

1 Effects of interspecies interactions on marine 2 community ecosystem function

3

4 Michael Daniels ^{1,2,3}, Astrid K.M. Stubbusch ^{1,2,3}, Noelle A. Held ^{1,2}, Olga T. Schubert
5 ^{1,2}, Martin Ackermann ^{1,2}

6 ¹ Department of Environmental Systems Sciences, Institute of Biogeochemistry and
7 Pollutant Dynamics, ETH Zurich, Zurich, Switzerland

8 ² Department of Environmental Microbiology, Eawag: Swiss Federal Institute of
9 Aquatic Sciences, Duebendorf, Switzerland

10 ³ Interdisciplinary PhD Program Systems Biology, ETH Zurich & University of Zurich,
11 Zurich, Switzerland

12 Abstract

13

14 Microbial communities perform key ecosystem processes collectively. One such
15 process is the degradation of carbohydrate polymers, which are the dominant pool of
16 organic carbon in natural environments. Carbohydrate polymers are often degraded
17 in a stepwise manner. Individual steps are performed by different microbial species,
18 which form trophic cascades with carbon polymers at the bottom and fully oxidised
19 carbon at the top. It is widely believed that these trophic cascades are hierarchically
20 organised, where organisms at each level rely on organisms at the levels below.
21 However, whether and how the higher-level organisms can also affect processes at
22 the lower levels is not well understood. Here we studied how carbohydrate polymer
23 degradation mediated by secreted enzymes is affected by species at higher trophic
24 levels, i.e., species that cannot produce the enzymes for polymer degradation but can
25 grow in presence of the polymer degraders. We used growth and enzyme assays in
26 combination with transcriptomics to study how chitin degradation by a number of *Vibrio*
27 strains is affected by the presence of different cross-feeders that consume metabolic
28 by-products. We found that interactions between the degraders and cross-feeders
29 influence the rate of chitin degradation by the community. Furthermore, we show that
30 this is a result of changes in chitinase expression by degraders. Overall, our results
31 demonstrate that interactions between species can influence key ecosystem functions
32 performed by individuals within microbial communities. These results challenge the
33 perspective that trophic cascades based on metabolically coupled microbial
34 communities are unidirectional and provide mechanistic insights into these
35 downstream interactions.

36 **Introduction**

37

38 In natural environments microorganisms form multispecies communities that are
39 important contributors to a wide range of ecosystem functions (1). A central question
40 is how these ecosystem functions depend on the composition of a community and its
41 diversity (2). It has been found that diversity is a key component for the resilience and
42 general productivity of microbial communities. While some community level properties
43 such as total biomass production generally increase to a certain extent with the total
44 number of species and therefore overall diversity (3, 4, 5, 6), other studies have found
45 that certain functions are carried out only by a subset of species in a community (7,
46 8). For example, studies on diversity in aquatic microbial communities have shown
47 that the metabolic function of polysaccharide degradation is controlled by single clades
48 and their metabolic traits rather than by species richness of the total community (9).

49

50 In nature, biopolymers are important nutrient sources for microbial communities. The
51 most abundant biopolymers in terrestrial systems are the polysaccharides cellulose
52 (10) and lignin (11), whereas in aquatic systems the most abundant biopolymer is the
53 aminopolysaccharide chitin (12). These polymeric substances are synthesised by
54 multicellular organisms and form structural components of a plethora of animals and
55 plants. Once the producing organism dies, these polymers become available for
56 microbial communities to be consumed as carbon source whereby they are eventually
57 remineralised back to inorganic carbon dioxide. Thereby, the collective metabolism of
58 microbial communities that degrade polymers plays a vital role in the global cycling of
59 nutrient elements.

60

61 Many natural polymers are carbohydrate chains of repeating subunits mostly linked by
62 beta-1,4 glycosidic bonds. These polymers have high molecular weights, therefore
63 they require cleavage by extracellular enzymes prior to uptake by microbes (13). While
64 these enzymes are produced by specialised microbes, the resulting mono- and dimeric
65 subunits released from the polymers can be taken up and metabolized by many
66 microbial organisms. Hence, the extracellular degradation of polymers generates a
67 pool of nutrients in the local environment that is also accessible for microbes that lack
68 the necessary enzymes for polymer degradation. These non-degraders fall into two
69 groups, consumers and cross-feeders. Consumers can take up the primary
70 degradation products, i.e., the mono- or dimers, and hence compete with the
71 degraders for these degradation products. Cross-feeders are unable to consume the
72 primary degradation products, instead they rely on metabolic by-products such as
73 acetate or amino acids that are excreted by the degraders and consumers. Therefore,
74 the polymer degraders - via their initial release of enzymes - form the foundation of a
75 multi-level trophic cascade.

76
77 In the marine environment the most abundant polysaccharide is chitin. Chitin is
78 composed of N-acetylglucosamine subunits and builds the structural component of the
79 exoskeletons of crustaceans. Through the natural life cycles of these organisms' chitin
80 exoskeletons eventually decay into particles and constitute an important nutrient
81 source for marine microbial species. Polysaccharide sources like marine particles are
82 usually colonized by a diverse community of microorganisms that assemble on the
83 particle surface and can be metabolically tightly coupled. Recent work showed that,
84 typically, food chains structured around polymer degradation are hierarchically

85 organised (14). In these trophic cascades, non-degrading species benefit from initial
86 chitin breakdown by degraders, which express a wide array of chitinolytic enzymes.

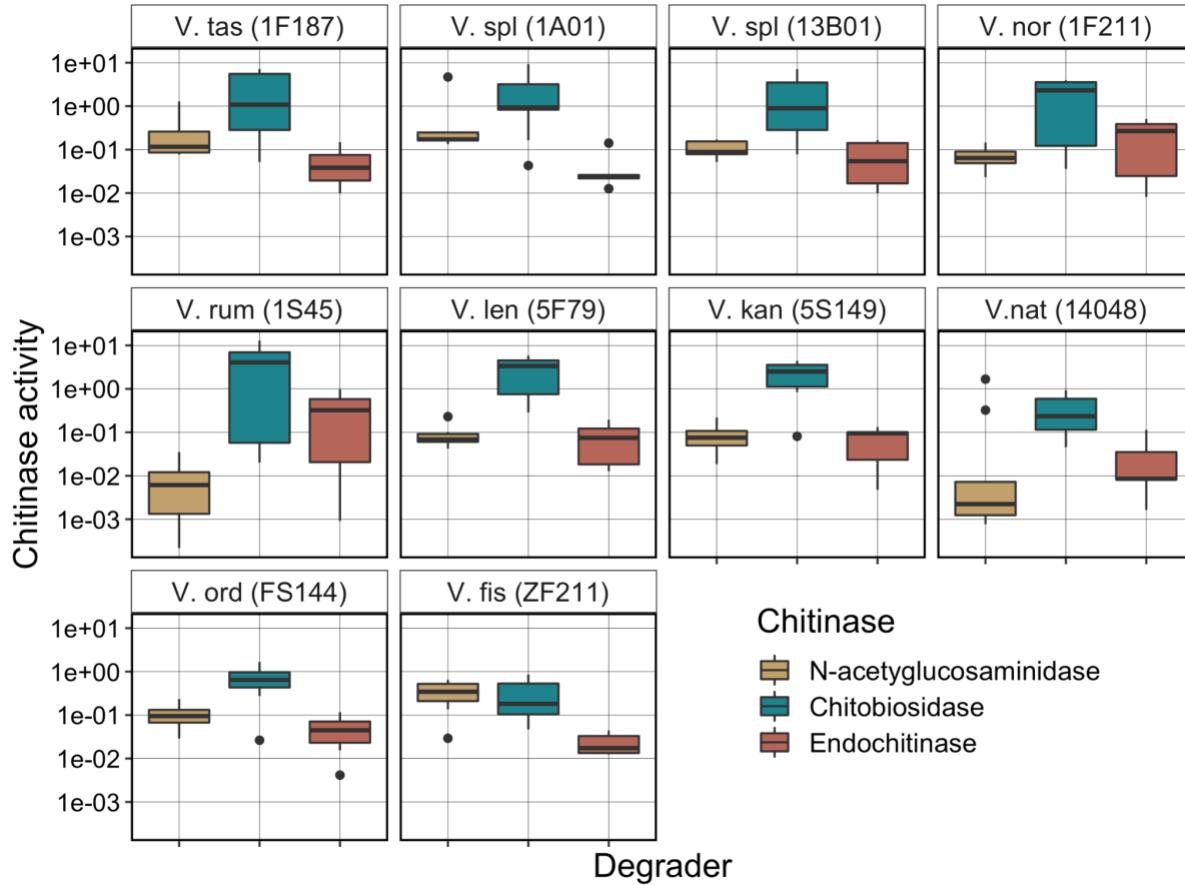
87

88 Bacterial chitinolytic enzymes (hereafter called chitinases) are grouped into glycosyl
89 hydrolase families GH18, GH19 and GH20 based on their amino acid sequence (15).
90 Furthermore, these bacterial chitinases are grouped into two broad subclasses: endo-
91 and exo-chitinases. Endochitinases cleave off smaller oligomers (16). These
92 oligomers cannot be readily taken up by microbial cells and need to be further broken
93 down into dimers or monomers that can be imported and metabolised (17).
94 Exochitinases cleave off monomers or dimers and can be further subdivided into
95 chitobiosidases (18) and β -1,4-N-acetylglucosaminidases (19). Chitobiosidases
96 produce the chitin dimer di-acetylchitobiose (chitobiose) while β -1,4-N-
97 acetylglucosaminidases (hereafter N-acetylglucosaminidases) produce the monomer
98 N-acetylglucosamine (GlcNAc).

99

100 Here, we investigate whether and how species without the ability to degrade a polymer
101 influence polymer degradation on a community level. Specifically, we focus on the
102 impact of non-chitinolytic species on the hydrolytic activity of chitin degraders. The
103 underlying question we aim to answer is whether bacterial species without the genetic
104 repertoire to perform a given function can influence that function when measured at
105 the level of consortia. We show that species-specific interactions between degraders
106 and non-degraders lead to increased chitinase activity in co-cultures. Using a
107 transcriptomics approach, we further show that in co-cultures, gene expression
108 profiles in degrader species are specific to the cross-feeder species, with higher
109 expression of chitinases in the presence of some but not other cross-feeders. Overall,

110 our study provides novel insights on how specific interspecies interactions influence
111 community level function on the model of chitin remineralization.


112

113 **Results and Discussion**

114

115 **Chitin degraders produce a diverse repertoire of chitinolytic enzymes**

116 To study the roles of and interactions between members of chitin-degrading microbial
117 communities, we first focused on the community members at the bottom of the trophic
118 hierarchy, the degraders. We first investigated the activity of different chitinases that
119 are produced as degraders grow on chitin as a sole carbon source. To this end, we
120 selected ten closely related chitin degraders belonging to the family of Vibrionaceae
121 and measured the activity of chitinases in their supernatants using enzymatic
122 hydrolysis substrates that contain 4-methylumbellifluorone (Methods). The resulting
123 products indicate the activity of three different chitinase groups, those that produce the
124 monomer *N*-acetylglucosamine (GlcNAc), those that produce the dimer chitobiose,
125 and those that produce chitin oligomers.

126

127 **Figure 1: Enzymatic activities of the three general chitinase groups vary among degrader
128 species**

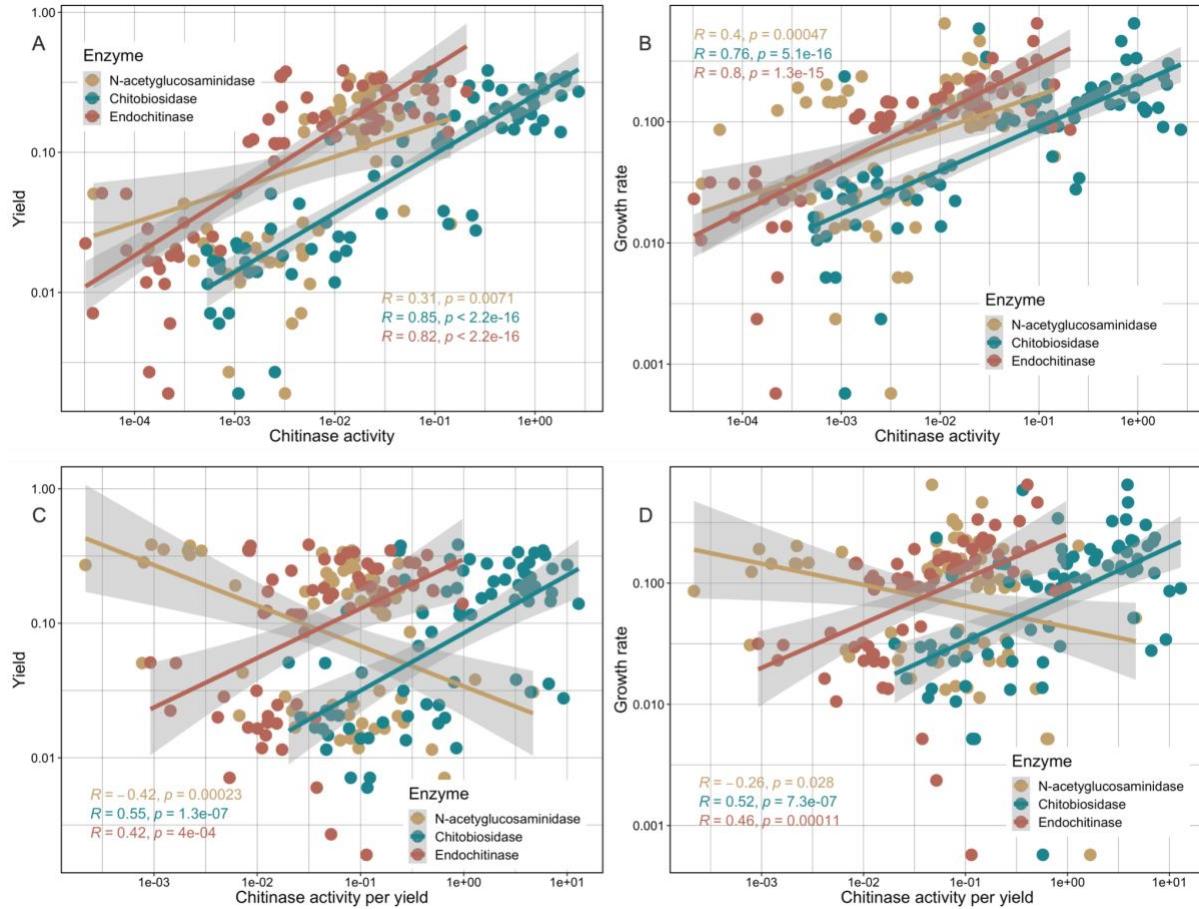
129 For each of 10 chitin degraders (monocultures), the enzymatic activities of β -1,4-*N*-
130 acetylglucosaminidases (yellow), chitobiosidases (green) and endochitinases (red) are shown.
131 Chitinase activity reflects enzyme units per microliter per growth yield (OD) of culture.

132

133

134 We found that for all degrader species except *V. fisherii* ZF211 the highest enzymatic
135 activity was displayed for chitobiosidases, the enzymes that cleave dimers off chitin
136 (Figure 1). The activity of the other two enzyme classes was generally lower, again
137 with the exception of *V. fischeri* ZF211, which showed comparable activity of
138 chitobiosidases and *N*-acetylglucosaminidases. Taken together, these findings
139 suggest that in monocultures of the Vibrionaceae strains tested here, the dimer

140 chitobiose, rather than the monomer GlcNAc, is the dominant chitin degradation
141 product.


142

143 These results are relevant in light of previous findings, showing that chitobiose is a
144 potent chemoattractant (20, 21) and that different degradation products lead to specific
145 gene-expression responses in *Vibrio* (22, 23).

146

147 **Chitinase activity, growth rate, and yield are tightly coupled**

148 In microbial systems that rely on polymer degradation for nutrient availability, growth
149 and enzyme production are tightly coupled (24, 25). Increases in hydrolytic enzyme
150 production and activity were found to lead to increased cell growth; furthermore, the
151 number of degrading cells tends to be positively correlated with the amount of
152 enzymes produced. In order to understand the relationship between enzyme activity,
153 growth rate and yield among chitin degrading species, we quantified the correlation
154 between enzyme activity and growth dynamics in monocultures of our ten selected
155 degraders.

156

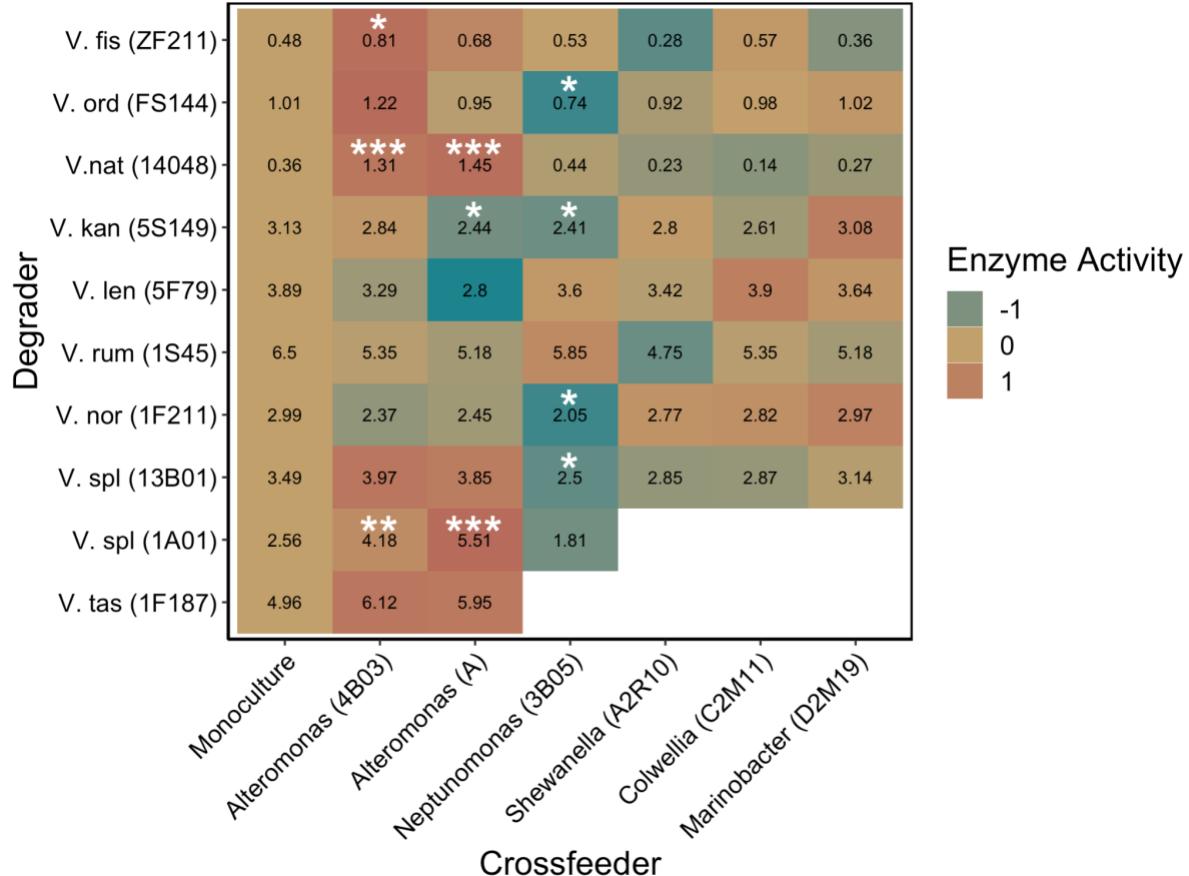
157

158 **Figure 2: Growth dynamics and catalytic activity are positively correlated**

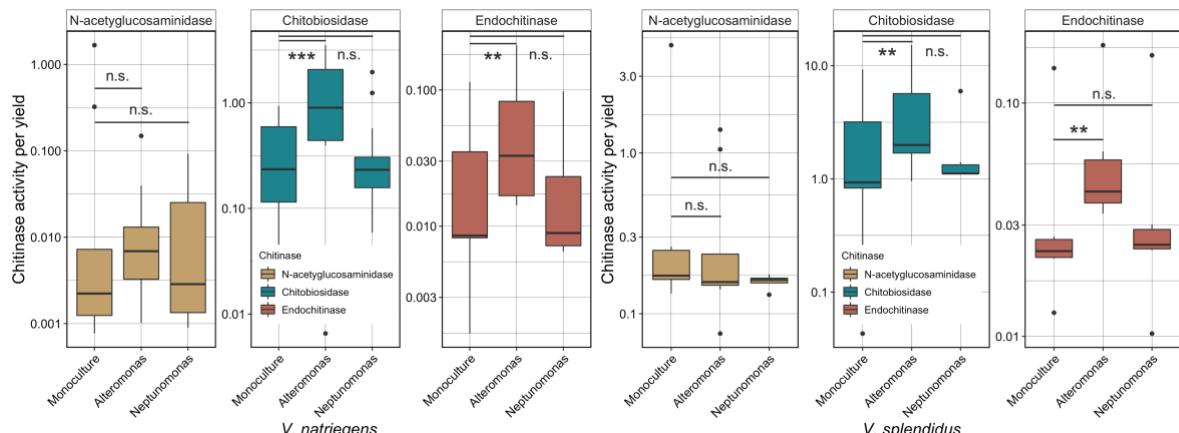
159 Chitinase activity is positively correlated with yield and growth rates of degrader monocultures.

160 Pearson's correlation and 95% CI are shown. Activity of individual enzyme classes as a function of
161 degrader monoculture yield (A) or growth rate (B) and activity of individual enzyme classes normalized
162 by yield as a function of degrader monoculture yield (C) or growth rate (D). β -1,4-*N*-
163 acetylglucosaminidases (yellow), chitobiosidases (green) and endochitinases (red).

164


165 We found that the activity of the three chitinase groups are differently correlated with
166 growth (Figure 2). Chitobiosidases showed the highest correlation with yield in our
167 bacterial populations, while *N*-acetylglucosaminidases had low correlations for both
168 yield and growth rate. Furthermore, the degrader monocultures displayed a high
169 degree of correlation between growth rate and yield (Figure S1). These findings show
170 that chitinase activity and population level growth in degrader monocultures are tightly

171 and positively coupled. The species with highest enzyme activity display the most
172 growth, but the exact causal relationship and the mechanisms underlying these
173 correlations are still unknown. For chitobiosidases and endochitinases the positive
174 correlation with yield and growth rate persisted even when enzyme activity was
175 normalised by total yield (as a proxy for biomass), establishing that strains that
176 produced higher levels of these chitinases *per cell* achieved faster growth and larger
177 population sizes (Figure 2C and 2D). This indicates a general positive association
178 between these enzymes and growth parameters of these strains.


179

180 **Non-degrading cross-feeders selectively influence enzyme activity on the
181 community level**

182 In natural polymer-degrading communities, the process of polymer degradation is
183 performed by a small subset of microbial species (26). It is generally assumed that
184 non-degraders do not contribute to overall enzymatic activity at the community level
185 (27). However, as described above, degrader growth rate and yield correlated with
186 chitinase activity (Figure 2). To investigate whether the presence of individual non-
187 degrading species changes a community's properties, we co-inoculated a variety of
188 different degraders with non-degrading cross-feeders. We found that non-degraders
189 influenced growth rate and yield on a community level (Figure S2 & S3). This raises
190 the question whether the presence of cross-feeders can also affect chitinase activity
191 on the community level. In order to address this question, we investigated the impact
192 of non-degrading species on the enzymatic activity of the degraders.

193

194

195

196 **Figure 3: Crossfeeders selectively influence chitinase activity of communities**

197 A) Heatmap of enzymatic activity per OD for various degraders (vertical-axis) in monoculture (first
198 column) or in co-culture with different cross-feeders (horizontal-axis). Numbers indicate total chitinase
199 activity per total OD per μ L (Methods). Colours represent activities in co-cultures relative to the degrader
200 monoculture. Yellow colours indicate little to no change compared to the degrader monoculture. Green
201 colours represent a reduced enzymatic activity. Red colours represent an increase in enzyme activity.

202 White panels indicate combinations that were not measured. Stars represent significant changes in
203 growth between the monoculture and respective co-culture: * = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$
204 (ANOVA). Details about the underlying statistical analysis can be found in the supplementary material
205 (Table S3). B) Enzymatic activity of *N*-acetylglucosaminidases (yellow), chitobiosidases (green) and
206 endochitinases (red) per yield of *V. natriegens* monocultures (left) compared to co-cultures with
207 *Alteromonas* (middle) and *Neptunomonas* (right). C) Enzymatic activity for *V. splendidus* monocultures
208 (left) of *N*-acetylglucosaminidases (yellow), chitobiosidases (green) and endochitinases (red) per yield
209 compared to co-cultures with *Alteromonas* (middle) and *Neptunomonas* (right).

210

211

212 In 10 out of 53 degrader-cross-feeder pairs the presence of the cross-feeder led to
213 statistically significant increases or decreases in total chitobiosidase activity (Figure
214 3A). We found that certain cross-feeders, particularly the two *Alteromonas* strains
215 tested, increased chitobiosidase activity of several of the degraders (Figure 3A and
216 3B). In contrast, for example, the presence of *Neptunomonas* reduced chitinase
217 activity in almost half of the co-cultures tested or had no significant effect (Figure 3A
218 and 3B). *N*-acetylglucosaminidase activity (Figure S4) and endochitinase (Figure S5)
219 activities were also found to be different in certain co-cultures. Endochitinase activity
220 showed comparable patterns to chitobiosidase activity. There, we found eleven pairs
221 where the presence of cross-feeders leads to statistically significant changes, with the
222 two *Alteromonas* strains increasing endochitinase activity in *V. natriegens* and *V.*
223 *splendidus* (Figure S5). *N*-acetylglucosaminidase activity, in contrast, was decreased
224 in all 14 cases where we found statistically significant changes in the enzyme activity
225 (Figure S4). There, the presence of the two *Alteromonas* strains (for which we found
226 increases in the other two chitinase groups) lead to decreases in enzyme activity.
227 Notably, in co-cultures of *V. fisherii* ZF211 and *V. splendidus* 13B01 we found
228 increases in one chitinase group and decreases in another. Furthermore, we found

229 that the presence of cross-feeders can influence community level yield (Figure S2)
230 and growth rate (Figure S3). Among the cross-feeders with the strongest effect on
231 community level yield were *Alteromonas* and *Neptunomonas*.

232


233 **Species-specific interactions influence community level processes**

234 We next set out to explore by which mechanism the presence of certain cross-feeding
235 species induces chitinase activity in the communities. We hypothesized that the
236 removal of excreted metabolites by cross-feeders could directly affect the catalytic
237 activity of individual chitinases secreted by the degraders through the release of
238 product inhibition. Alternatively, the presence of the cross-feeder could induce gene
239 expression changes in the degrader, e.g., leading to increased expression or secretion
240 of chitinases. To study this, we used degrader-cross-feeder co-cultures involving
241 *Neptunomonas* and *Alteromonas* strains. The individual interactions between
242 *Neptunomonas* and *V. splendidus* and *Alteromonas* and *V. natriegens* strains have
243 previously been studied in detail (28, 29). These studies revealed that both the
244 *Alteromonas* and *Neptunomonas* strain were cross-feeders in the sense that they are
245 unable to degrade chitin or consume primary degradation products such as mono- or
246 dimers and instead rely on metabolic by-products excreted by the degraders, such as
247 acetate for carbon sources.

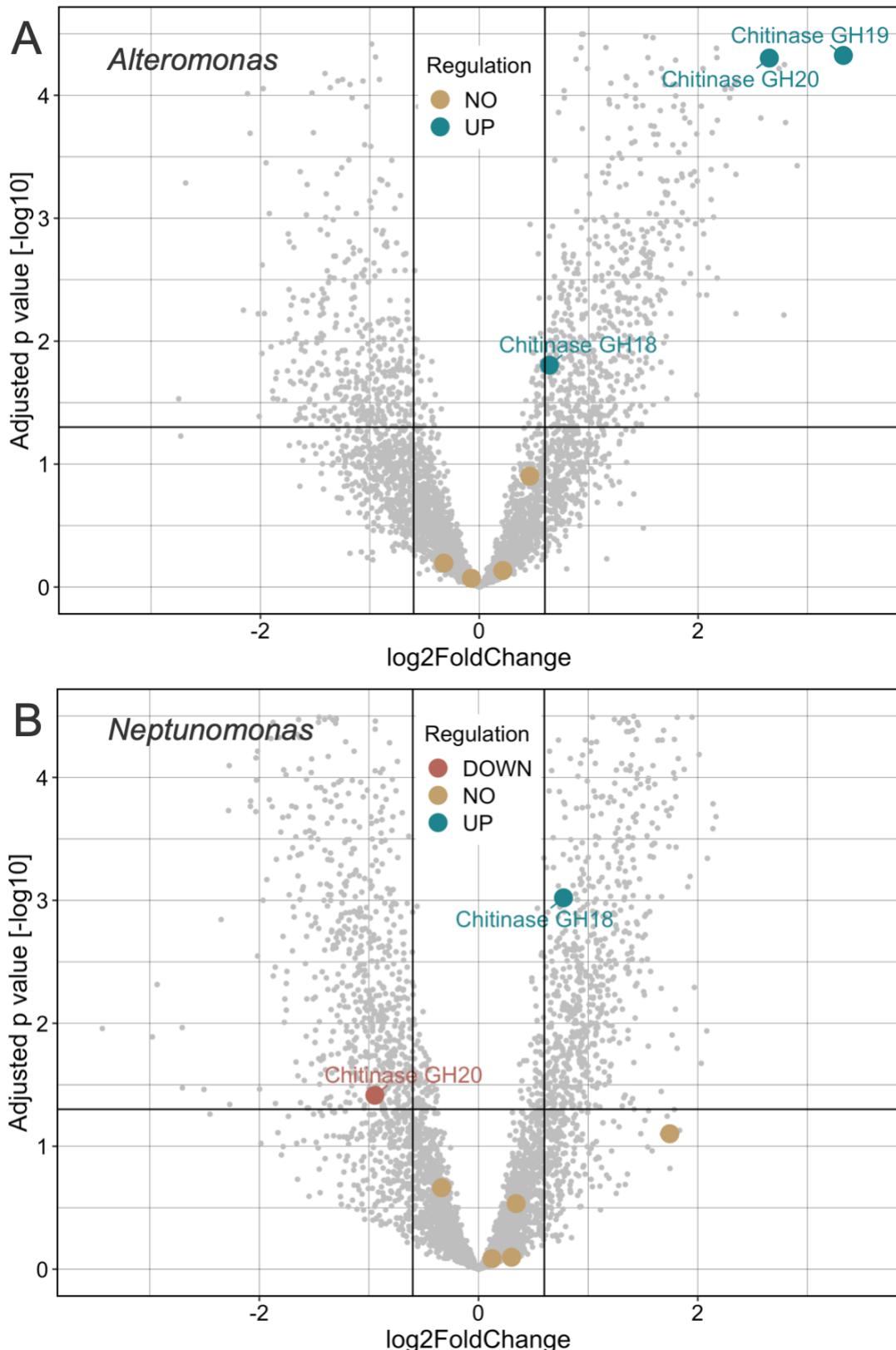
248

249 To understand the mechanism by which these two cross-feeders affect chitinase
250 activity, we compared global gene expression profiles of two different degraders in
251 monoculture (*V. splendidus* 1A01 and *V. natriegens* ATCC 14048) with their gene
252 expression profiles in co-culture with one of two cross-feeders (*Alteromonas* 4B03 and
253 *Neptunomonas* 3B05) (Figure 4). We found marked effects of the presence of cross-

254 feeders on gene expression of the degraders. The transcriptomes of *V. natriegens*
255 showed that the expression of 1,499 genes (32% out of 4,640 quantified genes) was
256 significantly different ($p < 0.05$) in the presence of a cross-feeder compared to the
257 monoculture (Figure 4A). For *V. splendidus*, we found 1,965 genes (38% out of 5,237
258 quantified genes) to be differentially expressed in the presence of the cross-feeder
259 (Figure 4B). The gene expression differences between the co-cultures with the cross-
260 feeder species were overall similar but with 172 genes and five genes differentially
261 regulated in *V. natriegens* and *V. splendidus*, respectively (Figure 4).

262
263

264 **Figure 4: The presence of cross-feeders changes gene expression profiles in degraders**


265 Degraders show large differences in gene expression profiles in co-cultures with cross-feeders
266 compared to monocultures. Colors indicate log2 fold change (DESeq2) A) Top 100 most significantly
267 differentially expressed genes (regularized logarithm (rlog) function, DESeq2, sorted by adjusted p -
268 value) for *V. natriegens* monocultures, compared to a co-culture with *Alteromonas* or *Neptunomonas*.
269 In total 1,107 out of 4,641 genes were found to be differentially expressed between the mono- and the
270 co-culture with *Alteromonas*, while 1,585 out of 4,641 genes were differentially expressed in the

271 presence of *Neptunomonas* compared to the monoculture ($p < 0.05$). B) Top 100 most significantly
272 differentially expressed genes (Regularized logarithm (rlog) function, DESeq2, adjusted p value) for *V.*
273 *splendidus* monocultures, compared to a co-culture with *Alteromonas* and *Neptunomonas*. In total 690
274 out of 5,237 genes were found to be differentially expressed in between the mono- and the co-culture
275 with *Alteromonas*, while 1,869 out of 5,237 genes were differentially expressed in the presence of
276 *Neptunomonas* compared to the monoculture ($p < 0.05$).

277

278 **Increases expression of chitinase genes in *Vibrio natriegens* in the presence of**
279 ***Alteromonas***

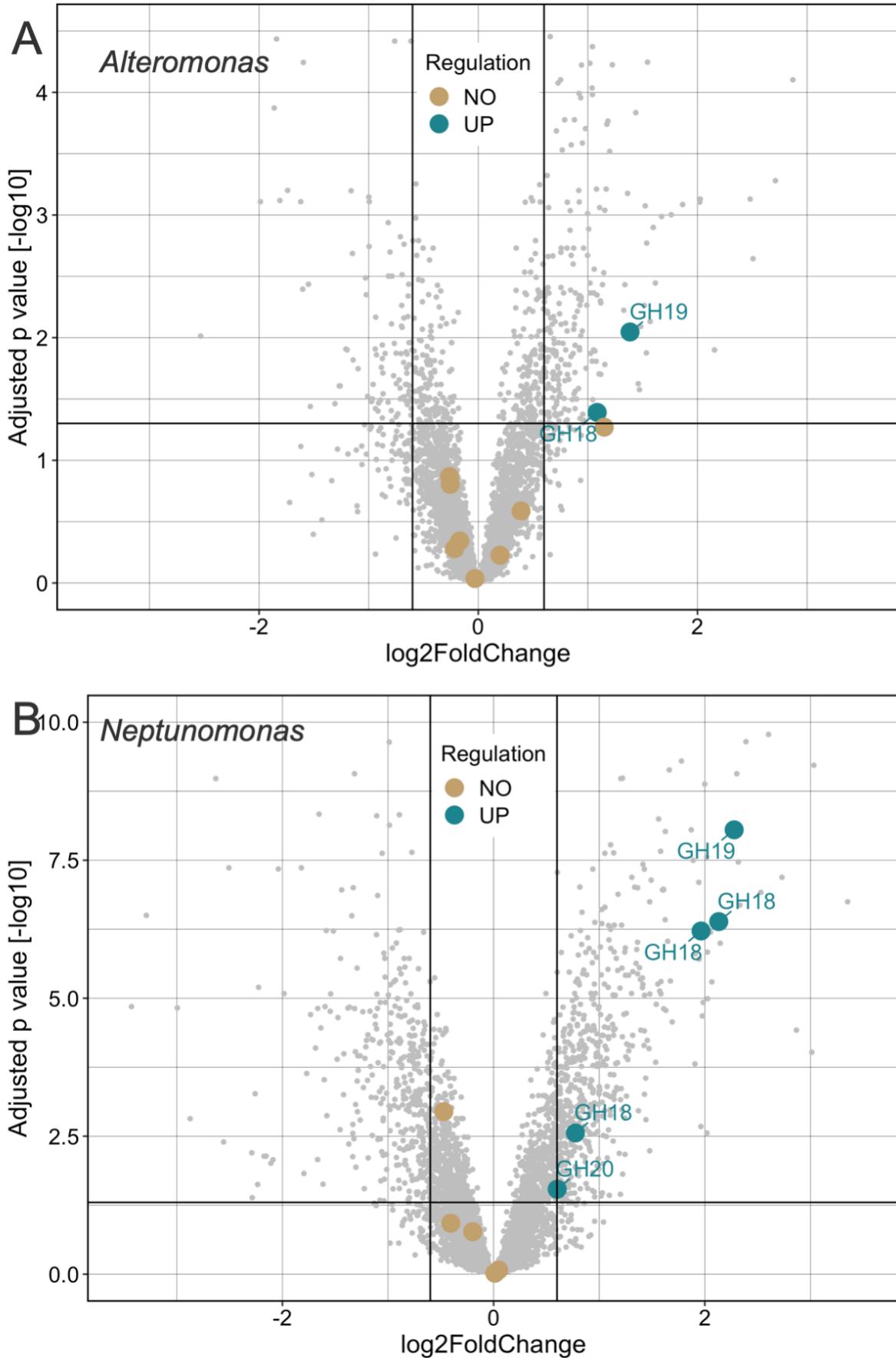
280 We found that in the presence of *Alteromonas* three of the seven chitinases of the
281 degrader *V. natriegens* were upregulated compared to the degrader monoculture
282 (Figure 5A). This is consistent with the finding that *Alteromonas* increases community
283 level chitinase activity (Figure 3). Furthermore, we found that various other enzymes
284 important for polymer degradation were upregulated, including glycosyl hydrolases
285 (Figure S7), a general enzyme family that catalyses the hydrolysis of complex
286 carbohydrates (30) as well as auxiliary enzymes (Figure S8) like lytic polysaccharide
287 mono-oxygenases that aid in the degradation of polymers through interaction with
288 degrading enzymes (31). Additionally, we found that not only the chitinases but chitin
289 catabolism more generally (KEGG: “amino sugar and nucleotide sugar pathway”) was
290 upregulated in *V. natriegens* (Figure S6) when grown in the presence of *Alteromonas*.
291 In contrast, we found that the presence of *Neptunomonas* does not consistently induce
292 chitinase expression in the degrader (Figure 5B), consistent with our finding that
293 *Neptunomonas* does not increase chitinase activity in co-culture. Taken together our
294 findings show that the gene expression response of *V. natriegens* is specific to the
295 individual cross-feeding species, leading to specific differences in overall chitin
296 degradation activity at the community level.

301 **Figure 5: Differential expression of chitinases in *V. natriegens***

302 A) *Alteromonas* induces expression of several chitinases in *V. natriegens*. Coloured dots indicate
303 individual chitinases found in the genome of *V. natriegens*, black lines indicate significance cut offs
304 (vertical lines indicate $|\log_2 \text{fold change}| = 0.6$, the horizontal line indicates $p < 0.05$) colours indicate
305 differential expression based on the cut-off criteria; down-regulation (red), no difference (yellow), up-
306 regulation (green). Three out of seven chitinases were significantly upregulated in the presence of
307 *Alteromonas*. B) *Neptunomonas* does not consistently induce chitinase expression in *V. natriegens*.
308 Differences in chitinase expression in *V. natriegens* in the presence vs absence of *Neptunomonas*.
309 Coloured dots indicate individual chitinases found in the genome of *V. natriegens*, black lines indicate
310 significance cut-offs (vertical lines indicate $|\log_2 \text{fold change}| = 0.6$, the horizontal line indicates $p <$
311 0.05) colours indicate differential expression based on the cut-off criteria; down-regulation (red), no
312 difference (yellow), up-regulation (green). Two out of seven chitinases were differentially expressed in
313 the presence of *Neptunomonas*. One was up regulated and one was down regulated.

314

315 **Cross-feeders influence degraders' expression of functional gene groups**


316 Polymer degradation is commonly linked with collectivity at the level of degrader
317 populations. We recently found that when cells collectively degrade polymers they
318 show a low degree of motility (32). This indicates that polymer degradation is a cell
319 density dependent function where cells engage in the production of public goods and
320 benefit from microcolony formation (33). In *Vibrio* species, group level behaviour is
321 associated with the expression of quorum sensing gene clusters (34) that regulate
322 various density dependent functions such as virulence, biofilm formation and polymer
323 degradation. Indeed, we found that in the presence of *Alteromonas*, *V. natriegens*
324 displayed a significant increase in expression of genes associated with general motility
325 (Figure S9). We also found a slight decrease in the expression of genes associated
326 with quorum sensing (Figure S10). Furthermore, some of the genes in the quorum
327 sensing pathway that were upregulated in the presence of *Alteromonas*, such as

328 LuxO, are known repressors of high-density dependent processes in *Vibrio* species
329 (35). This further hints towards a general downregulation of quorum sensing
330 dependent functions for *V. natriegens* in the presence of *Alteromonas*. In order to test
331 this hypothesis, further studies are necessary.

332

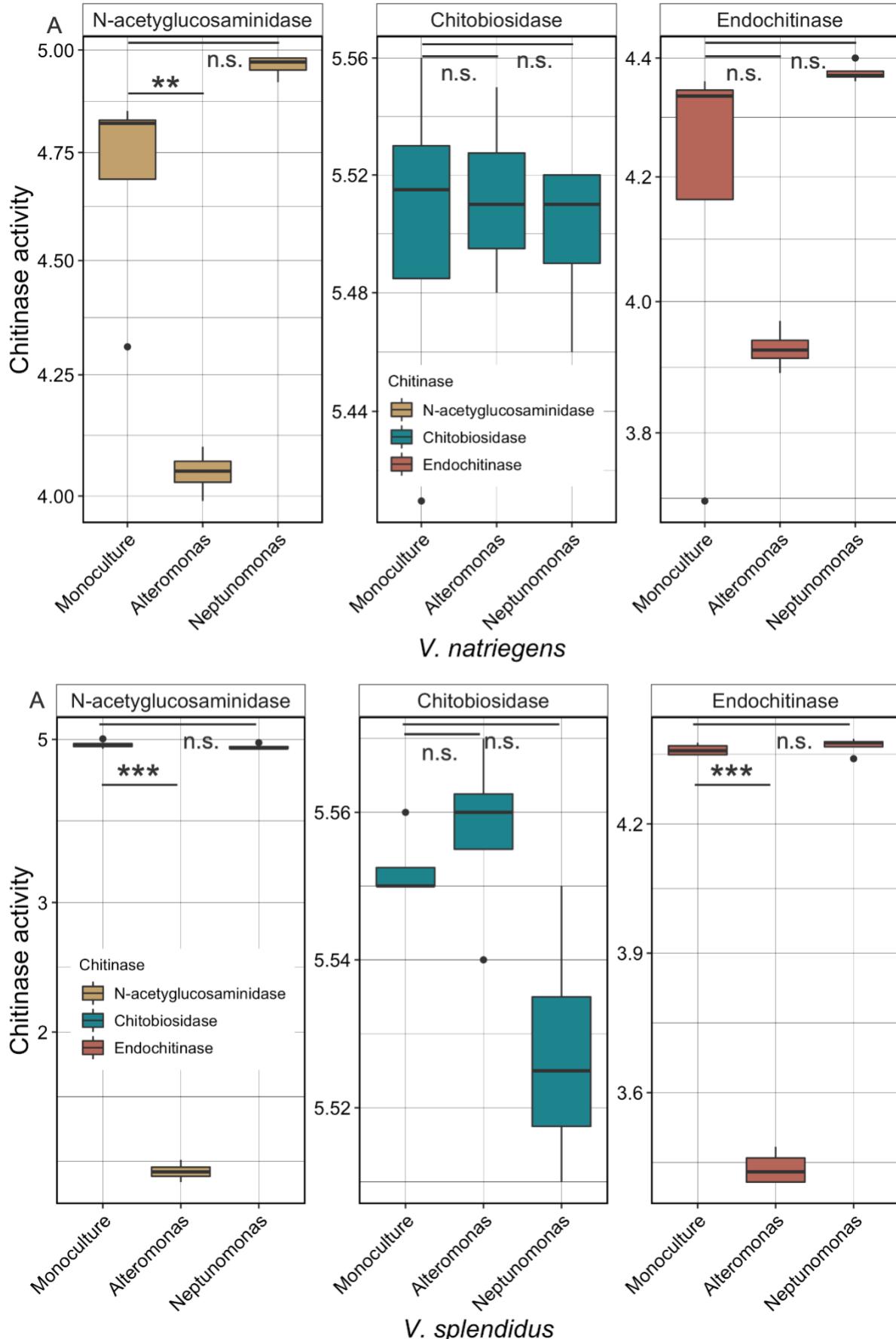
333 **Interactions between *Vibrio splendidus* and cross-feeders**

334 So far, we have shown that the effect of the cross-feeder on a degrader is species-
335 specific, both on the level of growth rate and yield as well as on the level of gene
336 expression. Next, we set out to assess the generalizability of the relationship by asking
337 whether the same cross-feeders have similar effects on different degraders. To this
338 end, we assessed the differences in transcriptional responses in *V. splendidus* in
339 isolation compared to a co-culture with one of the two cross-feeders. When measuring
340 chitinase activity of these pairs, we found comparable dynamics to the degrader *V.*
341 *natriegens* (Figure 3). There the presence of *Alteromonas* led to increased chitinase
342 activity while the presence of *Neptunomonas* had no significant effect (Figure 3).
343 Therefore, we first investigated the changes in chitinase expression in the presence
344 of these cross-feeders.

347 **Figure 6: Differential expression of chitinases in *V. splendidus***

348 A) *Alteromonas* induces expression of chitinases in *V. splendidus*. Differences in chitinase expression
349 in *V. splendidus* in the presence vs absence of *Alteromonas*. Dots indicate individual chitinases found
350 in the genome of *V. splendidus*, black lines indicate significance cut offs (vertical lines indicate $|\log_2$
351 Fold Change| = 0.6, the horizontal line indicates $p < 0.05$) colours indicate differential expression based
352 on the cut off criteria; down-regulation (red), no difference (yellow), up-regulation (green). Two out of
353 ten chitinases were significantly upregulated in the presence of *Alteromonas*. B) *Neptunomonas*
354 induces expression of chitinases in *V. splendidus*. Differences in chitinase expression in *V. splendidus*
355 in the presence vs absence of *Neptunomonas*. Dots indicate individual chitinases found in the genome
356 of *V. splendidus*, black lines indicate significance cut offs (vertical lines indicate $|\log_2$ Fold Change| =
357 0.6, the horizontal line indicates $p < 0.05$) colours indicate differential expression based on the cut off
358 criteria; down-regulation (red), no difference (yellow), up-regulation (green). Five out of ten chitinases
359 were significantly upregulated in the presence of *Neptunomonas*.

360


361 This time, we tested the effect of the cross-feeders *Alteromonas* and *Neptunomonas*
362 on the chitin degrader *V. splendidus*. We found that *Alteromonas* leads to higher
363 expression of chitinase genes in *V. splendidus*, consistent with our finding that
364 *Alteromonas* also increases the community level enzyme activity in co-culture with *V.*
365 *splendidus* (Figure 6A). Contrary to our hypothesis, we found that *Neptunomonas* also
366 leads to higher expression of various chitinases in *V. splendidus* (Figure 6B). This was
367 surprising, because our earlier experiments had shown decreased rather than
368 increased chitinase activity on the community level in the presence of *Neptunomonas*
369 (Figure 2).

370

371 **Secreted chitinases can serve as nutrient sources**

372 Our findings above indicate that the relationship between species interactions,
373 chitinase expression and enzyme activity is not trivial and suggest that the influence

374 of cross-feeders on community-level chitinase activity goes beyond affecting chitinase
375 gene expression in the degrader species. The abundance of extracellular chitinases
376 is determined not just by their production and secretion but also by their stability.
377 Indeed, chitinases themselves may be subject to degradation, e.g., by proteases
378 secreted by community members in order to release amino acids that can in turn be
379 consumed as nutrient sources. To test whether chitinases can themselves be used as
380 a nutrient source, we grew our four focal strains in media containing lyophilised
381 enzyme mixes as sole carbon source. We found that the four strains can grow on
382 these enzymes to various degrees (Figure S11).

384 **Figure 7: Communities consume enzymes selectively.**

385 Enzymatic activity of *N*-acetylglucosaminidases (yellow), chitobiosidases (green), and endochitinases
386 (red) changes depending on community composition. (A) Compared to *V. natriegens* monocultures (left)
387 the co-culture with *Alteromonas* (middle) leads to a decrease in *N*-acetylglucosaminidase activity of the
388 substrate. The presence of *Neptunomonas* (right) has no effect. (Welch Two Sample t-test; N = 4; *N*-
389 acetylglucosaminidase: mean of monoculture = 4.70 U/μL, mean of co-culture *Alteromonas* = 4.05 U/μL;
390 $t = 4.94$, p value = 0.01, mean of co-culture *Neptunomonas* = 4.96 U/μL; $t = -1.99$, p value = 0.14.
391 Chitobiosidases: mean of monoculture = 5.50 U/μL, mean of co-culture *Alteromonas* = 5.51 U/μL; $t = -$
392 0.36, p value = 0.74, mean of co-culture *Neptunomonas* = 5.50 U/μL; $t = 0$, p value = 1.00.
393 Endochitinases: mean of monoculture = 4.18 U/μL, mean of co-culture *Alteromonas* = 3.93 U/μL; $t =$
394 1.58, p value = 0.21, mean of co-culture *Neptunomonas* = 4.37 U/μL; $t = -1.19$, p value = 0.31). Stars
395 indicate significant p -values (* = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$). (B) Compared to *V. natriegens*
396 monocultures (left) the co-culture with *Alteromonas* (middle) leads to a decrease in *N*-
397 acetylglucosaminidase activity of the substrate. The presence of *Neptunomonas* (right) has no effect.
398 (Welch Two Sample t-test; N = 4; *N*-acetylglucosaminidase: mean of monoculture = 4.92 U/μL, mean of
399 co-culture *Alteromonas* = 1.29 U/μL; $t = 9.79$, p value < 0.001, mean of co-culture *Neptunomonas* =
400 4.89 U/μL; $t = 0.91$, p value = 0.20. Chitobiosidases: mean of monoculture = 5.55 U/μL, mean of co-
401 culture *Alteromonas* = 5.56 U/μL; $t = -0.74$, p value = 0.75, mean of co-culture *Neptunomonas* = 5.53
402 U/μL; $t = 2.81$, p value = 0.03. Endochitinases: mean of monoculture = 4.38 U/μL, mean of co-culture
403 *Alteromonas* = 3.45 U/μL; $t = 50.3$, p value < 0.001, mean of co-culture *Neptunomonas* = 4.39 U/μL; t
404 = -0.75, p value = 0.76). Stars indicate significant p -values (* = $p < 0.05$, ** = $p < 0.01$, *** = $p < 0.001$).
405

406 Next, we measured how the activity of *N*-acetylglucosaminidases, chitobiosidases,
407 and endochitinases in the media changes when used as sole carbon source to grow
408 our communities. We found that a co-culture with *V. natriegens* and *Alteromonas*
409 decreased the activity of *N*-acetylglucosaminidases compared to the degrader
410 monoculture when grown on enzymes as a substrate (Figure 7A). This result was
411 consistent with our findings that *Alteromonas* reduced the activity of *N*-
412 acetylglucosaminidases in many co-cultures that grow on chitin (Figure S5). Also, in

413 co-cultures with *V. splendidus* we found a decrease in enzyme activity for N-
414 acetylglucosaminidases of the substrate in the presence of *Alteromonas* compared to
415 a monoculture (Figure 7B). The selective decrease in activity for N-
416 acetylglucosaminidases (Figure 7A & 7B) in co-cultures with *Alteromonas* indicates a
417 preference for certain specific enzymes as substrates. The induction of chitobiosidase
418 expression (Figure 5A & 6A) combined with the selective degradation of N-
419 acetylglucosaminidases could explain our findings that in *V. fischeri* (ZF211), we
420 simultaneously observe increases for chitobiosidase activity (Figure 2) and decreases
421 for N-acetylglucosaminidase activity (Figure S5) in co-cultures with *Alteromonas*. For
422 co-cultures with *Neptunomonas* we found no change in the activity of N-
423 acetylglucosaminidases but a decrease for chitobiosidase activity of the substrate
424 (Figure 7B). This result is consistent with our findings that *Neptunomonas* reduced the
425 activity of N-acetylglucosaminidases in many co-cultures that grow on chitin (Figure
426 2).

427
428 In summary, our findings show that secreted enzymes are themselves subject to
429 degradation by microbial communities. This is further supported by the presence of
430 proteases in the culture media of mono- and co-cultures of our focal strains (Figure
431 S12 and S13). Therefore, chitin degradation activity by a community can be affected
432 by non-chitin-degrading species in two ways: (i) through the modulation of chitinase
433 gene expression in the degrader species, and (ii) through the degradation of
434 extracellular chitinases for nutrient acquisition. These findings lead to new hypotheses
435 about the role of species interactions on ecosystem processes carried out by microbial
436 communities.

437

438 Conclusion

439

440 Important questions in microbial ecology are (i) how are ecosystem functions
441 determined by species composition? (ii) how do community level properties emerge
442 from species interaction within microbial communities? and (iii) how do species from
443 different trophic levels influence each other? We aimed to shed light on these
444 questions using small synthetic communities of natural marine isolates that grow on
445 the polymer chitin. Overall, we found striking effects of interspecies interactions on the
446 behaviour of microbial species that perform key ecosystem functions, in our case chitin
447 degradation. We found that species not directly involved in that function can still
448 influence it in a highly specific manner. Concretely, we found that the presence of non-
449 degrading species can influence chitin degradation activity by a multi-species
450 community and that this happens through modulation of the expression of hydrolytic
451 enzymes by the degrader species as well as through the degradation of these
452 enzymes for use as nutrient source by community members. Hereby, our findings
453 challenge the prevailing view that non-degraders do not contribute to overall
454 biopolymer degradation activity at the community level (27) and provide mechanistic
455 insights into these “downward” interactions.

456

457 Transcriptome profiling of degrader-cross-feeder co-cultures further revealed that the
458 presence of the cross-feeder *Alteromonas* increased the expression of chitinases by
459 the degrader *Vibrio* strains, which manifests on a community level as increases in
460 chitin degradation activity. Furthermore, the presence of *Alteromonas* induced
461 expression of general motility genes in *V. natriegens*, while simultaneously reducing
462 expression of quorum sensing pathways. One possible explanation that connects

463 these different findings is that *V. natriegens* responds with increased mobility to the
464 presence of other species potentially as an avoidance strategy; as a consequence,
465 more dispersed individual *V. natriegens* cells would need to excrete more enzymes in
466 order to degrade and consume chitin. An alternative explanation is that the
467 upregulation of chitinases leads to increased concentrations of chitobioses, which may
468 then serve as chemoattractants in the environment. The chemoattractants may in turn
469 induce genes related to motility such as flagellar assembly, which we observed. The
470 causal connections and the mechanisms that underlie these correlations are still
471 unknown. Our observations of gene expression changes in the presence of
472 *Alteromonas* are in line with previous studies that show that growth behaviour on
473 carbohydrate polymers such as aggregation or dispersal and the production of
474 hydrolytic enzymes are tightly coupled (36). A study performed with various *Vibrio*
475 species on the polymer alginate has shown that the presence of cross-feeders
476 changes the aggregation of the degrading species (24). In combination, these findings
477 suggest that secreted extracellular chitinases might provide two functions to the
478 degraders. One is to generate nutrients via the cleavage of polymers, while the other
479 is to generate a chemotactic gradient to fresh nutrient sources (21).

480
481 In addition to the modulation of gene expression in degrader species, non-degraders
482 can also affect community-level chitin degradation more directly. We found that
483 chitinases themselves can serve as a growth substrate. Furthermore, we found them
484 to be degraded in an enzyme-specific manner and to different extents by different
485 species, i.e., the depletion of specific chitinases in a community is dependent on
486 community composition.

487

488 Our results highlight consequences of interspecies interactions on the behaviour of
489 key microbial taxa that drive important ecosystem functions such as the degradation
490 of complex polysaccharides. They reveal the importance of studying community level
491 properties and cellular behaviour in the context of interspecies interactions.

492

493 **Material and Methods**

494

495 **Bacterial strains, media and batch cultures**

496 We used the wildtype strain *Vibrio natriegens* ATCC 14048, *Vibrio splendidus* sp.
497 1A01, *Vibrio splendidus* sp. 13B01, *Vibrio tasmaniensis* sp. 1F187, *Enterovibrio*
498 *norvegicus* sp. 1F211, *Vibrio cyclitrophicus* sp. 1F273, *Vibrio rumoensis* sp. 1S45,
499 *Vibrio lentus* sp. 5F79, *Vibrio kanaloae* sp. 5S149, *Vibrio ordalii* sp. FS144, *Aliivibrio*
500 *fischeri*, sp. ZF211 as our degrader species (25, 27, 37). *Alteromonas macleodii* sp.
501 4B03 *Alteromonas macleodii* sp. A, *Neptunomonas phycophila* sp. 3B05, *Shewanella*
502 sp. A2R10, *Colwellia psychrerythraea* sp. C2M11, *Marinobacter* sp. D2M19 as our
503 non-degrader species (27).

504 Strains were inoculated from cryo-culture at -80 °C into 3 mL Marine Broth (MB, Difco
505 2216) and grown over night at 25 °C and 200 rpm. 1mL of these cell cultures was
506 centrifuged (13000 rpm for 2 min) in a 1.5ml microfuge tube. Supernatant was
507 discarded and the cells were washed with 1ml of MBL minimal medium (38) without
508 carbon source in order to remove excess carbon. Cells were centrifuged again and
509 the cell pellet was resuspended in 1mL of carbon depleted MBL adjusted to an OD600
510 of 0.002.

511

512 **Growth assays**

513 From the above described cultures, cells were used for experiments in MBL minimal
514 medium with 0.1% (weight/volume) Pentaacetyl-Chitopentaose (Megazyme, Ireland).
515 The carbon source was added to the MBL minimum medium and filter sterilized using
516 0.22 μ m Surfactant-Free Cellulose Acetate filters (Corning, USA). A total of 10uL of
517 cell culture was added to 190uL of MBL containing 0.1% Chitopentaose (w/v). This
518 yielded a final starting OD of 0.0001. Cultures were grown in 96-well plates for 48h in
519 a plate reader (Eon, BioTek) at 25°C.

520

521 **Chitinase assays**

522 Cell free supernatants were generated by sterile filtering cultures using a multi-well
523 filter plate (AcroPrep) into a fresh 96-well plate. Chitinase activity of cell free
524 supernatants was measured using a commercially available fluorometric chitinase
525 assay kit (Sigma-Aldrich) following the protocol. In short, (i) β -N-
526 acetylglucosaminidase, (ii) chitobiosidase, and (iii) endochitinase activity was
527 measured using 4-methylumbelliferyl N-acetyl- β -d-glucosaminide, 4-
528 methylumbelliferyl N,N'-diacetyl- β -d-chitobioside, and 4-methylumbelliferyl β -d-
529 N,N',N"-triacetylchitotriose substrates, respectively. 10 μ l of cell free supernatant was
530 added to the 90 μ l each of the three substrate solutions and incubated in the dark for
531 40min at 25 °C. Thereafter, the reactions were halted by adding 200 μ l of Stop Solution
532 (39). Fluorescence of released 4-methylumbelliferone (4MU) was measured
533 (Excitation 360 nm, Emission 450 nm) in a plate reader (Synergy MX, Biotek). One
534 unit of chitinase activity releases 1 μ mol of 4MU from the appropriate substrate per
535 minute. The chitinase activity was calculated using a single standard concentration
536 (1.9 nmol/mL) and the following equation:

537
$$\text{Units/mL} = \frac{(\text{FLUsample} - \text{FLUblank}) \times 1.9 \times 0.3 \times DF}{\text{FLUstandard} \times \text{time} \times \text{Venz}}$$

538 Where FLU – fluorescence of the sample, FLUblank – fluorescence of the blank, 0.3
539 – final reaction volume in mL, DF – enzyme dilution factor, FLUstandard –
540 fluorescence of the Standard Solution, Time – minutes, Venz – volume of the sample
541 in mL.

542

543 **Chitinase substrate assay**

544 From the above described cultures, cells were used for experiments in MBL minimal
545 medium with 0.04% (weight/volume) chitinase from *Trichoderma viride* (Sigma-
546 Aldrich, C6202). The lyophilized enzyme was added to the MBL minimum medium and
547 filter sterilized using 0.22µm Surfactant-Free Cellulose Acetate filters (Corning, USA).
548 A total of 10uL of cell culture was added to 190uL of MBL containing 0.04% chitinase
549 (w/v). This yielded a final starting OD of 0.0001. Cultures were grown in 96-well plates
550 for 48h in a plate reader (Eon, BioTek) at 25°C.

551

552 **Protease Assay**

553 Cell free supernatants of cultures grown on chitinase as a sole carbon source were
554 generated by sterile filtering cultures using a multi-well filter plate (AcroPrep) into a
555 fresh 96-well plate. Protease activity of cell free supernatants was measured using the
556 commercially available Pierce Colorimetric Protease Assay kit (Thermo
557 FisherScientific; 23263). Lyophilized succinylated casein was resuspended in MBL to
558 a concentration of 2 mg/mL. 50 µL of supernatant was added to 100 µL of succinylated
559 casein and incubated at 25 °C for 1 h in a 96-well plate. 50 µL of 0.033% TNBSA was
560 added, and samples were incubated for additional 20 min at room temperature.
561 Absorbance (450 nm) was measured in a 96-well plate and corrected by subtracting a

562 control containing a buffer instead of supernatant. The final protease activity was
563 calculated by subtracting the corrected succinylated casein without supernatant signal
564 from the supernatant signal (40).

565

566 **Statistical analysis**

567 Growth curves were analyzed in Python (v3.8) using the AMiGA software (41). All
568 statistical analysis was performed R Studio v2021.09.1 (42) with R v4.1.2. Each
569 boxplot figure depicts median of the corresponding value. Measures of effect size are
570 represented by the R^2 . Statistically significant differences in chitinase activity between
571 mono- and co-cultures were calculated using ANOVA models with the LmerTest
572 package v 0.99.45 (43) with the equation (Chitinase activity/yield) ~ Crossfeeder +
573 Replicate. The Fisher-LSD Posthoc test was performed using the same software. For
574 the number of replicates please refer to the supplementary materials. The heatmaps
575 were generated using the ggplot2 package v3.3.3.9000 (44). In order to generate the
576 color gradients, values were scaled using the mutate function in the dplyr packages
577 v.1.0.5 (45).

578

579 **RNA extraction**

580 For RNA extraction, cells were grown as described above and harvested at
581 exponential growth phase. 4 ml of cell culture was centrifuged at 5000xg for 10 min.
582 Supernatant was removed and the cell pellets were resuspended in 1 ml of RNAProtect
583 Bacteria Reagent (Qiagen) and stored -20 until RNA extraction. To extract the total
584 RNA, samples were thawed and the suspension was centrifuged at 5000xg for 10 min,
585 the supernatant was carefully removed. To extract the total RNA of the frozen cell
586 suspensions, we followed the protocol of the RNeasy Protect Bacteria Kit (Qiagen)

587 combined with on-column DNase digestion using the RNase-Free DNase Set
588 (Qiagen). Cells were incubated 15 min at room temperature with 1 mg/ml lysozyme
589 (Sigma) for lysis. The isolated total RNA was stored at -80 °C until sending it for
590 sequencing.

591

592 **RNA sequencing**

593 RNA sequencing was performed by the Oxford Genomics Center (OGC, Oxford, UK).
594 The sequencing package included rRNA depletion. All but one sample met the quality
595 requirements of OGC (>100 ng/ul RNA concentration). The sample that did not meet
596 the requirements was a monoculture of *V. natriegens*, therefore the corresponding
597 replicates of the co-cultures of *Alteromonas* and *Neptunomonas* were disregarded
598 from the downstream analysis. Ribodepletions using NEB bacterial probes before
599 conversion to cDNA was performed. Second strand cDNA synthesis did incorporate
600 dUTP. The cDNA was end-repaired, A-tailed and adapter-ligated. Prior to
601 amplification, samples did undergo uridine digestion. The prepared libraries were size
602 selected, multiplexed and QC'ed before paired end sequencing over one unit of a flow
603 cell. Sequencing was conducted on a NovaSeq6000 system (Illumina).

604

605 **RNA-seq: Pre-processing**

606 Preprocessing of the raw reads was carried out as follows: A quality control was
607 performed with FastQC v0.11.9 (46) and Trimmomatic v0.38 (47); the high-quality
608 reads were mapped to the reference genome (RefSeq assembly accession
609 GCF_000006905.1) with Bowtie2 v2.3.5.1 (48); binarisation, sorting, and indexing
610 were done with Samtools v1.10 (49); gene counts were computed with the
611 featureCount function of Subread v2.0.1 (50).

612

613 **RNA-seq: differential expression analysis**

614 Differential expression was calculated using DESeq2 v1.34.0 (51) in R Studio
615 v2021.09.1 (42) with R v4.1.2. For the analysis, all rRNA and tRNA genes were
616 excluded. Genes were considered to be differentially expressed if they had an FDR <
617 0.05 and a log2-Fold change (log2-FC) either higher than 0.6 or lower than -0.6.
618 Heatmaps of genes with most significant expression changes were computed by first
619 transforming the raw counts with the variance stabilizing transformation (VST) function
620 of DESeq2 and then using the pheatmap function of the Pheatmap package v1.0.12
621 (52).

622

623 **RNA-seq: functional analysis**

624 For annotations of KEGG orthology (53) BlastKOALA v2.2 (54) was used to assign
625 annotations. eggNOG v5.0 (55) was used to assign the Cluster of Orthologous Groups
626 (COG) annotations (56) for all genes. Dbcan2 (57) was used to annotate carbohydrate
627 active enzymes according to the Carbohydrate-Active Enzymes (CAZy) Database
628 (58).

629

630 **Acknowledgments**

631 We thank Roman Stocker and Shini Sunagawa for advice for data analysis and for
632 fruitful scientific discussions. We also thank the members of the Simons Foundation
633 Collaboration on Principles of Microbial Ecosystems collaboration for feedback on the
634 project.

635

636 **Funding**

637 MD, AS, HN and MA were supported by the Simons Foundation Collaboration on
638 Principles of Microbial Ecosystems (PriME #542389 and #542395), Swiss National
639 Science Foundation grant 31003A_169978 and by ETH Zurich and Eawag. OTS was
640 supported by the European Union's Horizon 2020 research and innovation programme
641 under the Marie Skłodowska-Curie grant agreement No. 101023360.

642

643 **Conflict of Interest**

644 The authors declare no conflict of interest.

645 References

- 646 1. Falkowski PG, Fenchel T, & Delong, EF. The microbial engines that drive
647 Earth's biogeochemical cycles. *Science*. 2008; 320(5879): 1034-1039.
- 648 2. Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T,
649 Cameron DD, et al. Identification of 100 fundamental ecological questions. *J.*
650 *Ecol*. 2013; 101(1): 58-67.
- 651 3. Covich AP, Austen MC, Bärlocher F, Chauvet E, Cardinale BJ, Biles CL, et al.
652 The role of biodiversity in the functioning of freshwater and marine benthic
653 ecosystems. *BioScience*. 2004; 54(8), 767-775.
- 654 4. Hillebrand H, & Cardinale BJ. Consumer effects decline with prey diversity.
655 *Ecol*. 2004; 7(3), 192-201.
- 656 5. Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, &
657 Schmid B. Quantifying the evidence for biodiversity effects on ecosystem
658 functioning and services. *Ecol*. 2006; 9(10), 1146-1156.
- 659 6. Cardinale BJ, Srivastava DS, Emmett Duffy J, Wright JP, Downing AL,
660 Sankaran M, & Jouseau C. Effects of biodiversity on the functioning of trophic
661 groups and ecosystems. *Nature*. 2006; 443(7114), 989-992.
- 662 7. Langenheder S, Lindström ES, & Tranvik LJ. Structure and function of
663 bacterial communities emerging from different sources under identical
664 conditions. *Appl. Environ. Microbiol*. 2006; 72(1), 212-220.
- 665 8. Little AE, Robinson CJ, Peterson SB, Raffa KF, & Handelsman J. Rules of
666 engagement: interspecies interactions that regulate microbial communities.
667 *Annu. Rev. Microbiol*. 2008; 62, 375-401.

668 9. Peter H, Beier S, Bertilsson S, Lindström E S, Langenheder S, & Tranvik LJ.
669 Function-specific response to depletion of microbial diversity. *ISME J.* 2011;
670 5(2), 351-361.

671 10. Béguin P, & Aubert JP. The biological degradation of cellulose. *FEMS*
672 *Microbiol. Rev.* 1994; 13(1), 25-58.

673 11. Boerjan W, Ralph J, & Baucher M. Lignin biosynthesis. *Annu. Rev. Plant Biol.*
674 2003; 54(1), 519-546.

675 12. Peter MG. Applications and environmental aspects of chitin and chitosan. *J.*
676 *Macromol. Sci. - Pure Appl. Chem.* 1995; 32(4), 629-640.

677 13. Beier S, & Bertilsson S. Bacterial chitin degradation—mechanisms and
678 ecophysiological strategies. *Front. Microbiol.* 2013; 4, 149.

679 14. Pontrelli S, Szabo R, Pollak S, Schwartzman J, Ledezma-Tejeida D, Cordero
680 OX, & Sauer U. Metabolic cross-feeding structures the assembly of
681 polysaccharide degrading communities. *Sci. Adv.* 2022; 8(8), eabk3076.

682 15. Wang YJ, Jiang WX, Zhang YS, Cao HY, Zhang Y, Chen XL, et al. Structural
683 insight into chitin degradation and thermostability of a novel endochitinase
684 from the glycoside hydrolase family 18. *Front. Microbiol.* 2019; 2457.

685 16. Connell TD, Metzger DJ, Lynch J, & Folster JP. Endochitinase is transported
686 to the extracellular milieu by the *eps*-encoded general secretory pathway of
687 *Vibrio cholerae*. *J. Bacteriol.* 1998; 180(21), 5591-5600.

688 17. Bassler BL, Yu C, Lee YC, & Roseman S. Chitin utilization by marine bacteria.
689 Degradation and catabolism of chitin oligosaccharides by *Vibrio furnissii*. *J.*
690 *Biol. Chem.* 1991; 266(36), 24276-24286.

691 18. Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Peterbauer C, &
692 Tronsmo A. Chitinolytic enzymes of *Trichoderma harzianum*: purification of
693 chitobiosidase and endochitinase. *Phytopathology*. 1993; 83(3), 313-318.

694 19. Tronsmo A, & Harman GE. Detection and quantification of N-acetyl- β -D-
695 glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels.
696 *Anal. Biochem.* 1993; 208(1), 74-79.

697 20. Bassler BL, Gibbons PJ, Yu C, & Roseman S. Chitin utilization by marine
698 bacteria. *Chemotaxis to chitin oligosaccharides by Vibrio furnissii*. *J. Biol.*
699 *Chem.* 1991; 266(36), 24268-24275.

700 21. Keyhani NO, & Roseman S. (1999). Physiological aspects of chitin catabolism
701 in marine bacteria. *Biochim Biophys Acta Gen Subj.* 1999; 1473(1), 108-122.

702 22. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, & Schoolnik GK. The
703 *Vibrio cholerae* chitin utilization program. *PNAS*. 2004; 101(8), 2524-2529.

704 23. Li X, & Roseman S. The chitinolytic cascade in Vibrios is regulated by chitin
705 oligosaccharides and a two-component chitin catabolic sensor/kinase. *PNAS*.
706 2004; 101(2), 627-631.

707 24. D'Souza GG, Ebrahimi A, Stubbensch A, Daniels M, Keegstra J, Stocker R, et
708 al. Intercellular collectivity is governed by enzyme secretion strategies in
709 marine polysaccharide degrading bacteria. *bioRxiv*. 2022

710 25. Hehemann JH, Arevalo P, Datta MS, Yu X, Corzett CH, Henschel A. et al.
711 Adaptive radiation by waves of gene transfer leads to fine-scale resource
712 partitioning in marine microbes. *Nat. Commun.* 2016; 7(1), 1-10.

713 26. Flint HJ, Scott KP, Duncan SH, Louis P, & Forano E. Microbial degradation of
714 complex carbohydrates in the gut. *Gut microbes*. 2012; 3(4), 289-306.

715 27. Datta MS, Sliwerska E, Gore J, Polz MF, & Cordero OX. Microbial interactions
716 lead to rapid micro-scale successions on model marine particles. *Nat. Commun.* 2016; 7(1), 1-7.

717
718 28. Daniels M, van Vliet S, & Ackermann M. Changes in interactions over
719 ecological time scales influence single cell growth dynamics in a metabolically
720 coupled marine microbial community. *bioRxiv*. 2022.

721 29. Amarnath K, Narla AV, Pontrelli S, Dong J, Caglar T, Taylor BR, et al. Stress-
722 induced cross-feeding of internal metabolites provides a dynamic mechanism
723 of microbial cooperation. *bioRxiv*. 2021.

724 30. Bourne Y, & Henrissat B. Glycoside hydrolases and glycosyltransferases:
725 families and functional modules. *Curr. Opin. Struct. Biol.* 2001; 11(5), 593-
726 600.

727 31. Hemsworth GR, Davies GJ, & Walton PH. Recent insights into copper-
728 containing lytic polysaccharide mono-oxygenases. *Curr. Opin. Struct. Biol.*
729 2013; 23(5), 660-668.

730 32. Povolo VR, D'Souza GG, Kaczmarczyk A, Stubbusch AKM, Jenal U,
731 Ackermann M. Extracellular appendages govern spatial dynamics and growth
732 of *Caulobacter crescentus* on a prevalent biopolymer. *BioRxiv*. 2022.

733 33. Ebrahimi A, Schwartzman J, & Cordero OX. Multicellular behaviour enables
734 cooperation in microbial cell aggregates. *Philos. Trans. R. Soc. B.* 2019;
735 374(1786), 20190077.

736 34. Miller MB, & Bassler BL. Quorum sensing in bacteria. *Annu. Rev. Microbiol.*
737 2001; 55(1), 165-199.

738 35. Ng WL, & Bassler BL. Bacterial quorum-sensing network architectures. *Annu.*
739 *Rev. Gen.* 2009; 43, 197.

740 36. D'Souza, G. G., Povolo, V. R., Keegstra, J. M., Stocker, R., & Ackermann, M.
741 (2021). Nutrient complexity triggers transitions between solitary and colonial
742 growth in bacterial populations. *The ISME Journal*, 1-13.

743 37. Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al.
744 Ecological populations of bacteria act as socially cohesive units of antibiotic
745 production and resistance. *Science*. 2012; 337(6099), 1228-1231.

746 38. Pollak S, Gralka M, Sato Y, Schwartzman J, Lu L, & Cordero OX. Public good
747 exploitation in natural bacterioplankton communities. *Sci. Adv.* 2021; 7(31),
748 eabi4717.

749 39. Drewnowska JM, Fiodor A, Barboza-Corona JE, & Swiecicka I. Chitinolytic
750 activity of phylogenetically diverse *Bacillus cereus* sensu lato from natural
751 environments. *Syst. Appl. Microbiol.* 2020; 43(3), 126075.

752 40. Cezairliyan B, & Ausubel FM. Investment in secreted enzymes during
753 nutrient-limited growth is utility dependent. *PNAS*. 2017; 114(37), E7796-
754 E7802.

755 41. Midani FS, Collins J, & Britton RA. AMiGA: software for automated analysis of
756 microbial growth assays. *Msystems*. 2021; 6(4), e00508-21

757 42. RStudio RT. Integrated development environment for R. RStudio, PBC,
758 Boston, MA. 2015.

759 43. Signorell A, Aho K, Alfons A, Anderegg N, Aragon T, Arppe A, et al.
760 DescTools: Tools for descriptive statistics. R package version 0.99, 28, 17.
761 2019.

762 44. Wickham H, Chang W, & Wickham MH. Package 'ggplot2'. Create elegant
763 data visualisations using the grammar of graphics. Version, 2(1), 1-189. 2016.

764 45. Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, et al.
765 Welcome to the Tidyverse. *Journal of open source software*, 4(43), 1686.
766 2019.

767 46. Andrews S. FastQC: a quality control tool for high throughput sequence data.
768 2010.

769 47. Bolger AM, Lohse M, & Usadel B. Trimmomatic: a flexible trimmer for Illumina
770 sequence data. *Bioinformatics*. 2014; 30(15), 2114-2120.

771 48. Langmead B, & Salzberg SL. Fast gapped-read alignment with Bowtie 2.
772 *Nature methods*. 2012; 9(4), 357-359.

773 49. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al.
774 Twelve years of SAMtools and BCFtools. *Gigascience*. 2021; 10: giab008.

775 50. Liao Y, Smyth GK, & Shi W. featureCounts: an efficient general purpose
776 program for assigning sequence reads to genomic features. *Bioinformatics*.
777 2014; 30(7), 923-930.

778 51. Love MI, Huber W, & Anders S. Moderated estimation of fold change and
779 dispersion for RNA-seq data with DESeq2. *Genome Biol*. 2014; 15(12), 1-21.

780 52. Kolde R. Pheatmap: pretty heatmaps. *R package version*, 1(2), 747. 2012

781 53. Kanehisa M. Enzyme annotation and metabolic reconstruction using KEGG.
782 In *Protein Function Prediction* (pp. 135-145). 2017; Humana Press, New York,
783 NY.

784 54. Kanehisa M, Sato Y, & Morishima K. BlastKOALA and GhostKOALA: KEGG
785 tools for functional characterization of genome and metagenome sequences.
786 *J. Mol. Biol*. 2016; 428(4), 726-731.

787 55. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK,
788 Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically

789 annotated orthology resource based on 5090 organisms and 2502 viruses.

790 Nucleic Acids Res. 2019; 47(D1), D309-D314.

791 56. Tatusov RL, Galperin MY, Natale DA, & Koonin EV. The COG database: a
792 tool for genome-scale analysis of protein functions and evolution. Nucleic
793 Acids Res. 2000; 28(1), 33-36.

794 57. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a
795 meta server for automated carbohydrate-active enzyme annotation. Nucleic
796 Acids Res. 2018; 46(W1), W95-W101.

797 58. Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, & Terrapon N. The
798 carbohydrate-active enzyme database: functions and literature. Nucleic Acids
799 Res. 2022; 50(D1), D571-D577.