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Abstract

To analyze and visualize comprehensive gene expression patterns in the phytopathogenic
fungus Botrytis cinerea, we developed BEB — a web-based B. cinerea gene expression browser. This
tool and associated databases (DB) contain manually-curated RNA-Seq experiments conducted in B.
cinerea. BEB allows easy gene expression analyses of genes of interest under different culture
conditions by providing publication-ready heatmaps depicting transcripts levels. BEB is a
computationally-inexpensive web-based application and gene expression DB that allows effortless
visualization of the transcript levels of genes of interest without needing advanced computational skills.
BEB also provides details of each experiment under analysis and user-defined gene expression
clustering and visualization options. If needed, tables of gene expression values can be downloaded for
further exploration, employing more sophisticated bioinformatics tools. The BEB implementation is
based on open-source computational technologies that can be easily deployed for other organisms of
interest with little additional effort. To demonstrate BEB’s usability and potential, we selected genes
of interest in B. cinerea to determine their expression patterns across different conditions. We thus
focused our analysis on secondary metabolite gene clusters, chromosome-wide gene expression,
previously described virulence factors, and reference genes, leading to a comprehensive expression
overview of these groups of genes in this relevant fungal phytopathogen.
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Introduction

Genome-scale collection of gene expression data in RNA sequencing (RNA-Seq) is refashioning
modern molecular biology strategies. Biological models across phyla have benefited from the most
recent technological advances in today’s various massive sequencing methodologies including short
and emerging long-read transcriptomics (Stark et al., 2019). This can facilitate accurate gene
expression profiling in virtually any organism and experimental condition. RNA-Seq thus represents a
tool that can provide important clues regarding the function and regulation of different genes of
interest (Kukurba and Montgomery, 2015).

The standard workflow of RNA-Seq experiments relies on high-quality RNA extraction. After
adequate quantity and quality assessment of the nucleic acid under analysis (Sheng et al., 2016),
researchers build sequencing libraries following rigorous and standardized methods that ensure the
most out of each sequence read. Nonetheless, low-quality reads and adapter sequences must be
discarded before differential gene expression analyses (Bolger et al., 2014). These procedures allow
downstream time-consuming transcriptome mapping of each sequence to a reference genome.
Researchers thus employ specialized short read alignments tools such as STAR (Dobin et al., 2012),
TopHat2 (Kim et al., 2013), Hisat2 (Kim et al., 2015), or Kallisto (Bray et al., 2016), among others, to
quantify each read (Liao et al., 2019; Anders et al., 2014) to ultimately apply a suitable differential
expression detection algorithm (Love et al., 2014; Chen et al., 2016). Readers can consult several
reviews to address many critical considerations at each step (Stark et al., 2019; Dorado et al., 2021;
Hrdlickova et al., 2017; Bayega et al., 2018). Ironically, after all these massive scientific and
computational efforts to make RNA-Seq data biologically accurate, meaningful, and accessible to most
biologists, RAW sequence files are deposited back into public databases such as NCBI’s Sequence
Read Archive (SRA) (Leinonen et al., 2011). Therefore, there is a significant scientific, technical, and
computational challenge when scientists with no bioinformatics expertise nor computational power
seek to analyze all across-laboratory experiments to determine otherwise hidden global gene expression
patterns.

Several initiatives — most of them in well-known model species — have been propelled to
circumvent some of the abovementioned difficulties. These include the model plant
species Arabidopsis thaliana (Sullivan et al., 2019), agricultural relevant plants (Robinson et al.,
2018), and several other species aggregated in massive initiatives like the “Expression Atlas” of the
European Bioinformatics Institute (EMBL-EBI) (Papatheodorou et al., 2019). This latter collection
holds information on 22 animal models, over nine plant species different from Arabidopsis, and only
three fungal species, with 95.7% of the RNA-Seq experiments concentrated in the budding
yeast Saccharomyces cerevisiae. Therefore, there is a lack of implementation of this kind of tool and
curated gene expression information in fungal species. Undoubtedly, this represents an opportunity to
better understand the biology of this relevant but often neglected group of organisms (Case et al.,
2020).

One notable exception is the wheat fungal pathogen Puccinia striiformis f. sp. tritici, with its
recently developed platform for analyzing gene expression patterns in a myriad of culture conditions
including “in planta” growth (Adams et al., 2021). This strategy can provide meaningful insights
regarding, for instance, the infection strategies employed by this pathogen. While fungi represent an
exceptional biotechnological chassis, their extraordinary adaptation capacity to diverse environmental
niches also means several risks for animal health and agricultural production (Case et al., 2020; Fisher
et al., 2020). In fact, ten fungal phytopathogens have long been considered highly relevant agricultural
threats. Unfortunately, despite the availability of a relatively small but significant number of
transcriptomics experiments for most of them (Table 1), there is no simple and easy-to-use tool to
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87  determine gene expression patterns. With a great degree of host specificity (Couch et al., 2005), the
88  most important specialist phytopathogenic fungus is Magnaporthe oryzae: the causal agent of the rice
89  blast disease. On the other hand, the most relevant generalist is the so-called grey mold fungus Botrytis
90 cinerea (Dean et al., 2012). Both have an enormous negative impact on food security and production
91  worldwide.

92 B. cinerea is the most largely investigated necrotrophic fungal plant pathogen. It has been the
93  focus of numerous research groups over several decades. This single fungal species explains over $10
94  billion in agricultural product losses (Weiberg et al., 2013). In the Botrytis genus, several species are
95  specialist plant pathogens (Staats et al., 2005). In contrast, with its necrotrophic infection strategy, B.
96  cinerea can infect over 1000 plant species (Veloso and van Kan, 2018). For the interested reader, there
97  are several seminal works revisiting canonical B. cinerea infection strategies (van Kan, 2006; Choquer
98 et al., 2007; Shlezinger et al., 2011); contemporary research trends and most current advances have
99  been reviewed elsewhere (Mbengue et al., 2016; Castillo et al., 2017; Schumacher, 2017; Veloso and
100  van Kan, 2018; Larrondo and Canessa, 2019; Cheung et al., 2020).

101 Since the foundational analyses that facilitated the first genome database of B.
102 cinerea (Amselem et al., 2011), several improvements have been conducted over the years (Staats and
103 van Kan, 2012). This led to a gapless genome whose assembly was supported with an optical map (van
104  Kan et al., 2017). These genomic advances have allowed the accumulation of a significant number
105  of transcriptomic experiments (Table 1) that largely remain underexplored due to the lack of tools to
106  analyze all expression data simultaneously.

107 To visualize organism-wide gene expression patterns in B. cinerea, we developed the B.
108  cinerea gene Expression Browser (BEB). With a wuser-friendly interface, this tool allows
109  straightforward gene expression analysis of genes of interest under various conditions. For this
110  purpose, users only need to provide B. cinerea gene IDs. To demonstrate the usability and potential of
111  this tool, we picked several genes of interest, including virulence factors, to determine their expression
112 patterns across experimental conditions.

113
114
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115 Materials and methods

116 RNA-Seq datasets available for Botrytis cinerea global gene expression analysis.

117 To generate a robust web-based platform capable of visualizing global gene expression patterns
118  of B. cinerea across available genome-wide expression experiments, we put together all publicly RNA-
119  Seq data retrieved from the NCBI’s Sequence Read Archive (SRA) database as well as the EMBL-EBI
120  (European Bioinformatics Institute) available on November 30, 2021. The uploaded dataset was
121  composed of 218 individual files representing 76 experimental groups. RNA-Seq experiments
122 included, but are not limited to, those with B. cinerea growing in axenic in vitro cultures (non-infective
123 conditions; i.e., on plate and liquid medium) and during the infection of different plant species (dual
124 RNA-Seq; 1i.e.,B. cinereainfecting A. thaliana, among others). Details are provided
125  in Supplementary Material 1.

126
127  Gene expression metadata construction.

128 The manually-curated metadata available on the BEB (Supplementary Material 1) uses the
129 NCBI SRA’s metadata information schema (Leinonen et al., 2010) and describes the general
130  experimental conditions of each RNA-Seq experiment including replicates (described as
131  group for averaging), available treatments (description of the culture conditions in which the
132 experiment was performed), utilized B. cinerea strain/isolate, the type of tissue, and, when appropriate,
133 the presence and type of plant material infected by the fungus (e.g., tissue and hours post-infection,
134 when available). Importantly, not all RNA-Seq available in NCBI SRA’s contained a complete
135  description of the experimental condition (e.g., information to cross-check the data with the associated
136  sequencing file). Thus, when possible, we also manually analyzed all associated publications making
137  every effort to obtain as much information as possible. If available, PubMed IDs of the respective
138  publication were also included. Those RNA-Seq experiments that were impossible to determine
139  the FASTQ file confidently and its respective experimental condition were not included. Studies
140  focused on small RNA were not included. Importantly, the format used in Supplementary Material
141 1 is consistent with the CSV schema used by BEB’s server (see below).

142
143 Data pre-processing and RNA-Seq experiments mapping.

144 As RNA-Seq data was composed of both Single (SE) and Paired-End (PE) Illumina sequencing
145  technologies, a careful examination of the data was performed before mapping. First, a quality
146  inspection was assessed employing fastQC (version 0.11.8, (Wingett and Andrews, 2018)). After this
147  procedure, low-quality reads and sequencing adapters from each FASTQ files were filtered out using
148  BBDuk (https://sourceforge.net/projects/bbmap/) (v38.90; ktrim=r k=23 mink=11 hdist=2 qtrim=rl
149  trimg=10 ftm=5 maq=15 minlength=50 tbo). Thereafter, filtered reads were pseudoaligned to the B.
150  cinerea B05.10 transcriptome (van Kan et al., 2017) (ASM83294v1) using Kallisto (v0.46.0) (Bray et
151 al., 2016). Kallisto SE mapping was performed under the following settings: —single -b 100 -1 100 -s
152 20. Standard parameters (-b 100) were employed for PE. The B. cinerea transcriptome reference was
153  downloaded from EnsemblFungi release 52 (Howe et al., 2019) representing the previously published
154  work (van Kan et al., 2017).

155
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157  Gene expression analysis and BEB’s transcriptional profile experiments database.

158 Kallisto’s mapped read counts were further processed to infer transcript abundances with the
159  tximport package in R (Soneson et al., 2015) (v1.20.0; on RStudio v4.1.0). This approach enabled us
160  to obtain a complete dataset containing gene-level estimated counts derived from all RNA-Seq
161  experiments. A custom Python version of the DESeq2 median of the ratio normalization method was
162  used to determine gene expression levels (Anders and Huber, 2010; Love et al., 2014). The gene-level
163  count matrix and the metadata file described above are loaded and available to explore on BEB’s server
164  database and browser (see below).

165

166  BEB’s server implementation and user interface.

167 The BEB’s server is a web-based tool written in Python 3.7 using Streamlit’s open-source app
168  framework and Docker. The BEB’s metadata and code were used to prepare the data, set up, and run
169  the web-based tool presented herein are available

170 on GitHub (https:/github.com/ibioChile/CanessalL.ab). =~ A  working  version is  available
171  at https://beb.canessalab.org. The BEB’s landing page contains a left sidebar section where the
172 experimental factors — extracted from the experimental metadata file — can be selected through
173 dropdown lists. In addition, a list of genes of interest can be used as an entry on BEB’s landing page
174 or these can be randomly selected from BEB’s dataset (Figure 1). Importantly, gene identifiers must
175  be provided separated by spaces (in the form of Bein[XX]g[YYYYY]; where “XX” corresponds to the
176  chromosome and “YYYYY” to the gene number). Once parameters are selected and submitted, the
177  bottom section shows a customizable colored heatmap. This heatmap depicts the expression levels of
178  the provided subset of genes in the experiments that fulfill the selected factors. The heatmap
179  customization parameters include coloration of the expression levels by quartiles, DESeq2 units, or
180  log2 transformation to highlight fold differences among experiments. Furthermore, both genes and
181  experiments can be clustered to help the user identify co-expressed gene and expression trends.

182
183  Additional bioinformatic analyses.

184 To predict secondary metabolite gene clusters in B. cinerea, antiSMASH (version 6.1.1) (Blin
185  etal., 2019) software was used employing default parameters. Succinctly, FASTA and GFF3 files from
186  the B. cinerea’s genome database were provided, and the output was manually inspected. For the genes
187  encoded in chromosomes 17 and 18, we also performed a BLAST2GO (G6tz et al., 2008) automatic
188  analysis to retrieve all available functional annotations.

189 Due to the quantity of expression data deposited in BEB, we also looked for putative/new
190  reference genes that can be used for future reverse transcription quantitative real-time PCR (RT-qPCR)
191  studies. For this purpose, read counts of each B. cinerea gene were normalized with the total mapped
192 reads per library. An additional normalization was then performed by the upper quartile and median
193  norm, as described for RNA-Seq data (Carmona et al., 2017). Finally, the normalized reads of each
194  gene were standardized by the transcript size and classified by quartiles of coefficient of variation.
195  Likely reference genes have the lowest coefficient of variation as demonstrated previously (Carmona
196 etal., 2017; Pombo et al., 2017; Tilli et al., 2016).

197
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199 Results and discussion

200  Global gene expression patterns of phytotoxic secondary metabolite gene clusters in B. cinerea.

201 Biosynthetic gene clusters (BGCs) in B. cinerea are common. Since the first version of its
202  genome project (Amselem et al., 2011), at least 40 groups of genes that orchestrate the synthesis of
203  secondary metabolites (SM) have been identified. One of these SM is botcinic acid, a phytotoxic
204  polyketide produced by the coordinated action of a gene cluster in a subtelomeric region of
205  chromosome (Chr) 1 (Dalmais et al., 2011). The transcription factor (TF) BcBoal3 (Table 2) controls
206  this cluster’s transcriptional regulation (Porquier et al., 2019). The BEB-generated heatmap plot for
207  these genes (Table 2, Figure 2A) shows low expression in PDA, PDB (Potato Dextrose Agar or Broth,
208  respectively), YPD (Yeast Extract—Peptone—Dextrose), and MEB (malt extract broth) (in vitro) culture
209  media. The highest values were seen during the infection of plants including Solanum lycopersicum
210  and 4. thaliana (middle section of Figure 2A). This observation is consistent with previous studies
211  showing the induction of botcinic acid’s genes in the process of infection (Porquier et al., 2019). The
212 most notable exceptions were gene IDs Bcin01g00150, Bcin01g00160, and Bein01g00170 (depicted
213 at the top of Figure 2A). These genes are physically located at one of the cluster’s borders.

214 Another relevant BGC in B. cinerea is required for botrydial production, an additional
215  phytotoxic SM synthesized by this fungus. When explored on the BEB, the bot genes needed for
216  botrydial synthesis show a similar expression pattern as the one observed for botcinic acid, with higher
217  mRNA levels during the infection of plant tissue (see Figure 2B). BEB’s gene clustering algorithm
218  (see methods) is denoted with a color code at the outmost left column of the respective heatmap and
219  facilitates the recognition of distinctive gene expression patterns under different conditions. It also
220  allows for capturing distinctive patterns within genes. For example, the TF BcBOT6 (Bcin12g06420),
221  which is central for the biosynthesis of botrydial (Porquier et al., 2016), displays the most distinctive
222 expression pattern compared with the five non-regulatory clusters’ genes.

223
224 Gene expression of orphan secondary metabolite gene clusters.

225 While several genes encoding enzymes required for SM synthesis have been identified in the
226  genome of B. cinerea (Table 3), a myriad of them are predicted to participate in synthesizing unknown
227  compounds (Sabine Fillinger, 2016). Since the expression pattern of these genes is unknown, we
228  decided to use the BEB to analyze them and determine whether this tool can shed light on experimental
229  conditions that could facilitate the study of SM biosynthesis. Among sesquiterpene cyclase encoding
230  genes, Bcin12g06390 (bchot2; botrydial, see above; Table 3) displayed the highest expression values
231  during the infection of 4. thaliana and S. lycopersicum, which is clearly visualized using the
232 BEB’s quartile-categorized expression option (Figure 3A). For comparative purposes, the continuous
233 (color) scale is also displayed (Figure 3B). Most of the remaining genes showed relatively low
234 expression values with Bcin01g03520 and Bcin04g03550 the most notable exceptions. Interestingly,
235  the latter gene appears highly expressed during the infection of S. lycopersicum and in vitro cultures
236  supplemented with cucumber or tea extracts.

237 Among the polyketide synthases (PKS, Table 3), Bcin01g00060 and Bcin01g00090 (required
238  for botcinic acid biosynthesis, see above) display the highest expression values during the infection
239 of 4. thaliana and S. lycopersicum, as shown in Figure 4A. In contrast, seven PKS genes (shown in
240  the middle-bottom left of Figure 4A) display low expression values in most culture conditions, with
241  particularly low mRNA levels during the infection of tomato plants. Interestingly, among
242 diterpene cyclases (Figure 4B, Table 3), Bcin01g04920 showed the highest expression values during
243 the infection of cucumber plants or liquid media supplemented with cucumber extract (indicated by

6


https://doi.org/10.1101/2022.08.29.504976
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.29.504976; this version posted August 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license. Running Title

244  asterisks in Figure 4B). These observations show how BEB can be used to generate new hypotheses,
245  i.e., an experimental condition that could be used to study the function of this particular gene.

246 Finally, we looked at the expression values of NRPS (non-ribosomal peptide synthetases) and
247  hybrid PKS-NRPS encoding genes (Table 3). Gene IDs Bcin01gl11450 (putatively involved in
248  ferrichrome siderophores biosynthesis) and Bcin01gl11550 (unknown polyketide) showed a very
249  similar expression pattern among PKS-NRPS genes, as indicated by BEB’s clustering function
250  (outmost left colored column of Figure 5A). These two genes were clustered in a genomic region
251  spanning circa 45kbp depicted in Figures SB and 5C (Region 5), a subtelomeric region in Chr 1
252 opposite to the botcinic acid SM cluster (Figure SB, Region 1). The physical proximity of gene IDs
253  Bcin01g11450 and Bcein01g11550 and their particular expression pattern observed through BEB’s
254  heatmaps encouraged us to investigate whether all genes within the 45kbp region may represent a
255  putative BGC. According to the antiSMASH software (Blin et al.,, 2019) that allows in silico
256  identification of SM gene clusters in fungal systems, the region mentioned above corresponds to one
257 out of 5 SM clusters in B. cinerea’s Chr 1, predicted between genomic coordinates 4,002,878-
258 4,093,700 (Figure 5B). To support this prediction, we analyzed the expression pattern of all
259  genes (Figure 5C) encoded in this putative BGC using BEB. All genes display highly similar
260  expression patterns across all culture conditions (Figure SD). This suggests co-regulation as expected
261  from an SM gene cluster, most likely involved in ferrichrome siderophore biosynthesis. Since BGCs
262  usually contain a transcription factor (TF) encoded within these collections of genes, we analyzed if
263  such a regulatory protein might be present in Region 5 (Figure 5C). Indeed, employing a manually-
264  curated catalog of TF for B. cinerea (Olivares-Yanez et al., 2021), along with careful examination led
265  to the Bcin0O1gl11510 gene encoding a fungal Zn(2)-Cys(6) binuclear TF whose participation in the
266  regulation of this BGC or siderophore biosynthesis has not been previously described. Interestingly,
267  this TF gene displays the most distinctive expression pattern among all genes in the SM biosynthesis
268  cluster as indicated by the BEB’s gene clustering function (outmost left colored column of Figure 5D).
269  Siderophores are complex low-molecular-weight molecules involved in iron acquisition. Little is
270  known about B. cinerea’s iron acquisition pathways and transcriptional regulatory mechanisms.
271  However, this fungus is expected to synthesize at least nine siderophores to support this metal
272 acquisition (Konetschny-Rapp et al., 1998; Bushley and Turgeon, 2010) in addition to the membrane-
273 bound reductive iron assimilation mechanism that also participates in iron incorporation (Vasquez-
274  Montaifio et al., 2020).

275 These findings collectively illustrate the BEB’s ability to reveal the expression patterns of
276  orphan gene clusters. This information can facilitate their investigation under specific experimental
277  conditions. Combined with easy-to-use tools such as antiSMASH (Blin et al., 2019) and up-to-date TF
278  databases (Olivares-Yaiez et al., 2021), the gene expression patterns determined in BEB could also
279  provide testable hypotheses regarding transcriptional regulation.

280
281  Chromosome-wide gene expression analysis.

282 The latest iteration of the genome sequencing process of the B. cinerea B05.10 strain revealed
283  exciting structural features including two previously unnoticed minichromosomes (van Kan et al.,
284  2017). In B. cinerea, this particular group of Chr 17 and 18 comprises 18 and 16 protein-encoding
285  genes, respectively. This is a common feature observed in these genetic arrangements. These accessory
286  chromosomes (AC) are generally small and are not considered essential for the organisms’
287  survival. Among some other pathogenic fungi, they are characterized by the presence of genes
288  encoding virulence factors (Ma et al., 2010; van Dam et al., 2017; Li et al., 2020). The B. cinerea genes
289  encoded in ACs display little or no similarity to other genes in other organisms including fungi (van
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290 Kan et al., 2017). Despite the comparative efforts reported in Supplementary Material 2, the vast
291  majority remain as proteins with hypothetical/unknown biological functions. Therefore, this group of
292  genes represents an opportunity for testing the BEB and determining whether they exhibit particular
293  gene expression profiles shedding light on potential functions.

294 Figures 6A and B show thatthree genes in each chromosome (Chrl7:
295  Bcinl7g00150, Bcinl7g00160, and Bcin17g00180; Chrl8: Bcin18g00090, Bcinl18g00120,
296  and Bcinl8g00130, respectively) display low mRNA levels across all RNA-Seq libraries.
297  Interestingly, Chrl7 genes Bcinl7g00010, Bcinl17g00020, Beinl7g00040, and Beinl7g00050 display
298  the highest and most likely co-regulated gene expression as deduced by BEB’s clustering
299  function (Figure 6A). As shown in Supplementary Material 2, the latter gene encodes a putative
300 NRPS-like protein, whose participation in the biosynthesis of any low molecular weight peptidic
301  product has not yet been described. On the other hand, Chr18 genes Bcin18g00020 and Bcin18g00150
302  display a distinctive expression pattern during the infection of 4. thaliana and S. lycopersicum (Figure
303  6B). While these results suggest that these genes might play a role in the infection process, further
304  experimental validation is needed. However, we cannot rule out the possibility that genes with no
305  detectable mRNA levels might be expressed in untested experimental conditions as reported in
306  Aspergillus (Lind et al., 2016).

307
308 Inspecting the expression of virulence factors detected by proteomics studies.

309 Considering the relevance of virulence factors in the lifestyle of a phytopathogen such as B.
310  cinerea, we next used the BEB to analyze the expression of virulence genes distinct from those required
311  for phytotoxins (described in former sections). In general, virulence factor molecules are extensive in
312 their chemical nature. However, they are characterized by causing harm or suppressing/interfering with
313 host defense strategies, which can also lead to more damage (Pontes et al., 2020). For these reasons, a
314  higher level of expression during the infection of different tissues and plant species is expected. To
315  identify secreted virulence factors, previously published proteomic studies have taken advantage of in
316  vitro cultures supplemented with various plant-derived components to induce their expression (Espino
317  etal., 2010; Ferndndez-Acero et al., 2010; Shah et al., 2009; Shah et al., 2009). The proteins identified
318  from these four publications are summarized in Supplementary Material 3. Therefore, we analyzed
319  the expression of their respective genes across experimental conditions using the BEB platform. As
320  depicted in Supplementary Figure S1 A, two different expression patterns were observed: 1) a high
321  and steady pattern of expression as denoted in the upper section of the heatmap (blue square bracket),
322 and ii) an in planta “induced” pattern of expression with two groups of genes indicated with a green
323  and orange square brackets (Supplementary Figure S1 A). In the former group, several unexpected
324  extracellular proteins can be found, including bcactA encoding for actin, bcatp2? coding for the
325  mitochondrial ATP synthase (beta chain), and two additional mitochondrial proteins including malate
326  dehydrogenase and aconitase. Interestingly, bcsp/l and bepgl — which play significant roles in
327  virulence — were observed in this group (ten et al., 1998; Chagué et al., 2006). Among in
328  planta “induced” genes within the green square bracket mentioned above, several glycoside hydrolases
329  were identified (families 5 (three), 6, 7 (two), 10, 11, 28 (two), and 53). There were also two cutinases,
330 and two pectinesterases possibly reflecting a transcriptional regulatory mechanism in this group of
331  carbohydrate-acting enzymes encoding genes (Supplementary Material 3). /n planta “induced”
332 genes with the orange square bracket (Supplementary Figure S1 A) include previously identified
333 virulence factors such as bepg3, 4 and 6, bepgxl, bexynl 1A, bepmel and 2, and becutA, among others.
334  Again, while a common transcriptional regulation seems to be the case as deduced from expression
335  patterns, little is known about the specific TFs controlling the expression of these genes.
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336  Revisiting the expression of known and proposing new reference genes for transcript level
337  analysis in B. cinerea.

338 We integrated and analyzed data spanning a wide variety of experimental
339  conditions (Supplementary Material 1). Thus, we next decided to exploit the wealth of data to revisit
340  the expression of known and previously validated reference genes in B. cinerea employed in reverse
341  transcription quantitative real-time PCR (RT-qPCR) studies (Canessa et al., 2013; Ren et al., 2017)
342  and propose new ones. By definition, reference genes tend to be constitutively expressed in all cells of
343  an organism, and their expression levels display slight variations between developmental stages or
344  across various experimental conditions. Therefore, well-normalized RT-qPCR experiments rely on an
345  adequately validated (stable) reference gene(s) (Huggett et al., 2005). In addition, accurate
346  normalization usually requires multiple validated reference genes (Vandesompele et al., 2002), the
347  exact number being dependent on an experimental assessment of variability across the samples of
348 interest (Hellemans and Vandesompele, 2014). Consequently, we took advantage of BEB’s database
349  to determine new reference genes as described in Methods.

350 We first revisited the expression of seven genes used as a reference in some RT-qPCR
351  assays (Canessa et al., 2013; Ren et al., 2017) (Table 4 and Supplementary Material 4). See the
352  methods section for details. Bcinl1g03430 (bcsmt3) and Bcin02g00900 (tubulin, betubA) have a low
353  coefficient of variation (CV) of 0.35 and 0.36, respectively, showing a low disparity of expression
354  levels across all experimental conditions, as expected (Figure 7). In contrast, Bcin15g02120 (CV =
355 1.4), encoding the commonly-used reference gene glyceraldehyde-3-phosphate dehydrogenase,
356  displays obvious changes in expression levels across experiments. Indeed, according to our analysis, it
357 s the worst reference gene of those previously studied (Table 4 and Supplementary Material 4). In
358 the fungus Neurospora crassa, this gene is under the control of its well-known circadian
359  clock (Shinohara et al., 1998), a complex molecular machinery that in B. cinerea modulates time-
360 dependent  fungal-plant (Hevia et al., 2015)) and fungal-fungal dynamics as
361  recently demonstrated (Henriquez-Urrutia et al., 2022).

362 To provide the B. cinerea community with an additional tool, finally, we also generated a list
363  of 40 new reference genes showing the lowest CV across conditions in each global gene expression
364  quartile. Importantly, the proposed reference genes need to be further validated by RT-qPCR, i.e., for
365 an intermediate-low and the intermediate-high expression levels (second and third quartile of
366 normalized expression, respectively) (Supplementary Material 4). Nevertheless, as shown
367 in Supplementary Figure S2, their expression is highly similar in different experimental conditions.

368
369
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370 Tables

371  Table 1. Publicly available RNA-Seq experiments and studies in the NCBI’s short read archive (SRA)
372 for the top 10 most relevant fungal phytopathogens (Dean et al., 2012).

373
Fungal Species SRA Experiments SRA Studies

Magnaporthe oryzae 1714 125
Botrytis cinerea 2403 89
Puccinia spp 3847 195
Fusarium graminearum 2141 177
Fusarium oxysporum 2700 188
Blumeria graminis 1057 43
Mpycosphaerella graminicola 2095 230
Colletotrichum spp 1752 219
Ustilago maydis 538 38
Melampsora lini 205 3

374
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375 Table 2. Gene IDs and names of the two major phytotoxic secondary metabolites of B. cinerea.
376  Functional descriptions derived from manual inspection of the B. cinerea genome database and/or their
377  respective publication.

378
Gene ID Name Functional description (manual and/or from publications)
Bcin01g00010 Bcboal Putative NmrA-like regulator
Bcin01g00020 Bcboa2 Putative flavin-binding monooxygenase-like
Bcin01g00030 Bcboa3 Putative monooxygenase
Bcin01g00040 Bcboad Putative monooxygenase
Bcin01g00050 Bcboa5 Putative alcohol dehydrogenase
Polyketide synthase (Dalmais et al., 2011); Secondary
Bcin01g00060 Bcboa6,Bepks6  Metabolism Key Enzyme
Bcin01g00070 Bcboa?7 Putative monooxygenase
Bcin01g00080 Bcboa8 Putative FAD-binding protein
Polyketide synthase (Dalmais et al., 2011); Secondary
Bcin01g00090 Bcboa9,Bepks9  Metabolism Key Enzyme
Bcin01g00100 BcboalO Putative thioesterase
Bcin01g00110 Bcboall Putative transferase
Bcin01g00120 Bcboal2 Unknown
Bcin01g00130 Bcboal3 Zn(I1)2Cys6 transcription factor (Porquier et al., 2019)
Bcin01g00140 Bcboal5 Pseudogene (Porquier et al. 2019)
Bcin01g00150 Bcboal6 Putative dehydratase/ Pseudogene (Porquier et al., 2019)
Bcin01g00160 Bcboal7 Putative dehydrogenase
Bcin01g00170 no name Putative permease (Porquier et al., 2019)
Bcin12g06370 Bcbot4 Cytochrome P450 monooxygenase
Bcin12g06380 Bcebotl Benzoate 4-monooxygenase cytochrome p450
Bcin12g06390 Bcbot2,Bestcl  Sesquiterpen cyclase
Bcin12g06400 Bcbot3 Cytochrome P450 monooxygenase
Bcinl12g06410 Bcbot5 Acetyl transferase, in botrydial biosynthesis gene cluster
Zn(2)-C6 fungal-type transcription factor, (Porquier et. al.,
Bcin12g06420 Bcbot6 2016)
379
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380  Table 3. Gene IDs and names of key enzymes required for the synthesis of secondary metabolites (SM)
381  in B. cinerea as described previously (Sabine Fillinger, 2016). The associated SM were inferred from
382  each gene putative function or their respective publication.

Gene ID KE name(s) Metabolite

Bcin12g06390 BcStel/Bot2 Botrydial (Pinedo et al. 2008)
Bcin08g02350 BcSte2 Unknown sesquiterpene
Bcin13g05830 BceSte3 Unknown sesquiterpene
Bcin04g03550 BcStc4 Unknown sesquiterpene
Bcin01g03520 BcSte5/BcAbas Unknown sesquiterpene
Bcin01g04920  BceDtel Unknown diterpene

Bein08g03560 BceDte3 Unknown diterpene

Bcin05g05670 BcPax1 Unknown indole-diterpene
Bcin01g04560 BcPhsl Retinal (Schumacher et al. 2014), phytoene synthase
Bcin01g03260 BceBikl Bikaverin (Schumacher et al. 2013)
Bcin01g00060 BcPks6/Boa6 Botcinic acid (Dalmais et al. 2011)
Bcin01g00090 BcPks9/Boa9 Botcinic acid (Dalmais et al. 2011)
Bcin02g08770 BcPks12 Melanin (Schumacher et al. 2014)
Bcin03g08050 BcPks13 Melanin (Schumacher et al. 2014)
Bcin14g00600 BcPksl Unknown polyketide
Bcin02g01680 BcPks2 Unknown polyketide
Bcinl11g02700 BcPks4 Unknown polyketide
Bcin07g02920 BcPks8 Unknown polyketide
Bcinl13g01510 BcPks10 Unknown polyketide
Bcin14g01290 BcPksl11 Unknown polyketide
Bcin16g01830 BcPks14 Unknown polyketide
Bein0506220 BcPksl15 Unknown polyketide
Bcin16g05040 BcPks16 Unknown polyketide
Bcin03g02010 BcPks17 Unknown polyketide
Bcin02g08830 BcPks18 Unknown polyketide
Bcin08g00290 BcPks19 Unknown polyketide
Bcin04g00640 BcPks20 Unknown polyketide
Bcin05g08400 BcPks21 Unknown polyketide
Bcin13g02130 BcChs1/Bpks Pyrones, resorcylic acids and resorcinols (Jeya et al. 2012)
Bcin12g00690 BcNrps2 Ferrichrome siderophores (Bushley and Turgeon 2010)
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Bcin16g03570 BcNrps3 Ferrichrome siderophores (Bushley and Turgeon 2010)
Bcin01g11450 BcNrps7 Ferrichrome siderophores (Bushley and Turgeon 2010)
Bcin01g03730 BcNrps6 Coprogene siderophore (Bushley and Turgeon 2010)
Bcinl12g04980  BceNrpsl Unknown peptides
Bcin02g02380 BcNrps4 Unknown peptides
Bcin04g01390 BcNrps5 Unknown peptides
Bcinl11g02650 BcNrps8 Unknown peptides
Bcin14g01300 BcNrps9 Unknown peptides
Bcin03g04360 BcPks3 Unknown amino-acid containing- polyketides (PKS-NRPS
hybrids)
Bcin01g11550 BcPks5 Unknown amino-acid containing- polyketides (PKS-NRPS
hybrids)
Bcin10g00040 BcPks7 Unknown amino-acid containing- polyketides (PKS-NRPS
hybrids)
Bcinl6g01940 Bedmats1 Unknown alkaloids
383
384
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385  Table 4. Reference genes validated as such in B. cinerea RT-qPCR assays. The rank number was
386  calculated based on the data presented in Supplementary Material 4.

387
Gene ID Name or description Ranking Publication
Bcinl1g03430  bcsmit3 127 Renet.al.,, 2017
Bcin01g08040 bctubA 344 Renet.al., 2017
Bcin02g04920 Ubiquitin-conjugating enzyme 356 Renet.al., 2017
Bcin02g00900 o-TUB 902 Canessa et.al., 2013; Ren et.al., 2017
Bcinl1g04420  bceflb 905 Canessa et.al., 2013
Bcin16g02020 bcactA 1000 Canessa et.al., 2013; Ren et.al., 2017
Bcinl5g02120  gapdh 3359 Renet.al., 2017
388
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389 Legend to Figures

390  Figure 1. B. cinerea gene expression browser (BEB) graphical user interface. The BEB’s landing
391  page contains a left sidebar section where experimental factors can be selected through dropdown lists
392 (1). The “Analyze” and “Read Me” options (2) are available on the left sidebar (top section). Detailed
393  instructions on how to use BEB are available in the latter display tool. In the upper section, the user
394  canselect to either display average expression values or each replicate individually (3). Users can copy,
395  paste, and submit gene IDs in the right middle section after selecting the “Paste a List” option (4). After
396  clicking the “Submit” button (5), a heatmap depicting gene expression is generated at the bottom of
397  the webpage. Clustering and download options are available in the right middle section (6). BEB’s
398  clusters are denoted with a color code located at the outmost left column of the heatmap (7). A detailed
399  description of each experiment is provided at the bottom of the figure including SRA IDs for reference
400  (8).

401  Figure 2. Expression patterns of the gene clusters involved in the production of botcinic (A) and
402  botrydial (B) acid phytotoxins in B. cinerea. The heatmaps depict mRNA levels as calculated
403  employing DeSeq2 (see Methods). A color scale distinguishes each gene expression level as low or
404  highly expressed (from yellow to dark blue, respectively). A color code at the top of each heatmap is
405 also used to indicate culture media, plant material, and B. cinerea strains (legend at the top).
406  Experimental conditions are indicated in each column, while analyzed genes are in each row. To
407  streamline the overall figure, the description of each experiment was omitted in both heatmaps
408  (compared with Figure 1). BEB’s clusters are denoted with a color code located at the outmost left
409  column of each heatmap.

410  Figure 3. Expression patterns of five sesquiterpene cyclase enzyme encoding genes. (A) Heatmap
411  depicting the mRNA expression levels employing the BEB’s quartile-categorized expression option
412 (lower: dark green; higher: light green). The continuous color scale (B) from low to high expression
413  (yellow to dark blue, respectively) is also shown for comparative purposes. A color code at the top
414  denotes culture conditions and B. cinerea strains. Experimental conditions and analyzed genes are
415  indicated in columns and rows, respectively. Gene IDs are indicated at the right of each heatmap. A
416  detailed description of each experiment (for both heatmaps) is provided at the bottom of the figure
417  including SRA IDs for reference. Gene expression clusters are denoted with a color code located at the
418  outmost left column of each heatmap.

419  Figure 4. Polyketide synthases (A, PKS) and diterpene cyclases (B) expression levels across BEB
420  experimental conditions. Both heatmaps indicate transcript expression levels with their
421  corresponding expression scale from yellow to dark blue (low or high expression, respectively). The
422  legend at the top of the figure denotes culture conditions and B. cinerea strains. Experimental
423  conditions and genes are depicted in columns and rows, respectively. Gene IDs are provided at the
424 right of each heatmap. Gene expression clusters are denoted with a color code located at the outmost
425  left column of each heatmap. For (B), a detailed description of each experiment is provided at the
426  bottom of the figure. Columns (in B) denoted with asterisks are discussed in the main text.

427  Figure 5. Gene expression patterns of non-ribosomal peptide synthetases (NRPS) and hybrid
428  polyketide synthases (PKS-NRPS) encoding genes in B. cinerea. (A) Expression patterns of all
429  predicted NRPS and PKS-NRPS mentioned in Table 3. (B) Identification of the five SM gene clusters
430  in B. cinerea’s chromosome (Chr) 1. The table inset describes each of the five SM regions within Chrl,
431  the predicted SM type, and their respective genomic coordinates. Colored boxes represent each region
432 (right, with numbers). (C) Clustered genes within “Region 5” as described in (B). Boxes with
433 arrowheads indicate each gene’s transcriptional orientation within the SM gene cluster. Dark red and
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434  pink arrowhead boxes indicate core and additional biosynthetic genes, respectively. Grey indicates
435  other genes. Gene IDs and gene names are indicated. For simplicity, the “Bcin” prefix was
436  omitted. (D) Expression patterns of all genes encoded in “Region 5” as indicated in (B) and (C),
437  from bcnrps7 to bepks5. Both heatmaps indicate mRNA levels and experimental conditions as
438  described in the former figures. In (D), a detailed description of each experiment is provided at the
439  bottom of the heatmap.

440  Figure 6. Expression levels of transcripts encoded in mini chromosomes 17 (A) and 18 (B) of B.
441  cinerea. Both heatmaps indicate mRNA levels with their corresponding expression scale from yellow
442  to dark blue (low or highly expressed, respectively). The description of each experiment in (A) was
443 omitted to simplify the figure. Both heatmaps indicate mRNA levels and experimental conditions as
444  described in the figure above.

445

446  Figure 7. Transcript levels of previously validated reference genes employed in RT-qPCR
447  experiments in B. cinerea. The heatmap depicts transcript levels employing the BEB’s continuous
448  color scale from yellow to dark blue (low or highly expressed, respectively). A detailed description of
449  each experiment is provided at the bottom of the heatmap. Experimental conditions and genes are
450  depicted in columns and rows, respectively. Gene IDs are provided at the right of each heatmap.

451
452 Legend to Supplementary Figures

453  Supplementary Figure S1. mRNA levels of virulence factors detected by proteomics
454  studies. (A) A heatmap depicting the transcript levels of 176 genes employing the BEB’s quartile-
455  categorized expression option (lower: dark green; higher: light green) or the continuous color
456  scale (B) from low to high expression (yellow to dark blue). Due to the number of genes being
457  analyzed, neither culture conditions nor gene IDs were not included in the figure, although such
458  information can be found in Supplementary Table S3. In (A), genes with a high and steady pattern of
459  expression across conditions are indicated with a blue square bracket, while two groups of genes
460  displaying an in planta “induced” pattern of expression are indicated with green and orange square
461  brackets.

462

463  Supplementary Figure S2. mRNA levels of proposed reference genes that can be employed in
464  future RT-qPCR experiments after proper validation. The heatmap depicts transcript levels
465 employing the BEB’scontinuous color scale. Proposed reference genes are indicated
466  in Supplementary Table 4. Experimental conditions and gene IDs are indicated in columns and rows,
467  respectively. A steady pattern of expression across conditions is observed for most genes.

468
469
470
471
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691 Supplementary Material

692  Supplementary Material 1. BEB’s metadata. The table describes the general experimental conditions
693  of each RNA-Seq experiment. Importantly, the table is formatted as on BEB’s server.

694  Supplementary Material 2. Functional annotation of mini-chromosomes (Chr 17 and 18) with
695  protein-encoding genes. The data was obtained after BLAST2GO analysis.

696  Supplementary Material 3. Previously identified extracellular B. cinerea proteins detected in in vitro
697  cultures supplemented with plant-derived material. The colors of the groups refer to those in
698  Supplementary Figure S1.

699  Supplementary Material 4. Proposed reference genes for RT-qPCR studies. The table shows each
700  gene (ten for each expression quartile), as well as its coefficient of variation (CV).

701
702 Data Availability Statement

703  The  datasets generated for this study can be found in the GitHub
704 (https:/github.com/ibioChile/Canessalab) as well as in the Supplementary Material.
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