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Abstract: 17 

 18 

 Protein-coding differences between mammals often fail to explain phenotypic diversity, 19 

suggesting involvement of enhancers, often rapidly evolving regions that regulate gene expression. 20 

Identifying associations between enhancers and phenotypes is challenging because enhancer activity is 21 

context-dependent and may be conserved without much sequence conservation. We developed TACIT 22 

(Tissue-Aware Conservation Inference Toolkit) to associate open chromatin regions (OCRs) with 23 

phenotypes using predictions in hundreds of mammalian genomes from machine learning models trained 24 

to learn tissue-specific regulatory codes. Applying TACIT for motor cortex and parvalbumin-positive 25 

interneurons to neurological phenotypes revealed dozens of new OCR-phenotype associations. Many 26 
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associated OCRs were near relevant genes, including brain size-associated OCRs near genes mutated in 27 

microcephaly or macrocephaly. Our work creates a forward genomics foundation for identifying 28 

candidate enhancers associated with phenotype evolution. 29 

 30 

Main Text: 31 

 32 

 33 

INTRODUCTION 34 

 35 

Much of the phenotypic diversity that exists across vertebrates is thought to have arisen from 36 

differences in how genes are expressed (1).  Variation in phenotypes like vocal learning (2) and longevity 37 

(3) has been linked to patterns of gene expression within some of the most relevant brain regions and 38 

tissues, respectively. Thus, many genetic differences associated with the evolution of these, and other, 39 

complex phenotypes are likely in enhancers, distal cis-regulatory genomic elements that are bound by 40 

transcription factor (TF) proteins that regulate the expression of associated genes, often through cell type-41 

specific activation (4, 5). For example, limblessness in snakes is associated with sequence divergence and 42 

activity loss in a critical enhancer near the Sonic hedgehog gene (6), and mutations in orthologs of this 43 

enhancer are associated with polydactyly in humans, mice, and cats (7, 8). Enhancer evolution has been 44 

found to be associated with a number of other complex phenotypes, including eyesight loss (9) as well as 45 

whisker, penile spine, and brain growth (10).  46 

Recent advances facilitate identifying relationships between enhancer activity and phenotype 47 

evolution. Community genome sequencing efforts such as the Zoonomia Project have constructed 48 

assemblies for hundreds of species from diverse mammalian clades (11). Cactus multi-species whole-49 

genome alignments and tools for extracting orthologs have vastly improved ortholog mapping for non-50 

coding genomic regions (12–14). In addition, new phylogeny-aware statistical methods have been 51 

developed for identifying factors associated with the evolution of phenotypes (15, 16).  52 
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Despite these successes, identifying enhancer-phenotype relationships is still a major challenge. 53 

Widely used methods to identify conservation and convergent evolution across orthologous genome 54 

sequences measure the extent to which the nucleotides within a given region align across species (17–19). 55 

While these approaches have led to some exciting findings (9, 20), many enhancer sequences and 56 

transcription factor binding sites are under less sequence constraint than promoter and gene sequences 57 

(21, 22). In fact, recent studies have shown that sequence conservation is not required for activity 58 

conservation at enhancer orthologs (23, 24) and can occur when enhancer activity is not conserved in a 59 

tissue of interest (25), so nucleotide sequence conservation at enhancers is sometimes an insufficient 60 

proxy for enhancer activity conservation. 61 

 Here we present a new method for identifying enhancer-phenotype associations, in which we 62 

trace enhancer activity evolution using predicted open chromatin in a tissue or cell type of interest as a 63 

proxy for enhancer function. Previously, we and others have demonstrated that the sequence patterns 64 

associated with enhancer activity in multiple tissues are highly conserved across mammals by showing 65 

that machine learning models that use DNA sequence to predict enhancer activity in a tissue of interest in 66 

one species can accurately predict clade-specific and tissue-specific enhancer activity in species from 67 

different mammalian clades (25,27–29). We integrate machine learning-based predictions of enhancer 68 

function with other comparative genomics advances (11, 15, 16) in a new framework called the Tissue-69 

Aware Conservation Inference Toolkit (TACIT) for identifying candidate enhancers associated with the 70 

evolution of phenotypes. We use sequences underlying open chromatin regions (OCRs) from a small 71 

number of species in a tissue or cell type of interest to train convolutional neural networks (CNNs) that 72 

predict the probability of OCR ortholog open chromatin in those tissues/cell types at the orthologous 73 

sequences in up to 222 mammalian genomes (11). We then use these predictions to link OCRs to specific 74 

mammalian phenotypes while accounting for phylogeny (Fig. 1). We applied our approach to multiple 75 

phenotypes, including brain size, solitary and group living, and vocal learning, and identified both motor 76 

cortex tissue and motor cortex parvalbumin-positive (PV+) interneuron OCRs associated with these 77 

phenotypes that are near relevant genes. Our approach can be applied to any phenotype with open 78 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505436doi: bioRxiv preprint 

https://paperpile.com/c/JAWECZ/TJyF+Zf25+fstN
https://paperpile.com/c/JAWECZ/TJyF+Zf25+fstN
https://paperpile.com/c/JAWECZ/TJyF+Zf25+fstN
https://paperpile.com/c/JAWECZ/TJyF+Zf25+fstN
https://paperpile.com/c/JAWECZ/TJyF+Zf25+fstN
https://paperpile.com/c/JAWECZ/WQh5+6K6U
https://paperpile.com/c/JAWECZ/WQh5+6K6U
https://paperpile.com/c/JAWECZ/WQh5+6K6U
https://paperpile.com/c/JAWECZ/WQh5+6K6U
https://paperpile.com/c/JAWECZ/WQh5+6K6U
https://paperpile.com/c/JAWECZ/4kCJ+ZAQ7
https://paperpile.com/c/JAWECZ/4kCJ+ZAQ7
https://paperpile.com/c/JAWECZ/4kCJ+ZAQ7
https://paperpile.com/c/JAWECZ/4kCJ+ZAQ7
https://paperpile.com/c/JAWECZ/4kCJ+ZAQ7
https://paperpile.com/c/JAWECZ/EpW6+GVBQ
https://paperpile.com/c/JAWECZ/EpW6+GVBQ
https://paperpile.com/c/JAWECZ/EpW6+GVBQ
https://paperpile.com/c/JAWECZ/EpW6+GVBQ
https://paperpile.com/c/JAWECZ/EpW6+GVBQ
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P+3Cgr+VptL+C3do
https://paperpile.com/c/JAWECZ/T68P+3Cgr+VptL+C3do
https://paperpile.com/c/JAWECZ/T68P+3Cgr+VptL+C3do
https://paperpile.com/c/JAWECZ/T68P+3Cgr+VptL+C3do
https://paperpile.com/c/JAWECZ/T68P+3Cgr+VptL+C3do
https://paperpile.com/c/JAWECZ/BBXt+frZS+AwMM
https://paperpile.com/c/JAWECZ/BBXt+frZS+AwMM
https://paperpile.com/c/JAWECZ/BBXt+frZS+AwMM
https://paperpile.com/c/JAWECZ/BBXt+frZS+AwMM
https://paperpile.com/c/JAWECZ/BBXt+frZS+AwMM
https://paperpile.com/c/JAWECZ/BBXt+frZS+AwMM
https://paperpile.com/c/JAWECZ/BBXt+frZS+AwMM
https://paperpile.com/c/JAWECZ/BBXt
https://paperpile.com/c/JAWECZ/BBXt
https://paperpile.com/c/JAWECZ/BBXt
https://doi.org/10.1101/2022.08.26.505436
http://creativecommons.org/licenses/by-nc/4.0/


 

 

chromatin data available from a relevant tissue or cell type in at least two species. It is therefore broadly 79 

applicable to a variety of tissue, phenotype, and species combinations. 80 

 81 

 82 

RESULTS 83 

 84 

Convolutional neural networks accurately predict open chromatin status of OCR orthologs 85 

 We applied TACIT to two tissues with open chromatin data from more than two species – motor 86 

cortex and liver – as well as a tissue and a cell type with data from only two species – retina and motor 87 

cortex PV+ interneurons. We used OCRs instead of other enhancer activity measures, such as H3K27ac 88 

ChIP-seq regions, because OCRs tend to have a concentration of TF motifs near their summits and be 89 

hundreds instead of thousands of base pairs long, allowing our model to focus on sequences likely to be 90 

involved in enhancer activity and allowing us to easily map regions in species whose assemblies have 91 

 
Figure 1: Overview of TACIT. 

We train a CNN using sequences underlying OCRs and non-OCRs to predict open 

chromatin in a tissue or cell type of interest and then use the CNN to predict open 

chromatin in that tissue or cell type in hundreds of genomes from Zoonomia. We 

associate our predictions with phenotypes using phylolm and then quantify the 

significance of the association using an empirical p-value from phylogenetic 

permutations. Animal silhouettes were made by Michael Keesey, Daniel Jaron, Ryan 

Cupo, Steven Traver, and Chris Huh (license: 

https://creativecommons.org/licenses/by-sa/3.0/); were downloaded from PhyloPic; 

and were not modified. 
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short scaffolds (14). We chose tissues and cell types that would demonstrate specificity in dissimilar 92 

tissues (brain versus liver) and have relationships with complex phenotypes of interest, including brain 93 

size, social behavior, and vocal learning. For tissues with more than two species, we trained CNNs to 94 

predict whether a region is an OCR or a non-OCR ortholog of an OCR, as described in our previous work 95 

(25). 96 

Since we are the first to train machine learning models for open chromatin prediction in motor 97 

cortex (we and others have shown that the liver regulatory code is conserved across species (25, 27)), we 98 

first trained CNNs using only house mouse sequences and found that the CNNs successfully predicted 99 

clade-specific OCRs and non-OCRs (high “lineage-specific OCR accuracy,” AUC > 0.70 and 100 

AUPRC/NPV-Spec. > 0.65 for all metrics) as well as tissue-specific OCRs and non-OCRs (high “tissue-101 

specific OCR accuracy,” AUC > 0.65 and AUPRC/NPV-Spec. > fraction of examples in smaller class for 102 

all metrics); in addition, when comparing average OCR ortholog predictions across species, predictions 103 

had the expected negative correlation with distance from the species in which the OCRs were assayed 104 

(high “phylogeny-matching correlations,” mean Pearson correlation < -0.70 and mean Spearman 105 

correlation < -0.45) (Figs. S1A,D,G,J,M,P, Table S1) (25). We next trained multi-species CNNs for 106 

motor cortex and liver using all of our data – Mus musculus (Glires clade), Macaca mulatta (Euarchonta 107 

clade), and Rattus norvegicus (Glires clade) for both tissues as well as Rousettus aegyptiacus 108 

(Laurasiatheria clade) for motor cortex and Bos taurus (Laurasiatheria clade) and Sus scrofa 109 

(Laurasiatheria clade) for liver – and found that the models achieved high lineage- and tissue-specific 110 

OCR accuracy (AUC > 0.8, AUPRC/NPV-Spec. > fraction of examples in smaller class for all metrics) as 111 

well as phylogeny-matching correlations (mean Pearson correlation < -0.95 and mean Spearman 112 

correlation < -0.75) (Fig. 2, Figs. S2A,D,G, Fig. S3, Tables S2-3). We then used the multi-species motor 113 

cortex CNN to make predictions at motor cortex OCR orthologs in 222 diverse boreoeutherian mammal 114 

genomes from Zoonomia, where we limited ourselves to boreoeutherians because we did not have open 115 

chromatin data from species in other clades. To further evaluate the reliability of our predictions, we 116 

clustered the species hierarchically with predictions as features and found that the cluster hierarchy was 117 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.26.505436doi: bioRxiv preprint 

https://paperpile.com/c/JAWECZ/k1Ah
https://paperpile.com/c/JAWECZ/k1Ah
https://paperpile.com/c/JAWECZ/k1Ah
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P+3Cgr
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://paperpile.com/c/JAWECZ/T68P
https://doi.org/10.1101/2022.08.26.505436
http://creativecommons.org/licenses/by-nc/4.0/


 

 

similar to the phylogenetic tree, with all but a few species clustering correctly by clade (Fig. S4, 118 

Supplementary Text) (26). 119 

 Since no previous study has trained PV+ interneuron or retinal enhancer activity prediction 120 

models for predicting enhancer activity in species not used for training (25,27–29), we needed to 121 

investigate whether the PV+ interneuron and retinal regulatory codes are sufficiently conserved for 122 

accurately predicting open chromatin of OCR orthologs. We did this by running motif discovery on open 123 

chromatin datasets from each species for which data was available. For each of PV+ interneurons and 124 

retina, we found motifs for many of the same TFs in both species, and some of these TFs are known to be 125 

involved in PV+ interneurons and retina, respectively (Supplementary Text, Supplementary Website) 126 

(26). 127 

Because we had PV+ interneuron and retina data from only two species –  Mus musculus and 128 

Homo sapiens (Euarchonta clade) – we did not have sufficient non-OCR orthologs of OCRs to train 129 

CNNs, so we developed a new approach to constructing negative sets for these cases: We combined a 130 

 
Figure 2: Motor cortex multi-species CNN performance. 

A shows the area under the ROC curve (AUROC) and the area under the precision-

recall (if more negatives than positives)/negative predictive value-specificity (if more 

positives than negatives) curve (AUPRC/NPV-Spec.) for the full test set, clade-specific 

OCRs and non-OCRs, and shared versus tissue/brain region-specific OCRs and non-

OCRs for the multi-species motor cortex CNNs. B shows the negative relationship 

between the average house mouse OCR ortholog multi-species motor cortex open 

chromatin predicted probabilities for Glires species and the millions of years ago 

(MYA) when each species diverged from house mouse. 
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large number of random regions of the genome with the same G/C-content as the positives with OCRs 131 

from other cell types or tissues, two negative sets that provided adequate performance for all of our 132 

metrics in our previous work (Methods) (25). To ensure that CNNs could make accurate predictions in 133 

species not used for training in our tissues and cell types, we first trained CNNs using only house mouse 134 

sequences and found that they achieved high lineage-specific OCR accuracy (AUC > 0.85 and 135 

AUPRC/NPV-Spec. > 0.60) as well as phylogeny-matching correlations (mean Pearson correlation < -136 

0.65, mean Spearman correlation < -0.40 for retina and PV+ interneurons) for house mouse sequences 137 

(Figs. S1B,C,E,F,H,I,K,L,N,O,Q,R, Tables S4-5). The PV+ interneuron CNNs also achieved strong 138 

performance on human sequences (AUC > 0.70 and AUPRC/NPV-Spec. > fraction of examples in 139 

minority class for all criteria), where no human sequences were used in training as well as high tissue-140 

specific OCR accuracy (AUC > 0.75 and AUPRC/NPV-Spec. > fraction of examples in minority class for 141 

all criteria), while the house mouse-trained retina CNNs did not work as well on human-specific OCRs 142 

and non-OCRs and liver non-retina OCRs. We then trained CNNs using sequences from both house 143 

mouse and human, and both the PV+ and retina CNNs achieved strong performance for all criteria (AUC 144 

> 0.70 and AUPRC/NPV-Spec. > fraction of examples in minority class for all criteria, mean Pearson 145 

correlation < -0.60, mean Spearman correlation < -0.40)  (Figs. 3A-D, Figs. S2B,C,E,F,H,I, Tables S6-146 

7). 147 

 To evaluate if our bulk tissue models were learning sequences relevant to the tissues in which 148 

they were trained, we interpreted what they had learned (Methods). Specifically, we computed the 149 

CNNs’ per-nucleotide importance scores, which indicate the extent to which the CNN prioritizes the 150 

presence or absence of each nucleotide at each position (30, 31). We found that our CNNs seemed to have 151 

learned sequence patterns that are similar to motifs of TFs that are known to be involved in motor cortex 152 

and liver, such as MEF2C for motor cortex (32, 33) and HNF4A (34, 35) for liver, as well as sequence 153 

patterns that do not match any known TF motif (Supplementary Text, Figs. S5-7) (26). We then 154 

examined a specific retina OCR near the retina TF Otx2, where the OCR’s orthologs in subterranean 155 

mammals were previously shown to have a faster relative evolutionary rate than its orthologs in other 156 
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mammals (9). This OCR’s ortholog in Nannospalax galili, a subterranean mole-rat, was confidently 157 

predicted to be closed, while its ortholog in a non-subterranean pouched rat, Cricetomys gambianus, the 158 

most closely related mammal in Zoonomia that never lives underground (diverged ~45 MYA (36)), was 159 

 
Figure 3: PV+ interneuron and retina multi-species CNN performance. 

(A-B) show the AUROC and the AUPRC/NPV-Spec. for the full test set, clade-

specific OCRs and non-OCRs, and shared versus tissue/cell type-specific OCRs and 

non-OCRs for multi-species PV+ interneuron (A) and retina (B) CNNs. (C-D) show 

the negative relationship between the average house mouse OCR ortholog multi-

species PV+ interneuron (C) and retina (D) CNN predictions for Glires species and 

the MYA when each species diverged from house mouse. E shows the multi-species 

retina model normalized importance scores for each position in the summit +/- 

100bp of an OCR near OTX2 that was previously shown to have a higher relative 

evolutionary rate in subterranean mammals. Orange boxes mark matches to the 

house mouse Otx2 motif, the magenta box marks the match to the house mouse Isl1 

motif, and green boxes mark regions with high importance scores that do not match 

any known TF motif. Motifs were downloaded from CIS-BP (86) and visualized 

using meme2images from the MEME suite (87). No nucleotides in either ortholog 

outside these central 200 base pairs had a normalized importance score with absolute 

value greater than one. 
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predicted to be open. Both of these OCR orthologs contained two motifs for Otx2 as well as a third motif 160 

that could not be easily interpreted with high importance scores. In addition to those important sequences, 161 

the Cricetomys gambianus ortholog had a high importance score for the motif for Isl1, a transcription 162 

factor involved in the development of bipolar and cholinergic amacrine cells of the retina (37). There 163 

were also two additional sequences with high importance scores unique to Cricetomys gambianus relative 164 

to Nannospalax galili that did not match any known TF motif, demonstrating the value of using a 165 

modeling strategy that does not require featurizing the sequence based on known information (Fig. 3E). 166 

 From the four cross-species OCR datasets of interest (motor cortex, liver, PV+ interneuron, and 167 

retina), we identify 50,942,699 total orthologous regions across 222 Boreoeutherian mammals from 168 

402,880 total OCRs. Relative to human OCR annotations and phyloP annotations alone, we find that 169 

these predictions can provide a substantial boost for interpreting human disease-associated loci, with 170 

greater tissue- and cell type specificity. For example, in our other work, we found that human orthologs of 171 

regions predicted to have conserved motor cortex open chromatin are enriched for overlapping SNPs 172 

associated with schizophrenia, while human orthologs of regions predicted to have conserved liver open 173 

chromatin are enriched for overlapping SNPs associated with cholesterol-related traits (38, 39). These 174 

results demonstrate the power of TACIT to identify functionally relevant patterns of conservation. 175 

 176 

Applying TACIT to mammalian phenotypes 177 

 178 

A framework for associating predicted open chromatin with phenotypes 179 

 180 

Having trained models to predict open chromatin status of OCR orthologs in four tissues and cell types – 181 

motor cortex, liver, retina, and PV+ interneurons within the motor cortex – we identified individual OCRs 182 

whose predicted open chromatin across species is associated with phenotypes (Fig. 1). We applied the 183 

phylolm and phyloglm methods (15) for continuous and binary traits, respectively. These methods are 184 

modifications of phylogenetic generalized least squares (40, 41) designed for faster performance. We 185 
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used them to test for a relationship between one OCR ortholog’s open chromatin predictions across 186 

species and phenotype annotations across species that cannot be explained by the species phylogeny 187 

alone. To minimize false positives, we implemented phylogenetic permulations (16), enabling us to 188 

evaluate the significance of each OCR-phenotype relationship against a background distribution of 189 

shuffled phenotypes with similar phylogenetic structures (Materials and Methods). 190 

 191 

TACIT identifies motor cortex and PV+ interneuron OCRs associated with the evolution of brain size 192 

 193 

We used TACIT to identify motor cortex OCRs whose predicted open chromatin across mammals is 194 

significantly associated with brain size, a complex trait with great diversity across mammals that is 195 

thought to underlie human cognitive ability (42).  As brain size scales with body size, we used the brain 196 

size residual (brain mass minus the predicted value of brain mass from a regression on body mass), which 197 

we obtained for 158 boreoeutherian mammals (43, 44). Before applying TACIT, we investigated whether 198 

there are proteins whose relative evolutionary rates (19) are associated with the evolution of brain size 199 

residual. We did not find any proteins with a significant association after RERconverge’s default multiple 200 

hypothesis correction (corrected p ≥ 0.05 for all genes) (19, 45), which corroborates evidence that the top 201 

decile of TFs with the highest fraction of conserved base pairs tend to be enriched for embryonic 202 

development and brain function (PhyloP ≥ 2.241, FDR < 5%) (39) and previous work suggesting that 203 

enhancer loss drove the evolution of human-specific patterns in brain growth (10). In contrast, using 204 

TACIT, we found 34 motor cortex OCRs with a significant association with brain size residual after false 205 

discovery rate correction (α=0.05). We then examined all genes near (TSSs within 1Mb) those OCRs. Of 206 

the associated OCRs, 29 are near genes whose corresponding proteins play important roles in brain 207 

development, and 6 are near genes whose corresponding proteins are involved in brain tumor growth 208 

(Table S8). While many of these genes may influence brain size during development, the OCRs that 209 

regulate them might continue to be open during adulthood. This would be consistent with recent evidence 210 

that neural progenitors are responsible for the evolution of brain size in the great apes (46). 211 
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Of the 29 brain size residual-associated OCRs near brain development genes, 23 are near genes 212 

with mutations that cause neurological disorders, including 8 OCRs near genes in which mutations have 213 

been reported to cause microcephaly or macrocephaly (Table S8, Figs. S8A-H) (47). Furthermore, we 214 

found that the p-values of all motor cortex OCRs whose human orthologs are near (in hg38 coordinates) 215 

genes mutated in microcephaly or macrocephaly have a significantly lower distribution than the p-values 216 

of other motor cortex OCRs with human orthologs (p=0.0073, 1-sided Wilcoxon rank-sum test). 217 

We identified two OCRs near SATB1 — a gene with both microcephaly- and macrocephaly-218 

associated mutations (48) — whose motor cortex predicted open chromatin status is significantly 219 

associated with brain size residual (Fig. 4A-B, Figs. S8D,H). For both of these associations, predicted 220 

open chromatin is associated with small brain size residual.  The OCRs’ coordinates in the genomes in 221 

which they were initially identified are chr17:52351209-52351928 (mm10) and chr2:174466184-222 

174466517 (rheMac8). They are each about 500kb from the TSS of the gene, where one is upstream and 223 

the other is downstream. Neither OCR is near any other gene with a known connection to brain 224 

development; Satb1/SATB1 is the second-closest gene to each, and the closer genes, Kcnh8 and TBC1D5, 225 

each have known roles outside of brain growth (49, 50). The associations seem to be driven in large part 226 

by, respectively, cetaceans (Fig. 4A) and great apes (Fig. 4B), both of which have a large variation in 227 

brain size (51). In particular, the latter OCR is predicted to be active in all great apes except for humans, 228 

the great ape with the largest brain size residual. Interestingly, the reported case of SATB1-associated 229 

macrocephaly at birth was caused by a mutation that disrupts a large portion of the protein product, while 230 

microcephaly was usually reported with SATB1 missense mutations (48). This pattern is consistent with 231 

the significant negative associations between predicted open chromatin and brain size residual, assuming 232 

that the OCRs we identified positively regulate the expression of SATB1. 233 

We identified another OCR, chr2:75345159-75346046 (rheMac8), whose predicted motor cortex 234 

open chromatin also has a strong negative association with brain size residual in cetaceans (Fig. 4C). The 235 

closest gene to this OCR is LRIG1, which is about 250kb from the OCR. LRIG1 slows and delays the 236 
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differentiation of neural stem cells (52, 53). While this OCR is also near other genes, none of those genes 237 

have a known role in brain size. 238 

 

Figure 4: Examples of 

associations between predicted 

motor cortex OCR ortholog 

open chromatin and brain size 

residual. 

(A-B) highlight the negative 

association between predicted 

motor cortex open chromatin 

and brain size residual of 

orthologs of two motor cortex 

OCRs in the SATB1 locus, 

chr17:52351209-52351928 

(mm10) and chr2:174466184-

174466517 (rheMac8), within 

Laurasiatheria and 

Euarchontoglires, respectively. 

The latter OCR has no orthologs 

in Lagomorpha, which is 

omitted from panel (B). 

Boreoeutherian mammal-wide 

panels are shown in Fig. S9. (C) 

highlights the negative 

association of orthologs of a 

motor cortex OCR in the LRIG1 

locus, chr15:40082805-

40083380 (mm10). (D) 

highlights the positive 

association of orthologs of a 

motor cortex OCR in the Sall3 

locus, chr18:81802310-

81802951 (mm10). Each point 

represents one ortholog; they are 

grouped along the x-axis of each 

panel by clade as shown by the 

tree below. The clades and 

example species are listed in 

Table S10. The hominoid and 

cetacean clades are highlighted 

by gray boxes in each panel. 

Points are colored by brain size 

residual following the scale at 

the bottom. The permulations p-

value after Benjamini-

Hotchberg correction and the 

coefficient on the predicted 

open chromatin returned by 

phylolm are shown in the lower 

right of each panel. 
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Also among the OCRs we identified near brain development genes is an OCR, chr18:81802310-239 

81802951 (mm10), about 800kb from the gene Sall3. Sall3 is the fourth-closest gene to this OCR, and 240 

one closer gene, Mbp, does have a connection to brain development (54).  Hi-C from adult human cortex 241 

(55) shows that the bin containing the human ortholog of this OCR is close to SALL3 in 3D space (p=2.3 242 

X 10-11, Table S8) but is not close to MBP (p=1). This OCR displays a positive association with brain 243 

size residual both overall and within mammalian clades with especially large variations in brain size, 244 

including the great apes and cetaceans (Fig. 4D). Sall3 is a member of the spalt-like family of 245 

transcription factors, which are important in development (56). Although a specific role of Sall3 in motor 246 

cortex has not been described, there is evidence that Sall3 regulates the maturation of neurons in other 247 

regions of the brain (57, 58), and Sall3 is expressed in developing motor neurons (58) and human cerebral 248 

cortex (59).  249 

We extended our framework to establish Cell-TACIT, a version of TACIT that identifies OCRs 250 

in specific cell types (60, 61) whose open chromatin predictions are associated with a phenotype of 251 

interest. We used Cell-TACIT for PV+ interneurons within the motor cortex to identify such OCRs whose 252 

predicted activity across Euarchontoglires is significantly associated with brain size residual. PV+ 253 

interneurons are a minority population, representing roughly 4 - 8% of neurons and 2 - 4 % of the total 254 

cell population in the mouse cortex (62) yet are critical in cortical microcircuits and human brain 255 

disorders like schizophrenia (63, 64). Given this sparsity, our bulk motor cortex open chromatin data may 256 

not capture OCRs that are specific to PV+ interneurons. In fact, about 30% of mouse PV+ OCRs do not 257 

overlap any bulk motor cortex OCRs, including non-reproducible peaks. We identified 13 OCRs whose 258 

predicted open chromatin in PV+ interneurons is associated with species’ brain size residuals after false 259 

discovery rate correction (α=0.05) (Table S9), 11 of which are house mouse OCRs for which predicted 260 

open chromatin is associated with having a smaller brain size residual. 261 

We identified three PV+ interneuron OCRs that are significantly negatively associated with brain 262 

size residual and are within 1Mb of a gene that is mutated in macrocephaly or microcephaly (Table S9, 263 

Figs. S8I-K). Two of those OCRs — chr13:114757413-114757913 (mm10) and chr13:114793237-264 
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114793737 (mm10) — are respectively about 60kb and 25kb from the Mocs2 gene. Both have strong 265 

associations with brain size residual within Euarchonta (primates and their closest relatives), especially 266 

Hominoidea, and the first also has some association within Glires (rodents and their closest relatives) 267 

(Fig. 5A-B, respectively). Mocs2 is one of four genes involved in Molybdenum cofactor biosynthesis 268 

(65). Molybdenum cofactor deficiency (MoCD) in humans is a rare, fatal disease marked by intractable 269 

seizures, hypoxia, and microcephaly (66). We also identified an OCR, chr1:95762160-95762660 (mm10), 270 

that is about 100kb away from the gene St8sia4, which is important for the development and density of 271 

interneurons — including PV+ interneurons — in the cortex (67, 68).  272 

 Interestingly, there is no overlap between the bulk motor cortex OCRs and PV+ interneuron 273 

OCRs with predicted activity that is significantly associated with brain size residual. In fact, no house 274 

mouse OCR ortholog from either set is within 5Mb of a house mouse OCR ortholog from the other set. 275 

We also investigated liver OCRs associated with brain size residual and found that none of these OCRs 276 

 
Figure 5: Examples of associations between predicted PV+ interneuron OCR 

ortholog open chromatin and brain size residual. 

(A-B) highlight the negative association within Euarchontoglires between 

predicted PV+ interneuron open chromatin and brain size residual of orthologs of 

two PV+ interneuron OCRs in the Mocs2 locus, chr13:114757413-114757913 

(mm10) and chr13:114793237-114793737 (mm10). Each point represents one 

ortholog; they are grouped along the x-axis of each panel by clade as shown by 

the tree below. The clades and example species are listed in Table S10. The 

hominoid clade is highlighted by a gray box in each panel. Points are colored by 

brain size residual following the scale at the bottom. 
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overlapped the associated motor cortex OCRs (Supplementary Text) (26). This highlights the 277 

complementary information provided by using TACIT OCRs from different tissues as well as from using 278 

both TACIT and Cell-TACIT. 279 

 280 

Cell-TACIT and TACIT identify PV+ interneuron and motor cortex open chromatin regions in loci 281 

associated with the evolution of social living 282 

 283 

One challenge of using TACIT and Cell-TACIT is that tens to hundreds of thousands of OCRs are tested, 284 

which requires correcting for large numbers of hypotheses.  This is necessary for applying TACIT to 285 

phenotypes like brain size for which there is no strict subset of the genome that is known to be involved 286 

in the phenotype. In contrast, when such a subset is known, we can increase power by restricting OCRs to 287 

those in that subset. We used this targeted approach to examine relationships between solitary and group 288 

living lifestyles and predicted PV+ OCR activity within the 1,661,222bp Williams-Beuren Syndrome 289 

(WBS) deletion region (Fig. 6A), where haploinsufficiency causes increased sociability, intellectual 290 

disability, and enhanced verbal fluency in human patients (69). Although the WBS locus has not been 291 

linked to PV+ interneurons specifically, PV+ interneurons are well-known for their involvement in social 292 

behaviors and neuropsychiatric disorders with social components such as autism spectrum disorder 293 

(ASD) and schizophrenia (70). Molecular evidence for PV+ interneuron involvement suggests associated 294 

transcriptional changes. For example, PVALB was the most strongly downregulated transcript in ASD 295 

brain tissue compared to healthy controls and in animal models of monogenetic neurodevelopmental 296 

syndromic disorders (71, 72), and single-nucleus RNA-seq from schizophrenia brain tissue revealed more 297 

abnormal gene expression in PV+ interneurons than in any other neuronal cell type (73, 74). Direct 298 

expression manipulation of psychiatric genes in PV+ interneurons was shown to induce social deficits in 299 

mice, whereas similar manipulations in other neuron cell types had different effects (75).  300 

The Mesozoic ancestors of today's mammals were likely primarily solitary-living, defined by 301 

separate foraging and home ranges for females (76). Following the End-Cretaceous Mass Extinction, 302 
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many extant lineages in disparate clades evolved towards social living strategies, including group living 303 

and breeding pair monogamy (76). Given the impact of PV+ neuron gene expression on social behaviors, 304 

we hypothesized that there might be PV+ OCR evolution associated with social structure transitions in 305 

mammals. 306 

Before investigating our results, we evaluated whether Cell-TACIT was producing reliable results 307 

by comparing results from Cell-TACIT run genome-wide on PV+ OCR orthologs to locations of human 308 

genome-wide association study (GWAS) hits for schizophrenia, a disorder associated with solitariness. 309 

Specifically, we divided PV+ OCRs into two groups: those that overlapped a schizophrenia-associated 310 

variant and those that did not (77). We determined the strength of association of all OCRs with solitary 311 

living in mammals. The set of PV+ interneuron OCRs with schizophrenia-associated variants had a 312 

shifted phyloglm p-value distribution for association with solitary living compared to the p-value 313 

distribution for other PV+ interneuron OCRs (one-sided Wilcoxon rank-sum p = 0.035) (Fig. 6B).  314 

When applying Cell-TACIT to only the WBS locus, we identified a mouse OCR (out of two 315 

OCRs in this locus) 29kb upstream of GTF2IRD1 (human ortholog is 36kb upstream) that was marginally 316 

associated with non-solitary living (p = 0.08) (Fig. 6C) and associated with group living (p = 0.02). To 317 

evaluate whether this association was limited to PV+ interneurons, we also evaluated the relationship 318 

between predicted bulk motor cortex open chromatin and solitary as well as group living. For solitariness, 319 

we found one significantly negatively associated OCR (p = 0.005) (Fig. 6D). This OCR is in an intron of 320 

GTF2IRD1 that is about 26kb from its nearest TSS but does not overlap the OCR identified for PV+ 321 

interneurons. For group living, we found two significantly associated OCRs, one of which is negatively 322 

associated (p = 0.04) and the other of which is positively associated (p = 0.008) and is the same OCR we 323 

found for solitariness. Of the 27 protein-coding genes in the WBS locus, GTF2IRD1 is one of only two 324 

genes, where the other gene is its neighbor (GTF2I), with structural variants associated with the extreme 325 

sociability in dogs that makes them easier to domesticate than wolves (78). We additionally evaluated the 326 
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relationship between predicted liver open chromatin and solitary as well as group living but did not obtain 327 

any statistically significant relationships after multiple hypothesis correction. 328 

 
Figure 6: Associations between predicted PV+ interneuron and motor cortex OCR ortholog open chromatin 

and solitary living. 

(A) A visualization of the human WBS deletion region. The locations of the PV+ interneuron and motor cortex 

OCRs (highlighted in panels (C) and (D)) near the gene GTF2IRD1 are shown in yellow and green, respectively. (B) 

shows the difference in p-value distributions for association between solitary living and predicted open chromatin of 

PV+ interneuron OCRs whose human ortholog overlaps schizophrenia GWAS SNPs versus all other PV+ 

interneuron OCRs with a human ortholog. (C) highlights the marginal negative association between predicted PV+ 

interneuron open chromatin and solitary living of orthologs of a PV+ interneuron OCR near GTF2IRD1, 

chr5:134485808-134486308 (mm10). (D) highlights the negative association between predicted motor cortex open 

chromatin and solitary living of orthologs of a motor cortex OCR near GTF2IRD1, chr3:42408296-42408946 

(rheMac8). For panels (C-D), each point represents one ortholog; they are grouped along the x-axis of each panel by 

clade as shown by the tree below. The clades and example species are listed in Table S10. Points are colored to 

indicate solitary versus social living following the key at the lower left. 
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 329 

TACIT and Cell-TACIT identify open chromatin regions associated with the evolution of vocal learning 330 

 331 

We applied TACIT and Cell-TACIT to vocal learning, the ability to modify vocal output as a result of 332 

social experience, which has convergently evolved across mammals and been associated with convergent 333 

patterns of gene expression in the motor cortex (2, 79, 80). We identified 42 OCRs displaying convergent 334 

patterns of predicted open chromatin after false discovery rate correction (α=0.05) for motor cortex tissue 335 

and 14 for PV+ interneurons, which are described in more depth in our other work . Notably, these vocal 336 

learning-associated OCRs showed some concordance with results obtained using complementary methods 337 

for detecting convergent evolution. One of the motor cortex OCRs lies 88kb from Vip, whose expression 338 

in the motor cortex has been associated with vocal learning (2). Another OCR is 715kb from TSHZ3, 339 

whose amino acid sequence also showed convergent evolution associated with vocal learning behavior (p 340 

< 0.0001, rank 3) (81). TSHZ3 is involved in the formation of cortico-striatal circuits, which play a central 341 

role in vocal learning behavior in mammals and birds, and its disruption in the human population is 342 

associated with a form of autism that includes delayed or disrupted speech acquisition (80, 82). 343 

 344 

DISCUSSION 345 

 346 

We present TACIT and Cell-TACIT, new methods for associating genotypes to phenotypes based on 347 

machine learning predictions of tissue- or cell type-specific open chromatin. Our approach overcomes the 348 

limitations of nucleotide-level conservation-based approaches, which cannot completely account for the 349 

conservation of enhancer function in the presence of low sequence conservation and cannot capture the 350 

tissue- and cell type-specificity of enhancer activity (25), because our machine learning models learn the 351 

conserved regulatory code underlying enhancer activity in our tissue or cell type of interest. We provide a 352 

community resource of annotated predicted open chromatin for more than 400,000 OCRs from four 353 

tissues and cell types across 222 mammalian species. 354 
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We applied TACIT and Cell-TACIT to identify tissue- and cell type-specific OCRs whose 355 

predicted open chromatin status across species is associated with brain size residual, solitary living, group 356 

living, and vocal learning, including OCRs near genes that were previously implicated in these 357 

phenotypes. Specifically, we identified motor cortex and PV+ interneuron OCRs associated with brain 358 

size residual that are near genes whose mutations are associated with microcephaly and macrocephaly, as 359 

well as motor cortex OCRs with a strong brain size residual association in Cetaceans, which provide 360 

candidate mechanisms for the evolution of brain size beyond the previously identified human-specific 361 

deletion (10). In addition, the WBS deletion region OCRs with the strongest evolution of solitary and 362 

group living association are near a critical gene for WBS presentation as well as canine social behavior 363 

(78). Genome-wide, the associations of PV+ interneuron OCRs with group and solitary living are 364 

correlated with whether the OCR overlaps a GWAS hit for schizophrenia, which suggests that OCRs 365 

involved in the evolution of traits may also be involved in disorders associated with those traits, a result 366 

further supported by our other work (38). To be confident that the OCRs we identified have enhancer 367 

activity that differs between species, we would need to use reporter assays to test the OCR orthologs’ 368 

enhancer activity in multiple species. In addition, to thoroughly demonstrate that these OCRs regulate the 369 

nearby genes associated with the phenotypes, we would need to do experiments like CRISPR followed by 370 

RNA-qPCR to knock out the OCR and show that the knock-out causes a change in the expression of the 371 

nearby gene. Furthermore, considering genes with TSSs within 1Mb may limit our ability to identify real 372 

gene-OCR relationships (83), but, as data measuring three-dimensional genome interactions becomes 373 

available at higher resolution and in additional species, tissues, and cell types, our ability to link candidate 374 

enhancers associated with phenotypes to the genes they likely regulate will improve. 375 

 While our previous work used data from three species for model-training (25), in this work, we 376 

developed a new strategy for negative set construction that allowed us to train accurate models using data 377 

from only two species. Our success in doing this enabled us to train models that accurately predict 378 

whether sequence differences across species in PV+ interneuron OCR orthologs are associated with PV+ 379 

interneuron open chromatin changes, demonstrating that the regulatory code is conserved across 380 
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Euarchontoglires not only at the bulk tissue level but also in a specific neuronal cell type. We also found 381 

that having data from more clades enabled us to identify OCRs associated with phenotypes in additional 382 

clades, such as the OCR near LRIG1 associated with the evolution of brain size residual in the Cetacea 383 

order within Laurasiatheria, and provides us with the power to identify OCRs with weaker associations 384 

with a phenotype across multiple lineages, such as the OCR near Sall3 associated with the evolution of 385 

brain size residual in both Euarchonta and Laurasiatheria. 386 

Unlike phyloP or PhastCons scores, the broad application of TACIT and Cell-TACT is limited by 387 

the availability of high-quality open chromatin data from the same tissue or cell type in multiple species. 388 

TACIT and Cell-TACIT require enhancer activity data from at least two species for evaluating machine 389 

learning models, and, to limit confounding factors, the data should ideally contain animals at comparable 390 

developmental stages, biological replicates from both sexes, and animals that were sacrificed in 391 

comparable behavioral states at approximately the same relative time in their circadian cycles. 392 

Additionally, predictions are currently limited to orthologs of experimentally identified candidate 393 

enhancers, meaning that we are not able to capture enhancers that are not active in the experimentally 394 

assayed species, cell types, developmental stages, or conditions. Furthermore, our approach assumes that 395 

the evolution of a phenotype is controlled by the same candidate enhancer across species, but there are 396 

likely many phenotypes controlled by genes that are not activated by the same enhancer in every species. 397 

We also treat missing or unusable OCR orthologs as missing data, but some of these are likely lost OCRs. 398 

Exciting extensions to our approach include training models to accurately predict whether sequence 399 

differences cause changes in candidate enhancer activity genome-wide, jointly modeling cross-species 400 

predicted enhancer activity of enhancers near the same gene, and using genome quality and the predicted 401 

open chromatin of OCRs in closely related species to determine when a lack of a usable OCR ortholog 402 

should be treated as a negative. Finally, our approach assumes that the regulatory code in our tissue or cell 403 

type of interest is conserved across the species we are testing, an assumption that may be violated in some 404 

tissues and cell types. For example, this may explain the sub-optimal performance of our retina CNNs 405 

trained on mouse sequences in predicting Euarchonta-specific open and closed chromatin (84, 85). 406 
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With the Zoonomia Cactus alignment of over two hundred mammalian genomes and the wealth 407 

of publicly available enhancer activity data from matching tissues and cell types in human, house mouse, 408 

and some other species, TACIT and Cell-TACIT can currently be applied to identify candidate enhancers 409 

associated with the evolution of many mammalian phenotypes. Because TACIT and Cell-TACIT require 410 

enhancer activity data from tissues or cell types of interest in only a few species, they can be used to 411 

identify losses of enhancer activity associated with changes in a phenotype in challenging-to-study 412 

species for which we have genomes but cannot collect tissue samples. In addition, while we trained our 413 

models for TACIT using open chromatin, TACIT can also be applied using other assays of enhancer 414 

activity, such as H3K27ac and EP300 ChIP-seq (27). Candidate enhancers associated with the evolution 415 

of phenotypes near genes involved in diseases related to those phenotypes may provide insights into 416 

disease mechanisms. We anticipate that, as more genomes and regulatory genomics data become 417 

available, TACIT and Cell-TACIT will provide insights into the regulatory mechanisms governing a wide 418 

range of phenotypes. 419 

 420 
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