

1

1 **Five decades of data yield no support for adaptive biasing of offspring sex ratio in wild**
2 **baboons (*Papio cynocephalus*)**

4 Matthew N Zipple¹, Elizabeth A Archie², Jenny Tung^{3,4,5}, Raphael S. Mututua⁶, J. Kinyua
5 Warutere⁶, I. Long'ida Siodi⁶, Jeanne Altmann^{7*}, Susan C Alberts^{4,5,*}

7 ¹Laboratory for Animal Social Evolution and Recognition, Department of
8 Neurobiology and Behavior, Cornell University; mz343@cornell.edu

9 ²Department of Biological Sciences, University of Notre Dame;
10 elizabeth.a.archie.2@nd.edu

11 ³Dept of Primate Behavior and Evolution, Max Planck Institute for Evolutionary
12 Anthropology; jtung@eva.mpg.de

13 ⁴Department of Evolutionary Anthropology, Duke University

14 ⁵Department of Biology, Duke University

15 ⁶Amboseli Baboon Research Project, Amboseli National Park;
16 kwarutere@yahoo.com, rsmututua@yahoo.com, slongida.28489085@gmail.com

17 ⁷Department of Ecology and Evolutionary Biology, Princeton University;
18 altj@princeton.edu

19 *correspondence: alberts@duke.edu

21 **Key Words:** Sex Ratio Bias, Trivers-Willard, Reproductive Plasticity, Primates, Mammals,
22 Dominance Rank

1

2

24 **Abstract**

25 Over the past 50 years, a wealth of testable, often conflicting, hypotheses have been generated
26 about the evolution of offspring sex ratio manipulation by mothers. Several of these hypotheses
27 have received support in studies of invertebrates and some vertebrate taxa. However, their
28 success in explaining sex ratios in mammalian taxa, and especially in primates, has been mixed.
29 Here, we assess the predictions of four different hypotheses about the evolution of biased
30 offspring sex ratios in the well-studied baboons of the Amboseli basin in Kenya: the Trivers-
31 Willard, female rank enhancement, local resource competition, and local resource enhancement
32 hypotheses. Using the largest sample size ever analyzed in a primate population ($n = 1372$
33 offspring), we test the predictions of each hypothesis. Overall, we find no support for adaptive
34 biasing of sex ratios. Offspring sex is not consistently related to maternal dominance rank or
35 biased towards the dispersing sex, nor is it predicted by group size, population growth rates, or
36 their interaction with maternal rank. Because our sample size confers power to detect even subtle
37 biases in sex ratio, including modulation by environmental heterogeneity, these results suggest
38 that adaptive biasing of offspring sex does not occur in this population.
39

2

40

41 Introduction

42 A wide range of evolutionary theories have been proposed to explain why mammalian
43 mothers might adaptively bias the sex ratios of their offspring. These theories focus on two main
44 types of maternal benefits to producing offspring of the “right” sex. First, by biasing offspring
45 production to the optimal sex, mothers may be able to maximize their offspring’s lifetime
46 reproductive success (the Trivers-Willard and female rank enhancement hypotheses). Second,
47 biased sex ratios may help optimize the competitive environment for mothers themselves (the
48 local resource competition and local resource enhancement hypotheses). All of these hypotheses
49 make distinct, testable predictions about the influence of maternal condition, the competitive
50 environment, and a species’ natural history on offspring sex ratio. However, while some
51 hypotheses regarding adaptive sex ratio bias have been supported in invertebrates and birds
52 (West & Sheldon 2002), their record in mammals, especially in primates, remains mixed (Brown
53 & Silk 2002, Silk et al. 2005). Consequently, the importance—and even existence—of
54 maternally driven sex ratio bias in primates remains in dispute (Brown 2001, Brown & Silk
55 2002, Silk et al. 2005).

56 *Maximizing offspring fitness: the Trivers-Willard and female rank enhancement*
57 *hypotheses.* The first way in which mothers might benefit from controlling their offspring’s sex
58 is by increasing the reproductive success of their offspring. In many species, reproductive
59 success depends on an individual’s physical condition, and variation in reproductive success
60 differs between the sexes (sex-specific reproductive skew (Hauber & Lacey 2005)). As a result, a
61 mother who can produce especially robust offspring should produce offspring of the sex with
62 greater variance in reproductive success (usually males, but this pattern is reversed in singular-
63 breeding cooperative societies, (Hauber & Lacey 2005)). In contrast, a mother who will produce
64 offspring in poor condition should produce offspring of the sex with lower variance in
65 reproductive success.

66 Trivers and Willard (1973) made two assumptions that led to strong predictions about the
67 evolution of offspring sex ratios. They argued that if (1) maternal condition during the period of
68 maternal investment affects offspring condition at the end of the period of maternal investment,
69 and (2) sons differentially benefit from this increase in physical condition in terms of lifetime
70 reproductive success as compared to daughters (due to sex-specific reproductive skew), then top-
71 condition mothers should be selected to produce more sons compared to mothers in poor
72 condition. These sons would then benefit from their mother’s condition, develop into high-
73 quality adult males, and achieve greater reproductive success than if they had grown into high-
74 quality adult females (Trivers and Willard, 1973).

75 Among nonhuman primates, the Trivers-Willard hypothesis was first evaluated in the
76 wild yellow baboons (*Papio cynocephalus*) of the Amboseli ecosystem of Kenya, where
77 maternal rank was used as a proxy for maternal condition (rank predicts a wide range of
78 condition-related traits in this population, Levy and Zipple et al. 2020). In this setting, the
79 Trivers-Willard hypothesis predicts that high-ranking mothers should produce relatively many
80 sons, while low-ranking mothers should produce relatively many daughters (Table 1). Two
81 studies from the Amboseli population (Altmann 1980, Altmann et al. 1988) identified a strong
82 relationship between maternal rank and secondary sex ratio, *but in the opposite direction as*
83 *originally predicted by Trivers and Willard.* Indeed, analyses of sex ratios of offspring born in
84 Amboseli over a seven-year period (1971-1978; Altmann 1980) or an expanded ten-year period
85 (1971-1981; Altmann et al. 1988) showed that high-ranking females were much more likely to

86 give birth to daughters as compared to low-ranking females, and that this phenomenon was
87 predicted by a continuous measure of rank (i.e., not just a binary metric of high- vs low-ranking
88 females).

89 The results from Amboseli gave rise to an alternative hypothesis, which we term here the
90 “female rank enhancement hypothesis.” This hypothesis reformulates the Trivers-Willard
91 hypothesis to better fit the life history of mammals that exhibit matrilineal rank inheritance.
92 Specifically, Altmann (1980) suggested that high-ranking females should bias their offspring sex
93 ratio towards the sex whose reproductive success is most improved by the females’ high rank.
94 Because cercopithecine females tend to inherit the rank of their mother in adulthood, while sons
95 do not, Altmann posited that the first assumption of the Trivers-Willard hypothesis—that
96 maternal condition during the period of investment shapes later offspring competitive ability—
97 only held for female offspring. In the case of baboons, a high-ranking daughter would grow into
98 a high-ranking adult and enjoy the fitness benefits that her high rank conferred (e.g. increased
99 offspring survival and shorter interbirth intervals, (Silk et al. 2003, Gesquiere et al. 2018, Zipple
100 et al. 2019), while a son born to a high-ranking mother would be no better off in the long run
101 than a son born to a low-ranking mother. The female rank enhancement hypothesis therefore
102 predicts that high-ranking baboon mothers should produce relatively many daughters, while low-
103 ranking mothers should produce relatively many sons (Table 1). Female rank inheritance is
104 common among cercopithecine primates, as well as some other taxa (e.g. spotted hyenas,
105 (Strauss et al. 2020)), highlighting the potential generalizability of this hypothesis.

106 The results from Amboseli were followed by many similar analyses across at least 15
107 species of primates, testing the alternative predictions of the Trivers-Willard and female rank
108 enhancement hypotheses (Reviewed in (Brown 2001)). Some of these studies were consistent
109 with the female rank enhancement hypothesis (e.g. bonnet macaques: (Silk 1988); rhesus
110 macaques: (Nevison et al. 1996)), while others found no effect of maternal rank on offspring sex
111 ratio (e.g. yellow baboons, (Rhine et al. 1992); Toque macaques: (Dittus 1998); Japanese
112 macaques: (Koyama et al. 1992), vervet monkeys: (Cheney et al. 1988)), and still others found
113 an effect in the opposite direction, consistent with the Trivers-Willard hypothesis (i.e. high-
114 ranking mothers had more sons than low-ranking mothers, e.g. rhesus macaques: (Meikle et al.
115 1984); Barbary macaques: (Paul & Kuester 1990); spider monkeys: (McFarland Symington
116 1987)).

117 A meta-analysis by Brown and Silk (2002) found that results from these and other studies
118 of maternal rank and offspring sex in non-human primates did not collectively deviate from the
119 expected null distribution of effect sizes, after controlling for the sample size of offspring
120 included in each study. The meta-analysis supported neither the Trivers-Willard nor the female
121 rank enhancement hypotheses, leaving unclear whether non-human primate mothers are capable
122 of adjusting their offspring sex ratio based on social rank or other aspects of the environment.

123 However, studies with larger sample sizes also covered longer time periods and were
124 likely affected by greater environmental heterogeneity than smaller studies (Brown & Silk 2002).
125 Increased environmental heterogeneity may have made it more difficult to detect true sex biases
126 if some environments favor such a bias while others do not. It therefore remains possible that
127 mothers benefit from adjusting their offspring sex ratio as a function of rank in some contexts but
128 not others. For example, Kruuk et. al. (1999) presented evidence that dominant red deer (*Cervus*
129 *elaphus*) mothers bias their offspring sex ratios towards sons during periods of low population
130 density, but that this effect disappears when density and resource competition is high. Failing to

131 account for such heterogeneity could cause researchers to miss a real effect of maternal rank on
132 offspring sex.

133 *Optimizing the competitive environment: the local resource competition and local*
134 *resource enhancement hypotheses.* The second way in which mothers could benefit from biasing
135 the sex ratio of their offspring is by optimizing the competitive environment that they (the
136 mothers and their offspring) experience. Clark (1978) argued that, in species that exhibit sex-
137 biased dispersal—such that members of one sex generally disperse while members of the other
138 sex do not—offspring sex determines whether mothers and offspring co-reside, cooperate, and
139 compete in adulthood. For example, male baboons disperse while female baboons are
140 philopatric, which results in female baboons co-residing with their adult daughters, but not their
141 adult sons.

142 The local resource competition hypothesis argues that, when sons disperse and daughters
143 are philopatric, females should benefit by limiting the production of daughters (both their own
144 and other females'), thereby limiting the number of competitors in their immediate social group
145 (Clark 1978). As a result, populations of female-philopatric species should display an overall
146 bias towards sons—a bias that Clark first observed in greater galagos (*Galago crassicaudatus*),
147 and a prediction that is supported in primates generally (Silk & Brown 2008), but not in baboons
148 (Silk et al. 2005).

149 Silk (1983, 1984) extended the local resource competition hypothesis, arguing that
150 females should (i) attempt to limit the survival of unrelated immature females and (ii)
151 facultatively adjust their own offspring sex ratios depending on their competitive ability (i.e.,
152 their social rank). Thus, low-ranking females should show an especially strong bias towards
153 sons, relative to high-ranking females (who might not bias towards sons at all, Silk 1983). Silk's
154 formulation of the local resource competition hypothesis dovetails with the female rank
155 enhancement hypothesis in this prediction (Silk 1983, 1984).

156 van Schaik and Hrdy (1991) further argued that the facultative sex ratio adjustment
157 posited by Silk (1983, 1984) should depend on the intensity of resource competition, such that
158 the relationship between maternal rank and offspring sex should intensify as competition for
159 resources intensifies and population growth rate declines. Thus, the local resource competition
160 hypothesis predicts that (1) at the population level, offspring sex ratios should be biased towards
161 the dispersing sex, (2) low-ranking females should produce more sons than high-ranking females
162 (consistent with the female rank enhancement hypothesis), (3) this rank-related sex bias should
163 be especially apparent during periods of intense competition, and (4) low-ranking daughters
164 should face a differentially greater mortality risk relative to high-ranking offspring or low-
165 ranking sons (i.e. offspring survival will be predicted by the interaction between offspring sex
166 and maternal rank (Clark 1978, Silk 1983, 1984, van Schaik & Hrdy 1991)).

167 Finally, the local resource enhancement hypothesis argues that mothers in cooperatively-
168 breeding species will benefit from over-producing whichever sex is better at providing help to
169 developing offspring (Gowaty and Lennartz 1985, Emlen et al 1986, Pen and Weissing 2000). In
170 species with sex-biased dispersal, this would generally be the non-dispersing sex, and results
171 from cooperatively-breeding primates support this prediction (Silk and Brown 2008). Baboons
172 are not cooperative breeders, but they do engage in between-group competition, such that
173 individuals benefit from being in larger groups, up to a point (Markham et al. 2012). At the same
174 time, however, living in groups that are too large results in increased within-group competition
175 (Altmann & Alberts 2003, Beehner et al. 2006, Charpentier et al. 2008, Lea et al. 2015). Because

176 of the conflicting benefits and costs of large group size, the optimal group size appears to be
177 intermediate (Markham et al. 2015).

178 Combining the insights of the local resource competition and local resource enhancement
179 hypotheses leads to the prediction that female cercopithecine primates will benefit from over-
180 producing philopatric daughters when they are in small, fast-growing groups (causing the groups
181 to grow and attracting more immigrant adult males) and from over-producing dispersing sons
182 when they are in large, slow-growing groups (causing the groups to shrink, or grow more slowly,
183 Table 1). Thus, when the nature of competition is variable over time, the local resource
184 competition and enhancement hypotheses represent two sides of the same coin. Furthermore,
185 group-level sex biases may result from individual-level sex biases that are in line with the
186 predictions of the Trivers-Willard or female rank enhancement hypotheses, such that the
187 relationship between maternal rank and offspring sex might depend on the intensity of
188 competition and vary over time (van Schaik & Hrdy 1991).

189 *Goals of the current analysis.* These four hypotheses produce a combination of
190 overlapping and conflicting predictions about the ways in which offspring sex and survival
191 should be biased (Table 1). The goal of this analysis is to systematically assess each of these
192 alternative predictions using 50 years of data from the Amboseli baboon population in southern
193 Kenya. Using the largest sample size of wild primates available in a single population, we assess
194 whether (1) offspring sex is related to maternal rank, (2) whether this relationship varies over
195 time, and (3) whether female baboons adaptively modulate offspring sex to match the
196 environmental conditions that offspring will experience. In addition to maternal rank, we also
197 consider whether offspring sex and survival are predicted by other indicators of maternal
198 condition, such as exposure to early life adversity (e.g. experiencing drought or maternal loss in
199 early life). We also assess whether the predictions of the local resource competition and local
200 resource enhancement hypotheses hold in this population, by assessing (4) whether mothers bias
201 their offspring towards the dispersing sex, (5) whether such a bias is predicted by measures of
202 competitive intensity (i.e., group size or population growth rate) or their interaction with
203 maternal rank, and (6) whether female offspring are at a differentially increased risk of immature
204 death when born to low-ranking mothers. We fail to find evidence for any of these mechanisms,
205 indicating a lack of any adaptive biasing of offspring sex in this population.

207 **Table 1.** Hypotheses and predictions about adaptive biasing of offspring sex ratios, as they
208 pertain to species with male-biased dispersal and matrilineal rank inheritance.

Hypothesis	Predictions for cercopithecine primates	Reference
Name: Trivers-Willard	(1) High-ranking mothers should produce more sons than low-ranking mothers.	(Trivers & Willard 1973)
Hypothesis: Mothers in good condition should bias their offspring towards the sex that displays greater variance in reproductive success in adulthood.		
Name: Female Rank Enhancement	(1) High-ranking mothers should produce more daughters than low-ranking mothers. (2) Daughters of high-ranking mothers should experience higher survival rates than daughters of low-ranking mothers (i.e., offspring survival should be predicted by the interaction between offspring sex and maternal rank).	(Altmann 1980)
Name: Local Resource Competition	(1) Overall, mothers should produce more sons than daughters. (2) Daughters of high-ranking mothers should experience higher survival rates than daughters of low-ranking mothers (i.e., offspring survival should be predicted by the interaction between offspring sex and maternal rank).	(Clark 1978, Silk 1983, 1984, van Schaik & Hrdy 1991, Silk & Brown 2008)
Hypothesis: Mothers should bias the offspring sex ratio in their social groups towards the dispersing sex to reduce future competition.	(3) Low-ranking mothers should produce more sons relative to high-ranking mothers as within-group competition increases in strength (i.e., when social groups are large or growing slowly).	
Name: Local Resource Enhancement	Originally formalized to consider sex-biases in cooperatively-breeding species, the same predictions apply when mothers derive competitive benefits from biasing their sex-ratio towards the “more helpful” sex, for any reason. In the context of baboons, when between-group competition is intense, mothers benefit from living in larger groups, which should favor sex ratios biased towards the philopatric sex (females). (1) Overall, mothers should produce more daughters than sons when between-group competition is intense and within-group competition is relaxed (i.e., the social group is small or growing rapidly)	(Gowaty & Lennartz 1985, Emlen et al. 1986, Pen & Weissing 2000, Silk & Brown 2008)

209

210 Methods

211 *Study population.* The Amboseli Baboon Research Project (ABRP) is a long-term,
212 longitudinal study of non-provisioned, individually recognized, wild baboons living in and
213 around Amboseli National Park, Kenya. Demographic, behavioral, and environmental data have
214 been collected on a near-daily basis since the inception of the project in 1971. Critical for the
215 analyses presented here, ABRP has data on offspring conception, birth, and death dates as well

216 as data on female dominance rank (see below) from 1971 to 2020. Additional description of the
217 study population and its history can be found elsewhere (Alberts & Altmann 2012).

218 *Calculating female social dominance ranks.* A detailed description of dominance rank
219 calculations can be found in Hausfater (1975) and Alberts et al. (2003). Briefly, sex-specific
220 dominance ranks are calculated on a monthly basis for all adult males and females relative to
221 other individuals of the same sex in the same social group. Ranks are calculated by generating an
222 NxN matrix (where N is the number of individuals in the social group) that contains symmetrical
223 rows and columns, each corresponding to an individual animal identity. The cells of the matrix
224 contain the number of times that the animal represented by a given row won an agonistic
225 interaction against the animal represented by a given column in that month. The columns and
226 rows of the matrix are then ordered to minimize the number of wins that appear below the
227 diagonal of the matrix. The resulting order of the columns is the ordinal rank (e.g. 1, 2, 3, etc.) of
228 the animals represented by those columns. To calculate proportional rank (the rank metric used
229 in all analyses below), we determine the proportion of other same-sex adults in the group that an
230 individual in question dominates (Levy and Zipple et al. 2020). For example, a female ranked 3
231 in a group that contains five adult females has a proportional rank of 0.5 (she outranks 2 of the
232 other four females in the group). For the below analyses, we calculated maternal dominance
233 ranks at the time of conception for all live births of known-sex offspring, in all cases where
234 reliable agonism data were available for the mother and other females in her group (n = 333
235 mothers at the time of n = 1372 live births; reliable dominance ranks are not available for some
236 periods and some groups, e.g., during group fissions).

237 *Estimating conception dates.* When female yellow and anubis baboons (the two species
238 ancestries represented in Amboseli) become pregnant, the skin adjacent to their callosities
239 changes from black to pink (Altmann 1973). By using this pregnancy sign, in combination with
240 sexual swelling and mating data, we are able to identify conception dates within a few days'
241 precision. This visual method of pregnancy identification has been verified using sex steroid
242 hormone data (Beehner et al. 2006, Gesquiere et al. 2007).

243 *Estimating annual social group size and growth rates.* Using near-daily data on group
244 censuses, we estimated group size and group growth rate for each social group in each year in
245 our dataset. To do so, we calculated the proportional change in the mean number of individuals
246 present in a social group from the year of birth to the year that followed. For example, Alto's
247 group contained an average of 43.4 individuals on any given day in 1980. In 1981, Alto's group
248 contained an average of 45.8 individuals. We therefore estimated the growth rate in Alto's group
249 in 1980 to be 0.055 (2.4/43.4).

250 *Testing the Trivers-Willard and female rank enhancement hypotheses across all social
251 groups and years.* Although many studies of rank-related sex biases consider the proportion of
252 sons born to females of a given rank, here we instead consider the proportion of daughters born
253 (a statistically equivalent approach). We do so because hypotheses about baboon sex bias are
254 generally related to mothers' ability to influence the rank of their daughters, but not their sons.

255 We tested for a relationship between maternal rank at the time of conception and
256 offspring sex at two different scales. First, we used data from all live births for which relevant
257 rank data were available from across the entire study (n = 1372 live-born offspring) to build a
258 mixed effects logistic regression model (R package: 'glmmTMB') that predicted the sex of each
259 live-born offspring as a function of its mother's rank, with maternal identity included as a
260 random effect (Magnusson et al. 2017).

261 Second, we used the same analytical approach to ask whether there were some periods or
262 social groups in the history of the ABRP when offspring sex was significantly predicted by
263 maternal rank. We already knew that one such period existed—Altmann (1980) and Altmann et
264 al. (1988) had previously described the strong relationship between maternal rank and offspring
265 sex during the first decade of observation of Alto's group, a social group observed between 1971
266 and its permanent fission in 1992. To test whether other social groups showed the same pattern
267 during some periods, we built a series of mixed effects logistic regression models. Each model
268 was built from data collected from a single social group over a seven-year period. In each model,
269 the response variable was the sex of each offspring born during that seven-year period, and the
270 predictor variable was maternal dominance rank; maternal identity was included in each model
271 as a random effect.

272 We chose a seven-year period because it is similar to the original time window analyzed
273 by Altmann (1980), which demonstrated a statistically significant bias in offspring sex ratio as a
274 function of maternal rank. Thus, we reasoned that considering data from seven years in a single
275 group effectively balanced the analytical benefits of increased sample size against the costs of
276 increased environmental heterogeneity during longer periods of observation (see introduction).
277 Using a time period comparable to Altmann (1980) also allowed us to perform an analytical
278 thought experiment in which we asked whether the previously published relationship would have
279 been identified if data collection had started in a different social group at a different time. We
280 considered only subsets of data from groups for which seven consecutive years of birth data
281 could be analyzed. For example, Alto's group (Group 1) fissioned into two social groups in
282 1990. The latest subset of data considered from Alto's group therefore spanned 1984-1990. We
283 included only 7-year periods with at least 10 births recorded during that period, resulting in a
284 total of 109 overlapping periods across all study groups.

285 *Testing the Trivers-Willard and female rank enhancement hypotheses: do females
286 adaptively modulate the direction and magnitude of a rank-related offspring sex bias?*
287 Daughters born to high-ranking mothers may be advantaged relative to sons under some
288 conditions, but disadvantaged under other conditions. If so, we predict temporal and between-
289 group variability in sex-ratio biasing as a function of temporal variability in the survival of
290 daughters born to high-ranking mothers.

291 To test this possibility, we used a 3-step analysis. The first step was to build Cox
292 proportional hazards models of offspring survival (hereafter 'survival models') for the first four
293 years of life. This is just prior to puberty for most females (who achieve menarche at a median
294 age of 4.5 years in Amboseli) and around the earliest age of dispersal for males (median
295 dispersal age is 7.6 years; median age at testicular enlargement for males is 5.4 years) (Onyango
296 et al. 2013). We modeled offspring survival as a function of maternal rank, offspring sex, and the
297 interaction between maternal rank and offspring sex (R package: 'survival', (Therneau &
298 Lumley 2015)). The magnitude of this interaction term is the measure of interest—we want to
299 know whether, in a given period, the difference in survival between daughters and sons was
300 greater for high-ranking than for low-ranking mothers. If such rank-related differences in the
301 survival of daughters and sons exist, and if they vary across time and social groups, then mothers
302 could theoretically benefit from modulating the magnitude of a rank-related sex bias to mirror
303 variation in sex-associated survival differences.

304 To assess whether temporal variability affects sex-ratio biasing, we ran our survival
305 models used data from multiple non-overlapping periods of time for each social group. Unlike
306 the overlapping time window analysis above, we used non-overlapping windows in this case to

307 enforce greater independence between analyses. The lengths of these non-overlapping time
308 periods varied: because different groups were under study for different lengths of time we were
309 unable to split groups' periods of observations into equally sized lengths. For groups that existed
310 in our dataset for 10 years or less, we used the entire period of observation of that group as an
311 independent unit of analysis. For groups that existed for more than 10 years, we split their
312 contribution into two approximately equal time windows and treated the two windows as
313 separate units of analysis. In combination, these two procedures produced 18 separate group-time
314 windows that were a minimum of 6 years and a maximum of 10 years long. For example, the
315 data from Alto's group (1971-1990) could readily be split into two, ten-year subsets (1971-1980,
316 1981-1990). In contrast, because of the relatively short observation time for Acacia's group, we
317 retained all of the data from this group (2013-2020) as a single, eight-year set of data.

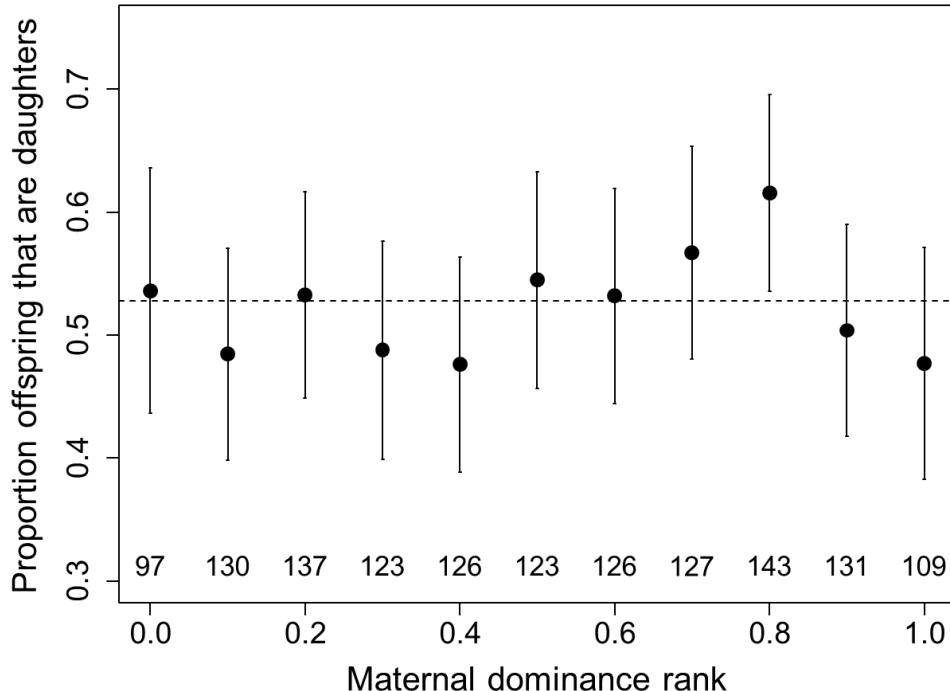
318 Because of the importance of knowing infants' ages with precision, we included in this
319 analysis only those infants whose birth date was known within a few days' error. We also
320 excluded from the survival analysis (but not from other analyses) any offspring born into non-
321 wild feeding groups, which gain a substantial portion of their daily caloric intake from human
322 food waste, as well as any infants born into groups with less than 6 years of total data. Our final
323 sample for the survival analyses contained 1121 live-born offspring.

324 After calculating temporal and between-group variability in rank-related differences in
325 survival between male and female offspring, we then calculated the magnitude of the effect of
326 maternal rank on offspring sex for the same non-overlapping time windows. We calculated
327 coefficient estimates using the same mixed-effects logistic regression models described above
328 ("Testing the Trivers-Willard and female rank enhancement hypotheses across all social groups
329 and years"). Together, these two analyses yielded estimates of (i) variability in the potential
330 benefits that mothers could accrue if they biased their offspring's sex in the proper direction to
331 maximize survival and (ii) variability in the estimated association between maternal rank and
332 offspring sex across groups and time periods.

333 The third step in our analysis was to test the prediction that these two measures are
334 related to each other in the manner predicted by adaptive hypotheses for sex-ratio biasing. If
335 females adaptively modulate the direction and magnitude of a rank-related sex bias in their
336 offspring, we expect a significant positive relationship between the effect of maternal rank on
337 offspring sex and the interaction effect between offspring sex and maternal rank on offspring
338 survival. In other words, mothers of different ranks should bias their offspring production
339 towards the *right sex*, under the *right conditions*. To test this prediction, we built a linear
340 regression that predicted the coefficient of the rank terms from the logistic regression models
341 (the result of step two) as a function of the interaction terms from the survival models (the result
342 of step one).

343 *Are the Trivers-Willard or female rank enhancement hypotheses supported by*
344 *considering other measures of maternal condition?* Inspired by the previous literature, the
345 analyses described above focus on rank as the primary indicator of condition. However, it is also
346 possible that females alter their sex ratio in response to their physical condition, but that maternal
347 rank is a poor proxy. To test this possibility, we assessed whether alternative measures of
348 maternal condition predict offspring sex ratio. First, we used mixed effects logistic regression
349 models to ask whether offspring sex was predicted by whether mothers experienced each of five
350 sources of early life physical and social adversity prior to maturity, and/or a cumulative measure
351 of these five adverse experiences (early drought, high group density, maternal loss, low maternal
352 rank, presence of a close-in-age younger sibling; see Tung and Archie et al 2016 for a

353 description of sources of adversity). Experiencing early life adversity is associated with
354 dramatically shorter lifespans for female baboons in the Amboseli population (Tung and Archie
355 et al. 2016) as well as reduced offspring survival (Zipple et al. 2019, 2021). Because the early
356 adversity analysis required data on the early-life conditions faced by mothers, the sample size for
357 this analysis was substantially lower than for other analyses ($n = 742$ live births for which data
358 were available on five sources of early-life adversity for the mother, versus $n = 1372$ for the
359 preceding analyses).


360 The second alternative measure of condition that we considered was whether females
361 were near the end of their lives, as indicated by their death within 1, 2, or 4 years of their
362 offspring's birth (analyzed as three separate models). We expected mothers to be in worse
363 condition in the years before they died, and that offspring would survive less well when their
364 mothers were within a few years of death (Zipple et al. 2019, 2021). The three maternal survival
365 analyses required data on whether the mother in question survived a given period following
366 offspring birth, which reduced our sample size in these analyses to varying degrees ($n = 1214$
367 live births for 4-year analysis, 1301 for 2-year analysis, and 1343 for 1-year analysis).

368 *Testing the local resource competition and enhancement hypotheses.* Lastly, to test
369 whether females in Amboseli exhibit a global bias towards producing males (the dispersing sex;
370 see Local Resource Competition, Table 1), we performed a two-sided, two-proportions z-test (R
371 function 'prop.test') using all offspring in the dataset. To assess context/environment-specific
372 predictions of the local resource competition and enhancement hypotheses, we built mixed
373 logistic regression models that predicted offspring sex as a function of either group size or
374 population growth rate (two measures of intensity of competition). We also tested whether either
375 of these measures of competition significantly interacted with maternal rank to predict offspring
376 sex. Finally, we asked whether there was a significant interaction between maternal rank and
377 offspring sex in predicting offspring survival to 4 years of age (the approximate age of female
378 maturation and the earliest age of male dispersal; Onyango et al. 2013). We did not calculate
379 social group size estimates for offspring born in the year that groups fissioned, fused, or were
380 dropped from observation, nor did we calculate growth rate estimates for offspring born in the
381 year of or the year prior to such an event. As a result, sample size was reduced for analyses
382 involving group size ($n = 1274$ live births) or population growth rate estimates ($n = 1109$ live
383 births).

384

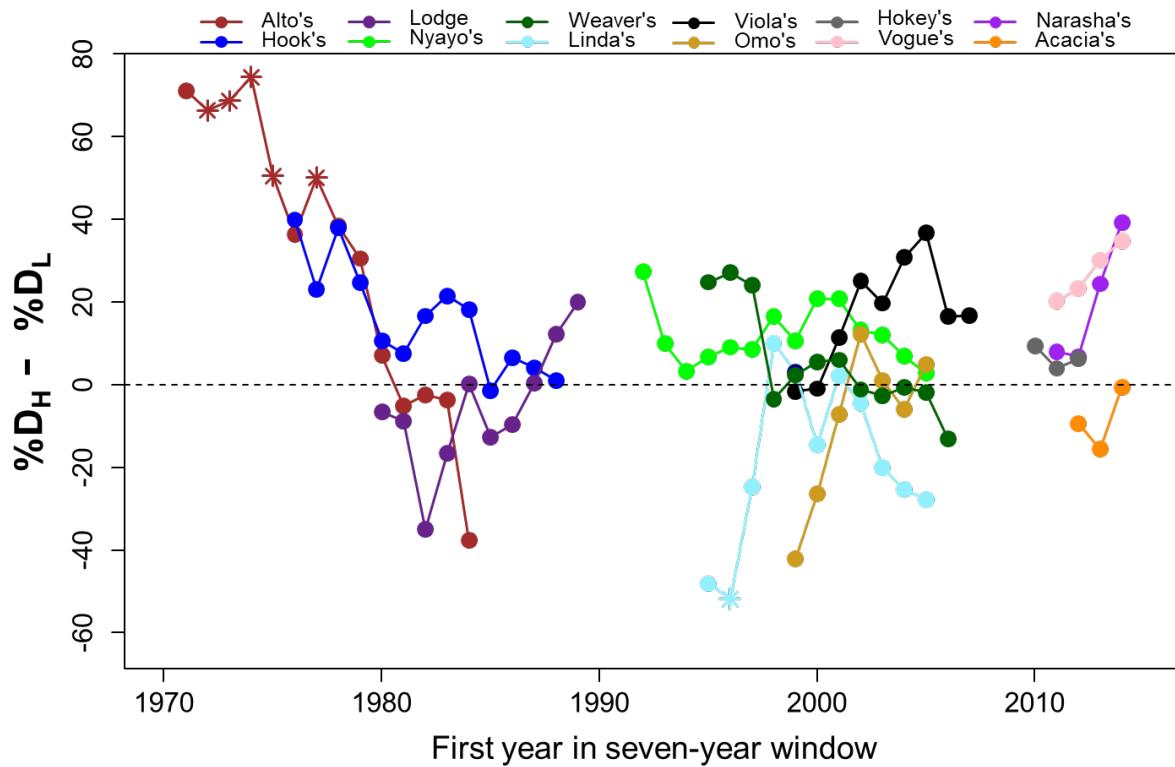
385 **Results**

386 *Testing the Trivers-Willard and female rank enhancement hypotheses across all social
387 groups and years.* In the pooled, 50-year dataset, maternal rank at the time of conception did not
388 predict offspring sex (estimate from mixed effects logistic regression = 0.12, $se = 0.18$, $z = 0.68$,
389 $p = 0.50$, $n = 1372$ live births). A visual inspection of the data further reinforces that there is no
390 consistent relationship between an offspring's sex and the rank of its mother (Figure 1).

391
392 **Figure 1.** The proportion of daughters born to mothers falling into each decile of maternal dominance
393 rank for 1372 live births. Error bars indicate 95% confidence intervals for each decile, the dashed line
394 indicates the population mean proportion of daughters (52%), and the numbers below each point
395 indicate the number of offspring included in each point. Although displayed as bins in this illustrative
396 figure, proportional ranks were treated continuously in the logistic regression model that we report in
397 the main text, in which we found no relationship between maternal rank and offspring sex ($p = 0.50$).
398

399 In addition to the pooled analysis, we also tested whether maternal rank predicted
400 offspring sex in some groups and some years. In total, we assessed whether offspring sex was
401 significantly predicted by maternal rank in 109 subsets of the data representing successive
402 overlapping 7-year time spans in single social groups. During some periods in some groups,
403 high-ranking mothers had far more daughters than low-ranking mothers, while in other periods
404 and groups the trend was reversed. Some of this variation is due to variation in sample size for
405 analyses in different periods, which ranged from 11 to 100 offspring (subsets containing 10 or
406 fewer infant births were excluded). Periods with smaller sample sizes generally had larger
407 absolute effect size estimates, consistent with well-known winner's curse effects (see
408 supplemental Figure S1). Overall, this analysis yielded four major results.

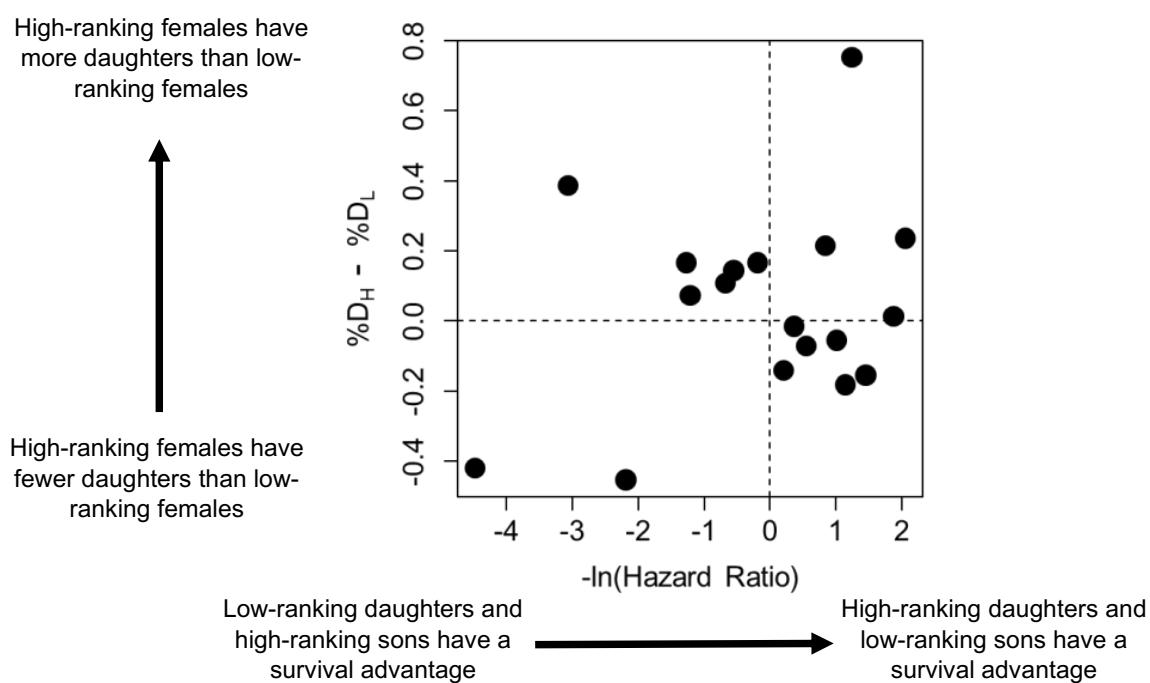
409 First, we identified enormous variation in the estimated magnitude of the association
410 between maternal rank and offspring sex in different groups at different times. However, in the
411 vast majority of time periods, maternal rank did not predict offspring sex at a statistically
412 significant level ($\alpha = 0.05$). Maternal rank significantly predict offspring sex in 6% (6/109, $p < 0.05$)
413 of all 7-year time periods, but none of these results survive a Bonferroni correction for
414 multiple hypothesis testing.


415 Second, the magnitude of the maternal-rank effect during the first 10 years of the study
416 (as indicated by the first four points on the dark red line of Figure 2 [Alto's group]) was large
417 and statistically significant at a nominal p-value of 0.05, corresponding to a scenario in which an
418 offspring had an ~88% chance of being female if born to the highest-ranking female in the group
419 and only an ~18% chance of being female if born to the lowest-ranking female in the group.
420 These points correspond to the striking observation captured by the original analyses in Altmann
421 (1980) and Altmann et al. (1988).

422 Third, this early period of observation in Alto's group appears quite atypical compared to
423 all time periods in other study groups as well as other time periods in Alto's group. Excluding
424 these first four seven-year time windows for Alto's group, the median estimated difference in the
425 proportion of female offspring born to the highest and lowest ranking females in each group-time
426 window combination was only 0.05 across the study period, as compared to an average
427 difference of 0.70 in these first four subsets.

428 Fourth, early in the group history for Linda's group (dark blue line beginning in 1995),
429 there was a similarly large estimated difference between the proportion of daughters born to the
430 highest- and lowest-ranking females, but in the opposite direction of the difference observed
431 early in the observation period for Alto's group. Specifically, only ~14% of the offspring of the
432 highest-ranking females were expected to be daughters, as compared to ~66% of the offspring of
433 the lowest-ranking females.

434 In sum, we did not find any evidence that females consistently exhibit a rank-dependent
435 strategy of biasing offspring sex ratio (Figure 2). If long-term data collection from our
436 population had started at essentially any other time or in any other social group, researchers
437 would not have identified an apparent relationship between maternal rank and offspring sex, with
438 the exception of Linda's in the mid-1990s, when a significant effect would have appeared in the
439 opposite direction.


440

441
 442 **Figure 2.** The magnitude of the estimated difference in the percentage of female offspring born to the
 443 absolutely highest-ranking mothers ($\%D_H$) and lowest-ranking mothers ($\%D_L$) in different groups over
 444 different time periods. Each point represents a unique estimate extracted from a logistic regression model of
 445 offspring sex as predicted by maternal proportional rank, using data from a single group over a seven-year
 446 period that begins at the x-value of that point (e.g., an x-value of 1971 represents data in a single group from
 447 1971-1977). Asterisks indicate groups and times in which models indicated that maternal rank significantly
 448 predicted offspring sex ($p < 0.05$), with group identities indicated by different colors and the dashed line
 449 indicating the null expectation. For example, to calculate the y-value of the first red point, we built a mixed
 450 effects logistic regression model of offspring sex as predicted by maternal rank, using data from all offspring
 451 born between 1971 and 1977 in Alto's group (inclusive, representing an x-value of 1971). We then used the
 452 resulting model output to estimate the difference in the percentage of daughters born to the highest-ranking
 453 mothers (91%) and the percentage of daughters born to the lowest ranking-mothers (20%) from 1971-1977,
 454 yielding a point with a y-value of 71%.

455
 456 *Testing the Trivers-Willard and female rank enhancement hypotheses: do females
 457 adaptively modulate the direction and magnitude of a rank-related offspring sex bias?* The
 458 variation we found in the relationship between maternal rank and offspring sex (Figure 2) might
 459 be the result of random processes. Alternatively, it might map onto variation in which offspring
 460 sex experienced the highest survival probability, given maternal rank and the environment into
 461 which the offspring was born. If mothers adaptively modulate their offspring sex ratios in this
 462 way, we would expect to find a positive relationship between the magnitude of any maternal
 463 rank-related sex bias in a given period and the magnitude of the survival advantage to offspring
 464 of the 'right' combination of sex and maternal rank in the same period (see Methods). In other
 465 words, under an adaptive scenario we would predict that high-ranking mothers only bias their
 466 offspring sex ratio towards daughters *when they generate a survival advantage for their offspring*
 467 *by doing so.*

468 In contrast to this prediction, the coefficient estimates for sex-biased survival and
469 maternal rank-related sex bias were not correlated. Specifically, the magnitude of the relationship
470 between maternal rank and offspring sex in a given period did not predict the magnitude of the
471 interaction between maternal rank and offspring sex on offspring survival in the same period (R^2
472 = 0.08, $p = 0.25$ Figure 3). Additionally, only 6 out of 18 periods fell in the first and third
473 quadrants of Figure 3, which are consistent with maternal rank-dependent adaptive modulation
474 of offspring sex ratio (the bottom left and upper right quadrants of Figure 3). In contrast, 12 of
475 the time periods we considered fell in quadrants two and four, which are associated with *costly*
476 modulation of rank related effects (i.e., high-ranking mothers producing offspring of the “wrong”
477 sex). Thus, this analysis provides no evidence that females adaptively change the magnitude or
478 direction of a rank-related sex bias in order to maximize the survival prospects of their offspring.
479

480
481 **Figure 3.** The magnitude of the survival benefit experienced by daughters born to high-ranking mother (x-
482 axis) does not predict the magnitude of the maternal rank-based bias in offspring sex (y-axis). Each of the 18
483 points represents model estimates from six to ten year time windows for a single social group. The x-axis
484 represents the coefficient of the interaction between maternal rank and offspring sex in a Cox proportional
485 hazards model of offspring survival (see Methods for additional details). Positive values on the x-axis
486 indicate periods when offspring benefitted from being female when born to high-ranking mothers or from
487 being male when born to low-ranking mothers. The y-axis represents the magnitude of the rank-related sex
488 bias during a given time period (see Figure 2 for a detailed description of $\%D_H - \%D_L$). Positive values on
489 the y-axis indicate periods when high-ranking females had more daughters than low-ranking females ($\%D_H >$
490 $\%D_L$, see Figure 2). Adaptive modulation of offspring sex ratio to maximize offspring survival would predict
491 a positive association between these two estimates, but neither linear regression (to test for an overall
492 correlation: $R^2 = 0.08$, $p = 0.25$) nor a Fisher’s Exact Test (to test for directional concordance: $p = 0.19$, in
493 opposite direction as predicted) identifies such an association.
494

495 *Are the Trivers-Willard or female rank enhancement hypotheses supported by
496 considering other measures of maternal condition?* Although maternal early adversity strongly

497 predicts offspring survival (Zipple et al 2019, 2021), maternal early life adversity does not
498 predict offspring sex in either multivariate or cumulative adversity models (Table 2). Similarly,
499 although impending maternal death predicts lower offspring survival, maternal death in the one-,
500 two-, or four-year periods following offspring birth also did not predict offspring sex (Table 2).
501

502 **Table 2.** Model results from mixed effects logistic regression models that predict offspring sex
503 as a response to alternative measures of maternal condition.

<i>Measure of Female Condition</i>	<i>Coefficient Estimate[^]</i>	<i>Estimated Effect on proportion of female offspring</i>	<i>p value</i>
<i>Early Life Adversity (n = 807)</i>			
<i>Multivariate Model</i>			
Early Maternal Loss	-0.17	-0.04	0.34
Close-In-Age Younger Sibling	-0.05	-0.01	0.77
Born to a Low-Ranking Mother	0.12	0.03	0.51
Born in a Large Group	0.49	0.12	0.13
Born During a Drought	0.41	0.10	0.13
<i>Cumulative Adversity Model</i>			
Cumulative Adversity	0.06	0.01	0.54
<i>Impending Maternal Death</i>			
Within 1 Year of Offspring Birth (n = 1343)	0.13	0.03	0.56
Within 2 Years of Offspring Birth (n = 1301)	0.10	0.02	0.54
Within 4 Years of Offspring Birth (n = 1214)	0.24	0.06	0.07

504 [^] Positive values indicate an increase in the proportion of daughters.

505

506 *Testing the local resource competition and enhancement hypotheses.* Overall, the global
507 sex ratio at birth for the Amboseli baboon population did not significantly deviate from parity
508 (52% females, 95% CI = <0.50 – 0.55, p = 0.07). Notably, even the suggestion of a deviation
509 from parity—in favor of females—is in the opposite direction to that predicted by the local
510 resource competition hypothesis, which predicts a bias towards males, the dispersing sex.
511 Offspring sex was not predicted by group size in the year of birth (p = 0.10, coef. estimate = -
512 0.005), or by social group growth rate (p = 0.35, coef. estimate = -0.74) in bivariate models
513 predicting offspring sex along with a random effect of maternal ID. In more complex models
514 (Table 3), offspring sex was also not predicted by the interaction between maternal rank and
515 either group size in the year of birth (p = 0.88) or social group growth rate (p = 0.26, Table 3).
516 Overall, offspring survival was not significantly predicted by the interaction between maternal
517 rank and offspring sex (p = 0.93), though the main effect of maternal proportional rank was a
518 significant predictor of offspring survival (HR = 0.40-0.99, p < 0.05), consistent with previous
519 results in this population (Silk et al 2003, Zipple et al. 2019). See Table 3 for full results.
520

521 **Table 3.** Model results from mixed effects models that predict offspring sex and offspring
522 survival as a response to alternative measures of competitive environment

Model/Parameter*	Coefficient Estimate [^]	Std. Error	p Value
Offspring Sex ~ Group Size (n = 1274)			
Maternal Proportional Rank	0.28	0.57	0.63
Group Size in Year of Birth	-0.004	0.006	0.48
Mat. Rank x Group Size	-0.001	0.009	0.88
Offspring Sex ~ Group Growth Rate (n = 1109)			
Maternal Proportional Rank	0.41	0.24	0.09
Social Group Growth Rate	0.67	1.45	0.65
Mat. Rank x Growth Rate	-2.74	2.44	0.26
Offspring Survival ~ Sex and Rank (n = 1242)			
Maternal Proportional Rank	-0.46	0.23	0.046
Offspring Sex	0.07	0.18	0.77
Mat. Rank x Offspring Sex	0.03	0.31	0.83

523 *All models include maternal identity as a random effect.

524 ^Positive values indicate an increase in the proportion of daughters (offspring sex models) or an increase in mortality
525 (survival model)

526

527 Discussion

528 Overall, we find no evidence that female baboons adaptively bias the sex ratio of their
529 offspring in the direction predicted by the competing hypotheses in Table 1. First, we find no
530 evidence that female baboons consistently alter the sex ratio of their offspring based on their
531 dominance rank or other metrics of female condition (Figure 1, Table 2). While it is difficult to
532 rule out the possibility that females engage in such rank-based biasing in some very specific
533 environmental contexts, our data demonstrate that such a strategy is, at best, quite rarely
534 employed (Figure 2). Next, we find no evidence that females modulate their offspring's
535 secondary sex ratios in favor of the sex that is more likely to survive based on the females' social
536 rank and the environmental conditions that the offspring experiences (Figure 3). Specifically,
537 while we acknowledge that this particular analysis relies on point estimates from model outputs
538 with substantial uncertainty, the lack of any evidence for an effect means that we can be
539 confident that any relationship between the magnitude of the survival benefits of a rank-related
540 sex bias and the rank-related sex bias that actually exists is, at best, very weak. Finally, we find
541 no relationship between offspring sex ratio and measures of competitive intensity, nor do we find
542 support for an interaction between competitive intensity and maternal dominance rank (Table 3).
543 While the predictions of each hypothesis in Table 1 differ, they all predict that offspring sex ratio
544 or offspring survival will be shaped by some combination of maternal rank, group size, and
545 population growth rate. No such relationship is detectable in our dataset, which represents the
546 largest sample size (n = 1372) from a single wild primate population ever used to assess these
547 hypotheses.

548 The absence of a relationship between maternal rank and offspring sex in this study
549 contradicts previously published results from our study system based on data from the beginning
550 of long-term observations, from 1971-1981 (Altmann 1980, Altmann et al. 1988). Those results
551 are reproduced in our analysis of the data from that period, and indeed the strength of the

552 relationship between maternal rank and offspring sex in that data set is striking (see Figure 2,
553 above and Figure 25.3 in Altmann et al. 1988). The fact that other time periods in the Amboseli
554 baboon data set, and other primate populations, do not show a similar pattern, suggests that this
555 previous result was a false positive (Type I error) (Brown & Silk 2002, Silk et al. 2005). If long-
556 term data collection on the Amboseli baboons had started during essentially any other time
557 period or in any other social group, researchers would not have identified an apparent
558 relationship between maternal rank and offspring sex.

559 At the same time, the rank-related results from this analysis are consistent with previous
560 theoretical work by Altmann and Altmann (1991). Altmann and Altmann (1991) modeled the
561 group-level demographic implications of rank-related modulation of offspring sex ratios in a
562 matrilocal species in which females inherit their mother's dominance rank (such as baboons and
563 some other cercopithecine monkeys). They showed that if high-ranking females in such a species
564 biased their offspring sex ratio towards sons, the result would be an unstable group size, such
565 that small groups rapidly decline in size and large groups grow at an ever-increasing rate
566 (Altmann & Altmann 1991). In contrast, if high-ranking females were to bias their offspring sex
567 ratio towards daughters, then group size would be highly regulated: groups would remain stable
568 at a near constant size, composed primarily of closely related females (Altmann & Altmann
569 1991). Neither of these outcomes is consistent with the empirical dynamics of baboon social
570 groups where, when population growth is positive overall, small social groups grow in size and
571 large social groups continue to grow until they fission into smaller groups (Van Horn et al. 2007,
572 Markham et al. 2015). Further, rather than being tightly regulated around a stable group size,
573 group sizes vary widely in the Amboseli population from less than 10 to more than 100
574 individuals (Stacey 1986, Markham et al. 2015). Thus, the dynamics of social group sizes in the
575 Amboseli baboons are counter to the demographic predictions that ensue from maternal
576 manipulation of offspring sex ratio, providing a separate line of evidence that such manipulation
577 does not happen in this population.

578 One possible explanation for the apparent absence of a relationship between maternal
579 rank and offspring sex in our population is that female rank may not be a good proxy of female
580 "condition" in nonhuman primates. This possibility is unlikely to explain the results from our
581 population for two reasons. First, female rank has been associated with a wide range of traits that
582 are likely to be related to condition in our population, including offspring survival, inter-birth
583 interval, attainment of sexual maturity, and the strength of social relationships (Silk et al. 2003,
584 Charpentier et al. 2008, Archie et al. 2014, Gesquiere et al. 2018, Zipple et al. 2019, Levy et al.
585 2020). Second, we also fail to observe a relationship between other metrics of maternal condition
586 and offspring sex. Specifically, offspring sex is not predicted by maternal early life adversity nor
587 by their mother's survival in the earliest years following their birth (Table 2), both of which
588 predict offspring survival overall and likely reflect maternal condition (Tung and Archie et al.
589 2016, Zipple et al. 2019).

590 Why have females failed to evolve the ability to manipulate the secondary sex-ratio of
591 their offspring to their benefit, as predicted by the female rank enhancement and local resource
592 competition hypotheses? We documented an enormous range in the interaction between
593 offspring sex and maternal rank on offspring survival (Figure 3), indicating that females *could*
594 derive substantial benefit by producing offspring of the 'right' sex at any given time, depending
595 on the survival prospects of the offspring. At least two barriers may prevent the evolution of such
596 a strategy.

597 First, the mechanisms available to female mammals for influencing offspring sex remain
598 mostly theoretical. Further, even these theoretical mechanisms would operate in the direction
599 opposite to that predicted by the female rank enhancement and local resource competition
600 hypotheses (as applied to baboons), which predict that good-condition females should produce
601 more daughters and poor-condition females should produce more sons (reviewed in (Douhard
602 2017)). For example, one proposed mechanism is based on the idea that higher-ranking females
603 produce higher levels of circulating testosterone, which could potentially make their oocytes
604 more receptive to Y-chromosome sperm (Grant & Chamley 2010, Douhard 2017). Another
605 possible mechanism suggests that high levels of glucose (consistent with good maternal
606 condition) may lead to higher levels of female embryonic mortality and support male embryonic
607 development (Cameron 2004, Douhard 2017). Finally, some have speculated that high levels of
608 glucocorticoid concentrations (consistent with poor-condition mothers) could lead to differential
609 male embryonic mortality (Navara 2010, Douhard 2017). Each of these potential mechanisms is
610 consistent with the Trivers-Willard hypothesis, and in red deer and bighorn sheep, good maternal
611 condition has been reported to predict the production of sons, although only in specific
612 circumstances (Kruuk et al. 1999, Douhard et al. 2016). However, no mechanisms have yet been
613 proposed through which good-condition mothers could bias their offspring sex ratio towards
614 daughters, but poor-condition mothers the reverse.

615 Second, even if mechanisms exist that would allow females to facultatively adjust the sex
616 ratio of their offspring, the ability to do so adaptively relies on females' ability to use cues
617 available at the time of conception to identify the fitness-favoring sex in *future* environmental
618 conditions. In the case of baboons (a relatively long-lived mammal), this would require females
619 to accurately assess whether environmental conditions over the coming years and decades would
620 differentially benefit the reproductive success of male versus female offspring, given her social
621 rank and environmental cues at the time of conception. In the highly dynamic physical and social
622 environment that female baboons experience in the Amboseli population, such an assessment is
623 likely to be impossible. Thus, the results presented here add to a growing body of evidence from
624 this and other populations that early life environmental cues may not be sufficiently informative
625 to select for predictive adaptive responses that optimally align with future environmental
626 conditions (Hayward & Lummaa 2013, Douhard et al. 2014, Lea et al. 2015, Weibel et al. 2020)

627 This inability to predict the future may also explain the absence of any relationship
628 between group size or group growth rate and offspring sex. Although it may be beneficial to
629 females to modulate their offspring's sex depending on future group size, females likely lack
630 sufficiently reliable information to make such a determination at the time of conception. Small
631 groups tend to grow faster than large groups and large groups tend to fission, but this is a very
632 noisy process that proceeds quite differently in different social groups (Stacey 1986, Markham et
633 al. 2015). As a result, any individual female is unlikely to be able to predict future group size or
634 competitive environment based on group size or growth rate at the time of conception.
635 Importantly, mistakes would be costly, as differential death or abortion of a fetus in a singular
636 breeder like baboons can have a meaningful effect on lifetime reproductive success. Further,
637 even the benefits of making a "correct decision" may be less than they appear: a mother that
638 aborted a fetus of the disadvantageous sex would have only an ~50% chance of conceiving an
639 offspring of the advantageous sex the next time she became pregnant, so selectively aborting a
640 fetus of the wrong sex (as required by all proposed mechanisms above) would substantially slow
641 female reproductive life histories.

642 In sum, evolutionary hypotheses about facultative adjustment of offspring sex ratio are
643 compelling. Yet, among primates there remains no convincing evidence that condition-dependent
644 manipulation of offspring sex systematically occurs. The sum of the evidence from more than a
645 dozen species instead indicates that offspring sex is independent of maternal condition. Thus,
646 between-species variation in secondary sex ratio certainly exists, but variation within primate
647 species does not appear to depend on maternal condition—or at least not strongly enough that it
648 is dependably detectable even in the best-powered analyses to date (Brown & Silk 2002, Silk et
649 al. 2005, Silk & Brown 2008). On the other hand, the Trivers-Willard hypothesis has been
650 partially supported in at least two ungulates: red deer and big-horn sheep (Clutton-Brock et al.
651 1984, Kruuk et al. 1999, Douhard et al. 2016).

652 It may be that observations reported in ungulates reflect historical false positives similar
653 to that which we report here. But if not, the apparent difference between primates and ungulates
654 motivates a central question to be addressed going forward: what explains why offspring sex in
655 (some) ungulates appears to be dependent on maternal condition, while the same does not appear
656 to be true in primates? One possible explanation is that the fitness of sons is more tightly tied to
657 maternal condition in ungulates than in primates (see Altmann 1980). This possibility could be
658 tested by identifying those exceptions that prove the rule in both taxa. That is, if there are male
659 primates whose fitness outcomes depend on maternal condition, these are the species in which
660 we would be most likely to see sex ratios dependent on maternal condition. Conversely, if there
661 are ungulate species in which male fitness outcomes are independent of maternal condition, we
662 would expect these to be species in which offspring sex would also be independent of maternal
663 condition. The first step towards such a test is a more complete assessment of the presence or
664 absence of a relationship between maternal condition and offspring sex in more populations of
665 wild mammals, as the number of species for which we can have confidence in this assessment
666 remains low (Brown 2001, Brown & Silk 2002, Silk et al. 2005).

667

668 Acknowledgments

669 MNZ is supported by a Klarman Postdoctoral fellowship at Cornell University as well as an NSF
670 Postdoctoral Research Fellowship in Biology (grant # 2109636). We gratefully acknowledge the
671 support of the National Science Foundation and the National Institutes of Health for the majority
672 of the data represented here, currently through NSF IOS 1456832, and through NIH
673 R01AG053308, R01AG053330, R01AG071684, R01HD088558, R01AG075914, and
674 P01AG031719. We also thank Duke University, Princeton University, and the University of
675 Notre Dame for financial and logistical support. In Kenya, our research was approved by the
676 Wildlife Research Training Institute (WRTI), Kenya Wildlife Service (KWS), the National
677 Commission for Science, Technology, and Innovation (NACOSTI), and the National
678 Environment Management Authority (NEMA). We also thank the University of Nairobi, the
679 Institute of Primate Research (IPR), the National Museums of Kenya, the members of the
680 Amboseli-Longido pastoralist communities, the Enduimet Wildlife Management Area, Ker &
681 Downey Safaris, Air Kenya, and Safarilink for their cooperation and assistance in the field.
682 Particular thanks go to S. Sayialel for data collection in the field, and to T. Wango and V. Oudu
683 for their untiring assistance in Nairobi. The baboon project database, Babase, is expertly
684 managed by N. Learn and J. Gordon. Database design and programming are provided by K. Pinc.
685 This research was approved by the IACUC at Duke University, University of Notre Dame, and
686 Princeton University and adhered to all the laws and guidelines of Kenya. For a complete set of

21

687 acknowledgments of funding sources, logistical assistance, and data collection and management,
688 please visit <http://amboselibaboons.nd.edu/acknowledgements/>.
689

21

690References

691Alberts SC, Altmann J (2012) The Amboseli Baboon Research Project: 40 years of continuity and
692 change. In: Kappeler P, Watts D (eds) *Long-Term Field Studies of Primates*, 261–287. Springer,
693 Berlin.

694Alberts SC, Watts HE, Altmann J (2003) Queuing and queue jumping: Long term patterns of
695 dominance rank and mating success in male savannah baboons. *Animal Behaviour* 65: 821–840.

696Altmann SA (1973) The pregnancy sign in savannah Baboons. *The Journal of Zoo Animal Medicine*
697 4: 8.

698Altmann J (1980) *Baboon Mothers and Infants*. University of Chicago Press, Chicago.

699Altmann J, Alberts SC (2003) Intraspecific variability in fertility and offspring survival in a
700 nonhuman primate: behavioral control of ecological and social sources. In: Wachter K, Bulatao
701 R (eds) *Offspring: The Biodemography of Fertility and Family Behavior*, 140–169. National
702 Academy Press, Washington, DC.

703Altmann M, Altmann J (1991) Models of status-correlated bias in offspring sex ratio. *American
704 Naturalist* 137: 542–555.

705Altmann J, Hausfater G, Altmann SA (1988) Determinants of reproductive success in savannah
706 baboons, Papio cynocephalus. In: Clutton-Brock TH (ed) *Reproductive Success*, University of
707 Chicago Press, Chicago.

708Archie EA, Tung J, Clark M, Altmann J, Alberts SC (2014) Social affiliation matters: both same-sex
709 and opposite-sex relationships predict survival in wild female baboons. *Proceedings of the Royal
710 Society B: Biological Sciences* 281.

711Beehner JC, Onderdonk DA, Alberts SC, Altmann J (2006) The ecology of conception and
712 pregnancy failure in wild baboons. *Behavioral Ecology* 17: 741–750.

713Brown GR (2001) Sex-biased investment in nonhuman primates: Can Trivers and Willard's theory
714 be tested? *Animal Behaviour* 61: 683–694.

715Brown GR, Silk JB (2002) Reconsidering the null hypothesis: Is maternal rank associated with birth
716 sex ratios in primate groups? *Proceedings of the National Academy of Sciences of the United
717 States of America* 99: 11252–11255.

718Cameron EZ (2004) Facultative adjustment of mammalian sex ratios in support of the Trivers-
719 Willard hypothesis: Evidence for a mechanism. *Proceedings of the Royal Society B: Biological
720 Sciences* 271: 1723–1728.

721Charpentier MJE, Tung J, Altmann J, Alberts SC (2008) Age at maturity in wild baboons: genetic,
722 environmental and demographic influences. *Molecular Ecology* 17: 2026–2040.

723Cheney DL, Seyfarth RM, Andelman SJ, Lee PC (1988) Reproductive success in vervet monkeys.
724 In: Clutton-Brock TH (ed) *Reproductive Success*, 384–402. University of Chicago Press,
725 Chicago.

726Clark AB (1978) Sex ratio and local resource competition in a prosimian primate. *Science* 201: 163–
727 165.

728Clutton-Brock TH, Albon SD, Guinness FE (1984) Maternal dominance, breeding success and birth
729 sex ratios in red deer. *Nature* 308: 358–360.

730Dittus WPJ (1998) Birth sex ratios in toque macaques and other mammals: Integrating the effects of
731 maternal condition and competition. *Behavioral Ecology and Sociobiology* 44: 149–160.

732Douhard M (2017) Offspring sex ratio in mammals and the Trivers-Willard hypothesis: In pursuit of
733 unambiguous evidence. *BioEssays* 39: 1700043.

734Douhard M, Festa-Bianchet M, Pelletier F (2016) Maternal condition and previous reproduction
735 interact to affect offspring sex in a wild mammal. *Biology Letters* 12: 20160510.

736 Douhard M, Plard F, Gaillard J-M, Capron G, Delorme D, Klein F, Duncan P, Loe LE, Bonenfant C
737 (2014) Fitness consequences of environmental conditions at different life stages in a long-lived
738 vertebrate. *Proceedings. Biological sciences* 281: 20140276.

739 Emlen ST, Emlen JM, Levin SA (1986) Sex-ratio selection in species with helpers-at-the-nest.
740 *American Naturalist* 127: 1–8.

741 Gesquiere LR, Altmann J, Archie EA, Alberts SC (2018) Interbirth intervals in wild baboons:
742 environmental predictors and hormonal correlates. *American Journal of Physical Anthropology*
743 166: 107–126.

744 Gesquiere LR, Wango EO, Alberts SC, Altmann J (2007) Mechanisms of sexual selection: Sexual
745 swellings and estrogen concentrations as fertility indicators and cues for male consort decisions
746 in wild baboons. *Hormones and Behavior* 51: 114–125.

747 Gowaty PA, Lennartz MR (1985) Sex ratios of nestling and fledgling red-cockaded woodpeckers
748 (*Picoides borealis*) favor males. *American Naturalist* 126: 347–353.

749 Grant VJ, Chamley LW (2010) Can mammalian mothers influence the sex of their offspring peri-
750 conceptually? *Reproduction* 140: 425–433.

751 Hauber ME, Lacey E (2005) Bateman's principle in cooperatively breeding vertebrates: the effects
752 of non-breeding alloparents on variability in female and male reproductive success. *Integrative
753 and Comparative Biology* 45: 903–914.

754 Hausfater G (1975) Dominance and reproduction in Baboons (*Papio cynocephalus*): a quantitative
755 analysis. *Contributions to primatology* 7: 1–150.

756 Hayward AD, Lummaa V (2013) Testing the evolutionary basis of the predictive adaptive response
757 hypothesis in a preindustrial human population. *Evolution, Medicine, and Public Health* 2013.

758 Van Horn RC, Buchan JC, Altmann J, Alberts SC (2007) Divided destinies: group choice by female
759 savannah baboons during social group fission. *Behavioral Ecology and Sociobiology* 61: 1823–
760 1837.

761 Koyama N, Takahata Y, Huffman MA, Norikoshi K, Suzuki H (1992) Reproductive parameters of
762 female Japanese macaques: thirty years of data from the Arashiyama troops, Japan. *Primates* 33:
763 33–47.

764 Kruuk LEB, Clutton-Brock TH, Albon SD, Pemberton JM, Guinness FE (1999) Population density
765 affects sex ratio variation in red deer. *Nature* 399: 459–461.

766 Lea AJ, Altmann J, Alberts SC, Tung J (2015) Developmental constraints in a wild primate. *The
767 American naturalist* 185: 809–21.

768 Levy EJ, Zipple MN, McLean E, Campos FA, Dasari M, Fogel AS et al. (2020) A comparison of
769 dominance rank metrics reveals multiple competitive landscapes in an animal society.
770 *Proceedings of the Royal Society B: Biological Sciences* 287: 20201013.

771 Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, van Bentham K, Bolker B,
772 Brooks M (2017) glmmTMB: generalized linear mixed models using a template model builder. *R
773 package version 0.1*.

774 Markham AC, Alberts SC, Altmann J (2012) Intergroup conflict: Ecological predictors of winning
775 and consequences of defeat in a wild primate population. *Animal Behaviour* 84: 399–403.

776 Markham AC, Gesquiere LR, Alberts SC, Altmann J (2015) Optimal group size in a highly social
777 mammal. *Proceedings of the National Academy of Sciences of the United States of America* 112:
778 14882–7.

779 Meikle DB, Tilford BL, Vessey SH (1984) Dominance rank, secondary sex ratio, and reproduction
780 of offspring in polygynous primates. *American Naturalist* 124: 173–188.

781 Navara KJ (2010) Programming of offspring sex ratios by maternal stress in humans: Assessment of

782 physiological mechanisms using a comparative approach. *Journal of Comparative Physiology B*
783 180: 785–796.

784 Nevison CM, Rayment FDG, Simpson MJA (1996) Birth sex ratios and maternal social rank in a
785 captive colony of rhesus monkeys (*Macaca mulatta*). *American Journal of Primatology* 39: 123–
786 138.

787 Onyango PO, Gesquiere LR, Altmann J, Alberts SC (2013) Puberty and dispersal in a wild primate
788 population. *Hormones and Behavior* 64: 240–249.

789 Paul A, Kuester J (1990) Adaptive significance of sex ratio adjustment in semifree-ranging Barbary
790 macaques (*Macaca sylvanus*) at Salem. *Behavioral Ecology and Sociobiology* 27: 287–293.

791 Pen I, Weissing FJ (2000) Sex-ratio optimization with helpers at the nest. *Proceedings of the Royal
792 Society B: Biological Sciences* 267: 539–543.

793 Rhine RJ, Norton GW, Rogers J, Wasser SK (1992) Secondary sex ratio and maternal dominance
794 rank among wild yellow baboons (*Papio cynocephalus*) of Mikumi National Park, Tanzania.
795 *American Journal of Primatology* 27: 261–273.

796 van Schaik CP, Hrdy SB (1991) Intensity of local resource competition shapes the relationship
797 between maternal rank and sex ratios at birth in cercopithecine primates. *The American
798 Naturalist* 138: 1555–1562.

799 Silk JB (1983) Local resource competition and facultative adjustment of sex ratios in relation to
800 competitive abilities. *American Naturalist* 121: 56–66.

801 Silk JB (1984) Local resource competition and the evolution of male-biased sex ratios. *Journal of
802 Theoretical Biology* 108: 203–213.

803 Silk JB (1988) Maternal investment in captive bonnet macaques (*Macaca radiata*). *The American
804 Naturalist* 132: 1–19.

805 Silk JB, Alberts SC, Altmann J (2003) Social bonds of female baboons enhance infant survival.
806 *Science* 302: 1231–1234.

807 Silk JB, Brown GR (2008) Local resource competition and local resource enhancement shape
808 primate birth sex ratios. *Proceedings of the Royal Society B: Biological Sciences* 275: 1761–
809 1765.

810 Silk JB, Willoughby E, Brown GR (2005) Maternal rank and local resource competition do not
811 predict birth sex ratios in wild baboons. *Proceedings. Biological sciences / The Royal Society*
812 272: 859–864.

813 Stacey PB (1986) Group size and foraging efficiency in yellow baboons. *Behavioral Ecology and
814 Sociobiology* 18: 175–187.

815 Strauss ED, Shizuka D, Holekamp KE (2020) Juvenile rank acquisition is associated with fitness
816 independent of adult rank. *Proceedings of the Royal Society B: Biological Sciences*.

817 Symington MMF (1987) Sex ratio and maternal rank in wild spider monkeys: when daughters
818 disperse. *Behavioral Ecology and Sociobiology* 20: 421–425.

819 Therneau T, Lumley T (2015) Package “survival.” *R Top Doc* 128.

820 Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring.
821 *Science* 179: 90–92.

822 Tung J, Archie EA, Altmann J, Alberts SC (2016) Cumulative early life adversity predicts longevity
823 in wild baboons. *Nature Communications* 7: 11181.

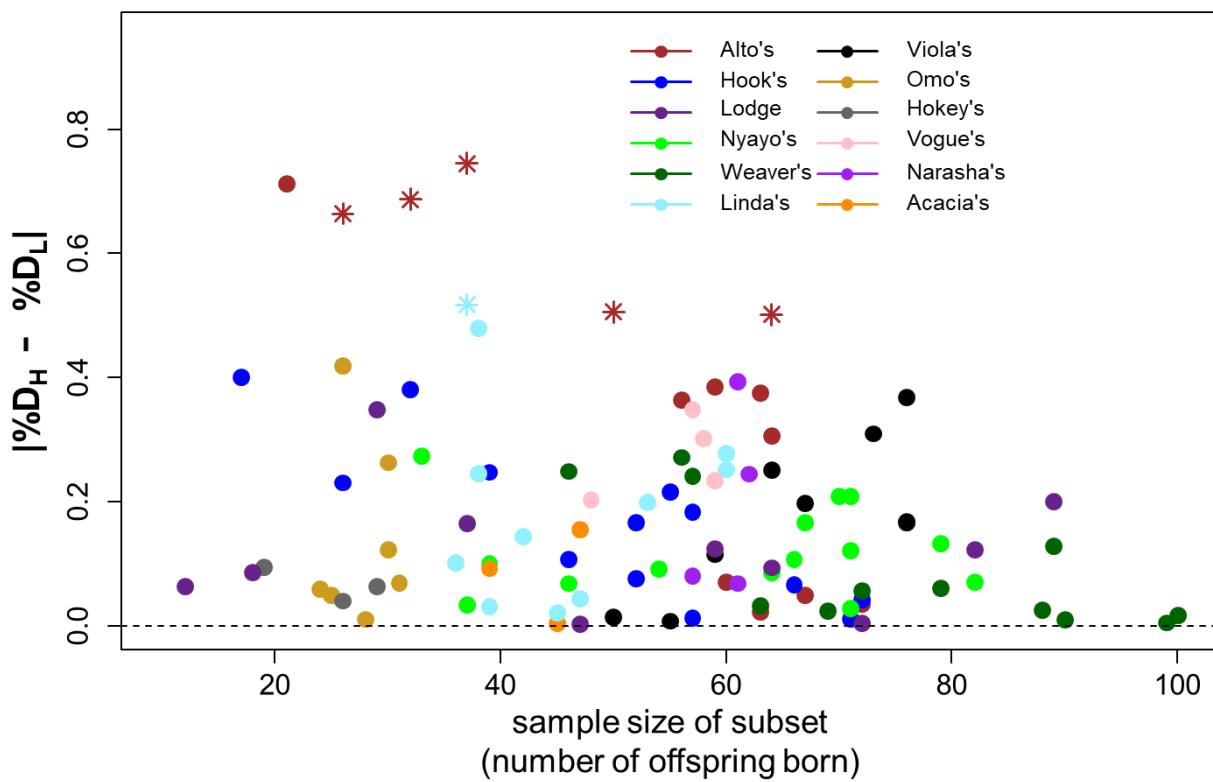
824 Weibel CJ, Tung J, Alberts SC, Archie EA (2020) Accelerated reproduction is not an adaptive
825 response to early-life adversity in wild baboons. *Proceedings of the National Academy of
826 Sciences of the United States of America* 117: 24909–24919.

827 West SA, Sheldon BC (2002) Constraints in the evolution of sex ratio adjustment. *Science* 295:

25

828 1685–1688.

829 Zipple MN, Altmann J, Campos FA, Cords M, Fedigan LM, Lawler RR et al. (2021) Maternal death
830 and offspring fitness in multiple wild primates. *Proceedings of the National Academy of Sciences*
831 118: e2015317118.


832 Zipple M, Archie EA, Tung J, Altmann J, Alberts SC (2019) Intergenerational effects of early
833 adversity on survival in wild baboons. *eLife* 8. e47433

834

835

25

836 **Supplemental Material:**

837
838 **Figure S1.** The largest apparent effects of maternal rank on offspring sex occurred during
839 analyses of 7-year subsets of the data characterized by smaller sample sizes of offspring born.
840 Plotted here are the absolute values of the estimated magnitude of the sex bias effects previously
841 shown in Figure 2 (the y-axis) versus the number of offspring born during the 7-year group-
842 period contained in each analysis (the x-axis). As in Figure 2, asterisks indicate periods and
843 groups in which models indicated that maternal rank significantly predicted offspring sex, with
844 group identities indicated by different colors, and the dashed line indicating the null expectation.
845 As expected, the average magnitude of the estimated effect declines as sample size increases.
846