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Abstract 
 
Although 3D genome architecture can be essential for gene regulation, the biological implications 
of long-range chromatin interactions in disease remain elusive. In this study, we  traced the early 
evolution and malignant transformation of colorectal cancer by generating high-resolution 
chromatin conformation maps of 33 colon samples spanning different stages of early neoplastic 
growth from polyps of Familial Adenomatous Polyposis (FAP) patients. Our analysis reveals a 
substantial progressive loss of genome-wide cis-regulatory connectivity at early stages of 
malignancy, which correlates with a non-linear effect on gene regulation. Genes with high 
promoter-enhancer (P-E) connectivity in unaffected mucosa are not correlated with elevated 
baseline expression, but instead tend to be up-regulated at advanced stages. Inhibition of highly 
connected promoters preferentially represses gene expression in colorectal cancer cells relative 
to normal colonic epithelial cells. Our results suggest a two-phase model whereby neoplastic 
transformation reduces P-E connectivity from a redundant state to a rate-limiting one for 
transcriptional levels. Overall, our study illuminates the intricate interplay between 3D genome 
architecture and gene regulation during early colorectal cancer progression, and provides 
valuable insights for potential therapeutic interventions targeting the connectivity of cis-regulatory 
elements. 
 
Introduction 
 
The technological advent of 3D chromosome organization mapping has revealed important 
insights into genome folding1-3. Multilayered structures maintained by molecular contacts, 
insulators, and aggregative domains together compact the 2-meter DNA into non-random spatial 
configurations in the nucleus2,4. However, the functional implications of such spatial organization 
on fundamental biological processes remain largely elusive. 
 
A key discovery in genome topology is the formation of topologically associating domains 
(TADs)5,6, high-order structures that partition the genome into contiguous regions through a 
proposed loop extrusion mechanism7,8. While genetic mutations affecting TAD structures have 
been linked to oncogenic gene dysregulations in specific cases9-11, the exact role of TAD 
organization in transcription regulation remains an open question. Recent studies have shown a 
surprisingly moderate transcriptional response to the manipulation of boundary elements such as 
CTCF and cohesin components12,13. Furthermore, computational approaches have suggested a 
lack of co-expression between genes residing in the same TAD14,15. These findings imply that 
gene regulation is often not particularly constrained by large sub-megabase folding domains, but 
rather depends on a finer layer of regulatory architecture at the sub-TAD level. 
 
Recent advancements in chromatin conformation capture technologies, utilizing micrococcal 
nuclease16,17 or a combination of restriction enzymes18,19, have improved mapping resolution and 
enhanced the detection of sub-TAD structures. These methodologies have uncovered prevalent 
distal interaction activities, including architectural stripes and insulation activities associated with 
active cis-regulatory elements. However, the functional implications of these structures remain 
largely uncharacterized. Moreover, studies of transcriptional kinetics based on imaging20,21 and 
multi-omics sequencing22,23 have revealed disjoined changes between the spatial proximity of 
regulatory elements and transcriptional activation events. These observations highlight the 
intricate role of physical connectivity in gene regulation. 
 
Colorectal cancer (CRC) represents a major global health burden, and is the second leading 
cause of cancer death in the United States24. Over 80% of colorectal carcinomas are initiated by 
loss-of-function mutations of APC, a key component in the cytosolic complex that targets β-
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catenin for destruction and suppresses Wnt signaling25,26. Familial Adenomatous Polyposis (FAP) 
patients carry germline APC mutations and develop tens to thousands of precancerous polyps at 
different stages and sizes as well as occasional adenocarcinomas; these polyps are believed to 
represent early stages of CRC27,28. Thus, the study of polyps at different stages of development 
in FAP patients provides a valuable model for studying the cascades of epimutations and gene 
dysregulations during early oncogenesis. 
 
In the context of the Human Tumor Atlas Network (HTAN)29, we profiled genome-wide chromatin 
conformation at up to 100 bp resolution in 33 colon samples from FAP and CRC patients 
representing different stages of CRC progression. By integrating these data with transcriptome 
and epigenome profiling, we investigated the relationship between fine-gauge chromatin 
structures organized by active regulatory elements and gene dysregulation associated with polyp 
malignancy. Our analysis revealed a progressive loss of cis-regulatory connectivity from mucosa 
to polyps to adenocarcinoma, corresponding with dysregulated gene expression in a non-linear 
fashion. The initial connectivity levels prior to oncogenic progression may be a key factor in this 
process. We propose that the remodeling of promoter-enhancer (P-E) connectome is not only 
indicative of alterations of gene expression, but also reflects shifts in the transcriptional response 
to epigenetic alterations in polyps and adenocarcinoma. Our rich dataset provides a valuable 
resource for unraveling the chromatin architectural basis of early CRC development. 
 
Results 
 
Fine-mapping distal interactions of active regulatory elements using multi-digested Hi-C 
 
To examine the chromatin architecture associated with regulatory elements in clinical tissue 
samples, we developed multi-digested Hi-C (mHi-C), a protocol derived from in situ Hi-C30 that 
utilizes five 4-cutter restriction enzymes and moderated detergent conditions to achieve ultrafine 
mapping (mean fragment size = 52 bp) of the distal chromatin interactions18,31 (Fig 1A, S1A, 
Methods). We generated mHi-C data for 33 frozen colon tissue samples at different stages of 
neogenesis (Fig 1B), comprising 7 non-neoplastic mucosa, 19 dysplastic polyps, and one 
adenocarcinoma from 4 familial adenomatous polyposis (FAP) patients, as well as six additional 
adenocarcinoma samples from non-FAP individuals who developed sporadic colorectal cancer 
(CRC). A total of 1.59 billion unique intrachromosomal long-range (≧ 1kb) interaction contacts 
were mapped (Fig S1B,C). 
 
Similar to micro-C16,17,32, mHi-C robustly revealed fine-gauge structures at sub-kilobase resolution 
(200 bp – 1 kb).  This included dot interactions, indicative of looping of two fixed anchors, as well 
as architectural stripes, indicative of dynamic looping between a fixed anchor and the sliding 
intervening neighboring regions (Fig 1C, S2)7,8. Previous studies have correlated these structures 
with interaction hotspots identified by high-depth 4C assays, enriched at regulatory 
elements18,33,34. To annotate the interacting regions, we mapped open chromatin regions in 23 
matched samples using ATAC-Seq35 (Fig 1B), and annotated the regulatory elements by using 
the Ensembl regulatory build36. Notably, both micro-C and mHi-C, but not in situ Hi-C, revealed 
enriched interactions at promoters and enhancers (Fig S1D). This enrichment was specific to 
long-range contacts, which persisted after normalizing against short-range or total read coverage 
(Fig 1D, S1E), indicating that the observed stripe signals are not artifacts of differential contact 
mappability due to the high accessibility of these regions.  
 
Using the HICCUPs algorithm37, we identified 279,480 loop interactions, including 91,706 
promoter-promoter (P-P) or promoter-enhancer (P-E) contacts (Fig S1F). Compared to chromatin 
conformation profiles obtained from intact micro-C and in situ Hi-C, mHi-C identified 
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approximately 10 and 100 fold more P-E/P-P interactions, but only 1.5 and 8.5 fold more loops 
between CTCF binding sites, respectively (Fig 1E). This suggests that mHi-C specifically 
improves the detectability of contacts among active regulatory elements. Meanwhile, using a peak 
calling algorithm based on MACS218,38, we identified 254,642 stripes in all samples (see Methods). 
Of the 279,480 loops, 266,419 (95%) overlapped with stripes (Fig S1G), indicating that the 
majority of loop contacts are formed along with stripe extension. 
 
At 100 bp resolution, we observed a significant difference between promoter-enhancer and 
CTCF-CTCF interactions. Whereas contacts between promoters and enhancers are formed at 
open chromatin regions, CTCF interactions are not strictly overlapping with CTCF binding sites. 
Instead, they spread widely within a multi-kb flank region (Fig 1F). These patterns are consistent 
with occupancy of the cohesin components at the open chromatin of active regulatory elements, 
as opposed to being retained at a broader region around CTCF sites (Fig S1H). Furthermore, we 
found that the loop signals of P-E interactions were comparable with the sum of the anchors’ 
stripe strengths, whereas the loop strengths of CTCF interactions significantly exceeded their 
architectural stripe strengths (Fig 2A, S3A). This difference suggests that, unlike CTCF 
boundaries, which can maintain stable loop structures39, promoter-enhancer interactions are 
dynamically maintained while the intervening anchors interact frequently with each other's 
neighborhoods. 
 
Architectural stripes formed by promoters shape gene-specific P-E connectivity 
 
We observed that promoter-enhancer interactions are asymmetrically contributed by the relatively 
stronger stripe-forming activity of the promoters and weaker activity of the enhancers (Fig 1F, 2A). 
This asymmetry underscores the dominant role of promoters in shaping the promoter-enhancer 
(P-E) connectivity. To validate this hypothesis, we conducted a case study of the MYC upstream 
locus, which is a known risk hotspot for multiple cancer types40 that resides near five coding genes 
(POU51B, CCAT2, CASC8, CASC11, and MYC) and multiple enhancers. Our results 
demonstrated that MYC, which exhibited the highest stripe strength, consistently interacted with 
all enhancers with the highest frequency among all five genes, despite other genes being located 
closer to these enhancers (Fig 2B). Remarkably, the enhancers tended to bypass CASC11, a 
gene located only 1 kb upstream of MYC with substantial promoter CTCF binding, and instead 
favored robust interactions with the MYC promoter, which showed lower CTCF affinity. We 
extended our examination to additional loci and consistently found that gene-specific promoter 
stripe activities lead to distinctive interaction profiles for genes sharing the same enhancer context 
(Fig S3B). 
 
To further investigate the relationship between P-E connectivity and promoter/enhancer activity, 
we profiled the landscapes of methylome and transcriptome from the matching FAP/CRC samples 
(Fig 1B). We quantified the connectivity of all coding genes with their neighboring enhancers 
within 200 kb distance. We then correlated this connectivity with the accessibility of the enhancers, 
the methylation, and stripe activity of the gene promoters, assessed by the fold enrichment of the 
overlapping architectural stripes, in unaffected mucosa (Fig 2C). The connectivity exhibited a 
strong correlation with stripe strength (ρ=0.69), demethylation (ρ=0.68), and accessibility (ρ=0.63) 
of the gene promoter. By contrast, its correlation with enhancer accessibility was much lower 
(ρ=0.37) (Fig 2D). Consistently, clustering analysis revealed distinct groups of genes associated 
with high connectivity but low-to-moderate enhancer accessibility, and vice versa, indicating a 
significant discrepancy between the availability of enhancers and their connectivity with promoters 
(Fig S3C). Motif analysis uncovered a strong enrichment of transcription factors (TFs) with GC-
rich motifs on highly interactive promoters, distinguishing them from promoters associated with 
high accessibility or rich neighboring enhancer contexts (Fig 2E). Collectively, these results 
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suggest that the degree of P-E connectivity of genes is predominantly correlated with the stripe 
activity on their promoters, corroborating our observations in the case studies. 
 
Upon observing a significant divergence between the promoter's connectivity and the availability 
of distal regulatory elements, we investigated which factor was more relevant to transcription. We 
discovered that the overall correlation of connectivity with gene expression surpassed that of 
enhancer accessibility (Fig 2D). However, this high correlation predominantly stemmed from the 
association of transcriptionally inactive genes (TPM <0.5) with low connectivity (Fig S3D). As such, 
high connectivity serves as a robust indicator of an "on" state for promoters, similar to their 
accessibility, demethylation, and stripe strength (Fig 2F). Conversely, the expression level of 
active genes (TPM >0.5) was poorly correlated with the connectivity (ρ=0.10) but rather explained 
by the enhancer accessibility (ρ=0.24) (Fig 2G). This implies that regulation of quantitative 
expression was dependent on the activity of enhancer context for genes with connectivity passing 
beyond the “on” threshold.  
 
Impaired stripe formation and connectivity indicates promoter instability in early colon 
cancer development 
 
During the development of CRC malignancy, we observed that more than 80% of identified stripes 
and loops in polyps and over 90% in cancer showed reduced signals (Fig 3A, S4A). Among the 
annotated CREs, gene coding transcription start sites (TSSs) exhibited an exceptionally high loss 
rate of stripe strength (Fig S4B). Consistently, the global P-E connectivity was progressively lost 
in advanced stages, suggesting reduced promoter-enhancer communications associated with 
stripe loss (Fig 3B, C). To test whether these alterations are due to increased chromosomal 
rearrangements along with stage progression, we applied EagleC41 to the mHi-C results, 
identifying 1 to 17 structural variants (SVs) in each sample (Fig S4C). The sparsity of the SVs and 
a comparable number of average events between the mucosa (2.5) and polyp (2.5) stages 
suggests that they are unlikely a primary driving factor for the genome-wide loss of interactions. 
 
To investigate whether the loss of P-E connectivity was due to changes in the activity of the 
regulatory elements, we aligned the results with the chromatin accessibility and methylation 
profiles. In both polyps and adenocarcinoma, alterations in connectivity were poorly correlated 
with the accessibility changes of both gene promoters and neighboring enhancers (ρ≤0.13) (Fig 
S4D). We also observed a mild progressive loss of accessibility on the promoters but not on the 
enhancers (Fig 3C). However, the degree of accessibility loss (-12.3%) was marginal compared 
to the substantial losses of P-E connectivity (-39.3%) and promoter stripe strength (-41.8%), 
suggesting underlying factors that specifically contributed to the impairment of distal interaction. 
On the other hand, hyper- and hypo-methylated promoters were associated with high- and low- 
connectivity losses, respectively (Fig 3D), consistent with the well-characterized repressive 
function of DNA methylation42. However, for the majority (>80%) of the promoters that were 
neither hypo- nor hyper-methylated, we found that demethylated promoters were also associated 
with a higher rate of connectivity loss compared to methylated ones (Fig 3D, S4E). Furthermore, 
demethylated promoters that are hyper-methylated in the advanced stages are implicated by their 
significantly lower initial connectivity in the mucosa samples (Fig S4F). These results together 
indicate a common factor driving both the global connectivity loss of promoters and selective 
hyper-methylation of low connectivity ones, rather than hyper-methylation as a driving force of the 
connectivity loss. 
 
Recent studies of clusters of enhancers, also known as super-enhancers, suggested that high 
valency and number of components in enhancer clusters increased their cooperativity through 
phase separation43,44. Inspired by this observation, we examined whether the stability of the P-E 
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networks was affected by the valency of the networks. Interestingly, we found that a high valency 
of interacting promoters, but not enhancers, was associated with a lower rate of connectivity loss 
from mucosa to adenocarcinoma (Fig 3E, F). This suggests that cooperative promoter-promoter 
(P-P) interaction networks are associated with elevated stability during neogenic progression. 
 
Initial P-E connectome primes gene dysregulation during malignancy transition 
 
To elucidate the implications of P-E connectivity on transcriptional outcomes, we analyzed 2,872 
genes that exhibited progressive up- or down-regulation in polyps and adenocarcinomas (Fig S5A, 
B). We discovered that both up- and down-regulated genes displayed a similar degree of 
connectivity loss compared to the genome average (Fig S5C). Consistently, genes associated 
with increased or decreased connectivity loss did not correlate with up- or down-regulation (Fig 
S5D), indicating that the direct impact of P-E connectivity changes on differential gene expression 
was insignificant. Importantly, however, the first principal component of both the transcriptome 
and the P-E connectome revealed a consistent trajectory of stage progression, suggesting that 
the remodeling of the two "omes" during CRC development were closely related, despite their low 
linear correlation at each individual genes (Fig S5E). 
 
Upon investigating the potential non-linear relationship between P-E connectivity and gene 
expression, we identified a significant correlation between differential gene expression and the 
levels of their connectivity relative to the genome average, as well as to their transcription levels 
(Fig 4A). While up- and down-regulated genes were associated with high and low connectivity, 
respectively, the connectivity levels were established in unaffected mucosa samples rather than 
gained or lost in advance stages. As the stage progressed, the gene expression shifted towards 
higher correlation with the levels of P-E connectivity (Fig 4B, S6A). Interestingly, a similar trend 
was also observed between gene expression and other indicators of promoter activity, such as 
accessibility, stripe activity, and demethylation, but not with the accessibility of neighboring 
enhancers (Fig 4B). Collectively, these observations suggest a scenario in which impaired P-E 
connectivity in polyps and adenocarcinomas correlated with an increased dependence of 
transcription dosage control to the promoter activity. 
 
A two-phase model of P-E connectivity predicts conserved transcription dysregulation in 
cancers 
 
The significant association of cancer dysregulation with the P-E connectome prior to cancer 
development can be explained by a two-phase model. In unaffected mucosa, high P-E 
connectivity displays functional redundancy, which does not drive high gene expression but rather 
increases the stability of the P-E networks (stabilization phase). With the loss of connectivity 
during development of malignancy, the impaired connectivity of the promoters becomes a rate-
limiting factor (activation phase), thereby establishing an increased linear correlation with gene 
expression (Fig 4C). 
 
A major inference from the two-phase model is that P-E connectivity in baseline conditions primes 
differential gene expression upon global connectivity loss, highlighting its predictive power for 
cancer gene dysregulation. To test this hypothesis, we developed an "initial" machine learning 
model using connectivity and other omics landscapes in mucosa to predict gene expression 
changes in advanced stages (Fig 4D). The predicted fold changes exhibited moderate but highly 
significant correlation for the test gene set in both polyps (r=0.50) and adenocarcinoma (r=0.44) 
(Fig 4E, S6B). The “initial” model performed comparably to a "differential" model, which was 
trained using the fold change of the epigenetic landscapes during malignancy progression, 
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suggesting that the baseline levels and alterations of the epigenetic landscapes explained a 
comparable portion of cancer gene dysregulation (Fig 4F, S6C).  
 
Interestingly, when the baseline of the 'initial' model was changed from mucosa to polyp, which 
molecularly more closely resembles adenocarcinoma, the prediction accuracy significantly 
worsened (Fig S6D-F). This suggests that the predictive information in the epigenetic landscape 
diminishes as oncogenic progression advances. We identified P-E connectivity as the most critical 
predictive feature in the 'initial' model by sequentially removing each feature, reinforcing its pivotal 
role in the two-phase model (Fig S6G). Analysis of feature importance revealed distinct predictive 
factors by the "initial" and "differential" models. While the "initial" model suggested that up-
regulation was predicted by high P-E connectivity and low enhancer accessibility in unaffected 
mucosa, the "differential" model suggested that it was associated with their loss and gain, 
respectively, in advanced stages (Fig 4G, S6H, I).  
 
Recent studies on cancer dysregulation have inferred that oncogenic mutations converge on 
dysregulation of key transcriptional regulators, such as MYC45 and E2F46, which drive cell 
proliferation and survival. To test if the two-phase model is a potential addiction mechanism 
adopted by cancers to gain proliferative advantages, we applied the "initial" model to predict gene 
dysregulation in other cancer types from the TCGA database47,48. We found that the model had 
generic predictability for significantly dysregulated genes (10/28, AUC > 0.6, Fig S7) and the 
directionality of their differential expression (18/28, accuracy > 60%, Fig 4H). The prediction 
accuracy further increased towards nearly 100% for genes showing consistent up- or down-
regulation among different cancer types (Fig 4I). The genes with accurately predicted up-
regulation were highly enriched in cell cycle and DNA maintenance pathways (Fig 4J). These 
results suggest that a significant portion of conserved cancer gene dysregulation may be 
explained by the transition of P-E connectivity to the activation phase, including the up-regulation 
of key transcriptional addiction pathways, such as cell proliferation. 
 
Two-phase model predicts gene- and cancer-specific sensitivity to epigenetic 
interventions 
 
In the two-phase model, genes with high P-E connectivity are associated with high stability and 
thus more transcriptionally resilient to connectivity loss. This model predicts specific 
transcriptional outcomes driven by connectivity interventions: first, the genome-wide perturbation 
of the P-E connectome will result in gene-specific expression changes, where low-connectivity 
genes will be selectively prone to down-regulation; second, high-connectivity genes will be 
sensitized to perturbations in polyps and cancer due to their shift towards the activation phase 
along with global connectivity losses (Fig 5A). 
 
To validate these predictions, we first examined the transcriptomic response of colon samples to 
JQ1 treatment (Fig 5B). JQ1 is a specific and potent inhibitor of BET family members49-52, such 
as BRD4, which plays a crucial role in recruiting the mediator complex that bridges promoter-
enhancer interactions53,54. In primary and colon cancer cell lines, as well as in organoids derived 
from mucosa and polyp tissues, genes up- or down-regulated by JQ1 treatment were consistently 
associated with high and low initial P-E connectivity, respectively (Fig 5C). Furthermore, 
correlations of transcription levels with P-E connectivity and other indicators of promoter activity, 
but not with the enhancer context, were increased with JQ1 treatment (Fig 5D, S8A). These 
results resembled the events during malignancy progression (Fig 4A, B), suggesting that gene 
expression alterations induced by JQ1 could be explained by the two-phase model. 
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By comparing the P-E connectivity distribution of down-regulated genes in normal versus 
polyp/cancer samples, we found a significant increase in the fraction of high-connectivity genes 
in disease samples (Fig S8B). This result matched the malignancy-specific sensitivity of highly 
connected genes to perturbations predicted by the two-phase model. Interestingly, genes that 
were selectively down-regulated in polyps and cancer cells were enriched in cell cycle and DNA 
damage repair pathways (Fig S8C). These pathways responded to JQ1 with a significantly higher 
fold decrease in disease samples (Fig 5E), suggesting that while cell proliferation genes are 
commonly up-regulated during oncogenesis (Fig 4J), their susceptibility to transcriptional 
perturbations also increases with impaired P-E connectivity. 
 
To test whether the cancer-specific perturbation sensitivity can be targeted with a gene-specific 
strategy, we applied CRISPRi55 to target the promoters of five proliferation genes (E2F3a, MYC, 
CCNE1, MCM4, CDC25A), which were highly connected and correctly predicted to be 
upregulated in both polyps and adenocarcinoma (Fig S5A, Table S1). Comparing transcriptional 
responses in primary colon epithelial cells (HPCEC) and colon cancer cells (HT29), we found that 
each of the genes were consistently repressed with a larger effect size in the cancer cell line (Fig 
5F). In contrast, for the three reference genes (B2M, TBP, UBC), neither or only one of the two 
guide RNAs targeting each gene showed increased repression fold changes in cancer. These 
results were reproduced by delivering dCas9-gRNA ribonucleoprotein complexes via 
electroporation, replacing the lentiviral-delivered Cas9-KRAB cassette (Fig S9A). By contrast, 
gene repression and deletion using the exon-targeting Cas9/dCas9 resulted in similar degrees of 
down-regulation between normal and cancer cell lines (Fig S9B, C), suggesting that the observed 
difference in repression efficiency was specific to the promoters and not confounded by the 
delivery efficiency of the system between cell lines. Taken together, consistent with the two-phase 
model prediction, proliferation genes in cancer showed increased susceptibility to promoter 
inhibition. 
 
Discussion 
 
In this study, we have provided a comprehensive and integrative analysis of P-E connectivity in 
conjunction with the transcriptional and epigenetic state of regulatory elements during the early 
stages of CRC development. Our high-resolution chromatin conformation data, facilitated by 
multi-restriction digestion, revealed a large number (>250,000) of dot interactions and 
architectural stripes associated with active regulatory elements, such as promoters and 
enhancers. This represents a pivotal departure from previous descriptions of chromatin 
architecture that primarily focused on CTCF loop structures and large domain regions30,56-58. Our 
findings indicate that most P-E loops co-existed with stripe formation, suggesting that these 
interactions are highly dynamic, occurring as either anchor sliding over the intervening chromatin. 
This challenges the traditional view of stable P-E loops and aligns with the recent proposal of the 
“hub” model59,60, which describes the close vicinity but not tight looping of cis-regulatory hubs. 
Importantly, our study shows that P-E connectivity has a significant inference to gene expression 
dysregulation in cancer, underscoring its fundamental role in gene regulation. 
 
Our results elucidate the distinct roles of P-E connectivity and enhancer activity in CRC 
progression. During the transformation of polyps and adenocarcinomas, we observed that up-
regulation of gene expression was often correlated with increased activity of the neighboring 
enhancer contexts (Fig 4A,G). Conversely, P-E connectivity diminished for most genes, 
irrespective of their expression changes (Fig S5C). This intriguing dichotomy underscores the 
existence of specific regulatory mechanisms governing connectivity that are integral to gene 
expression and CRC development. The attenuation of P-E connectivity is primarily linked to the 
reduction in stripe activity on gene promoters (Fig 3C). However, the precise mechanisms driving 
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the disproportionately high loss rate of connectivity of promoters among CREs remain elusive (Fig 
S4B). Recent investigations have spotlighted the role of chromatin binding-factors like Pol II, the 
mediator complex, and YY1 in sustaining P-E interactions53,61,62. Additionally, it has been posited 
that the cohesin complex retention on promoters is modulated by general transcription activities2,63. 
This suggests that a myriad of transcriptional regulators could influence P-E connectivity, thus 
potentially leading to new targets for therapeutics. 
 
The global loss of connectivity at promoter regions in advanced stages suggests altered dynamics 
of TFs, associated with a weakened ability to maintain proximity with distal regulatory elements. 
This altered dynamic is evident in the elevated sensitivity of cell proliferation gene promoters to 
perturbations in cancer cells, as demonstrated by our inhibition assays. By developing strategies 
that specifically target these vulnerable promoters, it may become possible to disrupt key 
oncogenes in a disease-specific fashion, thereby offering a novel and potentially effective 
approach to early CRC interventions. 
 
We observed an intricate and non-linear relationship between P-E connectivity and transcription. 
The similar degree of connectivity loss was associated with both up- and down-regulation, and 
our analysis revealed that this gene-to-gene variation was correlated with their connectivity levels 
established in the unaffected mucosa prior to cancer development. We propose that this non-
linear relationship is a result of a transition in the connectome-transcriptome relationship during 
CRC development. In the unaffected FAP mucosa, transcription levels are not rate-limited by high 
P-E connectivity. This redundancy is consistent with previous observations of low correlation 
between P-E interaction and gene expression12,13,22,23. However, our results indicate that the 
scenario is altered in polyps and cancers, where the loss of connectivity becomes a limiting factor 
for transcriptional regulation and thus correlates with gene expression. Thus, the cis-regulatory 
connectivity plays a pivotal role in gene dysregulation associated with cancer progression. 
 
Based on the two-phase model, we reasoned that genes with high and low P-E connectivity at 
baseline condition would be primed for up- and down-regulation, respectively, upon global 
connectivity loss or perturbation. This insight was corroborated by the correlation between 
transcriptional alterations caused by BRD4 inhibition through JQ1 treatment and the initial P-E 
connectivity levels in unaffected mucosa. Notably, while previous research has reported a 
comparable number of up- and down-regulated genes in response to JQ1 treatment, the 
mechanistic underpinnings of widespread gene up-regulation following the inhibition of BRD4, a 
general transcriptional activator, remained elusive64,65. Our study provides a possible explanation, 
suggesting that the up-regulation of genes can be attributed to their promoters' tolerance to BRD4 
inhibition compared to the rest of the genome. 
 
Notably, we identified early established high P-E connectivity in unaffected mucosa tissue as a 
hallmark of gene up-regulation during oncogenic progression. Our pan-cancer analysis suggests 
that this hallmark is significant in multiple cancer types, and this finding was particularly 
pronounced in key transcriptional regulators of proliferation, such as E2F and MYC (Fig S6A). 
Previous studies have often described the upregulation of MYC and E2F as an outcome of genetic 
mutations or alterations in their upstream regulators45,66-68. However, our results suggest an 
alternative perspective, where the global remodeling of regulatory connectivity plays a significant 
role in their frequent up-regulation in cancers. 
 
Interestingly, our findings suggesting that P-E connectome remodeling serves as a positive driver 
in oncogenesis are in contrast with a recent topological study of colon cancer, which proposed a 
tumor-suppressive effect of large-scale architectural reorganization56. This apparent discrepancy 
likely reflects the distinct influences of macroscopic chromatin structures in previous studies and 
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the microscopic P-E interactions in cancer progression identified in our study. While 
compartmental remodeling within repressive domains coincided with their hypomethylation and 
gene repression, we observed a concurrent loss of fine-scale connectivity among active 
regulatory elements, shifting the global transcriptional balance. 
 
One limitation of our study is its reliance on colorectal tissues from a relatively small cohort of 
FAP patients. Previous studies have shown that even seemingly unaffected intestinal mucosa in 
FAP patients displays deregulated proliferation compared to tissues from genetically normal 
individuals69-71. Whether this predisposition towards tumorigenic transformation is associated with 
chromosomal conformational remodeling similar to the changes we observed in subsequent 
stages of progression remains to be explored. Additionally, while our two-phase model was robust 
across several cancer types, it did not effectively predict gene dysregulation for certain cancers 
such as kidney carcinoma and myeloid leukemia (Fig 4H). This discrepancy may indicate cell-
type-specific variations in P-E connectivity, underscoring the need for comparative studies 
involving these cancers and their respective healthy controls. Future research should expand to 
more diverse cohorts and cancer origins to fully assess the complex relationship between 
regulatory connectivity and gene dysregulation proposed by our two-phase model. 
 
In summary, our study offers valuable insights into the complex interplay between 3D genome 
architecture and gene regulation during the early stages of CRC progression. We provide a 
unique resource of fine-gauge regulatory architecture that has not been extensively explored in 
previous cancer chromatin conformation mapping studies. By comprehensively tracing the 
dynamic changes in P-E connectivity and their impact on gene expression during early CRC 
development, we have identified potential new paths for therapeutic interventions. For example, 
by restoring normal P-E connectivity, it may be possible to interfere with the gene dysregulation 
events during CRC progression. Further dissection of mechanisms underlying altered cis-
regulatory connectivity during the disease development could identify transcriptional regulators 
that trigger cancer-specific suppressions of oncogenes, opening up new avenues for treatment.  
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Figure 1 mHi-C reveals interactions associated with active cis-regulatory elements. (A) 
Schematic representation of the mHi-C workflow (B) Summary of colon tissue samples analyzed 
by multi-omics assays. Bar colors represent different donors. Each row corresponds to a unique 
donor patient with sporadic colorectal cancer. (C) Comparison of contact matrices generated from 
mHi-C (combined colon tissues) with in situ Hi-C (HCT116) and intact micro-C (HCT116) at 
various resolutions. Blue arrows highlight interaction dots formed between the KLF6 promoter 
and adjacent enhancers. Orange arrows show structural loops at TAD boundaries. (D) Venn 
diagrams illustrating the overlap of interaction loops identified by the three methods. (E) Average 
fold enrichment of distal interactions at transcription start sites (TSS), active enhancers, and 
CTCF binding sites in mucosa samples. Red intervals indicate the nucleosome-free region (NFR) 
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and the +1 nucleosome regions upstream and downstream of the TSS, respectively. (F) 
Aggregated peak analysis (APA) of loops between promoters and active enhancers (N=9,174) 
and between CTCF-CTCF (N=30,208). 
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Figure 2 Correlation between promoter stripe formation and P-E connectivity. (A) Comparison of 
loop strengths with the logarithmic sum of stripe strengths at the anchors for loops formed 
between different regulatory elements. Error bars represent confidence intervals. Statistical 
significance was assessed using the Wilcoxon signed-rank test. (B) Contact heatmap (combined 
colon tissues) of the MYC upstream cancer risk locus. The top right panel shows contact 
frequencies of resident genes with the five putative enhancers exhibiting the highest distal 
interaction activity. A detailed view of contact distribution between enhancer E1 and the 
MYC/CASC11 genes is provided in the bottom right panel. (C) Schematic representation of the 
integration of conformational, epigenetic, and transcriptional features for downstream analysis. 
(D) Spearman correlation matrix of average feature strengths in mucosa samples for all examined 
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coding genes (N=14,692). (E) Hierarchical clustering of genes exhibiting top 10% intensity for any 
of the six examined features, based on the degree of motif enrichment (adjusted -log10(p-value)) 
on their promoters. (F) Receiver Operating Characteristic (ROC) analysis for predicting actively 
expressed genes (transcripts per million (TPM) > 0.5, N=10,663) using various structural and 
epigenetic features. Numbers indicate the area under the curve (AUC) scores. (G) Spearman 
correlation of the expression levels of actively expressed genes with the examined features. 
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Figure 3 Loss of distal connectivity in polyps and adenocarcinoma. (A) Aggregated peak analysis 
(APA) of all stripe (top) and loop (bottom) anchors, with fold enrichment of signals indicated below 
the panels. (B) Mean promoter-enhancer (P-E) connectivity for coding genes in mucosa, polyp, 
and adenocarcinoma (AdeCa) samples, with p-values from the Mann-Whitney U test presented 
above. (C) Average log2 fold changes of structural and epigenetic features in polyps and 
adenocarcinoma, with confidence intervals represented by shaded areas. (D) Changes in 
connectivity between mucosa and adenocarcinoma for genes categorized by hypermethylation, 
hypomethylation, or no change (NC, <5% difference) in methylation status. Groups with 
demethylated (<25%) and methylated (>40%) promoters are compared. (E) Comparison of 
contact heatmaps for a representative locus in mucosa and adenocarcinoma samples, with log2 
connectivity changes for gene promoters indicated below. (F) Comparison of connectivity 
changes for genes interacting with varying numbers of promoters and other cis-regulatory 
elements (CREs), including Spearman correlation coefficients and p-values from the Mann–
Whitney U test. 
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Figure 4 Predictable cancer gene dysregulation by initial P-E connectivity. (A) Relative fold 
changes of features for genes upregulated (N=1,089) or downregulated (N=944) in both polyps 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2022.08.26.505505doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.26.505505
http://creativecommons.org/licenses/by-nc-nd/4.0/


and adenocarcinoma, compared to the genome average at each stage, with confidence intervals 
shown as shaded areas. (B) Spearman correlations between transcription levels of active genes 
(TPM > 0.5) and their structural and epigenetic features at different stages of progression. (C) 
Schematics for the two-phase model. In normal conditions, most genes are in the saturated 
stabilization phase, where increased levels of P-E connectivity stabilizes the networks but do not 
contribute to higher gene expression. In polyp and cancer conditions, genes shift to the activation 
phase due to global losses of the connectivity, where expression levels are rate-limited by the 
connectivity levels. Alterations of gene expression during stage progression are therefore 
determined by their initial distance to the activation phase at normal condition. (D) Diagram 
illustrating the construction of “initial” and “differential” prediction models. (E) Predictive accuracy 
of the “initial” model for gene expression changes in polyps and (F) the “differential” model for a 
test set of genes (N=2,800). (G) The importance of features and the average direction of 
association of structural and epigenetic features in the predictive models. (H) Accuracy of the 
“initial” mucosa-polyp model in predicting the direction of significant expression changes in 28 
cancer types from the TCGA database. (I) Prediction accuracy for genes grouped by their 
directionality scores. (J) Pathway ontology analysis for genes with altered expression in any 
TCGA cancer type versus those with accurately predicted directional changes by the “initial” 
model. Zero values indicate no significant enrichment (FDR > 0.1). 
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Figure 5 Two-phase model predicts gene- and polyp/cancer-specific sensitivity to inhibitions. (A) 
Schematic representing the prediction model: Low connectivity genes (green dot) are vulnerable 
to perturbations in the activation phase, independent of overall connectivity levels. Conversely, 
genes with high connectivity exhibit stage-specific sensitivity to perturbations as they approach 
the phase transition threshold due to connectivity loss. (B) Diagram of experimental designs for 
assessing gene expression sensitivity to various interventions. (C) Distribution of promoter-
enhancer (P-E) connectivity levels in unaffected mucosa for genes upregulated or downregulated 
after JQ1 treatment. p-values for significance from the Mann–Whitney U test are indicated. (D) 
Spearman correlation between structural and epigenetic features in mucosa and gene expression 
levels in cell lines and organoids pre- and post-JQ1 treatment. p-values for significance from the 
Wilcoxon signed-rank test are shown. (E) Expression fold change distributions for genes in 
specified pathways following JQ1 treatment. p-values for sample differential responses from the 
Wilcoxon signed-rank test are denoted. Error bars represent confidence intervals. (F) Differential 
gene expression following Cas9-KRAB-mediated repression via two guide RNAs in primary 
human colon epithelial cells (HPCEC) and the HT29 colorectal adenocarcinoma cell line. The 
significance of differential responses was assessed using a two-sample t-test (N=8). Error bars 
represent the standard error. 
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Figure S1 mHi-C delineates interaction features at active CREs. (A) Fragment size distribution of 
human genome (hg38) digested by the indicated restriction enzymes and their combination. (B) 
Frequency of intrachromosomal interactions by genomic distance for various sample types. (C) 
Count of unique interaction contacts identified across samples. (D) Aggregated read intensity of 
long- (>1.5 kb) and short-range (<1.0 kb) interactions before and (E) after normalizing against 
total coverage (All range) at distinct CRE categories. (F) Classification and annotation of identified 
stripes and loops in colon samples by regulatory element types. (G) Proportion of loops composed 
of two stripe anchors (S-S), between a stripe anchor and a non-stripe anchor (S-NS), and two 
non-stripe anchors (NS-NS). (H) Aggregated ChIP-seq signals for Pol II, SMC3, Rad21, and 
ATAC seq fold enrichment at various CRE types in colon samples, sourced from ENCODE data.  
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Figure S2 Comparison of mHi-C with in situ Hi-C and intact micro-C at diverse resolutions and 
genomic loci.  
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Figure S3 Analysis of the interplay between structural features and epigenetic markers. (A) 
Heatmaps displaying loop signal intensities as referred to in Fig 2A, adjusted for the effects of 
stripe strengths at the loop anchors. (B) Contact heatmap at example loci where gene promoters 
lacking CTCF binding display gene-specific P-E interactions. (C) Hierarchical clustering of genes 
based on their rankings for various structural and epigenetic features in mucosa samples. 
Intensity of color corresponds to the strength of the features. (D) Comparative scatter plots 
illustrating the relationships between different structural and epigenetic features across the 
examined dataset. 
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Figure S4 Dynamics of P-E connectivity through colorectal cancer (CRC) progression. (A) Scatter 
plots depicting the comparative analysis of P-E connectivity and TSS stripe strengths across 
different CRC stages. The percentage of genes with reduced connectivity (y<x) during 
progression is indicated for each stage comparison. (B) Correlation between initial stripe strength 
in mucosa samples and the extent of stripe reduction in adenocarcinoma samples. Each ellipse's 
center and radius represent the mean and standard deviation, respectively, for stripes associated 
with the specified regulatory elements. The dotted line shows the linear regression across the 
centers of the ellipses. (C) Distribution of SV counts in samples. Significance p values of count 
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differences stages from Mann–Whitney U test are indicated. (D) Spearman correlation matrix 
detailing the changes (log2 fold change, FC) of structural and epigenetic features between polyps 
(M-P) and adenocarcinoma (M-D) relative to unaffected mucosa. (E) Average log2 fold change in 
P-E connectivity for polyps and adenocarcinoma, categorized by promoter methylation status: 
quantiles (Q1-Q4), demethylated, and methylated, excluding those with minimal hypo- or hyper-
methylation. Confidence intervals are depicted as shaded areas behind each line. (F) Distribution 
of P-E connectivity in mucosa samples for gene promoters that become hypermethylated or 
remain unchanged in adenocarcinoma. The significance of differences is tested using the Mann-
Whitney U test, and the p value is provided.  
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Figure S5 Disconnection between promoter-enhancer (P-E) connectivity and gene expression 
changes throughout CRC progression. (A) Venn diagram illustrating the commonality of genes 
with significantly modified expression in both polyps and adenocarcinoma (AdeCa). (B) Log2 fold 
changes in gene expression for polyps and AdeCa, identifying genes that are consistently up- or 
down-regulated across both stages. Statistical significance of the difference in fold changes is 
assessed using the Wilcoxon signed-rank test. (C) Changes in P-E connectivity for polyps and 
AdeCa relative to mucosa, corresponding to genes with consistent up- or down-regulation. The 
significance of connectivity changes, as compared to genes without expression alteration, is 
evaluated using the Mann–Whitney U test. (D) Two-dimensional scatter plots and density 
distributions correlating the changes in connectivity and gene expression between mucosa and 
adenocarcinoma. Genes are categorized based on the rate of connectivity loss: fast (blue) and 
slow (orange), as determined by their feature importance on the first principal component (PC). 
(E) Principal component analysis (PCA) comparing P-E connectivity, scaled P-E connectivity 
(normalized against the aggregate sum), and gene expression changes during the stages of CRC 
development.  
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Figure S6 Predictive modeling of gene expression changes based on promoter-enhancer (P-E) 
connectivity. (A) Distributions of ranks for P-E connectivity and corresponding gene expression 
levels of key oncogenes and proliferation markers across various cancer progression stages. (B) 
Model fit assessment for the predicted changes in gene expression in adenocarcinoma using the 
“initial” model, which utilizes the baseline P-E connectivity. (C) Model fit assessment for the 
predicted changes in gene expression in adenocarcinoma using the “differential” model, which 
considers changes in epigenetic landscapes. (D) Spearman correlation matrix showing the 
similarity of each feature between different stages. (E) Mean squared error (MSE) and (F) 
Pearson’s r coefficient of the “initial” model for the prediction of gene expression changes in 
adenocarcinoma compared to the indicated baseline stages. Prediction scores obtained by 
models trained with mucosa and polyp datasets were compared by using independent t test 
(N=10). (G) Distributions of minimal mean square error (MSE) of “Initial” model trained with equal 
or less than 20 epochs (N=10) with the removal of indicated features. Significance p values of 
differential MSE caused by missing features compared to complete model (All) are evaluated by 
using independent t-test. (H) The top 20 influential features impacting gene expression predictions 
in adenocarcinoma, as determined by SHAP (SHapley Additive exPlanations) analysis for the 
“initial” model. (I) The top 20 influential features for the “differential” polyp model, with features 
named after transcription factors indicating their binding presence at the promoter (p) or enhancer 
(e) regions, based on the ENCODE database. 
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Figure S7 Assessment of predictive accuracy for gene expression changes in various cancer 
types. ROC curve analysis using gene expression predictions derived from the “initial” polyp 
model to determine the up- and down-regulation status of genes across different cancer types 
represented in the TCGA database. 
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Figure S8 Transcriptomic alterations following JQ1 treatment. (A) Distribution of epigenetic 
feature ranks in unaffected mucosa for genes that are up- or down-regulated subsequent to JQ1 
treatment. P values indicating statistical significance are calculated using the Mann–Whitney U 
test. (B) Comparative density plots illustrating the differences in feature rank distributions for 
genes down-regulated in normal tissue (mucosa organoids or primary colon epithelial cells) 
versus diseased states (polyp organoids or cancer cell lines). P values for statistical significance 
are derived from the Mann-Whitney U test. (C) Pathway analysis based on ontology for genes 
that are up- or down-regulated in various samples following JQ1 treatment.  
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Figure S9 Gene expression changes following Cas9-mediated perturbations in HPCEC and HT29 
cells. (A) Changes in gene expression after introducing dCas9-gRNA ribonucleoproteins (RNPs) 
targeting promoters in wild-type cell lines (N=8). (B) Changes in gene expression after introducing 
Cas9-gRNA RNPs targeting exons in wild-type cell lines (N=4). (C) Gene expression alterations 
upon gRNA delivery targeting exons in cell lines stably expressing dCas9-KRAB (N=4). Statistical 
significance of the differential response was assessed using a two-sample t-test. Error bars 
represent the standard error of the mean. 
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Methods 
 
Sample Collection 
 
FAP tissues were collected at the time of partial or full colectomies from patients. Immediately 
following colectomy, patient-matched non-neoplastic colorectal mucosa, adenomatous polyps, 
and adenocarcinomas were snap-frozen and preserved in liquid nitrogen. One FAP 
adenocarcinoma (A001-C-007) was embedded in an optimal cutting temperature compound 
(OCT) before being stored at -80°C. Six sporadic CRCs were obtained from the Stanford Tissue 
Bank. Tissues were examined for histopathology to confirm their disease states. All collection 
procedures were conducted under IRB protocol 47044. 
 
Organoid Culture 
 
Tissue samples were collected from patients and processed for organoid generation according to 
the protocol detailed in Pleguezuelos-Manzano et al.72. Briefly, samples were collected on ice in 
a collection medium (advanced DMEM/F12 supplemented with 10 mM Hepes, 1× Glutamax, and 
1% penicillin/streptomycin). Tissue samples were washed in collection medium, minced, and 
digested for 30 minutes at 37°C in 5 mg/mL collagenase type II (SigmaAldrich). Samples were 
then filtered using a 100 μm strainer, washed five times in collection medium, and plated in Geltrex 
(ThermoFisher). 
 
Organoids were cultured in a complete medium (advanced DMEM/F12 supplemented with 10 mM 
Hepes, 1× Glutamax, 1% penicillin/streptomycin, 1x B27 without vitamin A, 10 mM nicotinamide, 
1.25 mM N-acetylcysteine, 500 nM A83-01 (Tocris), 10 μM SB202190 (SigmaAldrich), 100 ng/μl 
Noggin (R&D Systems), 1 μg/mL human recombinant R-spondin (Stemcell), 0.3 nM Wnt-FC 
(Immunoprecise), 50 ng/ml EGF (Shenandoah Biotechnology, Inc), 2.5 μM CHIR 99021 (Tocris) 
and 100 μg/ml Normocin [InvivoGen]). Ten micromolar of Y-27632 was added to the medium for 
the first three days after seeding. 
 
For drug experiments, organoids were trypsinized and plated at 30,000 cells/well in 24-well plates. 
After 5-7 days, organoids were incubated in a complete medium containing 500 nM JQ1 for 24 
hours. Organoids were then harvested in Cell Recovery Solution (Corning) on ice for 1 hour, 
washed with PBS, and centrifuged to retrieve cell pellets. Cell pellets were then processed for 
RNA extraction. 
 
Cell Lines 
 
HT-29 (ATCC HTB-38) and HCT-116 (ATCC CCL-247) human colorectal cancer cell lines were 
obtained from ATCC. Cells were maintained in DMEM-F12 (ThermoFisher 11320033) with 10% 
FBS and 1% penicillin/streptomycin. Primary human colonic epithelial cells (Cell Biologics H-6047) 
were maintained in the Epithelial Cell Growth Medium (Cell Biologics H6621) as suggested by 
the vendor. All cell experiments were performed before reaching 10 population doublings. 
 
For drug experiments, cells were seeded in 6-well plates with 50% confluence. After one day, 
cells were grown in a complete medium containing 500 nM JQ1 for 24 hours. Cell pellets were 
then trypsinized for collection and processed for RNA extraction. 
 
CRISPR/CRISPRi Assays 
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For stable expression of dCas9-KRAB, pHR-SFFV-KRAB-dCas9-P2A-mCherry (Addgene 60954) 
was transfected into HEK293T cells using the Lenti-X Packaging Single Shots (Takara Bio 
631275), following the manufacturer’s protocol. Assembled viral particles were harvested after 72 
hours of incubation and collected by filtering the culture media through a 0.45 µM filter. Viral titers 
were determined using the Lenti-X GoStix Plus (Takara Bio 631280). Viral infections were 
conducted with a MOI (multiplicity of infection) of 10, where 2.0E5 to 1.0E6 cells were incubated 
in full culture media containing the viral particles and 8 µg/mL polybrene for 48 hours. Positive 
cells were selected based on high expression of mCherry by FACS sorting (FACSAria II, BD 
Bioscience). Cells with stable cassette expression were selected by a second sorting performed 
2-3 weeks after the initial. 
 
For delivery of gRNA or Cas9/dCas9-gRNA complex, synthesized crRNA:tracrRNA duplex (IDT) 
were transfected into 1.0E5-2.0E5 cells using the 4D nucleofector X unit (Lonza), with or without 
pre-incubation with equal molar Cas9/dCas9 protein (IDT 1081058,1081066). We followed the 
protocol provided by IDT for the Lonza Nucleofector System. Nucleofection of the cells used the 
following kits and programs: HPCEC - P3/CM137; HT29 - SF/FF137. After nucleofection, cells 
were seeded in 96-well plates and collected for downstream analysis after 48 hours. To obtain 
statistical robustness, each experiment was repeated with 2-4 trials with two replicates in each 
trial. 
 
Multi-digested Hi-C (mHi-C) 
 
Multi-digested Hi-C (mHi-C) was performed as a derivative of Tri-HiC, a high resolution modified 
Hi-C protocol 18,31, with minor modifications. Initially, 5-10 mg of snap-frozen tissue was placed 
into a tissueTUBE-TT05 (Covaris 520071) and cryopulverized using the Covaris CP02 cryoPREP 
Automated Dry Pulverizer, following the manufacturer's procedure. The pulverized tissue was 
then subjected to freeze substitution73 by submerging it in 1 ml of -80°C 0.01% formaldehyde 
(ThermoFisher 28906), 97% ethanol, and 2% water. Following this, samples were incubated on 
dry ice for 3 hours at a rotor spinning speed of approximately 100 rpm. They were then placed in 
a CoolCell Container (Corning) and transferred to a -20°C freezer for overnight incubation. On 
day 2, the container was moved to a 4°C cold room and spun on a rotor at approximately 100 rpm 
for 1 hour to bring the sample temperature above the freezing point. 
 
Subsequently, the tissue samples were separated from the ethanol solution by centrifuging at 300 
g for 5 minutes in a 4°C microcentrifuge. Crosslinking was carried out by incubating the samples 
with 1 ml of 1% TBS-formaldehyde for 10 minutes at room temperature. The solution was then 
quenched by adding 80 μl of 2.5 M glycine and incubated for an additional 5 minutes. The samples 
were centrifuged, washed once with 1 ml of TBS (pH 7.5), and resuspended in 250 μl of Hi-C lysis 
buffer (10 mM Tris-HCl, pH 8.0, 10 mM NaCl, 0.2% Igepal CA630) with an additional 50 μl of 
proteinase inhibitor cocktail (Sigma P8340). Nuclei extraction was performed on ice by squeezing 
the samples 15-20 times with 1.5 ml disposable pellet pestles (Fisher Scientific 12-141-368). 
 
The crude suspension was then centrifuged at 1500 g for 5 minutes at 4°C, resuspended in 800 
μl of Hi-C lysis buffer, and passed through a 100 μm strainer (Sysmex). After another 
centrifugation, the purified nuclei were resuspended in 170 μl of 10 mM Tris-HCl containing 0.5% 
Triton X-100 (Sigma 93443). This was followed by incubation at room temperature with rotation 
for 15 minutes. Ten microliters of 1% SDS, 20 μl of Cutsmart buffer (NEB), 3 μl each of HinP1I 
(NEB R0124S), DdeI (NEB R0175L), CviAII (NEB R0640L), FspBI (ThermoFisher ER1762), and 
0.6 μl of MseI (NEB R0525M) were added to the suspension in the indicated order. The mixture 
was then incubated at 25°C and 37°C for 2 hours each, with rotation. 
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To halt the restriction digestion, the suspension was incubated in a 62°C heating block for 20 
minutes, followed by cooling down. End repair was carried out by adding 30 μl of a solution 
containing 0.5 mM biotin-14-dATP (Active Motif 14138), 0.5 mM biotin-14-dCTP (AAT bio 17019), 
0.5 mM dTTP, 0.5 mM dGTP, and 4 μl of Klenow DNA polymerase (NEB M0210L) to the mixture. 
This was then incubated for 1 hour at 37°C with rotation. For ligation, a 750 μl solution containing 
1x NEB T4 DNA ligase buffer (NEB B0202), 120 μg of BSA (ThermoFisher AM2616), and 2000 
U of T4 DNA ligase (NEB M0202M) was added. The mixture was incubated at room temperature 
for 90 minutes, followed by 4°C overnight, and then room temperature for an additional 60 minutes 
with rotation. 
 
Reverse crosslinking was performed by centrifuging the mixture at 1500 g for 5 minutes. The 
supernatant was then replaced with a mixture of 300 μl of 1x T4 ligase buffer, 30 μl of 20 mg/ml 
proteinase K (ThermoFisher 25530049), 30 μl of 10% SDS, and 40 μl of 5 M NaCl. This 
suspension was then incubated at 66°C for 4 hours. The DNA content was purified by phenol-
chloroform extraction and resuspended in 20 μl of 10 mM Tris-HCl. 
 
To generate the mHi-C sequencing library, 300 ng of purified DNA was tagmented with 2.5 μl of 
Tn5 transposase (APExBIO K1155, discontinued) loaded with equimolar Mosaic Ends containing 
Illumina Nextera i5 and i7 extensions, according to the manufacturer's protocol. The tagmentation 
was performed in a 100 μl buffer containing 10% DMF, 10 mM Tris-HCl, and 150 mM NaCl, at 
55°C for 10 minutes. The product was then column purified (Zymo D4014) and PCR amplified for 
2 cycles using the NEBNext master mix (NEB M0544L) with Illumina Nextera primers and 
conditions. Biotin enrichment was then performed by adding 20 μl of Dynabeads MyOne 
Streptavidin C1 (ThermoFisher 65001) and incubating at room temperature for 30 minutes with 
rotation. The magnetic beads were washed three times with 1x wash buffer (10 mM Tris-HCl pH 
7.5, 1 mM NaCl, 0.5 mM EDTA) and once with 10 mM Tris-HCl. Final libraries were obtained by 
amplifying the beads with an additional 8 cycles of PCR, followed by purification with SPRI 
(Beckman B23318) size selection at a 0.5x-1.1x range. The 33 samples were combined into 2 
pools and sequenced using 2 NovaSeq (Illumina) S4 200 cycle flow cells. 
 
Real-time PCR/ RNA seq 
 
Total RNA was extracted from approximately 5-10 mg of frozen tissues or approximately 
1.0×1051.0×105 to 1.0×1061.0×106 cells from organoid or cell culture, using the Zymo Quick-
RNA Miniprep (Zymo R1054), according to the manufacturer's instructions. After purification, DNA 
digestion was carried out using the DNA-free DNA Removal Kit (ThermoFisher AM1906). 
For cDNA synthesis, up to 1 μg of total RNA was processed using the Superscript IV reverse 
transcription system (ThermoFisher 18091050), with Oligo dT provided in the kit serving as the 
primer. For RT-PCR, 50 ng of synthesized cDNA was mixed with 10 μL of TaqMan Fast Advanced 
Master Mix (ThermoFisher 4444557) and 1x primers, and then examined in the QuantStudio 6 
Flex system (ThermoFisher). Relative gene expressions were normalized against the internal 
expression of GAPDH, utilizing the double delta CT method. 
Sequencing libraries of mRNA were prepared from 200 ng to 1 μg of total RNA using the NEBNext 
Ultra un-stranded preparation kit (E7775S, E7490S), in accordance with the manufacturer's 
protocol. Samples were sequenced on a NovaSeq S1 flow cell for 50 bp pair-end sequencing, 
resulting in an average of 86.3 million raw paired reads per sample. 
 
ATAC seq 
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ATAC seq was conducted following the latest ENCODE tissue protocol, as described61. 
Sequencing was performed on a NovaSeq S1 flow cell using 50 bp pair-end sequencing, resulting 
in an average of 53.2 million unique fragments mapped for each sample. 
 
EM seq 
 
Enzymatic Methyl seq was executed as described74. Libraries were constructed using the 
NEBNext Enzymatic Methyl-seq Kit (NEB), following the manufacturer's guidance. Sequencing 
was carried out using the novel ultrahigh throughput UG-100 (Ultima Genomics) sequencer. 
 
mHi-C data processing 
 
Initial processing of mHi-C data was executed utilizing the distiller pipeline 
(https://github.com/open2c/distiller-nf) with default parameters configured for the SLURM cluster. 
Deduplicated pair files were then input into Juicer pre37 to generate KR-balanced .hic matrices at 
resolutions of 200, 500, 1k, 2k, 5k, 10k, 20k, 50k, 100k, 250k, 500k, and 1mbp, employing a 
quality score filter of 30. In order to generate piled-up master matrices for various stages and all 
samples, pair files were initially merged and sorted utilizing pairtools 
(https://github.com/open2c/pairtools). 
 
Stripe calling was carried out as previously described18, with minor modifications to the 
parameters. We noted an enrichment of mappable reads at open chromatin regions, raising the 
possibility of false stripe signal detection by measuring raw read count over-representation. To 
address this, the stripe calling algorithm normalized long-range contacts against read mappability 
at each locus, evaluated by distal interactivity-independent self-ligation events. Specifically, long-
range (>1.5 kb) and short-range (<1 kb, +/- orientation) mapped read pairs were separated into 
two .bam files using awk and samtools. Bedtools was then utilized to map these reads to two 
binning bed tracks; a local one with a 2 kb window and a background one with a 50 kb window, 
both featuring a 100 bp sliding size. Assuming the over-representation sourced from mappability 
was proportional between long- and short-range contracts, the expected count number for each 
bin was calculated as (longbg / shortbg) × shortlocal. Using MACS2 bdgcmp -m qpois, the local long-
range read count for each bin was examined for statistical significance of enrichment against the 
expected number. The log fold change signal (stripe strength) was then calculated with the same 
formula by inputting the actual and expected values into MACS2 bdgcmp -m logFE. To prevent 
NaN errors, a pseudo-count of 1 was added. 
 
Post-determination of stripe q values, each 100 bp bin was counted for the number of samples 
demonstrating significance (FDR < 0.01). Bins with at least three sample hits were deemed 
significant. These bins were then merged, and only windows with a minimum size of 500 bp were 
included as final stripe anchors. Stripe peaks overlapping with ENCODE blacklist regions were 
removed. To mitigate gender variations among patients, only autosomal chromosomes were 
included for downstream analyses. 
 
Loop calling was performed using the HiCCUPS algorithm from Juicer tools37 with the following 
parameters: -r 500,1000,2000,5000,10000 -f 0.1 -p 4,2,2,2,2 -i 20,10,10,6,6 -t 0.1,1.25,1.75,2 -d 
2000,2000,4000,10000,20000. Given that library complexity significantly affects loop calling 
power, the analysis was not performed for each individual sample. Instead, it was executed on 
pooled libraries of 1) all samples, 2) all mucosa, 3) all polyps, and 4) all adenocarcinomas. Post-
processed loop pixels from all profiles at various resolutions were subsequently merged in the 
order of high resolution > low resolution from combined> mucosa > polyp > adeca. A loop with 
lower priority was filtered if both anchors overlapped with a higher priority loop. This master loop 
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list was then applied to each sample to execute individual loop quantification. Loop strengths were 
calculated by dividing read counts in the identified loops by the expected count from the donut 
background and log transforming the results. A pseudo-count of 1 was added as necessary to 
prevent NaN errors. For stage-specific counting, loops with average loop strengths greater than 
1.2-fold in samples of the specified stage were regarded as positive. 
 
For annotations for stripe/loop anchors, features were mapped against the Ensembl regulatory 
build36 and TSS from Gencode using Bedtools. If an anchor overlapped with multiple features, the 
primary annotation adhered to the following order: promoter/TSS (within -1.5 kb to +0.5 kb of any 
Gencode transcript), active enhancers (defined by H3K27Ac marks in the Ensembl regulatory 
build), CTCF binding sites, and open chromatin. 
 
For aggregation analysis of loops, APA from Juicer was conducted with the parameters -r 200 -u 
-n -0 -w 500 -k KR -q 20. The enrichment score was computed as the average intensity of the 
10x10 center pixels (2 kb) against the mean of the 100x100 pixels from the bottom left. For the 
aggregation of stripes, the same function was executed with the parameters -r 200 -u -n -0 -w 250 
-k KR -q 20. Given the phenomenal distance-dependent interaction decay at the vicinity of stripes, 
interaction intensities at specific distances (a.k.a. matrix diagonals) were normalized against the 
average intensity of the distance. The fold enrichment of the aggregated stripes was then 
calculated by averaging the normalized values in the center 10 pixels. For visualizations of loop 
and stripe APA, matrices were log-transformed before being plotted onto heatmaps. 
 
For structural variant calling, contact matrices in .mcool format were generated by using the 
distiller pipeline, using default parameters as described above. These matrices were analyzed by 
using the PredictSV function in the EagleC package41 using the following parameters: --balance-
type ICE --output-format full --prob-cutoff-5k 0.8 --prob-cutoff-10k 0.8 --prob-cutoff-50k 0.9999. 
Identified SVs were visually confirmed on the Hi-C heatmaps. 
 
ATAC seq processing 
 
ATAC seq results were processed using the ENCODE-DCC ATAC-seq pipeline 
(https://github.com/ENCODE-DCC/atac-seq-pipeline) with default settings. To generate the 
integrated peak list from all samples, a 100 bp binning track was created and mapped with the 
pseudo-replicated peak regions from each sample using Bedtools. Bins with at least three hits 
were deemed valid, merged, and intervals with a minimum size of 300 bp were included as final 
peak sites. Peak fold enrichments of samples were then obtained from pipeline-derived fold 
change bigwig tracks. 
 
Analysis of P-E Connectivity 
 
To elucidate the connectivity between promoters and their neighboring regulatory context, P-E 
pairs were determined for all ATAC-seq peaks within a 200 kb distance from target promoters. 
Interaction zones were defined as being within -1.5 kb to +0.5 kb near the TSS for promoters, and 
within 500 bp of ATAC-seq peaks for distal enhancers. Contact frequencies between promoter 
and each target enhancer were calculated using Juicer Straw37 to extract read counts at 1000 bp 
resolution. These raw contacts were normalized against the read mappability of the promoter, 
which was defined as the KR-normalized contact frequency, or in the case where balanced matrix 
was not available, the ratio of short-range self-ligation contact (<1.0 kb, +/- orientation) RPKM at 
the TSS region versus that for the 50 kb neighborhood. Normalization for coverage between 
samples was achieved by dividing frequencies of each contact by the long-range contact (with a 
minimum 1.5 kb distance threshold) densities in the 5-50 kb background donut region, in the unit 
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of contacts per 1x1 kb square. The aggregated normalized contacts of the gene with all distal 
regulatory elements represented the total P-E connectivity of that gene. 
 
The accessibility of interacting regulatory element peaks, referred to as "enhancer accessibility" 
in the text, was calculated as the log sum of the fold enrichment signals of all ATAC-seq peaks 
that were involved in calculating the P-E connectivity. This value was extracted from the 
processed ATAC fold change .bigwig tracks by using pyBigWig, which represented the overall 
activity of the regulatory context for each gene, and was used for comparisons with P-E 
connectivity levels. For promoter accessibility, the top two quantiles of mean fold change of the 
ATAC-seq signals in the defined TSS region were retrieved using pyBigWig and log-transformed. 
For downstream analyses, genes showing non-positive values for P-E connectivity, promoter 
accessibility, or promoter stripe enrichment in all three stages were removed. For the remaining 
genes, missing or negative values were replaced with zero. 
 
RNA seq processing 
 
RNA seq results were processed using Tomas Bencomo’s pipeline 
(https://github.com/tjbencomo/bulk-rnaseq), which utilizes Salmon for quantifying transcript levels 
and DESeq2 for identifying differential genes (FDR < 0.1, fold change > 1.3). Transcription levels 
(TPM) of genes were obtained by summing transcript-based TPM from Salmon output (.rf). 
 
DNA methylation processing 
 
A total of 21,175,510 CpG sites with measurable methylation ratios were identified across all 
samples. The methylation degree of features, including mHiC hotspots, ATAC peaks, and gene 
promoters, were calculated by averaging the methylation percentage for all valid CpG sites within 
the feature. Regions with average methylation < 25% were classified as demethylated, while 
those > 40% were considered methylated. Regions with average methylation between 25% and 
40% were classified as intermediately methylated and excluded from the methyl versus demethyl 
analyses. For methylation changes between two stages, regions demonstrating > 15% difference 
with <0.1 FDR were classified as significantly hypo- or hyper-methylated based on the direction 
of change. For correlation analyses with other features, the degree of demethylation (100% minus 
methylation percentage, annotated as "demethylation") was often used to maintain a positive 
correlation between methylation degree and regulatory activity. 
 
Mappability analysis 
 
The mappability of mHi-C, in situ Hi-C, and intact micro-C at annotated regulatory regions was 
visualized by retrieving their read coverage from a .bw file that compiled only short-range self-
ligation contacts, defined as those with an interaction distance of less than 1.5 kb and a “+/-
“ orientation. To compare the distal interaction signal against mappability, long-range interactions, 
defined as those with an interaction distance greater than 2.0 kb, were extracted and aggregated 
similarly. The fold enrichment of interaction was then calculated as the ratio of long-range to short-
range interactions at 100 bp resolution. Note that this ratio is equivalent to the “raw” stripe strength 
before normalization against the average enrichment of the local background. 
 
Principal component analysis 
 
PCA analyses of mHi-C and RNA seq were performed using the Python 
sklearn.decomposition.PCA package. For P-E connectivity, analysis was conducted using either 
untransformed or scaled-by-sample matrices. 
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Motif enrichment analysis 
 
For each feature (P-E connectivity, enhancer accessibility, TSS accessibility, TSS stripe strength, 
TSS methylation, gene expression), sequences of promoter regions for genes with the top 10% 
feature strength in mucosa were extracted using bedtools. Motif enrichment was then calculated 
using the AME tool in the MEME suite75, with the JASPAR 2022 vertebrate motif database serving 
as the reference. The -log10 p-values for significantly enriched motifs for any of the features were 
included for hierarchical clustering. 
 
Gene Ontology 
 
Enrichment analysis of significantly up- or down-regulated genes in pathways was performed and 
visualized using the WEB-based GEne SeT AnaLysis Toolkit76. The method of over-
representation was selected to test enrichments in the KEGG pathway against the protein-coding 
genome. Analysis was performed using default parameters. 
 
Machine learning 
 
For the "initial" and "differential" models, structural and epigenetic feature values in unaffected 
mucosa or their fold changes in polyps or adenocarcinoma were compiled for each promoter. For 
fold change calculation, a pseudo count of 1 was added to connectivity and methylation to avoid 
zero values. These features were further compiled with the expression levels of the genes in 
mucosa, the binary binding status of all TFs in the ENCODE ChIP-seq database at their promoters, 
and the sum of the binary binding status for the TFs in their distal enhancer contexts.  
 
The raw value and their rank-transform were combined, resulting in a total of 1,374 features for 
each gene. To train the models, 2,800 randomly selected genes were excluded as the test dataset, 
and the rest were fit to the differential gene expression changes in polyps and adenocarcinoma 
using a sequential model with three intermediate layers and one dense output. Each layer 
included 2,048, 512, and 128 neurons in order, and was filtered with a 20% dropout rate. Models 
were trained for up to 50 epochs, with the final model represented by the iteration that showed 
the lowest mean squared error for the test dataset. The training and evaluation of the models 
were performed using the Tensorflow Keras module in Python. 
 
For evaluation of feature importance in the models, the SHAP77 package was used for analysis 
with default parameters. Average feature importance was calculated as the absolute mean of the 
importance across all genes. Overall directionality was represented by the numerical mean of the 
importance. 
 
The Cancer Genome Atlas Program (TCGA) gene expression analysis 
 
A list of differentially expressed genes and their fold changes were obtained from the GEPIA 
database47. The prediction of differential expression was performed using the receiver operating 
characteristic (ROC) analysis in the Python sklearn package, where predicted differential fold 
changes from the “initial” model were used as thresholds for the up- and down-regulated genes. 
For prediction of the directionality, genes were scored by their consistency of dysregulation, 
averaging their alterations (-1 for down-regulation, 0 for unchanged, and +1 for up-regulation). 
The correlation between the directionality score and the prediction accuracy was then evaluated. 
 
Public data usage 
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An unmasked hg38 genome was utilized as the reference for all analyses. The regulatory build 
for sigmoid colon (version 20210107) was obtained from Ensembl (http://www.ensembl.org) to 
facilitate regulatory annotations. Gencode v38 was employed for RNA-seq alignment and defining 
the positions of transcription start sites (TSS). The ENCODE blacklist78 was utilized to exclude 
problematic regions of the genome from analyses. ENCODE in situ Hi-C (ENCSR123UVP) and 
intact micro-C (ENCSR477GZK) datasets for the HCT116 cell line were used for comparison with 
our mHi-C data. Roadmap histone ChIP-seq tracks for colonic mucosa (GSM1112779, 
GSM916043, GSM916046, GSM916045) and ENCODE CTCF (ENCSR833FWC), Pol II 
(ENCSR322JEO), RAD21 (ENCSR956UIS), SMC3 (ENCSR149SKU) ChIP-seqs were employed 
for CRE visualization. Locations of CpG islands were downloaded from the UCSC Genome 
Browser. 
 
Supplementary Tables 
 
Table S1 List of guide RNA sequences and Taqman gene expression primers used for 
CRISPR/CRISPRi intervention assays 
 
Table S2 -ΔΔ CT values obtained from qPCR studies 
 
Table S3 List of sample IDs used for this study on the HTAN and GEO portals.  
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