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Abstract

Single cell RNA sequencing (scRNA-seq) has become a core tool for researchers to understand
biology. As scRNA-seq has become more ubiquitous, many applications demand higher
scalability and sensitivity. Split-pool combinatorial barcoding makes it possible to scale projects
to hundreds of samples and millions of cells, overcoming limitations of previous droplet based
technologies. However, there is still a need for increased sensitivity for both droplet and
combinatorial barcoding based scRNA-seq technologies. To meet this need, here we introduce
an updated combinatorial barcoding method for scRNA-seq with dramatically improved
sensitivity. To assess performance, we profile a variety of sample types, including cell lines,
human peripheral blood mononuclear cells (PBMCs), mouse brain nuclei, and mouse liver nuclei.
When compared to the previously best performing approach, we find up to a 2.6-fold increase in
unique transcripts detected per cell and up to a 1.8-fold increase in genes detected per cell. These
improvements to transcript and gene detection increase the resolution of the resulting data,
making it easier to distinguish cell types and states in heterogeneous samples. Split-pool
combinatorial barcoding already enables scaling to millions of cells, the ability to perform scRNA-
seq on previously fixed and frozen samples, and access to scRNA-seq without the need to
purchase specialized lab equipment. Our hope is that by combining these previous advantages
with the dramatic improvements to sensitivity presented here, we will elevate the standards and

capabilities of scRNA-seq for the broader community.
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Introduction

The development of microwell’, and microfluidic-based*™ single cell RNA sequencing (sScRNA-
seq) methods has enabled researchers to dissect the cellular composition of tissues and link gene
expression signatures to cellular behaviors in health and disease>®. While these initial
approaches were extremely informative, they lacked scalability and did not allow for high sample
multiplexing, making large projects prohibitively expensive'®. Combinatorial barcoding based

single cell sequencing'"'?

overcame many of these limitations, making it possible to run larger
numbers of samples and cells in a single experiment. With combinatorial barcoding, fixed cells
and nuclei go through multiple rounds of split-pool barcoding that ensures molecules within cells
receive a unique combination of barcodes, enabling each molecule to be traced back to their cell
of origin after sequencing. In addition to increasing throughput, this approach enables a flexible
experimental timeline since biological samples can be fixed and stored on different days before
being processed in parallel in the same experiment. Contrary to other approaches, combinatorial
barcoding does not require any complex microfluidics or other specialized equipment. Over the
past few years, this approach has been widely adopted to study developmental processes and

disease progression at scale'>%,

We previously developed and released the suite of Evercode™ Whole Transcriptome kits (WT
Mini, WT, and WT Mega), which dramatically improve the performance and streamline the
workflow of the foundational combinatorial barcoding method SPLiT-seq. These kits enable
multiplexing of up to 96 samples and profiling of up to 1 million cells in one experiment. To
demonstrate these capabilities, we previously generated a 1 million peripheral blood mononuclear
cells (PBMCs) dataset and characterized the immune landscape in 12 healthy individuals and 12

patients with type 1 diabetes (Fig.S1).

Even with this level of scalability, improvements to assay sensitivity, leading to increased
transcript and gene detection would further sharpen biological resolution. This is especially
important in samples and cell types with limited starting RNA content or applications that require
detection of specific, low-expression genes. Many of these genes have critical functions that

contribute to disease risk?” and are needed to accurately characterize cell types?.

Here, we introduce the Evercode Whole Transcriptome v2 chemistry which dramatically increases
the sensitivity of combinatorial barcoding based scRNA-seq. The v2 chemistry includes
improvements to the Evercode Cell Fixation and Nuclei Fixation kits as well as the Evercode

Whole Transcriptome kits. Across a variety of sample types, including both cells and nuclei, we
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find that the new chemistry results in substantial improvements in transcript detection (23% -
162%) and gene detection (8 - 79%) compared to the original Evercode Whole Transcriptome kit
(v1 chemistry), while maintaining similarly low doublet rates. The improvement in sensitivity also
leads to better clustering, improved assignment of cell types and state, and potential reductions
in sequencing costs.
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Figure 1. Overview of Evercode Whole Transcriptome workflow. (A) A single cell or nuclei
suspension is first fixed, after which fixed cell or nuclei suspensions can be stored before proceeding to
barcoding. Barcoding and library preparation is followed by sequencing and data analysis. (B) During the
barcoding, fixed cells or nuclei undergo several rounds of split-pool barcoding to uniquely label transcripts
according to cell of origin. Cells are then lysed, and barcoded transcripts undergo library preparation,
sequencing, and data analysis. (C) With each round of split-pool barcoding, the total number of barcode
combinations grows exponentially. The Evercode WT Mega configuration generates over fourteen million
barcode combinations, enough to uniquely label one million cells or nuclei with very low doublet rates. (D)
Single cell transcriptomes are constructed by grouping transcripts containing the same four barcode
combinations.
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Validation of Improved Chemistry with a Species Mixing Experiment

To validate the Evercode Whole Transcriptome v2 chemistry, we first performed a species mixing
experiment using a mixture of human (HEK293) and mouse (NIH/3T3) cells (Fig. S2A). The two
species of cells were first mixed in equal proportions, then fixed, barcoded, and processed into
single cell libraries with both the Evercode v1 and v2 chemistries. We found both v1 and v2
chemistries result in low observed doublets, (Fig.S2B, v1: 1.3%; v2: 1.7%) indicating a true
doublet rate of less than 4%. Average gene expression was highly correlated across the v1 and
v2 chemistries (Fig.S2C, R?=0.981 for NIH/3T3 and R?= 0.983 for HEK293). Furthermore, joint
clustering yielded highly concordant clusters for both chemistries (Fig. S2D), suggesting the
chemistry improvements maintain single-cell quality and unbiased gene detection. When we
compared sensitivity, we found that the v2 chemistry resulted in a 23% increase in transcript

detection and an 8% increase in gene detection at 252,000 reads/cell (Fig.S2E).
Single Nuclei Profiling of Adult Murine Liver

To test the performance of the v2 chemistry on nuclei, we first chose to test mouse liver, a
relatively common yet challenging tissue type. We started with nuclei preparations from a single
mouse liver and then divided them into two separate but parallel workflows using the v1 and v2

chemistries (Fig. 2A).

When comparing sensitivity, we found the v2 chemistry resulted in 2.6-fold higher number of
transcripts detected per cell (v1: 5,060 transcripts; v2: 13,239 transcripts) and 1.8-fold higher
number of genes detected per cell (v1: 2,183 genes; v2: 3,904 genes) when normalized to
156,000 reads/cell sequencing depth (Fig. 2B). Again, we found average gene expression

remains highly correlated between v1 and v2 chemistries (Fig. 2C).

After clustering and labeling clusters using documented cell type markers®®, were able to
identify all major cell types for both the v1 and v2 chemistry. (Fig. 2D) The proportions of cell
types were also similar between the chemistries and in line with previously reported cell type
proportions (Figs. 2E, S3A). Approximately three quarters of identified cells were hepatocytes
with smaller populations corresponding to cycling hepatocytes, endothelial cells, Kupffer cells,
fibroblasts, cholangiocytes, T cells, and B cells. Key marker genes across different cell types
were more highly and uniformly detected using the v2 chemistry (Figs. 2F, S3B) and the v2

chemistry consistently detected more differentially expressed genes (Fig. 2G).
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Figure 2. Comparing the performance of Evercode v2 to v1 on nuclei extracted from adult mouse
liver. (A) Nuclei were extracted from an adult mouse liver and then fixed and processed in parallel using
both the Evercode v1 and v2 chemistries. (B) Number of unique transcripts (left) and unique genes (right)
detected at different numbers of raw reads per cell. (C) Correlation of average gene expression (log
average transcripts per million plus 1) between the v1 and v2 chemistries. (D) 9,520 nuclei from Evercode
v1 and 9,934 nuclei from Evercode v2 were integrated and clustered together and visualized using UMAP
(E) Nuclei from v1 and v2 cluster together. (F) Expression of key markers is higher with the v2 chemistry
(purple) compared to v1 (gray) (G) v2 chemistry (purple) detects a higher number of differentially

expressed genes relative to v1 (gray).
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Sensitive and Accurate Profiling of PBMCs

We then performed a comparison of the v2 and v1 chemistries on peripheral blood mononuclear
cells (PBMCs) (Fig. 3A). PBMCs are typically small and thus contain less mMRNA content, which
often makes it challenging to detect high numbers of genes per cell. In addition to measuring the
sensitivity of the v2 and v1 chemistries, we assessed consistency of gene detection across
different samples and the accuracy of recovered cell type proportions. We obtained PBMC
samples from four different donors and processed each PBMC sample in parallel with both the
v1 and v2 chemistries. We sequenced and analyzed 2,500-4,000 cells from each PBMC sample
for each chemistry, resulting in the analysis of ~12,000 total cells across donors for each

chemistry.

When we compared the sensitivity between v1 and v2, we found that, on average, v2 chemistry
detected 2.1-fold more transcripts per cell (v1: 2,812 transcripts; v2: 5,903 transcripts) and 1.6-
fold more genes per cell (v1: 1,506 genes; v2: 2,434 genes) (Fig.3B). The improvement in
sensitivity was also consistent across different cell types (Fig. S5B). We generally found that key
immune marker genes were more highly expressed as well, making it easier to identify and label
different populations of cells (Fig. S5C). We also found more consistent gene detection per cell
across the different PBMC samples for the v2 chemistry compared to the v1 chemistry. At 76,000
reads per cell, gene detection for the v1 chemistry varied between 935 to 1,682 (A=747) while
gene detection was between 2,233 to 2,493 (A=260) for the v2 chemistry (Figs. 3C, S5A). This

observation suggests that the v2 chemistry may mitigate technical variability between samples.

We next measured the concordance between cell type proportions identified by single cell
sequencing for both the v1 and v2 chemistries and independent measurements from flow
cytometry. To do this, we jointly clustered both single cell datasets using Seurat and labeled each
cluster with Azimuth using previously published reference datasets® (Figs. 3D, 3E). We then
calculated the proportions of each major cell type and compared the results to data collected
using flow cytometry. Across all cell types, we found high concordance both between the v1 and
v2 chemistries and flow cytometry, indicating unbiased recovery of PBMC cell types for both

chemistries (Fig. 3F).
Single Nuclei Profiling of the Developing Murine Brain

We tested the performance of the Evercode Whole Transcriptome v2 chemistry on single nuclei

sequencing of embryonic mouse brains. We extracted nuclei from two different flash frozen E18
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Figure 3. Profiling human peripheral blood mononuclear cells from different donors with Evercode
v2. (A) PBMCs from four different donors were fixed and processed in parallel using both the Evercode

v1 and v2 chemistries. (B) Number of unique transcripts (left) and unique genes (right) detected at
different numbers of raw reads per cell. (C) Violin plot showing the number of detected genes per PBMC
donor (D1-D4) for Evercode v1 (top) and Evercode v2 (bottom). The dot (black) denotes the median
genes detected for each donor and demonstrates Evercode v2 increases both the number of detected
genes and reduces sample to sample variability. (D) 10,134 cells from Evercode v1 and 15,201 cells from
Evercode v2 were integrated and clustered together. (E) Cells prepared using either the v1 or v2
chemistry cluster similarly. (G) Both the v1 and v2 chemistries result in concordant proportions of cell
types as compared to flow cytometry.
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Figure 4. snRNA-seq profiling of two E18 mouse brains with Evercode v2. (A) Nuclei were extracted
from two different E18 mouse brains and then processed in parallel using both Evercode v1 and v2
chemistries (B) Number of unique transcripts (left) and unique genes (right) detected at different numbers
of raw reads per cell. (C) Violin plot showing the number of detected genes per mouse brain donor for
Evercode v1 (left) and Evercode v2 (right). The dot (black) denotes the median genes detected per donor.
(D) 24,011 cells from Evercode v1 and 18,524 cells from Evercode v2 were integrated and clustered
together. (E) Cells from different donors cluster similarly as do cells prepared using either the v1 or v2
chemistry. (F) Cell type proportions are the same between the Evercode v1 (gray) and v2 (purple)
chemistry.
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mouse brains which were subsequently fixed and processed using both the v1 and v2 chemistries

in parallel (Fig.4A).

As with the other samples profiled, we found the Evercode v2 chemistry resulted in a dramatic
increase in both transcripts per cell (Fig.4B, v1: 7,768 transcripts; v2: 14,588 transcripts) and
genes per cell (Fig. 4B, v1: 2,595 genes; v2: 3,686 genes). The v1 chemistry had larger variability
in gene detection than the v2 chemistry between the two brain samples (Figs. 4C, S6A), v1: 2,345
and 2,846 genes, v2: 3,768 and 3,605 genes), indicating that the v2 chemistry results in increased

consistency across different samples.

We jointly clustered ~40,000 nuclei split equally between v1 and v2. The clusters were labeled
with Seurat, using the developing mouse brain atlas from La Manno et al' (Fig. 4D). When
comparing cells from the two different mouse brains, we found similar clustering (Fig. S6E). A
comparison of cell types identified between the v1 and v2 chemistries also showed highly similar
proportions across all cell types, suggesting that the v2 chemistry maintains unbiased detection

across cell types (Fig. 4E).

Discussion

As single cell sequencing has matured, advances such as combinatorial barcoding have enabled
larger scale experiments'"'?. This has made it possible to design experiments with greater
numbers of biological samples and replicates while simultaneously increasing the number of cells
per sample. Including replicates is especially important to ensure reproducibility across
experiments® and increasing the number of cells per sample enables profiling of rare cell
subpopulations®. While increasing the number of cells profiled can be powerful, previous work
has also highlighted the importance of increasing the sensitivity of high-throughput single cell

sequencing®=*.

To address this problem, we have introduced the Evercode Whole Transcriptome v2 chemistry,
which dramatically improves the sensitivity of the Evercode single cell platform. We found
improved transcript and gene detection across cell lines, human PBMCs, and nuclei extracted
from both mouse liver and mouse brain tissue. We also found that the Evecode Whole
Transcriptome v2 chemistry improves the consistency of single cell results across different

biological samples in the same experiment.

The increased sensitivity of the v2 chemistry adds to the existing advantages of the Evercode

single cell platform. Leveraging the high multiplexing and exponential scalability of combinatorial
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barcoding makes it possible to scale projects to profile millions of cells and hundreds of samples.
There is also no need to purchase a custom instrument, increasing accessibility. The ability to fix
and store samples on different days and then barcode at a later time offers further flexibility around
experimental design. Combining these advantages with dramatically improved sensitivity makes

Evercode a powerful tool for researchers using single cell sequencing.
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Materials and Methods

Preparation of Cultured Cells for Single Cell Sequencing

Adherent HEK293 cell lines were grown in 10 mLs of DMEM (ATCC 302002) containing 10% FBS
(Gibco 16000044) and 1% Pen/Strep (Gibco 15070063). Adherent NIH/3T3 were grown in 10
mLs DMEM with 10% BCS (Sigma 12133C) and 1% Pen/Strep. Plates were harvested at 85%
confluence using TrypLE Express (Thermo Fisher 12605010).

HEK293 and NIH3T3 cells were counted using a hemocytometer and combined in an even 50:50
ratio. Combined cells were centrifuged at 200 xg for 10 min, the supernatant was discarded, and
cells were resuspended in 750 pL of Cell Prefixation Buffer. Samples were then fixed using the
Parse Biosciences Cell Fixation (v1 or v2) kit and stored at -80°C until the start of barcoding and

library prep with the Evercode Whole Transcriptome (v1 or v2) kit.

Preparation of Human Peripheral Blood Mononuclear Cells (PBMCs) for Single Cell

Sequencing

Cryopreserved PBMC samples were obtained from Bloodworks Northwest. Cells were thawed in
a water bath set to 37°C, then revived by dropwise addition of 50 mLs of warm media (RPMI
(Gibco 11875093) +10% FBS (Gibco 16000044)): first by adding 1mL at the rate of 1 drop/5
seconds, then 1 mL/5 seconds in increments of 2 mL, 4 mL, 8 mL, 16 mL, and 18 mL (with one
minute incubation time between each round of media addition). The cells were gently swirled
during media addition. Cells were centrifuged at 200 x g for 10 minutes, and the supernatant
discarded. Cells were then resuspended in 10 mLs of cold media (RPMI +10% FBS, Gibco
11875093, Gibco 16000044) and counted via automated cell counter using trypan blue dye. Cells
were centrifuged again at 200 x g for 10 minutes. Supernatant was discarded and pellets were
resuspended in 750 pL of Cell Prefixation Buffer. Samples were then fixed using the Parse
Biosciences Cell Fixation (v1 or v2) kit and stored at -80°C until the start of barcoding and library

prep with the Evercode Whole Transcriptome (v1 or v2) kit.
Preparation of Murine Brain Nuclei for Single Cell Sequencing

Flash frozen E18 brains from C57/BI6 mice were obtained from TransNetYX Inc (Springfield, IL)
and stored in liquid nitrogen. Prior to flash freezing the brain, the meninges was removed and the

whole brain cut down the longitudinal fissure in the sagittal plane resulting in a left and right
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hemisphere for each donor. Prior to performing nuclei fixation for the Parse Biosciences fixation
protocol, nuclei from the left hemisphere of donor 1 and the right hemisphere of donor 2 were
isolated using a standard douncing method. Prior to and during nuclei isolation, all tools and
buffers were kept chilled on ice. Preparation for nuclei isolation buffer 1 (NIM1) includes reagents
at the following final concentration: 250mM Sucrose (Sigma S0389), 256mM KCI (Invitrogen
AM9640G), 5mM MgCI2 (Invitrogen AM9530g), 10mM Tris pH8 (Invitrogen AM9856), and
nuclease free water. Nuclei isolation buffer 2 (NIM2) derived from NIM1 buffer by adding the
following to the final concentrations: 1TuM DTT (Invitrogen P2325), 0.4U/ul Enzymatic RNase-In
(Qiagen Y9240), 0.2U/ul Superase-In (Invitrogen AM2696), and 0.1% Triton X-100 (Sigma
T8787).

A swinging bucket centrifuge was pre-cooled to 4°C prior to starting nuclei isolation. Frozen brain
sample was placed in 700uL of cooled NIM2 buffer, transferred to a dounce, and homogenized
with 10 strokes using the loose pestle and 10 strokes using the tight pestle. The nuclei
homogenate was transferred and filtered through a 40um filter into a 15ml conical tube and nuclei
were counted using a hemocytometer. The sample was partitioned to ensure there were less than
5 million nuclei in each aliquot and centrifuged at 200 x g for 10 min at 4°C. Pellets were
resuspended in Parse Nuclei Buffer containing 0.75% BSA and then fixed using the Parse
Biosciences Nuclei Fixation (v1 or v2) kit and stored at -80°C until the start of barcoding and

library prep with the Evercode Whole Transcriptome (v1 or v2) kit.
Preparation of Murine Liver Nuclei for Single Cell Sequencing

Flash frozen adult liver from C57/BI6 mouse was obtained from TransNetYX Inc (Springfield, IL)
and stored in liquid nitrogen. Prior to flash freezing, the liver was segmented into equal sections.
As previously described for brain nuclei isolation, NIM2 buffer was made fresh before nuclei
isolation. Tissue was removed from liquid nitrogen storage and thawed on ice in 500uL of cooled
NIM2 buffer for 5 minutes. A swinging bucket centrifuge was pre-cooled at 4°C prior to starting
nuclei isolation. Sterile and chilled scissors were used to mince the tissue while still in the NIM2
buffer. Minced liver is transferred to a dounce, NIM2 buffer was added to a total of 700uL, and
homogenized with 10 strokes using the loose pestle and 15 strokes using the tight pestle. The
nuclei homogenate was filtered through a 70 uym filter into a 15ml conical tube and spun down at
500 x g for 3 minutes. The pellet was resuspended in 1 mL of NIM2 buffer and filtered through a
40um filter. The sample was counted to ensure less than 5 million nuclei in each aliquot. The

samples were centrifuged at 200 x g for 10 min at 4°C and were resuspended in Parse Nuclei
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Buffer containing BSA. Nuclei were then fixed using the Parse Biosciences Nuclei Fixation (v1 or
v2) kit and stored at -80°C until the start of barcoding and library prep with the Evercode Whole

Transcriptome (v1 or v2) kit.
Barcoding and Library Preparation

In advance of cell barcoding and library preparation, fixed samples were removed from -80°C,
thawed in a water bath set to 37°C, placed on ice, and counted. Samples were barcoded and
single cell sequencing libraries were then prepared using the Evercode Whole Transcriptome (v1
or v2) kit.

Parse v1 and v2 sequencing and data processing

For the mixed species experiment, libraries were sequenced on a Next-seq 550 Illumina
instrument using two high output 150 cycle kits. For the mouse liver nuclei experiment, libraries
were also sequenced on a Next-seq 550 lllumina instrument using two high output 150 cycle kits.
E18 mouse brain nuclei and PBMC libraries were sequenced on a Novaseq 6000 Instrument
using the S4 kit. Sequencing reads from the mRNA libraries were mapped to human (hg38) or
mouse (mm10) genomes using the parse biosciences pipeline (split-pipe v0.9.6p) to generate cell
by gene counts matrices. To ensure v1 and v2 chemistry comparisons were done fairly, we
downsampled all libraries to normalize everything to the same number of mean reads per cell.
Count matrices were then used as input for the Seurat R package® to perform all downstream

analyses.
QC and data processing and clustering for the species mixing experiment

Cells with low quality metrics such as high mitochondrial gene content (> 5%) and low number of
genes detected (<600) were removed. Cells with transcripts from both mm10 and hg38 were
removed as doublets. RNA counts were log normalized using the standard Seurat workflow. To
visualize cells based on an unsupervised transcriptomic analysis, we first ran PCA using 2,000
variable genes. For this experiment the first 10 components were used as input for UMAP

visualization in two dimensions.
QC and data processing and clustering for the adult mouse liver nuclei experiment

Cells with low quality metrics such as high mitochondrial gene content (> 15%) and low number
of genes detected (<600) were removed. In an attempt to also remove doublets we filtered out

cells with more than 7,500 genes detected. RNA counts were log normalized using the standard
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Seurat workflow. For this experiment the first 10 components were used as input for UMAP

visualization in two dimensions.

To visualize cells based on an unsupervised transcriptomic analysis, we first ran PCA using 2,000
variable genes. The first 10 components were used as input for UMAP visualization in two

dimensions.
QC and data processing and clustering for the PBMC experiment

Cells with low quality metrics such as high mitochondrial gene content (> 5%) and low number of
genes detected (<600) were removed. In an attempt to also remove doublets we filtered out cells
with more than 5,000 genes detected. RNA counts were log normalized using the standard Seurat
workflow. To jointly analyze all 4 PBMC donors, we used the Seurat fast integration method
(rPCA). After integration, we obtained level 2 cell type annotations using the Azimuth app. During
this process, a cell was assigned the Azimuth annotation if the prediction score was higher than
0.5. Additionally, we leveraged Leiden cluster assignments to find the most frequent assignment
for each cluster and give cells within that cluster that assignment. Finally, if the most frequent
assignment within a cluster did not represent more than 25% of cells in that cluster, we removed

the cluster assignments.

To cluster and visualize cells based on their transcriptome, we first scaled the integration assay
and then ran PCA using 2,000 variable genes. Next, we used the first 40 PCs to build an SNN
graph using the FindNeighbors function in Seurat clustered the data using FindClusters with the
resolution parameter set to 0.6. Finally, the first 40 components were used as input for UMAP

visualization in two dimensions.
QC and data processing and clustering for the E18 mouse brain nuclei experiment

Cells with low quality metrics such as high mitochondrial gene content (> 3%) and low number of
genes detected (<1,000) were removed. In an attempt to also remove doublets we filtered out
cells with more than 8,000 genes detected. RNA counts were log normalized using the standard
Seurat workflow. To cluster and visualize the mouse brain nuclei based on their transcriptome,
we ran PCA using 2,000 variable genes. Next, the first 50 components were used as input for
UMAP visualization in two dimensions. While there were 2 mouse brain donors, we observed no

donor specific clustering and decided to proceed without donor integration.
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To identify all cell types present in our data we performed reference-based mapping and
annotation using the mouse brain nuclei from previous literature as a reference®"*. We retained
annotations with a prediction score higher than 0.5. Furthermore, we leveraged leiden cluster
assignments to find the most frequent assignment for each cluster and give cells within that cluster
that assignment. Finally, if the most frequent assignment within a cluster did not represent more

than 25% of cells in that cluster, we removed the cluster assignments.
Data availability

The datasets demonstrated in this study will be made available for viewing and download at

www.parsebiosciences.com/datasets.
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Figure S1. Demonstration of profiling one million cells in a single experiment using combinatorial
barcoding. Twenty-four PBMC samples from both healthy and type 1 diabetic donors were collected over
the course of three weeks. Using the v1 chemistry, samples were fixed at the time of collection and were
subsequently stored. After all samples were collected, an Evercode Whole Transcriptome Mega v1 kit
was used to profile over 1 million cells from the 24 samples. UMAP plots reveal cell types that were
detected (left) and allowed us to overlay donor specific information, further split by healthy vs type 1
diabetes (T1D) donors (right).
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Figure S2. Validation of the Evercode v2 chemistry with a species-mixing experiment. (A) An equal
mixture of human (HEK293) and mouse (NIH/3T3) cells were fixed, barcoded, and processed into single
cell libraries using both the v1 and v2 chemistries. (B) Species-mixing experiment showing the number of
unique human transcripts per cell (x-axis) and unique mouse transcripts per cell (y-axis). Observed
doublets are <2% for both the v1 and v2 chemistries, indicating an actual doublet rate of <4% (with
unobserved mouse-mouse and human-human doublets accounted for). (C) Correlation of average gene
expression (log average transcripts per million) between the v1 and v2 chemistries for both mouse genes
(left) and human genes (right). (D) UMAP clustering of species-mixing experiment showing cells from v1
(left) and v2 (right) chemistries co-cluster. (E) Transcripts (left) and genes (right) detected per cell for
HEK293 and NIH/3T3 for both the v1 and v2 chemistries.


https://doi.org/10.1101/2022.08.27.505512
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.27.505512; this version posted August 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

% of cells
B
o

available under aCC-BY-ND 4.0 International license.

version
nv
2

0 il
g £ g £ &£ o o g
= 38 %8 88 8 %
& 8 &£ 8 5 F @
© b © 5 £ (=)
Q. - Q = Q. f=
O = O © 3 ©
I _8 T X _8
g £ &
S
%)
B
Cd226 Clec4f
10 Vi 10 V2 01 L v 10 V2
5 . 5 . 51 5
N N * N N
>5-5 5-5 5-5 % -5
-10 -10 -10 10
-10 5 0 5 -10 -5 0 0 5 [1] 5 10 -5 0
UMAP 1 UMAP 1 UMAP 1 UMAP 1
Dcn Pax5
10 V1 10 V2 10 V1 10 V2
5 5 5 ’ 5 .
N N o N
>-5 S5 -5 5-5 % -5
-10 1 & -10 1 % -10 -10
-10 -5 0 5 -10 -5 0 10 -5 0 5 10 -5 0
UMAP 1 . UMAP 1 UMAP 1 UMAP 1
Serpina3k Skap1
10 10 10 V1 10 V2
5 5 5 ¢ 5 ¢
N N s QY] o~ :
o o o
<> £’ 2 20
5-5 5-5 5-5 % -5
-10 -10 -10 -10
-10 -5 0 5 -10 -5 0 10 -5 0 5 10 -5 0
UMAP 1 UMAP 1 UMAP 1 . UMAP 1
Top2a Nipal2
10 V1 10 V2 10 V1 10 V2
5 5 5 5
N N N N
> -5 S5 -5 . 5-5 % -5
e g
-10 : -10 : -10 10
-10 -5 0 5 -10 -5 0 10 -5 0 5 -10 -5 0
UMAP 1 UMAP 1 UMAP 1 UMAP 1

Figure S3. Analysis of cell types and expression levels in liver dataset. (a) Proportion of cell types
for v1 and v2 chemistries. (b) UMAP plots showing expression of representative genes for the v1 and v2
chemistries in the liver dataset.
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Figure S4. Intersection between v1 and v2 differentially expressed genes across cell types.


https://doi.org/10.1101/2022.08.27.505512
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.27.505512; this version posted August 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Donor 1 genes Donor 1 transcripts Donor 2 genes Donor 2 transcripts
—_ 5K 2.5K 3
3 2K g = >
o o [} C
5 B 4K ° 2K a
a1.5K o~ g 24K
2 & 3K o 15K = .
c 5 o o versjon
g 1K 2 oK @ 2 oV
c o 1K © V.
g Y o 52K
Ry © 3 o
gO-SK 2 1K g0.5K E!
g =] c
0 S o 0 5,
0 20K 40K 60K 0 20K 40K 60K 0 30K 60K 90K 0 30K 60K 90K
sequencing reads sequencing reads sequencing reads sequencing reads
Donor 3 genes Donor 3 transcripts 55K Donor 4 genes Donor 4 transcripts
— _ T 6K
3 g oK 8 2k o
o 2K 5 o ©
g o g %4K
[o% » =
I 34K 3 1.5K = versjon
g 5 & 2 g
g 1K 2 o 1K c \
3 < o 82K
) S2K 3 =
g o -CE"O.SK )
c 2 = g
=] g c
0 So 0 50
0 30K 60K 90K 0 30K 60K 90K 0 30K 60K 90K 0 30K 60K 90K
sequencing reads sequencing reads sequencing reads sequencing reads
B Genes C
5K FOXP3 .
PF4 o
4K gfgl . : o % expressed
3K verson 1487
v2 KLRB1 - 0
2K SPINK2 25
FCER1A - * 50
CLEC9A ° e 75
1K CD8A e .. .
0 ekl THSAIES
» O O O T NOEXY 200 %% 20D MS4A1
%%ggo.gﬁggmzz_ﬁugoﬁg& CD14{e @ o ®
g csS = O B85 (£ = 5 © 2 % s+ N N N N N N N N e e e N e T
Enmvo o3& o EZ EE0000009% 0 0Smr NNOOLL Y22 DO 5529 e
g aa 8° 8s 8 B E555859005 5 ERR000hIE 225 Rsers
c OO O o E == ZZOOOOUUOOII _0_055 COGE
p o~ EEmmyvroo  wonn 88==  Efan
z2 22 BR33 95%° g &2
om NN
zzZzZ

0
UMAP 1

5

10

-10

-5 0
UMAP 1

0
UMAP 1

5 10 -10

-5 0
UMAP 1

Figure S5. Transcript and gene detection per cell across different PBMC donors. (a) Number of
unique transcripts (left) and unique genes (right) detected at different numbers of raw reads per cell
across four individual donors. (b) Gene detection of v2 chemistry is higher for all cell types. (c)
Expression of key markers is higher with the v2 chemistry (purple) compared to v1 (gray). (d) UMAP
clustering of each donors (1-4)
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Figure S6. Gene expression across different mouse brain samples. (A) Number of unique transcripts
and unique genes detected at different numbers of raw reads per cell across two different brain samples
for both v1 and v2 chemistries. (B) Comparison of average gene expression (log average transcripts per
million) between the v1 and v2 chemistries. (C) Violin plots of transcript detection for both mouse brains.

(D) UMAP clustering shows cells from v1 (left) and v2 (right) chemistries co-cluster. (E) UMAP clustering
for Donors 1 and 2 are similar.
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