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Abstract 

Combination therapy is a promising strategy for confronting the complexity of cancer. However, experimental exploration 

of the vast space of potential drug combinations is costly and unfeasible. Therefore, computational methods for predicting 

drug synergy are much-needed for narrowing down this space, especially when examining new cellular contexts. Here, 

we thus introduce CCSynergy, a flexible, context-aware and integrative deep learning framework that we have established 

to unleash the potential of the Chemical Checker extended drug similarity profiles for the purpose of drug synergy 

prediction. We have shown that CCSynergy enables predictions of superior accuracy, remarkable robustness and 

improved context-generalizability as compared to the state-of-the-art methods in the field. Having established the 

potential of CCSynergy for generating experimentally validated predictions, we exhaustively explored the untested drug 

combination space. This resulted in a compendium of potentially synergistic drug combinations on hundreds of cancer 

cell lines, which can guide future experimental screens. 

 

Introduction 

Aberrant behavior of cancer cells is caused by malfunctioning of multiple signaling pathways that promote proliferation 

and inhibit apoptosis1. The pervasive redundancy, inherent multifunctionality and the combinatorial control of these 

biological processes, have challenged the traditional “one gene, one drug” paradigm pioneered by Ehrlich2,3. This is 

evidenced by the increasing rate of drug failure and the recurrent emergence of drug resistance in targeted cancer 

therapy2,4. To overcome these challenges, combination therapy is a promising strategy as drug synergy ensures greater 

efficacy in lower drug dosages, which results in avoiding toxicity and minimizing the chance of drug resistance5.  

High-throughput screening methods have enabled testing and quantifying drug synergy6. However, synergistic drug pairs 

are rare and exhaustive exploration of the vast space of potential drug combinations is not experimentally feasible. Thus, 

computational predictive models of drug synergy, which enable prioritization of the candidate drug combinations, are 

much-needed for narrowing down this vast search space. Computational models as diverse as kinetic7,8, network9,10 and 

logic models11,12 have thus been employed to gain quantitative insights into the mystery of drug synergy. Moreover, the 

availability of large-scale drug synergy data, such as the Merck13 dataset, has encouraged the emergence of a wide variety 

of machine learning based methods ranging from logistic regression14 to extremely randomized trees15 and XGBoost16. 

Ultimately, the state-of-the-art deep learning approaches such as DeepSynergy17 and recently TranSynergy18 have entered 

the race and outperformed the others.   
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Various metrics of drug similarity have been proposed to represent drug pairs in drug synergy prediction models. The 

focus has primarily been on chemical features of drugs17,19–21, and structural or network-level similarity of their targets 

within cells9,22–24. Further quantities based on phenotypic effects of drugs such as therapeutic and side effect similarities 

or cell-line based sensitivity profiles have also been considered25–27. Moreover, the Connectivity Map28 has sparked 

development of new similarity metrics based on drug-induced gene expression profiles29–33. Not surprisingly, different 

combinations of these similarity measures have also been examined34–39. Ultimately, the Chemical Checker (CC) database 

arose, which provides a unified framework to systematically extend the concept of drug similarity to all levels of biology, 

from chemistry, targets, networks, to cellular and clinical effects of drugs40. Nevertheless, its enormous potential for 

predicting drug synergy has not yet been unleashed. This motivated us to take the pioneering step to develop a new drug 

synergy prediction framework by integrating all 25 levels of CC bioactivity similarity metrics (Fig. 1a).    

Moreover, it is well-established that drug synergy is highly context specific41, which necessitates precise representation 

of the cellular features in drug synergy prediction models. This is important, especially in precision medicine, where 

computational methods are required to enable accurate predictions in specific cellular contexts. Genome-wide expression 

profiles of cancer cell lines have been extensively employed for this purpose17,18,20,23,42–45. However, the expression level 

of downstream genes is not necessarily a strong indicator of the functional status of the cell and may not directly connect 

with the drug response phenotype. To address this, computational methods to infer the causal upstream processes, namely 

transcription factor or signaling pathway activities, which drive the downstream expression changes, have been 

introduced (e.g., CARNIVAL46). However, their potential for representation of the cell in drug synergy prediction, has 

not yet been unlocked. Moreover, genome-wide CRISPR-based essentiality profile of cancer cell lines (DepMap)47–50, 

which can more directly establish causal links with cell survival, constitutes another promising cell representation 

alternative. Therefore, we aimed to systematically examine and compare these methods for representing cellular contexts 

(Fig. 1b). 

In this work, we thus introduce CCSynergy, a Chemical-Checker harnessing deep neural network that enables context-

aware anti-cancer drug synergy prediction (Fig. 1c). Using our rigorous cross validation schemes (Fig. 2), we ensure that 

CCSynergy offers drug synergy predictions of superior accuracy, remarkable robustness and improved context-

generalizability. Moreover, leveraging a recently published large-scale resource of drug synergy41, we extensively 

examine the potential of CCSynergy to generate experimentally validated predictions. Finally, we provide a compendium 

of potentially synergistic drug combinations that calls for follow-up experimental investigation.  
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Figure 1. CCSynergy framework. A) The Chemical Checker40 based signatures of type II are used as drug features in CCSynergy, which cover five 

main characteristics of small molecules: A. chemistry, B. targets, C. networks, D. cells and E. clinics. Each of them is further divided into five sub-
categories totaling 25 distinct levels for drug representation. B) Five different methods for representing cancer cell lines are used: I) down-stream gene 

expression profiles, II) transcription factor activity and III) signaling pathway activity profiles inferred using CARNIVAL46, IV) Dep-Map based gene 

essentiality and V) signaling pathway dependency profiles (see Methods). C) CCSynergy DNN architecture. A given triplet is represented as a vector 

of length 356, which is formed by concatenating the corresponding vectors of drug pair and cell line features. Since drug synergy is order-agnostic, 

each triplet is represented twice to account for both directions (AB and BA). The DNN contains three hidden layers comprising 2000, 1000 and 500 
neurons respectively, which propagate information from the input layer to the output unit. 125 distinct DNNs are trained, each corresponding to one of 

the 25 CC spaces and one of the 5 cell line representation methods. 

 

 
Figure 2. Cross validation schemes. A drug synergy dataset is shown as a matrix each element of which represents the synergy score 𝑆(𝑛, 𝑚) of a 

given triplet of drug pair (𝑃𝑛) + cell line (𝐶𝑚). The dataset is divided row-wise into five-folds of equal size, which are needed in our 5-fold cross-

validation schemes. A) CV1: 5 training cycles are needed in each of which, one fold is considered as the testing set (yellow) and the remaining four are 

used as the training set (gray). This ensures that the set of drug pairs in the testing and training sets do not overlap (held-out drug combinations). B) 
CV2: The matrix is not only divided row-wise, but also column-wise. Columns are grouped according to the tissue of origin of the corresponding cell 

lines. 5 × 𝐿 learning cycles are needed, where L is the number of distinct tissues in our dataset. In this example, the elements corresponding to the rows 

in the first fold and a set of columns belonging to the lung tissue {𝐶1,...,𝐶𝑟} are considered as the testing set (yellow). The samples in the remaining 

four folds (excluding those whose cell lines originated from the lung tissue), are considered as the training set (gray). This CV scheme further ensures 

that the cell lines in the training set originate from tissues that do not overlap with that of the testing set (held-out tissues). 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.08.28.505568doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?F7ZJTj
https://www.zotero.org/google-docs/?y7zqf2
https://doi.org/10.1101/2022.08.28.505568
http://creativecommons.org/licenses/by-nd/4.0/


4 

Results 

CCSynergy overview 

The primary aim of CCSynergy is to unlock the potential of Chemical Checker (CC) bioactivity profiles40 for predicting 

anti-cancer drug synergy. CC catalogs integrated bioactivity data on almost 800,000 small molecules. It encompasses five 

levels of increasing complexity from A: the chemical properties of the compounds, B: their targets, and C: network-level 

properties, to D: their cellular, and E: clinical effects. Furthermore, each level is divided into five sub-levels resulting in 

25 distinct signatures (Fig. 1a), each of which is represented in a vector format of the same length (128). The vectors 

have been generated via a two-step procedure: applying a dimensionality reduction technique (type I signatures) followed 

by running a network embedding approach on the resulting similarity networks (type II signatures. See Methods section).  

CCSynergy also strives to enable context-aware predictions using five distinct methods for representing cellular contexts 

(Fig. 1b). I: the downstream gene expression profiles, II: the inferred transcription factor activity profiles, III: the inferred 

signaling pathway activity profiles, IV: CRISPR-based gene essentiality profiles, and V: DepMap based signaling 

pathway dependency profiles (See Methods). It is important to note that in CCSynergy, the cell lines are represented as 

vectors of the same lengths (100) after reducing the dimension of the original profiles either using auto-encoder based 

techniques (CCSynergy I and IV) or by selecting the top 100 most informative signaling pathways (CCSynergy III and 

V) or transcription factors (CCSynergy II).   

Finally, we represent each sample as a vector of length 356 by concatenating its drug pair and cell line vectors (Fig. 1c). 

CCSynergy is a feed-forward deep neural network (DNN) and its architecture includes three hidden layers, which 

propagate information from the input vectors to the output unit, where the synergy score is predicted. For a given training 

set, 125 separate DNNs are trained each corresponding to one of the 25 CC spaces and one of the 5 cell line representation 

methods. Note that we considered different hyper-parameter settings and found the optimal one by considering all 125 

DNNs in a 5-fold cross validation scheme (see Methods). 

We evaluated the performance of CCSynergy on two separate datasets namely the Merck dataset13 and the one recently 

published by the Sanger Institute41, using two different 5-fold cross validation schemes (CV) (Fig. 2). In both CV types, 

we ensured that any given drug pair in the testing set does not appear in the training set (held-out drug combinations). 

Furthermore, in the CV2 scheme, we guaranteed that the cell lines in the training set originate from tissues that do not 

overlap with that of the testing set (held-out tissues). We also investigated cross-data learning to check the potential of 

CCSynergy to generate experimentally validated predictions. This guided us to generate a database including millions of 

unexplored (drug pair + cell line) triplets, which we partially validated using its overlap with the DrugComb database51,52.   
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CCSynergy outperforms state-of-the-art methods on the Merck dataset  

We first aimed to evaluate the performance of CCSynergy as compared to its competitors namely DeepSynergy and 

TranSynergy. Therefore, we applied the CV1 cross validation scheme on the Merck dataset (see Methods) and trained 

the 125 distinct DNNs within the CCSynergy framework. In Fig. 3a, we show Pearson correlation coefficient (PCC) 

between the predicted and real values (averaged among the five folds) for the five CCSynergy methods across the 25 CC 

spaces. Several important patterns are relevant: i) CCSynergy I is clearly outperformed by the other four methods, which 

implies that gene expression profiles on their own are not strong enough for representing the cell.  ii)  in CCSynergy II-

V methods, all 25 CC signatures are highly informative (PCC>0.7), and their relative ranking remains almost the same. 

For example, E3 always yields the highest PCC, while C2 always stays the lowest. iii) CCSynergy II is outcompeted by 

the other three, but still remains quite close to them. It is remarkable that TF activity on its own could get so close to the 

signaling pathway-based profiles. iv) expression profiles when combined with causal reasoning (CCSynergy III) can yield 

the same PCC as CRISPR-based essentiality profiling (CCSynergy IV and V). v) Integrating the 25 CC spaces by simple 

averaging always leads to a higher PCC. Fig. 3b reveals that all CCSynergy methods (except the first one), when 

integrating the 25 CC spaces, outcompete both DeepSynergy and TranSynergy. CCSynergy II (0.78) is very close to 

DeepSynergy (0.77), but CCSynergy III, IV and V yield significantly higher PCC (above 0.81), while TranSynergy (0.69) 

and CCSynergy I (0.62) clearly lag behind. It is of note that CCSynergy methods cannot significantly surpass 

DeepSynergy when using each of the 25 CC spaces separately (Supplementary Fig. S1) highlighting the fact that it is 

the integration of the 25 CC spaces, which empowers CCSynergy. 

We then calculated the PCC scores per cell line to check the consistency of CCSynergy’s performance across different 

cellular contexts. Fig. 3c indicates that in 25 out of 28 cell lines (89.3%), CCSynergy III outcompetes both DeepSynergy 

and TranSynergy, which is similarly the case for CCSynergy IV and V but not for I and II (Supplementary Fig. S2). The 

distribution of PCC scores across cell lines further confirms the superiority of the CCSynergy III, IV and V when 

integrating the 25 CC spaces (Fig. 3d), but not when using each of them separately (Supplementary Fig. S3). We also 

checked the consistency of CCSynergy performance across different drugs. Fig. 3e shows that in 27 out of 36 drugs 

(75%), the per-drug PCC score of CCSynergy III is above that of DeepSynergy, which is similarly the case for CCSynergy 

IV and V but not for I and II (Supplementary Fig. S4). The distribution of PCC scores across drugs further confirms the 

superiority of the CCSynergy III, IV and V when integrating the 25 CC spaces (Fig. 3f), but not when using each of them 

separately (Supplementary Fig. S5).  

Next, we aimed to compare the robustness of these methods to data loss. Thus, we removed 6 drugs and 8 cell lines from 

the original dataset resulting in a sample of size 6880, which is 48.2% of the original one. We applied the CV1 scheme 

on the reduced data and calculated the PCC scores for each method. We noted a pronounced reduction of the average 

PCC scores for DeepSynergy (𝛥PCC=-0.061), TranSynergy (𝛥PCC=-0.054) and CCSynergy I (𝛥PCC=-0.049), while 

the reductions for CCSynergy II (𝛥PCC=-0.027), III (𝛥PCC=-0.018), IV (𝛥PCC=-0.019) and V (𝛥PCC=-0.022) were 

significantly less noticeable (Fig. 3g). This is especially important and attests to the remarkable robustness and hence 

more reliable predictions that the integrated CCSynergy framework provides. 
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Figure 3. CCSynergy outperforms state-of-the-art drug synergy prediction methods on the Merck dataset. Five versions of CCSynergy method, 

which differ in their choice of cell line representation methods (See Fig. 1b and Methods), are color-coded according to the legend (the uppermost box) 
and are compared against the existing methods such as DeepSynergy17 (black) and TranSynergy18 (gray). Vertical axes in all panels indicate the Pearson 

Correlation Coefficient (PCC) between the real and predicted drug synergy values. In panels A-G, the PCC scores were calculated within the CV1 

scheme, while in panels H and I, they were measured within the CV2 scheme. In panel A, the PCC scores are shown across the 25 CC spaces and also 

when integrated using simple averaging. In contrast, in panels B-I only the integrated PCC scores are shown. Panel A only compares the five CCSynergy 

versions, while in other panels, DeepSynergy and TranSynergy are also included. For clarity purposes, in panels C and E, only CCSynergy III is shown, 
while the other four versions are illustrated in Supplementary Figs. S2 and S4, respectively. The circles indicate average PCC across the 5 folds, while 

the error bars in panels B, G and H show the corresponding standard deviations. In panel C, the PCC scores are calculated for each cell line separately 

(horizontal axis), and box plots of panel D show their distribution (among the cell lines). Similarly, in panel E, the PCC scores are shown per drug 

(horizontal axis), and box plots of panel F show their distribution (among the drugs). Moreover, in panel I, the average PCC per tissue type (within 

CV2 scheme) is illustrated. It is important to mention that in panel G, the circles indicate the average PCC, when the entire dataset is used (N=14,280), 
while squares show the average PCC, when a reduced subset of the data is used (N=6,880). Note that all the analyses in this figure are based on the 

Merck drug synergy dataset (See Methods).    
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Finally, we employed the CV2 scheme to examine the generalizability of these methods for novel cellular contexts. Fig. 

3h shows the resulting PCC scores for the five CCSynergy methods as compared to the competing ones. The following 

patterns are germane: i) the average PCC scores in CV2 substantially decreased in all methods as compared to the CV1 

highlighting the difficulty of drug synergy prediction in novel cellular contexts. ii) the PCC score for the CCSynegy II 

dropped down to the same level as that of the CCSynergy I (0.48) implying that the context-generalizability of the TF-

based cell representation is as low as the simple gene-expression based one. iii) CCSynergy V (0.57) distinguished itself 

from the CCSynergy III (0.54) and IV (0.54), which were indistinguishable in the CV1 scheme, and iv) CCSynergy V is 

the only method that significantly outperforms both DeepSynergy (0.54) and TranSynergy (0.43). Furthermore, 

calculating the PCC scores in the CV2 scheme per tissue type further confirms the superiority of CCSynergy V in all five 

tissues (Fig. 3i). Again, we observed that CCSynergy V has gained its superior performance by integrating the 25 CC 

spaces as it gets outperformed by DeepSynergy when using each CC signature separately (Supplementary Fig. S6), 

which further highlights the importance of the integrative nature of the CCSynergy framework.  

  

CCSynergy performs well on the Sanger drug synergy dataset 

We then examined the performance of CCSynergy on a new dataset in which the drug synergy is measured differently 

from the Merck dataset. Thus, we examined the large-scale drug combination screen recently performed in the Sanger 

institute41, which has reported drug synergy in a binary format enabling us to evaluate CCSynergy in a classification 

setting (See Methods). We limited this analysis to CCSynergy III and V, which were the top-performing ones respectively 

in the CV1 and CV2 schemes on the Merck dataset. Under the CV1 scheme, the corresponding 2×25 DNNs were trained, 

which output the synergy probability (𝜃) for each testing triplet. This enabled us to calculate the area under the ROC 

curve (AUC) for these two methods across the 25 CC spaces. Fig. 4a shows that i) all CC signatures are almost equally 

informative (AUC ranging between 0.79 and 0.83 in CCSynergy III and between 0.80 and 0.84 in CCSynergy V). ii) 

CCSynergy V yields slightly higher AUC than CCSynergy III across the majority of the CC spaces, and iii) integrating 

the 25 CC spaces (by simple averaging) produces the highest AUC (0.84 in CCSynergy III and 0.86 in CCSynergy V). 

Next, we aimed to binarize the outputted synergy probabilities (𝜃) by determining an optimal threshold (𝜃*). To this end, 

we measured F1-score, precision and recall as a function of 𝜃 for both methods (Figs. 4b and c). Whereas the recall 

evidently decreases monotonically by increasing 𝜃, we observed that precision increases up to around 𝜃=0.6, but then 

starts to fluctuate. As a common practice in the field, 𝜃* is chosen so as to maximize the F1-score, which is a harmonic 

mean of precision and recall. However, notably precision is much more important than recall for the ultimate goal that 

drug synergy prediction pursues. Therefore, instead of maximizing F1-score, we selected 𝜃* so as to maximize precision 

subjected to the constraint that F1 (𝜃*)≥
1

2
Max (F1). We thus ended up with 𝜃*=0.55 for both methods. 

Afterwards, we integrated the binary output of the 25 CC spaces using three different approaches: majority voting (MV), 

Spectral Meta-Learner (SML)53 and Randomized Boltzmann Machines (RBM)54. We noted that MV-based integration 
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leads to substantially higher precision and lower recall than SML and RBM methods (Fig. 4d). Moreover, Fig. 4e 

indicates more than 7-fold increase of precision (relative to a random classifier) in both CCSynergy methods when using 

MV and more than 5-fold increase when using SML or RBM. We detected similar patterns, when measuring these metrics 

per tissue type (Supplementary Fig. S7). Importantly, Supplementary Fig. S8 shows that whereas MV-based integration 

of the 25 CC spaces always substantially exceeds the single CC-based ones in terms of precision, the SML or RBM based 

integration always provides superior recall. Furthermore, we observed that all three integration methods always lead to 

higher convergence between CCSynergy III and V (measured as the Jaccard similarity index; Supplementary Fig. S9) 

than the single-CC based ones. Moreover, intersection of the set of synergistic triplets predicted by CCSynergy III and V 

culminates in evidently lower recall than either method alone and interestingly higher precision both in the single-CC 

methods and in the integrated ones (Supplementary Fig. S8).  

 

 
 

 

Figure 4. CCSynergy performs well on the Sanger drug synergy dataset. Panels A-E show the results obtained under the CV1 scheme, while panels 

F-J show their CV2-based equivalent. A and F) the average AUC values across the 25 CC spaces plus the integrated one (using simple averaging) are 

shown as red (CCSynergy III) or blue (CCSynergy V) circles. The curves in panels B, C, G and H indicate F1-score (black), precision (blue) and recall 

(red) as a function of the synergy probabilities (𝜃) when using CCSynergy III (CV1: panel B and CV2: panel G) or CCSynergy V (CV1: panel C and 

CV2: panel H). Note that in these four panels, the vertical orange and cyan lines respectively show the 𝜃* and the 𝜃 
maximizing the F1-score. Moreover, 

the horizontal gray lines respectively show the maximum and half of the maximum F1-score. In panels D (CV1), and I (CV2), circles and squares 

indicate respectively the average precision and recall obtained using CCSynergy III (red) or V (blue) after integrating the 25 CC spaces based on the 

three integration methods mentioned in the horizontal axis, namely: Majority Voting (MV), Spectral Meta-Learner (SML)53 and Randomized Boltzmann 
Machine (RBM)54.  Similarly, in panels E (CV1) and J (CV2), the vertical axes indicate the precision fold increase obtained when using CCSynergy 

III (red) or V (blue) under operation of the three different integration methods. The error bars in all of these panels indicate the standard deviation of 

the PCC scores across the 5-folds. Note that all the analyses in this figure are based on the Sanger drug synergy dataset (See Methods).    
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Finally, we performed similar analyses within the CV2 scheme, and first noted that compared to the CV1, the AUC values 

across all CC spaces have expectedly decreased in both methods, but predictive power to some extent is still preserved 

(Fig. 4f). The average AUC values across the CC spaces varies between 0.60 and 0.68 in CCSynergy V, and similarly 

between 0.59 and 0.66 in CCSynergy III. We also observed that in both methods, the chosen 𝜃*=0.55 fulfills the 

expectations, albeit with a negligible deviation (Figs. 4g-h). After discretizing the results, we observed that in all 

integrative approaches, both precision and recall has decreased in CV2 as compared to the CV1 (Fig. 4i). Nevertheless, 

we can still detect significant enrichment of precision in all integrative scenarios (Fig. 4j). SML and RBM based 

integration yields higher than 2-fold precision increase in both methods, and the VM based one produces even higher 

enrichment (average 3.1 in CCSynergy III and 4.5 in V).   Moreover, the detailed patterns described in CV1 regarding 

the superiority of the integrative approaches over the single CC-based ones (Supplementary Figs. S7-S9), are also 

similarly detected here (Supplementary Figs. S10-S12). Thus, CCSynergy remains helpful, even when applied for 

predicting drug synergy in novel cellular contexts, and it performs well on an alternative drug synergy dataset, where it 

is evaluated in a classification setting. 

 

CCSynergy is of potential to generate experimentally validated predictions  

Our next goal was to evaluate a higher-level generalizability of CCSynergy within a cross-dataset learning scheme, which 

is challenging, especially if drug synergy is measured differently across datasets. This is indeed the case for the Mark and 

the Sanger datasets, which we used as the training and the testing sets, respectively. This can be regarded as a large-scale 

experimental validation of the CCSynergy predictions. We ensured that no triplet is shared between the two datasets by 

considering only the cell lines that were not seen in the Merck data. We distinguished between three scenarios in the 

Sanger data (Fig. 5a) and categorized a given drug combination by checking whether: I) both drugs are seen, II) only one 

of the drugs is seen, and III) neither drug is seen in the Merck dataset. We then trained 2×25 DNNs, corresponding to 2 

methods (CCSynergy III and V) and 25 CC spaces using the entire Merck data as the training set in a classification setting.  

After integrating the synergy probabilities (𝜃) of the 25 CC spaces by simple averaging, we calculated the AUC values 

separately for the above three scenarios. Figs. 5b-c show that, in line with our expectations, the AUC values in scenario 

I were pretty good in both methods (0.70 in CCSynergy V and 0.72 in III). In contrast, in scenario III, they were quite 

close to the baseline 0.50 for both methods (around 0.55) implying that the model is not much better than a random 

classifier in cases where neither drug is seen in the training set. However, the good news is that for scenario II, we still 

detected some predictive power as the AUC values were considerably higher than 0.5 in both methods (0.63).  

We then binarized the results and integrated the 25 CC spaces using the three integration approaches (MV, SML and 

RBM). We detected consistent patterns of precision (Figs. 5d-e) and its enrichment (Figs. 5f-g) across the three scenarios, 

regardless of the integration approaches and the CCSynergy methods used. In both scenarios I and II we observed 

enrichment of precision in all cases, and expectedly the enrichment in the first scenario was always higher than 2-fold 

and stays consistently above the second one. In the MV-based integration, generally we observed higher enrichment (e.g., 

more than 3-fold in both scenarios for CCSynergy V) as compared to the SML and RBM, which corroborated our previous 
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observations. However, again we did not see a noticeable departure from the baseline (one-fold) and hence no enrichment 

of precision for the third scenario (Figs. 5f-g). Thus, we conclude that CCSynergy retains a considerable predictive power 

on unseen cellular contexts in a cross-data learning scheme and hence enhances the potential for generating 

experimentally validated predictions, provided that at least one of the drugs is seen in the training set. 

 

 

Figure 5. The potential of CCSynergy for generating experimentally validated predictions. In this analysis, we used the Merck dataset as the 

training and the Sanger dataset as the testing set. Based on their overlap with the Merck data, we have considered three scenarios in the Sanger data and 
analyzed them separately, which are color-coded and described in panel A. The upper (B, D and F) and lower (C, E and G) panels were obtained using 

CCSynergy V and III respectively. The vertical axes indicate the AUC (panels B and C), precision (panels D and E), and precision fold increase (panels 

F and G). Note that in this analysis, the 25 CC spaces were integrated using simple averaging in panels B and C, while in the other panels three 

integrative approaches (horizontal axes in panels D-G), namely: Majority Voting (MV), Spectral Meta-Learner (SML)53 and Randomized Boltzmann 

Machine (RBM)54 were considered.    

 

CCSynergy generates a compendium of potentially synergistic drug combinations  

We showed that CCSynergy is of enhanced potential for generating experimentally validated predictions and so it can 

facilitate exploration of the untested drug combination space. This motivated us to embark on a voyage to exhaustively 

explore this space. However, the lack of precision enrichment in the third scenario (Fig. 5) cautioned us that CCSynergy 

could be helpful only in a restricted subspace of drug combinations in which at least one of the drugs is seen in the training 

set. We thus adjusted our exploration strategy accordingly by focusing on a subspace encompassing the pairing of every 

single drug (62 drugs: anchor drugs) used in our training data (Sanger dataset) with another pool of drugs that we obtained 

from the GDSC database55 (264 drugs: library drugs). By considering 543 well-characterized cell lines, we ended up with 

a subspace including 7,786,146 unique triplets that were not tested in the Sanger screen (Fig. 6a). We then applied 

CCSynergy III and V across the 25 CC signatures using the entire Sanger data as the training set in order to predict drug 

synergy for every triplet in this subspace. After binarizing the outputs using 𝜃*=0.55, two binary matrices with 7,786,146 
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rows and 25 columns, were generated. Furthermore, integration of the 25 single-CC results using MV, SML and RBM 

methods generated three additional binary columns that we added to the final matrices (Supplementary Tables S1 and 

S2). We distinguished between three types of triplets in this space (Fig. 6b). Note that although the first two types here 

are equivalent to the scenarios I and II in the previous analysis, the type III here is not, but rather is an easier to predict 

version of the type II.  

We enumerated the synergistic triplets for both methods across the 25 CC spaces, which varied between 76,468 (0.98%) 

and 201,443 (2.59%) in CCSynergy III and between 53,486 (0.68%) and 242,682 (3.11%) in CCSynergy V (Fig. 6c). We 

noted that in both methods a considerable fraction of the triplets is predicted as synergistic at least in one CC space 

(1,214,794 (15.60%) in CCSynergy III and 1,104,751 (14.18%) in V), but this number declines exponentially by 

increasing the minimum number (n) of required CC spaces (Fig. 6d). For example, in CCSynergy V it goes down to 

153,091 (1.96%) when n=5 and to 843 (0.01%) when n=25. The agreement between the two methods (CCSynergy III 

and V), which is measured using the Jaccard similarity of their synergistic triplet sets, in the unseen-cell line scenarios (I 

and II) is unsurprisingly lower than the seen-cell line type (III) (Supplementary Fig. S13). Moreover, the methods 

diverge further by increasing the minimum number (n) of required CC spaces (Fig. 6e).  

Next, we observed that the MV-based integration of the 25 CC spaces is quite stringent as it identifies only 24,355 synergy 

cases in CCSynergy V (0.3%), which is a subset of the ones predicted using SML (523,022 (6.7%)) and overlaps strongly 

(98.5%) also with that of the RBM (342,840 (4.4%)) (Fig. 6f). We then checked how synergy is distributed across 

different cell lines and observed power-law distribution both when using the integration approaches (Fig. 6g) or 

considering the CC spaces alone (Supplementary Fig. S14). The implication is that there are few cellular contexts, which 

are generally more prone to synergy than the others. For example, in the MV-based integration, less than 10% of the cell 

lines (50 out of 543) account for the majority (12,484 (51.3%)) of the predicted synergies. We observed a similar power 

law distribution of the number of cell lines providing synergy per drug pair, regardless of the integration methods (Fig. 

6h) or the single-CC spaces (Supplementary Fig. S15) used. This reflects the existence of few drug pairs, which are 

generally-synergistic independent of the cellular context. For example, the MV-based integration method predicts synergy 

for Gemcitabine and AZD7762 in 421 out of 543 cell lines (77.5%). Similarly, we found 36 drug combinations (out of 

14,483) for which synergy in more than 100 cell lines are predicted. Synergy was found at least in one cell line only for 

2,153 drug combinations (15.3%), so for the majority of them (84.7%), synergy was never detected. Analysis of the 

CCSynergy III results also revealed very similar patterns (Figs. 6i-k and Supplementary Figs. S16-S17).  
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Figure 6. CCSynergy generates a compendium of potentially synergistic drug combinations. A) a subspace of the untested drug combination space 
was considered for exploration, which was constructed by pairing every single drug that was used in the Sanger dataset (62 anchor drugs) with another 

pool of drugs that were obtained from the GDSC database55 (264 library drugs) in 543 well-characterized cancer cell lines. This resulted in a subspace 

including 7,786,146 unique triplets that were not tested in the Sanger drug combination screen. After training CCSynergy III and V based on the 25 CC 

signature levels using the entire Sanger dataset as the training set, two binary matrices with 7,786,146 rows and 25 columns were generated. 

Furthermore, we added three additional columns to these matrices based on the results obtained by MV, SML and RBM integration methods. B) We 
divided the triplets in this subspace into three types based on their overlap with the Sanger dataset. C) The bars indicate the number of synergistic 

triplets across the 25 CC spaces (horizontal axis) identified by CCSynergy III (red) and V (blue). D) Each circle indicates the number of synergistic 

triplets (in logarithmic scale) identified as synergistic in at least n CC spaces (horizontal axis) based on CCSynergy III (red) and V (blue). E) The 

Jaccard similarity between the set of synergistic triplets identified by CCSynergy III and the one using CCSynergy V, is shown as a function of n 

(minimum number of CC spaces on which a given triplet is required to be synergistic).  F) the sets of synergistic triplets after integrating the 25 CC 
spaces based on MV, SML and RBM using CCSynergy V are identified and the Venn diagram shows the overlap between them. The density plots show 

the distribution of the number of synergistic triplets identified (using CCSynergy V) G) per cell line, and H) per drug pair, separately for each of the 

three integrative approaches. Panels I, J and K are the equivalent panels based on CCSynergy III.   
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Figure 7. Partial validation of CCSynergy database using its overlap with DrugComb database51,52. We identified partial overlap between the 
triplets considered in the CCSynergy database with those in the DrugComb database. We ranked triplets in this subset in terms of their Loewe synergy 

score, and considered the top 10% as synergistic (i.e., those with Loewe score > 9.2).  A) We partitioned the triplets the same as in Fig. 6b. B) Number 

of triplets in the overlapping set (N), number of synergistic triplets predicted by CCSynergy (TP+FP), number of triplets that in both databases are 

considered as synergistic (i.e., truly synergistic cases: observed TP), the TP that is expected by chance (10% of (TP+FP)), and the precision fold increase, 

which is basically the ratio of observed by expected TP, are shown for each three scenarios separately and in total (the column names). These 
measurements have been calculated both for CCSynergy V and III and also their intersection (the row names in the right-hand side). Note that the 

results in this table were obtained using RBM-based integration of the 25 CC spaces. For the MV or SML-based versions, please see Supplementary 

Fig. S18. C) We have zoomed into the 29 triplets in scenario II identified as synergistic by both CCSynergy III and V methods (i.e., their intersection, 

which is highlighted by a blue rectangle in panel B). We have listed the drug names, cell lines, tissues, study name and synergy Loewe values for each 

of the 29 triplets and they are classified and color-coded according to their relative ranking in terms of synergy values in the DrugComb database. For 
each class, the expected and observed number of true positive cases (triplets identified as synergistic in both DrugComb and CCSynergy databases) 

along with their corresponding fold changes are specified.  

 

To validate (at least partially) our massive predictions, we checked the DrugComb database51,52, where the majority of 

the existing drug combination studies have been amalgamated. We identified 17,472 distinct triplets shared with 

DrugComb, which includes all three triplet types (Figs. 7a-b). The sample size is sufficiently large for a statistical 

analysis, even though it covers only 0.22% of the triplets in our database. We considered samples with a Loewe score 

above 9.2 (i.e., the top 10% among the overlapping set) as our reference of true positives. We observed considerable 

precision enrichment for all three triplet types under RBM (Fig. 7b) and SML (Supplementary Figs. S18a-b) integration 

methods. In the MV-based integration scheme, we also observed precision enrichment for triplets of type I, but for types 

II and III, the sample of MV-based predicted synergies was not of sufficient size (Supplementary Figs. S18c). These 

observations are valid when either CCSynergy III or V method is used, and their intersection leads to even a higher 

precision enrichment. For example, in the second scenario, the intersection results in 3.10-fold precision enrichment, 
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while the methods alone yield enrichment of 1.35 and 1.87-fold respectively (Fig. 7b). Fig. 7c lists the 29 triplets that 

both methods under RBM-integration predict as synergy. As we can see 9 out of the 29 is among the top 10% (true 

positives), which is considerably larger than 2.9 (expected by chance). Importantly, these true positive cases belong to 

skin and lung tissues, which were not used in our training set, and so the observed enrichment is not simply an artifact of 

the choice of tissues in our training set. Furthermore, the enrichment still stays noticeable, if we define synergy more 

moderately, for example based on the top 25% or 50% triplets. Moreover, we have observed considerable depletion of 

antagonist ones. We identified only one triplet belonging to the bottom 10%, while the expectation is to observe 2.9 by 

chance. Thus, in line with our previous observations, the overlap between our database and DrugComb provides additional 

statistical evidence attesting to the enhanced potential of CCSynergy to generate experimentally validated predictions.  

 

Discussion 

 
We have introduced CCSynergy, a deep learning framework that we have established to unleash the potential of the 

Chemical Checker extended bioactivity profiles40 for drug synergy prediction. We have proved that the 25 CC spaces 

provide highly potent representations of drug features and by integrating them, CCSynergy has managed to surpass the 

state-of-the-art deep learning methods in the field. Moreover, we performed insightful analyses on how to effectively 

embrace the context-specificity of drug synergy in our predictive models. Firstly, we have demonstrated that down-stream 

gene expression profiles on their own are not sufficiently informative, but can be substantially upgraded under a causal 

reasoning framework inferring up-stream signaling-pathway activities (CCSynergy III). Secondly, our analysis revealed 

that representing cell lines based on genome-wide CRISPR/Cas9 screens, ensures consistent superiority of the model in 

terms of context-generalizability (CCSynergy V).  

Moreover, the fact that CCSynergy performs well on an alternative dataset (Sanger data41), where drug synergy was 

measured differently from the dataset used in the hyper-parameter optimization step (Merck data13), confirms its potential 

for wide applicability. More importantly, we have also demonstrated that compared to its competitors, CCSynergy is 

remarkably more robust to data loss, which ensures higher reliability and generalizability. Furthermore, we observed 

considerable precision enrichment when applying CCSynergy in a cross-data learning scheme operated on cell lines that 

were not seen before. This observation is all the more remarkable, if we consider the fact that drug synergy is notorious 

for its poor reproducibility across different experimental studies. For example, despite the efforts made in the DrugComb 

database51,52 for standardization and harmonization, the distribution of Loewe scores in the Merck13 and NCI-ALMANAC56 

datasets is still quite different and they are poorly correlated (PCC=0.25) (Supplementary Fig. S19). Thus, the precision 

enrichments in our cross-data learning analysis deserves to be appreciated and indeed attests to the fact that CCSynergy, 

to some extent, is of potential for generating experimentally validated predictions and hence can guide future experimental 

screens by narrowing down the space of untested drug-combinations to a more promising sub-space enriched with true 

positive cases. This motivated us to cautiously explore this space, which ultimately culminated in a new drug synergy 

database of unparalleled scale that can be of great assistance for designing follow-up experimental screens.  
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Nevertheless, as quantified rigorously under the CV2 scheme, our results indicate that there is still ample room for 

improvement, as current methods are all suboptimal for predicting drug synergy in novel cellular contexts. Importantly, 

a substantially higher context-generalizability is necessary in order for computational methods to ultimately exert 

significant clinical impact, especially towards fulfilling the ambitious goals of precision medicine, where the specificity 

of the cellular contexts plays a decisive role. Thus, the field definitely needs to invest further into exploring innovative 

strategies on how to represent the cell. However, undoubtedly deep learning methods trained directly on drug combination 

data, would not be sufficient for this purpose. We strongly believe that insights from single-drug response screens would 

be the key complement that might also pave the way for detailed mechanistic understanding of drug synergy. 

Further directions for methodological improvements exist, both in terms of model architecture and especially with regard 

to the integration of the 25 CC spaces. For example, instead of CC signatures of type II, the similarity networks inferred 

from the CC signatures of type I could be employed, which would require using Convolutional Neural Networks (CNNs) 

instead of DNNs. Alternatively, considering the 25 CC signatures simultaneously in the deep learning framework instead 

of using them separately is also a valid option. That being said, in the current study, we have already applied three different 

approaches for integrating the CC spaces, which endow CCSynergy with further flexibility. For example, on the one 

hand, the majority voting approach leads to a higher precision but lower recall, which can be helpful especially for 

exploring very large spaces. On the other hand, in scenarios where recall is more important, for example when prioritizing 

a drug combination list of small or moderate size, applying the SML or RBM methods will be more appropriate. 

In summary, we have taken the pioneering step to unlock the potential of Chemical Checker bioactivity profiles by 

establishing CCSynergy, which is a flexibly integrative framework for context-aware prediction of drug synergy. We 

anticipate that CCSynergy sparks further methodological developments in the field, inspires new applications, and 

accelerates exploration of the untested drug combination space.  

 
 

Materials and Methods 

Drug synergy data 

We analyzed two major drug synergy screens in our study. First, we focused on the Merck dataset13, which is based on a 

large-scale drug combination screen that includes 583 distinct drug pairs, 39 cancer cell lines totaling 22,737 distinct 

(drug pair + cell line) triplets. We obtained their corresponding Loewe synergy scores from the DrugComb database51,52 

(https://drugcomb.org/download/; version 1.5), which has accumulated, standardized and harmonized the results of 

several drug combination screening studies. For a given triplet, we used the average of replicate measurements as the 

final synergy score. We focused exclusively on drugs, whose CC signatures are available at the Chemical Checker 

database40, and cell lines for which we managed to obtain all the five cell line representations in our study. Therefore, we 

focused on 36 out of the original 38 drugs and 28 out of the original 39 cell lines totaling 14,280 distinct (drug pair + cell 

line) triplets (Supplementary Table 3).  
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Secondly, we analyzed the recently published drug combination screen by the Sanger institute (https://gdsc-

combinations.depmap.sanger.ac.uk/downloads)41, which contains 2,025 pairwise drug combinations and 125 cell lines 

including breast, colorectal and pancreatic cancer totaling 108,259 distinct triplets. Here, we also focused on a portion of 

the original dataset, for which both CC signatures and all the cell line representations are available, and so we ended up 

with 62 drugs, 1177 drug pairs, and 93 cell lines totaling 46,748 distinct triplets (Supplementary Table 4). The synergy 

in the Sanger dataset is reported in a binary format, and the triplets are classified as synergistic (1) or non-synergistic (0) 

based on the shifts in potency (∆IC50) and in efficacy (∆Emax), which were calculated as the difference between the 

observed combination response and expected Bliss. The authors have summarized replicate measurements of triplets as 

synergistic, if half or more of the replicate measurements showed synergy. Moreover, since the design of the Sanger 

screen distinguishes between the direction of the drug pairs (anchor vs. library), we consider a pair as synergistic if 

synergy is observed in either direction. Note that in the breast cell lines, the synergy has been measured only in one 

direction, while for colorectal and pancreatic cancer cell lines, it has been measured in both directions, which largely 

explains the lower synergy rate that we observed in our analysis for breast (1619 in 30,627 triplets (5.28%)) as compared 

to those in colorectal (897 in 8349 triplets (10.74%)) and pancreatic (905 in 7772 triplets (11.64%)) cell lines. Note that 

we employed the Loewe synergy scores of the Merck dataset in a regression setting, while we used binary-scores of the 

Sanger dataset in a classification setting. 

 

Drug representation: Chemical Checker extended drug similarity profiles 

In order to represent drugs in our deep learning framework, we utilized the extended drug similarity profiles in the 

Chemical Checker (CC) database (https://chemicalchecker.org/downloads/root)40, which systematically catalogs 

integrated bioactivity data on almost 800,000 small molecules by constructing 25 CC signatures encompassing all levels 

of bioactivity, which we briefly delineate here (Fig. 1a). Level A includes chemical properties of compounds: A1) 2D 

fingerprints (the 2,048-bit Morgan fingerprints), A2) 3D fingerprints (the 1,024-bit E3FP fingerprints), A3) the Murcko’s 

scaffold57, A4) molecular access system keys representing structural features relevant to medicinal chemistry, and A5) 

physicochemical parameters of each molecule (e.g. the molecular weight, number of heavy atoms, number of 

heteroatoms, number of rings, number of aliphatic rings, number of aromatic rings, number of hydrogen bond acceptors, 

number of hydrogen bond donors and number of rotatable bonds). Level B characterizes the properties of the cellular 

targets of the compounds: B1) mechanisms of action of approved and experimental drugs, B2) metabolic genes (drug-

metabolizing enzymes, transporters and carriers), B3) crystals (protein structures bound to each small molecule), B4) 

protein binding data, and B5) high-throughput screening bioassays based on bioactivity values from PubChem58. Level 

C covers their pathway/network level properties: C1) small-molecule roles, which have been derived from the ChEBI 

ontology graph59, C2) metabolic pathways, which enable enumerating the set of metabolites in the proximity of a given 

compound by computing an influence matrix, C3) signaling pathways (the biological pathways that may be affected by 

the interaction of a molecule with its targets are enlisted), C4) biological processes based on the Gene Ontology 

Annotation database60, and molecules are basically associated with biological process terms based on the annotations of 

their cellular targets, and C5) interactome, which enables enumerating the set of proteins (on top of the nominal targets) 
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that are influenced by a given compound. Level D pertains to the cellular effects of the drugs: D1) compound-induced 

gene expression profiles obtained from the L1000 Connectivity Map28, D2) small molecule sensitivity profiles of the 

NCI-60 panel of  cancer cell lines61, D3) chemical genetics profiles of small molecules screened against ~300 yeast 

mutants obtained from MOSAIC62 , D4)  morphology profiles obtained from the LINCS data portal, which reports 812 

cell image features measured after treatment of cells with ~30,000 compounds63, and D5)  cell bioassay profiles from 

ChEMBL64 . Finally, level E accommodates the clinical effects of the small molecules: E1) therapeutic areas profiled 

using the ATC classification system codes, E2) Disease indication profiles of drugs obtained from ChEMBL64 and 

RepoDB65, E3) side effect profiles of drugs obtained from SIDER66, which are expressed as Unified Medical Language 

System terms, E4) compound-disease association profiles obtained from the Comparative Toxicogenomics Database 

(CTD)67, which contains a medical vocabulary (MEDIC) that is based on the MeSH hierarchy, and E5) drug-drug 

interaction profiles obtained from DrugBank68.  

In 22 CC spaces (all except A5, D2 and D4), data are discrete (or discretized) and are expressed as sets of terms such as 

proteins, pathways, ATC codes and so on. After removing the frequent and rare terms, and down-weighting the less 

informative ones using frequency–inverse document frequency (TF–IDF) transformation, a dimensionality reduction 

technique called latent semantic indexing (LSI) has been applied. Similarly, for the continuous data (A5, D2, D4), after 

robust scaling of the columns, PCA algorithm has been used. This procedure has generated 25 numerical matrices, whose 

rows correspond to molecules and columns compose the so-called “signatures of type I”, each component of which is 

orthogonal and sorted by its contribution to the variance of the data. The number of components in each CC space ensures 

retaining 90% of the variance, and hence the size of CC spaces varies from 500 (A5) to 1500 (D1). Next, to balance the 

size of the CC spaces, the authors have derived CC signatures of type II, first by building similarity networks from type 

I signatures, followed by applying a network embedding technique (node2vec69). Thus, in the Chemical Checker 

database40, a given drug molecule is ultimately represented by 25 vectors of the same length (128) that we have used as 

input in our CCSynergy framework (Fig. 1c). 

 

Cell line representation methods 

In order to represent cellular contexts in our framework, we examined five different methods as follows (Fig. 1b): 

Method I: This is the simplest approach that we considered as our baseline method, which is simply based on the 

Affymetrix expression array profiling of the cancer cell lines in the Sanger/MGH GDSC panel 

(https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html) that are preprocessed using RMA 

normalization.  The original data includes the basal expression of 19,563 genes for a given cell line, but we first selected 

the top 1000 genes ranked in terms of their variance across cell lines and then trained an auto-encoder with a single hidden 

layer including 100 neurons to reduce the dimension from 1000 to 100. The auto-encoder minimizes the mean square 

error (the difference between predicted and true gene expression vectors) as the loss function. A linear activation function 

was applied in each layer of the auto-encoder and the weights were initialized randomly and trained using ADAM 

optimizer with learning rate of 1e-4. The weights were updated after mapping each batch of size 100, and the network 
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training was iterated for 1000 epochs. The final output is available at the Supplementary Table 5. Note that the hyper-

parameters that we mentioned above were chosen among a combination of choices that we considered in our grid-search 

towards minimizing the MSE score (Supplementary Table 6).  

Methods II and III: For representing cellular contexts, these two methods rely on the CARNIVAL method46,70, which 

contextualizes signaling networks from gene expression data. Following the standard CARNIVAL pipeline, the RNA-

Seq profiles of cancer cell lines (https://cellmodelpassports.sanger.ac.uk/passports) were normalized and compared 

against their corresponding GTEx normal tissues. Then, the differentially expressed genes were determined using the 

Limma R package71. Next, the transcription factor (TF) activities were estimated using DoRoThea72 R package, which 

systematically catalogs regulons of every transcription factor and outputs the normalized enrichment scores (NES) for 

TFs based on the transcription status of their corresponding regulons. We did not use the output of DoRoThea directly in 

our Method II for cell line representation, but rather used it along with the output of PROGENY73, which estimates 

signaling pathway activities based on consensus gene signatures, and the OmniPath-based signed and directed human 

signaling network74, as the inputs of the CARNIVAL method, which infers a signaling subnetwork including up and 

down-regulated signaling nodes and their interactions. We used the output of the CARNIVAL method in two different 

ways: whereas Method II focuses exclusively on the transcription factors (TFs), Method III operates on the level of 

signaling pathways. In other words, in method II, we focused on the nodes in the CARNIVAL output that are TFs and so 

we expressed a given cell line as a vector, each element of which belongs to a TF and is +1 (the given TF is an up-

regulated node), -1 (the given TF is a down-regulated node) or 0 (the given TF is not present in the inferred network). We 

chose the top 100 TFs, which are ranked according to their variability across different cell lines (Supplementary Table 

7). In contrast, for method III, we checked the over-representation of the inferred nodes in 1530 signaling pathways (gene 

sets) from Reactome75 by running gene set analysis using Fisher exact test. We chose 100 signaling pathways (gene sets), 

which we required i) to be significantly overrepresented (Fisher exact test p-value <0.05) in at least 50 and at most 900 

cell lines (out of 1081 cell lines), ii) to be smaller than 100 in size, and iii) to be known as cancer-related. Thus, in method 

III, a given cell line is represented as a binary vector of length 100, each element of which belongs to a given signaling 

pathway and is either 1 (significantly overrepresented) or 0 (not overrepresented) (Supplementary Table 8).     

Method IV and V: These two methods both rely on the gene essentiality profiles for representing cell lines (DepMap 

Public 22Q1: https://depmap.org/portal/download/CRISPR_gene_effect.csv), which contain integrated fold-change 

depletion values for CRISPR-Cas9 screens performed at either the Sanger or Broad Institutes. The datasets from the two 

institutes have been batch corrected and combined into integrated datasets that can be analyzed jointly49. The dataset 

covers 908 cell lines and 17,486 genes. We used this dataset in two different ways generating two distinct cell line 

representation methods: Method IV: we first selected 1000 most informative genes, whose depletion fold-change is 

smaller than (-1) in at least 100 cell lines and at most 800 cell lines. Thus, we initially represented a given cell line using 

a vector of length 1000 each element of which corresponds to the fold-change depletion of one of the selected 1000 genes. 

We then reduced the dimension of these vectors from 1000 down to 100 using an auto-encoder with exactly the same 

architecture and hyper-parameters as in the method I described above (See Supplementary Table 9, which includes the 

final cell line profiles using method IV). Method V: we ran an over-representation analysis on the Reactome pathways 
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similarly to what we did in method III (see above) to generate “signaling pathway dependency” profiles for the cancer 

cell lines. More precisely, for a given cell line, we first identified the set of genes, whose depletion fold-change is smaller 

than (-1) and then we checked the overrepresentation of this gene set in 1530 signaling pathways (gene sets) from 

Reactome using Fisher exact test. We chose 100 signaling pathways (gene sets), which we required i) to be significantly 

overrepresented (Fisher exact test p-value <0.05) in at least 100 and at most 800 cell lines (out of 908), ii) to be smaller 

than 100 in size, and iii) to be known as cancer-related. Thus, in method III, a given cancer cell line is represented as a 

binary vector of length 100, each element of which belongs to a given signaling pathway and is either 1 (significantly 

overrepresented) or 0 (not overrepresented) (Supplementary Table 10).     

 

CCSynergy deep learning framework 

Having established our drug and cell line representation methods, we were then able to represent each sample of (drug 

pair + cell line) triplet by concatenating its corresponding pair of drugs and cell line vectors. It is important to note that 

we did not concatenate all the 25 different CC signature vectors, neither did we concatenate the 5 different cell line vectors 

together, but rather generated 125 separate concatenations of the drug pair and cell line vectors of the same size 

(128+128+100=356), each of which correspond to one of the 125 distinct combinations of the CC spaces and cell line 

representation methods. Finally, each resulting vector was used as an input in one of the 125 DNNs required to be learnt 

per a given training set (Fig. 1c). Furthermore, it is noteworthy that the synergy scores are order-agnostic and so we 

needed to represent a given sample twice to account for both directions (i.e., AB and BA). CCSynergy is a feed-forward 

deep neural network (DNN) and its architecture includes three hidden layers, which propagate information from the input 

vectors to the output unit, where the predicted synergy score is produced. The number of neurons per layer is N1=2000, 

N2=1000 and N3=500, which are determined along with other hyper-parameters of the model after considering 256 

different choices of hyper-parameter combinations (Supplementary Table 11) in our grid-search towards maximizing 

the average Pearson’s correlation coefficient between the predicted and the real Loewe synergy scores over all 125 distinct 

DNNs in a drug-combination out 5-fold cross validation setting (CV1: see below) operated on the Merck drug synergy 

dataset. It is important to highlight the fact that this hyper-parameter optimization step was unavoidably time and resource 

intensive as we were required to consider all CC spaces and cell line representation methods (256 hyper-parameter choices 

× 125 DNNs) in order to avoid biasing our analysis towards a specific CC space or a particular cell line representation 

method. We used linear, ReLU and Tanh activation functions in the first, second and third hidden layers respectively, 

which are defined as follows: 

 

𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) = 𝑥                                                              (1) 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                                 (2) 

𝑇𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                                                        (3) 

Furthermore, in order to avoid over-fitting, we applied dropout regularization of rate 0.5 and 0.3 respectively in the first 

and second hidden layers. The weights were initialized based on a truncated normal distribution and trained by minimizing 
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MSE as the loss function according to an Adam optimizer with learning rate 1e-4, 𝛽
1

= 0.9 and 𝛽
2

= 0.999 . We used 

a batch size of 128 and the maximum number of epochs was set as 1000, but we applied early stopping if the validation 

loss value did not improve after 10 consecutive epochs. We applied the same DNN architecture and hyper-parameters for 

analyzing the Sanger drug synergy dataset, but we used binary cross entropy as the loss function, because the synergy 

values are binary and so the task is defined within a classification setting. Furthermore, we applied a sigmoid activation 

function (defined below) in the output layer for the classification tasks, while we used the linear activation function in the 

output layer for the regression ones. 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥                                                    (4) 

 

Cross validation schemes  

In our 5-fold cross-validation schemes, we aimed to make sure that a given drug combination in the testing set does not 

appear in the training set. To do so, we first enumerated all distinct drug pairs and then we randomly divided them into 

five folds of equal size. We put every (drug pair + cell line) triplets containing a given drug pair in the same fold. The 

sample of (drug pair + cell line) triplets can be visualized as a matrix each row of which corresponds to a given drug pair 

and the columns correspond to the cell lines. If we make sure a given drug pair is not repeated in multiple rows (i.e., the 

rows are unique), a simple row-wise division of the matrix into five folds ensures that the drug pairs in the testing and 

training sets do not overlap (held-out drug combinations (CV1) (Fig. 2a)). In this scenario, five learning cycles are 

required, in each of which one of the five folds is used as the testing set, and from the remaining four, one is randomly 

selected as validation set and the other three as the training set. Notably, since our data is obtained from drug combination 

screens in which every drug pair is tested on the same array of cell lines, the matrix is full and so its row-wise division 

results in five folds of equal size. 

In the second type of 5-fold cross validation (CV2), which is even more strict, we additionally make sure that the tissue 

of origin corresponding to the cell lines in the testing set do not overlap with that of the training set (held-out tissue). To 

do so, we needed to divide the matrix not only row-wise but also column-wise, so that all the cell lines in the same testing 

set belong to the same tissue (Fig. 2b). If the cell lines in our data belong to L different tissues, in this CV scheme, 5×L 

learning cycles are needed. In each cycle, drug pairs of the samples in the testing set must belong to one of the given five 

folds (the same as in CV1) and also their cell lines must all belong to one of the L tissues (testing tissue). Furthermore, 

the triplets whose cell lines belong to the given testing tissue must be removed from their corresponding 

training/validation sets, so that neither rows nor columns are shared between the training and testing sets.  Notably, in 

contrast to the CV1, the size of the testing sets in different cycles of the CV2 scheme may not be equal, because it can 

vary depending on the number of cell lines belonging to the testing tissue in our samples.  

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2022. ; https://doi.org/10.1101/2022.08.28.505568doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.28.505568
http://creativecommons.org/licenses/by-nd/4.0/


21 

Method comparison 

We compared CCSynergy against the state-of-the-art deep learning methods for anti-cancer drug synergy predictions 

namely DeepSynergy17 and TranSynergy18, which have both been applied on the Merck dataset13. We needed to re-run 

both of them, because we have used a subset of the original Merck dataset and also we have obtained the drug synergy 

scores from the DrugComb database51,52, which has standardized and harmonized the original drug synergy scores. We 

used the same hyper-parameters as what were used in the original papers and we employed exactly the same cross 

validation schemes as what we used for evaluating the CCSynergy method (CV1 and CV2 described above). 

DeepSynergy uses connectivity fingerprints, physicochemical and toxicophores for representing drugs, while 

TranSynergy is based on drug target profiles processed using a random walk with restart (RWR) algorithm. Furthermore, 

DeepSynergy uses Affymetrix-based gene expression profiles for representing the cell line, while TranSynergy combines 

gene expression profiles with the gene dependency ones. We used exactly the same drug and cell line features that were 

used originally, which are pre-computed and downloadable from their code repositories as follows:  

http://www.bioinf.jku.at/software/DeepSynergy/ (DeepSynergy) and https://github.com/qiaoliuhub/drug_combination 

(TranSynergy).   

 

Evaluation metrics 

To evaluate the performance of the models in the regression setting, we mainly used Pearson Correlation Coefficient 

(PCC) between the predicted and the real values. In our 5-fold CV schemes, we obtained PCC of each fold separately and 

reported their average and standard deviation. In our CV1 scheme, we also reported PCC values per drug and per cell 

line, in which case we calculated the PCC values using sub-vectors of the original real and predicted vectors, in which 

only a subset of the data containing the given drug or the cell line is retained. In the CV2 scheme, for a given fold, we 

merged the results of different tissues and calculated the PCC using the merged vectors. We also measured PCC per 

tissue, in which case we directly used the predictions made for the given testing set without the need for merging. For 

performance evaluation in the classification setting, we used the standard area under the ROC curve (AUC), precision, 

recall and F1-score, which are defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                       (5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                             (6) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1
2

(𝐹𝑃+𝐹𝑁)
                                                (7) 

Where: TP, TN, FP and FN are the number of true positive, true negative, false positive and false negative triplets in the 

given sample. Positive and negative here refers to the triplets predicted as synergistic and non-synergistic respectively. 

Furthermore, we introduced the so-called “precision fold increase” that is the precision of our predictive model relative 

to a random classifier, whose precision equals the fraction of positive samples (i.e., synergy rate). Hence, precision fold 

increase can be formally expressed as: 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑓𝑜𝑙𝑑 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

                   (8) 

Note that the output of CCSynergy in the classification setting is initially expressed as class probabilities, which are then 

binarized as synergy (1) or non-synergy (0), if it exceeds our chosen threshold (𝜃*=0.55) (Fig. 4). We evaluated the 

performance of CCSynergy both separately for the 25 distinct CC spaces and also integratively. In the regression scheme, 

we simply used the average of the 25 results to generate the integrated predictions, while in the classification setting we 

examined three different strategies for integrating the 25 binary results namely: Majority Voting (MV), Spectral Meta-

Learner (SML)53 and Randomized Boltzmann Machines (RBM)54.  When comparing different methods, we also used 

Jaccard similarity index, which is defined as the number of triplets, which both methods consider as synergistic divided 

by the number of triplets, which at least one of the methods considers as synergistic.   

 

Statistical analyses. All statistical analyses were performed using the R software (v4.1.2 https://www.r-project.org/). 

Code availability. CCSynergy codes and data will be available upon publication.  
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