. S21: Expression and detection rates of putative tumour
intrinsic ligands in Zhang et al. scRNA-seq dataset 25. Ligands identified in different
samples are shown separately and are further split into ligands that were most highly
expressed in tumour cells in our scRNA-seq dataset and ligand that were deemed
plausibly subclone-specific as they were not detected in any of the cell types identified
in our scRNA-seq dataset. Note that the latter did not show strong expression in any of
the non-malignant subtypes. EOC, epithelial ovarian carcinoma.

Supplementary Fig. S22: Giotto cell type enrichment in inferCNV clusters. Dot
colour shows PAGE enrichment scores averaged across all spots in each inferCNV
cluster and each cell type; dot size shows percentage of spots in each inferCNV cluster
that were significantly enriched for the corresponding cell type (significance determined
using a threshold of 0.05 on Benjamini-Hochberg adjusted Giotto p-values). All
malignant and non-malignant inferCNV clusters are shown for each sample, purple bars
indicate the malignant clusters.

Supplementary Fig. S23: Expression and detection rates of CXCL10-CXCR3 and
CD47-SIRPA ligand-receptor pairs in the Zhang et al. scRNA-seq dataset 25.

Supplementary Fig. S24: InferCNV heatmaps generated for Visium data on
HGSOC samples from the Stur et al. study 63. Heatmaps generated by inferCNV
showing inferred CNA profiles of Visium spots are shown for samples from six excellent
and six poor responders to neoadjuvant chemotherapy.

Supplementary Fig. S25: Integrated gene expression analysis of eight Visium
samples. a) UMAP of eight integrated samples coloured by the sample of origin. b)
UMAP of eight integrated samples coloured by the cluster. c) Top overexpressed genes
in clusters 2 and 6 (candidate stromal dataset). d) Subclustering of candidate stromal
dataset (clusters 2 and 6 from (b). e) Top overexpressed genes in cluster 3 of the
candidate stromal dataset.

Supplementary Fig. S26: Expression of marker genes used for Giotto cell type
enrichment analysis in the scRNA-seq dataset.
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