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Abstract:

Protein-coding differences between mammals often fail to explain phenotypic diversity,
suggesting involvement of enhancers, often rapidly evolving regions that regulate gene expression.
Identifying associations between enhancers and phenotypes is challenging because enhancer activity is
context-dependent and may be conserved without much sequence conservation. We developed TACIT
(Tissue-Aware Conservation Inference ToolKit) to associate open chromatin regions (OCRS) with
phenotypes using predictions in hundreds of mammalian genomes from machine learning models trained
to learn tissue-specific regulatory codes. Applying TACIT for motor cortex and parvalbumin-positive

interneurons to neurological phenotypes revealed dozens of new OCR-phenotype associations. Many
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associated OCRs were near relevant genes, including brain size-associated OCRSs near genes mutated in
microcephaly or macrocephaly. Our work creates a forward genomics foundation for identifying

candidate enhancers associated with phenotype evolution.

Main Text:

INTRODUCTION

Much of the phenotypic diversity that exists across vertebrates is thought to have arisen from
differences in how genes are expressed (1). Variation in phenotypes like vocal learning (2) and longevity
(3) has been linked to patterns of gene expression within some of the most relevant brain regions and
tissues, respectively. Thus, many genetic differences associated with the evolution of these, and other,
complex phenotypes are likely in enhancers, distal cis-regulatory genomic elements that are bound by
transcription factor (TF) proteins that regulate the expression of associated genes, often through cell type-
specific activation (4, 5). For example, limblessness in snakes is associated with sequence divergence and
activity loss in a critical enhancer near the Sonic hedgehog gene (6), and mutations in orthologs of this
enhancer are associated with polydactyly in humans, mice, and cats (7, 8). Enhancer evolution has been
found to be associated with a number of other complex phenotypes, including eyesight loss (9) as well as
whisker, penile spine, and brain growth (10).

Recent advances facilitate identifying relationships between enhancer activity and phenotype
evolution. Community genome sequencing efforts such as the Zoonomia Project have constructed
assemblies for hundreds of species from diverse mammalian clades (11). Cactus multi-species whole-
genome alignments and tools for extracting orthologs have vastly improved ortholog mapping for non-
coding genomic regions (12-14). In addition, new phylogeny-aware statistical methods have been

developed for identifying factors associated with the evolution of phenotypes (15, 16).
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Despite these successes, identifying enhancer-phenotype relationships is still a major challenge.
Widely used methods to identify conservation and convergent evolution across orthologous genome
sequences measure the extent to which the nucleotides within a given region align across species (17-19).
While these approaches have led to some exciting findings (9, 20), many enhancer sequences and
transcription factor binding sites are under less sequence constraint than promoter and gene sequences
(21, 22). In fact, recent studies have shown that sequence conservation is not required for activity
conservation at enhancer orthologs (23, 24) and can occur when enhancer activity is not conserved in a
tissue of interest (25), so nucleotide sequence conservation at enhancers is sometimes an insufficient
proxy for enhancer activity conservation.

Here we present a new method for identifying enhancer-phenotype associations, in which we
trace enhancer activity evolution using predicted open chromatin in a tissue or cell type of interest as a
proxy for enhancer function. Previously, we and others have demonstrated that the sequence patterns
associated with enhancer activity in multiple tissues are highly conserved across mammals by showing
that machine learning models that use DNA sequence to predict enhancer activity in a tissue of interest in
one species can accurately predict clade-specific and tissue-specific enhancer activity in species from
different mammalian clades (25,27-29). We integrate machine learning-based predictions of enhancer
function with other comparative genomics advances (11, 15, 16) in a new framework called the Tissue-
Aware Conservation Inference Toolkit (TACIT) for identifying candidate enhancers associated with the
evolution of phenotypes. We use sequences underlying open chromatin regions (OCRs) from a small
number of species in a tissue or cell type of interest to train convolutional neural networks (CNNSs) that
predict the probability of OCR ortholog open chromatin in those tissues/cell types at the orthologous
sequences in up to 222 mammalian genomes (11). We then use these predictions to link OCRs to specific
mammalian phenotypes while accounting for phylogeny (Fig. 1). We applied our approach to multiple
phenotypes, including brain size, solitary and group living, and vocal learning, and identified both motor
cortex tissue and motor cortex parvalbumin-positive (PV+) interneuron OCRs associated with these

phenotypes that are near relevant genes. Our approach can be applied to any phenotype with open
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chromatin data available from a relevant tissue or cell type in at least two species. It is therefore broadly

applicable to a variety of tissue, phenotype, and species combinations.
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Figure 1: Overview of TACIT.

We train a CNN using sequences underlying OCRs and non-OCRs to predict open
chromatin in a tissue or cell type of interest and then use the CNN to predict open
chromatin in that tissue or cell type in hundreds of genomes from Zoonomia. We
associate our predictions with phenotypes using phylolm and then quantify the
significance of the association using an empirical p-value from phylogenetic
permutations. Animal silhouettes were made by Michael Keesey, Daniel Jaron, Ryan
Cupo, Steven Traver, and Chris Huh (license:
https://creativecommons.org/licenses/by-sa/3.0/); were downloaded from PhyloPic;
and were not modified.

RESULTS

Convolutional neural networks accurately predict open chromatin status of OCR orthologs

We applied TACIT to two tissues with open chromatin data from more than two species — motor
cortex and liver —as well as a tissue and a cell type with data from only two species — retina and motor
cortex PV+ interneurons. We used OCRs instead of other enhancer activity measures, such as H3K27ac
ChlP-seq regions, because OCRs tend to have a concentration of TF motifs near their summits and be
hundreds instead of thousands of base pairs long, allowing our model to focus on sequences likely to be

involved in enhancer activity and allowing us to easily map regions in species whose assemblies have
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92  short scaffolds (14). We chose tissues and cell types that would demonstrate specificity in dissimilar
93  tissues (brain versus liver) and have relationships with complex phenotypes of interest, including brain
94  size, social behavior, and vocal learning. For tissues with more than two species, we trained CNNs to
95  predict whether a region is an OCR or a non-OCR ortholog of an OCR, as described in our previous work
96  (25).
97 Since we are the first to train machine learning models for open chromatin prediction in motor
98  cortex (we and others have shown that the liver regulatory code is conserved across species (25, 27)), we
99  first trained CNNSs using only house mouse sequences and found that the CNNs successfully predicted
100  clade-specific OCRs and non-OCRs (high “lineage-specific OCR accuracy,” AUC > (.70 and
101  AUPRC/NPV-Spec. > 0.65 for all metrics) as well as tissue-specific OCRs and non-OCRs (high “tissue-
102  specific OCR accuracy,” AUC > 0.65 and AUPRC/NPV-Spec. > fraction of examples in smaller class for
103  all metrics); in addition, when comparing average OCR ortholog predictions across species, predictions
104  had the expected negative correlation with distance from the species in which the OCRs were assayed
105  (high “phylogeny-matching correlations,” mean Pearson correlation < -0.70 and mean Spearman
106  correlation < -0.45) (Figs. S1A,D,G,J,M,P, Table S1) (25). We next trained multi-species CNNs for
107  motor cortex and liver using all of our data — Mus musculus (Glires clade), Macaca mulatta (Euarchonta
108 clade), and Rattus norvegicus (Glires clade) for both tissues as well as Rousettus aegyptiacus
109  (Laurasiatheria clade) for motor cortex and Bos taurus (Laurasiatheria clade) and Sus scrofa
110  (Lawurasiatheria clade) for liver — and found that the models achieved high lineage- and tissue-specific
111  OCR accuracy (AUC > 0.8, AUPRC/NPV-Spec. > fraction of examples in smaller class for all metrics) as
112 well as phylogeny-matching correlations (mean Pearson correlation < -0.95 and mean Spearman
113  correlation < -0.75) (Fig. 2, Figs. S2A,D,G, Fig. S3, Tables S2-3). We then used the multi-species motor
114  cortex CNN to make predictions at motor cortex OCR orthologs in 222 diverse boreoeutherian mammal
115  genomes from Zoonomia, where we limited ourselves to boreoeutherians because we did not have open
116  chromatin data from species in other clades. To further evaluate the reliability of our predictions, we

117  clustered the species hierarchically with predictions as features and found that the cluster hierarchy was


https://paperpile.com/c/JAWECZ/k1Ah
https://paperpile.com/c/JAWECZ/k1Ah
https://paperpile.com/c/JAWECZ/k1Ah
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://doi.org/10.1101/2022.08.26.505436
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.26.505436; this version posted August 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

118  similar to the phylogenetic tree, with all but a few species clustering correctly by clade (Fig. S4,

119  Supplementary Text) (26).
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Figure 2: Motor cortex multi-species CNN performance.

A shows the area under the ROC curve (AUROC) and the area under the precision-
recall (if more negatives than positives)/negative predictive value-specificity (if more
positives than negatives) curve (AUPRC/NPV-Spec.) for the full test set, clade-specific
OCRs and non-OCRs, and shared versus tissue/brain region-specific OCRs and non-
OCRs for the multi-species motor cortex CNNs. B shows the negative relationship
between the average house mouse OCR ortholog multi-species motor cortex open
chromatin predicted probabilities for Glires species and the millions of years ago
(MYA) when each species diverged from house mouse.

120 Since no previous study has trained PV+ interneuron or retinal enhancer activity prediction

121  models for predicting enhancer activity in species not used for training (25,27-29), we needed to

122  investigate whether the PV+ interneuron and retinal regulatory codes are sufficiently conserved for

123  accurately predicting open chromatin of OCR orthologs. We did this by running motif discovery on open
124  chromatin datasets from each species for which data was available. For each of PV+ interneurons and
125  retina, we found motifs for many of the same TFs in both species, and some of these TFs are known to be
126  involved in PV+ interneurons and retina, respectively (Supplementary Text, Supplementary Website)
127  (26).

128 Because we had PV+ interneuron and retina data from only two species — Mus musculus and
129  Homo sapiens (Euarchonta clade) — we did not have sufficient non-OCR orthologs of OCRs to train

130  CNNs, so we developed a new approach to constructing negative sets for these cases: We combined a
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131  large number of random regions of the genome with the same G/C-content as the positives with OCRs
132  from other cell types or tissues, two negative sets that provided adequate performance for all of our

133  metrics in our previous work (Methods) (25). To ensure that CNNs could make accurate predictions in
134  species not used for training in our tissues and cell types, we first trained CNNSs using only house mouse
135  sequences and found that they achieved high lineage-specific OCR accuracy (AUC > 0.85 and

136  AUPRC/NPV-Spec. > 0.60) as well as phylogeny-matching correlations (mean Pearson correlation < -
137  0.65, mean Spearman correlation < -0.40 for retina and PV+ interneurons) for house mouse sequences
138 (Figs. S1B,C,E,F,H,I,K,L,N,0,Q,R, Tables S4-5). The PV+ interneuron CNNs also achieved strong
139  performance on human sequences (AUC > 0.70 and AUPRC/NPV-Spec. > fraction of examples in

140  minority class for all criteria), where no human sequences were used in training as well as high tissue-
141  specific OCR accuracy (AUC > 0.75 and AUPRC/NPV-Spec. > fraction of examples in minority class for
142 all criteria), while the house mouse-trained retina CNNSs did not work as well on human-specific OCRs
143  and non-OCRs and liver non-retina OCRs. We then trained CNNs using sequences from both house

144  mouse and human, and both the PV+ and retina CNNs achieved strong performance for all criteria (AUC
145 > 0.70 and AUPRC/NPV-Spec. > fraction of examples in minority class for all criteria, mean Pearson
146  correlation < -0.60, mean Spearman correlation < -0.40) (Figs. 3A-D, Figs. S2B,C,E,F,H,I, Tables S6-
147 7).

148 To evaluate if our bulk tissue models were learning sequences relevant to the tissues in which
149  they were trained, we interpreted what they had learned (Methods). Specifically, we computed the

150 CNNs’ per-nucleotide importance scores, which indicate the extent to which the CNN prioritizes the
151  presence or absence of each nucleotide at each position (30, 31). We found that our CNNs seemed to have
152  learned sequence patterns that are similar to motifs of TFs that are known to be involved in motor cortex
153  and liver, such as MEF2C for motor cortex (32, 33) and HNF4A (34, 35) for liver, as well as sequence
154  patterns that do not match any known TF motif (Supplementary Text, Figs. S5-7) (26). We then

155  examined a specific retina OCR near the retina TF Otx2, where the OCR’s orthologs in subterranean

156  mammals were previously shown to have a faster relative evolutionary rate than its orthologs in other
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Figure 3: PV+ interneuron and retina multi-species CNN performance.
(A-B) show the AUROC and the AUPRC/NPV-Spec. for the full test set, clade-
specific OCRs and non-OCRs, and shared versus tissue/cell type-specific OCRs and
non-OCRs for multi-species PV+ interneuron (A) and retina (B) CNNSs. (C-D) show
the negative relationship between the average house mouse OCR ortholog multi-
species PV+ interneuron (C) and retina (D) CNN predictions for Glires species and
the MY A when each species diverged from house mouse. E shows the multi-species
retina model normalized importance scores for each position in the summit +/-
100bp of an OCR near OTX2 that was previously shown to have a higher relative
evolutionary rate in subterranean mammals. Orange boxes mark matches to the
house mouse Otx2 motif, the magenta box marks the match to the house mouse Isl1
motif, and green boxes mark regions with high importance scores that do not match
any known TF motif. Motifs were downloaded from CIS-BP (86) and visualized
using meme2images from the MEME suite (87). No nucleotides in either ortholog
outside these central 200 base pairs had a normalized importance score with absolute
value greater than one.

157  mammals (9). This OCR’s ortholog in Nannospalax galili, a subterranean mole-rat, was confidently
158  predicted to be closed, while its ortholog in a non-subterranean pouched rat, Cricetomys gambianus, the

159  most closely related mammal in Zoonomia that never lives underground (diverged ~45 MYA (36)), was
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160  predicted to be open. Both of these OCR orthologs contained two motifs for Otx2 as well as a third motif
161 that could not be easily interpreted with high importance scores. In addition to those important sequences,
162 the Cricetomys gambianus ortholog had a high importance score for the motif for Isl1, a transcription
163  factor involved in the development of bipolar and cholinergic amacrine cells of the retina (37). There

164  were also two additional sequences with high importance scores unigue to Cricetomys gambianus relative
165 to Nannospalax galili that did not match any known TF motif, demonstrating the value of using a

166  modeling strategy that does not require featurizing the sequence based on known information (Fig. 3E).
167 From the four cross-species OCR datasets of interest (motor cortex, liver, PV+ interneuron, and
168 retina), we identify 50,942,699 total orthologous regions across 222 Boreoeutherian mammals from

169 402,880 total OCRs. Relative to human OCR annotations and phyloP annotations alone, we find that

170  these predictions can provide a substantial boost for interpreting human disease-associated loci, with

171  greater tissue- and cell type specificity. For example, in our other work, we found that human orthologs of
172  regions predicted to have conserved motor cortex open chromatin are enriched for overlapping SNPs

173  associated with schizophrenia, while human orthologs of regions predicted to have conserved liver open
174  chromatin are enriched for overlapping SNPs associated with cholesterol-related traits (38, 39). These
175  results demonstrate the power of TACIT to identify functionally relevant patterns of conservation.

176

177  Applying TACIT to mammalian phenotypes

178

179 A framework for associating predicted open chromatin with phenotypes

180

181  Having trained models to predict open chromatin status of OCR orthologs in four tissues and cell types —
182  motor cortex, liver, retina, and PV+ interneurons within the motor cortex — we identified individual OCRs
183  whose predicted open chromatin across species is associated with phenotypes (Fig. 1). We applied the
184  phylolm and phyloglm methods (15) for continuous and binary traits, respectively. These methods are

185  modifications of phylogenetic generalized least squares (40, 41) designed for faster performance. We
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186  used them to test for a relationship between one OCR ortholog’s open chromatin predictions across

187  species and phenotype annotations across species that cannot be explained by the species phylogeny

188  alone. To minimize false positives, we implemented phylogenetic permulations (16), enabling us to

189  evaluate the significance of each OCR-phenotype relationship against a background distribution of

190 shuffled phenotypes with similar phylogenetic structures (Materials and Methods).

191

192  TACIT identifies motor cortex and PV+ interneuron OCRs associated with the evolution of brain size
193

194  We used TACIT to identify motor cortex OCRs whose predicted open chromatin across mammals is

195  significantly associated with brain size, a complex trait with great diversity across mammals that is

196  thought to underlie human cognitive ability (42). As brain size scales with body size, we used the brain
197  size residual (brain mass minus the predicted value of brain mass from a regression on body mass), which
198  we obtained for 158 boreoeutherian mammals (43, 44). Before applying TACIT, we investigated whether
199 there are proteins whose relative evolutionary rates (19) are associated with the evolution of brain size
200  residual. We did not find any proteins with a significant association after RERconverge’s default multiple
201  hypothesis correction (corrected p > 0.05 for all genes) (19, 45), which corroborates evidence that the top
202  decile of TFs with the highest fraction of conserved base pairs tend to be enriched for embryonic

203  development and brain function (PhyloP > 2.241, FDR < 5%) (39) and previous work suggesting that
204  enhancer loss drove the evolution of human-specific patterns in brain growth (10). In contrast, using

205 TACIT, we found 34 motor cortex OCRs with a significant association with brain size residual after false
206  discovery rate correction (0=0.05). We then examined all genes near (TSSs within 1Mb) those OCRs. Of
207  the associated OCRs, 29 are near genes whose corresponding proteins play important roles in brain

208  development, and 6 are near genes whose corresponding proteins are involved in brain tumor growth

209 (Table S8). While many of these genes may influence brain size during development, the OCRs that

210  regulate them might continue to be open during adulthood. This would be consistent with recent evidence

211  that neural progenitors are responsible for the evolution of brain size in the great apes (46).
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212 Of the 29 brain size residual-associated OCRs near brain development genes, 23 are near genes
213  with mutations that cause neurological disorders, including 8 OCRs near genes in which mutations have
214 been reported to cause microcephaly or macrocephaly (Table S8, Figs. S8A-H) (47). Furthermore, we
215  found that the p-values of all motor cortex OCRs whose human orthologs are near (in hg38 coordinates)
216  genes mutated in microcephaly or macrocephaly have a significantly lower distribution than the p-values
217  of other motor cortex OCRs with human orthologs (p=0.0073, 1-sided Wilcoxon rank-sum test).

218 We identified two OCRs near SATB1 — a gene with both microcephaly- and macrocephaly-
219  associated mutations (48) — whose motor cortex predicted open chromatin status is significantly

220  associated with brain size residual (Fig. 4A-B, Figs. S8D,H). For both of these associations, predicted
221  open chromatin is associated with small brain size residual. The OCRs’ coordinates in the genomes in
222  which they were initially identified are chr17:52351209-52351928 (mm10) and chr2:174466184-

223 174466517 (rheMac8). They are each about 500kb from the TSS of the gene, where one is upstream and
224 the other is downstream. Neither OCR is near any other gene with a known connection to brain

225  development; Satb1/SATBLI is the second-closest gene to each, and the closer genes, Kcnh8 and TBC1D5,
226  each have known roles outside of brain growth (49, 50). The associations seem to be driven in large part
227 by, respectively, cetaceans (Fig. 4A) and great apes (Fig. 4B), both of which have a large variation in
228  brain size (51). In particular, the latter OCR is predicted to be active in all great apes except for humans,
229  the great ape with the largest brain size residual. Interestingly, the reported case of SATB1-associated
230  macrocephaly at birth was caused by a mutation that disrupts a large portion of the protein product, while
231  microcephaly was usually reported with SATB1 missense mutations (48). This pattern is consistent with
232  the significant negative associations between predicted open chromatin and brain size residual, assuming
233  that the OCRs we identified positively regulate the expression of SATB1.

234 We identified another OCR, chr2:75345159-75346046 (rheMac8), whose predicted motor cortex
235  open chromatin also has a strong negative association with brain size residual in cetaceans (Fig. 4C). The

236  closest gene to this OCR is LRIG1, which is about 250kb from the OCR. LRIG1 slows and delays the
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Figure 4: Examples of
associations between predicted
motor cortex OCR ortholog
open chromatin and brain size
residual.

(A-B) highlight the negative
association between predicted
motor cortex open chromatin
and brain size residual of
orthologs of two motor cortex
OCRs in the SATB1 locus,
chr17:52351209-52351928
(mm10) and chr2:174466184-
174466517 (rheMac8), within
Laurasiatheria and
Euarchontoglires, respectively.
The latter OCR has no orthologs
in Lagomorpha, which is
omitted from panel (B).
Boreoeutherian mammal-wide
panels are shown in Fig. S9. (C)
highlights the negative
association of orthologs of a
motor cortex OCR in the LRIG1
locus, chr15:40082805-
40083380 (mm10). (D)
highlights the positive
association of orthologs of a
motor cortex OCR in the Sall3
locus, chr18:81802310-
81802951 (mm10). Each point
represents one ortholog; they are
grouped along the x-axis of each
panel by clade as shown by the
tree below. The clades and
example species are listed in
Table S10. The hominoid and
cetacean clades are highlighted
by gray boxes in each panel.
Points are colored by brain size
residual following the scale at
the bottom. The permulations p-
value after Benjamini-
Hotchberg correction and the
coefficient on the predicted
open chromatin returned by
phylolm are shown in the lower
right of each panel.


https://paperpile.com/c/JAWECZ/4fOd+ocB2
https://paperpile.com/c/JAWECZ/4fOd+ocB2
https://paperpile.com/c/JAWECZ/4fOd+ocB2
https://paperpile.com/c/JAWECZ/4fOd+ocB2
https://paperpile.com/c/JAWECZ/4fOd+ocB2
https://doi.org/10.1101/2022.08.26.505436
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.26.505436; this version posted August 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

239 Also among the OCRs we identified near brain development genes is an OCR, chr18:81802310-
240 81802951 (mm10), about 800kb from the gene Sall3. Sall3 is the fourth-closest gene to this OCR, and
241  one closer gene, Mbp, does have a connection to brain development (54). Hi-C from adult human cortex
242  (55) shows that the bin containing the human ortholog of this OCR is close to SALL3 in 3D space (p=2.3
243 X 10, Table S8) but is not close to MBP (p=1). This OCR displays a positive association with brain
244 size residual both overall and within mammalian clades with especially large variations in brain size,

245  including the great apes and cetaceans (Fig. 4D). Sall3 is a member of the spalt-like family of

246  transcription factors, which are important in development (56). Although a specific role of Sall3 in motor
247  cortex has not been described, there is evidence that Sall3 regulates the maturation of neurons in other
248  regions of the brain (57, 58), and Sall3 is expressed in developing motor neurons (58) and human cerebral
249  cortex (59).

250 We extended our framework to establish Cell-TACIT, a version of TACIT that identifies OCRs
251  in specific cell types (60, 61) whose open chromatin predictions are associated with a phenotype of

252  interest. We used Cell-TACIT for PV+ interneurons within the motor cortex to identify such OCRs whose
253  predicted activity across Euarchontoglires is significantly associated with brain size residual. PV+

254 interneurons are a minority population, representing roughly 4 - 8% of neurons and 2 - 4 % of the total
255  cell population in the mouse cortex (62) yet are critical in cortical microcircuits and human brain

256  disorders like schizophrenia (63, 64). Given this sparsity, our bulk motor cortex open chromatin data may
257  not capture OCRs that are specific to PV+ interneurons. In fact, about 30% of mouse PV+ OCRs do not
258  overlap any bulk motor cortex OCRs, including non-reproducible peaks. We identified 13 OCRs whose
259  predicted open chromatin in PV+ interneurons is associated with species’ brain size residuals after false
260  discovery rate correction (0=0.05) (Table S9), 11 of which are house mouse OCRs for which predicted
261  open chromatin is associated with having a smaller brain size residual.

262 We identified three PV+ interneuron OCRs that are significantly negatively associated with brain
263  size residual and are within 1Mb of a gene that is mutated in macrocephaly or microcephaly (Table S9,

264  Figs. S8I-K). Two of those OCRs — chr13:114757413-114757913 (mm10) and chr13:114793237-
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265 114793737 (mm10) — are respectively about 60kb and 25kb from the Mocs2 gene. Both have strong

266  associations with brain size residual within Euarchonta (primates and their closest relatives), especially
267  Hominoidea, and the first also has some association within Glires (rodents and their closest relatives)

268  (Fig. 5A-B, respectively). Mocs2 is one of four genes involved in Molybdenum cofactor biosynthesis
269  (65). Molybdenum cofactor deficiency (MoCD) in humans is a rare, fatal disease marked by intractable
270  seizures, hypoxia, and microcephaly (66). We also identified an OCR, chr1:95762160-95762660 (mmZ10),
271  thatis about 100kb away from the gene St8sia4, which is important for the development and density of

272 interneurons — including PV+ interneurons — in the cortex (67, 68).
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Figure 5: Examples of associations between predicted PV+ interneuron OCR
ortholog open chromatin and brain size residual.

(A-B) highlight the negative association within Euarchontoglires between
predicted PV+ interneuron open chromatin and brain size residual of orthologs of
two PV+ interneuron OCRs in the Mocs?2 locus, chr13:114757413-114757913
(mm10) and chr13:114793237-114793737 (mm10). Each point represents one
ortholog; they are grouped along the x-axis of each panel by clade as shown by
the tree below. The clades and example species are listed in Table S10. The
hominoid clade is highlighted by a gray box in each panel. Points are colored by
brain size residual following the scale at the bottom.

273 Interestingly, there is no overlap between the bulk motor cortex OCRs and PV+ interneuron
274  OCRs with predicted activity that is significantly associated with brain size residual. In fact, no house
275  mouse OCR ortholog from either set is within 5Mb of a house mouse OCR ortholog from the other set.

276  We also investigated liver OCRs associated with brain size residual and found that none of these OCRs
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277  overlapped the associated motor cortex OCRs (Supplementary Text) (26). This highlights the

278  complementary information provided by using TACIT OCRs from different tissues as well as from using
279  both TACIT and Cell-TACIT.

280

281  Cell-TACIT and TACIT identify PV+ interneuron and motor cortex open chromatin regions in loci

282  associated with the evolution of social living

283

284  One challenge of using TACIT and Cell-TACIT is that tens to hundreds of thousands of OCRs are tested,
285  which requires correcting for large numbers of hypotheses. This is necessary for applying TACIT to
286  phenotypes like brain size for which there is no strict subset of the genome that is known to be involved
287  inthe phenotype. In contrast, when such a subset is known, we can increase power by restricting OCRs to
288  those in that subset. We used this targeted approach to examine relationships between solitary and group
289  living lifestyles and predicted PV+ OCR activity within the 1,661,222bp Williams-Beuren Syndrome
290 (WBS) deletion region (Fig. 6A), where haploinsufficiency causes increased sociability, intellectual

291  disability, and enhanced verbal fluency in human patients (69). Although the WBS locus has not been
292  linked to PV+ interneurons specifically, PV+ interneurons are well-known for their involvement in social
293  behaviors and neuropsychiatric disorders with social components such as autism spectrum disorder

294  (ASD) and schizophrenia (70). Molecular evidence for PV+ interneuron involvement suggests associated
295 transcriptional changes. For example, PVALB was the most strongly downregulated transcript in ASD
296  brain tissue compared to healthy controls and in animal models of monogenetic neurodevelopmental

297  syndromic disorders (71, 72), and single-nucleus RNA-seq from schizophrenia brain tissue revealed more
298  abnormal gene expression in PV+ interneurons than in any other neuronal cell type (73, 74). Direct

299  expression manipulation of psychiatric genes in PV+ interneurons was shown to induce social deficits in
300  mice, whereas similar manipulations in other neuron cell types had different effects (75).

301 The Mesozoic ancestors of today's mammals were likely primarily solitary-living, defined by

302  separate foraging and home ranges for females (76). Following the End-Cretaceous Mass Extinction,
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303  many extant lineages in disparate clades evolved towards social living strategies, including group living
304  and breeding pair monogamy (76). Given the impact of PV+ neuron gene expression on social behaviors,
305  we hypothesized that there might be PVV+ OCR evolution associated with social structure transitions in
306  mammals.

307 Before investigating our results, we evaluated whether Cell-TACIT was producing reliable results
308 by comparing results from Cell-TACIT run genome-wide on PV+ OCR orthologs to locations of human
309  genome-wide association study (GWAS) hits for schizophrenia, a disorder associated with solitariness.
310  Specifically, we divided PV+ OCRs into two groups: those that overlapped a schizophrenia-associated
311  variant and those that did not (77). We determined the strength of association of all OCRs with solitary
312 living in mammals. The set of PV+ interneuron OCRs with schizophrenia-associated variants had a

313  shifted phyloglm p-value distribution for association with solitary living compared to the p-value

314  distribution for other PV+ interneuron OCRs (one-sided Wilcoxon rank-sum p = 0.035) (Fig. 6B).

315 When applying Cell-TACIT to only the WBS locus, we identified a mouse OCR (out of two

316  OCRs in this locus) 29kb upstream of GTF2IRD1 (human ortholog is 36kb upstream) that was marginally
317  associated with non-solitary living (p = 0.08) (Fig. 6C) and associated with group living (p = 0.02). To
318  evaluate whether this association was limited to PV+ interneurons, we also evaluated the relationship
319  between predicted bulk motor cortex open chromatin and solitary as well as group living. For solitariness,
320  we found one significantly negatively associated OCR (p = 0.005) (Fig. 6D). This OCR is in an intron of
321  GTF2IRD1 that is about 26kb from its nearest TSS but does not overlap the OCR identified for PV+

322  interneurons. For group living, we found two significantly associated OCRs, one of which is negatively
323  associated (p = 0.04) and the other of which is positively associated (p = 0.008) and is the same OCR we
324  found for solitariness. Of the 27 protein-coding genes in the WBS locus, GTF2IRDL1 is one of only two
325  genes, where the other gene is its neighbor (GTF2I), with structural variants associated with the extreme

326  sociability in dogs that makes them easier to domesticate than wolves (78). We additionally evaluated the
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327  relationship between predicted liver open chromatin and solitary as well as group living but did not obtain

328  any statistically significant relationships after multiple hypothesis correction.

A Williams-Beuren Syndrome Deletion (~ 1.5 Mb)
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Figure 6: Associations between predicted PV+ interneuron and motor cortex OCR ortholog open chromatin
and solitary living.

(A) A visualization of the human WBS deletion region. The locations of the PV+ interneuron and motor cortex
OCRs (highlighted in panels (C) and (D)) near the gene GTF2IRD1 are shown in yellow and green, respectively. (B)
shows the difference in p-value distributions for association between solitary living and predicted open chromatin of
PV+ interneuron OCRs whose human ortholog overlaps schizophrenia GWAS SNPs versus all other PV+
interneuron OCRs with a human ortholog. (C) highlights the marginal negative association between predicted PV+
interneuron open chromatin and solitary living of orthologs of a PV+ interneuron OCR near GTF2IRD1,
chr5:134485808-134486308 (mm10). (D) highlights the negative association between predicted motor cortex open
chromatin and solitary living of orthologs of a motor cortex OCR near GTF2IRD1, chr3:42408296-42408946
(rheMac8). For panels (C-D), each point represents one ortholog; they are grouped along the x-axis of each panel by
clade as shown by the tree below. The clades and example species are listed in Table S10. Points are colored to
indicate solitary versus social living following the key at the lower left.
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329

330 TACIT and Cell-TACIT identify open chromatin regions associated with the evolution of vocal learning
331

332  We applied TACIT and Cell-TACIT to vocal learning, the ability to modify vocal output as a result of
333  social experience, which has convergently evolved across mammals and been associated with convergent
334  patterns of gene expression in the motor cortex (2, 79, 80). We identified 42 OCRs displaying convergent
335  patterns of predicted open chromatin after false discovery rate correction (0=0.05) for motor cortex tissue
336  and 14 for PV+ interneurons, which are described in more depth in our other work . Notably, these vocal
337 learning-associated OCRs showed some concordance with results obtained using complementary methods
338  for detecting convergent evolution. One of the motor cortex OCRs lies 88kb from Vip, whose expression
339 in the motor cortex has been associated with vocal learning (2). Another OCR is 715kb from TSHZ3,

340  whose amino acid sequence also showed convergent evolution associated with vocal learning behavior (p
341  <0.0001, rank 3) (81). TSHZ3 is involved in the formation of cortico-striatal circuits, which play a central
342  role in vocal learning behavior in mammals and birds, and its disruption in the human population is

343  associated with a form of autism that includes delayed or disrupted speech acquisition (80, 82).

344

345  DISCUSSION

346

347  We present TACIT and Cell-TACIT, new methods for associating genotypes to phenotypes based on
348  machine learning predictions of tissue- or cell type-specific open chromatin. Our approach overcomes the
349 limitations of nucleotide-level conservation-based approaches, which cannot completely account for the
350  conservation of enhancer function in the presence of low sequence conservation and cannot capture the
351  tissue- and cell type-specificity of enhancer activity (25), because our machine learning models learn the
352  conserved regulatory code underlying enhancer activity in our tissue or cell type of interest. We provide a
353  community resource of annotated predicted open chromatin for more than 400,000 OCRs from four

354  tissues and cell types across 222 mammalian species.
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355 We applied TACIT and Cell-TACIT to identify tissue- and cell type-specific OCRs whose

356  predicted open chromatin status across species is associated with brain size residual, solitary living, group
357  living, and vocal learning, including OCRs near genes that were previously implicated in these

358  phenotypes. Specifically, we identified motor cortex and PV+ interneuron OCRs associated with brain
359  size residual that are near genes whose mutations are associated with microcephaly and macrocephaly, as
360  well as motor cortex OCRs with a strong brain size residual association in Cetaceans, which provide

361  candidate mechanisms for the evolution of brain size beyond the previously identified human-specific
362  deletion (10). In addition, the WBS deletion region OCRs with the strongest evolution of solitary and
363  group living association are near a critical gene for WBS presentation as well as canine social behavior
364  (78). Genome-wide, the associations of PV+ interneuron OCRs with group and solitary living are

365  correlated with whether the OCR overlaps a GWAS hit for schizophrenia, which suggests that OCRs

366 involved in the evolution of traits may also be involved in disorders associated with those traits, a result
367  further supported by our other work (38). To be confident that the OCRs we identified have enhancer
368  activity that differs between species, we would need to use reporter assays to test the OCR orthologs’

369  enhancer activity in multiple species. In addition, to thoroughly demonstrate that these OCRs regulate the
370  nearby genes associated with the phenotypes, we would need to do experiments like CRISPR followed by
371 RNA-gPCR to knock out the OCR and show that the knock-out causes a change in the expression of the
372  nearby gene. Furthermore, considering genes with TSSs within 1Mb may limit our ability to identify real
373  gene-OCR relationships (83), but, as data measuring three-dimensional genome interactions becomes
374  available at higher resolution and in additional species, tissues, and cell types, our ability to link candidate
375  enhancers associated with phenotypes to the genes they likely regulate will improve.

376 While our previous work used data from three species for model-training (25), in this work, we
377  developed a new strategy for negative set construction that allowed us to train accurate models using data
378  from only two species. Our success in doing this enabled us to train models that accurately predict

379  whether sequence differences across species in PV+ interneuron OCR orthologs are associated with PV+

380 interneuron open chromatin changes, demonstrating that the regulatory code is conserved across
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381  Euarchontoglires not only at the bulk tissue level but also in a specific neuronal cell type. We also found
382 that having data from more clades enabled us to identify OCRs associated with phenotypes in additional
383  clades, such as the OCR near LRIG1 associated with the evolution of brain size residual in the Cetacea
384  order within Laurasiatheria, and provides us with the power to identify OCRs with weaker associations
385  with a phenotype across multiple lineages, such as the OCR near Sall3 associated with the evolution of
386  brain size residual in both Euarchonta and Laurasiatheria.

387 Unlike phyloP or PhastCons scores, the broad application of TACIT and Cell-TACT is limited by
388  the availability of high-quality open chromatin data from the same tissue or cell type in multiple species.
389  TACIT and Cell-TACIT require enhancer activity data from at least two species for evaluating machine
390 learning models, and, to limit confounding factors, the data should ideally contain animals at comparable
391  developmental stages, biological replicates from both sexes, and animals that were sacrificed in

392  comparable behavioral states at approximately the same relative time in their circadian cycles.

393  Additionally, predictions are currently limited to orthologs of experimentally identified candidate

394  enhancers, meaning that we are not able to capture enhancers that are not active in the experimentally
395  assayed species, cell types, developmental stages, or conditions. Furthermore, our approach assumes that
396  the evolution of a phenotype is controlled by the same candidate enhancer across species, but there are
397 likely many phenotypes controlled by genes that are not activated by the same enhancer in every species.
398  We also treat missing or unusable OCR orthologs as missing data, but some of these are likely lost OCRs.
399  Exciting extensions to our approach include training models to accurately predict whether sequence

400  differences cause changes in candidate enhancer activity genome-wide, jointly modeling cross-species
401  predicted enhancer activity of enhancers near the same gene, and using genome quality and the predicted
402  open chromatin of OCRs in closely related species to determine when a lack of a usable OCR ortholog
403  should be treated as a negative. Finally, our approach assumes that the regulatory code in our tissue or cell
404  type of interest is conserved across the species we are testing, an assumption that may be violated in some
405  tissues and cell types. For example, this may explain the sub-optimal performance of our retina CNNs

406 trained on mouse sequences in predicting Euarchonta-specific open and closed chromatin (84, 85).
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407 With the Zoonomia Cactus alignment of over two hundred mammalian genomes and the wealth
408  of publicly available enhancer activity data from matching tissues and cell types in human, house mouse,
409  and some other species, TACIT and Cell-TACIT can currently be applied to identify candidate enhancers
410  associated with the evolution of many mammalian phenotypes. Because TACIT and Cell-TACIT require
411  enhancer activity data from tissues or cell types of interest in only a few species, they can be used to

412  identify losses of enhancer activity associated with changes in a phenotype in challenging-to-study

413  species for which we have genomes but cannot collect tissue samples. In addition, while we trained our
414  models for TACIT using open chromatin, TACIT can also be applied using other assays of enhancer

415  activity, such as H3K27ac and EP300 ChlP-seq (27). Candidate enhancers associated with the evolution
416  of phenotypes near genes involved in diseases related to those phenotypes may provide insights into

417  disease mechanisms. We anticipate that, as more genomes and regulatory genomics data become

418  available, TACIT and Cell-TACIT will provide insights into the regulatory mechanisms governing a wide

419  range of phenotypes.
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