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Abstract 23 

To analyze and visualize comprehensive gene expression patterns in the phytopathogenic 24 
fungus Botrytis cinerea, we developed BEB — a web-based B. cinerea gene expression browser. This 25 
tool and associated databases (DB) contain manually-curated RNA-Seq experiments conducted in B. 26 
cinerea. BEB allows easy gene expression analyses of genes of interest under different culture 27 
conditions by providing publication-ready heatmaps depicting transcripts levels. BEB is a 28 
computationally-inexpensive web-based application and gene expression DB that allows effortless 29 
visualization of the transcript levels of genes of interest without needing advanced computational skills. 30 
BEB also provides details of each experiment under analysis and user-defined gene expression 31 
clustering and visualization options. If needed, tables of gene expression values can be downloaded for 32 
further exploration, employing more sophisticated bioinformatics tools. The BEB implementation is 33 
based on open-source computational technologies that can be easily deployed for other organisms of 34 
interest with little additional effort. To demonstrate BEB’s usability and potential, we selected genes 35 
of interest in B. cinerea to determine their expression patterns across different conditions. We thus 36 
focused our analysis on secondary metabolite gene clusters, chromosome-wide gene expression, 37 
previously described virulence factors, and reference genes, leading to a comprehensive expression 38 
overview of these groups of genes in this relevant fungal phytopathogen. 39 
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Introduction 41 

Genome-scale collection of gene expression data in RNA sequencing (RNA-Seq) is refashioning 42 
modern molecular biology strategies. Biological models across phyla have benefited from the most 43 
recent technological advances in today’s various massive sequencing methodologies including short 44 
and emerging long-read transcriptomics (Stark et al., 2019). This can facilitate accurate gene 45 
expression profiling in virtually any organism and experimental condition. RNA-Seq thus represents a 46 
tool that can provide important clues regarding the function and regulation of different genes of 47 
interest (Kukurba and Montgomery, 2015). 48 

            The standard workflow of RNA-Seq experiments relies on high-quality RNA extraction. After 49 
adequate quantity and quality assessment of the nucleic acid under analysis (Sheng et al., 2016), 50 
researchers build sequencing libraries following rigorous and standardized methods that ensure the 51 
most out of each sequence read. Nonetheless, low-quality reads and adapter sequences must be 52 
discarded before differential gene expression analyses (Bolger et al., 2014). These procedures allow 53 
downstream time-consuming transcriptome mapping of each sequence to a reference genome. 54 
Researchers thus employ specialized short read alignments tools such as STAR (Dobin et al., 2012), 55 
TopHat2 (Kim et al., 2013), Hisat2 (Kim et al., 2015), or Kallisto (Bray et al., 2016), among others, to 56 
quantify each read (Liao et al., 2019; Anders et al., 2014) to ultimately apply a suitable differential 57 
expression detection algorithm (Love et al., 2014; Chen et al., 2016). Readers can consult several 58 
reviews to address many critical considerations at each step (Stark et al., 2019; Dorado et al., 2021; 59 
Hrdlickova et al., 2017; Bayega et al., 2018). Ironically, after all these massive scientific and 60 
computational efforts to make RNA-Seq data biologically accurate, meaningful, and accessible to most 61 
biologists, RAW sequence files are deposited back into public databases such as NCBI’s Sequence 62 
Read Archive (SRA) (Leinonen et al., 2011). Therefore, there is a significant scientific, technical, and 63 
computational challenge when scientists with no bioinformatics expertise nor computational power 64 
seek to analyze all across-laboratory experiments to determine otherwise hidden global gene expression 65 
patterns.  66 

            Several initiatives — most of them in well-known model species — have been propelled to 67 
circumvent some of the abovementioned difficulties. These include the model plant 68 
species Arabidopsis thaliana (Sullivan et al., 2019), agricultural relevant plants (Robinson et al., 69 
2018), and several other species aggregated in massive initiatives like the “Expression Atlas” of the 70 
European Bioinformatics Institute (EMBL-EBI) (Papatheodorou et al., 2019). This latter collection 71 
holds information on 22 animal models, over nine plant species different from Arabidopsis, and only 72 
three fungal species, with 95.7% of the RNA-Seq experiments concentrated in the budding 73 
yeast Saccharomyces cerevisiae. Therefore, there is a lack of implementation of this kind of tool and 74 
curated gene expression information in fungal species. Undoubtedly, this represents an opportunity to 75 
better understand the biology of this relevant but often neglected group of organisms (Case et al., 76 
2020).  77 

            One notable exception is the wheat fungal pathogen Puccinia striiformis f. sp. tritici, with its 78 
recently developed platform for analyzing gene expression patterns in a myriad of culture conditions 79 
including “in planta” growth (Adams et al., 2021). This strategy can provide meaningful insights 80 
regarding, for instance, the infection strategies employed by this pathogen. While fungi represent an 81 
exceptional biotechnological chassis, their extraordinary adaptation capacity to diverse environmental 82 
niches also means several risks for animal health and agricultural production (Case et al., 2020; Fisher 83 
et al., 2020). In fact, ten fungal phytopathogens have long been considered highly relevant agricultural 84 
threats. Unfortunately, despite the availability of a relatively small but significant number of 85 
transcriptomics experiments for most of them (Table 1), there is no simple and easy-to-use tool to 86 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.08.29.504976doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.29.504976
http://creativecommons.org/licenses/by/4.0/


  Running Title 

 
3 

determine gene expression patterns. With a great degree of host specificity (Couch et al., 2005), the 87 
most important specialist phytopathogenic fungus is Magnaporthe oryzae: the causal agent of the rice 88 
blast disease. On the other hand, the most relevant generalist is the so-called grey mold fungus Botrytis 89 
cinerea (Dean et al., 2012). Both have an enormous negative impact on food security and production 90 
worldwide.  91 

            B. cinerea is the most largely investigated necrotrophic fungal plant pathogen. It has been the 92 
focus of numerous research groups over several decades. This single fungal species explains over $10 93 
billion in agricultural product losses (Weiberg et al., 2013). In the Botrytis genus, several species are 94 
specialist plant pathogens (Staats et al., 2005). In contrast, with its necrotrophic infection strategy, B. 95 
cinerea can infect over 1000 plant species (Veloso and van Kan, 2018). For the interested reader, there 96 
are several seminal works revisiting canonical B. cinerea infection strategies (van Kan, 2006; Choquer 97 
et al., 2007; Shlezinger et al., 2011); contemporary research trends and most current advances have 98 
been reviewed elsewhere (Mbengue et al., 2016; Castillo et al., 2017; Schumacher, 2017; Veloso and 99 
van Kan, 2018; Larrondo and Canessa, 2019; Cheung et al., 2020). 100 

            Since the foundational analyses that facilitated the first genome database of B. 101 
cinerea (Amselem et al., 2011), several improvements have been conducted over the years (Staats and 102 
van Kan, 2012). This led to a gapless genome whose assembly was supported with an optical map (van 103 
Kan et al., 2017). These genomic advances have allowed the accumulation of a significant number 104 
of transcriptomic experiments (Table 1) that largely remain underexplored due to the lack of tools to 105 
analyze all expression data simultaneously.   106 

            To visualize organism-wide gene expression patterns in B. cinerea, we developed the B. 107 
cinerea gene Expression Browser (BEB). With a user-friendly interface, this tool allows 108 
straightforward gene expression analysis of genes of interest under various conditions. For this 109 
purpose, users only need to provide B. cinerea gene IDs. To demonstrate the usability and potential of 110 
this tool, we picked several genes of interest, including virulence factors, to determine their expression 111 
patterns across experimental conditions.  112 

 113 

  114 
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Materials and methods 115 

RNA-Seq datasets available for Botrytis cinerea global gene expression analysis. 116 

            To generate a robust web-based platform capable of visualizing global gene expression patterns 117 
of B. cinerea across available genome-wide expression experiments, we put together all publicly RNA-118 
Seq data retrieved from the NCBI’s Sequence Read Archive (SRA) database as well as the EMBL-EBI 119 
(European Bioinformatics Institute) available on November 30, 2021. The uploaded dataset was 120 
composed of 218 individual files representing 76 experimental groups. RNA-Seq experiments 121 
included, but are not limited to, those with B. cinerea growing in axenic in vitro cultures (non-infective 122 
conditions; i.e., on plate and liquid medium) and during the infection of different plant species (dual 123 
RNA-Seq; i.e., B. cinerea infecting A. thaliana, among others). Details are provided 124 
in Supplementary Material 1. 125 

            126 

Gene expression metadata construction. 127 

            The manually-curated metadata available on the BEB (Supplementary Material 1) uses the 128 
NCBI SRA’s metadata information schema (Leinonen et al., 2010) and describes the general 129 
experimental conditions of each RNA-Seq experiment including replicates (described as 130 
group_for_averaging), available treatments (description of the culture conditions in which the 131 
experiment was performed), utilized B. cinerea strain/isolate, the type of tissue, and, when appropriate, 132 
the presence and type of plant material infected by the fungus (e.g., tissue and hours post-infection, 133 
when available). Importantly, not all RNA-Seq available in NCBI SRA’s contained a complete 134 
description of the experimental condition (e.g., information to cross-check the data with the associated 135 
sequencing file). Thus, when possible, we also manually analyzed all associated publications making 136 
every effort to obtain as much information as possible. If available, PubMed IDs of the respective 137 
publication were also included. Those RNA-Seq experiments that were impossible to determine 138 
the FASTQ file confidently and its respective experimental condition were not included. Studies 139 
focused on small RNA were not included. Importantly, the format used in Supplementary Material 140 
1 is consistent with the CSV schema used by BEB’s server (see below).  141 

 142 
Data pre-processing and RNA-Seq experiments mapping. 143 

             As RNA-Seq data was composed of both Single (SE) and Paired-End (PE) Illumina sequencing 144 
technologies, a careful examination of the data was performed before mapping. First, a quality 145 
inspection was assessed employing fastQC (version 0.11.8, (Wingett and Andrews, 2018)). After this 146 
procedure, low-quality reads and sequencing adapters from each FASTQ files were filtered out using 147 
BBDuk (https://sourceforge.net/projects/bbmap/) (v38.90; ktrim=r k=23 mink=11 hdist=2 qtrim=rl 148 
trimq=10 ftm=5 maq=15 minlength=50 tbo). Thereafter, filtered reads were pseudoaligned to the B. 149 
cinerea B05.10 transcriptome (van Kan et al., 2017) (ASM83294v1) using Kallisto (v0.46.0) (Bray et 150 
al., 2016). Kallisto SE mapping was performed under the following settings: –single -b 100 -l 100 -s 151 
20. Standard parameters (-b 100) were employed for PE. The B. cinerea transcriptome reference was 152 
downloaded from EnsemblFungi release 52 (Howe et al., 2019) representing the previously published 153 
work (van Kan et al., 2017). 154 

  155 

  156 
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Gene expression analysis and BEB’s transcriptional profile experiments database. 157 

            Kallisto’s mapped read counts were further processed to infer transcript abundances with the 158 
tximport package in R (Soneson et al., 2015) (v1.20.0; on RStudio v4.1.0). This approach enabled us 159 
to obtain a complete dataset containing gene-level estimated counts derived from all RNA-Seq 160 
experiments. A custom Python version of the DESeq2 median of the ratio normalization method was 161 
used to determine gene expression levels (Anders and Huber, 2010; Love et al., 2014). The gene-level 162 
count matrix and the metadata file described above are loaded and available to explore on BEB’s server 163 
database and browser (see below).   164 

 165 
BEB’s server implementation and user interface. 166 

            The BEB’s server is a web-based tool written in Python 3.7 using Streamlit’s open-source app 167 
framework and Docker. The BEB’s metadata and code were used to prepare the data, set up, and run 168 
the web-based tool presented herein are available 169 
on GitHub (https://github.com/ibioChile/CanessaLab). A working version is available 170 
at https://beb.canessalab.org. The BEB’s landing page contains a left sidebar section where the 171 
experimental factors — extracted from the experimental metadata file — can be selected through 172 
dropdown lists. In addition, a list of genes of interest can be used as an entry on BEB’s landing page 173 
or these can be randomly selected from BEB’s dataset (Figure 1). Importantly, gene identifiers must 174 
be provided separated by spaces (in the form of Bcin[XX]g[YYYYY]; where “XX” corresponds to the 175 
chromosome and “YYYYY” to the gene number). Once parameters are selected and submitted, the 176 
bottom section shows a customizable colored heatmap. This heatmap depicts the expression levels of 177 
the provided subset of genes in the experiments that fulfill the selected factors. The heatmap 178 
customization parameters include coloration of the expression levels by quartiles, DESeq2 units, or 179 
log2 transformation to highlight fold differences among experiments. Furthermore, both genes and 180 
experiments can be clustered to help the user identify co-expressed gene and expression trends. 181 

 182 
Additional bioinformatic analyses. 183 

             To predict secondary metabolite gene clusters in B. cinerea, antiSMASH (version 6.1.1) (Blin 184 
et al., 2019) software was used employing default parameters. Succinctly, FASTA and GFF3 files from 185 
the B. cinerea’s genome database were provided, and the output was manually inspected. For the genes 186 
encoded in chromosomes 17 and 18, we also performed a BLAST2GO (Götz et al., 2008) automatic 187 
analysis to retrieve all available functional annotations.  188 

            Due to the quantity of expression data deposited in BEB, we also looked for putative/new 189 
reference genes that can be used for future reverse transcription quantitative real-time PCR (RT-qPCR) 190 
studies. For this purpose, read counts of each B. cinerea gene were normalized with the total mapped 191 
reads per library. An additional normalization was then performed by the upper quartile and median 192 
norm, as described for RNA-Seq data (Carmona et al., 2017). Finally, the normalized reads of each 193 
gene were standardized by the transcript size and classified by quartiles of coefficient of variation. 194 
Likely reference genes have the lowest coefficient of variation as demonstrated previously (Carmona 195 
et al., 2017; Pombo et al., 2017; Tilli et al., 2016).  196 

 197 

  198 
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Results and discussion 199 

Global gene expression patterns of phytotoxic secondary metabolite gene clusters in B. cinerea. 200 

            Biosynthetic gene clusters (BGCs) in B. cinerea are common. Since the first version of its 201 
genome project (Amselem et al., 2011), at least 40 groups of genes that orchestrate the synthesis of 202 
secondary metabolites (SM) have been identified. One of these SM is botcinic acid, a phytotoxic 203 
polyketide produced by the coordinated action of a gene cluster in a subtelomeric region of 204 
chromosome (Chr) 1 (Dalmais et al., 2011). The transcription factor (TF) BcBoa13 (Table 2) controls 205 
this cluster’s transcriptional regulation (Porquier et al., 2019). The BEB-generated heatmap plot for 206 
these genes (Table 2, Figure 2A) shows low expression in PDA, PDB (Potato Dextrose Agar or Broth, 207 
respectively), YPD (Yeast Extract–Peptone–Dextrose), and MEB (malt extract broth) (in vitro) culture 208 
media. The highest values were seen during the infection of plants including Solanum lycopersicum 209 
and A. thaliana (middle section of Figure 2A). This observation is consistent with previous studies 210 
showing the induction of botcinic acid’s genes in the process of infection (Porquier et al., 2019). The 211 
most notable exceptions were gene IDs Bcin01g00150, Bcin01g00160, and Bcin01g00170 (depicted 212 
at the top of Figure 2A). These genes are physically located at one of the cluster’s borders. 213 

            Another relevant BGC in B. cinerea is required for botrydial production, an additional 214 
phytotoxic SM synthesized by this fungus. When explored on the BEB, the bot genes needed for 215 
botrydial synthesis show a similar expression pattern as the one observed for botcinic acid, with higher 216 
mRNA levels during the infection of plant tissue (see Figure 2B). BEB’s gene clustering algorithm 217 
(see methods) is denoted with a color code at the outmost left column of the respective heatmap and 218 
facilitates the recognition of distinctive gene expression patterns under different conditions. It also 219 
allows for capturing distinctive patterns within genes. For example, the TF BcBOT6 (Bcin12g06420), 220 
which is central for the biosynthesis of botrydial (Porquier et al., 2016), displays the most distinctive 221 
expression pattern compared with the five non-regulatory clusters’ genes. 222 

 223 
Gene expression of orphan secondary metabolite gene clusters. 224 

            While several genes encoding enzymes required for SM synthesis have been identified in the 225 
genome of B. cinerea (Table 3), a myriad of them are predicted to participate in synthesizing unknown 226 
compounds (Sabine Fillinger, 2016). Since the expression pattern of these genes is unknown, we 227 
decided to use the BEB to analyze them and determine whether this tool can shed light on experimental 228 
conditions that could facilitate the study of SM biosynthesis. Among sesquiterpene cyclase encoding 229 
genes, Bcin12g06390 (bcbot2; botrydial, see above; Table 3) displayed the highest expression values 230 
during the infection of A. thaliana and S. lycopersicum, which is clearly visualized using the 231 
BEB’s quartile-categorized expression option (Figure 3A). For comparative purposes, the continuous 232 
(color) scale is also displayed (Figure 3B). Most of the remaining genes showed relatively low 233 
expression values with Bcin01g03520 and Bcin04g03550 the most notable exceptions. Interestingly, 234 
the latter gene appears highly expressed during the infection of S. lycopersicum and in vitro cultures 235 
supplemented with cucumber or tea extracts. 236 

            Among the polyketide synthases (PKS, Table 3), Bcin01g00060 and Bcin01g00090 (required 237 
for botcinic acid biosynthesis, see above) display the highest expression values during the infection 238 
of A. thaliana and S. lycopersicum, as shown in Figure 4A. In contrast, seven PKS genes (shown in 239 
the middle-bottom left of Figure 4A) display low expression values in most culture conditions, with 240 
particularly low mRNA levels during the infection of tomato plants. Interestingly, among 241 
diterpene cyclases (Figure 4B, Table 3), Bcin01g04920 showed the highest expression values during 242 
the infection of cucumber plants or liquid media supplemented with cucumber extract (indicated by 243 
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asterisks in Figure 4B). These observations show how BEB can be used to generate new hypotheses, 244 
i.e., an experimental condition that could be used to study the function of this particular gene.  245 

            Finally, we looked at the expression values of NRPS (non-ribosomal peptide synthetases) and 246 
hybrid PKS-NRPS encoding genes (Table 3). Gene IDs Bcin01g11450 (putatively involved in 247 
ferrichrome siderophores biosynthesis) and Bcin01g11550 (unknown polyketide) showed a very 248 
similar expression pattern among PKS-NRPS genes, as indicated by BEB’s clustering function 249 
(outmost left colored column of Figure 5A). These two genes were clustered in a genomic region 250 
spanning circa 45kbp depicted in Figures 5B and 5C (Region 5), a subtelomeric region in Chr 1 251 
opposite to the botcinic acid SM cluster (Figure 5B, Region 1). The physical proximity of gene IDs 252 
Bcin01g11450 and Bcin01g11550 and their particular expression pattern observed through BEB’s 253 
heatmaps encouraged us to investigate whether all genes within the 45kbp region may represent a 254 
putative BGC. According to the antiSMASH software (Blin et al., 2019) that allows in silico 255 
identification of SM gene clusters in fungal systems, the region mentioned above corresponds to one 256 
out of 5 SM clusters in B. cinerea’s Chr 1, predicted between genomic coordinates 4,002,878-257 
4,093,700 (Figure 5B). To support this prediction, we analyzed the expression pattern of all 258 
genes (Figure 5C) encoded in this putative BGC using BEB. All genes display highly similar 259 
expression patterns across all culture conditions (Figure 5D). This suggests co-regulation as expected 260 
from an SM gene cluster, most likely involved in ferrichrome siderophore biosynthesis. Since BGCs 261 
usually contain a transcription factor (TF) encoded within these collections of genes, we analyzed if 262 
such a regulatory protein might be present in Region 5 (Figure 5C). Indeed, employing a manually-263 
curated catalog of TF for B. cinerea (Olivares-Yañez et al., 2021), along with careful examination led 264 
to the Bcin01g11510 gene encoding a fungal Zn(2)-Cys(6) binuclear TF whose participation in the 265 
regulation of this BGC or siderophore biosynthesis has not been previously described. Interestingly, 266 
this TF gene displays the most distinctive expression pattern among all genes in the SM biosynthesis 267 
cluster as indicated by the BEB’s gene clustering function (outmost left colored column of Figure 5D). 268 
Siderophores are complex low-molecular-weight molecules involved in iron acquisition. Little is 269 
known about B. cinerea’s iron acquisition pathways and transcriptional regulatory mechanisms. 270 
However, this fungus is expected to synthesize at least nine siderophores to support this metal 271 
acquisition (Konetschny-Rapp et al., 1998; Bushley and Turgeon, 2010) in addition to the membrane-272 
bound reductive iron assimilation mechanism that also participates in iron incorporation (Vasquez-273 
Montaño et al., 2020).  274 

            These findings collectively illustrate the BEB’s ability to reveal the expression patterns of 275 
orphan gene clusters. This information can facilitate their investigation under specific experimental 276 
conditions. Combined with easy-to-use tools such as antiSMASH (Blin et al., 2019) and up-to-date TF 277 
databases (Olivares-Yañez et al., 2021), the gene expression patterns determined in BEB could also 278 
provide testable hypotheses regarding transcriptional regulation. 279 

 280 
Chromosome-wide gene expression analysis. 281 

            The latest iteration of the genome sequencing process of the B. cinerea B05.10 strain revealed 282 
exciting structural features including two previously unnoticed minichromosomes (van Kan et al., 283 
2017). In B. cinerea, this particular group of Chr 17 and 18 comprises 18 and 16 protein-encoding 284 
genes, respectively. This is a common feature observed in these genetic arrangements. These accessory 285 
chromosomes (AC) are generally small and are not considered essential for the organisms’ 286 
survival.  Among some other pathogenic fungi, they are characterized by the presence of genes 287 
encoding virulence factors (Ma et al., 2010; van Dam et al., 2017; Li et al., 2020). The B. cinerea genes 288 
encoded in ACs display little or no similarity to other genes in other organisms including fungi (van 289 
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Kan et al., 2017). Despite the comparative efforts reported in Supplementary Material 2, the vast 290 
majority remain as proteins with hypothetical/unknown biological functions. Therefore, this group of 291 
genes represents an opportunity for testing the BEB and determining whether they exhibit particular 292 
gene expression profiles shedding light on potential functions. 293 

             Figures 6A and B show that three genes in each chromosome (Chr17: 294 
Bcin17g00150, Bcin17g00160, and Bcin17g00180; Chr18: Bcin18g00090, Bcin18g00120, 295 
and Bcin18g00130, respectively) display low mRNA levels across all RNA-Seq libraries. 296 
Interestingly, Chr17 genes Bcin17g00010, Bcin17g00020, Bcin17g00040, and Bcin17g00050 display 297 
the highest and most likely co-regulated gene expression as deduced by BEB’s clustering 298 
function (Figure 6A). As shown in Supplementary Material 2, the latter gene encodes a putative 299 
NRPS-like protein, whose participation in the biosynthesis of any low molecular weight peptidic 300 
product has not yet been described. On the other hand, Chr18 genes Bcin18g00020 and Bcin18g00150 301 
display a distinctive expression pattern during the infection of A. thaliana and S. lycopersicum (Figure 302 
6B). While these results suggest that these genes might play a role in the infection process, further 303 
experimental validation is needed. However, we cannot rule out the possibility that genes with no 304 
detectable mRNA levels might be expressed in untested experimental conditions as reported in 305 
Aspergillus (Lind et al., 2016).    306 

 307 
Inspecting the expression of virulence factors detected by proteomics studies. 308 

            Considering the relevance of virulence factors in the lifestyle of a phytopathogen such as B. 309 
cinerea, we next used the BEB to analyze the expression of virulence genes distinct from those required 310 
for phytotoxins (described in former sections). In general, virulence factor molecules are extensive in 311 
their chemical nature. However, they are characterized by causing harm or suppressing/interfering with 312 
host defense strategies, which can also lead to more damage (Pontes et al., 2020). For these reasons, a 313 
higher level of expression during the infection of different tissues and plant species is expected. To 314 
identify secreted virulence factors, previously published proteomic studies have taken advantage of in 315 
vitro cultures supplemented with various plant-derived components to induce their expression (Espino 316 
et al., 2010; Fernández-Acero et al., 2010; Shah et al., 2009; Shah et al., 2009). The proteins identified 317 
from these four publications are summarized in Supplementary Material 3. Therefore, we analyzed 318 
the expression of their respective genes across experimental conditions using the BEB platform. As 319 
depicted in Supplementary Figure S1 A, two different expression patterns were observed: i) a high 320 
and steady pattern of expression as denoted in the upper section of the heatmap (blue square bracket), 321 
and ii) an in planta “induced” pattern of expression with two groups of genes indicated with a green 322 
and orange square brackets (Supplementary Figure S1 A). In the former group, several unexpected 323 
extracellular proteins can be found, including bcactA encoding for actin, bcatp2 coding for the 324 
mitochondrial ATP synthase (beta chain), and two additional mitochondrial proteins including malate 325 
dehydrogenase and aconitase. Interestingly, bcspl1 and bcpg1 — which play significant roles in 326 
virulence — were observed in this group (ten et al., 1998; Chagué et al., 2006). Among in 327 
planta “induced” genes within the green square bracket mentioned above, several glycoside hydrolases 328 
were identified (families 5 (three), 6, 7 (two), 10, 11, 28 (two), and 53). There were also two cutinases, 329 
and two pectinesterases possibly reflecting a transcriptional regulatory mechanism in this group of 330 
carbohydrate-acting enzymes encoding genes (Supplementary Material 3). In planta “induced” 331 
genes with the orange square bracket (Supplementary Figure S1 A) include previously identified 332 
virulence factors such as bcpg3, 4 and 6, bcpgx1, bcxyn11A, bcpme1 and 2, and bccutA, among others. 333 
Again, while a common transcriptional regulation seems to be the case as deduced from expression 334 
patterns, little is known about the specific TFs controlling the expression of these genes. 335 
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Revisiting the expression of known and proposing new reference genes for transcript level 336 
analysis in B. cinerea.  337 

We integrated and analyzed data spanning a wide variety of experimental 338 
conditions (Supplementary Material 1).  Thus, we next decided to exploit the wealth of data to revisit 339 
the expression of known and previously validated reference genes in B. cinerea employed in reverse 340 
transcription quantitative real-time PCR (RT-qPCR) studies (Canessa et al., 2013; Ren et al., 2017) 341 
and propose new ones. By definition, reference genes tend to be constitutively expressed in all cells of 342 
an organism, and their expression levels display slight variations between developmental stages or 343 
across various experimental conditions. Therefore, well-normalized RT-qPCR experiments rely on an 344 
adequately validated (stable) reference gene(s) (Huggett et al., 2005). In addition, accurate 345 
normalization usually requires multiple validated reference genes (Vandesompele et al., 2002), the 346 
exact number being dependent on an experimental assessment of variability across the samples of 347 
interest (Hellemans and Vandesompele, 2014). Consequently, we took advantage of BEB’s database 348 
to determine new reference genes as described in Methods.  349 

We first revisited the expression of seven genes used as a reference in some RT-qPCR 350 
assays (Canessa et al., 2013; Ren et al., 2017) (Table 4 and Supplementary Material 4). See the 351 
methods section for details. Bcin11g03430 (bcsmt3) and Bcin02g00900 (tubulin, bctubA) have a low 352 
coefficient of variation (CV) of 0.35 and 0.36, respectively, showing a low disparity of expression 353 
levels across all experimental conditions, as expected (Figure 7). In contrast, Bcin15g02120 (CV = 354 
1.4), encoding the commonly-used reference gene glyceraldehyde-3-phosphate dehydrogenase, 355 
displays obvious changes in expression levels across experiments. Indeed, according to our analysis, it 356 
is the worst reference gene of those previously studied (Table 4 and Supplementary Material 4). In 357 
the fungus Neurospora crassa, this gene is under the control of its well-known circadian 358 
clock (Shinohara et al., 1998), a complex molecular machinery that in B. cinerea modulates time-359 
dependent fungal-plant (Hevia et al., 2015)) and fungal-fungal dynamics as 360 
recently demonstrated (Henríquez-Urrutia et al., 2022). 361 

To provide the B. cinerea community with an additional tool, finally, we also generated a list 362 
of 40 new reference genes showing the lowest CV across conditions in each global gene expression 363 
quartile. Importantly, the proposed reference genes need to be further validated by RT-qPCR, i.e., for 364 
an intermediate-low and the intermediate-high expression levels (second and third quartile of 365 
normalized expression, respectively) (Supplementary Material 4). Nevertheless, as shown 366 
in Supplementary Figure S2, their expression is highly similar in different experimental conditions. 367 

 368 

  369 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.08.29.504976doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.29.504976
http://creativecommons.org/licenses/by/4.0/


  Running Title 

 
10 

Tables 370 

Table 1. Publicly available RNA-Seq experiments and studies in the NCBI’s short read archive (SRA) 371 
for the top 10 most relevant fungal phytopathogens (Dean et al., 2012).  372 

 373 

Fungal Species SRA Experiments SRA Studies 

Magnaporthe oryzae 1714 125 
Botrytis cinerea 2403 89 
Puccinia spp 3847 195 
Fusarium graminearum 2141 177 
Fusarium oxysporum 2700 188 
Blumeria graminis 1057 43 
Mycosphaerella graminicola 2095 230 
Colletotrichum spp 1752 219 
Ustilago maydis 538 38 

Melampsora lini 205 3 
  374 
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Table 2. Gene IDs and names of the two major phytotoxic secondary metabolites of B. cinerea. 375 
Functional descriptions derived from manual inspection of the B. cinerea genome database and/or their 376 
respective publication. 377 

 378 

Gene ID Name Functional description (manual and/or from publications) 

Bcin01g00010 Bcboa1 Putative NmrA-like regulator 
Bcin01g00020 Bcboa2 Putative flavin-binding monooxygenase-like 
Bcin01g00030 Bcboa3 Putative monooxygenase 
Bcin01g00040 Bcboa4 Putative monooxygenase 
Bcin01g00050 Bcboa5 Putative alcohol dehydrogenase 

Bcin01g00060 Bcboa6,Bcpks6 
Polyketide synthase (Dalmais et al., 2011); Secondary 
Metabolism Key Enzyme 

Bcin01g00070 Bcboa7 Putative monooxygenase 
Bcin01g00080 Bcboa8 Putative FAD-binding protein 

Bcin01g00090 Bcboa9,Bcpks9 
Polyketide synthase (Dalmais et al., 2011); Secondary 
Metabolism Key Enzyme 

Bcin01g00100 Bcboa10 Putative thioesterase 
Bcin01g00110 Bcboa11 Putative transferase 
Bcin01g00120 Bcboa12 Unknown 
Bcin01g00130 Bcboa13 Zn(II)2Cys6 transcription factor (Porquier et al., 2019) 
Bcin01g00140 Bcboa15 Pseudogene (Porquier et al. 2019) 
Bcin01g00150 Bcboa16 Putative dehydratase/ Pseudogene (Porquier et al., 2019) 
Bcin01g00160 Bcboa17 Putative dehydrogenase 

Bcin01g00170 no name Putative permease (Porquier et al., 2019) 

Bcin12g06370 Bcbot4 Cytochrome P450 monooxygenase 
Bcin12g06380 Bcbot1 Benzoate 4-monooxygenase cytochrome p450 
Bcin12g06390 Bcbot2,Bcstc1 Sesquiterpen cyclase 
Bcin12g06400 Bcbot3 Cytochrome P450 monooxygenase 
Bcin12g06410 Bcbot5 Acetyl transferase, in botrydial biosynthesis gene cluster 

Bcin12g06420 Bcbot6 
Zn(2)-C6 fungal-type transcription factor, (Porquier et. al., 
2016) 

  379 
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Table 3. Gene IDs and names of key enzymes required for the synthesis of secondary metabolites (SM) 380 
in B. cinerea as described previously (Sabine Fillinger, 2016). The associated SM were inferred from 381 
each gene putative function or their respective publication. 382 

Gene ID KE name(s) Metabolite 

Bcin12g06390 BcStc1/Bot2 Botrydial (Pinedo et al. 2008) 

Bcin08g02350 BcStc2 Unknown sesquiterpene 

Bcin13g05830 BcStc3 Unknown sesquiterpene 

Bcin04g03550 BcStc4 Unknown sesquiterpene 

Bcin01g03520 BcStc5/BcAba5 Unknown sesquiterpene 

Bcin01g04920 BcDtc1 Unknown diterpene 

Bcin08g03560 
BcDtc3 Unknown diterpene 

Bcin05g05670 BcPax1 Unknown indole-diterpene  

Bcin01g04560 BcPhs1 Retinal (Schumacher et al. 2014), phytoene synthase 

Bcin01g03260 BcBik1 Bikaverin (Schumacher et al. 2013) 

Bcin01g00060 BcPks6/Boa6 Botcinic acid (Dalmais et al. 2011)  

Bcin01g00090 BcPks9/Boa9 Botcinic acid (Dalmais et al. 2011)  

Bcin02g08770 BcPks12 Melanin (Schumacher et al. 2014)  

Bcin03g08050 BcPks13 Melanin (Schumacher et al. 2014)  

Bcin14g00600 BcPks1 Unknown polyketide 

Bcin02g01680 BcPks2 Unknown polyketide 

Bcin11g02700 BcPks4 Unknown polyketide 

Bcin07g02920 BcPks8 Unknown polyketide 

Bcin13g01510 BcPks10 Unknown polyketide 

Bcin14g01290 BcPks11 Unknown polyketide 

Bcin16g01830 BcPks14 Unknown polyketide 

Bcin05g06220 
BcPks15 Unknown polyketide 

Bcin16g05040 BcPks16 Unknown polyketide 

Bcin03g02010 BcPks17 Unknown polyketide 

Bcin02g08830 BcPks18 Unknown polyketide 

Bcin08g00290 BcPks19 Unknown polyketide 

Bcin04g00640 BcPks20 Unknown polyketide 

Bcin05g08400 BcPks21 Unknown polyketide 

Bcin13g02130 BcChs1/Bpks Pyrones, resorcylic acids and resorcinols (Jeya et al. 2012) 

Bcin12g00690 BcNrps2 Ferrichrome siderophores (Bushley and Turgeon 2010)  
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Bcin16g03570 BcNrps3 Ferrichrome siderophores (Bushley and Turgeon 2010)  

Bcin01g11450 BcNrps7 Ferrichrome siderophores (Bushley and Turgeon 2010)  

Bcin01g03730 BcNrps6 Coprogene siderophore (Bushley and Turgeon 2010) 

Bcin12g04980 BcNrps1 Unknown peptides 

Bcin02g02380 BcNrps4 Unknown peptides 

Bcin04g01390 BcNrps5 Unknown peptides 

Bcin11g02650 BcNrps8 Unknown peptides 

Bcin14g01300 BcNrps9 Unknown peptides 

Bcin03g04360 BcPks3 Unknown amino-acid containing- polyketides (PKS-NRPS 
hybrids)  

Bcin01g11550 BcPks5 Unknown amino-acid containing- polyketides (PKS-NRPS 
hybrids)  

Bcin10g00040 BcPks7 Unknown amino-acid containing- polyketides (PKS-NRPS 
hybrids)  

Bcin16g01940 Bcdmats1  Unknown alkaloids  

 383 

  384 
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Table 4. Reference genes validated as such in B. cinerea RT-qPCR assays. The rank number was 385 
calculated based on the data presented in Supplementary Material 4. 386 

 387 

Gene ID Name or description Ranking Publication 

Bcin11g03430 bcsmt3 127 Ren et.al., 2017 
Bcin01g08040 bctubA 344 Ren et.al., 2017 
Bcin02g04920 Ubiquitin-conjugating enzyme 356 Ren et.al., 2017 
Bcin02g00900 α-TUB 902 Canessa et.al., 2013; Ren et.al., 2017 
Bcin11g04420 bcef1b 905 Canessa et.al., 2013 
Bcin16g02020 bcactA 1000 Canessa et.al., 2013; Ren et.al., 2017 

Bcin15g02120 gapdh 3359 Ren et.al., 2017 
  388 
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Legend to Figures  389 

Figure 1. B. cinerea gene expression browser (BEB) graphical user interface. The BEB’s landing 390 
page contains a left sidebar section where experimental factors can be selected through dropdown lists 391 
(1). The “Analyze” and “Read Me” options (2) are available on the left sidebar (top section). Detailed 392 
instructions on how to use BEB are available in the latter display tool. In the upper section, the user 393 
can select to either display average expression values or each replicate individually (3). Users can copy, 394 
paste, and submit gene IDs in the right middle section after selecting the “Paste a List” option (4). After 395 
clicking the “Submit” button (5), a heatmap depicting gene expression is generated at the bottom of 396 
the webpage. Clustering and download options are available in the right middle section (6). BEB’s 397 
clusters are denoted with a color code located at the outmost left column of the heatmap (7). A detailed 398 
description of each experiment is provided at the bottom of the figure including SRA IDs for reference 399 
(8). 400 

Figure 2. Expression patterns of the gene clusters involved in the production of botcinic (A) and 401 
botrydial (B) acid phytotoxins in B. cinerea. The heatmaps depict mRNA levels as calculated 402 
employing DeSeq2 (see Methods). A color scale distinguishes each gene expression level as low or 403 
highly expressed (from yellow to dark blue, respectively). A color code at the top of each heatmap is 404 
also used to indicate culture media, plant material, and B. cinerea strains (legend at the top). 405 
Experimental conditions are indicated in each column, while analyzed genes are in each row. To 406 
streamline the overall figure, the description of each experiment was omitted in both heatmaps 407 
(compared with Figure 1). BEB’s clusters are denoted with a color code located at the outmost left 408 
column of each heatmap. 409 

Figure 3. Expression patterns of five sesquiterpene cyclase enzyme encoding genes. (A) Heatmap 410 
depicting the mRNA expression levels employing the BEB’s quartile-categorized expression option 411 
(lower: dark green; higher: light green). The continuous color scale (B) from low to high expression 412 
(yellow to dark blue, respectively) is also shown for comparative purposes. A color code at the top 413 
denotes culture conditions and B. cinerea strains. Experimental conditions and analyzed genes are 414 
indicated in columns and rows, respectively. Gene IDs are indicated at the right of each heatmap. A 415 
detailed description of each experiment (for both heatmaps) is provided at the bottom of the figure 416 
including SRA IDs for reference. Gene expression clusters are denoted with a color code located at the 417 
outmost left column of each heatmap. 418 

Figure 4. Polyketide synthases (A, PKS) and diterpene cyclases (B) expression levels across BEB 419 
experimental conditions. Both heatmaps indicate transcript expression levels with their 420 
corresponding expression scale from yellow to dark blue (low or high expression, respectively). The 421 
legend at the top of the figure denotes culture conditions and B. cinerea strains. Experimental 422 
conditions and genes are depicted in columns and rows, respectively. Gene IDs are provided at the 423 
right of each heatmap. Gene expression clusters are denoted with a color code located at the outmost 424 
left column of each heatmap. For (B), a detailed description of each experiment is provided at the 425 
bottom of the figure. Columns (in B) denoted with asterisks are discussed in the main text.  426 

Figure 5. Gene expression patterns of non-ribosomal peptide synthetases (NRPS) and hybrid 427 
polyketide synthases (PKS-NRPS) encoding genes in B. cinerea. (A) Expression patterns of all 428 
predicted NRPS and PKS-NRPS mentioned in Table 3. (B) Identification of the five SM gene clusters 429 
in B. cinerea’s chromosome (Chr) 1. The table inset describes each of the five SM regions within Chr1, 430 
the predicted SM type, and their respective genomic coordinates. Colored boxes represent each region 431 
(right, with numbers). (C) Clustered genes within “Region 5” as described in (B). Boxes with 432 
arrowheads indicate each gene’s transcriptional orientation within the SM gene cluster. Dark red and 433 
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pink arrowhead boxes indicate core and additional biosynthetic genes, respectively. Grey indicates 434 
other genes. Gene IDs and gene names are indicated. For simplicity, the “Bcin” prefix was 435 
omitted. (D) Expression patterns of all genes encoded in “Region 5” as indicated in (B) and (C), 436 
from bcnrps7 to bcpks5. Both heatmaps indicate mRNA levels and experimental conditions as 437 
described in the former figures. In (D), a detailed description of each experiment is provided at the 438 
bottom of the heatmap. 439 

Figure 6. Expression levels of transcripts encoded in mini chromosomes 17 (A) and 18 (B) of B. 440 
cinerea. Both heatmaps indicate mRNA levels with their corresponding expression scale from yellow 441 
to dark blue (low or highly expressed, respectively). The description of each experiment in (A) was 442 
omitted to simplify the figure. Both heatmaps indicate mRNA levels and experimental conditions as 443 
described in the figure above. 444 

 445 
Figure 7. Transcript levels of previously validated reference genes employed in RT-qPCR 446 
experiments in B. cinerea. The heatmap depicts transcript levels employing the BEB’s continuous 447 
color scale from yellow to dark blue (low or highly expressed, respectively). A detailed description of 448 
each experiment is provided at the bottom of the heatmap. Experimental conditions and genes are 449 
depicted in columns and rows, respectively. Gene IDs are provided at the right of each heatmap. 450 

 451 

Legend to Supplementary Figures  452 

Supplementary Figure S1. mRNA levels of virulence factors detected by proteomics 453 
studies. (A) A heatmap depicting the transcript levels of 176 genes employing the BEB’s quartile-454 
categorized expression option (lower: dark green; higher: light green) or the continuous color 455 
scale (B) from low to high expression (yellow to dark blue). Due to the number of genes being 456 
analyzed, neither culture conditions nor gene IDs were not included in the figure, although such 457 
information can be found in Supplementary Table S3. In (A), genes with a high and steady pattern of 458 
expression across conditions are indicated with a blue square bracket, while two groups of genes 459 
displaying an in planta “induced” pattern of expression are indicated with green and orange square 460 
brackets. 461 

 462 
Supplementary Figure S2. mRNA levels of proposed reference genes that can be employed in 463 
future RT-qPCR experiments after proper validation. The heatmap depicts transcript levels 464 
employing the BEB’s continuous color scale. Proposed reference genes are indicated 465 
in Supplementary Table 4. Experimental conditions and gene IDs are indicated in columns and rows, 466 
respectively. A steady pattern of expression across conditions is observed for most genes. 467 

 468 

 469 

 470 

  471 
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Supplementary Material 691 

Supplementary Material 1. BEB’s metadata. The table describes the general experimental conditions 692 
of each RNA-Seq experiment. Importantly, the table is formatted as on BEB’s server.  693 

Supplementary Material 2. Functional annotation of mini-chromosomes (Chr 17 and 18) with 694 
protein-encoding genes. The data was obtained after BLAST2GO analysis. 695 

Supplementary Material 3. Previously identified extracellular B. cinerea proteins detected in in vitro 696 
cultures supplemented with plant-derived material. The colors of the groups refer to those in 697 
Supplementary Figure S1. 698 

Supplementary Material 4. Proposed reference genes for RT-qPCR studies. The table shows each 699 
gene (ten for each expression quartile), as well as its coefficient of variation (CV). 700 

 701 

Data Availability Statement 702 

The datasets generated for this study can be found in the GitHub 703 
(https://github.com/ibioChile/CanessaLab) as well as in the Supplementary Material. 704 
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2100
ATCC48342
wild isolate

SX-9
not specified
B0510

culture mediabotrytis strain
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