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Abstract

Combination therapy is a promising strategy for confronting the complexity of cancer. However, experimental exploration
of the vast space of potential drug combinations is costly and unfeasible. Therefore, computational methods for predicting
drug synergy are much-needed for narrowing down this space, especially when examining new cellular contexts. Here,
we thus introduce CCSynergy, a flexible, context-aware and integrative deep learning framework that we have established
to unleash the potential of the Chemical Checker extended drug similarity profiles for the purpose of drug synergy
prediction. We have shown that CCSynergy enables predictions of superior accuracy, remarkable robustness and
improved context-generalizability as compared to the state-of-the-art methods in the field. Having established the
potential of CCSynergy for generating experimentally validated predictions, we exhaustively explored the untested drug
combination space. This resulted in a compendium of potentially synergistic drug combinations on hundreds of cancer

cell lines, which can guide future experimental screens.

Introduction

Aberrant behavior of cancer cells is caused by malfunctioning of multiple signaling pathways that promote proliferation
and inhibit apoptosis®. The pervasive redundancy, inherent multifunctionality and the combinatorial control of these
biological processes, have challenged the traditional “one gene, one drug” paradigm pioneered by Ehrlich?3. This is
evidenced by the increasing rate of drug failure and the recurrent emergence of drug resistance in targeted cancer
therapy?*. To overcome these challenges, combination therapy is a promising strategy as drug synergy ensures greater

efficacy in lower drug dosages, which results in avoiding toxicity and minimizing the chance of drug resistance®.

High-throughput screening methods have enabled testing and quantifying drug synergy®. However, synergistic drug pairs
are rare and exhaustive exploration of the vast space of potential drug combinations is not experimentally feasible. Thus,
computational predictive models of drug synergy, which enable prioritization of the candidate drug combinations, are
much-needed for narrowing down this vast search space. Computational models as diverse as kinetic”#, network®° and
logic models*? have thus been employed to gain quantitative insights into the mystery of drug synergy. Moreover, the
availability of large-scale drug synergy data, such as the Merck®® dataset, has encouraged the emergence of a wide variety
of machine learning based methods ranging from logistic regression** to extremely randomized trees® and XGBoost®®.
Ultimately, the state-of-the-art deep learning approaches such as DeepSynergy*’ and recently TranSynergy*® have entered

the race and outperformed the others.
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Various metrics of drug similarity have been proposed to represent drug pairs in drug synergy prediction models. The
focus has primarily been on chemical features of drugs'”*2%, and structural or network-level similarity of their targets
within cells®22-2*, Further quantities based on phenotypic effects of drugs such as therapeutic and side effect similarities
or cell-line based sensitivity profiles have also been considered®%". Moreover, the Connectivity Map® has sparked
development of new similarity metrics based on drug-induced gene expression profiles?*-33, Not surprisingly, different
combinations of these similarity measures have also been examined34-3, Ultimately, the Chemical Checker (CC) database
arose, which provides a unified framework to systematically extend the concept of drug similarity to all levels of biology,
from chemistry, targets, networks, to cellular and clinical effects of drugs“’. Nevertheless, its enormous potential for
predicting drug synergy has not yet been unleashed. This motivated us to take the pioneering step to develop a new drug

synergy prediction framework by integrating all 25 levels of CC bioactivity similarity metrics (Fig. 1a).

Moreover, it is well-established that drug synergy is highly context specific*!, which necessitates precise representation
of the cellular features in drug synergy prediction models. This is important, especially in precision medicine, where
computational methods are required to enable accurate predictions in specific cellular contexts. Genome-wide expression
profiles of cancer cell lines have been extensively employed for this purpose!”-18202342-45 However, the expression level
of downstream genes is not necessarily a strong indicator of the functional status of the cell and may not directly connect
with the drug response phenotype. To address this, computational methods to infer the causal upstream processes, namely
transcription factor or signaling pathway activities, which drive the downstream expression changes, have been
introduced (e.g., CARNIVAL®). However, their potential for representation of the cell in drug synergy prediction, has
not yet been unlocked. Moreover, genome-wide CRISPR-based essentiality profile of cancer cell lines (DepMap)*-5°,
which can more directly establish causal links with cell survival, constitutes another promising cell representation
alternative. Therefore, we aimed to systematically examine and compare these methods for representing cellular contexts
(Fig. 1b).

In this work, we thus introduce CCSynergy, a Chemical-Checker harnessing deep neural network that enables context-
aware anti-cancer drug synergy prediction (Fig. 1c). Using our rigorous cross validation schemes (Fig. 2), we ensure that
CCSynergy offers drug synergy predictions of superior accuracy, remarkable robustness and improved context-
generalizability. Moreover, leveraging a recently published large-scale resource of drug synergy*, we extensively
examine the potential of CCSynergy to generate experimentally validated predictions. Finally, we provide a compendium

of potentially synergistic drug combinations that calls for follow-up experimental investigation.
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Figure 1. CCSynergy framework. A) The Chemical Checker*’ based signatures of type Il are used as drug features in CCSynergy, which cover five
main characteristics of small molecules: A. chemistry, B. targets, C. networks, D. cells and E. clinics. Each of them is further divided into five sub-
categories totaling 25 distinct levels for drug representation. B) Five different methods for representing cancer cell lines are used: 1) down-stream gene
expression profiles, 11) transcription factor activity and I11) signaling pathway activity profiles inferred using CARNIVAL*, 1) Dep-Map based gene
essentiality and V) signaling pathway dependency profiles (see Methods). C) CCSynergy DNN architecture. A given triplet is represented as a vector
of length 356, which is formed by concatenating the corresponding vectors of drug pair and cell line features. Since drug synergy is order-agnostic,
each triplet is represented twice to account for both directions (AB and BA). The DNN contains three hidden layers comprising 2000, 1000 and 500
neurons respectively, which propagate information from the input layer to the output unit. 125 distinct DNNs are trained, each corresponding to one of
the 25 CC spaces and one of the 5 cell line representation methods.
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Figure 2. Cross validation schemes. A drug synergy dataset is shown as a matrix each element of which represents the synergy score S(n, m) of a
given triplet of drug pair (B,) + cell line (C,,). The dataset is divided row-wise into five-folds of equal size, which are needed in our 5-fold cross-
validation schemes. A) CV1: 5 training cycles are needed in each of which, one fold is considered as the testing set (yellow) and the remaining four are
used as the training set (gray). This ensures that the set of drug pairs in the testing and training sets do not overlap (held-out drug combinations). B)
CV2: The matrix is not only divided row-wise, but also column-wise. Columns are grouped according to the tissue of origin of the corresponding cell
lines. 5 x L learning cycles are needed, where L is the number of distinct tissues in our dataset. In this example, the elements corresponding to the rows
in the first fold and a set of columns belonging to the lung tissue {C;,...,C,.} are considered as the testing set (yellow). The samples in the remaining
four folds (excluding those whose cell lines originated from the lung tissue), are considered as the training set (gray). This CV scheme further ensures
that the cell lines in the training set originate from tissues that do not overlap with that of the testing set (held-out tissues).
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Results

CCSynergy overview

The primary aim of CCSynergy is to unlock the potential of Chemical Checker (CC) bioactivity profiles* for predicting
anti-cancer drug synergy. CC catalogs integrated bioactivity data on almost 800,000 small molecules. It encompasses five
levels of increasing complexity from A: the chemical properties of the compounds, B: their targets, and C: network-level
properties, to D: their cellular, and E: clinical effects. Furthermore, each level is divided into five sub-levels resulting in
25 distinct signatures (Fig. 1a), each of which is represented in a vector format of the same length (128). The vectors
have been generated via a two-step procedure: applying a dimensionality reduction technique (type I signatures) followed

by running a network embedding approach on the resulting similarity networks (type 1l signatures. See Methods section).

CCSynergy also strives to enable context-aware predictions using five distinct methods for representing cellular contexts
(Fig. 1b). I: the downstream gene expression profiles, I1: the inferred transcription factor activity profiles, 111: the inferred
signaling pathway activity profiles, 1V: CRISPR-based gene essentiality profiles, and V: DepMap based signaling
pathway dependency profiles (See Methods). It is important to note that in CCSynergy, the cell lines are represented as
vectors of the same lengths (100) after reducing the dimension of the original profiles either using auto-encoder based
techniques (CCSynergy | and 1V) or by selecting the top 100 most informative signaling pathways (CCSynergy 11l and
V) or transcription factors (CCSynergy II).

Finally, we represent each sample as a vector of length 356 by concatenating its drug pair and cell line vectors (Fig. 1c).
CCSynergy is a feed-forward deep neural network (DNN) and its architecture includes three hidden layers, which
propagate information from the input vectors to the output unit, where the synergy score is predicted. For a given training
set, 125 separate DNNs are trained each corresponding to one of the 25 CC spaces and one of the 5 cell line representation
methods. Note that we considered different hyper-parameter settings and found the optimal one by considering all 125

DNNs in a 5-fold cross validation scheme (see Methods).

We evaluated the performance of CCSynergy on two separate datasets namely the Merck dataset'® and the one recently
published by the Sanger Institute*, using two different 5-fold cross validation schemes (CV) (Fig. 2). In both CV types,
we ensured that any given drug pair in the testing set does not appear in the training set (held-out drug combinations).
Furthermore, in the CV2 scheme, we guaranteed that the cell lines in the training set originate from tissues that do not
overlap with that of the testing set (held-out tissues). We also investigated cross-data learning to check the potential of
CCSynergy to generate experimentally validated predictions. This guided us to generate a database including millions of

unexplored (drug pair + cell line) triplets, which we partially validated using its overlap with the DrugComb database®*52.
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CCSynergy outperforms state-of-the-art methods on the Merck dataset

We first aimed to evaluate the performance of CCSynergy as compared to its competitors namely DeepSynergy and
TranSynergy. Therefore, we applied the CV1 cross validation scheme on the Merck dataset (see Methods) and trained
the 125 distinct DNNs within the CCSynergy framework. In Fig. 3a, we show Pearson correlation coefficient (PCC)
between the predicted and real values (averaged among the five folds) for the five CCSynergy methods across the 25 CC
spaces. Several important patterns are relevant: i) CCSynergy | is clearly outperformed by the other four methods, which
implies that gene expression profiles on their own are not strong enough for representing the cell. ii) in CCSynergy II-
V methods, all 25 CC signatures are highly informative (PCC>0.7), and their relative ranking remains almost the same.
For example, E3 always yields the highest PCC, while C2 always stays the lowest. iii) CCSynergy Il is outcompeted by
the other three, but still remains quite close to them. It is remarkable that TF activity on its own could get so close to the
signaling pathway-based profiles. iv) expression profiles when combined with causal reasoning (CCSynergy I11) can yield
the same PCC as CRISPR-based essentiality profiling (CCSynergy IV and V). v) Integrating the 25 CC spaces by simple
averaging always leads to a higher PCC. Fig. 3b reveals that all CCSynergy methods (except the first one), when
integrating the 25 CC spaces, outcompete both DeepSynergy and TranSynergy. CCSynergy Il (0.78) is very close to
DeepSynergy (0.77), but CCSynergy Il1, IV and V yield significantly higher PCC (above 0.81), while TranSynergy (0.69)
and CCSynergy | (0.62) clearly lag behind. It is of note that CCSynergy methods cannot significantly surpass
DeepSynergy when using each of the 25 CC spaces separately (Supplementary Fig. S1) highlighting the fact that it is
the integration of the 25 CC spaces, which empowers CCSynergy.

We then calculated the PCC scores per cell line to check the consistency of CCSynergy’s performance across different
cellular contexts. Fig. 3c indicates that in 25 out of 28 cell lines (89.3%), CCSynergy 111 outcompetes both DeepSynergy
and TranSynergy, which is similarly the case for CCSynergy IV and V but not for I and Il (Supplementary Fig. S2). The
distribution of PCC scores across cell lines further confirms the superiority of the CCSynergy I, IV and V when
integrating the 25 CC spaces (Fig. 3d), but not when using each of them separately (Supplementary Fig. S3). We also
checked the consistency of CCSynergy performance across different drugs. Fig. 3e shows that in 27 out of 36 drugs
(75%), the per-drug PCC score of CCSynergy 111 is above that of DeepSynergy, which is similarly the case for CCSynergy
IV and V but not for | and 1l (Supplementary Fig. S4). The distribution of PCC scores across drugs further confirms the
superiority of the CCSynergy 111, IV and V when integrating the 25 CC spaces (Fig. 3f), but not when using each of them
separately (Supplementary Fig. S5).

Next, we aimed to compare the robustness of these methods to data loss. Thus, we removed 6 drugs and 8 cell lines from
the original dataset resulting in a sample of size 6880, which is 48.2% of the original one. We applied the CV1 scheme

on the reduced data and calculated the PCC scores for each method. We noted a pronounced reduction of the average
PCC scores for DeepSynergy (APCC=-0.061), TranSynergy (APCC=-0.054) and CCSynergy | (APCC=-0.049), while
the reductions for CCSynergy 1l (APCC=-0.027), 11l (APCC=-0.018), IV (APCC=-0.019) and V (APCC=-0.022) were

significantly less noticeable (Fig. 3g). This is especially important and attests to the remarkable robustness and hence

more reliable predictions that the integrated CCSynergy framework provides.
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Figure 3. CCSynergy outperforms state-of-the-art drug synergy prediction methods on the Merck dataset. Five versions of CCSynergy method,
which differ in their choice of cell line representation methods (See Fig. 1b and Methods), are color-coded according to the legend (the uppermost box)
and are compared against the existing methods such as DeepSynergy?’ (black) and TranSynergy*® (gray). Vertical axes in all panels indicate the Pearson
Correlation Coefficient (PCC) between the real and predicted drug synergy values. In panels A-G, the PCC scores were calculated within the CV1
scheme, while in panels H and I, they were measured within the CV2 scheme. In panel A, the PCC scores are shown across the 25 CC spaces and also
when integrated using simple averaging. In contrast, in panels B-1 only the integrated PCC scores are shown. Panel A only compares the five CCSynergy
versions, while in other panels, DeepSynergy and TranSynergy are also included. For clarity purposes, in panels C and E, only CCSynergy |11 is shown,
while the other four versions are illustrated in Supplementary Figs. S2 and S4, respectively. The circles indicate average PCC across the 5 folds, while
the error bars in panels B, G and H show the corresponding standard deviations. In panel C, the PCC scores are calculated for each cell line separately
(horizontal axis), and box plots of panel D show their distribution (among the cell lines). Similarly, in panel E, the PCC scores are shown per drug
(horizontal axis), and box plots of panel F show their distribution (among the drugs). Moreover, in panel |, the average PCC per tissue type (within
CV2 scheme) is illustrated. It is important to mention that in panel G, the circles indicate the average PCC, when the entire dataset is used (N=14,280),
while squares show the average PCC, when a reduced subset of the data is used (N=6,880). Note that all the analyses in this figure are based on the
Merck drug synergy dataset (See Methods).
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Finally, we employed the CV2 scheme to examine the generalizability of these methods for novel cellular contexts. Fig.
3h shows the resulting PCC scores for the five CCSynergy methods as compared to the competing ones. The following
patterns are germane: i) the average PCC scores in CV2 substantially decreased in all methods as compared to the CV1
highlighting the difficulty of drug synergy prediction in novel cellular contexts. ii) the PCC score for the CCSynegy I
dropped down to the same level as that of the CCSynergy | (0.48) implying that the context-generalizability of the TF-
based cell representation is as low as the simple gene-expression based one. iii) CCSynergy V (0.57) distinguished itself
from the CCSynergy 111 (0.54) and IV (0.54), which were indistinguishable in the CV1 scheme, and iv) CCSynergy V is
the only method that significantly outperforms both DeepSynergy (0.54) and TranSynergy (0.43). Furthermore,
calculating the PCC scores in the CV2 scheme per tissue type further confirms the superiority of CCSynergy V in all five
tissues (Fig. 3i). Again, we observed that CCSynergy V has gained its superior performance by integrating the 25 CC
spaces as it gets outperformed by DeepSynergy when using each CC signature separately (Supplementary Fig. S6),

which further highlights the importance of the integrative nature of the CCSynergy framework.

CCSynergy performs well on the Sanger drug synergy dataset

We then examined the performance of CCSynergy on a new dataset in which the drug synergy is measured differently
from the Merck dataset. Thus, we examined the large-scale drug combination screen recently performed in the Sanger
institute*!, which has reported drug synergy in a binary format enabling us to evaluate CCSynergy in a classification
setting (See Methods). We limited this analysis to CCSynergy Il and V, which were the top-performing ones respectively

in the CV1 and CV2 schemes on the Merck dataset. Under the CV1 scheme, the corresponding 2 X25 DNNs were trained,

which output the synergy probability (6) for each testing triplet. This enabled us to calculate the area under the ROC

curve (AUC) for these two methods across the 25 CC spaces. Fig. 4a shows that i) all CC signatures are almost equally
informative (AUC ranging between 0.79 and 0.83 in CCSynergy Ill and between 0.80 and 0.84 in CCSynergy V). ii)
CCSynergy V yields slightly higher AUC than CCSynergy |11 across the majority of the CC spaces, and iii) integrating
the 25 CC spaces (by simple averaging) produces the highest AUC (0.84 in CCSynergy Il and 0.86 in CCSynergy V).

Next, we aimed to binarize the outputted synergy probabilities (8) by determining an optimal threshold (™). To this end,
we measured F1-score, precision and recall as a function of 8 for both methods (Figs. 4b and c). Whereas the recall
evidently decreases monotonically by increasing 6, we observed that precision increases up to around 6=0.6, but then

starts to fluctuate. As a common practice in the field, 0™ is chosen so as to maximize the F1-score, which is a harmonic
mean of precision and recall. However, notably precision is much more important than recall for the ultimate goal that

drug synergy prediction pursues. Therefore, instead of maximizing F1-score, we selected 8™ so as to maximize precision

subjected to the constraint that F1 (87)> %Max (F1). We thus ended up with 87=0.55 for both methods.

Afterwards, we integrated the binary output of the 25 CC spaces using three different approaches: majority voting (MV),
Spectral Meta-Learner (SML)% and Randomized Boltzmann Machines (RBM)%*. We noted that MV-based integration
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leads to substantially higher precision and lower recall than SML and RBM methods (Fig. 4d). Moreover, Fig. 4e
indicates more than 7-fold increase of precision (relative to a random classifier) in both CCSynergy methods when using
MYV and more than 5-fold increase when using SML or RBM. We detected similar patterns, when measuring these metrics
per tissue type (Supplementary Fig. S7). Importantly, Supplementary Fig. S8 shows that whereas MV-based integration
of the 25 CC spaces always substantially exceeds the single CC-based ones in terms of precision, the SML or RBM based
integration always provides superior recall. Furthermore, we observed that all three integration methods always lead to
higher convergence between CCSynergy 1l and V (measured as the Jaccard similarity index; Supplementary Fig. S9)
than the single-CC based ones. Moreover, intersection of the set of synergistic triplets predicted by CCSynergy I1l and V
culminates in evidently lower recall than either method alone and interestingly higher precision both in the single-CC

methods and in the integrated ones (Supplementary Fig. S8).
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Figure 4. CCSynergy performs well on the Sanger drug synergy dataset. Panels A-E show the results obtained under the CV1 scheme, while panels
F-J show their CV2-based equivalent. A and F) the average AUC values across the 25 CC spaces plus the integrated one (using simple averaging) are
shown as red (CCSynergy I11) or blue (CCSynergy V) circles. The curves in panels B, C, G and H indicate F1-score (black), precision (blue) and recall

(red) as a function of the synergy probabilities (9) when using CCSynergy Il (CV1: panel B and CV2: panel G) or CCSynergy V (CV1: panel C and

CV2: panel H). Note that in these four panels, the vertical orange and cyan lines respectively show the O*andthe @ maximizing the F1-score. Moreover,
the horizontal gray lines respectively show the maximum and half of the maximum F1-score. In panels D (CV1), and | (CV2), circles and squares
indicate respectively the average precision and recall obtained using CCSynergy Il (red) or V (blue) after integrating the 25 CC spaces based on the
three integration methods mentioned in the horizontal axis, namely: Majority VVoting (MV), Spectral Meta-Learner (SML)% and Randomized Boltzmann
Machine (RBM)®. Similarly, in panels E (CV1) and J (CV?2), the vertical axes indicate the precision fold increase obtained when using CCSynergy
111 (red) or V (blue) under operation of the three different integration methods. The error bars in all of these panels indicate the standard deviation of
the PCC scores across the 5-folds. Note that all the analyses in this figure are based on the Sanger drug synergy dataset (See Methods).
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Finally, we performed similar analyses within the CV2 scheme, and first noted that compared to the CV1, the AUC values
across all CC spaces have expectedly decreased in both methods, but predictive power to some extent is still preserved
(Fig. 4f). The average AUC values across the CC spaces varies between 0.60 and 0.68 in CCSynergy V, and similarly
between 0.59 and 0.66 in CCSynergy 11l. We also observed that in both methods, the chosen 87=0.55 fulfills the
expectations, albeit with a negligible deviation (Figs. 4g-h). After discretizing the results, we observed that in all
integrative approaches, both precision and recall has decreased in CVV2 as compared to the CV1 (Fig. 4i). Nevertheless,
we can still detect significant enrichment of precision in all integrative scenarios (Fig. 4j). SML and RBM based
integration yields higher than 2-fold precision increase in both methods, and the VM based one produces even higher
enrichment (average 3.1 in CCSynergy Il and 4.5 in V). Moreover, the detailed patterns described in CV1 regarding
the superiority of the integrative approaches over the single CC-based ones (Supplementary Figs. S7-S9), are also
similarly detected here (Supplementary Figs. S10-S12). Thus, CCSynergy remains helpful, even when applied for
predicting drug synergy in novel cellular contexts, and it performs well on an alternative drug synergy dataset, where it

is evaluated in a classification setting.

CCSynergy is of potential to generate experimentally validated predictions

Our next goal was to evaluate a higher-level generalizability of CCSynergy within a cross-dataset learning scheme, which
is challenging, especially if drug synergy is measured differently across datasets. This is indeed the case for the Mark and
the Sanger datasets, which we used as the training and the testing sets, respectively. This can be regarded as a large-scale
experimental validation of the CCSynergy predictions. We ensured that no triplet is shared between the two datasets by
considering only the cell lines that were not seen in the Merck data. We distinguished between three scenarios in the

Sanger data (Fig. 5a) and categorized a given drug combination by checking whether: 1) both drugs are seen, I1) only one
of the drugs is seen, and I11) neither drug is seen in the Merck dataset. We then trained 2X25 DNNs, corresponding to 2

methods (CCSynergy Il and V) and 25 CC spaces using the entire Merck data as the training set in a classification setting.

After integrating the synergy probabilities (6) of the 25 CC spaces by simple averaging, we calculated the AUC values
separately for the above three scenarios. Figs. 5b-c show that, in line with our expectations, the AUC values in scenario
| were pretty good in both methods (0.70 in CCSynergy V and 0.72 in Il1). In contrast, in scenario Ill, they were quite
close to the baseline 0.50 for both methods (around 0.55) implying that the model is not much better than a random
classifier in cases where neither drug is seen in the training set. However, the good news is that for scenario Il, we still

detected some predictive power as the AUC values were considerably higher than 0.5 in both methods (0.63).

We then binarized the results and integrated the 25 CC spaces using the three integration approaches (MV, SML and
RBM). We detected consistent patterns of precision (Figs. 5d-€) and its enrichment (Figs. 5f-g) across the three scenarios,
regardless of the integration approaches and the CCSynergy methods used. In both scenarios | and Il we observed
enrichment of precision in all cases, and expectedly the enrichment in the first scenario was always higher than 2-fold
and stays consistently above the second one. In the MV-based integration, generally we observed higher enrichment (e.g.,

more than 3-fold in both scenarios for CCSynergy V) as compared to the SML and RBM, which corroborated our previous
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observations. However, again we did not see a noticeable departure from the baseline (one-fold) and hence no enrichment
of precision for the third scenario (Figs. 5f-g). Thus, we conclude that CCSynergy retains a considerable predictive power
on unseen cellular contexts in a cross-data learning scheme and hence enhances the potential for generating

experimentally validated predictions, provided that at least one of the drugs is seen in the training set.
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Figure 5. The potential of CCSynergy for generating experimentally validated predictions. In this analysis, we used the Merck dataset as the
training and the Sanger dataset as the testing set. Based on their overlap with the Merck data, we have considered three scenarios in the Sanger data and
analyzed them separately, which are color-coded and described in panel A. The upper (B, D and F) and lower (C, E and G) panels were obtained using
CCSynergy V and |11 respectively. The vertical axes indicate the AUC (panels B and C), precision (panels D and E), and precision fold increase (panels
F and G). Note that in this analysis, the 25 CC spaces were integrated using simple averaging in panels B and C, while in the other panels three
integrative approaches (horizontal axes in panels D-G), namely: Majority VVoting (MV), Spectral Meta-Learner (SML)* and Randomized Boltzmann
Machine (RBM)®* were considered.

CCSynergy generates a compendium of potentially synergistic drug combinations

We showed that CCSynergy is of enhanced potential for generating experimentally validated predictions and so it can
facilitate exploration of the untested drug combination space. This motivated us to embark on a voyage to exhaustively
explore this space. However, the lack of precision enrichment in the third scenario (Fig. 5) cautioned us that CCSynergy
could be helpful only in a restricted subspace of drug combinations in which at least one of the drugs is seen in the training
set. We thus adjusted our exploration strategy accordingly by focusing on a subspace encompassing the pairing of every
single drug (62 drugs: anchor drugs) used in our training data (Sanger dataset) with another pool of drugs that we obtained
from the GDSC database®® (264 drugs: library drugs). By considering 543 well-characterized cell lines, we ended up with
a subspace including 7,786,146 unique triplets that were not tested in the Sanger screen (Fig. 6a). We then applied

CCSynergy Il and V across the 25 CC signatures using the entire Sanger data as the training set in order to predict drug

synergy for every triplet in this subspace. After binarizing the outputs using 8*=0.55, two binary matrices with 7,786,146
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rows and 25 columns, were generated. Furthermore, integration of the 25 single-CC results using MV, SML and RBM
methods generated three additional binary columns that we added to the final matrices (Supplementary Tables S1 and
S2). We distinguished between three types of triplets in this space (Fig. 6b). Note that although the first two types here
are equivalent to the scenarios | and Il in the previous analysis, the type Ill here is not, but rather is an easier to predict
version of the type II.

We enumerated the synergistic triplets for both methods across the 25 CC spaces, which varied between 76,468 (0.98%)
and 201,443 (2.59%) in CCSynergy |11 and between 53,486 (0.68%) and 242,682 (3.11%) in CCSynergy V (Fig. 6¢). We
noted that in both methods a considerable fraction of the triplets is predicted as synergistic at least in one CC space
(1,214,794 (15.60%) in CCSynergy |1l and 1,104,751 (14.18%) in V), but this number declines exponentially by
increasing the minimum number (n) of required CC spaces (Fig. 6d). For example, in CCSynergy V it goes down to
153,091 (1.96%) when n=5 and to 843 (0.01%) when n=25. The agreement between the two methods (CCSynergy IlI
and V), which is measured using the Jaccard similarity of their synergistic triplet sets, in the unseen-cell line scenarios (I
and II) is unsurprisingly lower than the seen-cell line type (l11) (Supplementary Fig. S13). Moreover, the methods

diverge further by increasing the minimum number (n) of required CC spaces (Fig. 6e).

Next, we observed that the MV-based integration of the 25 CC spaces is quite stringent as it identifies only 24,355 synergy
cases in CCSynergy V (0.3%), which is a subset of the ones predicted using SML (523,022 (6.7%)) and overlaps strongly
(98.5%) also with that of the RBM (342,840 (4.4%)) (Fig. 6f). We then checked how synergy is distributed across
different cell lines and observed power-law distribution both when using the integration approaches (Fig. 6g) or
considering the CC spaces alone (Supplementary Fig. S14). The implication is that there are few cellular contexts, which
are generally more prone to synergy than the others. For example, in the MV-based integration, less than 10% of the cell
lines (50 out of 543) account for the majority (12,484 (51.3%)) of the predicted synergies. We observed a similar power
law distribution of the number of cell lines providing synergy per drug pair, regardless of the integration methods (Fig.
6h) or the single-CC spaces (Supplementary Fig. S15) used. This reflects the existence of few drug pairs, which are
generally-synergistic independent of the cellular context. For example, the MV-based integration method predicts synergy
for Gemcitabine and AZD7762 in 421 out of 543 cell lines (77.5%). Similarly, we found 36 drug combinations (out of
14,483) for which synergy in more than 100 cell lines are predicted. Synergy was found at least in one cell line only for
2,153 drug combinations (15.3%), so for the majority of them (84.7%), synergy was never detected. Analysis of the
CCSynergy Il results also revealed very similar patterns (Figs. 6i-k and Supplementary Figs. S16-S17).
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Figure 6. CCSynergy generates a compendium of potentially synergistic drug combinations. A) a subspace of the untested drug combination space
was considered for exploration, which was constructed by pairing every single drug that was used in the Sanger dataset (62 anchor drugs) with another
pool of drugs that were obtained from the GDSC database® (264 library drugs) in 543 well-characterized cancer cell lines. This resulted in a subspace
including 7,786,146 unique triplets that were not tested in the Sanger drug combination screen. After training CCSynergy |11 and V based on the 25 CC
signature levels using the entire Sanger dataset as the training set, two binary matrices with 7,786,146 rows and 25 columns were generated.
Furthermore, we added three additional columns to these matrices based on the results obtained by MV, SML and RBM integration methods. B) We
divided the triplets in this subspace into three types based on their overlap with the Sanger dataset. C) The bars indicate the number of synergistic
triplets across the 25 CC spaces (horizontal axis) identified by CCSynergy Il (red) and V (blue). D) Each circle indicates the number of synergistic
triplets (in logarithmic scale) identified as synergistic in at least n CC spaces (horizontal axis) based on CCSynergy |1l (red) and V (blue). E) The
Jaccard similarity between the set of synergistic triplets identified by CCSynergy 1l and the one using CCSynergy V, is shown as a function of n
(minimum number of CC spaces on which a given triplet is required to be synergistic). F) the sets of synergistic triplets after integrating the 25 CC
spaces based on MV, SML and RBM using CCSynergy V are identified and the VVenn diagram shows the overlap between them. The density plots show
the distribution of the number of synergistic triplets identified (using CCSynergy V) G) per cell line, and H) per drug pair, separately for each of the
three integrative approaches. Panels I, J and K are the equivalent panels based on CCSynergy Il1.
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Figure 7. Partial validation of CCSynergy database using its overlap with DrugComb database®*2. We identified partial overlap between the
triplets considered in the CCSynergy database with those in the DrugComb database. We ranked triplets in this subset in terms of their Loewe synergy
score, and considered the top 10% as synergistic (i.e., those with Loewe score > 9.2). A) We partitioned the triplets the same as in Fig. 6b. B) Number
of triplets in the overlapping set (N), number of synergistic triplets predicted by CCSynergy (TP+FP), number of triplets that in both databases are
considered as synergistic (i.e., truly synergistic cases: observed TP), the TP that is expected by chance (10% of (TP+FP)), and the precision fold increase,
which is basically the ratio of observed by expected TP, are shown for each three scenarios separately and in total (the column names). These
measurements have been calculated both for CCSynergy V and Ill and also their intersection (the row names in the right-hand side). Note that the
results in this table were obtained using RBM-based integration of the 25 CC spaces. For the MV or SML-based versions, please see Supplementary
Fig. S18. C) We have zoomed into the 29 triplets in scenario |1 identified as synergistic by both CCSynergy |11 and V methods (i.e., their intersection,
which is highlighted by a blue rectangle in panel B). We have listed the drug names, cell lines, tissues, study name and synergy Loewe values for each
of the 29 triplets and they are classified and color-coded according to their relative ranking in terms of synergy values in the DrugComb database. For
each class, the expected and observed number of true positive cases (triplets identified as synergistic in both DrugComb and CCSynergy databases)
along with their corresponding fold changes are specified.

To validate (at least partially) our massive predictions, we checked the DrugComb database5-?, where the majority of
the existing drug combination studies have been amalgamated. We identified 17,472 distinct triplets shared with
DrugComb, which includes all three triplet types (Figs. 7a-b). The sample size is sufficiently large for a statistical
analysis, even though it covers only 0.22% of the triplets in our database. We considered samples with a Loewe score
above 9.2 (i.e., the top 10% among the overlapping set) as our reference of true positives. We observed considerable
precision enrichment for all three triplet types under RBM (Fig. 7b) and SML (Supplementary Figs. S18a-b) integration
methods. In the MV-based integration scheme, we also observed precision enrichment for triplets of type I, but for types
Il and 11, the sample of MV-based predicted synergies was not of sufficient size (Supplementary Figs. S18c). These
observations are valid when either CCSynergy 1ll or V method is used, and their intersection leads to even a higher

precision enrichment. For example, in the second scenario, the intersection results in 3.10-fold precision enrichment,
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while the methods alone yield enrichment of 1.35 and 1.87-fold respectively (Fig. 7b). Fig. 7c lists the 29 triplets that
both methods under RBM-integration predict as synergy. As we can see 9 out of the 29 is among the top 10% (true
positives), which is considerably larger than 2.9 (expected by chance). Importantly, these true positive cases belong to
skin and lung tissues, which were not used in our training set, and so the observed enrichment is not simply an artifact of
the choice of tissues in our training set. Furthermore, the enrichment still stays noticeable, if we define synergy more
moderately, for example based on the top 25% or 50% triplets. Moreover, we have observed considerable depletion of
antagonist ones. We identified only one triplet belonging to the bottom 10%, while the expectation is to observe 2.9 by
chance. Thus, in line with our previous observations, the overlap between our database and DrugComb provides additional

statistical evidence attesting to the enhanced potential of CCSynergy to generate experimentally validated predictions.

Discussion

We have introduced CCSynergy, a deep learning framework that we have established to unleash the potential of the
Chemical Checker extended bioactivity profilese for drug synergy prediction. We have proved that the 25 CC spaces
provide highly potent representations of drug features and by integrating them, CCSynergy has managed to surpass the
state-of-the-art deep learning methods in the field. Moreover, we performed insightful analyses on how to effectively
embrace the context-specificity of drug synergy in our predictive models. Firstly, we have demonstrated that down-stream
gene expression profiles on their own are not sufficiently informative, but can be substantially upgraded under a causal
reasoning framework inferring up-stream signaling-pathway activities (CCSynergy I11). Secondly, our analysis revealed
that representing cell lines based on genome-wide CRISPR/Cas9 screens, ensures consistent superiority of the model in

terms of context-generalizability (CCSynergy V).

Moreover, the fact that CCSynergy performs well on an alternative dataset (Sanger data<), where drug synergy was
measured differently from the dataset used in the hyper-parameter optimization step (Merck datax), confirms its potential
for wide applicability. More importantly, we have also demonstrated that compared to its competitors, CCSynergy is
remarkably more robust to data loss, which ensures higher reliability and generalizability. Furthermore, we observed
considerable precision enrichment when applying CCSynergy in a cross-data learning scheme operated on cell lines that
were not seen before. This observation is all the more remarkable, if we consider the fact that drug synergy is notorious
for its poor reproducibility across different experimental studies. For example, despite the efforts made in the DrugComb
databases= for standardization and harmonization, the distribution of Loewe scores in the Merck= and NCI-ALMANAC=
datasets is still quite different and they are poorly correlated (PCC=0.25) (Supplementary Fig. S19). Thus, the precision
enrichments in our cross-data learning analysis deserves to be appreciated and indeed attests to the fact that CCSynergy,
to some extent, is of potential for generating experimentally validated predictions and hence can guide future experimental
screens by narrowing down the space of untested drug-combinations to a more promising sub-space enriched with true
positive cases. This motivated us to cautiously explore this space, which ultimately culminated in a new drug synergy

database of unparalleled scale that can be of great assistance for designing follow-up experimental screens.
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Nevertheless, as quantified rigorously under the CV2 scheme, our results indicate that there is still ample room for
improvement, as current methods are all suboptimal for predicting drug synergy in novel cellular contexts. Importantly,
a substantially higher context-generalizability is necessary in order for computational methods to ultimately exert
significant clinical impact, especially towards fulfilling the ambitious goals of precision medicine, where the specificity
of the cellular contexts plays a decisive role. Thus, the field definitely needs to invest further into exploring innovative
strategies on how to represent the cell. However, undoubtedly deep learning methods trained directly on drug combination
data, would not be sufficient for this purpose. We strongly believe that insights from single-drug response screens would

be the key complement that might also pave the way for detailed mechanistic understanding of drug synergy.

Further directions for methodological improvements exist, both in terms of model architecture and especially with regard
to the integration of the 25 CC spaces. For example, instead of CC signatures of type I, the similarity networks inferred
from the CC signatures of type | could be employed, which would require using Convolutional Neural Networks (CNNs)
instead of DNNs. Alternatively, considering the 25 CC signatures simultaneously in the deep learning framework instead
of using them separately is also a valid option. That being said, in the current study, we have already applied three different
approaches for integrating the CC spaces, which endow CCSynergy with further flexibility. For example, on the one
hand, the majority voting approach leads to a higher precision but lower recall, which can be helpful especially for
exploring very large spaces. On the other hand, in scenarios where recall is more important, for example when prioritizing

a drug combination list of small or moderate size, applying the SML or RBM methods will be more appropriate.

In summary, we have taken the pioneering step to unlock the potential of Chemical Checker bioactivity profiles by
establishing CCSynergy, which is a flexibly integrative framework for context-aware prediction of drug synergy. We
anticipate that CCSynergy sparks further methodological developments in the field, inspires new applications, and

accelerates exploration of the untested drug combination space.

Materials and Methods

Drug synergy data

We analyzed two major drug synergy screens in our study. First, we focused on the Merck dataset!®, which is based on a
large-scale drug combination screen that includes 583 distinct drug pairs, 39 cancer cell lines totaling 22,737 distinct
(drug pair + cell line) triplets. We obtained their corresponding Loewe synergy scores from the DrugComb database®-52

(https://drugcomb.org/download/; version 1.5), which has accumulated, standardized and harmonized the results of

several drug combination screening studies. For a given triplet, we used the average of replicate measurements as the
final synergy score. We focused exclusively on drugs, whose CC signatures are available at the Chemical Checker
database®, and cell lines for which we managed to obtain all the five cell line representations in our study. Therefore, we
focused on 36 out of the original 38 drugs and 28 out of the original 39 cell lines totaling 14,280 distinct (drug pair + cell
line) triplets (Supplementary Table 3).
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Secondly, we analyzed the recently published drug combination screen by the Sanger institute (https://gdsc-

combinations.depmap.sanger.ac.uk/downloads)*!, which contains 2,025 pairwise drug combinations and 125 cell lines

including breast, colorectal and pancreatic cancer totaling 108,259 distinct triplets. Here, we also focused on a portion of
the original dataset, for which both CC signatures and all the cell line representations are available, and so we ended up
with 62 drugs, 1177 drug pairs, and 93 cell lines totaling 46,748 distinct triplets (Supplementary Table 4). The synergy
in the Sanger dataset is reported in a binary format, and the triplets are classified as synergistic (1) or non-synergistic (0)
based on the shifts in potency (AIC50) and in efficacy (AEmax), which were calculated as the difference between the
observed combination response and expected Bliss. The authors have summarized replicate measurements of triplets as
synergistic, if half or more of the replicate measurements showed synergy. Moreover, since the design of the Sanger
screen distinguishes between the direction of the drug pairs (anchor vs. library), we consider a pair as synergistic if
synergy is observed in either direction. Note that in the breast cell lines, the synergy has been measured only in one
direction, while for colorectal and pancreatic cancer cell lines, it has been measured in both directions, which largely
explains the lower synergy rate that we observed in our analysis for breast (1619 in 30,627 triplets (5.28%)) as compared
to those in colorectal (897 in 8349 triplets (10.74%)) and pancreatic (905 in 7772 triplets (11.64%)) cell lines. Note that
we employed the Loewe synergy scores of the Merck dataset in a regression setting, while we used binary-scores of the

Sanger dataset in a classification setting.

Drug representation: Chemical Checker extended drug similarity profiles

In order to represent drugs in our deep learning framework, we utilized the extended drug similarity profiles in the

Chemical Checker (CC) database (https://chemicalchecker.org/downloads/root)*°, which systematically catalogs

integrated bioactivity data on almost 800,000 small molecules by constructing 25 CC signatures encompassing all levels
of bioactivity, which we briefly delineate here (Fig. 1a). Level A includes chemical properties of compounds: Al) 2D
fingerprints (the 2,048-bit Morgan fingerprints), A2) 3D fingerprints (the 1,024-bit E3FP fingerprints), A3) the Murcko’s
scaffold®’, A4) molecular access system keys representing structural features relevant to medicinal chemistry, and A5)
physicochemical parameters of each molecule (e.g. the molecular weight, number of heavy atoms, number of
heteroatoms, number of rings, number of aliphatic rings, number of aromatic rings, number of hydrogen bond acceptors,
number of hydrogen bond donors and number of rotatable bonds). Level B characterizes the properties of the cellular
targets of the compounds: B1) mechanisms of action of approved and experimental drugs, B2) metabolic genes (drug-
metabolizing enzymes, transporters and carriers), B3) crystals (protein structures bound to each small molecule), B4)
protein binding data, and B5) high-throughput screening bioassays based on bioactivity values from PubChem?®®, Level
C covers their pathway/network level properties: C1) small-molecule roles, which have been derived from the ChEBI
ontology graph®, C2) metabolic pathways, which enable enumerating the set of metabolites in the proximity of a given
compound by computing an influence matrix, C3) signaling pathways (the biological pathways that may be affected by
the interaction of a molecule with its targets are enlisted), C4) biological processes based on the Gene Ontology
Annotation database®®, and molecules are basically associated with biological process terms based on the annotations of

their cellular targets, and C5) interactome, which enables enumerating the set of proteins (on top of the nominal targets)
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that are influenced by a given compound. Level D pertains to the cellular effects of the drugs: D1) compound-induced
gene expression profiles obtained from the L1000 Connectivity Map?, D2) small molecule sensitivity profiles of the
NCI-60 panel of cancer cell lines®, D3) chemical genetics profiles of small molecules screened against ~300 yeast
mutants obtained from MOSAICS®? , D4) morphology profiles obtained from the LINCS data portal, which reports 812
cell image features measured after treatment of cells with ~30,000 compounds®, and D5) cell bioassay profiles from
ChEMBLS4 . Finally, level E accommodates the clinical effects of the small molecules: E1) therapeutic areas profiled
using the ATC classification system codes, E2) Disease indication profiles of drugs obtained from ChEMBL5* and
RepoDB®, E3) side effect profiles of drugs obtained from SIDERS®, which are expressed as Unified Medical Language
System terms, E4) compound-disease association profiles obtained from the Comparative Toxicogenomics Database
(CTD)¥, which contains a medical vocabulary (MEDIC) that is based on the MeSH hierarchy, and E5) drug-drug

interaction profiles obtained from DrugBank®,

In 22 CC spaces (all except A5, D2 and D4), data are discrete (or discretized) and are expressed as sets of terms such as
proteins, pathways, ATC codes and so on. After removing the frequent and rare terms, and down-weighting the less
informative ones using frequency—inverse document frequency (TF-IDF) transformation, a dimensionality reduction
technique called latent semantic indexing (LSI) has been applied. Similarly, for the continuous data (A5, D2, D4), after
robust scaling of the columns, PCA algorithm has been used. This procedure has generated 25 numerical matrices, whose
rows correspond to molecules and columns compose the so-called “signatures of type I, each component of which is
orthogonal and sorted by its contribution to the variance of the data. The number of components in each CC space ensures
retaining 90% of the variance, and hence the size of CC spaces varies from 500 (A5) to 1500 (D1). Next, to balance the
size of the CC spaces, the authors have derived CC signatures of type Il, first by building similarity networks from type
| signatures, followed by applying a network embedding technique (node2vec®). Thus, in the Chemical Checker
database?, a given drug molecule is ultimately represented by 25 vectors of the same length (128) that we have used as

input in our CCSynergy framework (Fig. 1c).

Cell line representation methods

In order to represent cellular contexts in our framework, we examined five different methods as follows (Fig. 1b):

Method I: This is the simplest approach that we considered as our baseline method, which is simply based on the
Affymetrix expression array profiling of the cancer cell lines in the Sanger/MGH GDSC panel
(https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html) that are preprocessed using RMA

normalization. The original data includes the basal expression of 19,563 genes for a given cell line, but we first selected
the top 1000 genes ranked in terms of their variance across cell lines and then trained an auto-encoder with a single hidden
layer including 100 neurons to reduce the dimension from 1000 to 100. The auto-encoder minimizes the mean square
error (the difference between predicted and true gene expression vectors) as the loss function. A linear activation function
was applied in each layer of the auto-encoder and the weights were initialized randomly and trained using ADAM

optimizer with learning rate of 1e-4. The weights were updated after mapping each batch of size 100, and the network
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training was iterated for 1000 epochs. The final output is available at the Supplementary Table 5. Note that the hyper-
parameters that we mentioned above were chosen among a combination of choices that we considered in our grid-search

towards minimizing the MSE score (Supplementary Table 6).

Methods 11 and I11: For representing cellular contexts, these two methods rely on the CARNIVAL method*¢7°, which
contextualizes signaling networks from gene expression data. Following the standard CARNIVAL pipeline, the RNA-

Seq profiles of cancer cell lines (https://cellmodelpassports.sanger.ac.uk/passports) were normalized and compared

against their corresponding GTEx normal tissues. Then, the differentially expressed genes were determined using the
Limma R package™. Next, the transcription factor (TF) activities were estimated using DoRoThea” R package, which
systematically catalogs regulons of every transcription factor and outputs the normalized enrichment scores (NES) for
TFs based on the transcription status of their corresponding regulons. We did not use the output of DoRoThea directly in
our Method 11 for cell line representation, but rather used it along with the output of PROGENY 73, which estimates
signaling pathway activities based on consensus gene signatures, and the OmniPath-based signed and directed human
signaling network™, as the inputs of the CARNIVAL method, which infers a signaling subnetwork including up and
down-regulated signaling nodes and their interactions. We used the output of the CARNIVAL method in two different
ways: whereas Method 11 focuses exclusively on the transcription factors (TFs), Method 111 operates on the level of
signaling pathways. In other words, in method 11, we focused on the nodes in the CARNIVAL output that are TFs and so
we expressed a given cell line as a vector, each element of which belongs to a TF and is +1 (the given TF is an up-
regulated node), -1 (the given TF is a down-regulated node) or O (the given TF is not present in the inferred network). We
chose the top 100 TFs, which are ranked according to their variability across different cell lines (Supplementary Table
7). In contrast, for method 111, we checked the over-representation of the inferred nodes in 1530 signaling pathways (gene
sets) from Reactome’ by running gene set analysis using Fisher exact test. We chose 100 signaling pathways (gene sets),
which we required i) to be significantly overrepresented (Fisher exact test p-value <0.05) in at least 50 and at most 900
cell lines (out of 1081 cell lines), ii) to be smaller than 100 in size, and iii) to be known as cancer-related. Thus, in method
111, a given cell line is represented as a binary vector of length 100, each element of which belongs to a given signaling

pathway and is either 1 (significantly overrepresented) or 0 (not overrepresented) (Supplementary Table 8).

Method IV and V: These two methods both rely on the gene essentiality profiles for representing cell lines (DepMap

Public 22Q1: https://depmap.org/portal/download/CRISPR_gene_effect.csv), which contain integrated fold-change

depletion values for CRISPR-Cas9 screens performed at either the Sanger or Broad Institutes. The datasets from the two
institutes have been batch corrected and combined into integrated datasets that can be analyzed jointly*. The dataset
covers 908 cell lines and 17,486 genes. We used this dataset in two different ways generating two distinct cell line
representation methods: Method 1V: we first selected 1000 most informative genes, whose depletion fold-change is
smaller than (-1) in at least 100 cell lines and at most 800 cell lines. Thus, we initially represented a given cell line using
a vector of length 1000 each element of which corresponds to the fold-change depletion of one of the selected 1000 genes.
We then reduced the dimension of these vectors from 1000 down to 100 using an auto-encoder with exactly the same
architecture and hyper-parameters as in the method | described above (See Supplementary Table 9, which includes the

final cell line profiles using method 1V). Method V: we ran an over-representation analysis on the Reactome pathways
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similarly to what we did in method III (see above) to generate “signaling pathway dependency” profiles for the cancer
cell lines. More precisely, for a given cell line, we first identified the set of genes, whose depletion fold-change is smaller
than (-1) and then we checked the overrepresentation of this gene set in 1530 signaling pathways (gene sets) from
Reactome using Fisher exact test. We chose 100 signaling pathways (gene sets), which we required i) to be significantly
overrepresented (Fisher exact test p-value <0.05) in at least 100 and at most 800 cell lines (out of 908), ii) to be smaller
than 100 in size, and iii) to be known as cancer-related. Thus, in method Ill, a given cancer cell line is represented as a
binary vector of length 100, each element of which belongs to a given signaling pathway and is either 1 (significantly

overrepresented) or O (not overrepresented) (Supplementary Table 10).

CCSynergy deep learning framework

Having established our drug and cell line representation methods, we were then able to represent each sample of (drug
pair + cell line) triplet by concatenating its corresponding pair of drugs and cell line vectors. It is important to note that
we did not concatenate all the 25 different CC signature vectors, neither did we concatenate the 5 different cell line vectors
together, but rather generated 125 separate concatenations of the drug pair and cell line vectors of the same size
(128+128+100=356), each of which correspond to one of the 125 distinct combinations of the CC spaces and cell line
representation methods. Finally, each resulting vector was used as an input in one of the 125 DNNSs required to be learnt
per a given training set (Fig. 1c). Furthermore, it is noteworthy that the synergy scores are order-agnostic and so we
needed to represent a given sample twice to account for both directions (i.e., AB and BA). CCSynergy is a feed-forward
deep neural network (DNN) and its architecture includes three hidden layers, which propagate information from the input
vectors to the output unit, where the predicted synergy score is produced. The number of neurons per layer is N1=2000,
N2=1000 and N3=500, which are determined along with other hyper-parameters of the model after considering 256
different choices of hyper-parameter combinations (Supplementary Table 11) in our grid-search towards maximizing
the average Pearson’s correlation coefficient between the predicted and the real Loewe synergy scores over all 125 distinct
DNNs in a drug-combination out 5-fold cross validation setting (CV1: see below) operated on the Merck drug synergy
dataset. It is important to highlight the fact that this hyper-parameter optimization step was unavoidably time and resource

intensive as we were required to consider all CC spaces and cell line representation methods (256 hyper-parameter choices
X 125 DNNS) in order to avoid biasing our analysis towards a specific CC space or a particular cell line representation

method. We used linear, ReLU and Tanh activation functions in the first, second and third hidden layers respectively,

which are defined as follows:

linear(x) = x )

ReLU(x) = max(0,x) 2)
®)

-X

Tanh(x) = ere

eX+e™X

Furthermore, in order to avoid over-fitting, we applied dropout regularization of rate 0.5 and 0.3 respectively in the first

and second hidden layers. The weights were initialized based on a truncated normal distribution and trained by minimizing
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MSE as the loss function according to an Adam optimizer with learning rate 1e-4, ﬁl = 0.9 and ﬁz = 0.999 . We used
a batch size of 128 and the maximum number of epochs was set as 1000, but we applied early stopping if the validation
loss value did not improve after 10 consecutive epochs. We applied the same DNN architecture and hyper-parameters for
analyzing the Sanger drug synergy dataset, but we used binary cross entropy as the loss function, because the synergy
values are binary and so the task is defined within a classification setting. Furthermore, we applied a sigmoid activation
function (defined below) in the output layer for the classification tasks, while we used the linear activation function in the

output layer for the regression ones.

1
1+e™*

Sigmoid(x) = 4)

Cross validation schemes

In our 5-fold cross-validation schemes, we aimed to make sure that a given drug combination in the testing set does not
appear in the training set. To do so, we first enumerated all distinct drug pairs and then we randomly divided them into
five folds of equal size. We put every (drug pair + cell line) triplets containing a given drug pair in the same fold. The
sample of (drug pair + cell line) triplets can be visualized as a matrix each row of which corresponds to a given drug pair
and the columns correspond to the cell lines. If we make sure a given drug pair is not repeated in multiple rows (i.e., the
rows are unique), a simple row-wise division of the matrix into five folds ensures that the drug pairs in the testing and
training sets do not overlap (held-out drug combinations (CV1) (Fig. 2a)). In this scenario, five learning cycles are
required, in each of which one of the five folds is used as the testing set, and from the remaining four, one is randomly
selected as validation set and the other three as the training set. Notably, since our data is obtained from drug combination
screens in which every drug pair is tested on the same array of cell lines, the matrix is full and so its row-wise division

results in five folds of equal size.

In the second type of 5-fold cross validation (CV2), which is even more strict, we additionally make sure that the tissue
of origin corresponding to the cell lines in the testing set do not overlap with that of the training set (held-out tissue). To
do so, we needed to divide the matrix not only row-wise but also column-wise, so that all the cell lines in the same testing
set belong to the same tissue (Fig. 2b). If the cell lines in our data belong to L different tissues, in this CV scheme, 5XL
learning cycles are needed. In each cycle, drug pairs of the samples in the testing set must belong to one of the given five
folds (the same as in CV1) and also their cell lines must all belong to one of the L tissues (testing tissue). Furthermore,
the triplets whose cell lines belong to the given testing tissue must be removed from their corresponding
training/validation sets, so that neither rows nor columns are shared between the training and testing sets. Notably, in
contrast to the CV1, the size of the testing sets in different cycles of the CVV2 scheme may not be equal, because it can

vary depending on the number of cell lines belonging to the testing tissue in our samples.
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Method comparison

We compared CCSynergy against the state-of-the-art deep learning methods for anti-cancer drug synergy predictions
namely DeepSynergy” and TranSynergy*8, which have both been applied on the Merck dataset®. We needed to re-run
both of them, because we have used a subset of the original Merck dataset and also we have obtained the drug synergy
scores from the DrugComb database®-52, which has standardized and harmonized the original drug synergy scores. We
used the same hyper-parameters as what were used in the original papers and we employed exactly the same cross
validation schemes as what we used for evaluating the CCSynergy method (CV1 and CV2 described above).
DeepSynergy uses connectivity fingerprints, physicochemical and toxicophores for representing drugs, while
TranSynergy is based on drug target profiles processed using a random walk with restart (RWR) algorithm. Furthermore,
DeepSynergy uses Affymetrix-based gene expression profiles for representing the cell line, while TranSynergy combines
gene expression profiles with the gene dependency ones. We used exactly the same drug and cell line features that were
used originally, which are pre-computed and downloadable from their code repositories as follows:
http://www.bioinf.jku.at/software/DeepSynergy/ (DeepSynergy) and https://github.com/giaoliuhub/drug_combination

(TranSynergy).

Evaluation metrics

To evaluate the performance of the models in the regression setting, we mainly used Pearson Correlation Coefficient
(PCC) between the predicted and the real values. In our 5-fold CV schemes, we obtained PCC of each fold separately and
reported their average and standard deviation. In our CV1 scheme, we also reported PCC values per drug and per cell
line, in which case we calculated the PCC values using sub-vectors of the original real and predicted vectors, in which
only a subset of the data containing the given drug or the cell line is retained. In the CV2 scheme, for a given fold, we
merged the results of different tissues and calculated the PCC using the merged vectors. We also measured PCC per
tissue, in which case we directly used the predictions made for the given testing set without the need for merging. For
performance evaluation in the classification setting, we used the standard area under the ROC curve (AUC), precision,

recall and F1-score, which are defined as follows:

Precision = —— (5)
TP+FP
Recall = —=~ (6)
TP+FN
F1 score = + (M
TP+5(FP+FN)

Where: TP, TN, FP and FN are the number of true positive, true negative, false positive and false negative triplets in the
given sample. Positive and negative here refers to the triplets predicted as synergistic and non-synergistic respectively.
Furthermore, we introduced the so-called “precision fold increase” that is the precision of our predictive model relative
to a random classifier, whose precision equals the fraction of positive samples (i.e., synergy rate). Hence, precision fold

increase can be formally expressed as:
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TP
Precision fold increase = —5F— (8)
TP+TN+FP+FN

Note that the output of CCSynergy in the classification setting is initially expressed as class probabilities, which are then
binarized as synergy (1) or non-synergy (0), if it exceeds our chosen threshold (9*20.55) (Fig. 4). We evaluated the
performance of CCSynergy both separately for the 25 distinct CC spaces and also integratively. In the regression scheme,
we simply used the average of the 25 results to generate the integrated predictions, while in the classification setting we
examined three different strategies for integrating the 25 binary results namely: Majority Voting (MV), Spectral Meta-
Learner (SML)% and Randomized Boltzmann Machines (RBM)®. When comparing different methods, we also used
Jaccard similarity index, which is defined as the number of triplets, which both methods consider as synergistic divided

by the number of triplets, which at least one of the methods considers as synergistic.

Statistical analyses. All statistical analyses were performed using the R software (v4.1.2 https://www.r-project.org/).

Code availability. CCSynergy codes and data will be available upon publication.
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