

1 Extracellular heparan 6-O-endosulfatases SULF1 and SULF2 in HNSC and other malignancies

2

3 Yang Yang¹, Jaeil Ahn², Nathan Edwards^{1,3}, Julius Benicky^{3,4}, Aaron M. Rozeboom⁴, Bruce Davidson⁵,

4 Christina Karamboulas⁶, Kevin C.J. Nixon⁶, Laurie Ailles^{6,7}, Radoslav Goldman^{1,3,4*}

5

6 ¹Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, D.C.,

7 USA

8 ²Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington,

9 D.C., USA

10 ³Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, D.C.,

11 USA

12 ⁴Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University,

13 Washington, D.C., USA

14 ⁵Department of Otolaryngology-Head and Neck Surgery, MedStar Georgetown University Hospital,

15 Washington, D.C. USA

16 ⁶Princess Margaret Cancer Centre, University Health Network, Toronto, ON Canada

17 ⁷Department of Medical Biophysics, University of Toronto, Toronto, ON Canada

18

19 *Address correspondence to: Radoslav Goldman, Department of Oncology, NRB E207, 3970 Reservoir

20 Rd NW, Washington, DC 20057, USA. Phone: +1 202-687-9868; Email: rg26@georgetown.edu;

21

22

23 The authors declare no potential conflicts of interest.

24

25

26 ABSTRACT

27

28 SULF1 and SULF2 are oncogenic in a number of human malignancies, including head and neck
29 squamous cell carcinoma (HNSC). The function of these two heparan sulfate editing enzymes was
30 previously considered largely redundant but the biology of cancer suggests differences that we explore
31 in our RNAseq and RNAScope studies of HNSC and in a pan cancer analysis using the TCGA and
32 CPTAC (proteomics) data. Our studies document a consistent upregulation of SULF1 and SULF2 in
33 HNSC which is associated with poor survival outcomes. SULF2 expression increases in multiple
34 malignancies but less consistently than SULF1, which uniformly increases in the tumor tissues and
35 negatively impacts survival in several types of cancer. Meanwhile, SULF1 showed low expression in
36 cancer cell lines and a scRNAseq study of HNSC shows that SULF1 is not supplied by epithelial tumor
37 cells, like SULF2, but is secreted by cancer associated fibroblasts. Our RNAScope and PDX analysis of
38 the HNSC tissues fully confirm the stromal source of SULF1 and explain the uniform impact of this
39 enzyme on the biology of multiple malignancies. In summary, the SULF1 enzyme, supplied by a subset
40 of cancer associated fibroblasts, is upregulated and negatively impacts HNSC survival at an early stage
41 of the disease progression while the SULF2 enzyme, supplied by tumor cells, impacts survival at later
42 stages of HNSC. This paradigm is common to multiple malignancies and suggests a potential for
43 diagnostic and therapeutic targeting of the heparan sulfatases in cancer diseases.

44

45

46

47

48

49

50

51

52 INTRODUCTION

53

54 Eukaryotic sulfatases are primarily lysosomal enzymes that hydrolyze sulfate esters during the
55 degradation of macromolecules, often in conjunction with glycosidases¹. The sulfatase family of
56 proteins shares a common catalytic mechanism using a formyl glycine residue in the active site for
57 catalysis². However, human 6-O-endosulfatases SULF1 and SULF2 are distinct from all other
58 sulfatases in that they are neutral pH extracellular enzymes that edit the sulfation of heparan sulfate
59 proteoglycans (HSPG) instead of degrading them³. The HSPG family of core proteins carries one or
60 several serine/threonine residues covalently attached to a heparan sulfate glycosaminoglycan chain
61 further modified by *N*-deacetylation and sulfation, epimerization, and variable O-sulfation⁴. Four
62 sulfation sites at the *N*-, 3-O-, and 6-O-positions of the glucosamine and at the 2-O-position of the
63 glucuronic acid⁴ regulate protein interactions and the 6-O-sulfate-dependent interactions are critical
64 regulators of the pathophysiology of multicellular organisms^{5–8}. The SULF1 and SULF2 enzymes are
65 the only post-synthetic editors of the 6-O-sulfation at the internal glucosamines of highly sulfated HSPG
66 domains and their activity defines many critical interactions at the cell-surface and in the extracellular
67 matrix (ECM).

68 HSPG exquisitely regulate embryogenesis, organogenesis, and physiology of nearly all organs by
69 adjusting gradients of at least 600 proteins including growth factors, cytokines, chemokines, proteases,
70 or collagens^{6,9}. The highly specific SULF activities liberate sequestered HS-binding proteins which
71 regulate matrix remodeling, immune infiltration, or signaling of the respective cognate receptors^{7,10,11}.
72 The determinants of ligand binding are under intense investigation^{12–14} and systemic rules need to be
73 further elucidated. We know, however, that heparan 6-O-sulfation is essential for binding of many
74 ligands including VEGF, FGF-1, FGF-10, IL8, HGF, Wnt ligands or L- and P- selectins^{4,10}. SULFs
75 represent, therefore, an essential regulatory element that controls the HS-dependent developmental
76 and pathophysiological processes including cancer progression^{15–17}.

77 Human SULF1 and SULF2 are 65% identical and there is no clear difference in the substrate-
78 specificity of the two enzymes¹⁸. However, the impact of the two enzymes on cancer diseases is
79 distinct. SULF2 is upregulated and oncogenic in various cancers⁷ and a recent study documented that
80 anti-SULF2 antibodies prevent tumor growth in a mouse model of cholangiocarcinoma¹⁹. The reported
81 impact of SULF1 on cancer progression is less consistent. Widespread low expression of the SULF1
82 transcript is observed in cancer cell lines^{20,21} and prior studies suggested a tumor suppressor function
83 of SULF1 in ovarian, breast, and liver cancers¹⁶. In contrast, increased SULF1 expression is observed
84 in a wide range of human tumors^{7,16} and high SULF1 expression is associated with advanced primary
85 tumor status, higher histological grade, and worse survival in urothelial carcinoma²². We have shown
86 that SULF1 and SULF2 enzymes increase in tumor tissues of patients with HNSC and that the increase
87 is associated with poor survival²³. In this study, we therefore examined available datasets to find which
88 cancers are affected by the 6-O-endosulfatases and we carried out experiments that verify the unifying
89 concepts in their impact on HNSC and other cancers.

90

91

92 METHODS

93 **Differential expression of SULF1 and SULF2 mRNAs in 32 TCGA studies**

94 RNA-seq data and clinical information of 9,160 patients enrolled in 32 cancer studies conducted by the
95 Cancer Genome Atlas (TCGA) consortium (portal.gdc.cancer.gov) and corresponding non-disease
96 tissues from the Genotype-Tissue Expression (GTEx) project (gtexportal.org/home) were downloaded
97 from UCSC-Xena on 02-26-2021 (xenabrowser.net/datapages); SULF1 and SULF2 mRNA was
98 quantified as $\log_2(RSEM\ counts+1)$ in both datasets. For the differential expression analysis, we
99 selected 14 TCGA cancer studies with $n>10$ of paired tumor and normal tissues (**Table 1**) and we used
100 a Wilcoxon rank sum test to compare paired tumor and non-tumor tissues, where the \log_2 -fold change
101 ($|\log_2FC| > 1$ and the false discovery rate (FDR) < 0.05 across studies were considered as statistically
102 significant. SULF1 and SULF2 mRNA expression was further compared by Wilcoxon rank sum test

103 between unpaired tumor tissues of 24 cancer studies and corresponding non-disease tissues of the
104 same organs reported in GTEx (**Supplemental Table 1A**).

105

106 **Differential expression of SULF proteins in 10 CPTAC studies**

107 Proteomics data and clinical information of 1,247 patients enrolled in 10 cancer studies with matched
108 tumor and adjacent non-tumor tissue-pairs conducted by the Clinical Proteomic Tumor Analysis
109 Consortium (CPTAC) were downloaded from the Proteomics Data Commons
110 (proteomic.datacommons.cancer.gov/pdc) and the CPTAC Data Portal²⁴ on 05-18-2020. Protein
111 abundance, as determined by the CPTAC Common Data Analysis Pipeline²⁵ quantified the \log_2 ratio of
112 individual proteins to an internal control of each study, using only peptides not shared between
113 quantified proteins. We analyzed the differential expression between tumor and paired normal tissues
114 by paired t-test; we compared SULF expression at different cancer stages by one-way ANOVA and
115 computed the corresponding FDRs (**Table 2**).

116

117 **Pan-cancer survival analysis based on SULF1 and SULF2 mRNA**

118 The impact of SULF mRNA expression on time to event endpoints as cancer driven progression-free
119 interval (PFI), defined by the TCGA research network²⁶, was evaluated by the Kaplan-Meier method in
120 20 TCGA cancer studies with >100 patients and >40 PFI events (**Supplemental Table 1B**). We
121 identified optimal SULF cutoff values yielding the smallest p-value from the log-rank test when both
122 SULF low and high groups, in each study, have at least 25% patients. We used the multivariable Cox-
123 proportional hazard model (MCPH) adjusting for age and gender and summarized hazard ratios (HR)
124 with 95% confidence intervals (CI). We used FDR<0.05 to call statistical significance. We further
125 evaluated the HNSC TCGA dataset for an association between SULF1 or SULF2 mRNA expression
126 and PFI at different pathological stages of the disease. We analyzed separately the early stage (stage I
127 and II, n=96) and the late stage (stage III and IV, n=346) tumors. In each subset, we used the log-rank
128 test as above.

129 A confirmatory survival analysis was completed on HNSC patients (n=88) enrolled at the
130 Princess Margaret Cancer Centre, University of Toronto in line with IRB approved protocols. Majority of
131 the patients have stage IV oral cancer (**Supplemental Table 2**). RNA was extracted from the snap
132 frozen tumor tissues using a Qiagen RNeasy mini-kit and sample library preparation was done using
133 the Illumina TruSeq stranded total RNA sample preparation kit. Sequencing used a 100-cycle paired
134 read protocol and multiplexing to obtain ~75 million reads/sample on a Novaseq S4 flow cell using XP
135 mode. Transcript abundances in transcripts per million (TPM) were generated from trimmed reads
136 using Kallisto (v. 0.46.1) and the gencodev33 human transcriptome or a combined human-mouse
137 transcriptome with reads aligning to mouse removed prior to analysis. Gene-level abundances (TPM)
138 were calculated using the Bioconductor package tximport (v. 1.24.0). Survival analyses for disease-
139 free interval were performed using methods described above.

140

141 **Cell-specific expression of SULF1 and SULF2 in HNSC**

142 We evaluated a published HNSC single cell RNA-seq dataset²⁷ that profiled transcriptomes of 5,578
143 cells from tumor tissues of 18 HNSC patients and identified the type of individual cells based on copy-
144 number variations, karyotypes and expression signatures. We downloaded the data from the UCSC
145 Cell Browser (cells.ucsc.edu/?ds=head-neck) and we quantified the SULF1 and SULF2 mRNAs as
146 $\log_2(\text{TPM}+1)$. Each cell-type expressing SULF1 or SULF2 was defined as a percentage of cells with
147 non-zero expression values (**Supplemental Table 3**). Differential expression of SULF1 and SULF2
148 between the cell types was calculated by non-paired t-test.

149

150 **Correlation studies of the SULF enzymes with CAF and other proteins**

151 We computed Pearson's correlations between SULF1 and all proteins/corresponding mRNAs in the
152 CPTAC study of HNSC²⁸. To explore magnitude of the correlations between SULF1 and cancer
153 associated fibroblasts (CAF), the averaged Pearson's correlation between CAF1 proteins (n=206) and
154 SULF1 was compared with the averaged SULF1 correlation with all proteins (n=10,073) where p-value

155 was obtained by performing 10,000 permutations using a randomly selected subset of proteins (n=206).
156 We adopted the CAF1 and CAF2 definitions by Puram et al²⁷. In addition, we adopted the CAF
157 definition of a COL11A1-related CAF subset associated with pre-metastatic locally invasive tumors
158 proposed by Anastassiou^{29,30} (**Supplemental Table 4**).

159

160 **RNAscope analysis of SULF1 and SULF2 in OSCC tissues**

161 We selected tumor tissues of patients (n=20) with carcinoma of the oral cavity (OSCC) for the analysis
162 of SULF1 and SULF2 expression based on *in situ* hybridization. The patients were either node positive
163 (n=10) or node negative (n=10) and the node positive group had, in general, poor survival outcomes
164 (**Supplemental Table 5**). FFPE sections (5 μ m) of the patient's tumors were baked at 60°C,
165 deparaffinized, and dehydrated. The RNAscope assay (RNAscope Multiplex Fluorescent Reagent Kit
166 v2 #323100) was done according to the manufacturers protocol with probes for Sulf1 and Sulf2 (ACD
167 403581-C3 and ACD 502241) paired with OPALs 650 and 570 (Akoya FP1496001KT and
168 FP1488001KT, respectively). After the final wash, slides were prepped for IHC and incubated for 60min
169 with anti-panCK antibody (M3515 DAKO), anti-mouse HRP secondary (DAKO K400111-2), OPAL TSA
170 520 (Akoya # FP1487001KT), and DAPI (Akoya # FP1490).

171 Slides were scanned at 10 \times magnification using the Vectra 3.0 Automated Quantitative
172 Pathology Imaging System (Akoya). Whole slide scans were viewed with Phenochart (Akoya) and high-
173 powered images at 20 \times (resolution of 0.5 μ m per pixel) were selected for multispectral image capture.
174 Three to 20 multispectral image regions of interest (ROIs; 669 μ m \times 500 μ m) were captured in the
175 tumor and normal adjacent regions on each slide. A selection of 10-15 representative multispectral
176 images spanning all tissue sections was used to train the inForm software (tissue/cell segmentation
177 and phenotyping tools). All the settings applied to the training images were saved within an algorithm
178 for batch analysis of all the multispectral images for the project. The analysts were blinded to the
179 patient status and all the raw data were consolidated in PhenoptrReports (Akoya). We quantified the

180 total number of cells in the panCK+ tumor area and the adjacent panCK-area (stroma); these
181 compartments were analyzed for the SULF1+ and SULF2+ cells (**Supplemental Table 5**).
182

183 **Expression of SULF1 and SULF2 in a PDX model of OSCC**

184 PDX models were generated as described³¹. RNAseq was carried out on snap-frozen tissues from
185 early passage (passage 1 to 3) PDX models, as described above. Expression of SULF1 and SULF2
186 was compared between patient and xenograft samples using a paired Wilcoxon rank sum test and
187 visualized using the R package ggplot2 (v. 3.3.6).
188

189 **Study Approval**

190 The studies involving human participants were reviewed and approved by the Georgetown University-
191 MedStar Health Institutional Review Board and the University Health Network Research Ethics Board.
192 The patients/participants provided their written informed consent to participate in this study.
193

194 **RESULTS**

196 **SULF1 and SULF2 mRNA expression in different cancer types**

197 We extended our analysis of HNSC²³ by retrieving the RNA-seq data of 9,160 patients in 32 cancer
198 studies from the TCGA database to develop a systematic evaluation of SULF1 and SULF2 expression.
199 We compared tumor and paired normal tissues in 14 cancer studies with >10 available paired samples
200 (**Table 1**). SULF1 is significantly upregulated in tumor tissues of 10 of the 14 studies of which 9
201 show >2-fold upregulation. The highest SULF1 log2FC is observed in LUAD (log₂FC =2.78,
202 FDR<0.001). SULF2 is overexpressed in 8 cancer types of which 5 increase >2-fold. The highest
203 SULF2 FC is observed in ESCA (log₂FC=2.76, FDR<0.001). Besides the wide-scale overexpression in
204 tumor tissues, SULF1 is significantly downregulated in KICH and THCA and SULF2 in PRAD but none
205 of the studies reaches a 2-fold decrease.

206 Our comparison of SULF mRNA in 32 TCGA tumors with the corresponding non-disease
207 tissues from GTEx (**Supplemental Table 1A**) shows that SULF1 is significantly increased in 18
208 cancers of which 16 show >2-fold upregulation. SULF2 is significantly higher in 16 cancer studies, of
209 which 11 show >2-fold increase. All the TCGA studies with significant SULF1 or SULF2 upregulation in
210 paired tissues retain the trend in our GTEx analysis. However, the slight decreases observed for
211 SULF1 in KICH and THCA or for SULF2 in PRAD (**Table 1**) are not confirmed in the GTEx comparison.
212 The decrease in SULF1 is not significant for any of the GTEx comparisons; SULF2 expression is
213 significantly lower in OV ($\log_2\text{FC}=-2.27$, $\text{FDR}<0.001$) and UCEC ($\log_2\text{FC}=-1.76$, $\text{FDR}<0.001$).
214

215 **SULF1 and SULF2 proteins in 10 CPTAC studies**

216 We analyzed differential expression of SULF proteins in paired tumor and normal tissues of 10
217 proteomics studies from the CPTAC consortium (**Table 2**). Seven of the cancer types (LUSC, LUAD,
218 HNSC, KIRC, BRCA, COAD, and LIHC/HCC-HBV) overlap with the TCGA datasets, which enables
219 comparison of the expression at the transcriptional and translational levels. Similar to the pervasive
220 upregulation of SULF1 mRNA, SULF1 protein is significantly upregulated in tumor compared to paired
221 normal tissues in 9 of the 10 studies. Four studies showed >2-fold increase of SULF1 protein in tumor
222 tissues (**Table 2**) with the highest fold-change observed in HNSC ($\log_2\text{FC}=1.59$, $\text{FDR}<0.001$). Only the
223 smaller size ($n=12$) study of OSC did not show any difference in SULF1 protein. SULF2 protein is
224 significantly upregulated in the tumors of 6 studies but a >2-fold increase is only observed in PDAC
225 ($\log_2\text{FC}=1.14$, $\text{FDR}<0.001$). In addition, we saw a significant downregulation of SULF2 protein in tumor
226 tissues of HBV-related HCC ($\log_2\text{FC}=-0.33$, $\text{FDR}<0.001$) and UCEC ($\log_2\text{FC}=-0.43$, $\text{FDR}=0.01$). This is
227 consistent with the reduced expression of SULF2 mRNA in tumor tissues of LIHC ($\log_2\text{FC}=-0.481$,
228 $\text{FDR}=0.116$, **Table 1**) and UCEC ($\log_2\text{FC}=-1.76$, $\text{FDR}<0.001$, **Supplemental Table 1A**). Based on the
229 SULF expression in the two independent datasets (TCGA and CPTAC), we conclude that SULF1 is
230 commonly upregulated across different cancer types while SULF2 overexpression is more restricted to
231 certain cancer pathologies.

232 We observed >2-fold upregulation of both SULF1 and SULF2 mRNA in four cancer studies from
233 the TCGA (HNSC, ESCA, LUSC, and STAD) and all these cancers remain significantly upregulated
234 compared to the GTEx normal tissues (**Figure 1A, 1B**). At the same time, SULF1 and SULF2 proteins
235 are significantly elevated in HNSC and LUSC (**Table 1**) while the STAD and ESCA studies were not
236 reported at the time of our analysis. Pancreatic cancer (PDAC) is the only CPTAC study with both
237 SULF1 and SULF2 protein significantly upregulated >2-fold in tumor compared to paired normal tissues
238 (**Figure 1C**). Limited size (n=4 paired samples) of the PDAC study prevented our analysis of paired
239 mRNA expression in the TCGA dataset. However, SULF1 and SULF2 mRNAs are >20-fold higher in
240 the PDAC tumor tissues than in the non-disease pancreatic tissue from the GTEx (SULF1 $\log_2FC=6.81$,
241 SULF2 $\log_2FC=4.85$, both $p<0.001$, **Figure 1D**), which is consistent with the large difference in the
242 protein expression (**Table 2**). The survival analyses presented below further support the impact of
243 SULF enzymes on HNSC and PDAC and warrant additional study.

244

245 **Association of SULF1 and SULF2 mRNA expression with survival outcomes**

246 The association of SULF1 or SULF2 mRNA expression and PFI was analyzed by univariate log-rank
247 tests and compared to published studies (**Supplemental Table 1B**). Our literature search found five
248 studies (bladder²², breast³², lung¹⁶, gastric³³, and liver¹¹) showing that high SULF1 expression is
249 associated with poor survival outcomes. We observed an adverse prognostic trend for these cancers in
250 the TCGA studies but the associations did not reach significance (**Supplemental Table 1B**). In
251 addition, high SULF1 is a significant (FDR<0.05) prognostic factor in KIRP (HR=2.693), PAAD
252 (HR=2.365), CESC (HR=2.227), COAD (HR=1.867), and LGG (HR=1.479); we are not aware of studies
253 reporting these associations. We note that SULF1 is significantly increased at the mRNA (**Table 1**) and
254 protein (**Table 2**) levels in COAD and negatively impacts survival; such associations deserve further
255 attention. The association of high SULF1 with poor survival (**Figure 2**) in many cancers is quite
256 remarkable especially in view of the fact that the SULF1 transcript is low in most cancer cell lines
257 (**Supplemental Figure 1**)^{20,21}.

258 We found studies of 8 cancers (bladder²², esophagus³⁴, head and neck²³, kidney³⁵, liver³⁶,
259 lung³⁷, and pancreatic³⁸) showing significant association of SULF2 with survival but the impact is less
260 uniform. Our analysis confirms the reported associations (all FDR<0.05) of high SULF2 expression with
261 poor PFI of patients with HNSC (HR=1.687), LIHC (HR =1.587), and PAAD (HR =1.724) (**Figure 2**). An
262 adverse association of SULF2 with PFI in ESCA (HR=1.352, p=0.158) did not reach statistical
263 significance as reported³⁴. In addition, high SULF2 expression is significantly (FDR<0.05) associated
264 with better PFI in LGG (HR=0.354, p<0.001) and UCEC (HR=0.415, p=0.004) (**Supplemental Table**
265 **1B**) and a favorable prognostic impact of high SULF2 was reported in clear cell renal carcinoma³⁵
266 (HR=0.07, p=0.015, n=49) and lung squamous cell carcinoma³⁷ (HR=0.11, p=0.02, n=51). These
267 observations were, however, not corroborated in the larger TCGA studies (**Supplemental Table 1B**).
268

269 **Survival impact of SULF1 and SULF2 in HNSC differs by pathological tumor stage**

270 We have shown that high SULF1 or SULF2 expression in HNSC is associated with poor survival
271 outcomes²³. This association was further confirmed in our study of 88 HNSC patients enrolled at the
272 University of Toronto; we used an optimized cutoff of SULF1 (52 high and 36 low expressors) or SULF2
273 (24 high and 64 low expressors) to show that high expression of either gene is associated with poor
274 disease-free interval (p<0.001) (**Supplemental Figure 2**). The study has limited size but provides an
275 important independent verification of the results.

276 SULF1 is associated with poor survival in univariate analysis²³ but, contrary to SULF2, loses a
277 significant impact when analyzed in a multivariable model together with SULF2, age, gender, smoking
278 history, tumor stage, and radiation therapy. However, the TCGA sample-set used in the analysis is
279 dominated by tumors of stage 3 and 4. To further evaluate the impact of SULF1, we analyzed
280 separately HNSC patients with early (stage 1 and 2) or late (stage 3 and 4) tumors. We observe that
281 the survival outcomes differ by stage even though SULF1 and SULF2 expression does not differ
282 between early- and late-stage tumors²³. High SULF1 mRNA expression in tumor is associated with
283 poor PFI in early-stage patients (HR=2.327, p=0.023, **Figure 3A**) but not in late-stage patients

284 (HR=1.034, p=0.842). On the contrary, SULF2 mRNA overexpression is significantly associated with
285 poor PFI outcomes in late-stage patients (HR=1.794, p<0.001, **Figure 3B**) but not in early-stage
286 patients (HR=1.457, p=0.866). The high impact of SULF1 in the early tumors is even more pronounced
287 in a multivariable model²³ that includes SULF1, SULF2, age, gender, smoking, and radiation therapy.
288 While SULF2 is insignificant in the 97 stage 1 and 2 patients (HR=1.32 (95% CI, 0.58-3.0), p=0.59),
289 high SULF1 remains an independent predictor of poor PFI (HR=4.61 (1.88-11.3) p<0.001). We
290 speculate that this pattern of adverse prognostic impact is associated with a SULF1 function in the local
291 spread of the disease at an early stage which is complemented by SULF2 activity at later stages of the
292 HNSC progression.

293

294 **Cell-specific expression of SULF enzymes in HNSC**

295 Analysis of a single cell RNA-seq dataset of HNSC²⁷ showed that the percentage of SULF1 and SULF2
296 positive cells varies substantially across 9 cell types (**Supplemental Table 3**). SULF2 is expressed in
297 63% of all tumor cells (n=1,389 of 2215) which is the highest representation among all the cell types.
298 The positivity of SULF1 is the highest in fibroblasts (48%, n=691 of 1,440) compared to <20% in any
299 other cell type (**Supplemental Table 3, Figure 4A**). SULF1 is expressed in only 14% of tumor cells
300 (n=309 of 2,215).

301 SULF1 expression is significantly higher in fibroblasts compared to tumor epithelial cells in
302 terms of both percent positivity and expression; in contrast, SULF2 expression has the opposite trend
303 (**Figure 4**). The mean SULF1 mRNA, represented as $\log_2(\text{TPM}+1)$, is 0.172 in tumor cells compared to
304 1.099 in fibroblasts (p<0.001); the mean value of SULF2 mRNA is 1.145 in tumor cells compared to
305 0.386 in fibroblasts (p<0.001) (**Figure 4A**). The percentage of positive cells among individual patients
306 ranges from 2.4-54.5% for SULF1 and 43.1-91.7% for SULF2 in tumor cells, and from 31.3-71.0% for
307 SULF1 and 8.7-43.8% for SULF2 in fibroblasts (**Figure 4B**). Interestingly, the mean expression of
308 SULF1 in SULF1-positive cells remains significantly higher in fibroblasts than in tumor cells (2.291 vs
309 1.232, p<0.001); however, the mean expression of SULF2 in SULF2-positive fibroblasts and tumor cells

310 is the same (1.826 vs 1.812, p=0.8, **Figure 4C**). These results suggest that SULF1 is expressed to a
311 high degree by a large sub-population of fibroblasts; SULF2 is expressed to the same degree in the
312 fibroblasts and tumor cells but the population of tumor cells expressing SULF2 is much bigger than that
313 of the fibroblasts. We conclude that SULF1 and SULF2 in HNSC derive primarily from the fibroblasts
314 and tumor cells, respectively. The results show that the expression of SULF1 and SULF2 in HNSC is
315 regulated by different mechanisms which leads to an independent regulation of the HS-dependent
316 signaling activities by the two enzymes.

317 To further strengthen the observation that SULF1 is expressed in fibroblasts and SULF2 in
318 tumor cells, we analyzed the RNA-seq data from the Cancer Cell Line Encyclopedia (CCLE). SULF1
319 expression in fibroblast cells is distinctly higher compared to all the cancer cell lines (**Supplemental**
320 **Figure 1A**) but SULF2 expression is the highest in cell lines from neuroblastoma, HNSC, and other
321 cancers (**Supplemental Figure 1B**). This suggests that SULF1 expression in fibroblasts of the tumor
322 tissues is not unique for HNSC but more likely a pan-cancer event.

323 A final demonstration of the expression of SULF1 in fibroblasts comes from our PDX studies of
324 42 HNSC patients (**Figure 5**) showing that in all but one case the expression of SULF1 decreases in
325 the PDX compared to the primary tumor (median primary tumor TPM=52.6, median PDX TPM = 1.7,
326 p<0.001; Wilcoxon rank-sum test). This is in line with the expansion of tumor cells and loss of the
327 transplanted stroma commonly observed in the PDX models. In contrast, SULF2 expression in the PDX
328 increases (median primary tumor TPM = 50, median PDX TPM = 103, p<0.01; Wilcoxon rank-sum test)
329 which confirms that the tumor cell is the major source of this enzyme.

330

331 **SULF1 expression in cancer-associated fibroblasts**

332 Dominant expression of SULF1 in fibroblasts and its increase in HNSC tissues, in spite of low
333 expression in the HNSC cell lines, prompted us to analyze its connection with cancer-associated
334 fibroblasts (CAF). We examined the correlation of genes (n=206) of CAF1, a HNSC CAF defined
335 previously²⁷, with SULF1 in the CPTAC HNSC study. Analysis of the Pearson's correlation coefficients

336 shows that 122 proteins in the CPTAC dataset are correlated with SULF1 with $r>0.55$, of which 44
337 belong to the CAF1 cluster (**Supplemental Table 4**). The distribution of the correlation coefficients of
338 the CAF1 genes is shifted to significantly higher values compared to other proteins ($n=10,073$, $p<0.001$)
339 (**Figure 4D**). The correlations of SULF2 protein with the CAF1 genes is weaker, as expected, and we
340 observed a similar trend in the RNAseq data from the CPTAC HNSC study (**Supplemental Table 4**).
341 The expression signature of the HNSC CAF³⁰ overlaps substantially with a COL11A1-expressing CAF
342 which is defined by an invasive pre-metastatic phenotype^{29,30}. This subset of CAF was observed in
343 multiple cancers (HNSC, ovarian, pancreatic, colorectal) which strongly suggests that SULF1 is
344 impactful in multiple cancers, in addition to HNSC.

345 The association of SULF1 with CAF is further supported by our RNAscope analysis of SULF1
346 and SULF2 in 20 OSCC patients (**Figure 6**). The *in-situ* hybridization clearly shows that SULF1
347 expressing cells are more common in the stroma (mean 24.9% stroma vs 8.4% tumor, $p<0.001$) while
348 SULF2 expression is higher in the cancer cells (mean 22.7% stroma vs 52.5% tumor, $p<0.001$)
349 (**Supplemental Table 5**). In an exploratory analysis, we separated the OSCC patients into node
350 positive ($n=10$) and node-negative ($n=10$) groups and we observe a trend for higher SULF1 and SULF2
351 expression in the node-positive cases (**Figure 6**). The results support that SULF1-positive CAF
352 accumulate at the invasive front of the HNSC at a pre-metastatic stage and facilitate local invasion.

353

354

355 **DISCUSSION**

356 Previous studies showed that SULF1 and SULF2 are upregulated in several cancers^{4,16,22,23,34,37,38}.
357 SULF2 is considered oncogenic⁷, the SULF1 impact is more controversial^{7,39,40}. Are there unifying
358 trends in the cancer biology of the heparan 6-O-endosulfatases supporting their impact on HNSC and
359 other cancers? Proteogenomic analysis of the TCGA and CPTAC datasets conclusively documents a
360 significant elevation of SULF1 and SULF2 in multiple cancer tissues compared to adjacent (**Table 1**) or
361 normal (**Supplemental Table 1**) counterparts. This is uniformly corroborated by protein increases

362 (**Table 2**) and at least six cancers (BRCA, HNSC, KIRC, LUSC, LUAD, PAAD) consistently upregulate
363 both SULF1 and SULF2. PDAC mRNA was not reported in the TCGA adjacent normal but both mRNA
364 (compared to normal) and protein show some of the highest increases overall. Other cancers
365 upregulate one of the SULFs (e.g. SULF1 in COAD) or the SULFs remain unchanged, but decreases,
366 like SULF2 in UCEC, are rare.

367 At the same time, high expression of SULF1 or SULF2 is typically associated with poor survival
368 (**Supplemental Table 1B**). Among all the cancers examined, we observe most consistent impact of
369 SULF1 and SULF2 in PAAD and HNSC (**Figure 1 and 2**) but other cancers are affected as well. HNSC
370 is an interesting case because SULF2 negatively affects survival of stage III and IV patients while the
371 impact of SULF1 is more prominent in stage I and II cancer patients (**Figure 3**). Associations of high
372 expression with improved outcomes are restricted to SULF2 (e.g. in UCEC) but remain exceptional.
373 High SULF1 predicts significantly lower PFI in at least 5 cancers and other malignancies, reported
374 previously, follow a similar trend (**Supplemental Table 1B**). The consistent increases of SULF1 in
375 cancer tissues and their uniform association with poor survival outcomes are quite remarkable because
376 SULF1 expression in cancer cell lines is typically low^{20,21} (**Supplemental Figure 1**). However, our
377 analyses of HNSC (**Figure 6**) and analyses of other cancers⁴¹ show that SULF1 is high in cancer
378 tissues and supplied by the CAF, a cell type associated with cancer invasion, metastasis, and the
379 escape from immune surveillance^{30,42,43} and so far overlooked in the cancer biology of the SULF
380 enzymes.

381 Our PDX study of HNSC shows that SULF1, contrary to SULF2, disappears in the transplanted
382 tumors, as expected for a gene expressed by the stromal cells (**Figure 5**). The scRNAseq data²⁷ show
383 a strong correlation of SULF1 with CAF1 genes (**Figure 4**) and the genes of the COL11A1-expressing
384 CAF associated with locally invasive pre-metastatic cancer disease²⁹ (**Supplemental Table 4**). SULF1
385 is a gene typical of this subtype of CAF in several cancers³⁰ which supports that the CAF supply SULF1
386 not only in HNSC but in general; the function of SULF1 in the biology of the CAF deserves further
387 attention. Finally, our RNAScope study shows that SULF1+ cells localize to the stroma while SULF2+

388 cells overlap to a large degree with the cytokeratin+ tumor cells (**Figure 3**). Our results also suggest
389 that SULF1+ cells in the stroma are more abundant in node positive tumors which is in line with recent
390 papers associating low tumor/stroma ratio⁴⁴ or the presence of CAF⁴⁵ with poor HNSC survival
391 outcomes.

392 In conclusion, our study confirms overexpression of SULF1 and SULF2 in various cancers
393 which is commonly associated with poor survival outcomes; the 6-O-endosulfatases emerge as
394 interesting targets for cancer monitoring and therapeutic intervention. It is expected that the enzymes
395 determine survival of HNSCC patients by adjusting gradients of heparan sulfate binding proteins in the
396 microenvironment of tumors. We have strong evidence that SULF1 is supplied by CAF while SULF2 is
397 provided primarily by the cancer cells which has important consequences because the secreted SULF
398 enzymes act locally due to strong non-covalent interactions with cell surfaces⁷. In addition, recent data
399 suggest that their activity is regulated by cell-specific posttranslational modifications⁴⁶. We know that
400 SULFs regulate oncogenic pathways but they also adjust matrix structure, angiogenesis, or immune
401 responses^{3,4,7,8,10,15–17,47,48} and their function at the tumor/stroma interface in different cancers needs
402 further study.

403

404 Acknowledgments

405 The authors want to thank Dr. Dimitris Anastassiou for his insightful analyses of the CAF.

406

407 REFERENCE

408 1. Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD. Cloning and characterization
409 of two extracellular heparin-degrading endosulfatases in mice and humans. *J Biol Chem.*
410 2002;277(51):49175-49185. doi:10.1074/jbc.M205131200

411 2. Appel MJ, Bertozzi CR. Formylglycine, a Post-Translationally Generated Residue with Unique
412 Catalytic Capabilities and Biotechnology Applications. *ACS Chem Biol.* 2015;10(1):72-84.
413 doi:10.1021/cb500897w

414 3. Hanson SR, Best MD, Wong CH. Sulfatases: structure, mechanism, biological activity, inhibition,
415 and synthetic utility. *Angew Chem Int Ed Engl.* 2004;43(43):5736-5763.
416 doi:10.1002/anie.200300632

417 4. Morimoto-Tomita M, Uchimura K, Bistrup A, et al. Sulf-2, a proangiogenic heparan sulfate
418 endosulfatase, is upregulated in breast cancer. *Neoplasia.* 2005;7(11):1001-1010.
419 doi:10.1593/neo.05496

420 5. Habuchi H, Habuchi O, Kimata K. Sulfation pattern in glycosaminoglycan: does it have a code?
421 *Glycoconj J.* 2004;21(1-2):47-52. doi:10.1023/B:GLYC.0000043747.87325.5e

422 6. Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian
423 physiology. *Nature.* 2007;446(7139):1030-1037. doi:10.1038/nature05817

424 7. Rosen SD, Lemjabbar-Alaoui H. Sulf-2: an extracellular modulator of cell signaling and a cancer
425 target candidate. *Expert Opin Ther Targets.* 2010;14(9):935-949.
426 doi:10.1517/14728222.2010.504718

427 8. Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CPJ. QSulf1 remodels the 6-O
428 sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. *J Cell Biol.*
429 2003;162(2):341-351. doi:10.1083/jcb.200212083

430 9. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. *Cold Spring Harb Perspect
431 Biol.* 2011;3(7). doi:10.1101/cshperspect.a004952

432 10. Uchimura K, Morimoto-Tomita M, Bistrup A, et al. HSulf-2, an extracellular endoglycosamine-6-
433 sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF,
434 FGF-1, and SDF-1. *BMC Biochem.* 2006;7:2. doi:10.1186/1471-2091-7-2

435 11. Dhanasekaran R, Nakamura I, Hu C, et al. Activation of the transforming growth factor- β /SMAD
436 transcriptional pathway underlies a novel tumor-promoting role of sulfatase 1 in hepatocellular
437 carcinoma. *Hepatology.* 2015;61(4):1269-1283. doi:10.1002/hep.27658

438 12. Chopra P, Joshi A, Wu J, et al. The 3-O-sulfation of heparan sulfate modulates protein binding
439 and lyase degradation. *Proc Natl Acad Sci U S A.* 2021;118(3). doi:10.1073/pnas.2012935118

440 13. Nagarajan B, Holmes SG, Sankaranarayanan NV, Desai UR. Molecular dynamics simulations to
441 understand glycosaminoglycan interactions in the free- and protein-bound states. *Curr Opin Struct
442 Biol.* 2022;74:102356. doi:10.1016/j.sbi.2022.102356

443 14. Qiu H, Shi S, Yue J, et al. A mutant-cell library for systematic analysis of heparan sulfate
444 structure-function relationships. *Nat Methods.* 2018;15(11):889-899. doi:10.1038/s41592-018-
445 0189-6

446 15. El Masri R, Seffouh A, Lortat-Jacob H, Vivès RR. The “in and out” of glucosamine 6-O-sulfation:
447 the 6th sense of heparan sulfate. *Glycoconj J.* 2017;34(3):285-298. doi:10.1007/s10719-016-
448 9736-5

449 16. Bret C, Moreaux J, Schved JF, Hose D, Klein B. SULFs in human neoplasia: implication as
450 progression and prognosis factors. *J Transl Med.* 2011;9:72. doi:10.1186/1479-5876-9-72

451 17. Marques C, Reis CA, Vivès RR, Magalhães A. Heparan Sulfate Biosynthesis and Sulfation
452 Profiles as Modulators of Cancer Signalling and Progression. *Front Oncol.* 2021;11:778752.
453 doi:10.3389/fonc.2021.778752

454 18. Holmes R. Comparative and evolutionary studies of vertebrate extracellular sulfatase genes and
455 proteins: SULF1 and SULF2. *J Proteomics Bioinform.* 2017;10(2).

456 19. Luo X, Campbell NA, He L, et al. SULF2 monoclonal antibody 5D5 suppresses human
457 cholangiocarcinoma xenograft growth via regulation of a SULF2-PDGFR β -YAP signaling axis.
458 *Hepatology.* Published online March 18, 2021. doi:10.1002/hep.31817

459 20. Yang YW, Phillips JJ, Jablons DM, Lemjabbar-Alaoui H. Development of novel monoclonal
460 antibodies and immunoassays for sensitive and specific detection of SULF1 endosulfatase.
461 *Biochimica et Biophysica Acta (BBA) - General Subjects.* 2021;1865(2):129802.
462 doi:10.1016/j.bbagen.2020.129802

463 21. Lai J, Chien J, Staub J, et al. Loss of HSulf-1 up-regulates heparin-binding growth factor signaling
464 in cancer. *J Biol Chem.* 2003;278(25):23107-23117. doi:10.1074/jbc.M302203200

465 22. Lee HY, Yeh BW, Chan TC, et al. Sulfatase-1 overexpression indicates poor prognosis in
466 urothelial carcinoma of the urinary bladder and upper tract. *Oncotarget.* 2017;8(29):47216-47229.
467 doi:10.18632/oncotarget.17590

468 23. Yang Y, Ahn J, Raghunathan R, et al. Expression of the Extracellular Sulfatase SULF2 Affects
469 Survival of Head and Neck Squamous Cell Carcinoma Patients. *Front Oncol.* 2020;10:582827.
470 doi:10.3389/fonc.2020.582827

471 24. Edwards NJ, Oberti M, Thangudu RR, et al. The CPTAC Data Portal: A Resource for Cancer
472 Proteomics Research. *J Proteome Res.* 2015;14(6):2707-2713. doi:10.1021/pr501254j

473 25. Rudnick PA, Markey SP, Roth J, et al. A Description of the Clinical Proteomic Tumor Analysis
474 Consortium (CPTAC) Common Data Analysis Pipeline. *J Proteome Res.* 2016;15(3):1023-1032.
475 doi:10.1021/acs.jproteome.5b01091

476 26. Liu J, Lichtenberg T, Hoadley KA, et al. An Integrated TCGA Pan-Cancer Clinical Data Resource
477 to Drive High-Quality Survival Outcome Analytics. *Cell.* 2018;173(2):400-416.e11.
478 doi:10.1016/j.cell.2018.02.052

479 27. Puram SV, Tirosh I, Parikh AS, et al. Single-Cell Transcriptomic Analysis of Primary and
480 Metastatic Tumor Ecosystems in Head and Neck Cancer. *Cell.* 2017;171(7):1611-1624.e24.
481 doi:10.1016/j.cell.2017.10.044

482 28. Huang C, Chen L, Savage SR, et al. Proteogenomic insights into the biology and treatment of
483 HPV-negative head and neck squamous cell carcinoma. *Cancer Cell.* 2021;39(3):361-379.e16.
484 doi:10.1016/j.ccr.2020.12.007

485 29. Kim H, Watkinson J, Varadan V, Anastassiou D. Multi-cancer computational analysis reveals
486 invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1.
487 *BMC Med Genomics.* 2010;3:51. doi:10.1186/1755-8794-3-51

488 30. Zhu K, Cai L, Cui C, de Los Toyos JR, Anastassiou D. Single-cell analysis reveals the pan-cancer
489 invasiveness-associated transition of adipose-derived stromal cells into COL11A1-expressing
490 cancer-associated fibroblasts. *PLoS Comput Biol.* 2021;17(7):e1009228.
491 doi:10.1371/journal.pcbi.1009228

492 31. Karamboulas C, Bruce JP, Hope AJ, et al. Patient-Derived Xenografts for Prognostication and
493 Personalized Treatment for Head and Neck Squamous Cell Carcinoma. *Cell Rep.*
494 2018;25(5):1318-1331.e4. doi:10.1016/j.celrep.2018.10.004

495 32. Chen F, Zhang Z, Yu Y, Liu Q, Pu F. HSulf-1 and palbociclib exert synergistic antitumor effects on
496 RB-positive triple-negative breast cancer. *Int J Oncol.* 2020;57(1):223-236.
497 doi:10.3892/ijo.2020.5057

498 33. Hu Y, Li J, Luo H, Song W, Yang J. Differential Expression of COL1A1, COL1A2, COL6A3, and
499 SULF1 as Prognostic Biomarkers in Gastric Cancer. *Int J Gen Med.* 2021;14:5835-5843.
500 doi:10.2147/IJGM.S321265

501 34. Lui NS, van Zante A, Rosen SD, Jablons DM, Lemjabbar-Alaoui H. SULF2 expression by
502 immunohistochemistry and overall survival in oesophageal cancer: a cohort study. *BMJ Open.*
503 2012;2(6):e001624. doi:10.1136/bmjopen-2012-001624

504 35. Kumagai S, Ishibashi K, Kataoka M, et al. Impact of Sulfatase-2 on cancer progression and
505 prognosis in patients with renal cell carcinoma. *Cancer Sci.* 2016;107(11):1632-1641.
506 doi:10.1111/cas.13074

507 36. Lai JP, Sandhu DS, Yu C, et al. Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth
508 factor signaling, and decreases survival in hepatocellular carcinoma. *Hepatology.*
509 2008;47(4):1211-1222. doi:10.1002/hep.22202

510 37. Lui NS, Yang YW, van Zante A, Buchanan P, Jablons DM, Lemjabbar-Alaoui H. SULF2
511 Expression Is a Potential Diagnostic and Prognostic Marker in Lung Cancer. *PLoS One.*
512 2016;11(2):e0148911. doi:10.1371/journal.pone.0148911

513 38. Alhasan SF, Haugk B, Ogle LF, et al. Sulfatase-2: a prognostic biomarker and candidate
514 therapeutic target in patients with pancreatic ductal adenocarcinoma. *Br J Cancer*.
515 2016;115(7):797-804. doi:10.1038/bjc.2016.264

516 39. Lai JP, Sandhu DS, Shire AM, Roberts LR. The tumor suppressor function of human sulfatase 1
517 (SULF1) in carcinogenesis. *J Gastrointest Cancer*. 2008;39(1-4):149-158. doi:10.1007/s12029-
518 009-9058-y

519 40. Hammond E, Khurana A, Shridhar V, Dredge K. The Role of Heparanase and Sulfatases in the
520 Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and
521 Opportunities for Novel Cancer Therapeutics. *Front Oncol*. 2014;4:195.
522 doi:10.3389/fonc.2014.00195

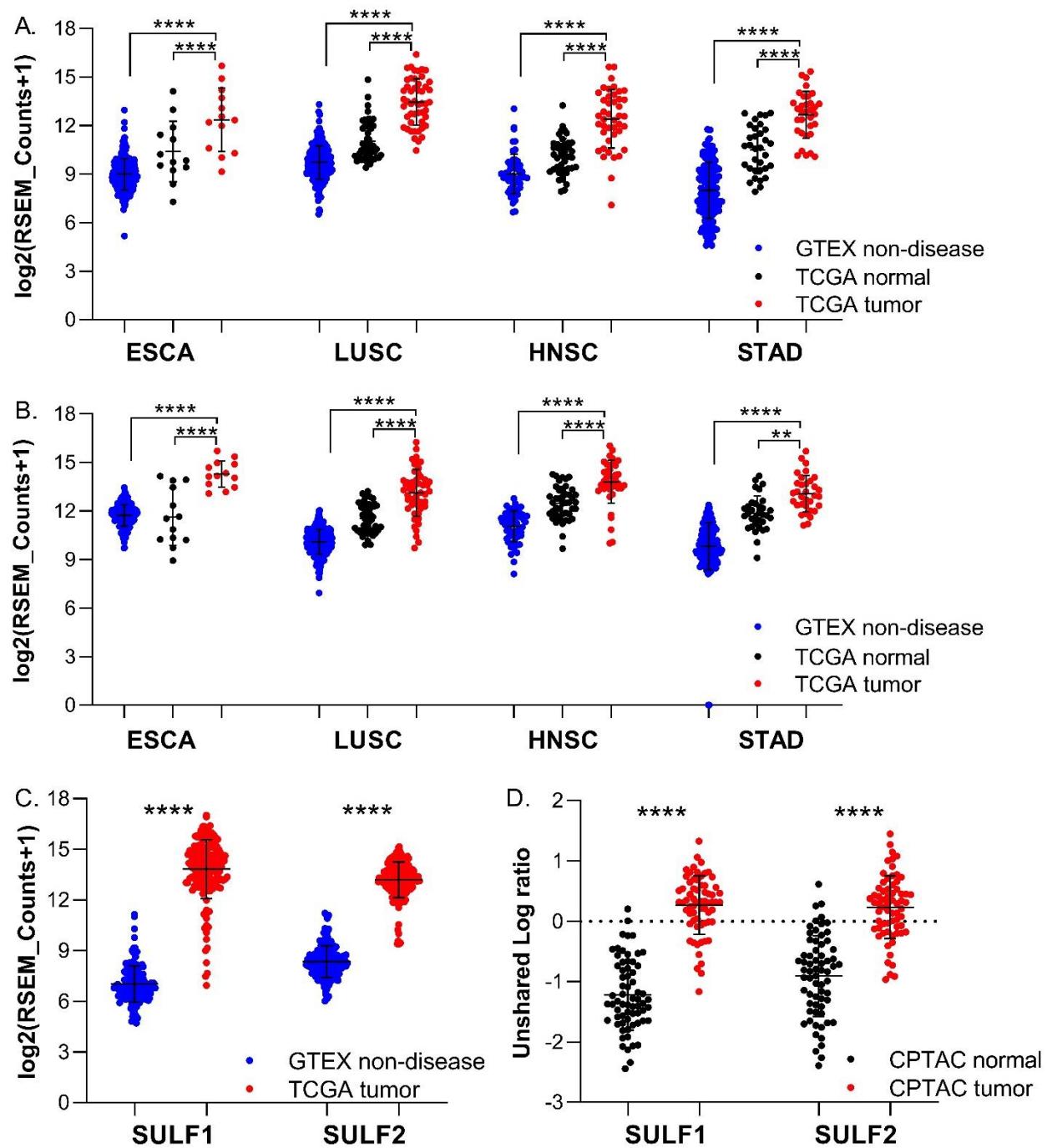
523 41. Hussain A, Voisin V, Poon S, et al. Distinct fibroblast functional states drive clinical outcomes in
524 ovarian cancer and are regulated by TCF21. *J Exp Med*. 2020;217(8). doi:10.1084/jem.20191094

525 42. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF- β -associated extracellular
526 matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure.
527 *Nat Commun*. 2018;9(1):4692. doi:10.1038/s41467-018-06654-8

528 43. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated
529 fibroblasts. *Nat Rev Clin Oncol*. 2021;18(12):792-804. doi:10.1038/s41571-021-00546-5

530 44. Almangush A, Alabi RO, Troiano G, et al. Clinical significance of tumor-stroma ratio in head and
531 neck cancer: a systematic review and meta-analysis. *BMC Cancer*. 2021;21(1):480.
532 doi:10.1186/s12885-021-08222-8

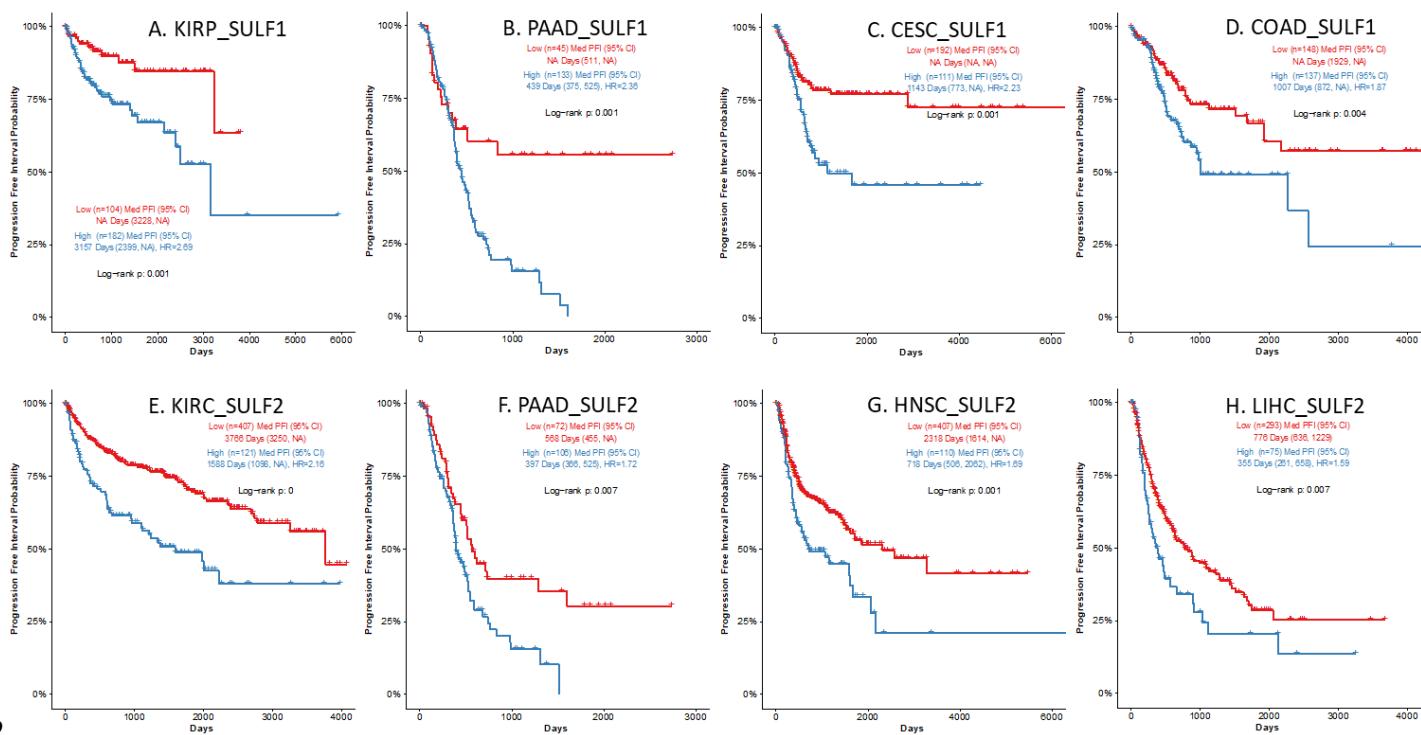
533 45. Marsh D, Suchak K, Moutasim KA, et al. Stromal features are predictive of disease mortality in
534 oral cancer patients. *J Pathol*. 2011;223(4):470-481. doi:10.1002/path.2830


535 46. El Masri R, Seffouh A, Roelants C, et al. Extracellular endosulfatase Sulf-2 harbors a
536 chondroitin/dermatan sulfate chain that modulates its enzyme activity. *Cell Rep.*
537 2022;38(11):110516. doi:10.1016/j.celrep.2022.110516

538 47. Lemjabbar-Alaoui H, van Zante A, Singer MS, et al. Sulf-2, a heparan sulfate endosulfatase,
539 promotes human lung carcinogenesis. *Oncogene*. 2010;29(5):635-646. doi:10.1038/onc.2009.365

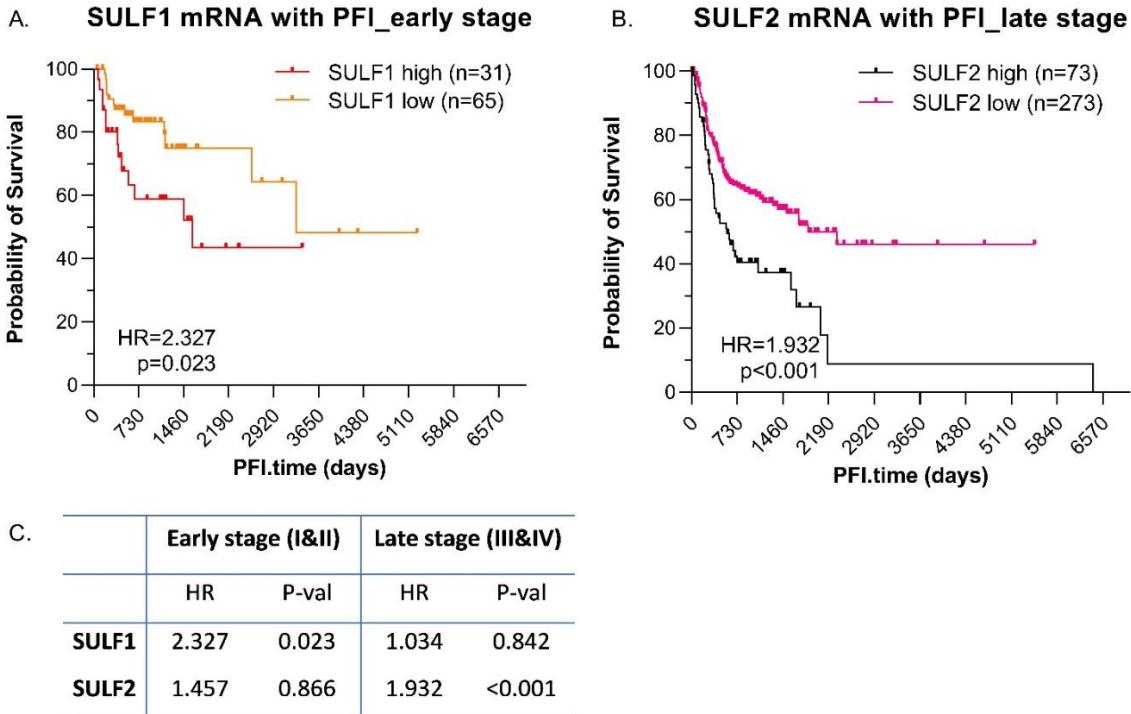
540 48. Nawroth R, van Zante A, Cervantes S, McManus M, Hebrok M, Rosen SD. Extracellular
541 sulfatases, elements of the Wnt signaling pathway, positively regulate growth and tumorigenicity of
542 human pancreatic cancer cells. *PLoS One*. 2007;2(4):e392. doi:10.1371/journal.pone.0000392

543


544

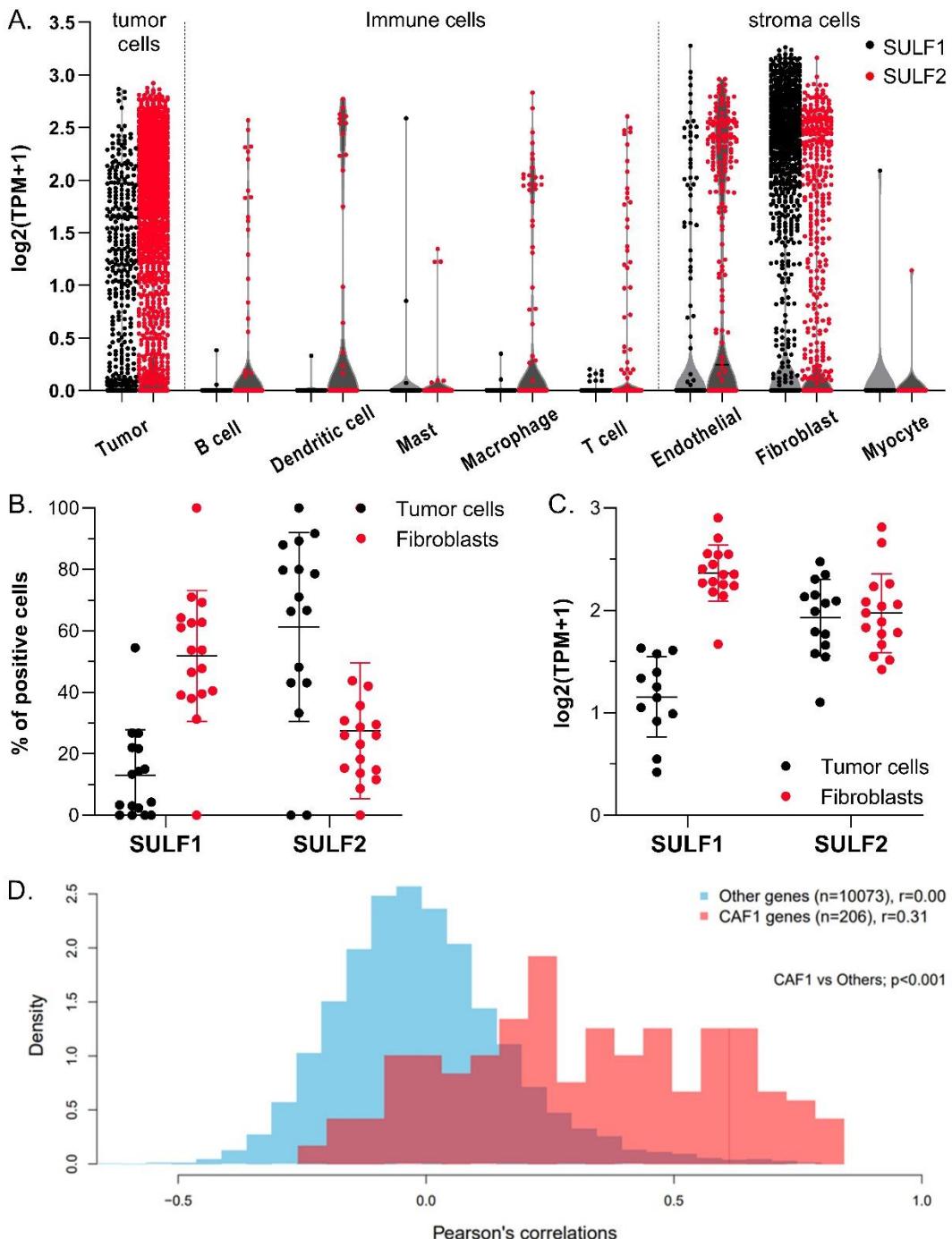
545

546 **Figure 1. Expression of SULF1 and SULF2 in five cancer types.** (A) SULF1 and (B) SULF2 mRNA in
 547 tumor compared to paired normal tissue of cancer patients in TCGA datasets and to non-disease tissues
 548 of healthy donors from GTEx; (C) SULF1 and SULF2 mRNA in the PAAD tumor tissues from TCGA
 549 compared to non-cancerous pancreatic tissue from GTEx. (D) SULF1 and SULF2 protein in the PDAC
 550 tumor and adjacent non-cancer tissues from CPTAC; $p < 0.0001$ (****), $p < 0.01$ (**).

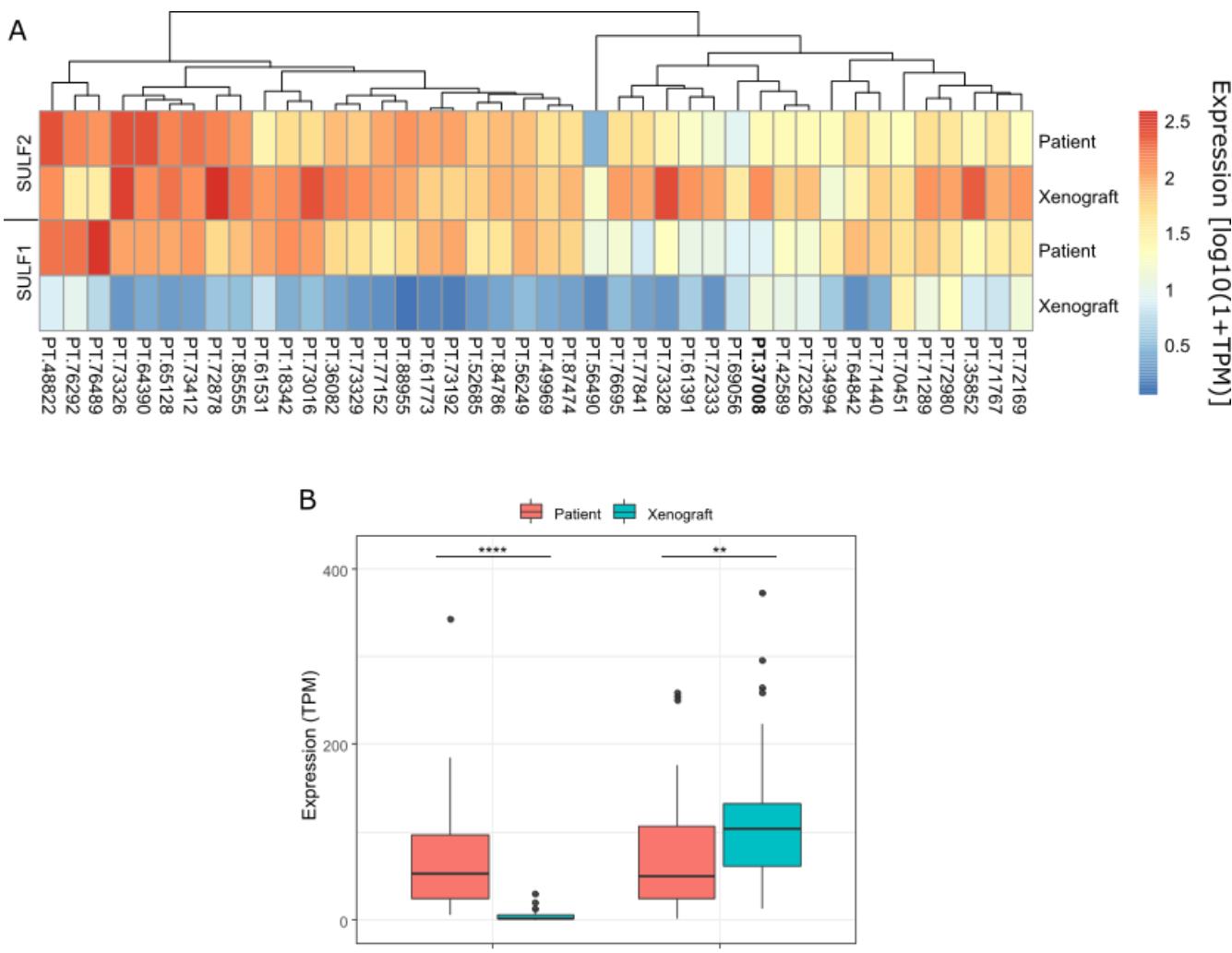

551

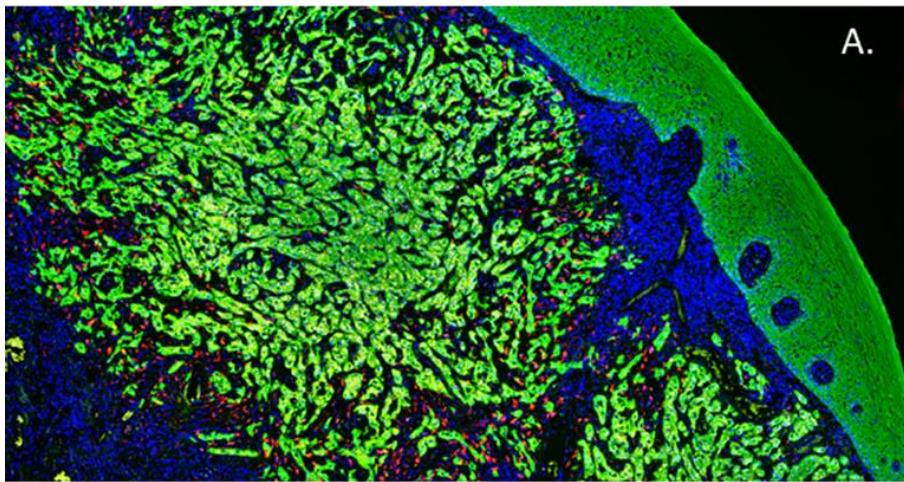
552

553 **Figure 2. SULF1 and SULF2 expression in tumor tissues is associated with poor survival. High**
554 **SULF1 (a-d) or high SULF2 (e-h) expression is significantly (HR>1.5, FDR<0.05) associated with poor**
555 **progression free interval (PFI) in the following TCGA cancer studies: a. KIRP, b. PAAD, c. CESC, d.**
556 **COAD for SULF1; and e. KIRC, f. PAAD, g. HNSC, and h. LIHC for SULF2.**


557

558


559 **Figure 3. Impact of SULF1 and SULF2 expression on PFI of HNSC patients differs between early**
560 **and late stage tumors.** (A) SULF1 is associated with PFI in early stage HNSC; (B) SULF2 is
561 associated with PFI in late stage HNSC. (C) Summary statistics of the PFI in the early and late stage
562 tumors


563

564

565 **Figure 4. SULF1 and SULF2 are differentially expressed in HNSC epithelial and fibroblast cells.**
 566 (A) SULF1 and SULF2 mRNA expression in different cell types detected in HNSC tumors; (B) Percent of
 567 cells expressing SULF1 or SULF2 differ between the tumor epithelial and fibroblast cells ($p<0.0001$, two-
 568 way ANOVA); (C) Expression of SULF1 mRNA in SULF-positive cells differs between tumor epithelial
 569 cells and fibroblast ($p<0.001$) but SULF2 does not ($p=0.800$); and (D) Distribution of Pearson's correlation
 570 coefficients of SULF1 with CAF1 (n=206) and other (n=10,073) proteins measured in the CPTAC HNSC
 571 study²⁸. Correlation coefficients of SULF1 protein (red bars) with the CAF1 proteins are significantly
 572 ($p<0.001$) higher than the correlations with other proteins. Analyses and the definition of CAF1 are based
 573 on a single cell RNA-seq study of 5,578 cells in tumor tissues of 18 HNSC patients²⁷.

B.	SULF1+ cells, stroma		SULF2+ cells, tumor	
	Node-negative group	Node-positive group	Node-negative group	Node-positive group
Mean	18%	34%	43%	62%
Median	15%	33%	52%	67%
St. Dev.	15%	12%	31%	25%
p-value	0.02		0.13	

581

582 **Figure 6. RNAScope of OSCC tumors: A.** a tongue cancer stained for DAPI (blue), cytokeratin (green),
583 and with *in situ* probes for SULF1 (red) and SULF2 (yellow). SULF1 localizes to the stroma, SULF2 is
584 expressed mainly in the tumor epithelial cells. Adjacent normal tissue is mostly negative for both SULF1
585 and SULF2. **B.** comparison of SULF1+ and SULF2+ cell counts in the cancer cell (cytokeratin+) and
586 adjacent stroma (cytokeratin-) of OSCC patients (n=20). Percentage of SULF1+ cells in the stroma is
587 significantly higher (p=0.023) in node positive patients (n=10) with poor survival than in node negative
588 (n=10) patients with good survival. SULF2* cells in the tumor follow a similar trend but the difference is
589 not significant.

590
591

TCGA study			SULF1		SULF2	
Project	Primary name	No. Pairs	log ₂ FC	FDR	log ₂ FC	FDR
LUAD	lung adenocarcinoma	58	2.78	5.73E-12	0.74	8.52E-04
ESCA	esophageal carcinoma	13	2.76	6.50E-03	2.65	8.52E-04
LUSC	lung squamous cell carcinoma	50	2.62	8.70E-13	1.58	1.31E-08
COAD	colon adenocarcinoma	26	2.55	7.78E-05	0.5	2.12E-02
HNSC	head and neck squamous cell carcinoma	43	2.52	5.20E-07	1.32	3.44E-05
STAD	stomach adenocarcinoma	33	2.46	1.48E-05	1.22	8.52E-04
BLCA	bladder urothelial carcinoma	19	2.14	2.80E-04	0.56	2.75E-01
BRCA	breast invasive carcinoma	112	2.03	1.08E-25	0.82	1.31E-08
KIRC	kidney renal clear cell carcinoma	72	1.31	1.85E-06	0.98	4.47E-07
LIHC	liver hepatocellular carcinoma	50	0.9	1.07E-01	-0.48	1.16E-01
KIRP	kidney renal papillary cell carcinoma	32	0.23	8.75E-01	1.31	4.45E-05
PRAD	prostate adenocarcinoma	51	-0.15	1.07E-01	-0.75	4.45E-05
THCA	thyroid carcinoma	59	-0.51	4.98E-03	0.26	4.01E-02
KICH	kidney chromophobe	25	-0.6	1.23E-02	-0.77	9.36E-02

592

593 **Table 1.** Differential expression of SULF1 and SULF2 mRNA between paired tumor and normal tissues
 594 in 14 TCGA studies. Entries with fold-change>2 and FDR<0.05 are in bold.

595

CPTAC study			SULF1		SULF2	
Project	Primary name	No. Pairs	log ₂ FC	FDR	log ₂ FC	FDR
HNSC	head and neck squamous cell carcinoma	68	1.59	1.90E-15	0.5	5.37E-07
BRCA	breast invasive carcinoma	17	1.51	2.80E-05	0.87	2.14E-03
PDAC	pancreatic ductal adenocarcinoma	66	1.49	5.47E-18	1.14	1.45E-16
LUSC	lung squamous cell carcinoma	102	1.35	3.82E-28	0.45	1.62E-11
LUAD	lung adenocarcinoma	100	0.95	5.47E-18	0.19	5.37E-03
COAD	colon adenocarcinoma	96	0.73	2.16E-14	ND	ND
UCEC	uterine corpus endometrial carcinoma	30	0.5	1.69E-03	-0.43	1.09E-02
KIRC	clear cell renal cell carcinoma	84	0.46	4.16E-04	0.26	5.22E-03
HBV-HCC	HBV-related hepatocellular carcinoma	160	0.23	5.69E-02	-0.33	6.83E-07
OSC_JHU	ovarian serous cystadenocarcinoma	12	0.43	7.04E-02	0.44	3.80E-02
OSC_PNNL	ovarian serous cystadenocarcinoma	10	0.07	4.32E-01	-0.58	3.13E-01

596

597 **Table 2.** Differential expression of SULF1 and SULF2 proteins between tumor and adjacent normal
 598 tissues in 10 CPTAC studies. Entries with $|(\log_2\text{FC})|>1$ and $\text{FDR}<0.05$ are in bold. ND, not detected.

599

600 **Supplemental Table 1. A. SULF1 and SULF2 mRNA expression across 32 TCGA studies compared**
601 **to non-disease tissues from GTEx.** SULF1 and SULF2 mRNAs are quantified as \log_2
602 (RSEM_counts+1). Differential expressions, represented by $\log_2\text{FC}$ and p-value, were calculated by non-
603 paired t-test. **B. Association between SULF mRNA expression and PFI outcomes of patients in 20**
604 **TCGA studies.** Differential expression of SULFs is represented as $\log_2\text{FC}$ between the paired tumor and
605 normal tissue of patients in each cancer study. The HR and p-values were calculated by the Kaplan-
606 Meier method and the log-rank test using optimal cutoff of SULF expressions in each cancer type (>100
607 patients, >40 events for PFI).

608

609 **Supplemental Table 2:** Characteristics of the HNSC patients enrolled at the Princess Margaret Cancer
610 Center, University of Toronto.

611

612 **Supplemental Table 3. Distribution of SULF1- or SULF2- expressing cells among cell-types**
613 **analyzed in a scRNAseq study of HNSC tumor tissues.** The table summarizes single-cell RNA-seq
614 data of 5578 cells from tumor tissues of 18 HNSC patients²⁷. SULF1+ and SULF2+ cells were defined as
615 individual cells with non-zero value of $\log_2(\text{TPM}+1)$. Number and percentage of SULF1+ and SULF2+
616 cells in each cell type was calculated based on the 5,578 cells.

617

618 **Supplemental Table 4.** Genes (n=100) with the highest SULF1 Pearson's correlations (FDR<0.05) at
619 the protein level in the CPTAC study²⁸. ns, non-significant

620

621 **Supplemental Table 5:** Percentage of SULF1 and SULF2 positive cells in the tumor and stroma of the
622 20 OSCC patients (A) and corresponding clinical characteristics of the patients (B).

623