

1 **Inventa: a computational tool to discover chemical novelty in natural** 2 **extracts libraries**

3 **Luis-Manuel Quiros-Guerrero^{1,2,*}, Louis-Félix Nothias^{1,2}, Arnaud Gaudry^{1,2}, Laurence**
4 **Marcourt^{1,2}, Pierre-Marie Allard^{1,2,3}, Adriano Rutz^{1,2}, Bruno David⁴, Emerson Ferreira**
5 **Queiroz^{1,2}, Jean-Luc Wolfender^{1,2*}**

6 ¹Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211
7 Geneva, Switzerland

8 ²School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland.

9 ³Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland

10 ⁴Green Mission Pierre Fabre, Institut de Recherche Pierre Fabre, 3 Avenue Hubert Curien, BP 13562,
11 31562 Toulouse, France.

12 *** Correspondence:**

13 Luis-Manuel Quiros-Guerrero, Jean-Luc Wolfender
14 luis.guerrero@unige.ch, jean-luc.wolfender@unige.ch

15 **Keywords: Natural products, extract prioritization, chemical novelty discovery.**

16 **Abstract**

17 Collections of natural extracts hold potential for the discovery of novel natural products with original
18 modes of action. The prioritization of extracts from collections remains challenging due to the lack of
19 workflow that combines multiple-source information to facilitate the data interpretation. Results from
20 different analysis techniques and literature reports need to be organized, processed, and interpreted to
21 enable optimal decision-making for extracts prioritization. Here, we introduce *Inventa*, a computational
22 tool that highlights the chemical novelty potential within extracts, considering untargeted mass
23 spectrometry data, spectral annotation, and literature reports. Based on this information, *Inventa*
24 calculates multiple scores that inform their chemical potential. Thus, *Inventa* has the potential to
25 accelerate new natural products discovery. *Inventa* was applied to a set of plants from the Celastraceae
26 family as a proof of concept. The *Pristimera indica* (Willd.) A.C.Sm roots extract was highlighted as
27 a promising source of potentially novel compounds. Its phytochemical investigation resulted in the
28 isolation and *de novo* characterization of thirteen new dihydro- β -agarofuran sesquiterpenes, five of
29 them presenting a new 9-oxodihydro- β -agarofuran base scaffold.

30 **1 Introduction**

31 Natural products (NPs) are specialized metabolites from different biological sources like plants, fungi,
32 bacteria, and marine organisms, have enormously contributed to and inspired the development of drugs
33 (Newman and Cragg, 2020). These biodiverse sources often produce NPs with complex molecular
34 structures displaying remarkable bioactivities and represent an unique source of novel scaffolds with
35 unprecedented modes of action (Howes, 2018; Howes et al., 2020; Verma et al., 2020). In NPs research,
36 the prioritization of extracts produced from these collections is a keystone for the continuous discovery
37 of novel bioactive specialized metabolites (Wolfender et al., 2019).

38 After the 1980s, NPs researchers started facing the problem of re-isolating known chemical entities,
39 resulting in a waste of time and resources, which continues until today. Dereplication structure-based
40 approaches were designed to assist the classical bio-guided isolation workflow to reduce the re-
41 isolation problem. These approaches can obtain information on extracts based on the expressed and
42 potential metabolism via compound dereplication, metabolomics, or genome mining (Henke and
43 Kelleher, 2016; Louwen and van der Hooft, 2021; Singh et al., 2022). While genome mining strategies
44 became central for studying microbial NPs, it is not presently fully applicable to plants (Pieters and
45 Vlietinck, 2005; Henke and Kelleher, 2016; Medema et al., 2021).

46 Multiple strategies have been proposed to prioritize extracts and efficiently isolate compounds
47 displaying interesting bioactivity and novel structural properties. For example, classical metabolomic
48 studies combine mass spectrometry, a particular bioactivity test, and chemometrics to highlight extracts
49 through statistics (Fiehn, 2002). The integration of genomic information has recently enhanced the
50 capacity to point out extracts based on the potential of their phenotypic expression (Caesar et al., 2021).
51 The introduction of Molecular Networking (MN) allowed visualization and interpretation of relatively
52 large spectral/chemical spaces, easing the comparison of the extracts at the spectral level (Wang et al.,
53 2016). MN can be combined with bioactivity test results and dereplication information to prioritize
54 particular features [a peak with an m/z value at a given retention time (RT)] within an extract by novelty
55 or biological activity potential (Olivon et al., 2017; Nothias et al., 2018; Fox Ramos et al., 2019;
56 Wolfender et al., 2019).

57 Other published studies proposed mass-spectrometry-based workflows selecting extracts to accelerate
58 the discovery of novel NPs, for example, utilizing liquid chromatography-mass spectrometry profiling
59 and MS¹ level (exact mass and molecular formula match) annotation rates against databases of NPs.
60 This study was centered on the discovery of novel marine NPs. It classified the extracts based on the
61 presence and proportion of features in the chromatogram with a particular set of scores based on their
62 area and intensity. The scores tried to reflect each extract's chemical complexity and structural novelty.
63 The application of this workflow in a small set of marine sponges and tunicates extracts resulted in the
64 isolation of two new eudistomin analogs and two new nucleosides (Tabudravu et al., 2019). Another
65 study proposed using the CSCS metric (Sedio et al., 2018) to prioritize extracts according to their
66 spectral uniqueness in a set of fungal extracts. It is based on the principle that dissimilar extracts would
67 hold a particular chemistry, different from the ensemble of extracts. Recently, an application of this
68 workflow led to the isolation of three new drimane-type sesquiterpenes (Pham et al., 2021). Finally,
69 FERMO is a tool presently in development for the prioritization of relevant bioactive compounds
70 (metabolites) within natural extracts based on chromatographic characteristics, bioactivity, and
71 dereplication results. This tool aims to explore and suggest peaks of interest in a particular extract for
72 isolation (Zdouc M., Medema M., van der Hooft J.).

73 With the increasing capacities of the analytical profiling techniques, and the broad applications of
74 bioinformatics tools in the field of NPs chemistry, the quantity of analytical information obtained
75 increased proportionally. The clear and concise analysis of the resulting massive datasets is challenging
76 and reduces the efficiency of data-driven prioritization (Brejnrod et al., 2019; Caesar et al., 2021;
77 Amara et al., 2022). This is partly due to the time-consuming efforts required for the manual
78 exploration of the data, the compilation of literature reports for individual organisms, the interpretation
79 of the spectral annotation results, and extract comparison techniques. Yet, even after carefully curating
80 the data and the results, exploring and interpreting all this information is the main bottleneck to
81 efficiently prioritize the extracts with the highest chemical potential within collections (Louwen and
82 van der Hooft, 2021). The conception and implementation of comprehensive prioritization pipelines

Running Title

83 that combine results from several bioinformatic tools are imperative to speed up and rationalize extract
84 selection.

85 Here, we introduce *Inventa*, a computational tool that highlights the chemical novelty potential of novel
86 NPs within extracts, considering untargeted mass spectrometry data and literature reports for the
87 organism's taxa of interest. It was designed to accelerate mining data sets in a scalable manner. As a
88 proof of concept, we applied it to a collection of taxonomically related extracts of the Celastraceae
89 family. Plants from this family are characterized for producing a wide range of specialized bioactive
90 metabolites from different chemical classes, like macrolide sesquiterpene pyridine alkaloids (Callies
91 et al., 2017), maytansinoids (Kupchan et al., 1972), and quinone methide triterpenoids (Alvarenga and
92 Ferro, 2006; Salminen et al., 2010). Most of them have important pharmacological importance
93 (González et al., 2000; Moin et al., 2014; Lv et al., 2019), and some are considered chemotaxonomic
94 markers for particular genera and the family (González et al., 1986; Rogers et al., 2000).

95 In this study, we present the application of *Inventa* for selecting extracts based on predicted chemical
96 novelty. The data generated from the Celastraceae set was used to explore the effect of the various
97 parameters which led to the prioritization of an extract from seventy-six and the subsequent isolation
98 and structural identification of thirteen molecules.

99 2 Materials and Methods

100 2.1 Chemicals

101 HPLC grade methanol (MeOH) and ethyl acetate (EtOAc) were purchased from Fisher Chemicals,
102 Reinach, Switzerland, LC-MS grade water, acetonitrile (ACN), and formic acid were purchased from
103 Fisher Chemicals, Reinach, Switzerland, Dimethyl Sulfoxide (DMSO) molecular biology grade was
104 purchased from Sigma, St Louis, USA.

105 2.2 General Experimental Procedures

106 NMR spectroscopic data were recorded on a Bruker Avance Neo 600 MHz spectrometer equipped with
107 a QCI 5mm Cryoprobe and a sampleJet automated extract changer (Bruker BioSpin, Rheinstetten,
108 Germany). Chemical shifts are reported in parts per million (ppm, δ), and coupling constants are
109 reported in Hz (J). The residual CD₃OD signals (δ_H 3.31, δ_C 49.8) were used as internal standards for
110 ¹H and ¹³C, respectively. Complete assignments were based on 2D-NMR spectroscopy: COSY, edited-
111 HSQC, HMBC, and ROESY. The Electronic Circular Dichroism (ECD) was recorded on a JASCO J-
112 815 spectrometer (Loveland, CO, United States) in acetonitrile using a 1 cm cell. The scan speed was
113 200 nm/min in continuous mode between 600 nm and 150 nm. The optical rotations were measured in
114 acetonitrile on a JASCO P-1030 polarimeter (Loveland, CO, USA) in a 1 mL, 10 cm tube.

115 2.3 Plant Material, Small Scale Extraction, and extract Preparation for UHPLC-HRMS/MS 116 Analysis of the Celastraceae set

117 2.3.1 Plant Material

118 The set comprises seventy-six extracts from different plant parts (leaves, stems, roots, fruits, seeds,
119 bark, and branches) of thirty-six species belonging to fourteen different genera. These plants belong to
120 the Pierre-Fabre Laboratories (PFL) collection with over 17,000 unique samples collected worldwide.
121 The PFL collection was registered at the European Commission under the accession number 03-FR-
122 2020. This registration certifies that the collection meets the criteria set out in the EU ABS Regulation
123 which implements at EU level the requirements of the Nagoya Protocol regarding access to genetic

124 resources and the fair and equitable sharing of benefits arising from their utilization
125 (<https://ec.europa.eu/environment/nature/biodiversity/international/abs/pdf/Register%20of%20Collections.pdf>). The PFL supplied all the vegetal material (grounded dry material). The collected
126 samples have photographs, herbarium vouchers, and leaf extracts preserved in dry silica gel. Precise
127 localization of the initial collection, unique ID and barcode, and GPS data are stored in the dedicated
128 data management system. The plant material was dried for three days at 55 °C in an oven; then the
129 material was grounded and stored in plastic pots at a controlled temperature and humidity in the Pierre-
130 Fabre Laboratories facilities.
131

132 **2.3.2 Taxonomical Metadata**

133 The taxonomic names were searched in the [Open Tree of Life](#) (OTL v13.4) (Rees and Cranston, 2017)
134 to most recent ‘accepted’ name. The metadata added includes, if found, the taxon’s OTTid, rank,
135 source, all available synonyms, and their corresponding references (NCBI, GBIF, IRMNG). When the
136 species was not defined, the next genus was used in the search. The original genus and species names
137 provided with the collection are kept in the respective columns.

138 **2.3.3 UHPLC-HRMS/MS Analysis**

139 Analyses were performed with a Waters Acquity UPLC system equipped with a PDA detector coupled
140 to a Q-Exactive Focus mass spectrometer (Thermo ScientificTM, Bremen, Germany), employing a
141 heated electrospray ionization source (HESI-II) with the following parameters: spray voltage: + 3.5
142 kV; heater temperature: 220 °C; capillary temperature: 350.00 °C; S-lens RF: 45 (arb. units); sheath
143 gas flow rate: 55 (arb. units) and auxiliary gas flow rate: 15.00 (arb. units). The mass analyzer was
144 calibrated using a mixture of caffeine, methionine–arginine–phenylalanine–alanine–acetate (MRFA),
145 sodium dodecyl sulfate, and sodium taurocholate, and Ultramark 1621 in an
146 acetonitrile/methanol/water solution containing 1% formic acid by direct injection. The system was
147 coupled to a Charged aerosol detector (CAD, Thermo ScientificTM, Bremen, Germany) kept at 40 °C.
148 The PDA wavelength range was from 210 nm to 400 nm with a resolution of 1.2 nm. Control of the
149 instruments was done using Thermo Scientific Xcalibur 3.1 software.

150 For the centroid data-dependent MS² (dd-MS²) experiments in positive ionization mode, full scans
151 were acquired at a resolution of 35,000 FWHM (at *m/z* 200) and MS² scans at 17,500 FWHM in the
152 range 100 to 1500 *m/z*. The dd-MS² scan acquisition events were performed in discovery mode with
153 an isolation window of 1.5 Da and stepped normalized collision energy (NCE) of 15, 30, and 45 units.
154 Additional parameters were set as follows: default mass charge: 1; Automatic gain control (AGC)
155 target 2E⁵; Maximum IT: 119 ms; Loop count: 3; Min AGC target: 2.6E⁴; Intensity threshold: 1. Up to
156 three dd-MS² scans (Top 3) were acquired for the most abundant ions per scan in MS¹, using the Apex
157 trigger mode (2 to 7 s), dynamic exclusion (9.0 s), and automatic isotope exclusion. A specific
158 exclusion list was created for the measurement using the solvent as a background extract with an IODA
159 Mass Spec notebook (Zuo et al., 2021).

160 The chromatographic separation was done on a Waters BEH C18 column (50× 2.1 mm i.d., 1.7 µm,
161 Waters, Milford, MA, USA) through a linear gradient of 5–100% B over 7 min and an isocratic step
162 at 100% B for 1 min. The mobile phases were: (A) water with 0.1% formic acid and (B) acetonitrile
163 with 0.1% formic acid. The flow rate was set to 600 µL/min, the injection volume was 2 µL, and the
164 column was kept at 40 °C. The set of extracts was randomized before injection, including pooled QC
165 extracts and blanks, repeated once every ten extracts.

Running Title

166 2.3.4 UHPLC-HRMS/MS Data Analysis

167 2.3.4.1 Data Preprocessing

168 The data were converted from .RAW (Thermo) standard data format to an open .mzXML format
169 employing the MS Convert software, part of the ProteoWizard package (Chambers et al., 2012). The
170 converted files were processed with the [MZmine3](#) software (Pluskal et al., 2010). For mass detection
171 at the MS¹ level, the noise level was set to 1.0E⁶ for positive mode and 1.0E⁵ for negative mode. For
172 MS² detection, the noise level was set to 0.00 for both ionization modes. The ADAP chromatogram
173 builder parameters were set as follows: minimum group size in # of scans, 4; Group intensity threshold,
174 1.0E⁶ (1.0E⁵ negative); Minimum highest intensity, 1.0E⁶ (1.0E⁵ negative) and Scan to scan accuracy
175 (*m/z*) of 0.0020 or 10.0 ppm. The ADAP feature resolver algorithm was used for chromatogram
176 deconvolution with the following parameters: S/N threshold, 30; minimum feature height, 1.0E⁶ (1.0E⁵
177 negative); coefficient area threshold, 110; peak duration range, 0.01 - 1.0 min; RT wavelet range, 0.01
178 - 0.08 min. Isotopes were detected using the ¹³C isotope filter with an *m/z* tolerance of 0.0050 or 8.0
179 ppm, an Retention Time tolerance of 0.03 min (absolute), the maximum charge set at 2, and the
180 representative isotope used was the lowest *m/z*. Each file was filtered by RT (positive mode: 0.70 -
181 8.00 min, negative mode: 0.40 - 8.00 min), and only the ions with an associated MS² spectrum were
182 kept. Alignment was done with the join-aligner (*m/z* tolerance, 0.0050 or 8.0 ppm; RT tolerance, 0.05
183 min), and the align list was filtered to remove any duplicate (*m/z* tolerance, 8.0 ppm; RT tolerance,
184 0.10 min).

185 The resulting filtered list was subjected to Ion Identity Networking (Schmid et al., 2021) starting with
186 the metaCorrelate module (RT tolerance, 0.10 min; minimum height, 1.0E⁵; Intensity correlation
187 threshold 1.0E⁵ and the Correlation Grouping with the default parameters). Followed by the Ion identity
188 networking (*m/z* tolerance, 8.0 ppm; check: one feature; minimum height: 1.0E⁵, annotation library
189 [maximum charge, 2; maximum molecules/cluster, 2; Adducts ([M+H]⁺, [M+Na]⁺, [M+K]⁺,
190 [M+NH₄]⁺, [M+2H]²⁺), Modifications ([M-H₂O], [M-2H₂O], [M-CO₂], [M+HFA], [M+ACN])],
191 Annotation refinement (Delete small networks without major ion, yes; Delete networks without
192 monomer, yes), Add ion identities networks (*m/z* tolerance, 8 ppm; minimum height, 1.0E⁵; Annotation
193 refinement (Minimum size, 1; Delete small networks without major ion, yes; Delete small networks:
194 Link threshold, 4; Delete networks without monomer, yes)) and Check all ion identities by MS/MS
195 (*m/z* tolerance (MS²), 10 ppm; min-height (in MS²), 1.0E³; Check for multimers, yes; Check neutral
196 losses (MS¹ ->MS²), yes) modules. The resulting aligned peak list was exported as a .mgf file for
197 further analysis.

198 2.3.4.2 MS/MS Spectral Organization

199 A molecular network was constructed from the .mgf file exported from MZmine, using the feature-
200 based molecular networking workflow (<https://ccms-ucsd.github.io/GNPSDocumentation/>) on the
201 [GNPS](#) website (Nothias et al., 2020). The precursor ion mass tolerance was set to 0.02 Da with an
202 MS/MS fragment ion tolerance of 0.02 Da. A network was created where edges were filtered to have
203 a cosine score above 0.7 and more than six matched peaks. The spectra in the network were then
204 searched against GNPS' spectral libraries. All matches between network and library spectra were
205 required to have a score above 0.6, and at least three matched peaks. Jobs links:
206 <https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=df71854c6e644b979228d96b521a490b> (positive),
207 <https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=d477f360ddb344a593b935624782d8eb> (negative).

208 2.3.4.3 Taxonomically Informed Metabolite Annotation

209 The .mgf file exported from MZmine was also annotated by spectral matching against an *in-silico*
210 database to obtain putative annotations (Allard et al., 2016). The resulting annotations were subjected
211 to taxonomically informed metabolite scoring (Rutz et al., 2019)
212 (<https://taxonomicallyinformedannotation.github.io/tima-r/>, v 2.4.0) and re-ranking from the
213 chemotaxonomical information available on [LOTUS](#) (Rutz et al., 2022). The *in-silico* database used for
214 this process includes the combined records of the [Dictionary of Natural Products](#) (DNP, v 30.2) and
215 the [LOTUS](#) Initiative outputs (Rutz et al., 2022).

216 2.3.4.4 SIRIUS Metabolite Annotation

217 The SIRIUS .mgf file exported from MZmine (using the SIRIUS export module) that contains MS1
218 and MS2 information was processed with SIRIUS (v 5.5.5) command-line tools on a Linux server
219 (Dührkop et al., 2019). The molecular formula and metabolite database used for SIRIUS includes NPs
220 from LOTUS (Rutz et al., 2022) and the Dictionary of Natural Products (DNP). The parameters were
221 set as follows: *Possible ionizations*: $[M+H]^+$, $[M+NH_4]^+$, $[M-H_2O+H]^+$, $[M+K]^+$, $[M+Na]^+$, $[M-4H_2O+H]^+$; *Instrument profile*: Orbitrap; *mass accuracy*: 5 ppm for MS¹ and 7 ppm for MS², database
222 for molecular formulas and structures: BIO and custom databases (LOTUS, DNP), *maximum m/z to
223 compute*: 1000. ZODIAC was used to improve molecular formula prediction using a threshold filter of
224 0.99 a (Ludwig et al., 2020). Metabolite structure prediction was made with CSI: FingerID (Dührkop
225 et al., 2015) and significance computed with COSMIC (Hoffmann et al., 2021). The chemical class
226 prediction was made with CANOPUS (Dührkop et al., 2020) using the NPClassifier ontology (Kim et
227 al., 2021).

229 2.3.4.5 Mass Spectrometry-based extract Vectorization ([MEMO](#))

230 The MS² spectra were processed with the memo_ms package (0.1.3). The parameters were set as
231 follows: *min_rel_intensity*: 0.01, *max_relative_intensity*: 1, *min_peaks_required*: 10, *losses_from*: 10,
232 *losses_to*: 00, *n_decimal*: 2. All the Peak/loss present in the blanks were removed before the
233 computation of the distance matrix (Gaudry et al., 2022).

234 2.4 Implementation of *Inventa*.

235 All the previously described information was fed into a set of scripts called *Inventa*
236 (<https://luigiquiros.github.io/inventa/> v1.0.0). These scripts are made available as a Jupyter notebook
237 that can be deployed directly on the cloud using a [Binder](#) link (Project Jupyter et al., 2018). All the
238 components were calculated, and the same weight (w = 1) was given to each. For the cleaning-up of the
239 GNPS annotations the following parameters were used, *max_ppm_error*: 5, *shared_peaks*: 10,
240 *min_cosine*: 0.6, *ionisation_mode*: ‘pos’, *max_spec_charge*: 2. For calculation of the feature
241 component the following parameters were used, *min_specificity*: 0.9, *min_score_final*: 0.3,
242 *min_ZODIACScore*: 0.9, *min_ConfidenceScore*: 0.25, *annotation_preference*: 0. For the literature
243 component calculations the *max_comp_reported_sp*, *max_comp_reported_g*, *max_comp_reported_f*
244 were set to 20, 100, 500 respectively. For the class component, the following parameters were used:
245 *min_class_confidence*: 0.8 and *min_recurrence*: 0.8. The results displayed in the manuscript were
246 based on the MZmine3 Ion Identity Networking. A complete glossary for terms and default parameters
247 can be found in the Supporting Information Table I.

248 2.5 Extraction and Isolation of Compounds from the *Pristimera indica* Roots.

Running Title

249 The dried ground roots of *Pristimera indica* (Willd.) A.C.Sm. (19.8 g) were extracted successively
250 with hexane (3 x 200 mL), EtOAc (3 x 200 mL), and MeOH (3 x 200 mL), with constant agitation at
251 room temperature for a 12h period each. The organic solvents were filtered and evaporated under
252 reduced pressure to give 61.5 mg of hexane extract, 100.4 mg of ethyl acetate extract, and 728.3 mg of
253 methanolic extract.

254 Separations were performed in a semi-preparative Shimadzu system equipped with a LC-20A module
255 pumps, an SPD-20A UV/Vis, a 7725I Rheodyne® valve, and an FRC-10A fraction collector
256 (Shimadzu, Kyoto, Japan). The HPLC conditions were as follows: X-Bridge C₁₈ column (250 × 19 mm
257 i.d., 5 μ m) equipped with a Waters C18 precolumn cartridge holder (10 × 19 mm i.d., 5 μ m); solvent
258 system ACN (B) and H₂O (A), both containing 0.1% FA. The separation was performed in gradient
259 mode as follows: 5 to 40% B in 5 min, 40 to 55% B in 52 min, and 55 to 100% B in 25 min. The flow
260 rate was fixed to 17.0 mL/min. The extract was injected by dry load according to a protocol developed
261 in our laboratory (Queiroz et al., 2019). The collection was done based on the UV/Vis trace peaks at
262 254 nm.

263 From the ethyl acetate extract (59.2 mg) 13 fractions (corresponding to the HPLC-UV peaks) were
264 collected to give pure compounds **1** (0.8 mg, t_R 21.5 min), **2** (0.7 mg, t_R 22.0 min), **3** (1.5 mg, t_R 22.5
265 min), **6** (1.2 mg, t_R 23.0 min), **7** (0.6 mg, t_R 36.0 min), **8** (0.8 mg, t_R 40.0 min), **12** (0.4 mg, t_R 41.0 min),
266 **5** (0.6 mg, t_R 44.0 min), **13** (0.7 mg, t_R 48.5 min), **9** (0.9 mg, t_R 50.0 min), **4** (0.4 mg, t_R 63.0 min). The
267 fraction collected at t_R 34.5 min (0.8 mg), was separated in a X-Bridge C₁₈ column (250 × 10 mm i.d.,
268 5 μ m) equipped with a Waters C18 precolumn cartridge holder (5 × 10 mm i.d., 5 μ m); solvent system
269 ACN (B) and H₂O (A), both containing 0.1% FA, in an isocratic run 50% ACN, to give **8** (0.2 mg, t_R
270 18.0 min) and **10** (0.4 mg, t_R 15.0 min).

271 The methanolic extract (276.8 mg) was fractionated, in the same conditions as the ethyl acetate extract,
272 to give compounds **1** (1.9 mg, t_R 21.5 min), **2** (1.3 mg, t_R 22.0 min), **3** (2.6 mg, t_R 22.5 min), **6** (0.3 mg,
273 t_R 23.0 min), **7** (1.1 mg, t_R 36.0 min), **8** (1.3 mg, t_R 40.0 min), **5** (0.5 mg, t_R 44.0 min), **4** (0.6 mg, t_R 63.0
274 min), **10** (0.3 mg, t_R 31.5 min) and **11** (0.4 mg, t_R 22.0 min). Fractions collected at t_R 41.0 min (0.9 mg)
275 and t_R 48.5 min (0.4 mg), were re-purified in a X-Bridge C₁₈ column (250 × 10 mm i.d., 5 μ m) equipped
276 with a Waters C18 pre-column cartridge holder (5 × 10 mm i.d., 5 μ m); solvent system ACN (B) and
277 H₂O (A), both containing 0.1% FA, in an isocratic run 50% ACN, to give **13** (0.2 mg, t_R 27.0 min).

278 2.5.1 Description of the Isolated Compounds.

279 Compound **1** ((1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-1*α*,6*β*-diacetoxyl-15-*iso*-butanoyloxy-2*α*,8*β*-di-(5-carboxy-
280 *N*-methyl-3-pyridoxy)-9-oxodihydro-*β*-agarofuran, Silviatine A). Amorphous white powder; $[\alpha]_D^{20}$ +
281 25 (ACN); UV (ACN) λ_{max} 193, 270 nm.

282 ¹H NMR (CD₃OD, 600 MHz) δ 1.22 (3H, d, *J* = 7.6 Hz, H₃-14), 1.24 (3H, d, *J* = 7.0 Hz, H₃-15d), 1.27
283 (3H, d, *J* = 7.0 Hz, H₃-15c), 1.42 (3H, s, H₃-13), 1.49 (3H, s, H₃-12), 1.95 (3H, s, H₃-1b), 1.97 (1H, dd,
284 *J* = 14.3, 3.0 Hz, H-3*α*), 2.19 (3H, s, H₃-6b), 2.40 (2H, m, H-3*β*, H-4), 2.80 (1H, hept, *J* = 7.0 Hz, H-
285 15b), 2.97 (1H, d, *J* = 3.4 Hz, H-7), 3.62 (3H, s, H₃-8g), 3.70 (3H, s, H₃-2g), 4.70 (1H, d, *J* = 12.2 Hz,
286 H-15"), 5.10 (1H, d, *J* = 12.2 Hz, H-15'), 5.54 (1H, q, *J* = 3.9, 3.0 Hz, H-2), 5.74 (1H, d, *J* = 3.9 Hz,
287 H-1), 6.03 (1H, d, *J* = 3.4 Hz, H-8), 6.31 (1H, s, H-6), 6.56 (1H, d, *J* = 9.5 Hz, H-8e), 6.58 (1H, d, *J* =
288 9.5 Hz, H-2e), 7.95 (1H, dd, *J* = 9.5, 2.5 Hz, H-8f), 8.01 (1H, dd, *J* = 9.5, 2.6 Hz, H-2f), 8.44 (1H, d, *J* =
289 2.5 Hz, H-8c), 8.48 (1H, d, *J* = 2.6 Hz, H-2c); ¹³C NMR (CD₃OD, 151 MHz) δ 17.5 (CH₃-14), 19.2
290 (CH₃-15c), 19.3 (CH₃-15d), 20.9 (CH₃-6b), 21.0 (CH₃-1b), 27.2 (CH₃-13), 30.2 (CH₃-12), 31.6 (CH₂-
291 3), 34.1 (CH-4), 35.2 (CH-15b), 38.7 (CH₃-2g, CH₃-8g), 54.1 (CH-7), 60.2 (C-10), 63.9 (CH₂-15), 71.1

292 (CH-1), 72.5 (CH-2), 77.6 (CH-6), 78.8 (CH-8), 85.7 (C-11), 91.9 (C-5), 110.7 (C-8b), 111.1 (C-2b),
293 119.6 (CH-8e), 119.9 (CH-2e), 140.5 (CH-8f), 140.6 (CH-2f), 145.7 (CH-2c), 146.3 (CH-8c), 165.2
294 (C-2d, C-8d), 171.4 (C-1a, C-6a), 177.8 (C-15a), 203.1 (C-9). For NMR spectra see **Supplementary**
295 **Figures S1-S6.** HRESIMS m/z 741.2864 [M+H]⁺ (calculated for C₃₇H₄₅N₂O₁₄, error -0.13 ppm).
296 MS/MS spectrum: [CCMSLIB00009919267](#).

297 SMILES:CCC(C)C(=O)OC[C@@]12[C@H](O)[C@H](C[C@H](C)[C@]11OC(C)(C)[C@H]
298]([C@H]1OC(C)=O)[C@H](OC(=O)C1=CN(C)C(=O)C=C1)C2=O)OC(=O)C1=CN(C)C(=O)C=C1
299 . InChIKey=HPZNCFSLZGFDST-SMRRRHQGNA-N.

300 Compound **2:** (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-6 β -acetoxy-2 α ,8 β -di-(5-carboxy-*N*-methyl-3-pyridoxy)-
301 1 α -hydroxy-15-(2-methylbutanoyloxy)-9-oxodihydro- β -agarofuran, Silvatiaine B. Amorphous white
302 powder, $[\alpha]_D^{20}$ + 19 (ACN); UV (ACN) λ_{max} 200, 268 nm.

303 ¹H NMR (CD₃OD, 600 MHz) δ 0.93 (3H, t, J = 7.5 Hz, H₃-15d), 1.15 (3H, d, J = 7.7 Hz, H₃-14), 1.27
304 (3H, d, J = 7.0 Hz, H₃-15e), 1.43 (3H, s, H₃-13), 1.48 (3H, s, H₃-12), 1.58 (1H, m, H-15c"), 1.77 (1H,
305 m, H-15c'), 1.98 (1H, dd, J = 14.2, 3.5 Hz, H-3 α), 2.18 (3H, s, H₃-6b), 2.31 (1H, ddd, J = 15.2, 6.4, 3.8
306 Hz, H-3 β), 2.36 (1H, m, H-4), 2.67 (1H, h, J = 7.0 Hz, H-15b), 2.97 (1H, d, J = 3.4 Hz, H-7), 3.63 (3H,
307 s, H₃-8g), 3.71 (3H, s, H₃-2g), 4.61 (1H, d, J = 3.8 Hz, H-1), 4.77 (1H, d, J = 12.2 Hz, H-15"), 5.05
308 (1H, d, J = 12.2 Hz, H-15'), 5.44 (1H, q, J = 3.8, 3.5 Hz, H-2), 6.10 (1H, d, J = 3.4 Hz, H-8), 6.24 (1H,
309 s, H-6), 6.57 (2H, 2xd, J = 9.5 Hz, H-2e, H-8e), 7.97 (1H, dd, J = 9.5, 2.5 Hz, H-8f), 8.04 (1H, dd, J =
310 9.5, 2.6 Hz, H-2f), 8.47 (1H, d, J = 2.5 Hz, H-8c), 8.48 (1H, d, J = 2.6 Hz, H-2c); ¹³C NMR (CD₃OD,
311 151 MHz) δ 11.6 (CH₃-15d), 16.5 (CH₃-15e), 17.4 (CH₃-14), 20.6 (CH₃-6b), 27.1 (CH₃-13), 27.4 (CH₂-
312 15c), 29.9 (CH₃-12), 31.3 (CH₂-3), 34.1 (CH-4), 38.3 (CH₃-2g), 38.4 (CH₃-8g), 42.0 (CH-15b), 54.0
313 (CH-7), 61.4 (C-10), 63.6 (CH₂-15), 70.0 (CH-1), 74.7 (CH-2), 77.4 (CH-6), 78.4 (CH-8), 85.0 (C-11),
314 91.3 (C-5), 110.5 (C-8b), 111.3 (C-2b), 119.4 (CH-2e, CH-8e), 140.1 (CH-8f), 140.5 (CH-2f), 145.1
315 (CH-2c), 145.9 (CH-8c), 163.6 (C-8a), 164.1 (C-2a), 165.0 (C-2d), 164.8 (C-8d), 171.1 (C-6a), 177.8
316 (C-15a), 206.8 (C-9). For NMR spectra see **Supplementary Figures S7-S11.** HRESIMS m/z 713.2323
317 [M+H]⁺ (calculated for C₃₆H₄₅N₂O₁₃, error -1.043 ppm); MS/MS spectrum: [CCMSLIB00009919268](#).

318 SMILES:
319 O=C1[C@](OC(C2=C([H])N(C([H])([H])[H])C(C([H])=C2[H])=O)=O)([H])[C@](C3(C([H])([H])[H])C([H])([H])[H])[C@](OC(C([H])([H])[H])=O)([H])[C@]4(O3)[C@@](C([H])([H])[H])([H])C([H])([H])C(OC(C(C([H])=C5[H])=C([H])N(C([H])([H])[H])C5=O)=O)([H])[C@@](O[H])([H])[C@]41C([H])([H])OC([C@@](C([H])([H])[H])([H])C([H])([H])[H])=O.
320 InChIKey=HPZNCFSLZGFDST-SWBINLJCSA-N.

324

325 Compound **3:** (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-1 α ,6 β -diacetoxy-2 α ,8 β -di-(5-carboxy-*N*-methyl-3-
326 pyridoxy)-15-(2-methylbutanoyloxy)-9-oxodihydro- β -agarofuran, Silvatiaine C. Amorphous white
327 powder, $[\alpha]_D^{20}$ + 33 (ACN); UV (ACN) λ_{max} 194, 267 nm

328 ¹H NMR (CD₃OD, 600 MHz) δ 0.92 (3H, t, J = 7.4 Hz, H₃-15d), 1.22 (3H, d, J = 7.7 Hz, H₃-14), 1.25
329 (3H, d, J = 7.0 Hz, H₃-15e), 1.41 (3H, s, H₃-13), 1.49 (3H, s, H₃-12), 1.57 (1H, m, H-15c"), 1.76 (1H,
330 m, H-15c'), 1.95 (3H, s, H₃-1b), 1.97 (1H, dd, 14.0, 2.8 Hz, H-3 α), 2.19 (3H, s, H₃-6b), 2.41 (2H, m,
331 H-3 β , H-4), 2.65 (1H, h, J = 7.0 Hz, H-15b), 2.97 (1H, dd, J = 3.4, 0.8 Hz, H-7), 3.62 (3H, s, H₃-8g),
332 3.70 (3H, s, H₃-2g), 4.65 (1H, d, J = 12.3 Hz, H-15"), 5.12 (1H, d, J = 12.3 Hz, H-15'), 5.55 (1H, q, J
333 = 3.9, 2.8 Hz, H-2), 5.75 (1H, d, J = 3.9 Hz, H-1), 6.01 (1H, d, J = 3.4 Hz, H-8), 6.30 (1H, d, J = 0.8

Running Title

334 Hz, H-6), 6.56 (1H, d, J = 9.5 Hz, H-8e), 6.58 (1H, d, J = 9.5 Hz, H-2e), 7.95 (1H, dd, J = 9.5, 2.5 Hz,
335 H-8f), 8.01 (1H, dd, J = 9.5, 2.5 Hz, H-2f), 8.44 (1H, d, J = 2.5 Hz, H-8c), 8.47 (1H, d, J = 2.5 Hz, H-
336 2c); ^{13}C NMR (CD₃OD, 151 MHz) δ 11.9 (CH₃-15d), 16.7 (CH₃-15e), 17.5 (CH₃-14), 21.0 (CH₃-1b,
337 CH₃-6b), 27.2 (CH₃-13), 27.8 (CH₂-15c), 30.2 (CH₃-12), 31.6 (CH₂-3), 34.1 (CH-4), 38.7 (CH₃-2g,
338 CH₃-8g), 42.3 (CH-15b), 54.1 (CH-7), 60.1 (C-10), 63.9 (CH₂-15), 71.1 (CH-1), 72.5 (CH-2), 77.7
339 (CH-6), 78.8 (CH-8), 85.6 (C-11), 91.9 (C-5), 110.7 (C-8b), 111.1 (C-2b), 119.6 (CH-8e), 119.9 (CH-
340 2e), 140.5 (CH-8f), 140.6 (CH-2f), 145.6 (CH-2c), 146.3 (CH-8c), 163.9 (C-8a), 164.8 (C-2a), 165.2
341 (C-2d, C-8d), 171.2 (C-1a), 171.3 (C-6a), 177.6 (C-15a), 203.1 (C-9). For NMR spectra see
342 **Supplementary Figures S12-S17**. HRESIMS m/z 755.3017 [M+H]⁺ (calculated for C₃₈H₄₇N₂O₁₄,
343 error -0.55 ppm); MS/MS spectrum: [CCMSLIB00009919270](#).

344 SMILES:

345 O=C(OC([C@@@]1(C2=O)[C@@@]([C@])[OC(C3=C([H])N(C(C([H])=C3[H])=O)C([H])([H])[H])=O
346)([H])C([C@@@](C14OC(C([H])([H])[H])([C@@@](C2([H])OC(C5=C([H])N(C(C([H])=C5[H])=O)C
347 ([H])([H])[H])=O)([H])C4([H])OC(C([H])([H])[H])=O)C([H])([H])[H])([H])C([H])([H])[H])([H])[H]
348])([H])OC(C([H])([H])[H])=O)([H])[H])[C@@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])[H].
349 InChIKey=ATASRQYZQYFECN-QRKLMQBQASA-N.

350 Compound **4**: (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-6 β -acetoxy-8 β -benzoyloxy-2 α -(5-carboxy-*N*-methyl-3-
351 pyridoxy)-1 α -hydroxy-15-(2-methylbutanoyloxy)-9-oxodihydro- β -agarofuran, Silviatine D.
352 Amorphous white powder, $[\alpha]_D^{20}$ + 13 (ACN); UV (ACN) λ_{max} 196, 229, 273 nm.

353 ^1H NMR (CD₃OD, 600 MHz) δ 0.95 (3H, t, J = 7.5 Hz, H₃-15d), 1.15 (3H, d, J = 7.6 Hz, H₃-14), 1.30
354 (3H, d, J = 7.0 Hz, H₃-15e), 1.48 (3H, s, H₃-13), 1.49 (3H, s, H₃-12), 1.60 (1H, m, H-15c'), 1.81 (1H,
355 m, H-15c'), 1.99 (1H, dt, J = 15.4, 2.7, 0.9 Hz, H-3a), 2.18 (3H, s, H₃-6b), 2.32 (1H, ddd, J = 15.4, 6.4,
356 3.6 Hz, H-3 β), 2.37 (1H, m, H-4), 2.70 (1H, h, J = 7.0 Hz, H-15b), 3.00 (1H, d, J = 3.5 Hz, H-7), 3.71
357 (3H, s, H₃-2g), 4.62 (1H, d, J = 3.8 Hz, H-1), 4.79 (1H, d, J = 12.3 Hz, H-15"), 5.06 (1H, d, J = 12.3
358 Hz, H-15'), 5.45 (1H, q, J = 3.8, 2.7 Hz, H-2), 6.17 (1H, d, J = 3.5 Hz, H-8), 6.28 (1H, s, H-6), 6.58
359 (1H, d, J = 9.4 Hz, H-2e), 7.53 (2H, tt, J = 8.0, 1.3 Hz, H-8d, H-8f), 7.66 (1H, tt, J = 8.0, 1.3 Hz, H-
360 8e), 8.04 (1H, dd, J = 9.4, 2.5 Hz, H-2f), 8.07 (2H, dd, J = 8.0, 1.3 Hz, H-8c, H-8g), 8.49 (1H, d, J =
361 2.5 Hz, H-2c); ^{13}C NMR (CD₃OD, 151 MHz) δ 11.9 (CH₃-15d), 16.8 (CH₃-15e), 17.7 (CH₃-14), 21.0
362 (CH₃-6b), 27.5 (CH₃-13), 27.8 (CH₂-15c), 30.2 (CH₃-12), 31.7 (CH₃-3), 34.4 (CH-4), 38.7 (CH₃-2g),
363 42.4 (CH-15b), 54.4 (CH-7), 61.7 (C-10), 64.0 (CH₂-15), 70.4 (CH-1), 75.1 (CH-2), 77.8 (CH-6), 78.8
364 (CH-8), 85.2 (C-11), 91.6 (C-5), 111.7 (C-2b), 119.8 (CH-2e), 129.8 (CH-8d, CH-8f), 130.6 (C-8b),
365 130.8 (CH-8c, CH-8g), 134.7 (CH-8e), 140.8 (CH-2f), 145.4 (CH-2c), 165.2 (C-2d), 166.3 (C-8a),
366 171.3 (C-6a), 178.1 (C-15a), 207.0 (C-9).. For NMR spectra see **Supplementary Figures S18-S23**.
367 HRESIMS m/z 682.2850 [M+H]⁺ (calculated for C₃₆H₄₄NO₁₂, error -1.132 ppm); MS/MS spectrum:
368 [CCMSLIB00009919278](#).

369 SMILES:

370 O=C(C([H])([H])[H])O[C@@@](C([C@@@](C@@1[H])OC(C(C([H])([H])[H])([H])C([H])([H])[H])
371)=O)([H])OC(C(C([H])=C2[H])=C([H])N(C([H])([H])[H])C2=O)=O)([H])C3(C([H])([H])[H])C([H])
372 ([H])[H])([H])[C@@]4(O3)[C@@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])C(OC(C(C([H])=C5[H])=C([H])
373)N(C([H])([H])[H])C5=O)=O)([H])[C@@@](OC(C([H])([H])[H])=O)([H])[C@]41C([H])([H])OC([C
374 @@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])[H])=O. InChIKey=VKILZIVFMPURPQ-
375 JIIDOJBKSA-N.

376 Compound **5**: (1*R*,2*S*,3*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-6 β -acetoxy-8 β -benzoyloxy-2 α -(5-carboxy-*N*-methyl-3-
377 pyridoxy)-1 α ,3 β -dihydroxy-15-(2-methylbutanoyloxy)-9-oxodihydro- β -agarofuran, Silviatine E.
378 Amorphous white powder. $[\alpha]_D^{20}$ + 12 (ACN); UV (ACN) λ_{max} 200, 226, 267 nm.

379 ^1H NMR (CD₃OD, 600 MHz) δ 0.96 (3H, t, J = 7.5 Hz, H₃-15d), 1.16 (3H, d, J = 7.9 Hz, H₃-14), 1.30
380 (3H, d, J = 7.0 Hz, H₃-15e), 1.53 (3H, s, H₃-13), 1.54 (3H, s, H₃-12), 1.61 (1H, m, H-15c"), 1.81 (1H,
381 m, H-15c'), 2.20 (3H, s, H₃-6b), 2.51 (1H, qt, J = 7.9, 1.8, 1.1 Hz, H-4), 2.71 (1H, h, J = 7.0 Hz, H-
382 15b), 3.00 (1H, d, J = 3.5 Hz, H-7), 3.70 (3H, s, H₃-2g), 3.92 (1H, dd, J = 3.3, 1.8 Hz, H-3), 4.75 (1H,
383 d, J = 12.3 Hz, H-15"), 4.88 (1H, d, J = 4.0 Hz, H-1), 4.99 (1H, d, J = 12.3 Hz, H-15'), 5.42 (1H, ddd,
384 J = 4.0, 3.3, 1.1 Hz, H-2), 6.18 (1H, d, J = 3.5 Hz, H-8), 6.33 (1H, s, H-6), 6.58 (1H, d, J = 9.5 Hz, H-
385 2e), 7.53 (2H, t, J = 8.0 Hz, H-8d, H-8f), 7.66 (1H, tt, J = 8.0, 1.2 Hz, H-8e), 8.04 (1H, dd, J = 9.5, 2.6
386 Hz, H-2f), 8.07 (2H, dd, J = 8.0, 1.2 Hz, H-8c, H-8g), 8.48 (1H, d, J = 2.6 Hz, H-2c); ^{13}C NMR
387 (CD₃OD, 151 MHz) δ 11.9 (CH₃-15d), 15.4 (CH₃-14), 16.8 (CH₃-15e), 21.0 (CH₃-6b), 27.4 (CH₃-13),
388 27.8 (CH₂-15c), 30.1 (CH₃-12), 38.7 (CH₃-2g), 40.9 (CH-4), 42.4 (CH-15b), 53.2 (CH-7), 61.6 (C-10),
389 63.8 (CH₂-15), 67.0 (CH-1), 73.1 (CH-3), 77.6 (CH-2), 78.3 (CH-6), 78.7 (CH-8), 87.1 (C-11), 92.9
390 (C-5), 111.2 (C-2b), 119.8 (CH-2e), 129.8 (CH-8d, CH-8f), 130.6 (C-8b), 130.8 (CH-8c, CH-8g),
391 134.8 (CH-8e), 140.8 (CH-2f), 145.6 (CH-2c), 164.6 (C-2a), 165.3 (C-2d), 166.3 (C-8a), 171.2 (C-6a),
392 178.0 (C-15a), 206.3 (C-9). For NMR spectra see **Supplementary Figures S24-S29**. HRESIMS *m/z*
393 698.2802 [M+H]⁺ (calculated for C₃₆H₄₄NO₁₃, error -0.640 ppm); MS/MS spectrum:
394 [CCMSLIB00009919275](https://www.ncbi.nlm.nih.gov/chembl/CCMSLIB00009919275).

395 SMILES:
396 O=C(C([H])([H])[H])O[C@@](C([C@@])([C@@]1([H])OC(/C(C([H])([H])[H])=C([H])\C([H])([H]
397))[H])=O)([H])OC(C([H])([H])[H])=O)([H])C2(C([H])([H])[H])C([H])([H])[H])([H])[C@@](C([H])([H])
398 1(C([H])([H])OC([C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])[H])=O)[C@@]3([H])OC(C([H])([H])[H])=O)(O2)[C@@](C([H])([H])[H])[C@@](OC(C([H])([H])[H])=O)([H])[C@@]3([H])
399 OC(C(C([H])=C4[H])=C([H])N(C([H])([H])[H])C4=O)=O. InChIKey=IEENCNNCPOLOQP-
400 FFXLREQYSA-N.
401

402 Compound **6**: (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)-6 β -acetoxy-2 α ,8 α -di-(5-carboxy-*N*-methyl-3-
403 pyridoxy)-9 α ,15-di-(2-methylbutanoyloxy)-dihydro- β -agarofuran. Amorphous white powder, $[\alpha]_D^{20}$ -
404 15 (ACN); UV (ACN) λ_{max} 194, 267 nm.

405 ^1H NMR (CD₃OD, 600 MHz) δ 0.55 (3H, t, J = 7.4 Hz, H₃-15d), 0.88 (3H, t, J = 7.5 Hz, H₃-9d), 1.03
406 (3H, d, J = 7.0 Hz, H₃-9e), 1.11 (3H, d, J = 7.7 Hz, H₃-14), 1.13 (3H, d, J = 7.0 Hz, H₃-15e), 1.24 (1H,
407 m, H-15c"), 1.37 (1H, m, H-9c"), 1.46 (3H, s, H₃-13), 1.48 (1H, m, H-15c'), 1.54 (3H, s, H₃-12), 1.68
408 (1H, m, H-9c'), 1.90 (1H, d, J = 13.7 Hz, H-3 α), 2.17 (3H, s, H₃-6b), 2.24 (1H, q, J = 6.9 Hz, H-9b),
409 2.35 (1H, m, H-4), 2.37 (1H, m, H-15b), 2.41 (1H, m, H-3 β), 2.62 (1H, d, J = 3.0 Hz, H-7), 3.70 (3H,
410 s, H₃-8g), 3.71 (3H, s, H₃-2g), 4.37 (1H, d, J = 13.3 Hz, H-15"), 4.39 (1H, d, J = 4.1 Hz, H-1), 5.37
411 (1H, td, J = 4.1, 2.2 Hz, H-2), 5.41 (1H, d, J = 13.3 Hz, H-15'), 5.64 (1H, d, J = 6.3 Hz, H-9), 5.66 (1H,
412 d, J = 6.3 Hz, H-8), 6.56 (1H, d, J = 9.5 Hz, H-2e), 6.60 (1H, d, J = 9.4 Hz, H-8e), 6.74 (1H, s, H-6),
413 8.03 (1H, dd, J = 9.4, 2.5 Hz, H-8f), 8.07 (1H, dd, J = 9.5, 2.5 Hz, H-2f), 8.61 (1H, d, J = 2.5 Hz, H-
414 2c), 8.89 (1H, d, J = 2.5 Hz, H-8c); ^{13}C NMR (CD₃OD, 151 MHz) δ 11.6 (CH₃-15d), 12.0 (CH₃-9d),
415 16.4 (CH₃-9e), 17.5 (CH₃-14), 17.8 (CH₃-15e), 21.3 (CH₃-6b), 24.9 (CH₃-12), 27.3 (CH₂-9c), 27.7
416 (CH₂-15c), 30.5 (CH₃-13), 32.4 (CH₂-3), 33.9 (CH-4), 38.5 (CH₃-2g), 38.8 (CH₃-8g), 42.1 (CH-15b),
417 42.5 (CH-9b), 53.1 (C-10), 55.7 (CH-7), 63.0 (CH₂-15), 72.8 (CH-8), 73.3 (CH-9), 75.1 (CH-2), 76.0
418 (CH-1), 76.9 (CH-6), 81.6 (C-11), 91.1 (C-5), 119.6 (CH-2e), 119.8 (CH-8e), 140.9 (CH-8f), 141.1
419 (CH-2f), 145.5 (CH-2c), 146.5 (CH-8c), 165.2 (C-2d, C-8d), 172.1 (C-6a), 176.6 (C-9a), 179.0 (C-
420 15a). For NMR spectra see **Supplementary Figures S30-S35**. HRESIMS *m/z* 799.3649 [M+H]⁺
421 (calculated for C₄₁H₅₅N₂O₁₄, error 0.224 ppm); MS/MS spectrum: [CCMSLIB00009919271](https://www.ncbi.nlm.nih.gov/chembl/CCMSLIB00009919271).

422 SMILES:
423 O=C(C([H])([H])[H])O[C@@](C([C@@])([C@@]1([H])OC([C@](C([H])([H])[H])([H])C([H])([H])

Running Title

424)C([H])([H])[H])=O)([H])OC(C2=C([H])N(C([H])([H])[H])C(C([H])=C2[H])=O)=O)([H])C3(C([H])
425)([H])[H])C([H])([H])[H])([H])[C@]4(O3)[C@@](C([H])([H])[H])([H])C([H])([H])[C@](OC(C(C([H])=C5[H])=C([H])N(C([H])([H])[H])C5=O)=O)([H])[C@@](O[H])([H])[C@]41C([H])([H])OC([C@@](C([H])([H])[H])([H])C([H])([H])[H])=O. InChIKey=LVFIUDAMNWXFMK-FSASPUCBSA-N.

429

430 Compound **7**: (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)- 1*α*,6*β*-diacetoxy-2*α*,8*α*-di-(5-carboxy-*N*-methyl-3-pyridoxy)-15-*iso*-butanoyloxy-9*α*-(2-methylbutanoyloxy)-dihydro-*β*-agarofuran. Amorphous white powder, $[\alpha]_D^{20}$ - 9 (ACN); UV (ACN) λ_{\max} 195, 266 nm.

433 ^1H NMR (CD₃OD, 600 MHz) δ 0.85 (3H, d, *J* = 6.9 Hz, H₃-15d), 0.87 (3H, t, *J* = 7.5 Hz, H₃-9d), 1.06
434 (3H, d, *J* = 7.1 Hz, H₃-9e), 1.15 (3H, d, *J* = 6.9 Hz, H₃-15c), 1.21 (3H, d, *J* = 7.7 Hz, H₃-14), 1.31 (1H,
435 m, H-9c’), 1.49 (3H, s, H₃-13), 1.53 (3H, s, H₃-12), 1.69 (1H, m, H-9c’), 1.85 (3H, s, H₃-1b), 1.91 (1H,
436 d, *J* = 15.4 Hz, H-3*α*), 2.19 (3H, s, H₃-6b), 2.26 (1H, m, H-9b), 2.43 (1H, p, *J* = 7.5 Hz, H-4), 2.52 (1H,
437 ddd, *J* = 15.4, 6.9, 4.6 Hz, H-3*β*), 2.58 (1H, hept, *J* = 6.9 Hz, H-15b), 2.67 (1H, m, H-7), 3.68 (3H, s,
438 H₃-2g), 3.70 (3H, s, H₃-8g), 4.24 (1H, d, *J* = 13.2 Hz, H-15’’), 5.46 (1H, d, *J* = 13.2 Hz, H-15’), 5.51
439 (1H, d, *J* = 6.3 Hz, H-9), 5.58 (1H, dd, *J* = 6.3, 3.9 Hz, H-8), 5.61 (1H, td, *J* = 4.0, 2.1 Hz, H-2), 5.70
440 (1H, d, *J* = 4.0 Hz, H-1), 6.56 (1H, d, *J* = 9.5 Hz, H-2e), 6.59 (1H, d, *J* = 9.4 Hz, H-8e), 6.74 (1H, d, *J*
441 = 0.9 Hz, H-6), 8.01 (1H, dd, *J* = 9.5, 2.5 Hz, H-2f), 8.04 (1H, dd, *J* = 9.4, 2.5 Hz, H-8f), 8.52 (1H, d,
442 *J* = 2.5 Hz, H-2c), 8.83 (1H, d, *J* = 2.5 Hz, H-8c); ^{13}C NMR (CD₃OD, 151 MHz) δ 12.1 (CH₃-9d), 16.2
443 (CH₃-9e), 17.6 (CH₃-14), 19.3 (CH₃-15d), 19.4 (CH₃-15c), 21.1 (CH₃-1b), 21.2 (CH₃-6b), 24.8 (CH₃-
444 12), 26.9 (CH₂-9c), 30.4 (CH₃-13), 32.3 (CH₂-3), 33.8 (CH-4), 35.1 (CH-15b), 38.6 (CH₃-2g), 38.7
445 (CH₃-8g), 42.0 (CH-9b), 52.7 (C-10), 55.3 (CH-7), 62.8 (CH₂-15), 70.9 (CH-2), 72.2 (CH-9), 72.4
446 (CH-8), 76.5 (CH-6), 77.9 (CH-1), 82.0 (C-11), 91.2 (C-5), 111.0 (CH-2b), 111.9 (CH-8b), 119.7 (CH-
447 2e), 119.8 (CH-8e), 140.7 (CH-2f), 140.8 (CH-8f), 145.7 (CH-2c), 146.4 (CH-8c), 164.8 (C-2a), 165.0
448 (C-8a), 165.1 (C-2d), 165.2 (C-8d), 171.3 (C-1a), 172.0 (C-6a), 175.9 (C-9a), 179.0 (C-15a). For NMR
449 spectra see **Supplementary Figures S36-S41**. HRESIMS *m/z* 827.3598 [M+H]⁺ (calculated for
450 C₄₂H₅₅N₂O₁₅, error 0.127 ppm); MS/MS spectrum: [CCMSLIB00009919272](https://chemspider.com/CCMSLIB00009919272).

451 SMILES:

452 O=C(C([H])([H])[H])O[C@@](C@)([C@@](C@)([H])OC([C@](C([H])([H])[H])([H])C([H])
453 ([H])C([H])([H])[H])=O)([H])OC(C2=C([H])N(C([H])([H])[H])C(C([H])=C2[H])=O)=O)([H])C3(C([H])
454 ([H])([H])[H])C([H])([H])[H])[C@]4(O3)C(C([H])([H])[H])([H])C([H])([H])[C@@](OC(C([H])([H])[H])=O)([H])[C@]4
455 1C([H])([H])OC(C(C([H])([H])[H])([H])C([H])([H])[H])=O)([H])[C@@](OC(C([H])([H])[H])=O)([H])[C@]4
456 1C([H])([H])OC(C(C([H])([H])[H])([H])C([H])([H])[H])=O. InChIKey=HDNFKWOIOAMTET-
457 UVPOIIEDSA-N.

458 Compound **8**: (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)- 1*α*,6*β*-diacetoxy-2*α*,8*α*-di-(5-carboxy-*N*-methyl-3-pyridoxy)-9*α*,15-di-(2-methylbutanoyloxy)-dihydro-*β*-agarofuran. Amorphous white powder, $[\alpha]_D^{20}$ - 14 (ACN); UV (ACN) λ_{\max} 204, 266 nm.

461 ^1H NMR (CD₃OD, 600 MHz) δ 0.55 (3H, t, *J* = 7.4 Hz, H₃-15d), 0.88 (3H, t, *J* = 7.4 Hz, H₃-9d), 1.07
462 (3H, d, *J* = 7.1 Hz, H₃-9e), 1.16 (3H, d, *J* = 7.0 Hz, H₃-15e), 1.21 (3H, d, *J* = 7.6 Hz, H₃-14), 1.25 (1H,
463 m, H-15c’’), 1.29 (1H, m, H-9c’’), 1.49 (3H, s, H₃-13), 1.50 (1H, m, H-15c’), 1.53 (3H, s, H₃-12), 1.71
464 (1H, ddd, *J* = 13.2, 7.4, 5.5 Hz, H-9c’), 1.85 (3H, s, H₃-1b), 1.91 (1H, dd, *J* = 15.7, 2.0 Hz, H-3*α*), 2.20
465 (3H, s, H₃-6b), 2.24 (1H, m, H-9b), 2.39 (1H, m, H-15b), 2.44 (1H, m, H-4), 2.52 (1H, ddd, *J* = 15.7,
466 6.9, 4.6 Hz, H-3*β*), 2.66 (1H, m, H-7), 3.68 (3H, s, H₃-2g), 3.71 (3H, s, H₃-8g), 4.19 (1H, d, *J* = 13.2

467 Hz, H-15''), 5.49 (1H, d, J = 13.2 Hz, H-15'), 5.52 (1H, d, J = 6.3 Hz, H-9), 5.58 (1H, dd, J = 6.3, 3.8
468 Hz, H-8), 5.61 (1H, td, J = 4.2, 2.2 Hz, H-2), 5.71 (1H, d, J = 4.2 Hz, H-1), 6.57 (1H, d, J = 9.5 Hz, H-
469 2e), 6.60 (1H, d, J = 9.4 Hz, H-8e), 6.76 (1H, d, J = 1.0 Hz, H-6), 8.02 (1H, dd, J = 9.5, 2.5 Hz, H-2f),
470 8.03 (1H, dd, J = 9.4, 2.5 Hz, H-8f), 8.54 (1H, d, J = 2.5 Hz, H-2c), 8.88 (1H, d, J = 2.5 Hz, H-8c); ^{13}C
471 NMR (CD₃OD, 151 MHz) δ 11.6 (CH₃-15d), 12.2 (CH₃-9d), 16.2 (CH₃-9e), 17.6 (CH₃-14), 17.7 (CH₃-
472 15e), 21.1 (CH₃-1b), 21.2 (CH₃-6b), 24.9 (CH₃-12), 26.8 (CH₂-9c), 27.7 (CH₂-15c), 30.4 (CH₃-13),
473 32.3 (CH₂-3), 33.8 (CH-4), 38.6 (CH₃-2g), 38.8 (CH₃-8g), 42.0 (CH-9b), 42.1 (CH-15b), 52.7 (C-10),
474 55.5 (CH-7), 62.6 (CH₂-15), 70.9 (CH-2), 72.0 (CH-9), 72.4 (CH-8), 76.6 (CH-6), 77.8 (CH-1), 82.0
475 (C-11), 91.1 (C-5), 111.0 (C-2b), 112.1 (C-8b), 119.8 (CH-2e, CH-8e), 140.8 (CH-2f), 140.9 (CH-8f),
476 145.7 (CH-2c), 146.6 (CH-8c), 164.8 (C-2a), 165.0 (C-8d), 165.2 (C-8a), 165.2 (C-2d), 171.3 (C-1a),
477 172.0 (C-6a), 175.9 (C-9a), 178.6 (C-15a). For NMR spectra see **Supplementary Figures S42-S47**.
478 HRESIMS m/z 841.3736 [M+H]⁺ (calculated for C₄₃H₅₇N₂O₁₅, error -2.00 ppm); MS/MS spectrum:
479 [CCMSLIB00009919274](https://www.ncbi.nlm.nih.gov/CCMSLIB/00009919274).

480 SMILES:
481 O=C(C([H])([H])[H])O[C@@](C@)(C@)(C@)1([H])OC(/C(C([H])([H])[H])=C([H])/C([H])
482 ([H])[H])=O)([H])OC(C([H])([H])[H])=O)([H])C2(C([H])([H])[H])C([H])([H])[H])([H])[C@](C@
483 @)1(C([H])([H])OC(C(C([H])([H])[H])([H])C([H])([H])=O)[C@@]3([H])OC(C([H])([H])[H])
484 =O)(O2)C(C([H])([H])[H])([H])[C@](OC(C([H])([H])[H])=O)([H])[C@]3([H])OC(C(C([H])=C4[H
485])=C([H])N(C([H])([H])[H])C4=O)=O. InChIKey=WUSPTHMFTBWJDO-PEKKODFFSA-N.

486 Compound **9**: (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)- 1*α*,6*β*-diacetoxy-2*α*-(5-carboxy-*N*-methyl-3-
487 pyridoxy)-9*α*,15-di-(2-methylbutanoyloxy)-8*α*-nicotinoyloxydihydro-*β*-agarofuran. Amorphous white
488 powder, $[\alpha]_D^{20}$ - 15 (ACN); UV (ACN) λ_{max} 194, 267 nm.

489 ^1H NMR (CD₃OD, 600 MHz) δ 0.35 (3H, t, J = 7.5 Hz, H₃-15d), 0.85 (3H, t, J = 7.5 Hz, H₃-9d), 1.06
490 (3H, d, J = 7.2 Hz, H₃-9e), 1.10 (1H, m, H-15c''), 1.12 (3H, d, J = 7.0 Hz, H₃-15e), 1.21 (3H, d, J = 7.7
491 Hz, H₃-14), 1.29 (1H, m, H-9c''), 1.35 (1H, m, H-15c'), 1.51 (3H, s, H₃-13), 1.56 (3H, s, H₃-12), 1.68
492 (1H, m, H-9c'), 1.85 (3H, s, H₃-1b), 1.91 (1H, d, J = 15.3 Hz, H-3*α*), 2.18 (3H, s, H₃-6b), 2.24 (1H, m,
493 H-9b), 2.29 (1H, m, H-15b), 2.45 (1H, m, H-4), 2.52 (1H, m, H-3*β*), 2.75 (1H, d, J = 3.8 Hz, H-7),
494 3.68 (3H, s, H₃-2g), 4.15 (1H, d, J = 13.2 Hz, H-15''), 5.51 (1H, d, J = 13.2 Hz, H-15'), 5.57 (1H, d, J
495 = 6.5 Hz, H-9), 5.62 (1H, td, J = 4.0, 2.2 Hz, H-2), 5.72 (1H, d, J = 4.0 Hz, H-1), 5.76 (1H, dd, J = 6.5,
496 3.8 Hz, H-8), 6.56 (1H, d, J = 9.5 Hz, H-2*e*), 6.78 (1H, s, H-6), 7.65 (1H, dd, J = 7.9, 5.0 Hz, H-8*e*),
497 8.02 (1H, dd, J = 9.5, 2.6 Hz, H-2*f*), 8.55 (1H, d, J = 2.6 Hz, H-2*c*), 8.57 (1H, dt, J = 7.9, 1.9 Hz, H-
498 8*f*), 8.82 (1H, dd, J = 5.0, 1.9 Hz, H-8*d*), 9.40 (1H, d, J = 1.9 Hz, H-8*c*); ^{13}C NMR (CD₃OD, 151 MHz)
499 δ 11.1 (CH₃-15d), 11.8 (CH₃-9d), 15.8 (CH₃-9e), 17.2 (CH₃-14, CH₃-15e), 20.7 (CH₃-1b, CH₃-6b),
500 24.6 (CH₃-12), 26.5 (CH₂-9c), 27.2 (CH₂-15c), 30.2 (CH₃-13), 31.9 (CH₂-3), 33.4 (CH-4), 38.2 (CH₃-
501 2*g*), 41.4 (CH-15b), 41.8 (CH-9b), 54.8 (CH-7), 62.1 (CH₂-15), 70.5 (CH-2), 71.7 (CH-9), 72.3 (CH-
502 8), 76.1 (CH-6), 77.5 (CH-1), 81.8 (C-11), 91.0 (C-5), 119.4 (CH-2*e*), 125.0 (CH-8*e*), 139.1 (CH-8*f*),
503 140.5 (CH-2*f*), 145.2 (CH-2*c*), 151.4 (CH-8*c*), 154.2 (CH-8*d*), 164.9 (C-2*d*), 171.0 (C-1*a*), 171.2 (C-
504 6*a*), 175.5 (C-9*a*), 178.6 (C-15*a*). For NMR spectra see **Supplementary Figures S48-S52**. HRESIMS
505 m/z 811.3668 [M+H]⁺ (calculated for C₄₂H₅₃N₂O₁₁, error 2.58 ppm); MS/MS spectrum:
506 [CCMSLIB00009919277](https://www.ncbi.nlm.nih.gov/CCMSLIB/00009919277).

507 SMILES:
508 O=C1[C@](OC(C2=C([H])C([H])=C([H])C([H])=C2[H])=O)([H])[C@](C3(C([H])([H])[H])C([H])([H])[H])[C@]
509 [C@](OC(C([H])([H])[H])=O)([H])[C@]4(O3)[C@@](C([H])([H])[H])([H])C([H])([H])[C@@](OC(C(C([H])=C5[H])=C([H])N(C([H])([H])[H])C5=O)=O)([H])[C@@](O[H])([H])[C]
510

Running Title

511 @]41C([H])([H])OC([C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])[H])=O.
512 InChIKey=XTJGSCAWSRSC-GCFOXSEASA-N.

513 Compound **10**: (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)-1*α*,6*β*-diacetoxy-9*α*-*iso*-butanoyloxy-2*α*,8*α*-di-(5-
514 carboxy-*N*-methyl-3-pyridoxy)-15-methylbutanoyloxydihydro-*β*-agarofuran. Amorphous white
515 powder, $[\alpha]_D^{20}$ - 6 (ACN); UV (ACN) λ_{max} 206, 269 nm.

516 ^1H NMR (CD₃OD, 600 MHz) δ 0.54 (3H, t, *J* = 7.4 Hz, H₃-15d), 1.07 (3H, d, *J* = 7.0 Hz, H₃-9d), 1.09
517 (3H, d, *J* = 7.1 Hz, H₃-9c), 1.15 (3H, d, *J* = 7.0 Hz, H₃-15e), 1.21 (3H, d, *J* = 7.6 Hz, H₃-14), 1.25 (1H,
518 m, H-15c"), 1.47 (1H, m, H-15c'), 1.49 (3H, s, H₃-13), 1.52 (3H, s, H₃-12), 1.85 (3H, s, H₃-1b), 1.92
519 (1H, m, H-3*α*), 2.21 (3H, d, *J* = 1.1 Hz, H₃-6b), 2.38 (1H, m, H-15b), 2.44 (1H, m, H-4), 2.45 (1H, m,
520 H-9b), 2.52 (1H, ddd, *J* = 15.5, 6.9, 4.6 Hz, H-3*β*), 2.67 (1H, dd, *J* = 3.8, 0.9 Hz, H-7), 3.68 (3H, s, H₃-
521 2g), 3.70 (3H, s, H₃-8g), 4.18 (1H, d, *J* = 13.1 Hz, H-15"), 5.49 (1H, d, *J* = 13.1 Hz, H-15'), 5.52 (1H,
522 d, *J* = 6.3 Hz, H-9), 5.56 (1H, dd, *J* = 6.3, 3.8 Hz, H-8), 5.61 (1H, dt, *J* = 4.0, 2.1 Hz, H-2), 5.70 (1H,
523 d, *J* = 4.0 Hz, H-1), 6.56 (1H, d, *J* = 9.5 Hz, H-2e), 6.60 (1H, d, *J* = 9.4 Hz, H-8e), 6.77 (1H, d, *J* = 0.9
524 Hz, H-6), 8.02 (1H, dd, *J* = 9.5, 2.6 Hz, H-2f), 8.04 (1H, dd, *J* = 9.4, 2.5 Hz, H-8f), 8.54 (1H, d, *J* =
525 2.6 Hz, H-2c), 8.88 (1H, d, *J* = 2.5 Hz, H-8c); ^{13}C NMR (CD₃OD, 151 MHz) δ 11.6 (CH₃-15d), 17.5
526 (CH₃-14), 17.7 (CH₃-15e), 18.8 (CH₃-9d), 19.0 (CH₃-9c), 21.0 (CH₃-1b), 21.2 (CH₃-6b), 24.9 (CH₃-
527 12), 27.7 (CH₂-15c), 30.4 (CH₃-13), 32.3 (CH₂-3), 33.8 (CH-4), 35.3 (CH-9b), 38.6 (CH₃-2g), 38.8
528 (CH₃-8g), 42.1 (CH-15b), 52.7 (C-10), 55.5 (CH-7), 62.6 (CH₂-15), 70.9 (CH-2), 71.9 (CH-9), 72.4
529 (CH-8), 76.6 (CH-6), 77.8 (CH-1), 81.9 (C-11), 91.1 (C-5), 111.0 (C-2b), 112.0 (C-8b), 119.8 (CH-2e,
530 CH-8e), 140.8 (CH-2f), 140.9 (CH-8f), 145.7 (CH-2c), 146.6 (CH-8c), 164.8 (C-2d, C-8d), 171.3 (C-
531 1a), 172.0 (C-6a), 176.3 (C-9a), 178.7 (C-15a). For NMR spectra see **Supplementary Figures S53-S58**.
532 HRESIMS *m/z* 827.3595 [M+H]⁺ (calculated for C₄₂H₅₅N₂O₁₅, error -0.16 ppm); MS/MS
533 spectrum: [CCMSLIB00009919279](https://chemspider.com/CCMSLIB00009919279).

534 SMILES:

535 O=C(C([H])([H])[H])O[C@@](C([C@@](C([C@@]1([H])OC(C(C([H])([H])[H])([H])C([H])([H])[H])
536)=O)([H])OC(C(C([H])=C2[H])=C([H])N(C([H])([H])[H])C2=O)=O)([H])C3(C([H])([H])[H])C([H])
537)([H])[H])([H])[C@]4(O3)[C@@](C([H])([H])[H])([H])C([H])([H]).
538 InChIKey=KXKFNEWNZKWNFD-DCBBRINESA-N.

539

540 Compound **11**: (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)-6*β*-diacetoxy-9*α*-*iso*-butanoyloxy-2*α*,8*α*-di-(5-
541 carboxy-*N*-methyl-3-pyridoxy)-1*α*-hydroxy-15-methylbutanoyloxydihydro-*β*-agarofuran. Amorphous white
542 powder, $[\alpha]_D^{20}$ - 30 (ACN); UV (ACN) λ_{max} 195, 266 nm.

543 ^1H NMR (CD₃OD, 600 MHz) δ 0.54 (3H, t, *J* = 7.5 Hz, H₃-15d), 1.07 (3H, d, *J* = 7.0 Hz, H₃-9d), 1.09
544 (3H, d, *J* = 7.0 Hz, H₃-9c), 1.11 (3H, d, *J* = 7.9 Hz, H₃-14), 1.13 (3H, d, *J* = 7.3 Hz, H₃-15e), 1.22 (1H,
545 m, H-15c"), 1.46 (1H, m, H-15c'), 1.46 (3H, s, H₃-13), 1.54 (3H, s, H₃-12), 1.90 (1H, d, *J* = 15.3 Hz,
546 H-3*α*), 2.18 (3H, s, H₃-6b), 2.36 (2H, m, H-4, H-15b), 2.40 (1H, m, H-3*β*), 2.43 (1H, hept, *J* = 7.0 Hz,
547 H-9b), 2.63 (1H, d, *J* = 3.9 Hz, H-7), 3.70 (6H, 2xs, H₃-2g, H₃-8g), 4.36 (1H, d, *J* = 13.2 Hz, H-15"),
548 4.38 (1H, d, *J* = 4.1 Hz, H-1), 5.37 (1H, m, H-2), 5.41 (1H, d, *J* = 13.2 Hz, H-15'), 5.62 (1H, dd, *J* =
549 6.1, 3.9 Hz, H-8), 5.65 (1H, d, *J* = 6.1 Hz, H-9), 6.56 (1H, d, *J* = 9.4 Hz, H-2e), 6.60 (1H, d, *J* = 9.5
550 Hz, H-8e), 6.75 (1H, s, H-6), 8.05 (1H, dd, *J* = 9.5, 2.5 Hz, H-8f), 8.07 (1H, dd, *J* = 9.4, 2.5 Hz, H-2f),
551 8.61 (1H, d, *J* = 2.5 Hz, H-2c), 8.90 (1H, d, *J* = 2.5 Hz, H-8c); ^{13}C NMR (CD₃OD, 151 MHz) δ 11.3
552 (CH₃-15d), 17.2 (CH₃-14), 17.4 (CH₃-15e), 18.6 (CH₃-9c, CH₃-9d), 20.9 (CH₃-6b), 24.6 (CH₃-12),
553 27.5 (CH₂-15c), 30.2 (CH₃-13), 32.2 (CH₂-3), 33.5 (CH-4), 35.3 (CH-9b), 38.6 (CH₃-2g), 38.3 (CH₃-

554 2g, CH₃-8g), 41.9 (CH-15b), 55.4 (CH-7), 67.9 (CH₂-15), 72.6 (CH-8), 73.0 (CH-9), 74.7 (CH-2), 75.6
555 (CH-1), 76.7 (CH-6), 81.2 (C-11), 90.8 (C-5), 111.5 (C-2b), 112.0 (C-8b), 119.2 (CH-2e), 119.4 (CH-
556 8e), 140.7 (CH-2f, CH-8f), 145.2 (CH-2c), 146.3 (CH-8c), 165.0 (C-2d, C-8d), 171.7 (C-6a), 176.7
557 (C-9a), 178.7 (C-15a).. For NMR spectra see **Supplementary Figures S59-S63**. HRESIMS *m/z*
558 785.3511 [M+H]⁺ (calculated for C₄₀H₅₃N₂O₁₄, error -2.55 ppm); MS/MS spectrum:
559 [CCMSLIB00009919269](#).

560 SMILES:
561 O=C(C([H])([H])[H])O[C@@](C([C@@])([C@@]1([H])OC([C@](C([H])([H])[H])([H])C([H])([H])
562)C([H])([H])[H])=O)([H])OC(C2=C([H])N(C([H])([H])[H])C(C([H])=C2[H])=O)=O)([H])C3(C([H])
563)([H])[H])C([H])([H])[H])[C@]4(O3)[C@@](C([H])([H])[H])([H])C([H])([H])C(OC(C([H])
564 =C5[H])=C([H])N(C([H])([H])[H])C5=O)=O)([H])[C@@](OC(C([H])([H])[H])=O)([H])[C@]41C([
565 H])([H])OC([C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])[H])=O).
566 InChIKey=IJMXFBHJNXUVLI-VPQZVAQISA-N.

567

568 Compound **12**: (1*R*,2*S*,3*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)- 1*α*,3*β*,6*β*,8*α*-tetraacetoxy-15-*iso*-butanoyloxy-2*α*-
569 (5-carboxy-*N*-methyl-3-pyridoxy)-9*α*-tigloyloxydihydro-*β*-agarofuran. Amorphous white powder,
570 [α]_D²⁰ - 2 (ACN); UV (ACN) λ_{max} 207, 268 nm.

571 ¹H NMR (CD₃OD, 600 MHz) δ 1.21 (3H, d, *J* = 7.9 Hz, H₃-14), 1.24 (3H, d, *J* = 6.9 Hz, H₃-15d), 1.26
572 (3H, d, *J* = 6.9 Hz, H₃-15c), 1.44 (3H, s, H₃-13), 1.53 (3H, s, H₃-12), 1.75 (3H, s, H₃-1b), 1.77 (3H, p,
573 *J* = 1.3 Hz, H₃-9e), 1.78 (3H, dq, *J* = 6.9, 1.3 Hz, H₃-9d), 2.11 (3H, s, H₃-8b), 2.12 (3H, s, H₃-6b), 2.12
574 (3H, s, H₃-3b), 2.50 (1H, dd, *J* = 3.8, 1.0 Hz, H-7), 2.56 (1H, m, H-4), 2.90 (1H, hept, *J* = 6.9 Hz, H-
575 15b), 3.71 (3H, d, *J* = 1.7 Hz, H₃-2g), 4.28 (1H, d, *J* = 13.2 Hz, H-15"), 4.87 (1H, overlapped, H-3),
576 5.36 (1H, d, *J* = 13.2 Hz, H-15'), 5.49 (1H, d, *J* = 6.5 Hz, H-9), 5.52 (2H, m, H-2, H-8), 5.91 (1H, d, *J*
577 = 4.2 Hz, H-1), 6.58 (1H, d, *J* = 1.1 Hz, H-6), 6.58 (1H, d, *J* = 9.5 Hz, H-2e), 6.83 (1H, qq, *J* = 6.9, 1.3
578 Hz, H-9c), 8.00 (1H, dd, *J* = 9.5, 2.6 Hz, H-2f), 8.55 (2H, d, *J* = 2.6 Hz, H-2c); ¹³C NMR (CD₃OD,
579 151 MHz) δ 11.6 (CH₃-9e), 14.1 (CH₃-9d), 14.9 (CH₃-14), 19.3 (CH₃-15c, CH₃-15d), 20.2 (CH₃-1b),
580 20.7 (CH₃-3b, CH₃-6b, , CH₃-8b), 24.6 (CH₃-12), 30.2 (CH₃-13), 34.8 (CH-15b), 38.0 (CH-4), 38.3
581 (CH₃-2g), 52.0 (C-10), 53.3 (CH-7), 61.9 (CH₂-15), 70.5 (CH-8), 71.3 (CH-2), 71.9 (CH-9), 74.9 (CH-
582 1), 75.8 (CH-3), 76.5 (CH-6), 82.5 (C-11), 90.3 (C-5), 109.9 (C-2b), 119.6 (CH-2e), 128.9 (C-9b),
583 140.0 (CH-9c), 140.4 (CH-2f), 145.8 (CH-2c), 163.9 (C-2a), 165.0 (C-2d), 167.0 (C-9a), 170.8 (C-1a),
584 171.1 (C-6a), 171.3 (C-3a), 171.5 (C-8a), 178.9 (C-15a). For NMR spectra see **Supplementary**
585 **Figures S64-S68**. HRESIMS *m/z* 790.3289 [M+H]⁺ (calculated for C₃₉H₅₂NO₁₆, error 1.16 ppm);
586 MS/MS spectrum: [CCMSLIB00009919273](#). SMILES:

587 O=C1[C@@](OC(C2=C([H])C([H])=C([H])C([H])=C2[H])=O)([H])[C@](C3(C([H])([H])[H])C([H])
588)([H])[H])C(OC(C([H])([H])[H])=O)([H])[C@](C([H])([H])OC([C@@](C([H])([H])[H])C([C@](O[H])
589 ([H])[H])C([H])([H])C([H])([H])=O)C4([H])O[H])(O3)[C@@](C([H])([H])[H])([H])[C@](O[H])
590 ([H])[C@]4([H])OC(C(C([H])=C5[H])=C([H])N(C([H])([H])[H])C5=O)=O.
591 InChIKey=ZSYJSJVZJMUAMB-VWMXXGJYSA-N.

592 Compound **13**: (1*R*,2*S*,3*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)-1*α*,3*β*,6*β*,8*α*-tetraacetoxy-2*α*-(5-carboxy-*N*-
593 methyl-3-pyridoxy)-15-(2-methylbutanoyloxy)-9*α*-tigloyloxydihydro-*β*-agarofuran. Amorphous
594 white powder, [α]_D²⁰ - 15 (ACN); UV (ACN) λ_{max} 194, 270 nm.

595 ¹H NMR (CD₃OD, 600 MHz) δ 0.97 (3H, t, *J* = 7.4 Hz, H₃-15d), 1.20 (3H, d, *J* = 7.9 Hz, H₃-14), 1.25
596 (3H, d, *J* = 7.0 Hz, H₃-15e), 1.43 (3H, s, H₃-13), 1.53 (3H, s, H₃-12), 1.58 (1H, ddd, *J* = 13.8, 7.5, 6.4

Running Title

597 Hz, H-15c"), 1.75 (3H, s, H₃-1b), 1.78 (6H, m, H₃-9d, H₃-9e), 1.80 (1H, m, H-15c'), 2.12 (3H, s, H₃-
598 6b), 2.12 (3H, s, H₃-3b), 2.13 (3H, s, H₃-8b), 2.50 (1H, dd, *J* = 3.7, 1.0 Hz, H-7), 2.56 (1H, qt, *J* = 8.0,
599 1.0 Hz, H-4), 2.74 (1H, h, *J* = 7.0 Hz, H-15b), 3.71 (3H, s, H₃-2g), 4.22 (1H, d, *J* = 13.3 Hz, H-15"),
600 4.87 (1H, overlapped, H-3), 5.44 (1H, d, *J* = 13.3 Hz, H-15'), 5.49 (1H, d, *J* = 6.6 Hz, H-9), 5.53 (2H,
601 m, H-2, H-8), 5.92 (1H, d, *J* = 4.3 Hz, H-1), 6.55 (1H, d, *J* = 1.0 Hz, H-6), 6.58 (1H, d, *J* = 9.5 Hz, H-
602 2e), 6.83 (1H, qq, *J* = 7.3, 1.6 Hz, H-9c), 8.02 (1H, dd, *J* = 9.5, 2.5 Hz, H-2f), 8.58 (1H, d, *J* = 2.5 Hz,
603 H-2c); ¹³C NMR (CD₃OD, 151 MHz) δ 12.1 (CH₃-9e, CH₃-15d), 14.4 (CH₃-9d), 15.2 (CH₃-14), 17.4
604 (CH₃-15e), 20.5 (CH₃-1b), 21.1 (CH₃-6b), 21.2 (CH₃-3b), 21.4 (CH₃-8b), 24.9 (CH₃-12), 27.9 (CH₂-
605 15c), 30.6 (CH₃-13), 38.2 (CH-4), 38.6 (CH₃-2g), 42.3 (CH-15b), 52.1 (C-10), 53.6 (CH-7), 62.1 (CH₂-
606 15), 70.8 (CH-8), 71.6 (CH-2), 72.1 (CH-9), 75.2 (CH-1), 76.1 (CH-3), 76.9 (CH-6), 82.7 (C-11), 90.6
607 (C-5), 110.3 (C-2b), 119.9 (CH-2e), 129.2 (C-9b), 140.2 (CH-9c), 140.7 (CH-2f), 146.1 (CH-2c), 164.1
608 (C-2a), 165.3 (C-2d), 167.3 (C-9a), 171.1 (C-1a), 171.2 (C-6a), 171.5 (C-3a), 171.7 (C-8a), 178.9 (C-
609 15a). For NMR spectra see **Supplementary Figures S69-S74**. HRESIMS *m/z* 804.3445 [M+H]⁺
610 (calculated for C₄₀H₅₄NO₁₆, error 1.03 ppm); MS/MS spectrum: [CCMSLIB00009919276](https://pubchem.ncbi.nlm.nih.gov/compound/CCMSLIB00009919276).

611 SMILES:

612 O=C(C([H])([H])[H])O[C@@]([C@])[C@@]1([H])OC([C@](C([H])([H])[H])([H])C([H])
613 ([H])C([H])([H])[H])=O)([H])OC(C2=C([H])N=C([H])C([H])=C2[H])=O)([H])C3(C([H])([H])[H])
614 C([H])([H])[H])([H])[C@]4(O3)C(C([H])([H])[H])([H])C([H])([H])C(OC(C(C([H])=C5[H])=C([H])
615 N(C([H])([H])[H])C5=O)=O)([H])[C@@](O/C(C([H])([H])[H])=C([H]))([H])([H])[C@]41C([H])([H])
616)OC([C@@](C([H])([H])[H])([H])C([H])([H])C([H])([H])[H])=O.
617 InChIKey=QQDABXSQXJXVOM-DEEWNFLNSA-N.

618 2.5.2 Electronic Circular Dichroism (ECD) Calculations.

619 The absolute configuration of all compounds was assigned according to the comparison of the
620 calculated and experimental ECD. Based on their relative configuration proposed by NMR 2D ROESY
621 experiments, the structures were employed for the random conformational search using MMFF94s
622 force field by Spartan Student v7 (Wavefunction, Irvine, CA, USA). From the results, the 20 isomers
623 with lower energy were subjected to further successive PM3 and B3LYP/6-31G(d,p) optimizations in
624 Gaussian 16 software (© 2015-2022, Gaussian Inc., Wallingford, CT, USA) using the CPCM model
625 in acetonitrile (Nugroho and Morita, 2014; Mádi and Kurtán, 2019). All optimized conformers in each
626 step were checked to avoid imaginary frequencies. After a cut-off of 4 kcal/mol in energy, conformers
627 were submitted to Gaussian16 software for ECD calculations, using TD-DFT B3LYP/def2svp as a
628 basis set with the CPCM model in acetonitrile. The calculated ECD spectrum was generated in
629 SpecVis1.71 software (Berlin, Germany) based on the Boltzmann weighting average. Results are
630 shown in **Supplementary Figure S75**. The ECD calculations on Gaussian 16 (© 2015–2022,
631 Gaussian inc.) were performed at the University of Geneva on the HPC [Baobab cluster](https://www.unige.ch/baobab/).

632 3 Results and Discussion

633 The prioritization of a particular natural extract for the search for NPs with novel structural
634 characteristics is linked to the availability of literature reports and the dereplication results. The first
635 one allows visualizing the extension of the knowledge for a particular taxon and deciding if it is worthy
636 of further studies. The second one will help putatively highlight a particular extract's composition at
637 the analytical level. A combination of both aspects could indicate where to focus the isolation efforts.

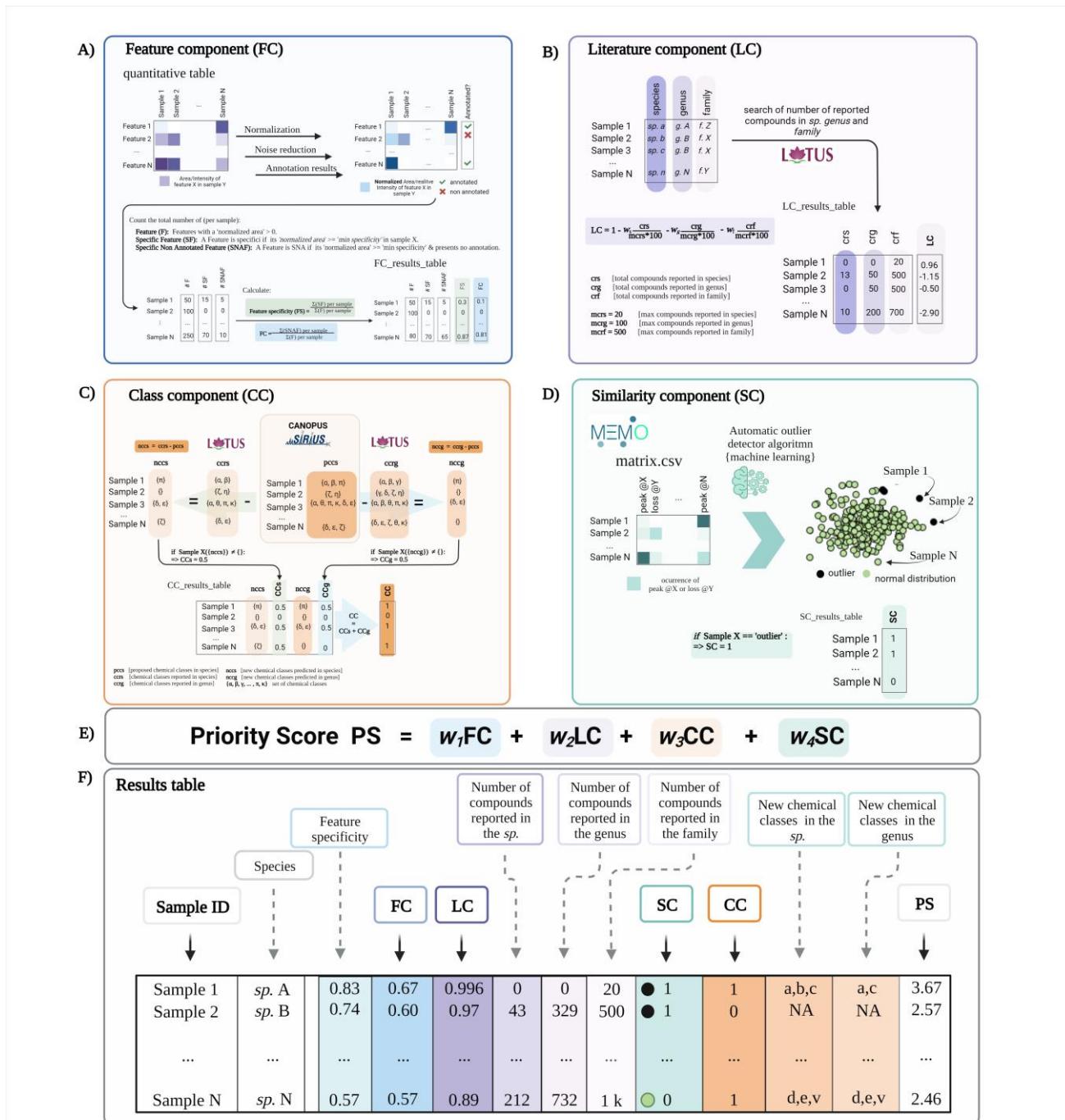
638 *Inventa* automatically calculates multiple scores that estimate each extract's chemical novelty from
639 previous literature reports and MS-based metabolomics analysis. The scores consider the compounds

640 reported in the literature for the taxon, the occurrence of specific features in the mass spectrometry
641 profiles of all extracts, and the MS² annotations obtained with a combination of advanced
642 computational annotation methods. *Inventa*'s scores are related to four different components. The
643 individual calculations and the user's tunable parameters are described below.

644 **3.1 The conception of the priority score**

645 *Inventa* focuses on the discovery of novel NPs in a series of extracts by giving a rank of prioritization
646 for the extracts before being subject to phytochemical studies. Additional information on potentially
647 putative new compounds within such extract is available for precise localization of the features of
648 interest for targeted isolation.

649 *Inventa* takes a Feature Based Molecular Network (FBMN) job as minimum input. This workflow is
650 preferred over the classical MN since it incorporates mass spectrometry (MS¹ and MS²), and semi
651 quantitative chromatographic information (retention time, intensity/area) specific for each feature
652 (Nothias et al., 2020). FBMN was considered since it became a widely used workflow for data
653 comparison, spectral space visualization, and automated annotation against experimental databases.
654 From these results, *Inventa* will use as input the feature table, the annotation results, and the taxonomic
655 information of the extracts. The specificity for each feature will be assigned according to the aligned
656 feature table (generated initially by MZmine). Other software can be used, if compatible with GNPS,
657 the user can recover the table from the MN results. Their annotation status is based on the GNPS
658 annotation results. To guarantee a minimum quality of the putative identities, the GNPS annotations
659 are automatically cleaned and filtered (cosine, error in ppm, number of shared peaks, polarity, etc.)
660 before the calculations (https://github.com/lfnothias/gnps_postprocessing). Additional feature
661 dereplications results using *in-silico* databases and reponderation strategies to improve the putative
662 annotation (Allard et al., 2016, 2017; Dührkop et al., 2019; Rutz et al., 2019) can be included in the
663 pipeline. If so, the annotation status of the features considered them as well. Finally, the metadata table
664 should indicate the characteristics of the extracts, like the filename and the species, genus, and family,
665 for searching reports in the literature.


666 If the data treatment is performed with a version of MZmine supporting IIN (custom 2.53 version or
667 MZmine 3), the user can leverage the grouping of multiple ion forms identified for a given molecule
668 and reduce the total number of features. The species generated from the same molecules (adducts, in
669 source fragments, etc.) are collapsed into a single feature group (ion identity networks, IIN) through
670 an MS¹ feature chromatographic shape correlation. *Inventa* will perform the calculations related to FC
671 based on the new MS¹-based group features and MS² spectral similarity cosine comparison (Schmid et
672 al., 2021). The area/height used will correspond to the maximum value found within each IIN (most
673 representative ion-adduct). Using IIN will necessarily facilitate the extract selection by deconvolving
674 the mass spectrometry data into several molecules present in each extract.

675 *Inventa* considers the information at two levels to rank the extracts: individual features within each
676 extract and the extract itself by considering the overall pool of MS² data. The specificity and
677 annotations (structure, molecular formula, and chemical classes) are pondered at the features level to
678 express each extract's measurable unknown chemical richness. At the extract level, each extract's
679 available spectral space is compared to each other to spot dissimilarities using a dissimilarity matrix
680 based on the MEMO vectors (Gaudry et al., 2022). A combination of both levels and the literature
681 reports for the taxon will highlight the extracts with an unknown specialized metabolism.

682 The priority score comes from the addition of four individual components: Feature component (FC),
683 Literature component (LC), Class component (CC), and Similarity component (SC) (**Figure 1**). Each

Running Title

684 component is normalized from 0 to 1. *Inventa* implements a modulating factor (w_n in **Figure 1**) to give
 685 the appropriate weight to each component according to the type of study and the user's preferences. A
 686 full glossary with terms and default values is available in the **Supplementary Table S1**.

687

688 **Figure 1.** A conceptual overview of *Inventa*'s priority score and its components. **A) Feature**
 689 **Component (FC):** is a ratio of the number of specific and unannotated features over the total number
 690 of features by extract. **B) Literature Component (LC):** is a score based on the number of compounds
 691 reported in the literature for the taxon of a given extract. It is independent of the spectral data. **C) Class**
 692 **Component (CC):** indicates if an unreported chemical class is detected in each extract compared to
 693 those reported in the species and the genus. **D) Similarity Component (SC):** is a complementary score

694 that compares extracts based on their general MS² spectral information independently from the feature
695 alignment used in FC, using MEMO. **E)** The **Priority Score (PS)** is the addition of the four
696 components. A modulating factor (w_n) gives each component a relative weight according to the user's
697 preferences. The higher the value, the higher the rank of the extract. **F) Results Table** is a resume of
698 individual calculation components and results.

699 The **Feature Component (FC, Figure 1.A)** is the ratio for the number of specific and unannotated
700 features over the total number of features of each extract. For example, an FC of '0.6' implies that 60%
701 of the total features in each extract are specific within the set and do not present structural annotations.
702 For the calculation of this ratio, the aligned feature table is normalized row-wise (each row
703 corresponding to a feature). Based on this normalized table, a feature is considered specific in each
704 extract, compared to the whole extract set, if its normalized area is higher than the *minimum specificity*
705 value. By default, a feature is considered specific if at least 90% of the normalized peak area is detected
706 in each extract (*minimum specificity* set to 0.90; this parameter can be modified by the user). Then, the
707 annotation status (annotated or unannotated) is checked based on the dereplication results used as input.
708 Finally, the total number of specific unannotated features in each extract is calculated and divided by
709 the total number of detected features in the same extract. The evaluation of the specificity of the
710 features (without information on their annotation status) a given extract within the set can be done
711 based on the 'Feature Specificity' (FS) value (is computed similarly to FC without considering the
712 annotations). **Supplementary Figure S76** shows the detailed calculations performed for obtaining the
713 FC score.

714 Usually, collections of natural extracts include extracts of the same species but with distinct
715 characteristics, such as organs (flowers, leaves, stems, fruits), collection sites, culture media (in the
716 case of micro-organisms) or extraction solvents, among others. As explained above, the FS and FC
717 consider a feature specific if its relative intensity is higher than the '*minimum specificity*' defined by
718 the user. When multiple extracts with the same species are present, even if a feature is specific at the
719 species level, its relative intensity may be spread over its various extracts. Consequently, that feature
720 will not be considered specific and will be ignored in the calculations. To address this limitation, the
721 user can define the maximum occurrence of the species allowing the script to consider a feature as
722 'specific' based on a shared specificity within multiple extracts (detailed calculations are shown in
723 **Supplementary Figure S77**). **Supplementary Figure S78** shows what happens on FS and FC
724 calculation when a plant within a set is analyzed based on four independent organs (one extract per
725 organ). For example, for Catha edulis four extracts corresponding to its aerial parts, leaves, roots, and
726 stems, were profiled. If the '*maximum occurrence (N)*' is 1, many features will be not considered
727 specific because they are shared between the plant parts. If for the data set the '*maximum occurrence*
728 (*N*)' is set to 4, the number of specific features increased. This immediately raised the FS and FC in
729 general, and the common tissue parts (aerial parts, leaves, and stems) gained up to 4 fold the FC's
730 original value.

731 The **Literature Component (LC, See Figure 1.B)** is a score based on the number of compounds
732 reported in the literature for the taxon of a given extract. It is independent of the spectral data. For
733 example, an LC value of 1 indicates no reported compounds for the considered taxon. From this initial
734 value ('1'), fractions (ratio of reported compounds over the user-defined maximum value of reported
735 compounds) are subtracted. The first fraction is related to compounds found in the species, the second
736 one to those found in the genus, and the third one in the family (see the formula in **Figure 1.B**). By
737 default, the weight of each fraction is equal; it can be pondered by the user depending on the needs.
738 For the calculation of this value, the clean taxonomic information (based on the [Open Tree of Life](#),
739 OTL) is retrieved from the metadata table and used to query the NPs occurrences reported in the

Running Title

740 **LOTUS** initiative (Rutz et al., 2022). The LC represents a rough estimation of the literature knowledge
741 on a given extract in terms of reported compounds. It does not replace an extensive literature search
742 but allows to rapidly visualize the species that have been heavily studied or not in a set. **Supplementary**
743 **Figure S79** shows the detailed calculations performed for the LC score.

744 The first evaluation of both FC and LC components provides an excellent way to highlight extracts
745 containing an important proportion of specific unannotated features that have not been the topic of
746 extensive phytochemical studies. Regarding this calculation, it is essential to recall that the reported
747 chemistry is not specified to a plant-organ level in the databases. Thus, no part-specific relation can be
748 constructed relative to the tissue involved. For example, a specific plant part extract could have a high
749 FC due to a specific profile with no annotation and a bad LC score because the taxon presents a high
750 number of the reported compounds, not necessarily in the same organ. Reports in the genus and family
751 are considered for prioritizing a particular lack of annotation but belonging to an extensive
752 phytochemically studied genus or family.

753 The **Class Component (CC, Figure 1.C)** indicates if an unreported chemical class is detected in each
754 extract compared to those reported in the species and the genus. A CC value of 1 implies that the
755 chemical class is new to both the species (CCs 0.5) and the genus (CCg 0.5). The CC calculation is
756 derived from the CANOPUS sub-tool integrated in SIRIUS and that is used to propose a chemical class
757 directly from the MS² spectral fingerprint of the features without the need for a formal structural
758 annotation (Dührkop et al., 2019, 2020). The chemical taxonomy classification is based on the
759 standardized NPClassifier chemical taxonomy (Kim et al., 2021). This chemical class annotation
760 provides a partial but systematic annotation for the detected features, even for novel molecules. The
761 NPClassifier chemical classes have unique standardized names that can be compared computationally
762 as text strings. *Inventa* compares the predicted chemical classes in each extract to those reported in the
763 species in LOTUS, which also uses the NPClassifier ontology. The comparison is performed by string
764 set subtraction. If one or several unreported classes were annotated in the extract compared to the
765 literature, the CC value at the species level (CCs) is set to 0.5. The same calculation is performed for
766 comparing the reports at the genus level, and similarly, a value of CCg (value at the genus level) is set
767 to 0.5 if at least one unreported class is found. Both values are added to give the final CC value. To
768 avoid inconsistent proposed chemical classes throughout a given extract, a `minimum recurrence filter`
769 is used to verify that at least more than 'n' features are annotated with a given NPClassifier class (the
770 user can modify this value). **Supplementary Figure S80** shows the detailed calculations performed
771 for obtaining the CC score.

772 The **Similarity Component (SC, Figure 1.D)** is a complementary score that compares extracts based
773 on their general MS² spectral information independently from the feature alignment used in FC, using
774 MEMO (Gaudry et al., 2022). This metric generates a matrix containing all the MS² information in the
775 form of peaks and neutral losses without annotations. The matrix is mined through multiple outlier
776 detection machine learning algorithms to highlight spectrally dissimilar extracts (outliers). An SC value
777 of '1' implies the extract is classified as an *outlier* within the extract set studied. This score highlights
778 spectrally dissimilar extracts. Such information may be linked to spectral fingerprints that are likely
779 related to singular chemistry. This score can be compared to the FC, and since it is independent of
780 alignment and annotation might help to evaluate the specificity of the extract from an orthogonal
781 perspective. For its calculation, the dissimilarity matrix created is subjected to three different
782 unsupervised algorithms: Local outlier factor (LOF, distance-based method) (Breunig et al., 2000),
783 One-Class Support Vector Machine (OCSVM, domain-based method) (Wang et al., 2004), and
784 Isolation Forest (IF, isolation-based method) (Liu et al., 2008). In general, IF and OCSVM are reported
785 to achieve the best outlier detection results for large data sets. LOF has an average performance for

786 different multivariate set sizes. They all stand out for their robustness when noise is introduced into the
787 dataset (Domingues et al., 2018). If an extract is considered an outlier in at least one algorithm, an SC
788 value of '1' is given; otherwise, '0'. **Supplementary Figure S81** shows the detailed calculations
789 performed for obtaining the SC score.

790 **3.2 Combination of the results and formatting**

791 To globally visualize the various scores and additional information produced for each extract in the
792 set, *Inventa* combines and organizes the results as an interactive table (Gratzl et al., 2013; Furmanova
793 et al., 2020) with the same format as shown in **Figure 1.E/F**. It can be sorted by the priority score (final
794 score) or by each component, depending on the user's needs. This interactive table allows a
795 straightforward evaluation of the scoring parameters based on modifications of the parameters that the
796 user can tune according to the type of study (see Glossary in Supporting Information, #userdefined
797 tag).

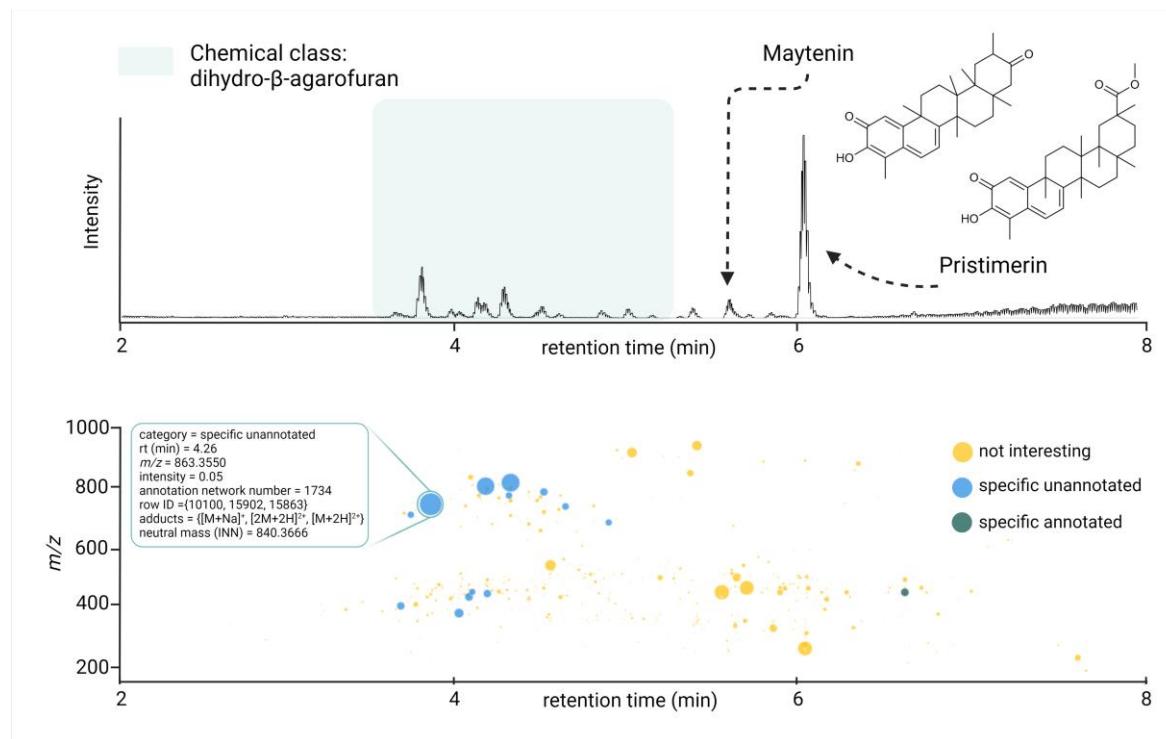
798 **3.3 Implementation of *Inventa* to prioritize extracts in a collection of plants from the Celastraceae
799 family.**

800 According to LOTUS (Rutz et al., 2022) and the [Dictionary of Natural Products](#), 4,800 unique NPs
801 have been reported for the Celastraceae family (0.98% of the total entries for the Archaeplastida),
802 involving around 38 genera and 168 species. These NPs present 130 different chemical classes
803 (NPClassifier (Kim et al., 2021)), covering approximately 20% of the known chemical classes of the
804 Archaeplastida.

805 The [set](#) of plants from the Celastraceae family considered in this study consists of 36 species and 14
806 different genera. Several plant parts were considered, depending on the availability, yielding 76
807 extracts in total. To improve the detection of medium polarity specialized metabolites, only ethyl
808 acetate extracts were prepared. Extensive metabolite profiling of all extracts was performed by
809 UHPLC-HRMS/MS operating in Data Dependent Acquisition mode. A careful comparison of the Base
810 Peak Intensity (BPI) traces for both positive and negative ionization modes with the semiquantitative
811 Charged Aerosol Detector trace (CAD) indicated that the positive mode was the most representative
812 of the composition of the extracts. Thus, for this study, only the positive ionization data was considered.
813 The data were processed with MZmine3 ((Pluskal et al., 2010), producing a list of 16,139 features.
814 After the application of the MS¹ Ion identity feature grouping, these features were grouped into 14,554
815 IIN, where 3,610 features were identified with their adducts. The resulting tables and spectral data were
816 uploaded to the GNPS website to generate a Feature Based Molecular Network (Wang et al., 2016;
817 Nothias et al., 2020). The resulting MN was composed of 16,139 nodes (5,922 singletons) and 22,656
818 edges. As a result of the annotation process against the GNPS open databases, 2494 nodes (ca 15%)
819 were annotated, wherefrom 1751 nodes (ca 11%) were considered valid after cleaning and filtering.
820 This was followed by extensive spectral matching against *in-silico* predicted MS² NPs databases from
821 ISDB-DNP and computational annotation with SIRIUS (Allard et al., 2016; Dührkop et al., 2019; Rutz
822 et al., 2022). After these processes, a total of 11,370 nodes were annotated (ca 70%). The overall
823 combined structural annotation rate for the MN was around 68 %.

824 The set of Celastraceae extracts was used to test the capacity of *Inventa* to prioritize extracts with a
825 chemical novelty potential. The main results obtained with default parameters are shown in **Table 1**
826 (full results **Supplementary Table S2**).

827 *Inventa*'s results table contains all the components scoring and overall priority score (sum of FC, LC,
828 CC, and SC). The plant extracts shown were ranked based on the PS value. The *Pristimera indica* roots


Running Title

829 extract was ranked first with a PR value of 3.23. It presents an FS of 0.37, indicating that 37% of its
830 features are specific, with at least 90% of the normalized peak area in this extract. Among these specific
831 features, only 1% was annotated as reflected by the FC 0.36, which indicates that 36% of the ions are
832 specific and unannotated. At this stage, evaluation of these two values indicates that such features are
833 very specific at the data set's level, and the absence of annotations possibly reflects the presence of
834 novel or unreported molecules.

835 This extract presents an LC of 0.87. For this study, the score was considered if less than 10 compounds
836 were found in the species (crs), less than fifty in the genus (crg), and less than five hundred in the
837 family (crf); these correspond to user-defined parameters. In the case of this extract, only two
838 compounds were reported in the species and 8 in the genus (Chang et al., 2003; Gao et al., 2007; Ramos
839 et al.). Application of these values in the formula shown in **Figure 1.B**, lower the maximum LC value
840 of 1 by 0.13 only, highlighting poorly studied plant species. In our case, the values of reported
841 compounds in the family (6,064) affected equally all extracts since they belong to the same family. In
842 our set, evaluation of this component is important since there is a substantial number of reports for
843 certain genera like *Celastrus* and *Salacia*, with 732 and 514 compounds, respectively. For example, the
844 extract ranked three has the same FC as first rank. However, the high number of compounds reported
845 in both species and genus (LC 0.66) suggested a lower possibility of finding new compounds.

846 The CC value of 1, addition of CCs 0.5 and CCg 0.5, implied that at least one chemical class proposed
847 by SIRIUS-CANOPUS had not been reported in species or the genus. CANOPUS proposed the
848 chemical class dihydro- β -agarofuran sesquiterpenoids for the major peaks in the extract according to
849 the BPI (see **Figure 2.A**, zone highlighted in green). Finally, the SC value of 1 indicated that the extract
850 was considered dissimilar within the data set based on its total spectral pattern (MEMO vector),
851 implying a particular composition. A detailed evaluation of the annotation results for *Pristimera indica*
852 roots extract revealed that the only few annotated features were dihydro- β -agarofuran previously
853 reported in *Celastrus angulatus* (an ISDB-DNP spectral match) and two friedelane triterpenoids,
854 pristimerin, and maytenin (GNPS matches), both previously reported in the Celastraceae family (See
855 **Supplementary Table S3**). Considering these annotation results and these chemotaxonomic
856 considerations, we interpreted that several of the most intense ions annotated as dihydro- β -agarofurans
857 for by CANOPUS, as shown in **Figure 2.A** (zone highlighted in green), were new derivatives. **Figure**
858 **2.B** shows an ion map of all detected features of *Pristimera indica* roots extract (unfiltered normalized
859 area intensity) is displayed. In this map, a color coding represents the category for the features: specific
860 unannotated (blue, worthy of isolation), specific annotated (green), and not interesting (yellow,
861 nonspecific annotated). Such visualization helps localize inside the extract of interest the TIC peaks
862 and their features, potentially corresponding to novel NPs.

863 Based on Inventa's score and the above considerations, the *Pristimera indica* roots extract was
864 prioritized and subjected to an in-depth phytochemical investigation for *de novo* structural
865 identification of the potentially new NPs.

866

867 **Figure 2. A)** UHPLC-HRMS chromatogram (BPI positive ion mode) showing the region where the
868 dihydro- β -agarofuran sesquiterpenoids derivatives are suspected and displaying the only two
869 compounds annotated for *P. indica* roots (plant with the highest PS). **B)** Ion identity networking-based
870 interactive [ion map](#) showing the combined results of the FC and CC for the IIN. In such display all
871 features of a single neutral molecule are grouped under a single spot. The IIN are displayed according
872 to their status (specific unannotated (blue), specific annotated (green), and non-specific unannotated -
873 not interesting- (yellow)). Complementary information (adducts, row id, chemical class, etc.) are
874 displayed interactively for each IIN if available, as shown in the zoom sections for the ion identity
875 network 1734. The intensities in both cases (bar's height and bubble's size) are proportional to the
876 original quantification table (before any filtering step). The scatter plot shows the *m/z* ratio of each
877 feature (or ion network identity) on the y-axis. The feature-based [ion map](#) can be found in
878 **Supplementary Figure S82**.

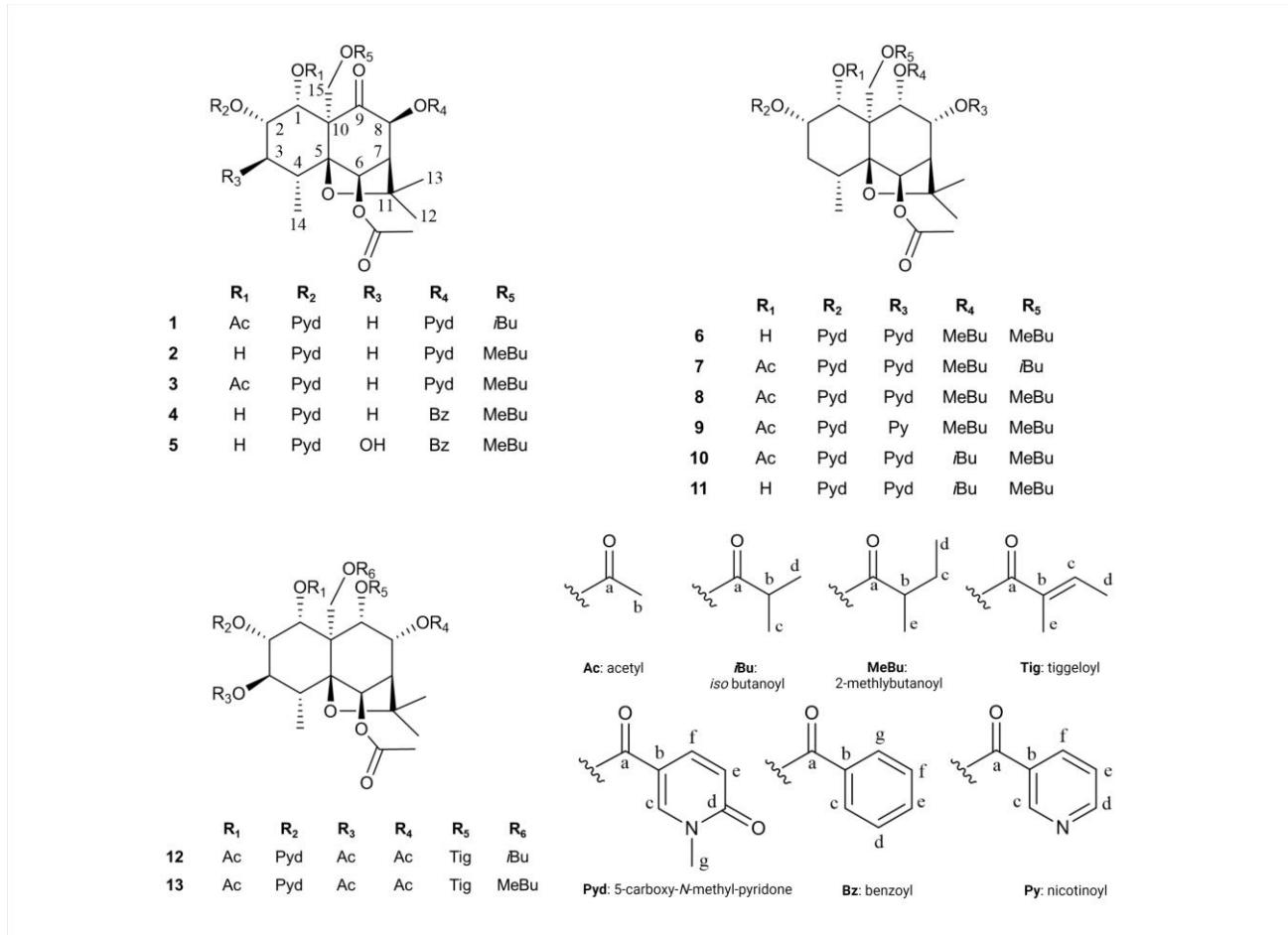
879 3.4 Considerations on intensity-based filters integration in *Inventa*

880 Based on the metabolite profiling results for the prioritized *Pristimera indica* roots extract, shown in
881 **Figure 2**, most of the unannotated specific ions corresponded to high-intensity features. To evaluate
882 this aspect in the prioritization process of the extracts, two different filters have been implemented in
883 *Inventa*. The aim of such filters is to enable the user to explore how filtering-out the least abundant
884 features affects the *Inventa* scoring results. For this, the original aligned feature table is normalized
885 sample-wise (each row corresponding to an extract). The filters are applied to each sample. These
886 filtered data are then treated by *Inventa* as the input for all the computations, as described above. The
887 first filter minimizes to zero all the features with a normalized area of less than 2% in each extract
888 (user-defined value, see **Supplementary Figure S83**). For example, after the application of this filter,
889 the number of features for the *Pristimera indica* (Willd.) A.C.Sm roots was reduced by 85% (from 727
890 to 104). The second filter uses the quantile distribution for the features normalized area intensity. With
891 this quantile filter only features with a normalized area intensity above the defined quantile value are
892 considered ((default quantile value is 0.75); the features that have their normalized areas below this

Running Title

893 quantile value are minimized to zero (see **Supplementary Figure S83**). For the *Pristimera indica* roots
894 extract, the number of features varied from 727 to 182 with the default quantile value.

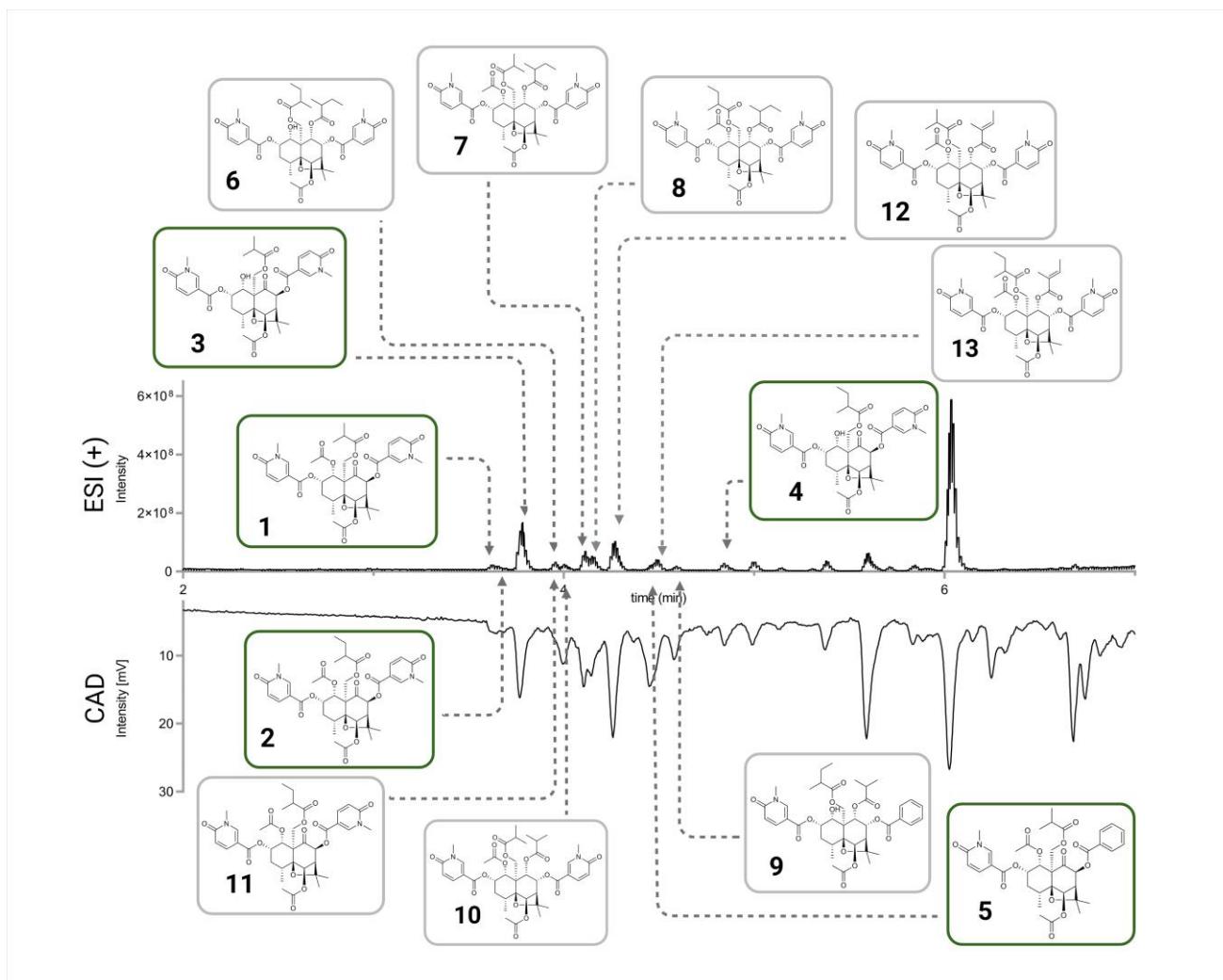
895 Both filters can be applied independently or sequentially according to the user's preferences. **Table 2**
896 shows the differences in the results obtained when both filters are used jointly for the set of Celastraceae
897 plants. For the *Pristimera indica* roots extract, the application of the quantile-based filter on the
898 remaining 104 features after intensity-based filtering left a total of 26 features. This data reduction was
899 found consistent with the visible BPI peaks after visual inspection of the chromatogram (see **Figure**
900 **2.A**). Furthermore, it was found to be in good agreement with all the prioritized NPs that could finally
901 be isolated, as detailed below.


902 The effect of filtering was evaluated for the complete set of Celastraceae, and it significantly lowered
903 the number of features for all extracts. *Inventa*'s scores were not strongly affected but highlighted better
904 the putative novel NPs. Depending on the set of extracts to be evaluated, comparing the results before
905 and after filtering may help the selection process.

906 **3.5 Isolation and *de novo* structural identification of thirteen new dihydro- β -agarofuran from 907 the *Pristimera indica* roots extract.**

908 Inspection of the *Inventa*'s scores obtained before and after filtering proposed the *Pristimera indica*
909 roots extract as the best potential source of novel NPs. To verify if this plant contains potentially new
910 β -agarofuran sesquiterpenoids, its roots material was extracted at a larger scale to generate enough
911 extract for isolation. For this purpose, three successive extraction steps with solvents of increasing
912 polarity (hexane, ethyl acetate, and methanol) were used. A comparison of their UHPLC-HRMS
913 profiling with the original ethyl acetate extract showed that the main NPs of interest were present in
914 the ethyl acetate and methanolic extracts.

915 The chromatographic optimization and isolation efforts were focused on the retention window from
916 3.0 to 5.0 min since this region contained most of the unannotated and specific compounds (see **Figure**
917 **2.A**). Before isolation, the UHPLC chromatographic conditions were optimized based on the original
918 UHPLC-HRMS chromatogram. A geometric gradient transfer method (Guillarme et al., 2008) was
919 used to scale up the conditions to an analytical HPLC level for evaluation and validation. The HPLC
920 scale conditions were calculated at the semi-preparative HPLC scale for isolation. This process enabled
921 the alignment of the analytical and semi-preparative HPLC scales with the UHPLC scale and localizing
922 the NPs of interest. The isolation was done using a dry-load-based injection, keeping a high resolution,
923 and maximizing the sample load (Queiroz et al., 2019) (**Supplementary Figure S84**).


924 This methodology efficiently allowed to yield thirteen compounds with enough material for *de novo*
925 structural identification (see **Figure 5**), only with three consecutive injections of 50 mg each (for each
926 extract, ethyl acetate and methanol). From the ethyl acetate extract, ten pure compounds (**1-7, 9, 12-**
927 **13**) and a mixture containing two compounds (**8, 10**) were obtained. The mixture was separated under
928 optimized conditions to purify both compounds, giving twelve pure compounds in total. To obtain
929 compound **11**, the methanolic extract was separated in the same conditions. **Figure 4** summarizes the
930 position of the isolated compounds in both the chromatogram and the original molecular network. Their
931 *de novo* structural elucidation and absolute configuration are described below.

932

933 **Figure 3.** Original dihydro- β -agarofuran derivatives isolated from the *Pristimera indica* roots extract.

Running Title

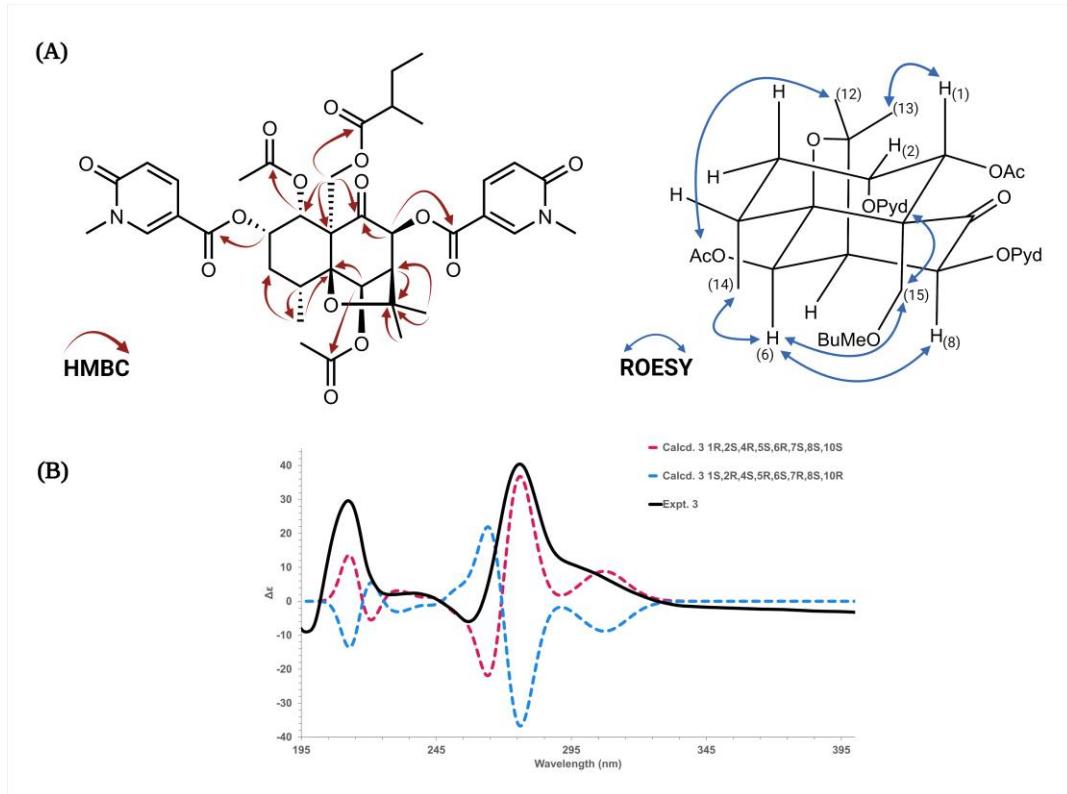
934

935 **Figure 4.** The relative position of the isolated compound (1-13) in the chromatogram for the ethyl
936 acetate extract of *Pristimera indica* roots. The upper chromatographic trace corresponds to the ESI in
937 positive ionization mode, while the lower trace corresponds to the Charged Aerosol Detector (CAD),
938 a semi-quantitative trace. Compounds highlighted in green hold a new 9-oxodihydro- β -agarofuran base
939 scaffold.

940 Analysis of the NMR data confirmed that all the isolated compounds were dihydro- β -agarofuran as
941 proposed by the CC chemical classes of *Inventa*. They all presented the characteristic 2 methyl singlets
942 at δ_H between 1.41 and 1.56 (H₃-12 and H₃-13), a methyl doublet at δ_H between 1.11 and 1.22 (H₃-14),
943 an oxymethylene at δ_H between 4.99-5.51 and 4.18-4.79 (H-15' and H-15'', respectively), an acetate in
944 C-6 at δ_H between 2.12-2.21 (H₃-6b), a particularly deshielded H-6 proton (δ_H between 6.24-6.78) and
945 several oxygenated methines (δ_H between 3.92-6.18). These compounds could be divided into 3 series.

946 The first one (compounds 1-5, see **Table 3.**) had a carbonyl in C-9 observed at δ_C between 203-207 on
947 the ¹³C and HMBC spectra. The purest compound and the one isolated in the greatest quantity is
948 compound 3, it will be described first.

949 Compound 3 was isolated as an amorphous powder with a [M+H]⁺ of *m/z* 755.3017 and a molecular
950 formula of C₃₈H₄₇N₂O₁₄. The ¹H-NMR and HSQC spectra indicated the presence of 3 oxymethylene (in
951 addition to H-6) at δ_H/δ_C 5.75/71.1 (H/C-1), 5.55/72.5 (H/C-2), and 6.01/78.8 (H/C-8). These methines


were substituted by an acetate at δ_H 1.95, and two 5-carboxy-*N*-methyl-pyridone at δ_H 3.70 (3H, s, H₃-2g), 6.58 (1H, d, J = 9.5 Hz, H-2e), 8.01 (1H, dd, J = 9.5, 2.5 Hz, H-2f), and 8.47 (1H, d, J = 2.5 Hz, H-2c) for the first one and 3.62 (3H, s, H₃-8g), 6.56 (1H, d, J = 9.5 Hz, H-8e), 7.95 (1H, dd, J = 9.5, 2.5 Hz, H-8f), and 8.44 (1H, d, J = 2.5 Hz, H-8c) for the second one. The acetate at δ_H 1.95 was positioned thanks to its HMBC correlation with the carbonyl C-1a at δ_C 171.2 and this latter correlating with H-1. The position of both 5-carboxy-*N*-methyl-pyridones was confirmed by the HMBC correlations from H-8, H-8c, and H-8f to C-8a, from H-2c and H-2f to C-2a, and the weak correlation from H-2 to C-2a. The ROESY correlations from the aromatic protons of the pyridone in C-2 with H-15 agreed with that. The C-3 position was not substituted as indicated by the presence of two methylene protons at δ_H 1.97 and 2.41. Finally a 2-methyl-butanoyl group at δ_H 0.92 (3H, t, J = 7.4 Hz, H₃-15d), 1.25 (3H, d, J = 7.0 Hz, H₃-15e), 1.57 (1H, m, H-15c"), 1.76 (1H, m, H-15c'), and 2.65 (1H, h, J = 7.0 Hz, H-15b) was linked to C-15 due to the HMBC correlations from H₂-15, H-15b, H₂-15c and H₃-15e to the ester carbonyl C-15a at δ_C 177.6. The HMBC correlations from H-1, H-8, and H₂-15 to the ketone C-9 at δ_C 203.1 confirmed the presence of the carbonyl in C-9 (Figure 7.A). Oxidations in this position have never been reported before for the dihydro- β -agarofuran-type compounds; usually, the oxo group is in C-8 (Gao et al., 2007). All the other COSY and HMBC correlations confirmed this flat structure. The MS² spectrum for this compound shows fragments associated with the 5-carboxy-*N*-methyl-pyridone (*m/z* 136), and losses of 2-methyl-butanoyl (*m/z* 85) and acetyl groups (*m/z* 59) in agreement with the literature (Kuo et al., 1995). This trend is observed throughout the entire series of compounds.

The ROESY correlations from H₂-15 to the aromatic protons of the 5-carboxy-*N*-methyl-pyridone in C-2 (H-2c/H-2f) and H-6, from H-6 to H-8 and H₃-14 indicated that these protons were on the same side of the molecule. The correlation from H₃-12 to the acetate in C-6 confirmed that the C5-O-C11-C7 bridge is on the opposite side. The weak correlation between H₃-13 and H-1 indicated that H-1 is in the same orientation as the bridge and that H-1 should be axial (Figure 7.A). Thus, the relative configuration of the substituents in **3** was proposed as 1 α , 2 α , 4 α , 5 β , 6 β , 7 β , 8 β and 10 α .

To establish the absolute configuration of compound **3**, the ECD spectrum was calculated based on the relative configuration proposed by NMR and compared to the experimental data (See **Figure 5.B**). The absolute configuration of the agarofuran moiety (4*R*,5*S*,6*R*,7*S*,10*S*) agrees with the reports in the literature for the type of chemical structure proposed.

After the comparison, compound **3** was assigned as (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-1 α ,6 β -diacetoxy-2 α ,8 β -di-(5-carboxy-*N*-methyl-3-pyridoxy)-15-(2-methylbutanoyloxy)-9-oxodihydro- β -agarofuran and named Silviatine C.

Running Title

984

985 **Figure 5.** A) HMBC Key and ROESY correlations for the compounds isolated from *P. indica* roots
986 extract. b) Experimental and B3LYP/def2svp//B3LYP/6-31G(d,p) calculated spectra in acetonitrile for
987 compound 3.

988 Compound 1 was isolated as a white amorphous powder. The molecular formula, $C_{37}H_{45}N_2O_{14}$, was
989 calculated based on the HRMS-ESI-MS for $[M+H]^+$ of m/z 741.2864. The NMR data of 1 were very
990 similar to that of 3, except that an *iso*-butanoyl group at C-15 replaced the 2-methylbutanoyl group
991 present at the same position in 3. The HMBC correlations from $H-15'$ at δ_H 5.10 (1H, d, $J = 12.2$ Hz),
992 $H-15b$ at δ_H 2.80 (1H, hept, $J = 7.0$ Hz), H_3-15c at δ_H 1.27 (3H, d, $J = 7.0$ Hz) and H_3-15d at δ_H 1.24
993 (3H, d, $J = 7.0$ Hz) to the ester group C-15a at δ_C 177.8 confirmed the position of the *iso*-butanoyl
994 group. Same cross-peaks in the ROESY spectrum as 3 were observed, suggesting the same relative
995 configuration as 3. After calculation and comparison of the ECD spectra compound 3 was assigned as
996 (1R,2S,4R,5S,6R,7S,8S,10S)-1 α ,6 β -diacetoxy-15-*iso*-butanoyloxy-2 α ,8 β -di-(5-carboxy-*N*-methyl-3-
997 pyridoxy)-9-oxodihydro- β -agarofuran, and named Silviatine A.

998 Compound 2 was a white amorphous powder with a molecular formula of $C_{36}H_{45}N_2O_{13}$, calculated for
999 $[M+H]^+$ of m/z 713.2323. The 1H -NMR signals were closely related to those of 3, indicating that they
1000 shared the same core. The major differences were observed for the substituents. Only one acetyl group
1001 was found and positioned at C-6 due to the HMBC correlation from $H-6$ (δ_H 6.24) and the acetate at δ_H
1002 2.18 to the carbonyl at δ_C 171.1. Position one was suggested to bear a hydroxyl group due to the higher
1003 field signal of $H-1$ (δ_H 4.61) and no other HMBC correlations. Two 5-carboxy-*N*-methyl-3-pyrdone
1004 substituents were found in positions C-2 (δ_C 74.7) and C-8 (δ_C 78.4). The substituent in position C-15
1005 (δ_C 63.6) was as in 3 a 2-methyl-butanoate moiety consisting of a carbonyl (δ_C 177.8), one methine (δ_C
1006 42.0, δ_H 2.67), one methylene as a diastereotopic system (δ_C 27.4, δ_H 1.58 and 1.77), two methyl groups
1007 (δ_C 11.6, δ_H 0.93 and δ_C 16.5, δ_H 1.27). Analysis of the ROESY correlations indicates that the relative
1008 configuration is the same as those of compounds 1 and 3. After comparison of the experimental and

1009 calculated ECD spectra, compound **2** was assigned as (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-6 β -acetoxy-2 α ,8 β -
1010 di-(5-carboxy-*N*-methyl-3-pyridoxy)-1 α -hydroxy-15-(2-methylbutanoyloxy)-9-oxodihydro- β -
1011 agarofuran, and named Silviatine B.

1012 Compound **4** had a molecular formula of C₃₆H₄₄NO₁₂ for a [M+H]⁺ of *m/z* 682.2850. The core structure
1013 agrees with the one proposed for **2**, due to the same patterns and correlations observed in the NMR
1014 data. The molecular formula suggested the presence of just one nitrogen. According to the ¹H-NMR
1015 signals, two different aromatic groups were identified: a 5-carboxy-*N*-methyl-3-pyridone, as in the
1016 previous compounds, at δ _H 6.58 (1H, d, *J* = 9.4 Hz, H-2e), 8.04 (1H, dd, *J* = 9.4, 2.5 Hz, H-2f), and
1017 8.49 (1H, d, *J* = 2.5 Hz, H-2c), and a benzene at δ _H 7.53 (2H, tt, *J* = 8.0, 1.3 Hz, H-8d, H-8f), 7.66 (1H,
1018 tt, *J* = 8.0, 1.3 Hz, H-8e), and 8.07 (2H, dd, *J* = 8.0, 1.3 Hz, H-8c, H-8g). The 5-carboxy-*N*-methyl-3-
1019 pyridone was positioned in C-2 thanks to the ROESY correlation from H-15 to H-2c and H-2f. . As
1020 for compounds **2** and **3**, the position C-15 was functionalized with a 2-methylbutanoate moiety
1021 according to the HMBC correlations from H-15a/H-15b (δ _H 4.79 and 5.06), H-15b (δ _H 2.70), H-15c
1022 (δ _H 1.60 and 1.80) and H₃-15e (δ _H 1.30) to the carbonyl at δ _C 178.1. As in **2**, H-2 (δ _H 5.45) is in a higher
1023 field, suggesting this position carries an OH group.

1024 As explained above, the relative configuration of **4** was assigned based on the ROESY data as 1 α , 2 α ,
1025 6 β , and 8 β . After comparison of the experimental and calculated ECD spectra, compound **4** was
1026 assigned as (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-6 β -acetoxy-8 β -benzoyloxy-2 α -(5-carboxy-*N*-methyl-3-
1027 pyridoxy)-1 α -hydroxy-15-(2-methylbutanoyloxy)-9-oxodihydro- β -agarofuran, and named Silviatine
1028 D.

1029 Compound **5** was obtained as an amorphous white powder, giving a [M+H]⁺ of *m/z* 698.2802 with a
1030 molecular formula of C₃₆H₄₄NO₁₃, one oxygen more than compound **4**. NMR data was closely related
1031 to **4**; the major difference was the absence of the diastereotopic methylene in C-3; instead, a signal in
1032 a lower field was found at δ _H 3.92, integrating for one proton as a doublet of doublets (*J* = 3.3, 1.8 Hz).
1033 The chemical shift for C-3 (δ _C 73.1) suggested the presence of an OH group, and the COSY correlations
1034 from H-2 (δ _H 5.42) and H-4 (δ _H 2.51) to H-3 corroborated its position. **5** was thus a hydroxyl-derivative
1035 of compound **4**. The key ROESY correlations were the same as for previous compounds: from H-15
1036 to H-6, H₃-14, H-2c, and H-2f, from H-6 to H-8, and from H₃-12/13 to H-4 and H-1. The ROESY
1037 correlation from H-3 to H₃-14 indicated their *trans* configuration. The absolute configuration of
1038 compound **5** was assigned as (1*R*,2*S*,3*S*,4*R*,5*S*,6*R*,7*S*,8*S*,10*S*)-6 β -acetoxy-8 β -benzoyloxy-2 α -(5-
1039 carboxy-*N*-methyl-3-pyridoxy)-1 α ,3 β -dihydroxy-15-(2-methylbutanoyloxy)-9-oxodihydro- β -
1040 agarofuran, after comparison with the calculated ECD spectra, and named Silviatine E.

1041 The second group of dihydro- β -agarofuran structures was composed of 6 new alatol-type structures (**6**-
1042 **11**, see **Table 4**),. They were oxygenated in almost all positions except C-3.

1043 Compound **6** was assigned as (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)-6 β -acetoxy-2 α ,8 α -di-(5-carboxy-*N*-
1044 methyl-3-pyridoxy)- 9 α ,15-di-(2-methylbutanoyloxy)-dihydro- β -agarofuran. It presented typical ¹H-
1045 NMR signals of a dihydro- β -agarofuran scaffold, with a molecular formula of C₄₁H₅₅N₂O₁₄ for [M+H]⁺
1046 of *m/z* 799.3649. Position one carried a hydroxyl group as indicated by the chemical shift of H-1 at δ _H
1047 4.39. The other positions (2, 8, 9, and 15) were esterified by two 5-carboxy-*N*-methyl-3-pyridone and
1048 two 2-methylbutanoate. These latter were positioned in C-9 and C-15 due to the HMBC correlations
1049 from H-9b at δ _H 2.24, H₂-9c at δ _H 1.37 and 1.68, H₃-9e at δ _H 1.03, and H-9 at δ _H 5.64 to C-9a δ _C 176.6
1050 and from H-15b at δ _H 2.37, H₂-15c at δ _H 1.24 and 1.48, H₃-15e at δ _H 1.13, and H-15' at δ _H 5.41 to C-
1051 15a δ _C 179.0. The 5-carboxy-*N*-methyl-3-pyridones were thus in C-2 and C-8. The ROESY correlation
1052 from the aromatic protons H-2c (δ _H 8.61) and H-2f (δ _H 8.07) to H₂-15 (δ _H 5.41 and 4.37) placed this 5-

Running Title

1053 carboxy-*N*-methyl-3-pyridone in C-2 while the correlations from H-8c (δ_H 8.89) to H-6 (δ_H 6.74)
1054 placed the second one in C-8. The ROESY correlation from H-15 to H-6 and H₃-14 indicated that H₂-
1055 15, the two 5-carboxy-*N*-methyl-3-pyridone in C-2 and C-8, H₃-14, and H-6 were on the same side of
1056 the molecule. On the other side, the acetate in C-6 (H₃-6b) correlated with H₃-13, H₃-12 with H-1, and
1057 H-1 with H-9. Altogether these data indicated that the relative configuration should be 1 α , 2 α , 4 α , 5 β ,
1058 6 β , 7 β , 8 α , 9 α , 15 α .

1059 Compound **7** was obtained as an amorphous white powder with a molecular formula of C₄₂H₅₅N₂O₁₅
1060 for [M+H]⁺ of *m/z* 827.3598. The 1D and 2D NMR data displayed a significant resemblance with **6**.
1061 One extra quaternary carbon at δ_C 171.4 was observed, belonging to an acetyl group fixed in position
1062 C-1 (δ_C 77.9), corroborated by the HMBC correlation with H-1 (δ_H 5.70). Positions C-2, C-8, and C-9
1063 were substituted with the same groups as **6**. However, protons in C-15 (δ_H 4.24 and 5.46) correlated in
1064 the HMBC spectrum with a carbonyl group at δ_C 179.0, coupled to a methine (δ_H 2.58), and two methyl
1065 doublets (δ_H 0.85 and 1.15), corresponding to a methylpropanoate system. The ROESY spectrum
1066 presented the same correlations as **6**. After calculation of the ECD spectrum and comparison with the
1067 experimental, the compound **7** was assigned as (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)- 1 α ,6 β -diacetoxy-
1068 2 α ,8 α -di-(5-carboxy-*N*-methyl-3-pyridoxy)-15-*iso*-butanoyloxy-9 α -(2-methylbutanoyloxy)-dihydro-
1069 β -agarofuran.

1070 Compound **8** was obtained as a white amorphous powder with a molecular formula of C₄₃H₅₇N₂O₁₅ for
1071 [M+H]⁺ of *m/z* 841.3736. The NMR data showed to be closely related to **7**. However, in position C-15
1072 (δ_C 62.6), the substituent corresponds to a 2-methylbutanoate as in **6**. The absolute configuration was
1073 assigned by comparison of the calculated ECD based on the relative configuration proposed as 1 β , 2 β ,
1074 8 β , and 9 β due to the observed ROESY correlations. Compound **8** was assigned as
1075 (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)- 1 α ,6 β -diacetoxy-2 α ,8 α -di-(5-carboxy-*N*-methyl-3-pyridoxy)-9 α ,15-
1076 di-(2-methylbutanoyloxy)-dihydro- β -agarofuran.

1077 Compound **9** was assigned as (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)- 1 α ,6 β -diacetoxy-2 α -(5-carboxy-*N*-
1078 methyl-3-pyridoxy)-9 α ,15-di-(2-methylbutanoyloxy)-8 α -nicotinoyloxydihydro- β -agarofuran, with a
1079 molecular formula C₄₂H₅₃N₂O₁₁ for [M+H]⁺ of *m/z* 811.3668. The major difference with **8** was the
1080 presence of a nicotinate moiety at δ_H 9.40 (1H, d, *J* = 1.9 Hz, H-8c), 8.82 (1H, dd, *J* = 5.0, 1.9 Hz, H-
1081 8d), 8.57 (1H, dt, *J* = 7.9, 1.9 Hz, H-8f), and 7.65 (1H, dd, *J* = 7.9, 5.0 Hz, H-8e) instead of one of the
1082 5-carboxy-*N*-methyl-3-pyridone. The 5-carboxy-*N*-methyl-3-pyridone was positioned in C-2 due to the
1083 ROESY correlation of H-15' with H-2c. The nicotinate was thus placed in C-8. The ROESY
1084 correlations remained the same as other alatol-type compounds. Calculations of the ECD spectrum
1085 were done to define the absolute configuration.

1086 Compound **10**, C₄₂H₅₅N₂O₁₅, calculated for [M+H]⁺ of *m/z* 827.3595, presented the same formula and
1087 mass as **7**. The same core structure was proposed, but substituents in C-9 (δ_C 71.9) and C-15 (δ_C 62.6)
1088 were inverted. H-9 (δ_H 5.52) had an HMBC correlation with carbon at δ_C 176.3 which was connected
1089 to an *iso*-propyl system [δ_H 2.45 (1H, m, H-9b); 1.07 (3H, d, *J* = 7.0 Hz, H₃-9d); 1.09 (3H, d, *J* = 7.1
1090 Hz, H₃-9c)]. H-15'/H-15" correlated with a carbon at δ_C 178.7, which was connected to an *iso*-butyl
1091 system [δ_H 2.38 (1H, m, H-15b); 1.25 (1H, m, H-15c"), 1.47 (1H, m, H-15c'); 1.15 (3H, d, *J* = 7.0 Hz, H₃-15e);
1092 0.54 (3H, t, *J* = 7.4 Hz, H₃-15d)]. The relative configuration was the same as **7** (1 α , 2 α , 8 α ,9 α).
1093 Compound **10** was assigned as (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)-1 α ,6 β -diacetoxy-9 α -*iso*-butanoyloxy-
1094 2 α ,8 α -di-(5-carboxy-*N*-methyl-3-pyridoxy)-15-methylbutanoyloxydihydro- β -agarofuran.

1095 Compound **11** was assigned as (1*R*,2*S*,4*R*,5*S*,6*R*,7*S*,8*R*,9*S*,10*S*)-6 β -diacetoxy-9 α -*iso*-butanoyloxy-
1096 2 α ,8 α -di-(5-carboxy-*N*-methyl-3-pyridoxy)-1 α -hydroxy-15-methylbutanoyloxydihydro- β -agarofuran,

1097 with a molecular formula of $C_{40}H_{53}N_2O_{14}$, calculated for $[M+H]^+$ of m/z 785.3511. It presented the
1098 same substitution pattern as **10**, but position C-1 (δ_C 75.6) had a proton signal at a higher field (δ_H 4.38),
1099 suggesting the presence of a free hydroxyl group. The relative configuration was the same as the rest
1100 of the molecules from this group and the absolute assigned configuration was checked by ECD
1101 comparison between the calculated and experimental spectra.

1102 The third group of dihydro- β -agarofuran structures was composed of 2 new euonymol-type structures
1103 (**12** and **13**, see **Table 5**). They were oxygenated in all 7 possible positions.

1104 Compound **12** was assigned as $(1R,2S,3S,4R,5S,6R,7S,8R,9S,10S)-1\alpha,3\beta,6\beta,8\alpha$ -tetraacetoxy-15-*iso*-
1105 butanoyloxy-2 α -(5-carboxy-*N*-methyl-3-pyridoxy)-9 α -tigloyloxydihydro- β -agarofuran, based on the
1106 NMR data. It presented a molecular formula of $C_{39}H_{52}NO_{16}$, calculated for $[M+H]^+$ of m/z 790.3289.
1107 In the HMBC spectrum, six carbonyls, presumably esters, were observed at δ_C 178.9, 171.5, 171.3,
1108 170.8, 167.0, and 163.9, in addition to the acetyl fixed in C-6 (δ_C 171.1). The HMBC correlations from
1109 H-1 (δ_H 5.91) and H₃-1b (δ_H 1.75) to C-1a (δ_C 170.8) positioned an acetate in C-1, from H-2 (δ_H 5.52),
1110 H-2c (δ_H 8.55), and H-2f (δ_H 8.00) to C-2a (δ_C 163.9) positioned a 5-carboxy-*N*-methyl-pyridone in C-
1111 2, from H-3 (δ_H 4.87) and H₃-3b (δ_H 2.12) to C-3a (δ_C 171.3) positioned an acetate in C-3, from H-8
1112 (δ_H 5.52) and H₃-8b (δ_H 2.11) to C-8a (δ_C 171.5) positioned an acetate in C-8, from H-9 (δ_H 5.49), H-
1113 9c (δ_H 6.83) and H₃-9e (δ_H 1.77) to C-9a (δ_C 167.0) positioned a tiggeloyl in C-1, and from H₂-15 (δ_H
1114 4.28 and 5.36), H-15b (δ_H 2.90), H₃-15c (δ_H 1.26) and H₃-15d (δ_H 1.24) to C-15a (δ_C 178.9) positioned
1115 an *iso*-butanoyl in C-15. The ROESY correlations showed that the configuration of the ester groups in
1116 C-1, C-2, C-8, and C-9 was the same as the alatol-type structures (**6-11**). The ROESY between H-3
1117 and H₃-14 indicated that the acetate in C-3 and methyl 14 were in a *trans* configuration. This relative
1118 configuration was corroborated after a comparison of the experimental and calculated ECD spectra.

1119 Compound **13**, was obtained as an amorphous powder, giving a $[M+H]^+$ of m/z 804.3445 with a
1120 molecular formula of $C_{40}H_{54}NO_{16}$. The mass difference of 14 observed between itself and **12**, suggested
1121 the presence of an extra CH_2 . This was corroborated due to the close resemblance of all the 1D and 2D
1122 NMR, except for the substituent in position C-15 (δ_C 62.1), which fitted with a 2-methylbutanoate
1123 moiety. The absolute configuration was corroborated by ECD calculation, using the relative
1124 configuration proposed by the ROESY spectrum. Thus, compound **13** was assigned as
1125 $(1R,2S,3S,4R,5S,6R,7S,8R,9S,10S)-1\alpha,3\beta,6\beta,8\alpha$ -tetraacetoxy-2 α -(5-carboxy-*N*-methyl-3-pyridoxy)-
1126 15-(2-methylbutanoyloxy)-9 α -tigloyloxydihydro- β -agarofuran.

1127 Based on the FC values and highlighted ions, the filtering results, and the *de novo* structural
1128 identifications, the chemical class proposed by Sirius-Canopus was confirmed, as well as the potential
1129 that *Inventa* holds to speed the discovery of novel NPs.

1130 4 Conclusion

1131 As explained throughout the article, prioritization of library extracts is difficult, multifactorial and time
1132 consuming. For this reason, the development of comprehensive prioritization pipelines combining the
1133 results of several bioinformatics tools is necessary to speed up and streamline extract selection for
1134 further in-depth phytochemical study. In this context, we propose *Inventa*, an innovative computational
1135 tool capable of combining various level of information (specificity, originality, annotations) from state-
1136 of-the-art bioinformatics programs, to highlight and prioritize extracts based on the possibility of
1137 finding structurally novel NPs. *Inventa* can be modulated according to the study parameters, and run
1138 locally or remotely via a web-based *Binder* notebook. The application of *Inventa* on a set of plant
1139 extracts showed how it can identify extracts where new compounds have high probability to be

Running Title

1140 discovered. As a proof of concept, *Inventa* succeeded in the prioritization of the *Pristimera indica* roots
1141 extract among a set of seventy-six extracts from the Celastraceae family. An *in-depth* phytochemical
1142 investigation of this extract led to the isolation and *de novo* structural identification of thirteen new β -
1143 agarofuran sesquiterpene compounds. Five of them presented a new 9-oxodihydro- β -agarofuran base
1144 scaffold. This example illustrates how *Inventa* can speed up the discovery of original NPs.

1145 It is expected that in a near future *Inventa*, which allows prioritization of extract from large collections
1146 can be complemented by other tools, such as [FERMO](#), under development (Zdouc. M, Medema. M,
1147 van der Hooft. JJ), which will allow in-detail analysis and visualization for a particular extract.
1148 Collaboration efforts are in place to make them compatible and enhance their applicability.

1149 Data and software availability

1150 *Inventa* can be found on <https://github.com/luigiquiros/inventa> (<https://luigiquiros.github.io/inventa/>).
1151 All .RAW (Thermo), .mzML datafiles (positive ionization mode) and metadata are available on the
1152 Massive MSV000087970, [doi:10.25345/C5PJ9N]. An interactive visualization can be displayed
1153 using the [GNPS Dashboard](#).

1154 Author's contributions

1155 LMQG and P-MA conceptualized the study. LMQG performed the data acquisition, analysis, and
1156 visualization. LMQG, L-FN, and AG developed the python scripts for the package. LMQG, EFQ, and
1157 LM performed the isolation and structural characterization. LMQG wrote the original manuscript.
1158 LMQG, P-MA, L-FN, BD, AG, AR, EFQ, LM, and J-LW revised the manuscript. All authors read,
1159 reviewed, and approved the paper.

1160 Acknowledgments

1161 The authors extend a special thanks to Bruno David and Green Mission Pierre Fabre, Pierre Fabre
1162 Research Institute, Toulouse, France for the establishment of the collaboration and for sharing the great
1163 extract collection. The School of Pharmaceutical Sciences of the University of Geneva (J-LW) is
1164 thankful to the Swiss National Science Foundation for the support in the acquisition of the NMR 600
1165 MHz (SNF: Equipment grant 316030_164095). LMQG is thankful for the scholarship (N 214171025)
1166 from Ministerio de Ciencia, Tecnología y Telecomunicaciones, MICITT, Costa Rica.

1167 Conflict of interests

1168 The authors declare that they have no competing interests.

1169 Funding

1170 J-LW, L-FN, AR, and P-MA are thankful to the Swiss National Science Foundation for the funding of
1171 the project (SNF N° CRSII5_189921/1).

1172 Supplementary Material

1173 The Supplementary Material for this article can be found online at:

1174 References

1175 Allard, P. M., Genta-Jouve, G., and Wolfender, J. L. (2017). Deep metabolome annotation in natural
1176 products research: towards a virtuous cycle in metabolite identification. *Curr. Opin. Chem.*
1177 *Biol.* 36, 40–49. doi: 10.1016/j.cbpa.2016.12.022.

1178 Allard, P. M., Péresse, T., Bisson, J., Gindro, K., Marcourt, L., Pham, V. C., et al. (2016). Integration
1179 of molecular networking and in-silico MS/MS fragmentation for natural products
1180 dereplication. *Anal. Chem.* 88, 3317–3323. doi: 10.1021/acs.analchem.5b04804.

1181 Alvarenga, N., and Ferro, E. A. (2006). Bioactive Triterpenes and Related Compounds from
1182 Celastraceae. *Studies in Natural Products Chemistry*, ed. Atta-ur-Rahman (Elsevier), 239–
1183 307. doi: 10.1016/S1572-5995(06)80029-3.

1184 Amara, A., Frainay, C., Jourdan, F., Naake, T., Neumann, S., Novoa-Del-Toro, E. M., et al. (2022).
1185 Networks and graphs discovery in metabolomics data analysis and interpretation. *Front. Mol.*
1186 *Biosci.* 9, 841373. doi: 10.3389/fmolb.2022.841373.

1187 Brejnrod, A., Ernst, M., Dworzynski, P., Rasmussen, L. B., Dorrestein, P. C., van der Hooft, J. J. J.,
1188 et al. (2019). Implementations of the chemical structural and compositional similarity metric
1189 in R and Python. *bioRxiv*, 546150. doi: 10.1101/546150.

1190 Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). LOF: identifying density-based
1191 local outliers. in *Proceedings of the 2000 ACM SIGMOD international conference on*
1192 *Management of data SIGMOD '00*. (New York, NY, USA: Association for Computing
1193 Machinery), 93–104. doi: 10.1145/342009.335388.

1194 Caesar, L. K., Montaser, R., Keller, N. P., and Kelleher, N. L. (2021). Metabolomics and genomics in
1195 natural products research: complementary tools for targeting new chemical entities. *Nat.*
1196 *Prod. Rep.* doi: 10.1039/D1NP00036E.

1197 Callies, O., Núñez, M. J., Perestelo, N. R., Reyes, C. P., Torres-Romero, D., Jiménez, I. A., et al.
1198 (2017). Distinct sesquiterpene pyridine alkaloids from in Salvadoran and Peruvian
1199 Celastraceae species. *Phytochemistry* 142, 21–29. doi: 10.1016/j.phytochem.2017.06.013.

1200 Chambers, M. C., MacLean, B., Burke, R., Amodei, D., Ruderman, D. L., Neumann, S., et al. (2012).
1201 A cross-platform toolkit for mass spectrometry and proteomics. *Nat. Biotechnol.* 30, 918–920.
1202 doi: 10.1038/nbt.2377.

1203 Chang, F.-R., Hayashi, K.-I., Chen, I.-H., Liaw, C.-C., Bastow, K. F., Nakanishi, Y., et al. (2003).
1204 Antitumor agents. 228. five new agarofurans, Reissantins A-E, and cytotoxic principles from
1205 *Reissantia buchananii*. *J. Nat. Prod.* 66, 1416–1420. doi: 10.1021/np030241v.

1206 Domingues, R., Filippone, M., Michiardi, P., and Zouaoui, J. (2018). A comparative evaluation of
1207 outlier detection algorithms: Experiments and analyses. *Pattern Recognit.* 74, 406–421. doi:
1208 10.1016/j.patcog.2017.09.037.

1209 Dührkop, K., Fleischauer, M., Ludwig, M., Aksенов, A. A., Melnik, A. V., Meusel, M., et al. (2019).
1210 SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information.
1211 *Nat. Methods* 16, 299–302. doi: 10.1038/s41592-019-0344-8.

1212 Dührkop, K., Nothias, L.-F., Fleischauer, M., Reher, R., Ludwig, M., Hoffmann, M. A., et al. (2020).

1213 Systematic classification of unknown metabolites using high-resolution fragmentation mass
1214 spectra. *Nat. Biotechnol.* doi: 10.1038/s41587-020-0740-8.

1215 Dührkop, K., Shen, H., Meusel, M., Rousu, J., and Böcker, S. (2015). Searching molecular structure
1216 databases with tandem mass spectra using CSI:FingerID. *Proc. Natl. Acad. Sci. U. S. A.* 112,
1217 12580–12585. doi: 10.1073/pnas.1509788112.

1218 Fiehn, O. (2002). Metabolomics--the link between genotypes and phenotypes. *Plant Mol. Biol.* 48,
1219 155–171. Available at: <https://www.ncbi.nlm.nih.gov/pubmed/11860207>.

1220 Fox Ramos, A. E., Evanno, L., Poupon, E., Champy, P., and Beniddir, M. A. (2019). Natural
1221 products targeting strategies involving molecular networking: different manners, one goal.
1222 *Nat. Prod. Rep.* 36, 960–980. doi: 10.1039/c9np00006b.

1223 Furmanova, K., Gratzl, S., Stitz, H., Zichner, T., Jaresova, M., Lex, A., et al. (2020). Taggle:
1224 Combining overview and details in tabular data visualizations. *Inf. Vis.* 19, 114–136. doi:
1225 10.1177/1473871619878085.

1226 Gao, J. M., Wu, W. J., Zhang, J. W., and Konishi, Y. (2007). The dihydro- β -agarofuran
1227 sesquiterpenoids. *Nat. Prod. Rep.* 24, 1153–1189. doi: 10.1039/b601473a.

1228 Gaudry, A., Huber, F., Nothias, L.-F., Cretton, S., Kaiser, M., Wolfender, J.-L., et al. (2022).
1229 MEMO: Mass Spectrometry-Based Sample Vectorization to explore chemodiverse datasets.
1230 *Frontiers in Bioinformatics* 2, 2021.12.24.474089. doi: 10.3389/fbinf.2022.842964.

1231 González, A. G., Bazzocchi, I. L., Moujir, L., and Jiménez, I. A. (2000). Ethnobotanical uses of
1232 celastraceae bioactive metabolites in *Studies in Natural Products Chemistry*, ed. Atta-ur-
1233 Rahman (Elsevier), 649–738. doi: 10.1016/S1572-5995(00)80140-4.

1234 González, A. G., López, I., Ferro, E. A., Ravelo, A. G., Gutiérrez, J., and Aguilar, M. A. (1986).
1235 Taxonomy and chemotaxonomy of some species of celastraceae. *Biochem. Syst. Ecol.* 14,
1236 479–480. doi: 10.1016/0305-1978(86)90005-0.

1237 Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., and Streit, M. (2013). LineUp: visual analysis of
1238 multi-attribute rankings. *IEEE Trans. Vis. Comput. Graph.* 19, 2277–2286. doi:
1239 10.1109/TVCG.2013.173.

1240 Guillarme, D., Nguyen, D. T. T., Rudaz, S., and Veuthey, J.-L. (2008). Method transfer for fast liquid
1241 chromatography in pharmaceutical analysis: application to short columns packed with small
1242 particle. Part II: gradient experiments. *Eur. J. Pharm. Biopharm.* 68, 430–440. doi:
1243 10.1016/j.ejpb.2007.06.018.

1244 Henke, M. T., and Kelleher, N. L. (2016). Modern mass spectrometry for synthetic biology and
1245 structure-based discovery of natural products. *Nat. Prod. Rep.* 33, 942–950. doi:
1246 10.1039/c6np00024j.

1247 Hoffmann, M. A., Nothias, L.-F., Ludwig, M., Fleischauer, M., Gentry, E. C., Witting, M., et al.
1248 (2021). High-confidence structural annotation of metabolites absent from spectral libraries.
1249 *Nat. Biotechnol.* doi: 10.1038/s41587-021-01045-9.

1250 Howes, M.-J. R. (2018). The evolution of anticancer drug discovery from plants. *Lancet Oncol.* 19,
1251 293–294. doi: 10.1016/s1470-2045(18)30136-0.

1252 Howes, M.-J. R., Quave, C. L., Collemare, J., Tatsis, E. C., Twilley, D., Lulekal, E., et al. (2020).
1253 Molecules from nature: Reconciling biodiversity conservation and global healthcare
1254 imperatives for sustainable use of medicinal plants and fungi. *Plants People Planet* 2, 463–
1255 481. doi: 10.1002/ppp3.10138.

1256 Kim, H. W., Wang, M., Leber, C. A., Nothias, L.-F., Reher, R., Kang, K. B., et al. (2021).
1257 NPClassifier: a deep neural network-based structural classification tool for natural products.
1258 *J. Nat. Prod.* 84, 2795–2807. doi: 10.1021/acs.jnatprod.1c00399.

1259 Kuo, Y. H., Chen, C. F., Li-Ming, L. M., Kuo, Y., King, M. L., Chen, C. F., et al. (1995). Celahinine
1260 A, A new sesquiterpene pyridine alkaloid from *Celastrus hindsii*. *J. Nat. Prod.* 58, 1735–
1261 1738. doi: 10.1021/np50125a015.

1262 Kupchan, S. M., Komoda, Y., Court, W. A., Thomas, G. J., Smith, R. M., Karim, A., et al. (1972).
1263 Maytansine, a novel antileukemic ansa macrolide from *Maytenus ovatus*. *J. Am. Chem. Soc.*
1264 94, 1354–1356. doi: 10.1021/ja00759a054.

1265 Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation Forest. in *2008 Eighth IEEE International
1266 Conference on Data Mining*, 413–422. doi: 10.1109/ICDM.2008.17.

1267 Louwen, J. J. R., and van der Hooft, J. J. J. (2021). Comprehensive large-scale integrative analysis of
1268 omics data to accelerate specialized metabolite discovery. *mSystems* 6, e0072621. doi:
1269 10.1128/mSystems.00726-21.

1270 Ludwig, M., Nothias, L.-F., Dührkop, K., Koester, I., Fleischauer, M., Hoffmann, M. A., et al.
1271 (2020). Database-independent molecular formula annotation using Gibbs sampling through
1272 ZODIAC. *Nature Machine Intelligence* 2, 629–641. doi: 10.1038/s42256-020-00234-6.

1273 Lv, H., Jiang, L., Zhu, M., Li, Y., Luo, M., Jiang, P., et al. (2019). The genus Tripterygium: A
1274 phytochemistry and pharmacological review. *Fitoterapia* 137, 104190. doi:
1275 10.1016/j.fitote.2019.104190.

1276 Mándi, A., and Kurtán, T. (2019). Applications of OR/ECD/VCD to the structure elucidation of
1277 natural products. *Nat. Prod. Rep.* 36, 889–918. doi: 10.1039/c9np00002j.

1278 Medema, M. H., de Rond, T., and Moore, B. S. (2021). Mining genomes to illuminate the specialized
1279 chemistry of life. *Nat. Rev. Genet.* 22, 553–571. doi: 10.1038/s41576-021-00363-7.

1280 Moin, S., Devi, C. B., Wesley, S. P., Sahaya, S. B., and Zaidi, Z. (2014). Comparative phytochemical
1281 and antibacterial screening of important medicinal plants of celastraceae. *Journal of
1282 Biologically Active Products from Nature* 4, 37–43. doi: 10.1080/22311866.2014.890068.

1283 Newman, D. J., and Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly
1284 four decades from 01/1981 to 09/2019. *J. Nat. Prod.* 83, 770–803. doi:
1285 10.1021/acs.jnatprod.9b01285.

1286 Nothias, L. F., Nothias-Esposito, M., Da Silva, R., Wang, M., Protsyuk, I., Zhang, Z., et al. (2018).

Running Title

1287 Bioactivity-based molecular networking for the discovery of drug leads in natural product
1288 bioassay-guided fractionation. *J. Nat. Prod.* 81, 758–767. doi: 10.1021/acs.jnatprod.7b00737.

1289 Nothias, L.-F., Petras, D., Schmid, R., Dührkop, K., Rainer, J., Sarvepalli, A., et al. (2020). Feature-
1290 based molecular networking in the GNPS analysis environment. *Nat. Methods* 17, 905–908.
1291 doi: 10.1038/s41592-020-0933-6.

1292 Nugroho, A. E., and Morita, H. (2014). Circular dichroism calculation for natural products. *J. Nat.*
1293 *Med.* 68, 1–10. doi: 10.1007/s11418-013-0768-x.

1294 Olivon, F., Allard, P.-M., Koval, A., Righi, D., Genta-Jouve, G., Neyts, J., et al. (2017). Bioactive
1295 natural products prioritization using massive multi-informational molecular networks. *ACS*
1296 *Chem. Biol.* 12, 2644–2651. doi: 10.1021/acscchembio.7b00413.

1297 Pham, H. T., Lee, K. H., Jeong, E., Woo, S., Yu, J., Kim, W.-Y., et al. (2021). Species prioritization
1298 based on spectral dissimilarity: A case study of Polyporoid fungal species. *J. Nat. Prod.* 84,
1299 298–309. doi: 10.1021/acs.jnatprod.0c00977.

1300 Pieters, L., and Vlietinck, A. J. (2005). Bioguided isolation of pharmacologically active plant
1301 components, still a valuable strategy for the finding of new lead compounds? *J.*
1302 *Ethnopharmacol.* 100, 57–60. doi: 10.1016/j.jep.2005.05.029.

1303 Pluskal, T., Castillo, S., Villar-Briones, A., and Oresic, M. (2010). MZmine 2: Modular framework
1304 for processing, visualizing, and analyzing mass spectrometry-based molecular profile data.
1305 *BMC Bioinformatics* 395. doi: 10.1186/1471-2105-11-395.

1306 Project Jupyter, Bussonnier, M., Forde, J., Freeman, J., Granger, B., Head, T., et al. (2018). Binder
1307 2.0 - Reproducible, interactive, sharable environments for science at scale. in *Proceedings of*
1308 *the 17th Python in Science Conference*, 113–120. doi: 10.25080/Majora-4af1f417-011.

1309 Queiroz, E. F., Alfattani, A., Afzan, A., Marcourt, L., Guillarme, D., and Wolfender, J.-L. (2019).
1310 Utility of dry load injection for an efficient natural products isolation at the semi-preparative
1311 chromatographic scale. *J. Chromatogr. A* 1598, 85–91. doi: 10.1016/j.chroma.2019.03.042.

1312 Ramos, G. F., Ampsonah, I. K., Harley, B. K., Jibira, Y., Baah, M. K., Adjei, S., et al. Triterpenoids
1313 mediate the antimicrobial, antioxidant, and anti-inflammatory activities of the stem bark of
1314 *Reissantia indica*. *Journal of Applied Pharmaceutical Science* 11, 39–48. doi:
1315 10.7324/JAPS.2021.110506.

1316 Rees, J. A., and Cranston, K. (2017). Automated assembly of a reference taxonomy for phylogenetic
1317 data synthesis. *Biodivers Data J.* e12581. doi: 10.3897/BDJ.5.e12581.

1318 Rogers, C. B., Abbott, A. T. D., and van Wyk, A. E. (2000). A convenient thin layer
1319 chromatographic technique for chemotaxonomic application in Maytenus (Celastraceae). *S.*
1320 *Afr. J. Bot.* 66, 7–9. doi: 10.1016/S0254-6299(15)31059-0.

1321 Rutz, A., Dounoue-Kubo, M., Ollivier, S., Bisson, J., Bagheri, M., Saesong, T., et al. (2019).
1322 Taxonomically informed scoring enhances confidence in natural products annotation. *Front.*
1323 *Plant Sci.* 10, 1–15. doi: 10.3389/fpls.2019.01329.

1324 Rutz, A., Sorokina, M., Galgonek, J., Mietchen, D., Willighagen, E., Gaudry, A., et al. (2022). The
1325 LOTUS initiative for open knowledge management in natural products research. *Elife* 11,
1326 2021.02.28.433265. doi: 10.7554/eLife.70780.

1327 Salminen, A., Lehtonen, M., Paimela, T., and Kaarniranta, K. (2010). Celastrol: Molecular targets of
1328 Thunder God Vine. *Biochem. Biophys. Res. Commun.* 394, 439–442. doi:
1329 10.1016/j.bbrc.2010.03.050.

1330 Schmid, R., Petras, D., Nothias, L.-F., Wang, M., Aron, A. T., Jagels, A., et al. (2021). Ion identity
1331 molecular networking for mass spectrometry-based metabolomics in the GNPS environment.
1332 *Nat. Commun.* 12, 1–12. doi: 10.1038/s41467-021-23953-9.

1333 Sedio, B. E., Parker, J. D., McMahon, S. M., and Wright, S. J. (2018). Comparative foliar
1334 metabolomics of a tropical and a temperate forest community. *Ecology* 99, 2647–2653. doi:
1335 10.1002/ecy.2533.

1336 Singh, K. S., van der Hooft, J. J. J., van Wees, S. C. M., and Medema, M. H. (2022). Integrative
1337 omics approaches for biosynthetic pathway discovery in plants. *Nat. Prod. Rep.* doi:
1338 10.1039/d2np00032f.

1339 Tabudravu, J. N., Pellissier, L., Smith, A. J., Subko, K., Autréau, C., Feussner, K., et al. (2019). LC-
1340 HRMS-Database screening metrics for rapid prioritization of samples to accelerate the
1341 discovery of structurally new natural products. *J. Nat. Prod.* 82, 211–220. doi:
1342 10.1021/acs.jnatprod.8b00575.

1343 Verma, A. K., Rout, P. R., Lee, E., Bhunia, P., Bae, J., Surampalli, R. Y., et al. (2020). Biodiversity
1344 and sustainability. *Sustainability*, 255–275. doi: 10.1002/9781119434016.ch12.

1345 Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., et al. (2016). Sharing and
1346 community curation of mass spectrometry data with Global Natural Products Social
1347 Molecular Networking. *Nat. Biotechnol.* 34, 828–837. doi: 10.1038/nbt.3597.

1348 Wang, Y., Wong, J., and Miner, A. (2004). Anomaly intrusion detection using one class SVM. in
1349 *Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop, 2004.*, 358–
1350 364. doi: 10.1109/IAW.2004.1437839.

1351 Wolfender, J. L., Litaudon, M., Touboul, D., and Queiroz, E. F. (2019). Innovative omics-based
1352 approaches for prioritisation and targeted isolation of natural products-new strategies for drug
1353 discovery. *Nat. Prod. Rep.* 36, 855–868. doi: 10.1039/c9np00004f.

1354 Zuo, Z., Cao, L., Nothia, L.-F., and Mohimani, H. (2021). MS2Planner: improved fragmentation
1355 spectra coverage in untargeted mass spectrometry by iterative optimized data acquisition.
1356 *Bioinformatics* 37, i231–i236. doi: 10.1093/bioinformatics/btab279.

Table 1. Top and lowest five results from the application of Inventa on the Celastraceae collection.

Rank	Genus	Species	Organ	FS	FC	LC	rcg	rcf	CC	nccs	nccg	SC	PR
1	<i>Pristimera</i>	<i>Pristimera indica</i>	Roots	0.37	0.36	0.87	2	8	1	Agarofuran sesquiterpenoid	Agarofuran sesquiterpenoid	1	3.23
2	<i>Euonymus</i>	<i>Euonymus sanguineus</i>	Roots	0.26	0.24	0.78	1	440	1	Cinnamic acids and derivatives, etc.	Cinnamic acids and derivatives, etc.	1	3.02
3	<i>Celastrus</i>	<i>Celastrus paniculatus</i>	Seeds	0.37	0.34	0.66	71	732	1	Cholestane steroids, Agarofuran sesquiterpenoids	Cholestane steroids	1	3.00
4	<i>Salacia</i>	<i>Salacia letestuana</i>	Fruits	0.44	0.44	0.77	0	514	0			1	2.18
5	<i>Euonymus</i>	<i>Euonymus cochinchinensis</i>	Leaves	0.37	0.37	0.79	0	440	0			1	2.13
//	//	//	//	//	//	//	//	//	//	//	//	//	//
72	<i>Euonymus</i>	<i>Euonymus myrianthus</i>	Stems	0.1	0.08	0.79	0	440	0			0	0.87
73	<i>Salacia</i>	<i>Salacia cochinensis</i>	Branches	0.1	0.09	0.77	0	514	0			0	0.86
74	<i>Euonymus</i>	<i>Euonymus dielsianus</i>	Roots	0.06	0.06	0.79	0	440	0			0	0.85
75	<i>Tripterygium</i>	<i>Tripterygium wilfordii</i>	Roots	0.24	0.22	-0.40	1011	1353	1	Open-chain polyketides	Open-chain polyketides	0	0.81
76	<i>Tripterygium</i>	<i>Tripterygium wilfordii</i>	Stems	0.19	0.17	-0.40	1011	1353	1	Other Octadecanoids	Other Octadecanoids	0	0.76

Table 2. Top and lowest five extracts of the Celastraceae collection after application with and without filters of *Inventa*. *initial*: before filtering; *final*: after filtering; NASF: unannotated specific features; FC: Feature Component; PS: Priority Score.

Rank (initial)	Rank (final)	Species	Organ	Features (initial)	Features (final)	NASF (initial)	NASF (final)	FC (initial)	FC (final)	PR (initial)	PR (final)
1	1	<i>Pristimera indica</i>	Roots	727	26	263	14	0.36	0.58	3.23	3.41
3	2	<i>Celastrus paniculatus</i>	Seeds	1389	67	475	42	0.24	0.72	3.02	3.29
2	3	<i>Euonymus sanguineus</i>	Roots	1655	12	405	6	0.34	0.92	3.00	3.28
5	4	<i>Euonymus cochinchinensis</i>	Leaves	598	14	204	9	0.44	0.79	2.18	2.43
11	5	<i>Maytenus undata</i>	Roots	1430	39	330	22	0.37	0.74	2.13	2.35
//	//	//	//	//	//	//	//	//	//	//	//
72	72	<i>Euonymus myrianthus</i>	Roots	1419	33	188	5	0.14	0.33	0.92	0.94
74	73	<i>Euonymus dielsianus</i>	Stems	1304	17	79	1	0.06	0.12	0.85	0.85
70	74	<i>Euonymus myrianthus</i>	Stems	1535	30	123	1	0.10	0.20	0.87	0.82
71	75	<i>Salacia cochinchinensis</i>	Branches	1061	27	97	1	0.10	0.11	0.85	0.81
76	76	<i>Tripterygium wilfordii</i>	Stems	1435	61	237	8	0.17	0.43	0.76	0.72

Running Title

Table 3. ^1H and ^{13}C NMR spectroscopic data for compounds **1-5** (δ in ppm, J in Hz).

Compound 1			Compound 2		Compound 3		Compound 4		Compound 5	
No	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}
1	5.74 (d, 3.9 Hz, 1H)	71.1	4.61 (d, 3.8 Hz, 1H)	70.0	5.75 (d, 3.9 Hz, 1H)	71.1	4.62 (d, 3.8 Hz, 1H)	70.4	4.88 (d, 4.0 Hz, 1H)	67.0
2	5.54 (q, 3.9,3.0 Hz, 1H)	72.5	5.44 (q, 3.8,3.5 Hz, 1H)	74.7	5.55 (q, 3.9,2.8 Hz, 1H)	72.5	5.45 (q, 3.8,2.7 Hz, 1H)	75.1	5.42 (ddd, 4.0, 3.3, 1.1 Hz, 1H)	77.6
3	α 1.97 (dd, 14.3,3.0 Hz, 1H) β 2.40 (m, 1H)	31.6	α 1.98 (dd, 15.2,3.5 Hz, 1H) β 2.31 (ddd, 15.2,6.4,3.8 Hz, 1H)	31.3	α 1.97 (dd, 14.0,2.8 Hz, 1H) β 2.41 (m, 1H)	31.6	α 1.99 (dt, 15.4,2.7,0.9 Hz, 1H) β 2.32 (ddd, 15.4,6.4,3.6 Hz, 1H)	31.7	3.92 (dd, 3.3,1.8 Hz, 1H)	73.1
4	2.40 (m, 1H)	34.1	2.36 (m, 1H)	34.1	2.41 (m, 1H)	34.1	2.37 (m, 1H)	34.4	2.51 (qdd, 7.9,1.8,1.1 Hz, 1H)	40.9
5	-	91.9	-	91.3	-	91.9	-	91.6	-	92.9
6	6.31 (s, 1H)	77.6	6.24 (s, 1H)	77.4	6.30 (d, 0.8 Hz, 1H)	77.7	6.28 (s, 1H)	77.8	6.33 (s, 1H)	78.3
7	2.97 (d, 3.4 Hz, 1H)	54.1	2.97 (d, 3.4 Hz, 1H)	54.0	2.97 (dd, 3.4,0.8 Hz, 1H)	54.1	3.00 (d, 3.5 Hz, 1H)	54.4	3.00 (d, 3.5 Hz, 1H)	53.2
8	6.03 (d, 3.4 Hz, 1H)	78.8	6.10 (d, 3.4 Hz, 1H)	78.4	6.01 (d, 3.4 Hz, 1H)	78.8	6.17 (d, 3.5 Hz, 1H)	78.8	6.18 (d, 3.5 Hz, 1H)	78.7
9	-	203.1	-	206.8	-	203.1	-	207.0	-	206.3
10	-	60.2	-	61.4	-	60.1	-	61.7	-	61.6
11	-	85.7	-	85.0	-	85.6	-	85.2	-	87.0
12	1.49 (s, 3H)	30.2	1.48 (s, 3H)	29.9	1.49 (s, 3H)	30.2	1.48 (s, 3H)	27.5	1.54 (s, 3H)	27.4
13	1.42 (s, 3H)	27.2	1.43 (s, 3H)	27.1	1.41 (s, 3H)	27.2	1.49 (s, 3H)	30.2	1.53 (s, 3H)	30.1
14	1.22 (d, 7.6 Hz, 3H)	17.5	1.15 (d, 7.7 Hz, 3H)	17.4	1.22 (d, 7.7 Hz, 3H)	17.5	1.15 (d, 7.6 Hz, 3H)	17.7	1.16 (d, 7.9 Hz, 3H)	15.4
15	4.70 (d, 12.2 Hz, 1H) 5.10 (d, 12.2 Hz, 1H)	63.9	4.77 (d, 12.2 Hz, 1H) 5.05 (d, 12.2 Hz, 1H)	63.6	4.65 (d, 12.3 Hz, 1H) 5.12 (d, 12.3 Hz, 1H)	63.9	4.79 (d, 12.3 Hz, 1H) 5.06 (d, 12.3 Hz, 1H)	64.0	4.75 (d, 12.3 Hz, 1H) 4.99 (d, 12.3 Hz, 1H)	63.8
R1										
1a	-	171.4			-	171.2				
1b	1.95 (s, 3H)	21.0			1.95 (s, 3H)	21.0				
R2										
2a	-	no	-	164.1	-	164.8	-	no	-	164.6
2b	-	111.1	-	111.3	-	111.1	-	111.7	-	111.2
2c	8.48 (d, 2.6 Hz, 1H)	145.7	8.48 (d, 2.6 Hz, 1H)	145.1	8.47 (d, 2.5 Hz, 1H)	145.6	8.49 (d, 2.5 Hz, 1H)	145.4	8.48 (d, 2.6 Hz, 1H)	145.6

2d	-	165.2	-	165.0	-	165.2	-	165.2	-	165.3
2e	6.58 (d, 9.5 Hz, 1H)	119.9	6.57 (d, 9.5 Hz, 1H)	119.4	6.58 (d, 9.5 Hz, 1H)	119.9	6.58 (d, 9.4 Hz, 1H)	119.8	6.58 (d, 9.5 Hz, 1H)	119.8
2f	8.01 (dd, 9.5,2.6 Hz, 1H)	140.6	8.04 (dd, 9.5,2.6 Hz, 1H)	140.5	8.01 (dd, 9.5,2.5 Hz, 1H)	140.6	8.04 (dd, 9.4,2.5 Hz, 1H)	140.8	8.04 (dd, 9.5,2.6 Hz, 1H)	140.8
2g	3.70 (s, 3H)	38.7	3.71 (s, 3H)	38.3	3.70 (s, 3H)	38.7	3.71 (s, 3H)	38.7	3.70 (s, 3H)	38.7
6-Ac										
6a	-	171.4	-	171.1	-	171.3	-	171.3	-	171.2
6b	2.19 (s, 3H)	20.9	2.18 (s, 3H)	20.6	2.19 (s, 3H)	21.0	2.18 (s, 3H)	21.0	2.20 (s, 3H)	21.0
R4										
8a	-	no	-	163.6	-	163.9	-	166.3	-	166.3
8b	-	110.7	-	110.5	-	110.7	-	130.6	-	130.6
8c	8.44 (d, 2.5 Hz, 1H)	146.3	8.47 (d, 2.5 Hz, 1H)	145.9	8.44 (d, 2.5 Hz, 1H)	146.3	8.07 (dd, 8.0,1.3 Hz, 1H)	130.8	8.07 (dd, 8.0,1.2 Hz, 1H)	130.8
8d	-	165.2	-	164.8	-	165.2	7.53 (tt, 8.0,1.3 Hz, 1H)	129.8	7.53 (t, 8.0 Hz, 1H)	129.8
8e	6.56 (d, 9.5 Hz, 1H)	119.6	6.57 (d, 9.5 Hz, 1H)	119.4	6.56 (d, 9.5 Hz, 1H)	119.6	7.66 (tt, 8.0,1.3 Hz, 1H)	134.7	7.66 (tt, 8.0,1.2 Hz, 1H)	134.8
8f	7.95 (dd, 9.5,2.5 Hz, 1H)	140.5	7.97 (dd, 9.5,2.5 Hz, 1H)	140.1	7.95 (dd, 9.5,2.5 Hz, 1H)	140.5	7.53 (tt, 8.0,1.3 Hz, 1H)	129.8	7.53 (t, 8.0 Hz, 1H)	129.8
8g	3.62 (s, 3H)	38.7	3.63 (s, 3H)	38.4	3.62 (s, 3H)	38.7	8.07 (dd, 8.0,1.3 Hz, 1H)	130.8	8.07 (dd, 8.0,1.2 Hz, 1H)	130.8
R5										
15a	-	177.8	-	177.8	-	177.6	-	178.1	-	178.0
15b	2.80 (hept, 7.0 Hz, 1H)	35.2	2.67 (h, 7.0 Hz, 1H)	42.0	2.65 (h, 7.0 Hz, 1H)	42.3	2.70 (h, 7.0 Hz, 1H)	42.4	2.71 (h, 7.0 Hz, 1H)	42.4
15c	1.27 (d, 7.0 Hz, 3H)	19.2	1.58 (m, 1H) 1.77 (m, 1H)	27.4	1.57 (m, 1H) 1.76 (m, 1H)	27.8	1.60 (m, 1H) 1.80 (m, 1H)	27.8	1.61 (m, 1H) 1.81 (m, 1H)	27.8
15d	1.24 (d, 7.0 Hz, 3H)	19.3	0.93 (t, 7.5 Hz, 3H)	11.6	0.92 (t, 7.4 Hz, 3H)	11.9	0.95 (t, 7.5 Hz, 3H)	11.9	0.96 (t, 7.5 Hz, 3H)	11.9
15e			1.27 (d, 7.0 Hz, 3H)	16.5	1.25 (d, 7.0 Hz, 3H)	16.7	1.30 (d, 7.0 Hz, 3H)	16.8	1.30 (d, 7.0 Hz, 3H)	16.8

Running Title

Table 4. ^1H and ^{13}C NMR spectroscopic data for compounds **6-11** (δ in ppm, J in Hz).

Compound 6			Compound 7		Compound 8		Compound 9		Compound 10		Compound 11	
No	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)	δ_{C}
1	4.39 (d, 4.1 Hz, 1H)	76.0	5.70 (d, 4.0 Hz, 1H)	77.9	5.71 (d, 4.2 Hz, 1H)	77.8	5.72 (d, 4.0 Hz, 1H)	77.5	5.70 (d, 4.0 Hz, 1H)	77.8	4.38 (d, 4.1 Hz, 1H)	75.6
2	5.37 (td, 4.1,2.2 Hz, 1H)	75.1	5.61 (td, 4.0,2.1 Hz, 1H)	70.9	5.61 (td, 4.2,2.1 Hz, 1H)	70.9	5.62 (td, 4.0,2.2 Hz, 1H)	70.5	5.61 (dt, 4.0,2.1 Hz, 1H)	70.9	5.37 (m, 1H)	74.7
3	α 1.90 (d, 13.7 Hz, 1H) β 2.41 (m, 1H)	32.4	α 1.91 (d, 15.4 Hz, 1H) β 2.52 (ddd, 15.4,6.9,4.6 Hz, 1H)	32.3	α 1.91 (dd, 15.7,2.0 Hz, 1H) β 2.52 (ddd, 15.7,6.9,4.6 Hz, 1H)	32.3	α 1.91 (d, 15.3 Hz, 1H) β 2.52 (m, 1H)	31.9	α 1.92 (m, 1H) β 2.52 (ddd, 15.5,6.9,4.6 Hz, 1H)	32.3	α 1.90 (d, 15.3 Hz, 1H) β 2.40 (m, 1H)	32.2
4	2.35 (m, 1H)	33.9	2.43 (p, 7.5 Hz, 1H)	33.8	2.44 (m, 1H)	33.8	2.45 (m, 1H)	33.4	2.44 (m, 1H)	33.8	2.36 (m, 1H)	33.5
5	-	91.1	-	91.2	-	91.1	-	91.0	-	91.1	-	90.8
6	6.74 (s, 1H)	76.9	6.74 (d, 0.9 Hz, 1H)	76.5	6.76 (d, 1.0 Hz, 1H)	76.6	6.78 (s, 1H)	76.1	6.77 (d, 0.9 Hz, 1H)	76.6	6.75 (s, 1H)	76.7
7	2.62 (d, 3.0 Hz, 1H)	55.7	2.67 (m, 1H)	55.3	2.66 (m, 1H)	55.5	2.75 (d, 3.8 Hz, 1H)	54.8	2.67 (dd, 3.8,0.9 Hz, 1H)	55.5	2.63 (d, 3.9 Hz, 1H)	55.4
8	5.66 (d, 6.3 Hz, 1H)	72.8	5.58 (dd, 6.3,3.9 Hz, 1H)	72.4	5.58 (dd, 6.3,3.8 Hz, 1H)	72.4	5.76 (dd, 6.5,3.8 Hz, 1H)	72.3	5.56 (dd, 6.3,3.8 Hz, 1H)	72.4	5.62 (dd, 6.1,3.9 Hz, 1H)	72.6
9	5.64 (d, 6.3 Hz, 1H)	73.3	5.51 (d, 6.3 Hz, 1H)	72.2	5.52 (d, 6.3 Hz, 1H)	72.0	5.57 (d, 6.5 Hz, 1H)	71.7	5.52 (d, 6.3 Hz, 1H)	71.9	5.65 (d, 6.1 Hz, 1H)	73.0
10	-	53.1	-	52.7	-	52.7	-	no	-	52.7	-	no
11	-	81.6	-	82.0	-	82.0	-	81.8	-	81.9	-	81.2
12	1.54 (s, 3H)	24.9	1.53 (s, 3H)	24.8	1.53 (s, 3H)	24.9	1.56 (s, 3H)	24.6	1.52 (s, 3H)	24.9	1.54 (s, 3H)	24.6
13	1.46 (s, 3H)	30.5	1.49 (s, 3H)	30.4	1.49 (s, 3H)	30.4	1.51 (s, 3H)	30.2	1.49 (s, 3H)	30.4	1.46 (s, 3H)	30.2
14	1.11 (d, 7.7 Hz, 3H)	17.5	1.21 (d, 7.7 Hz, 3H)	17.6	1.21 (d, 7.6 Hz, 3H)	17.6	1.21 (d, 7.7 Hz, 3H)	17.2	1.21 (d, 7.6 Hz, 3H)	17.5	1.11 (d, 7.9 Hz, 3H)	17.2
15	4.37 (d, 13.3 Hz, 1H) 5.41 (d, 13.3 Hz, 1H)	63.0	4.24 (d, 13.2 Hz, 1H) 5.46 (d, 13.2 Hz, 1H)	62.8	4.19 (d, 13.2 Hz, 1H) 5.49 (d, 13.2 Hz, 1H)	62.6	4.15 (d, 13.2 Hz, 1H) 5.51 (d, 13.2 Hz, 1H)	62.1	4.18 (d, 13.1 Hz, 1H) 5.49 (d, 13.1 Hz, 1H)	62.6	4.36 (d, 13.2 Hz, 1H) 5.41 (d, 13.2 Hz, 1H)	67.9
R1												
1a			-	171.3	-	171.3	-	171.0	-	171.3	-	
1b			1.85 (s, 3H)	21.1	1.85 (s, 3H)	21.1	1.85 (s, 3H)	20.7	1.85 (s, 3H)	21.0	-	
R2												
2a		no	-	164.8	-	164.8	-	no		no		no
2b		no	-	111.0	-	111.0	-	no	-	111.0	-	111.5
2c	8.61 (d, 2.5 Hz, 1H)	145.5	8.52 (d, 2.5 Hz, 1H)	145.7	8.54 (d, 2.5 Hz, 1H)	145.7	8.55 (d, 2.6 Hz, 1H)	145.2	8.54 (d, 2.6 Hz, 1H)	145.7	8.61 (d, 2.5 Hz, 1H)	145.2

2d	-	165.2	-	165.1	-	165.2	-	164.9	-	164.8	-	165.0
2e	6.56 (d, 9.5 Hz, 1H)	119.6	6.56 (d, 9.5 Hz, 1H)	119.7	6.57 (d, 9.5 Hz, 1H)	119.8	6.56 (d, 9.5 Hz, 1H)	119.4	6.56 (d, 9.5 Hz, 1H)	119.8	6.56 (d, 9.4 Hz, 1H)	119.2
2f	8.07 (dd, 9.5,2.5 Hz, 1H)	141.1	8.01 (dd, 9.5,2.5 Hz, 1H)	140.7	8.02 (dd, 9.5,2.5 Hz, 1H)	140.8	8.02 (dd, 9.5,2.6 Hz, 1H)	140.5	8.02 (dd, 9.5,2.6 Hz, 1H)	140.8	8.07 (dd, 9.4,2.5 Hz, 1H)	140.7
2g	3.71 (s, 3H)	38.5	3.68 (s, 3H)	38.6	3.68 (s, 3H)	38.6	3.68 (s, 3H)	38.2	3.68 (s, 3H)	38.6	3.70 (s, 3H)	38.3
6-Ac												
6a	-	172.1	-	172.0	-	172.0	-	171.2	-	172.0	-	171.7
6b	2.17 (s, 3H)	21.3	2.19 (s, 3H)	21.2	2.20 (s, 3H)	21.2	2.18 (s, 3H)	20.7	2.21 (d, 1.1 Hz, 3H)	21.2	2.18 (s, 3H)	20.9
R3												
8a	no	-	165.0	-	165.2			no		no		no
8b	no	-	111.9	-	112.1			no	-	112.0	-	112.0
8c	8.89 (d, 2.5 Hz, 1H)	146.5	8.83 (d, 2.5 Hz, 1H)	146.4	8.88 (d, 2.5 Hz, 1H)	146.6	9.40 (d, 1.9 Hz, 1H)	151.4	8.88 (d, 2.5 Hz, 1H)	146.6	8.90 (d, 2.5 Hz, 1H)	146.3
8d	-	165.2	-	165.2	-	165.0	8.82 (dd, 5.0,1.9 Hz, 1H)	154.2	-	164.8	-	165.0
8e	6.60 (d, 9.4 Hz, 1H)	119.8	6.59 (d, 9.4 Hz, 1H)	119.8	6.60 (d, 9.4 Hz, 1H)	119.8	7.65 (dd, 7.9,5.0 Hz, 1H)	125.0	6.60 (d, 9.4 Hz, 1H)	119.8	6.60 (d, 9.5 Hz, 1H)	119.4
8f	8.03 (dd, 9.4,2.5 Hz, 1H)	140.9	8.04 (dd, 9.4,2.5 Hz, 1H)	140.8	8.03 (dd, 9.4,2.5 Hz, 1H)	140.9	8.57 (dt, 7.9,1.9 Hz, 1H)	139.1	8.04 (dd, 9.4,2.5 Hz, 1H)	140.9	8.05 (dd, 9.5,2.5 Hz, 1H)	140.7
8g	3.70 (s, 3H)	38.8	3.70 (s, 3H)	38.7	3.71 (s, 3H)	38.8		3.70 (s, 3H)	38.8	3.70 (s, 3H)		38.3
R4												
9a	-	176.6	-	175.9	-	175.9	-	175.5	-	176.3	-	176.7
9b	2.24 (q, 6.9 Hz, 1H)	42.5	2.26 (m, 1H)	42.0	2.24 (m, 1H)	42.0	2.24 (m, 1H)	41.8	2.46	35.3	2.43 (hept,7.0 Hz, 1H)	35.3
9c	1.37 (m, 1H) 1.68 (m, 1H)	27.3	1.31 (m, 1H) 1.69 (m, 1H)	26.9	1.29 (m, 1H) 1.71 (dq, 13.2,7.4,5.5 Hz, 1H)	26.8	1.29 (m, 1H) 1.68 (m, 1H)	26.5	1.09 (d, 7.1 Hz, 3H)	19.0	1.09 (d, 7.0 Hz, 3H)	18.6
9d	0.88 (t, 7.5 Hz, 3H)	12.0	0.87 (t, 7.5 Hz, 3H)	12.1	0.88 (t, 7.4 Hz, 3H)	12.2	0.85 (t, 7.5 Hz, 3H)	11.8	1.07 (d, 7.0 Hz, 3H)	18.8	1.07 (d, 7.0 Hz, 3H)	18.6
9e	1.03 (d, 7.0 Hz, 3H)	16.4	1.06 (d, 7.1 Hz, 3H)	16.2	1.07 (d, 7.1 Hz 3H)	16.2	1.06 (d, 7.2 Hz 3H)	15.8				
R5												
15a	-	179.0	-	179.0	-	178.6	-	178.6	-	178.7	-	178.7
15b	2.37 (m, 1H)	42.1	2.58 (hept, 6.9 Hz, 1H)	35.1	2.39 (m, 1H)	42.1	2.29 (m, 1H)	41.4	2.38 (m, 1H)	42.1	2.36 (m, 1H)	41.9
15c	1.24 (m, 1H) 1.48 (m, 1H)	27.7	1.15 (d, 6.9 Hz, 3H)	19.4	1.25 (m, 1H) 1.50 (m, 1H)	27.7	1.10 (m, 1H) 1.35 (m, 1H)	27.2	1.25 (m, 1H) 1.47 (m, 1H)	27.7	1.22 (m, 1H) 1.46 (m, 1H)	27.5

Running Title

15d	0.55 (t, 7.4 Hz, 3H)	11.6	0.85 (d, 6.9 Hz, 3H)	19.3	0.55 (t, 7.4 Hz, 3H)	11.6	0.35 (t, 7.5 Hz, 3H)	11.1	0.54 (t, 7.4 Hz, 3H)	11.6	0.54 (t, 7.5 Hz, 3H)	11.3
15e	1.13 (d, 7.0 Hz, 3H)	17.8			1.16 (d, 7.0 Hz, 3H)	17.7	1.12 (d, 7.0 Hz, 3H)	17.2	1.15 (d, 7.0 Hz, 3H)	17.7	1.13 (d, 7.3 Hz, 3H)	17.4

Table 5. ^1H and ^{13}C NMR spectroscopic data for compounds **12-13** (δ in ppm, J in Hz).

Compound 12		Compound 13	
No	δ_{H} (Multiplicity, J , nH)	δ_{C}	δ_{H} (Multiplicity, J , nH)
1	5.91 (d, 4.2 Hz, 1H)	74.9	5.92 (d, 4.3 Hz, 1H)
2	5.52 (m, 1H)	71.3	5.53 (m, 1H)
3	4.87 (m, 1H)	75.8	4.87 (m, 1H)
4	2.56 (m, 1H)	38.0	2.56 (qt, 8.0,1.0 Hz,1H)
5	-	90.3	-
6	6.58 (d, 1.1 Hz, 1H)	76.5	6.55 (d, 1.0 Hz, 1H)
7	2.50 (dd, 3.8,1.0 Hz, 1H)	53.3	2.50 (dd, 3.7,1.0 Hz, 1H)
8	5.52 (m, 1H)	70.6	5.53 (m, 1H)
9	5.49 (d, 6.5 Hz, 1H)	71.9	5.49 (d, 6.6 Hz, 1H)
10	-	52.0	-
11	-	82.5	-
12	1.53 (s, 3H)	24.6	1.53 (s, 3H)
13	1.44 (s, 3H)	30.2	1.43 (s, 3H)
14	1.21 (d, 7.9 Hz, 3H)	14.9	1.20 (d, 7.9 Hz, 3H)
15	4.28 (d, 13.2 Hz, 1H) 5.36 (d, 13.2 Hz, 1H)	61.9	4.22 (d, 13.3 Hz, 1H) 5.44 (d, 13.3 Hz, 1H)
R1			
1a	-	170.8	-
1b	1.75 (s, 3H)	20.2	1.75 (s, 3H)
R2			
2a	-	163.9	-
2b	-	109.9	-
2c	8.55 (d, 2.6 Hz, 1H)	145.8	8.58 (d, 2.5 Hz, 1H)
			146.1

2d	-	165.0	-	165.3
2e	6.58 (d, 9.5 Hz, 1H)	119.6	6.58 (d, 9.5 Hz, 1H)	119.9
2f	8.00 (dd, 9.5,2.6 Hz, 1H)	140.4	8.02 (dd, 9.5,2.5 Hz, 1H)	140.7
2g	3.71 (d, 1.7 Hz, 3H)	38.3	3.71 (s, 3H)	38.6
R3				
3a	-	171.3	-	171.5
3b	2.12 (s, 3H)	20.7	2.12 (s, 3H)	21.2
6-Ac				
6a	-	171.1	-	171.2
6b	2.12 (s, 3H)	20.7	2.12 (s, 3H)	21.1
R4				
8a	-	171.5	-	171.7
8b	2.11 (s, 3H)	20.7	2.13 (s, 3H)	21.4
R5				
9a	-	167.0	-	167.3
9b	-	128.9	-	129.2
9c	6.83 (qq, 6.9,1.3 Hz, 1H)	140.0	6.83 (qq, 7.3,1.6 Hz, 1H)	140.2
9d	1.78 (dq, 6.9,1.3 Hz, 3H)	14.1	1.78 (m, 3H)	14.4
9e	1.77 (p, 1.3 Hz, 3H)	11.6	1.78 (m, 3H)	12.1
R6				
15a	-	178.9	-	178.9
15b	2.90 (hept, 6.9 Hz, 1H)	34.8	2.74 (h, 7.0 Hz, 1H)	42.3
15c	1.26 (d, 6.9 Hz, 3H)	19.3	1.58 (ddd,13.8,7.5,6.4 Hz, 1H) 1.80 (m, 1H)	27.9
15d	1.24 (d, 6.9 Hz, 3H)	19.3	0.97 (t, 7.4 Hz, 3H)	12.1
			1.25 (d, 7.0 Hz, 3H)	17.4