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Abstract: Distinguishing between damaging and neutral missense variants is an ongoing
challenge in human genetics, with profound implications for clinical diagnosis, genetic studies
and protein engineering. Recently, deep-learning models have achieved state-of-the-art
performance in classifying variants as pathogenic or benign. However, these models are
currently unable to provide predictions over all missense variants, either because of
dependency on close protein homologs or due to software limitations. Here we leveraged
ESM1b, a 650M-parameter protein language model, to predict the functional impact of human
coding variation at scale. To overcome existing technical limitations, we developed a modified
ESM1b workflow and functionalized, for the first time, all proteins in the human genome,
resulting in predictions for all ~450M possible missense variant effects. ESM1b was able to
distinguish between pathogenic and benign variants across ~150K variants annotated in ClinVar
and HGMD, outperforming existing state-of-the-art methods. ESM1b also exceeded the state of
the art at predicting the experimental results of deep mutational scans. We further annotated
~2M variants across ~9K alternatively-spliced genes as damaging in certain protein isoforms
while neutral in others, demonstrating the importance of considering all isoforms when
functionalizing variant effects. The complete catalog of variant effect predictions is available at:
https://huggingface.co/spaces/ntranoslab/esm_variants.
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Introduction

Determining the phenotypic consequences of genetic variants is a key challenge in human
genetics [1-4]. While most genetic variants associated with common human disease occur in
non-coding regions of the genome, variants that affect the amino-acid (AA) sequence of proteins
are enriched amongst variants associated with common human disease and cause many rare
Mendelian and somatic disorders [5—8]. Coding variants are also of special interest because the
mechanisms by which they act are better understood, and they are more therapeutically
actionable. The vast majority of coding variants are missense variants that substitute one AA
with another along the protein sequence [9]. However, distinguishing between damaging
variants, which disrupt the biological function of the protein, from neutral variants, which have no
functional effects, remains challenging. Furthermore, the same genetic variant can be present in
multiple isoforms but only have a damaging effect in a subset of them, depending on
interactions with other parts of the protein sequence. As a result, most missense variants are
still labeled as Variants of Uncertain Significance (VUS), preventing many patients from
receiving a clear medical diagnosis [2, 10].

Variant functionalization can be performed either experimentally or computationally.
Experimental approaches such as deep mutational scans [11] and Perturb-Seq [12] can
measure cellular phenotypes (e.g., gene expression or reporter activity) across hundreds to
thousands of variants simultaneously. However, their current limited scale precludes
genomewide experiments, and the specific cellular phenotypes measured are imperfect proxies
for the clinical phenotype of interest (e.g., disease risk or therapeutic response) [13, 14]. In
contrast, computational methods that learn the biophysical properties or evolutionary constraints
of protein sequences are theoretically scalable to all coding variants [15-17]. Most existing
computational algorithms for variant functionalization are supervised, trained on databases of
pathogenic versus benign variants [10]. Recently, an unsupervised deep-learning method
named EVE, which predicts variant effects directly from amino-acid sequences without training
on labeled data, has shown to outperform supervised methods [4]. EVE builds a model based
on a multiple sequence alignment (MSA) separately for each human protein. EVE currently
provides predictions for only ~15% of human proteins, and because of its reliance on MSA
coverage, can only predict the effects of well-aligned residues in each protein. Moreover, since
alternative isoforms of the same human protein share the same homologs, it is not clear
whether EVE and other homology-based methods are capable of distinguishing between variant
effects on different isoforms.

A different deep-learning approach to functionalizing variants uses protein language models, a
technique originally developed for natural language processing, which has been successfully
applied to many protein prediction tasks [18—-23]. Protein language models are trained on a
large set of protein sequences that have been selected throughout evolution (e.g. from UniProt
[24]), thereby learning which sequence variations are more or less likely to occur. Importantly,
protein language models don’t require explicit homology information, they are not gene-specific,
and the same model applies for any possible AA sequence. It has been shown that protein
language models implicitly learn to recognize many aspects of protein structure and function,
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such as secondary structure, long-distance interactions (e.g. disulfide bonds), post-translational
modifications and binding sites. ESM1b [19], a 650M-parameter model trained on ~250M
protein sequences (Fig. 1A), was demonstrated to predict, without further training, variant
effects correlated with the results of mutational scanning experiments [25].

Despite these advantages, there are several technical limitations of ESM1b that limit its
application for variant functionalization. First, ESM1b is technically limited to sequence inputs of
up to 1,022aa in length, which is inadequate for handling the full-length sequences of about
12% of the human protein isoforms. Second, while ESM1b variant effect predictions have been
evaluated on cellular phenotypes across 32 genes (10 from human) [25], the performance of the
method in predicting the clinical impact of human coding variants across the genome is
unknown. Finally, ESM1b is implemented in a computational framework that requires software
engineering proficiency, deep-learning expertise, and specialized hardware (high-memory
GPUs), which together create a technical barrier for its broad adoption by geneticists and
clinicians.

Here, we sought to lift these barriers and enable ESM1b to inform clinical diagnosis and human
genetics research at a genome-wide scale. To this end, we implemented a workflow
generalizing ESM1b to protein sequences of any length, and used it to predict the effects of all
~450M possible single AA substitutions across all 42,336 protein isoforms in the human
genome. Our ESM1b-based workflow outperforms EVE as a classifier of variant pathogenicity
(as annotated by ClinVar [10] and HGMD [26]) and as a predictor of deep mutational scanning
experiments. We further demonstrate the capacity of ESM1b to assess variant effects in the
context of different protein isoforms. Using our workflow, we identified variants predicted to be
isoform sensitive in 85% of alternatively spliced genes. These isoform-sensitive variants, which
are not captured by traditional approaches based solely on the inclusion or exclusion of entire
exons, are enriched near splice sites and in genes containing known alternatively spliced
domains. Finally, we created a web portal that allows researchers to query, visualize and
download variant effect predictions for all protein isoforms in the human genome. This complete

catalog is accessible at: https://huggingface.co/spaces/ntranoslab/esm_variants.

Results

We developed and applied a modified ESM1b workflow on all 42,336 known human protein
isoforms, obtaining a complete catalog of all ~450M possible missense variant effects in the
human genome. The effect score of each missense variant (in the context of a protein
sequence) is defined as the log likelihood ratio (LLR) between the variant and the wild-type
amino acid (Fig. 1B). Compared to homology-based models that are currently available for a
small subset of human proteins and cover only specific residues in those proteins (e.g. 84% of
the residues in 15% of human proteins in the case of EVE; Fig. 1C), ESM1b produces variant
effect scores for every possible missense variant in every protein.

Protein regions that are more functionally sensitive according to ESM1b (i.e. with many variants
predicted to be damaging) often align with known protein domains and harbor
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disease-associated variants (Fig. 1D). For example, as illustrated for SPAST, SLC7A3, and
ARX, such protein domains sometimes reside outside of MSA coverage, making predictions of
variants in these domains unavailable to homology-based models (Fig. 1D). For these genes,
we also observed variants associated with human disease residing in regions not covered by
MSA. For example, the MIT domain in SPAST contains 4 missense variants (E112K, R115C,
N184T, and L195V) that have been observed in patients with hereditary spastic paraplegias,
and further supported as causal by experimental evidence [27]. Likewise, the CAT C domain in
SLC7A3 contains a missense variant (S589T) identified in males with autism spectrum disorder
and intellectual disability [28]. Similarly, multiple domains in ARX outside of MSA coverage
(highlighted in Fig. 1D) contain genetic variation implicated with intellectual disability [29-32].
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Figure 1: ESM1b predicts variant effects without homology coverage. (A) ESM1b is a
650M-parameter protein language model trained on 250M protein sequences across all organisms. The
model was trained via the masked language modeling task, where random residues are masked from
input sequences and the model has to predict the correct amino acid at each position (including the
missing residues). (B) lllustration of the ESM1b model’s input (an amino-acid sequence) and output (log
likelihood ratio of effect scores for all possible missense variants). (C) The distribution of MSA coverage
(i.e. the fraction of a protein’s residues that are aligned) across ~3K disease-related proteins. (D)
Examples of the model’s capacity to detect protein domains and functional regions across three human
proteins: SPAST, SLC7A3 and ARX. Each heatmap visualizes the log-likelihood ratio scores across all
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20xL possible missense variants (where L is the protein length). Protein domains without MSA coverage
are highlighted in red.

To evaluate how well ESM1b predicts the clinical consequences of variants, we compared the
effect scores predicted by the model between pathogenic and benign variants in two datasets.
The first dataset contains variants annotated as pathogenic or benign according to ClinVar [10].
The second dataset contains variants annotated as disease causing in HGMD [26] and benign
variants defined by allele frequency greater than 1% in gnomAD [9]. Indeed, the distribution of
pathogenic variant effect scores is dramatically different from the distribution for benign variants
in both datasets. Moreover, we observe consistent effect scores for both variant labels
(pathogenic and benign) between the two datasets (ClinVar and HGMD/gnomAD; Fig. 2A),
suggesting that the predictions are well calibrated across genes. Using an LLR threshold of -7.5
(near the intersection of the two distributions) to distinguish between pathogenic and benign
variants yields a true positive rate of 81% and true negative rate of 82% across both datasets.

Next, we compared the performance of ESM1b and EVE as classifiers of variant pathogenicity.
On ClinVar, ESM1b obtains a ROC-AUC score of 0.905 for distinguishing between the 19,925
pathogenic and 16,612 benign variants (across 2,765 unique genes), compared to 0.885 for
EVE. Similarly, ESM1b obtains a ROC-AUC score of 0.897 at discerning between the 27,754
variants labeled by HGMD as disease causing and the 2,743 common missense variants in
gnomAD (across 1,991 unique genes), compared to 0.882 for EVE (Fig. 2B). Controlling for the
false positive rate using the standard 0.05 threshold, ESM1b obtains a true positive rate of 60%
compared to 49% for EVE over ClinVar, and 61% compared to 51% over HGMD/gnomAD
(Supplementary Fig. S1).

Having established the high accuracy of ESM1b as a classifier of variant pathogenicity, we
sought to predict the effects of VUS currently annotated in ClinVar. To that end, we modeled the
distribution of ESM1b scores across VUS as a Gaussian mixture with two components (Fig.
2C). Indeed, these two fitted distributions align well with the distributions for annotated
pathogenic and benign variants (Fig. 2D). According to this model, we estimate that about 58%
of VUS in ClinVar are benign and about 42% are pathogenic.

Next, we compared ESM1b and EVE on experimental measurements of deep mutational scans
conducted across 21 assays in 12 human genes (Supplementary Table S$1). On average,
ESM1b obtains a Spearman’s correlation of 0.422 between its effect scores and the
experimental scores, compared to 0.407 for EVE (Fig. 2E).

We further assessed the functional consequences of ESM1b predictions in two analyses. First,
we found that ESM1b scores track well with allele frequency; the more common a variant is, the
less likely it is to obtain ESM1b scores considered damaging (Fig. 2F). Second, as illustrated by
individual examples (Fig. 1D), the distribution of ESM1b scores for variants residing within
domains is more damaging, while the distribution for variants residing outside of domains is
more similar to benign variants (Fig. 2G).
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Figure 2: ESM1b is suitable for genome-wide disease prediction of coding variants. (A) Top panel:
the distribution of ESM1b scores across two sets of variants that are assumed to be mostly pathogenic
(“ClinVar: Pathogenic” and “HGMD: Disease-causing”) and two sets of variants assumed to be mostly
benign (“ClinVar: Benign:” and “gnomad: MAF>0.01"). Bottom panel: venn diagram of the variants
extracted from HGMD, ClinVar and gnomAD. (B) Comparison between ESM1b and EVE in their capacity
to distinguish between pathogenic and benign variants (measured by global ROC-AUC scores), as
labeled by ClinVar (36,537 variants in 2,765 unique genes) or HGMD/gnomAD (30,497 variants in 1,991
unique genes). (C) The distribution of ESM1b scores across ClinVar variants of uncertain significance
(VUS), decomposed as a mixture of two Gaussian distributions capturing variants predicted as more likely
pathogenic (orange) or more likely benign (blue). (D) The distribution of ESM1b scores across all
common ClinVar labels, including the two Gaussian components from (C). (E) Comparison between
ESM1b and EVE on deep mutational scan datasets covering 12 human genes (Supplementary Table
S$1). Performance is measured by the Spearman’s correlation between each model’s scores and the
experimental scores. Average performance of each of the models is marked by a dashed line. Since
ESM1b can process all missense variants (unlike EVE which only assigns scores for a subset of them),
the performance of ESM1b is shown either for all variants (“all variants”) or the subset of variants with
EVE scores (“same variants”). (F) Average ESM1b score (and standard-deviation) as a function of allele
frequency over all gnomAD missense variants. (G) The distribution of ESM1b scores across variants in
annotated protein domains (red) vs. variants outside domains (gray). The distribution of benign variants
(as in (A)) is shown for reference.

As a protein language model, ESM1b evaluates each variant in the context of the entire protein
sequence provided as input. This provides an opportunity to assess how the contextual
sequence of alternative isoforms influences the model’s effect predictions. It is possible that the
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same variant could be damaging in the context of some protein isoforms but not others, for
example due to interaction with alternatively spliced domains (Fig. 3A). For example, P53 has a
shorter isoform with both the N- and C-termini truncated. By generating variant effect predictions
for the primary isoform and this alternative isoform independently, we found that 170 variants
(mostly near the splice junctions) obtain substantially different scores (LLR diff > 4) between the
two isoforms, including three ClinVar variants annotated as VUS (Fig. 3B).

We next searched for missense variants over the ClinVar dataset with substantially different
predicted effects between isoforms. Specifically, we found 3,477 variants with LLR standard
deviation greater than 2 across all isoforms (Fig. 3C). Of these 3,477 variants, 148 (4%) are
benign or likely benign, 437 (13%) are pathogenic or likely pathogenic, and 2,892 (83%) are
annotated as VUS. Interestingly, considering these 2,892 VUS in the context of the isoform
predicted to be most damaging provides an effect score distribution similar to that of pathogenic
variants, while considering the isoform predicted to be least damaging provides a distribution
similar to benign variants (Fig. 3C). Like P53, many clinically important human genes have a
large number of ClinVar variants with high variance in ESM1b scores across isoforms, including
BRCA1, IRF6 and TGFB3 (Fig. 3D).
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Figure 3: ESM1b predictions in clinically relevant genes depend on the isoform context. (A) The
consequences of variants (e.g. damaging vs. neutral) can depend on the isoform context. (B) Comparison
of the primary and one of the alternative isoforms of P53. Three specific variants are detailed. (C) Left
panel: all 3,477 ClinVar variants with highly variable ESM1b effect scores (defined by std>2) across
different isoforms. Center panel: the lowest and highest isoform scores predicted for VUS from the left
panel (top 2 boxes), compared to the mean scores (across isoforms) of VUS, benign or pathogenic
variants (as in Fig. 2D; bottom 3 boxes). Right panel: The distribution of the lowest and highest isoform
scores predicted for VUS from the left panel, compared to the distributions for pathogenic or benign
variants from ClinVar, HGMD and gnomAD (as in Fig. 2A). Across the entire panel, the number of variants
associated with each category is shown in parentheses. (D) The top 100 ClinVar genes with the largest
number of variants with highly variable effect scores (as in (C)). In parentheses: the number of annotated
isoforms of each gene.

Beyond the ~5k ClinVar genes, we further examined isoform-specific effects genome-wide
across all possible missense variants and 20,360 coding human genes. To this end, we define a
variant to be isoform-sensitive if i) it is predicted by ESM1b as likely bening (LLR>-7) in at least
one isoform, ii) it is predicted as likely pathogenic (LLR<-8) in at least one isoform, and iii) these
two predictions are substantially different (LLR difference > 4). We found ~1.8M such variants
across ~9K genes, which is 85% of all genes with annotated alternative isoforms (Fig. 4A).
Isoform sensitive variants are more likely to occur near splice junctions and in genes with
protein domains disrupted by splicing events, as opposed to domains that are either included
intact or removed entirely across alternative isoforms (Fig. 4B).

We found evidence of splicing events that dramatically influence the predicted variant effects.
For example, the second isoform of MEN1, a tumor suppressor gene involved in many types of
cancer, differs from the primary isoform by the deletion of only five amino acids at positions
149-153 due to an alternative donor site at exon 1. Based on ESM1b scores, we predict that this
deletion introduces a 30aa-long functional region preceding that location, making variants in this
region more prone to be considered damaging (Fig. 4C). Indeed, multiple studies have reported
missense variants in that region to be associated with cancer, including: H139D [33], H139P
[34], H139R [35], H139Y [36], F144V [37] and 1147F [38]. A study from 2017 found that the
second MEN1 isoform displays aberrant expression in human hepatocellular carcinoma and
cholangiocarcinoma relative to matched normal tissue in TCGA; however, the authors remarked
that functional differences between the two isoforms were yet to be characterized [39]. The
functional role of the 5 aa deletion is further supported by the predicted 3D structures of the two
protein isoforms [40], which differ by a small pocket on the protein’s surface (Fig. 4C).

Another example of isoform-sensitive variants can be seen in the TGFB3 (transforming growth
factor beta-3) proprotein. This proprotein is cleaved into two separate chains, LAP and TGF[3-3,
which together form a dimer. However, an alternative isoform of TGFB3 is lacking the TGF3-3
chain, causing many missense variants in the LAP chain to no longer be deemed damaging by
ESM1b. The region with isoform-sensitive variants in the LAP chain is more than 200 residues
away from the alternatively spliced TGFB-3 chain. However, according to AlphaFold [40], they
are in close contact in 3D space (Fig. 4D).
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Figure 4: ESM1b can detect isoform-specific variant effects. (A) ~1.8M missense variants across ~9K
genes in the human genome are “isoform sensitive”, defined by: i) maximum ESM1b score (across
isoforms) >-7, ii) minimum score <-8, iii) difference between minimum and maximum score >4. (B) Top
panel: isoform sensitive variants are closer to splice junction than would be expected at random.
Bottom-left panel: isoform sensitive variants in genes with domains containing splice junctions: 90.31%
vs. 28.21% expected at random. Bottom-right panel: metrics of predicting whether genes contain domains
disrupted by splice junction given whether or not they contain isoform sensitive variants. (C) An example
of a small splicing effect (excision of 5 amino acids from the primary isoform of the MEN1 protein) leading
to dramatic changes in the predicted effects of variants in a much larger region. Bottom panel: AlphaFold
structural predictions of the two isoforms. (D) An example of alternative splicing leading to a distant effect
in the TGFB3 proprotein. Exclusion of the TGFB-3 chain in an alternative isoform of the proprotein leads
to a region at the beginning of the LAP chain (marked by orange) to lose its sensitivity to missense
variants. Right panel: AlphaFold prediction of the binding of the two chains showing these two regions to
be close to one another in 3D structure.
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Discussion

Using a state-of-the-art protein language model ESM1b, we have compiled a complete catalog
of predicted effect scores for all possible missense variants in the human genome
(https://huggingface.co/spaces/ntranoslab/esm_variants). A comprehensive evaluation of the
effect scores demonstrates that ESM1b predictions exceed the performance of EVE at
distinguishing between pathogenic and benign variants across ClinVar and HGMD/gnomAD and
in predicting the effects reported by deep mutational scan assays. Previous analysis has
established EVE as state of the art for variant functionalization based on these two benchmarks,
outperforming 7 unsupervised and 8 supervised variant effect prediction methods [4], including
CADD [17], SIFT [15] and Polyphen2 [16]. We have also demonstrated that ESM1b can
recognize protein domains and other functional regions, including those outside MSA coverage
(Fig. 1D), and that its predicted effect scores are correlated with allele frequency (Fig. 2F).

As an unsupervised model that doesn’t rely on an explicit model of homology, ESM1b avoids
many of the potential pitfalls of existing methods. Compared to supervised methods, when
validating it on clinical (e.g. ClinVar and HGMD) or population-genetics (e.g. gnomAD) datasets,
there is no risk for information leakage from the training to the test sets, which is a non-trivial
problem [4]. Compared to homology-based unsupervised methods (such as EVE [4]), ESM1b
and other protein language models have many compelling properties. Protein language models
are simpler and faster to use since only a single AA sequence is required as input once a
universal model has been trained (instead of training a separate model for each gene based on
its distinct homologs). ESM1b also provides predictions for every possible variant, including
those that reside within important protein domains not covered by MSA (Fig. 1C-D).

We leveraged our workflow to examine how alternative splicing influences variant effects. We
highlighted 3,477 missense variants in ClinVar with high variance in predicted effects across
isoforms (Fig. 3). Such variable predicted effects are common in many disease-causing genes,
including BRCA1, IRF6 and TGFB3. To study the phenomenon globally across the entire human
genome, we denoted ~1.8M variants in ~9K genes as isoform sensitive (Fig. 4A). While
isoform-sensitive variants tend to occur near splice sites and within genes containing domains
disrupted by splicing (Fig. 4B), some splicing events are predicted to influence much larger or
distant regions in the protein sequence (Fig. 4C-D).

We anticipate that our public resource would be useful for a broad range of human genetics
tasks. For the diagnosis of Mendelian diseases, ESM1b effect scores could be integrated with
other sources of information to resolve the ambiguity of VUS (Fig. 2C-D). Functionalization of
VUS continues to serve a pressing need given their high prevalence in clinical sequencing
efforts [10], which prevents many patients from receiving a clear diagnosis [2, 41-43]. For
genetic association studies, effect scores could be used as priors for which variants are causal
to improve the power of burden tests and resolution of statistical fine-mapping [1]. For protein
engineering, it has been shown that ESM1b scores could be used to nominate gain-of-function
variants that may confer therapeutic benefits [44]. Finally, using protein language models as
variant functionalization tools could also inform basic research of protein function, including the
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identification of protein domains and other functional units (Fig. 1D, Fig. 2G) and discerning the
functional differences between alternative isoforms (Fig. 4).

Over the past decades, computational variant functionalization tools have dramatically improved
in accuracy and usability [4]. Given the results provided in this work, and in line with the track
record of language models in protein research [18, 19, 25, 45] and machine learning in general
[46], protein language models such as ESM1b currently seem to be one of the most promising
approaches to determine the clinical and biological consequences of genetic variants. It has
been shown that as language models scale in the number of parameters and training data, they
tend to substantially improve [18, 46] (although this may not always be straightforward [47]). We
expect that the same trend of larger, better protein language models will continue to benefit and
improve variant effect prediction.

Materials & Methods

ESM1b

The code and pre-trained parameters for ESM1b [19] were taken from the model’s official
GitHub repository at: https://github.com/facebookresearch/esm. Specifically, we used the
esm1b_t33 650M_URS50S model.

Handling long sequences

Because ESM1b uses learned positional embeddings (and self attention which grows
quadratically with sequence length in both memory and compute), the model is restricted to
protein sequences of up to 1,022aa in length [19]. However, ~12% of human proteins in UniProt
exceed this length [24]. To overcome this limitation, we used a sliding window approach where
longer sequences were subdivided into overlapping windows of 1,022aa with at least 511aa
overlap. More specifically, we tiled each full protein sequence with windows of size 1022aa
starting from both ends. In every step, consecutive windows from both ends are generated to
have an overlap of exactly 511aa. This process continues until the windows from both ends
meet at the center. If the overlap between the central windows is less than 511aa, a last window
of length 1022aa is added at the center to conclude the process. The subsequences defined by
the windows are then used as inputs for ESM1b to get the LLR effect scores for all missense
variants (each variant with respect to all the windows containing it). Since most residues are
contained in multiple overlapping windows, the final effect score of each variant is determined
by a weighted average approach. Specifically, to discount potential edge effects, the weights
near window edges are constructed with a sigmoid function (Supplementary Fig. S2). The final
variant effect score is then determined to be (w(i1) *s1 + ... + w(ik) * sk) / (w(i1) + ... + w(ik))
where s17,...,sk are the effect scores of the variant in the context of each of the k windows
containing it, i1,...,ik are the positions of the variant relative to each of these windows, and w is
the window weight function (Supplementary Fig. S2).
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The global AUC metric for pathogenicity classification

To compare the performance of ESM1b and EVE [4] as variant pathogenicity classifiers, we
used the ROC-AUC metric, which is the standard metric used to evaluate binary classifiers [48].
To calculate the ROC-AUC, we considered the entire set of pathogenic and benign variants
(either from ClinVar [10] or HGMD/gnomAD [9, 26]) as a single genome-wide classification task,
and consecutively calculated the global ROC-AUC of ESM1b and EVE over each of the two
datasets (Fig. 2B). ESM1b is consistently superior to EVE according to this metric.

In the original publication introducing EVE [4], the authors also reported a somewhat different
metric, which we refer to as gene-average AUC (as opposed to the global AUC reported in this
work). Essentially, they treated each human gene as a separate dataset and evaluated EVE as
a pathogenicity classifier over variants in that specific gene, calculating a gene-specific AUC for
only 1,654 genes that have at least one annotated variant in each class (pathogenic/benign).
They then averaged all the gene-specific AUC scores to obtain the final gene-average AUC.
With respect to gene-average AUC on this smaller subset of genes, EVE is somewhat superior
to ESM1b (Supplementary Fig. S1).

The fact that EVE is better on average across genes (gene-average AUC) but falls short of
ESM1b at evaluating variant pathogenicity over all genes as a unified task (global AUC),
suggests that ESM1b provides scores which are more consistent and comparable across
different genes. This is somewhat expected given that EVE is in fact an assembly of multiple
gene-specific models whereas ESM1b is a single model trained over the entire space of known
protein sequences.

We argue that global AUC is a more appropriate metric than gene-average AUC for most
purposes. From a clinical perspective, when attempting to diagnose a patient with a genetic
disease, it is usually the case that variants across multiple genes are considered, and the
overall evidence for each of the variants should be compared. In that case, it is important to
obtain well-calibrated effect scores that can be compared between different genes, as evaluated
by the global AUC metric.
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Supplementary Figure S1: Comprehensive evaluation of ESM1b and EVE on ClinVar,
HGMD/gnomAD and deep mutation scans. (A) ROC curves of ESM1b and EVE as binary classifiers of
variant pathogenicity over ClinVar (left) and HGMD/gnomAD (right). The true positive rate at the standard
false positive rate (0.05) is annotated across all 4 curves. (B) Evaluation of EVE (left bar plots) and
ESM1b (right bar plots) over ClinVar (top panels) and HGMD/gnomAD (bottom panels), using either the
global AUC (red) or gene-average AUC (yellow) metric (see the relevant section in the Methods). For
each dataset, we show the results for either the full dataset (left panels), or the subsets of variants in long
(middle panels) or short (right panels) proteins (defined by a threshold of 1,022aa, which is the maximum
window length supported by ESM1b; see Methods). Dashed lines: the top score (obtained by ESM1b or
EVE) according to each of the two metrics. (C) Evaluation of ESM1b and EVE on deep mutational
scanning datasets. Right: Raw results over each of the 21 assays. Left: per-gene averages, across the 12
unique genes (as in Fig. 2E).
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Supplementary Figure S2: The sliding-window approach to tile long protein sequences with
ESM1b. (A) The variant weights over each window’s coordinates (7sis71022), defined by the function: w(i)
=1/(1+ exp(-(i-128)/16) for 1<i<256, w(i) = 1 for 256<i<1022-256, and w(i) = 1/(1 + exp((i-1022+128)/16)
for 1022-256<i<1022. (B) An example tiling of a protein sequence of length 1,479aa. Left: raw window
weights (as in (A)). Right: normalized weights (summing up to 1 at each protein position). (C) Example of
how a specific protein isoform (UniProt ID Q7Z460-5) is tiled. Top panel: ESM1b effect scores over the left
window (7sis71022; orange), the right window (458<i<1479; green), and the final weighted average
throughout the entire protein’s length (blue). Middle: ESM1b effect scores over the left window. Bottom:
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ESM1b effect scores over the right window. (D) An example tiling of a larger protein sequence of length
3,703aa, as in (B). Top: the locations of the 7 windows used to tile the sequence. Middle: raw window
weights. Bottom: normalized weights. (E) Example of how a specific protein (UniProt ID Q759717) is tiled,
as in (C). As shown in the two examples, the effect scores tend to be consistent across different windows
(with edge effects sometimes being more pronounced).

Supplementary Table S1: Deep mutational scans used for model evaluation
Human gene Assays Source Description
ADRB2 Activity in response to Jones 2020 RNA-seq of barcoded
four concentrations of (doi.org/10.7554/eLife.5 | reporter gene
an agonist (Control, 4895), Supplementary stimulated by cAMP in
150nM, 625nM, 5uM) file 2 HEK293-derived cell
line.
A4 Nucleation score Seuma 2020 Growth-based selection
(doi.org/10.7554/eLife.6 | due to A4 limiting
3364), Supplementary | aggregation of the
file 4 sup35 prion in yeast.
BRCA1 Function score Findlay 2018 Cas9/gRNA construct
(doi.org/10.1038/s4158 | transfected into HAP1
6-018-0461-2), cell line followed by
Supplementary table 1 targeted DNA
sequencing to quantify
abundance of each
mutant.
CALM1 Fitness score Weile 2017 Abundance of yeast
(doi.org/10.15252/msb. | strain ubc9-ts carrying
20177908), Dataset mutant (determined by
EV1 sequencing);
DMS-TileSeq.
MSH2 LoF score Jia 2020 Mismatch repair
(doi.org/10.1016/j.ajhg. | dysfunction and deep
2020.12.003), sequencing to identify
Supplementary Data 1 the surviving MSH2
variants.
P53 Activity in three Giacomelli 2018 Mutagenesis by
experimental conditions | (doi.org/10.1038/s4158 | Integrated TilEs (MITE)
(WT_Nutlin-3, 8-018-0204-y) in A549 human lung
NULL_Nutlin-3, Supplementary Table 3 | carcinoma cell
NULL_Etoposide) populations followed by
pooled positive
selection screens in
nutlin-3 or etoposide.
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PTEN Fitness score Mighell 2018 Humanized yeast
(doi.org/10.1016/j.ajhg. | model to assess the
2018.03.018), Table S2 | phosphatase activity of
PTEN variants.
RASH Growth assay in three Bandaru 2017 Selection on antibiotic
experimental conditions | (doi.org/10.7554/eLife.2 | resistance due to
(Attenuated, Regulated, | 7810), Supplementary resistance gene driven
Unregulated) file 1 by Ras-Raf binding in
yeast.
SYUA Fitness score, Newberry 2020 Expression of
Abundance score (doi.org/10.1038/s4158 | a-synuclein in yeast
9-020-0480-6), Source slows growth in a
data 2 dose-dependent
manner that can be
modified by point
mutations.
TPK1 Fitness score Weile 2017 Abundance of yeast
(doi.ora/10.15252/msb. | strain ubc9-ts carrying
20177908), Dataset mutant (determined by
EV1 sequencing);
DMS-TileSeq.
VKOR1 Abundance score, Chiasson 2017 Variant Abundance by
Activity score (doi.org/10.7554/elLife.5 | Massively Parallel
8026), Source data 1 sequencing
(VAMP-seq) and activity
reporter assay
YAP1 Binding affinity Araya 2012 Binding affinity between
(mavedb.org/scoreset/u | the human YAPGS
rn:mavedb:00000002-a | (YAP1) WW domain
=2/) and a peptide binding
partner using phage
display.

Supplementary Methods

UniProt, ClinVar, HGMD and gnomAD datasets

The 42,336 protein isoform sequences were taken from UniProt [24] (in February 2022).

To get ClinVar labels across all annotated variants and map them to UniProt protein sequences
(Fig. 2A, Fig. 2D and Fig. 3), we downloaded the variant_summary.txt.gz file from ClinVar (on
April 29, 2022). This dataset contained information about ~1.3M variants, including clinical
significance and NM code (RefSeq mRNA record). From a separate dataset on ClinVar’s


https://doi.org/10.1016/j.ajhg.2018.03.018
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website (hgvs4variation.txt.gz, downloaded on May 3, 2022), we obtained a mapping between
the NM codes and NP codes (RefSeq protein records). We then matched those NP codes with
UniProt IDs, using the same set of 42,336 protein isoforms from UniProt. Following this
mapping, from NM code to NP code to UniProt ID, we obtained 977,833 variants with clinical
significance contributing to 2,447,403 effects on UniProt isoforms (~2.5 isoform effects per
variant on average).

Access to the full HGMD dataset (https://www.hgmd.cf.ac.uk/ac/index.php) was provided upon
request (see Acknowledgements) [26]. Of the entire set of 331,912 HGMD variants, 172,461
were missense variants, of which 158,725 were mapped to a unique UniProt isoform, of which
98,086 were annotated as disease-causing variants (DM).

To create a list of common missense variants, we used exomed-derived variants from the
gnomAD database (version 2.1.1), by downloading the file gnomad.exomes.r2.1.1.sites.vcf.bgz.
From this VCF file, we extracted 5,624,824 missense variants with a PASS filter, of which
4,876,367 were called in over 200,000 alleles (according to the AN value in the VCF file) and
were considered high-quality variants. Of these, 26,359 variants (0.5%) had MAF > 0.01 and
were considered common variants.

Comparison to EVE, MSA coverage and deep mutational scans

EVE scores for missense variants affecting the ~3K disease-associated genes analyzed by the
model were downloaded from the official EVE portal (https://evemaodel.org/). From these files we
also extracted the ClinVar labels used for comparison between ESM1b and EVE (Fig. 2B), after
filtering for high quality labels (at least 1 “Gold Stars”).

Multiple sequence alignments (MSAs) for ~3K disease genes were downloaded from the EVE
portal. For each MSA, the target (human) protein sequence is reported as a combination of
uppercase and lowercase letters. The uppercase letters correspond to residues that are part of
the MSA profile, whereas lowercase letters correspond to residues that are not. Accordingly, we
defined the coverage of a human protein (reported in Fig. 1C-D) to be the fraction of the target
sequence letters that are uppercase.

To compare the performance of ESM1b and EVE on deep mutational scanning experiments, we
considered the same set of human genes as in [4] and downloaded the reported experimental
data for all available assays (Supplementary Table S1). The only exception was Rhodopsin
[49] for which the relevant data were not publicly available. For each assay we compared EVE
and ESM1b on the same set of variants using the Spearman correlation between the predicted
and experimental scores as the evaluation metric. Independent of EVE, we also evaluated
performance of ESM1b on all experimental scores, including variants that were outside
EVE/MSA coverage (Fig. 2E and Supplementary Fig. S1).

Throughout our evaluation, we used the raw experimental scores without any further processing
for all deep mutational scans, except for CALM1, TPK1, RASH and the abundance assay of
SYUA. For these assays, we transformed the scores using the following simple transformation:
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X — |X - Xy7|, Where x,r is the assay-wide value measured for wild-type. The motivation for this
transformation is that in most of these assays, variants that measure higher than the wild-type
are considered deleterious for humans (see discussions in [50, 51]). In the case of SYUA, since
variants that lead to decreased abundance are less toxic, their abundance scores were
transformed the same way to better capture fithess (see Supplementary Figure 2 in [562]). Of

note, this preprocessing significantly increased the evaluated performance of both EVE and
ESM1b on these assays.
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