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Chronotype - the relationship between the internal circadian physiology of an indi-
vidual and the external 24-hour light-dark cycle - is increasingly implicated in mental
health and cognition. Individuals presenting with a late chronotype have an increased
likelihood of developing depression, and can display reduced cognitive performance dur-
ing the societal 9-5 day. However, the interplay between physiological rhythms and the
brain networks that underpin cognition and mental health are not well understood. To
address this issue, we use resting state fMRI collected from 16 people with an early
chronotype and 22 people with a late chronotype to study if differentiable information
about chronotype is embedded in functional brain networks. We develop a classifier util-
ising the Network Based-Statistic (NBS) methodology, using rigorous selection criteria
to select t-statistic thresholds within the NBS approach. We find significant differences
in functional networks measured in early and late chronotypes and describe conditions
under which the classifier achieves 97.3% accuracy. Revealing differences in functional
brain networks based on extreme chronotype suggests future avenues of research that
may ultimately better characterise the relationship between internal physiology, external

perturbations, brain networks and disease.

1 Introduction

Almost all bodily functions depend fundamentally on oscillations. A diversity of biological
clocks tightly interconnect to control processes over time scales of hours such as sleep stages
or body temperature through to days and months, for example, hormone release or the female
menstrual cycle (Kondratova and Kondratov 2012).

Processes that oscillate with a period of around a day are called circadian. These include
neurobehavioral (i.e. attention or mood), hormonal (i.e. melatonin or cortisol secretion)
and physiological (i.e. heart rate or body temperature) (A. Wirz-Justice 2007). Circadian
rhythms in the context of sleep refer to the naturally occurring oscillatory nature of a hu-

man’s high and low sleep propensity (Borbély and Achermann 1999). However, the phase
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relationship between the internal circadian rhythm and the external clock time can differ
markedly between individuals, contributing to a classification of people according to their
chronotypes (Blautzik et al. 2013). Chronotype classification will fall across a spectrum,
with early circadian phenotypes (ECPs) and late circadian phenotypes (LCPs) sitting at the
two extremes. These two extreme phenotypes are often colloquially referred to as ‘Morning
Larks’ and ‘Night Owls’. Upon removing external social obligations, the sleep of ECPs and
LCPs will show little difference - except for the phase between circadian rhythm and clock
time. For example, driven by the endogenous circadian rhythm of the individual, extreme
ECPs may wake up at the same time that extreme LCPs are falling to sleep (Roenneberg,
Anna Wirz-Justice, and Merrow 2003).

The Munich Chronotype Questionnaire (MCTQ), first introduced in (Roenneberg, Anna
Wirz-Justice, and Merrow 2003), is a standard tool for chronotype classification alongside
actigraphy data and finding peaks in cortisol and melatonin concentrations from saliva sam-
ples (E. R. Facer-Childs 2018). These methods permit classification based upon physiological
markers; however, they do not provide an insight into the underlying processes that lead to
circadian rhythmicity and how these oscillations ultimately impact upon health and brain
function.

Chronotype is a known risk factor for a variety of common health conditions. In particular,
late chronotypes are associated with an increased risk of cancer, type 2 diabetes, as well as
increased BMI and obesity (Hug et al. 2019). Further, late chronotype is a known risk
factor for the development of depression (Levandovski et al. 2011) as well as being predictive
of variability in cognitive outcomes across the day (E. R. Facer-Childs 2018). The role of
functional brain networks in supporting healthy brain function and the disruptions that lead
to impaired performance and disease are increasingly understood in many fields such as
depression (Y. Liu et al. 2020) as well as cognition both in terms of cognitive architecture
(Petersen and Sporns 2015) as well as cognitive aging (Terry, Anderson, and J. A. Horne

2004, Hausman et al. 2020). Consequently, an increased understanding of the relationship
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between chronotype and functional brain networks could provide insight into the increased
risk of mental health and cognitive outcomes, the reason for the disparity of such impacts
along the chronotype spectrum, and therefore areas upon which to focus future research. In
addition, a greater understanding of how chronotype impacts the brain’s functional network
could provide support for practical changes in society, such as the school day starting later
for adolescent children (Adolescent Sleep Working Group And Committee On Adolescence
And Council On School Health 2014) or greater flexibility in workplace hours (Vetter et al.
2015).

A common technique to investigate how macroscale neurological processes occur or man-
ifest in the brain is fMRI (functional Magnetic Resonance Imaging). This technique permits
regions of interest (ROIs) in the brain to be represented as nodes, with connections (edges)
between them determined by statistical interdependencies between their time-series (so-called
functional connectivity (FC))(Friston 2011). The FC between a given voxel and all other vox-
els is called a seed-based approach (Elise R. Facer-Childs, Brunno M. Campos, et al. 2019;
Fafrowicz et al. 2019) while representing the brain as a functional network (FN) permits tools
and techniques from mathematics, such as graph theory (Farahani, Fafrowicz, Karwowski,
Bohaterewicz, et al. 2021; H. Liu et al. 2014) to be utilised. Motivated by the success of
seed-based and graph metric pipelines within areas such as time of day effects (Hodkinson
et al. 2014), as well as chronic acute (Farahani, Fafrowicz, Karwowski, Douglas, et al. 2019)
and prolonged sleep deprivation (H. Liu et al. 2014), some limited studies exploring the role
of chronobiology on functional networks have been undertaken. For example, Facer-Childs
(Elise R. Facer-Childs, Brunno M. Campos, et al. 2019) seeded in the medial Prefrontal
Cortex (mPFC) and Posterior Cingulate Cortex (PCC) within the Default Mode Network
(DMN). For both seeds, using the contrast ECP>LCP, the respective clusters were predictive
of attentional performance as measured through a psychomotor vigilance test. In addition,
resting state FC (rs-FC) recorded from mPFC was predictive of Stroop performance, and

PCC was predictive of subjective sleepiness measured using the Karolinska Sleepiness Scale
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(KSS). Facer-Childs also completed a similar analysis within the Motor Network (MN) sys-
tem (Elise R. Facer-Childs, Brunno M. de Campos, et al. 2021), where MN rs-FC was shown
to contribute to individual variability in motor performance. On the other hand, (Fafrowicz
et al. 2019) seeded in thirty-six regions throughout the brain. Correlation of the resulting
clusters’ FC to time of day, chronotype, and time of day x chronotype was considered. The
effect of chronotype manifested itself differently in these studies: chronotype alongside rs-
fMRI was successfully used as a predictor of cognition (Elise R. Facer-Childs, Brunno M.
Campos, et al. 2019), whereas (Fafrowicz et al. 2019) failed to find a significant difference
between extreme chronotypes with rs-fMRI and instead only found significant time of day
effects.

On the other hand, Farahani et al (Farahani, Fafrowicz, Karwowski, Bohaterewicz, et
al. 2021) chose a more traditional approach of creating individual FNs before binarising
the networks at a range of density-based thresholding values. Graph metrics were then
calculated using the binarised networks before being considered for group-level differences
between ECPs and LCPs in the morning and evening. Five global measures ranging from
network resilience to functional integration and functional segregation as well as combined
effects such as small-world index were considered, alongside four local measures. In all cases,
graph metrics did not significantly differ based upon chronotype. However, significant time
of day effects were once again seen when comparing graph metrics associated with different
scans in the morning and evening for the small-world index, and within specific nodes when
calculating degree centrality and betweenness centrality.

The limited research and conflicting findings on the role of chronotype on functional net-
works derived from fMRI data is suggestive of chronotype having relatively subtle effects on
functional brain networks, that cannot easily be detected using traditional FC pipelines. An
alternative approach is Network Based Statistic (NBS), which is a graph-based method, that
aims to find a subnetwork consisting of edges showing high differentiation levels between

the functional networks of two groups (typically a control and patient cohort) - called a
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dysconnected network. The term dysconnected network is not to be confused with discon-
nected network a word commonly used within graph theory to refer to a network in which
two nodes have no path between them. The original application of NBS explored differences
between the functional networks of people with schizophrenia and controls (Zalesky, Fornito,
and Bullmore 2010). Since then, NBS has been explored in a range of neurological contexts
from the effects of habitual coffee drinking (Magalhaes et al. 2021) to considering how age
and intelligence (DeSerisy et al. 2021) or symptoms of ADHD (Cocchi et al. 2012) can be
correlated with the FC in dysconnected edges found from NBS. A recent extension of NBS
(NBS-Predict) has also been published (Serin et al. 2021). It uses a training set to select
relevant features from NBS networks for the classification of test subjects. In contrast, our
classifier evaluates whether an ECP or LCP label of the test subject leads to greater differ-
entiation between the two groups in a group-level comparison. The use of the test subject
therefore differs between the two classification approaches.

The methodology underpinning the NBS approach is described in detail in (Zalesky,
Fornito, and Bullmore 2010) and is published alongside a freely available NBS toolbox for
MATLAB (MathWorks, USA). Alongside the recent extension NBS-Predict for the classifi-
cation of test subjects (Serin et al. 2021). For completeness, a brief overview of NBS in the
context of chronotype is provided below.

To consider whether NBS may be better suited than seed-based or graph metric pipelines
for differentiation between ECPs and LCPs we introduce a classifier to assess the ability
of NBS-derived dysconnected networks for classifying individuals as ECP, LCP or unclear.
Within NBS, a t-statistic thresholding step is required, therefore a key aim is to create a
classifier which includes an objective t-statistic threshold selection process. This avoids mul-
tiple comparison issues that may arise from varying the t-statistic threshold over a parameter
range. The t-statistic threshold selection criteria is based on the assumption of connected-
ness for the undirected dysconnected networks. In particular, t-statistic thresholds which

create minimum connected components (MCCs) are utilised, therefore ensuring all ROIs are
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present with an undetermined number of edges. With no prior knowledge of the subjects
this accounts for the potential uniqueness in an individual’s subnetwork of importance by
assuming all ROIs provide information and must therefore form part of the subnetwork.

Broadly, the classifier uses NBS to create and compare the dysconnected networks re-
sulting from labelling a test subject as first an ECP and then an LCP. We compare the
significance of these dysconnected networks at specific t-statistic thresholds, alongside their
size (number of edges), to classify the test subject - significance and larger networks are taken
as an indication of correct labelling.

Additional analyses were performed examining time of day effects as well as the stability
of the classifier on subsets of the dataset created from leaving out one subject at a time.
Furthermore, an investigation into the reasons why the removal of certain subjects resulted

in large changes in accuracy and possible ways to mitigate this effect were considered.

2 Materials and Methods

The chronotype dataset analysed in this study was first presented by (Elise R. Facer-Childs,
Brunno M. Campos, et al. 2019), which can be referred to for a detailed description of
the data acquisition and preprocessing methodology. Ethical approval was provided by the
University of Birmingham Research Ethics Committee, before any data acquisition started.
Participants had at least 48 hours before the start of the study to read over information sheets
and consent forms, and they were free to end their participation at any time. In addition, the
University of Birmingham’s Advisory Group on the Control of Biological Hazards approved
the COSHH risk assessments and biological assessment forms that were completed. All the

data and samples were given by participants voluntarily and were fully anonymised.
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2.1 Participants

38 participants were enrolled into the study, with an average age of 22.7 + 4.2 years (mean +
standard deviation), of whom 24 were female. Exclusion criteria included 1) prior diagnosis
of any sleep, neurological or psychiatric disorders 2) use of medication that would knowingly
affect sleep 3) an intermediate chronotype classification from the MCTQ. For two weeks prior
to the scanning sessions, participants were instructed to follow their preferred sleep pattern,
with no restrictions imposed by the study except for two hours before the scanning sessions
when alcohol and caffeine consumption, as well as exercise, were prohibited.

16 subjects were classified as ECPs (age 24.7 + 4.6 years, 9 females) and 22 as LCPs (age
21.3 £ 3.3 years, 15 female). Chronotypes were determined by the outcome of the MCTQ and
was further validated by the analysis of Dim Light Melatonin Onset (DLMO) and Cortisol
Awakening Response (CAR) times as well as sleep onset and wake up times measured from
actigraphy data (Elise R. Facer-Childs, Middleton, et al. 2020). Across all 5 categories, the
difference between the groups was significant (Elise R. Facer-Childs, Brunno M. Campos,
et al. 2019).

Participants attended three scanning sessions at the local times of 14 : 00, 20 : 00 and
08 : 00 the following day. One ECP (Subject 11) had their 14 : 00 rs-fMRI scan excluded

due to excessive movement.

2.2 Data Acquisition

A Philips Achieva 3 Tesla MRI scanner with a 32-channel head coil was used to collect the
imaging data for all participants. This involved a 5-minute T1-weighted scan to create a
standard high-resolution anatomical image of the brain (1mm isotropic voxels) before a 15-
minute eyes-open resting-state scan was obtained. The scans captured the entire brain using
gradient echo echo-planer imaging oriented parallel to the AC-PC line with the following
parameters: 450 volumes, TR=2000ms, TE = 35ms, flip angle = 80°, 3 X 3 X 4mm”® vox-

els. Respiratory and cardiac fluctuations were monitored using equipment also provided by
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Philips.

2.3 Data Preprocessing

Pre-processing was completed using UF?C (User-Friendly Functional Connectivity) intro-
duced in (Brunno Machado de Campos et al. 2016). This is a toolbox written in MATLAB,
which relies upon SPM12 (Penny et al. 2007) and PhysIO (Kasper et al. 2017), which are
needed for physiological noise correction. Preprocessing involved standardised steps includ-
ing re-orientation of scans, motion correction, co-registration, spatially normalising scans to
Montreal Neurological Institute (MNI) space, spatially smoothing the data with a 6mm”
Gaussian kernel, high pass temporal filtering (> 0.01 Hz) and correction for physiological
noise, (Elise R. Facer-Childs, Brunno M. Campos, et al. 2019) can be referred to for more

additional details.

2.4 Functional Network Construction

The brain was parcellated into 70 functional ROIs previously used in (Brunno Machado de
Campos et al. 2016) and based upon the 90 functional ROIs used by the Stanford Find
Lab presented in Shirer et al. (Shirer et al. 2012). This excluded ROIs in the cerebellum
due to incomplete coverage. Information about the ROIs used in the study, including MNI
coordinates, is provided in Table 12 in Appendix A. The average timeseries for all voxels
within each ROI was then extracted before each timeseries was standardised to mean 0 and
standard deviation 1.

FNs were then calculated for each subject using Tikhonov partial correlation. A sym-
metric weighted adjacency matrix with a size 70 X 70 was created for each scan where edge
weights are in the range [—1, 1]. Note that all values in the leading diagonal are set to NaN
as self-links are not interpretable under partial correlation. Partial correlation was chosen to
reduce the contribution from indirect connections (Marrelec, Krainik, et al. 2006; Marrelec,

Kim, et al. 2009) as well as its superior performance at replicating ground truth networks
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considered in simulated data studies (Smith et al. 2011; H. E. Wang et al. 2014; Y. Wang
et al. 2016). Further, (Pervaiz et al. 2020) did an extensive review of partial correlation as
well as various regularisation techniques, and concluded Tikhonov partial correlation as a
recommended method. The regularisation technique requires adding a scaled identity matrix
to the covariance matrix of each subject before partial correlation is calculated using the
inverse of the (regularised) covariance matrix, known as the (Tikhonov) precision matrix.
The scalar A, known as the regularisation parameter, was optimised by minimising the differ-
ence between the average precision matrix across all participants and the Tikhonov precision
matrix of each individual participant. This optimisation was completed by summing over all
participants the element-wise difference between the average and individual precision matrix
before squaring each element. Since the resulting matrix is symmetric, the square root of
the sum of the upper triangular elements was calculated. Through considering a range of
values of the parameter A, the choice which minimises this square root sum is considered
optimal. For this study, using data from all three scanning sessions A = 0.0259 was found
to be optimal. The regularisation A = 0.0259 was used for the creation of all Tikhonov
partial correlation matrices throughout the paper. Further details on the use of Tikhonov
partial correlation, as well as the calculation of the regularisation parameter are presented in

Appendix B.

2.5 Network-Based Statistics

After calculating FNs for all subjects, we used NBS to determine dysconnected networks.
The group level difference in edge weights for every edge in the Tikhonov partial correlation
functional networks across subjects was determined using a t-test under a specific contrast
- either ECP>LCP or ECP<LCP. In this case each element represents the difference in the
mean edge weights between the two groups resulting in a symmetric matrix whose elements
are the output of a two-sample one-sided t-test. The t-statistic matrix was then thresholded

with the largest connected component of suprathreshold edges, called a dysconnected net-
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work, selected as the subnetwork of interest. Here the dysconnected network is a subnetwork
of edges that show the highest difference in FC between the two phenotypes. The significance
of a dysconnected network was determined using non-parametric permutation testing to cre-
ate a familywise error (FWE) corrected p-value. This test compares the intensity (the total
weight of the edges) of the connected component to a null distribution of connected com-
ponent intensities created by randomising the group to which each participant is assigned.
The p-value was then calculated as the percentage of random permutations whose intensity

is larger than that of the measured dysconnected network.

2.6 NBS Threshold Selection

Thresholding is a key step within the traditional NBS methodology. Different t-statistic
threshold choices can have a critical impact on network properties such as the number of
nodes and edges, and therefore impact the properties of the dysconnected network. When
seeking to label each test subject as an ECP and subsequently an LCP, a t-statistic threshold
is required for each labelling. The choice of the t-statistic threshold in the original NBS
literature is somewhat arbitrary, with no rigorous method suggested. Here we suggest a
process for determining these t-statistic thresholds, which is as follows:

For each individual test subject m € {1,2,...,38}, label the test subject an ECP while
letting the training set retain their chronotype label (determined by MCTQ, saliva sam-
ples and actigraphy data). Using the NBS pipeline calculate the 70 X 70 t-statistic matrix
across all subjects using the contrast ECP>LCP or ECP<LCP. Each element represents the
difference in the mean edge weights between the two groups of extreme chronotypes when
the test subject has been artificially placed in the ECP group. Then set t5 as the highest
t-statistic threshold such that the network of suprathreshold edges is connected. This value
7 is known as the percolation threshold. Similarly, repeat the steps above with the test
subject m labelled an LCP to find the percolation threshold for the LCP labelling, setting

t7" to this value.
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The importance of setting t-statistic thresholds t5 and ¢}  as percolation thresholds is
directly linked to the creation of minimum connected components (MCCs), which were first
presented and fully explained in (Vijayalakshmi et al. 2015). Effectively, the MCC is a prag-
matic balance between the sparsity and density of a network. Interestingly, (Vijayalakshmi
et al. 2015) found the MCC to be sensitive to subtle changes in FNs resulting from changes

to cognitive load in EEG recordings, which were difficult to detect using other methods.

2.7 The Classifier

To determine whether an individual is an ECP or an LCP, we developed a classifier that
considers whether the individual fits best within a family of known ECPs or LCPs. The
main steps are summarised in Figure 1.

Let CL;" denote the dysconnected network created by assigning subject m the chronotype
label (C'L) at t-statistic threshold ¢, calculated using the NBS toolbox (Zalesky, Fornito, and
Bullmore 2010). For the two possible chronotype labellings of the test subject and the two
t-statistic thresholding values tj; and t] four subnetworks are created: EZ’;, LZ, Efz and

Ly,

-+ Bach subnetwork will have its own FWE-controlled p-value where N = 5000 random
permutations of class labels were used to create a null distribution. Here p < 0.05 is considered
to be significant, and intensity was used when calculating the p-value. Intensity was used
because the NBS reference manual (Zalesky, Fornito, Cocchi, et al. 2012) suggests calculating
the FWE p-value using intensity rather than the number of edges is beneficial for detecting
subtle (distributed but sparse) effects throughout the network, rather than focal effects within
a specific component of the network. From here, the classifier was constructed as follows:
Step one is to consider the significance of Etn; and L?Z. If only one of these is significant, the
classification of subject m is the significant chronotype label C'L. If neither are significant the
classification of subject m is unclear. If both are deemed to have a significant size compared

to a null distribution then further steps are needed.

Step two is to consider the significance of the two remaining percolation thresholds for each

12
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CL: E; and L . In this case, if only one of these is significant, the classification of subject
m is the significant chronotype label C'L. If neither are significant then the classification of
subject m is unclear. If both are deemed to have a significant intensity compared to a null
distribution, one further step is required.

Step three is to consider the number of edges |C'L,| of the dysconnected networks in
t-statistic threshold pairs. For the four significant subnetworks Ej., L, E; and L, , the
chronotype label with the higher number of edges indicates the label that the classifier will
assign to subject m - all comparisons are shown in Figure 1. This is based upon the as-
sumption that for any edge, correctly labelling a subject will result in greater separation
between the two groups edge weights, which should be reflected in higher t-statistic values.
Therefore, at a specific t-statistic threshold, more edges should survive the thresholding step
when correctly labelled in contrast to being incorrectly labelled.

Note that for the accuracy levels presented a classification of unclear is treated as separate
to correctly classified and misclassified. Therefore, an unclear classification will not increase

the accuracy level.

2.8 Varying the t-statistic Threshold

A method for selecting the threshold values at which to threshold the t-statistic matrix has
already been outlined in Section 2.6. However, the threshold selection process was reliant on
the assumption that all ROIs provide differential information. To understand the impact of
this assumption we also decided to range the t-statistic thresholding parameter from 0 to 4.5
in increments of 0.01. Therefore, only one t-statistic threshold is selected for both chronotype
labellings.

As the t-statistic threshold range extended beyond the percolation threshold some dyscon-
nected networks did not include all ROIs. Therefore, for certain t-statistic thresholds multiple
distinct dysconnected networks existed. In this case, we selected the dysconnected network

with the smallest p-value. When multiple dysconnected networks had the same p-value then
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Figure 1: Summary Pipeline for the Three Step Classifier. (A) All subjects Tikhonov
Partial Correlation matrices (70 X 70 X number of subjects) where test Subject m has a
label unknown to the classifier. (B) Using the NBS pipeline to find the threshold of least
redundancy when the test subject has been labelled an ECP and then an LCP. C) The four
dysconnected networks which are created from the two thresholds and two labellings. (D)
The three steps of the classifier to classify Subject m as an ECP, an LCP or unclear.
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the dysconnected network with the highest number of edges was selected. If multiple dyscon-
nected networks had the same number of edges then for the purpose of classification they
were indistinguishable to the classifier and one was selected arbitrarily.

After selecting the dysconnected networks it can be noted that when ¢ and ¢; are equal
(le. 3t" € R st. th = t7 = t™) the classifier can be applied as described in Section 2.7,
however to reduce redundancy step one can be removed and step three can be streamlined
as shown in Table 1. For instance, the case (|E;.| > |L;| and |E;'| < |L{}|) is no longer
plausible since By and E; as well as L;, and L; are identical.

Dysconnected networks for select thresholds were then considered and displayed visually
using BrainNet Viewer (Xia, J. Wang, and He 2013, http://www.nitrc.org/projects/

bnv).

Step 3 Classification

|E;"| = |Li"] UNC
|E"| > | L] ECP
|E"| < |L LCP

Table 1: Step Three Streamlined: NBS Classifier. The third step of the NBS classifier,
which is needed only if t; = t] = t" and the two dysconnected networks E;" and L;" are
significant. This step compares the number of edges at threshold ¢" when Subject m is
labelled an ECP and then an LCP.

2.9 Investigating the Stability of the Classifier

When creating a classifier on small datasets, such as the 38 participants available in this
study, a sensible step is to validate the classifier on a similar but independent dataset. This
allows you to assess whether the classifier is overfitted to the original data and hence its
applicability to different datasets. However, with no access to an alternative existing dataset,
surrogate datasets were created using the original data. These partial datasets were created
by removing one subject in turn from each scanning session; therefore, creating 113 new
datasets, across the three scanning sessions (n = 37 Afternoon, n = 38 Evening and n = 38

Morning).
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For each of these new datasets the methodology as outlined above was completed. With
accuracy now given as the percentage of correctly labelled subjects calculated from a leave-
one-out cross validation (LOOCV) analysis on N-1 subjects. Changing the number of subjects
will effect the MCC created using NBS both in terms of the size as well as the specific edges
included. This will in turn affect the classification of networks in step one and two through
the significance of MCCs changing when a subject is removed, as well as the different number
of edges affecting step three of the classifier.

Given the overlap between the partial and full datasets we expect the accuracy levels to be
consistent. Indeed, any discrepancies in the accuracy when a single subject is removed could
indicate potential problems with the classifier or that some characteristics of the participant’s

data are inherently different and influential.

2.10 Varying the Threshold for Significance

The dysconnected networks that are created using NBS are considered significant if their
p-value is less than the significance threshold, a = 0.05, such that p < 0.05 indicates signif-
icance. The threshold of 0.05 is somewhat arbitrary and selected due to the consistent use
of this threshold throughout literature. However, the classification pipeline is not solely con-
cerned with the significance of the dysconnected networks, rather whether or not information
about chronotype is embedded within them such that classification can occur. Therefore, the
threshold for significance was varied in the range [0, 1] in steps of 0.01 to understand its
effect on the success of the classifier.

The effect of changing the significance threshold was considered for both the original
datasets as well as the partial datasets, as mentioned in Section 2.9.

Note that a significance threshold of zero guarantees that every network is non-significant;
therefore every classification is unclear due to step one. A non-zero but low significance
threshold would result in the majority of subjects being classified due to step one - the

significance of the network. As the significance threshold increases step two will be used
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for classification and finally once the significance threshold is high enough such that all
4 networks (E,,, Ey,, L;,, L;,) are all significant then step three - the number of edges -
is used. After reaching the significance level such that all four dysconnected networks are
considered significant, the accuracy will remain constant for all significance levels higher than
this. Therefore, the choice of significance threshold equates to the contribution each step of

the classifier makes.

3 Results

Prior to applying the NBS method, we considered a group-level analysis comparing the graph
metrics between the two extreme chronotypes was considered. No significant differences were
found as shown in Appendix C, which is consistent with results found independently by

Farahani et al (Farahani, Fafrowicz, Karwowski, Bohaterewicz, et al. 2021).

3.1 Classifier Performance

Having selected the t-statistic thresholds ¢t and t} the classifier can be used as presented
in Section 2.7. The results for each of the three scans under the two contrasts are presented

below. In addition, the classifier labels assigned to each Subject are given in Table 3.

3.1.1 Afternoon Scanning Session

For the contrast ECP>LCP, Subject 22 was mislabelled as an ECP on step one while all
other subjects were labelled as unclear by step one, resulting in an accuracy of 0%. For the
contrast ECP<LCP, accuracy was 0% with all subjects being classified by step one.

3.1.2 Evening Scanning Session

For the contrast ECP<LCP, every subject was labelled as unclear by step one, due to EZZ

and L being non significant for all subjects, resulting in an accuracy of 0%.
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For the contrast ECP>LCP, 97.37% accuracy was achieved due to only Subject 36 being
misclassified as an ECP. The resulting subnetwork when all subjects are correctly labelled (i.e.
NBS as presented in (Zalesky, Fornito, and Bullmore 2010) is used with t-statistic threshold
1.692) is given in Figure 4 and its topology is considered in Table 4. The breakdown of how

many ECPs and LCPs were classified at each step is presented in Table 2.

ECP LCP Total
Step one 10 14 24
Step two 1 1 2
Step three 5 7t 12
Accuracy % 100  95.5 97.3

Table 2: Table showing the breakdown of classifications at each step. The number
of ECPs and LCPs that are classified at each step of the classification pipeline is presented
in the table as well as the accuracy of the classification. The t denotes Subject 36 who was
incorrectly labelled at step three of the classifier.

3.1.3 Morning Scanning Session

For the contrast ECP>LCP every subject was labelled as unclear by step one, due to EZZ and
L?z being non significant for all subjects, resulting in an accuracy of 0%. For the contrast

ECP<LCP accuracy was 0%, with all subjects being classified by step one.

3.2 How the t-statistic Threshold Impacts Classifier Performance

As can be seen from Table 3, the performance of the classifier was strongly dependent on the
time of day that the scan was taken, with accuracy differing greatly between the Evening
and other scanning sessions. Since the accuracy of the classifier for the Afternoon and
Morning scans was restricted by dysconnected networks being non-significant at step one
of the classifier, when the percolation threshold was used, we now considered the accuracy
of the classifier when selecting a single t-statistic threshold, varying over the range [0,4.5]
in increments of 0.01. This relaxes the requirement of connectedness when choosing the

t-statistic threshold for defining the dysconnected network and allows an insight into the
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Subject Afternoon  Afternoon  Evening Evening Morning Morning
ECP<LCP ECP>LCP ECP<LCP ECP>LCP ECP<LCP ECP>LCP

1 UNC UNC UNC ECP UNC UNC
2 UNC UNC UNC ECP LCP UNC
3 UNC UNC UNC ECP UNC UNC
4 UNC UNC UNC ECP UNC UNC
5 LCP UNC UNC ECP UNC UNC
6 LCP UNC UNC ECP UNC UNC
7 LCP UNC UNC ECP UNC UNC
8 UNC UNC UNC ECP UNC UNC
9 UNC UNC UNC ECP UNC UNC
10 LCP UNC UNC ECP LCP UNC
11 NA NA UNC ECP UNC UNC
12 UNC UNC UNC ECP UNC UNC
13 UNC UNC UNC ECP LCP UNC
14 UNC UNC UNC ECP UNC UNC
15 UNC UNC UNC ECP UNC UNC
16 LCP UNC UNC ECP UNC UNC
17 UNC UNC UNC LCP UNC UNC
18 UNC UNC UNC LCP UNC UNC
19 UNC UNC UNC LCP ECP UNC
20 UNC UNC UNC LCP ECP UNC
21 UNC UNC UNC LCP UNC UNC
22 UNC ECP UNC LCP UNC UNC
23 ECP UNC UNC LCP UNC UNC
24 UNC UNC UNC LCP UNC UNC
25 UNC UNC UNC LCP UNC UNC
26 ECP UNC UNC LCP ECP UNC
27 UNC UNC UNC LCP ECP UNC
28 UNC UNC UNC LCP UNC UNC
29 UNC UNC UNC LCP UNC UNC
30 UNC UNC UNC LCP UNC UNC
31 ECP UNC UNC LCP UNC UNC
32 UNC UNC UNC LCP UNC UNC
33 UNC UNC UNC LCP UNC UNC
34 UNC UNC UNC LCP UNC UNC
35 UNC UNC UNC LCP UNC UNC
36 ECP UNC UNC ECP ECP UNC
37 ECP UNC UNC LCP ECP UNC
38 ECP UNC UNC LCP UNC UNC
Accuracy(%) 0 0 0 97.3 0 0
Percentage Classified 99.7 97 0 100 937 0

ECP or LCP (%)

Table 3: The labels assigned by the classifier for the different scanning sessions and contrasts.
Here Subjects 1-16 are ECPs while 17-38 are LCPs, as labelled using non-imaging data.

stability of the classifier when varying the t-statistic threshold. Under these conditions the
classifier is the simplified version presented when t}; =t} = t"" where t"" is preselected.

First, we consider the accuracy values when applying the classifier for the three scanning
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Scanning Session Threshold (iué?izz (1)\?1\?(1) ]Z{e;; Accuracy (%) No‘g\e]ell)aeggeree ];{elgf:t(gsgee)
Afternoon [ECP<LCP| 2.19 55 53 97.3 1.57+1.22 5 (1)
Evening [ECP>LCP] 1.69 143 70 97.3 417 £ 1.04 10 (60)
Morning  [ECP<LCP] 2.19 53 48 92.1 151 £ 1.29 4 (34,48,53,59)
Morning [ECP<LCP] 2.79 6 7 94.7 0.17 + 0.54 2 (14,26,52,55,64)

Table 4: Table Showing Key Topological Features of Four dysconnected Networks.

sessions and two contrasts when varying the t-statistic threshold value. These results are pre-
sented in Figure 2. The highest accuracy values for the Afternoon scanning session occur for
lower t-statistic thresholds near 2.2 when ECP<LCP (~ 97%). The contrast ECP>LCP does
not result in any non-zero accuracy values. For the Evening scanning session, non-zero accu-
racy exclusively occurred for the ECP>LCP contrast. For this contrast, non-zero accuracy
occurs between 0.71 and 2.28 with accuracy peaking at 97%. The Morning scanning session,
non-zero accuracy was only seen for the ECP<LCP contrast, with t-statistic thresholds near
2.2 and 2.7 with accuracy ~ 90% for both thresholds.

In Table 4 we display the topologies of four distinct dsyconnected networks corresponding
to the regions of non-zero accuracy in Figure 2. In addition, Figures 3 - 6, visualise the four
dsyconnected networks. For the Evening [ECP>LCP] scan the threshold of 1.692 is chosen
as it is the percolation threshold when all subjects are correctly labelled as in Section 3.1.2.
Since non-zero accuracy did not occur for the Afternoon [ECP>LCP|, Evening [ECP<LCP]
nor the Morning [ECP>LCP] scanning sessions, no topological features from these scans
are considered. Due to the overlap in the t-statistic thresholds that produce high accuracy
near at 2.2 in the Morning [ECP<LCP]| and Afternoon [ECP<LCP| scanning session, these
dysconnected networks at threshold 2.19 were compared for similarity. Notably, only one
edge is present in both networks linking nodes 48 (LECN) and 64 (Visuospatial).

It is important to note that the purpose of presenting these results is to provide insight
into the somewhat unintuitive differences observed, dependent on time of day. We do not use
this approach to construct a classifier, due to the issue of multiple comparisons introduced

by varying the threshold over a wide range.

20


https://doi.org/10.1101/2022.08.25.505246
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.25.505246; this version posted August 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1 ECP > LCP 1 ECP < LCP
o
@]
o)
<
3
&£
<
0 0
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
t-statistic Threshold t-statistic Threshold

Evening

0 0
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
t-statistic Threshold t-statistic Threshold

Morning

0 0
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
t-statistic Threshold t-statistic Threshold

Figure 2: Classifier Performance as a Function of t-statistic Threshold. Stacked
bar charts showing the percentage of subjects classified correctly, incorrectly and unclear
respectively (blue, red, yellow) when successively selecting the t-statistic threshold from the
range [0,4.5] in increments of 0.01. The dashed lines indicate the percolation threshold for

correct labelling as found using Section 2.6.

3.3 Investigating the Stability of the Classifier

So far the results of the classifier for the original datasets have been presented. However, to
validate the classifier it is important to understand how the classifier performs on the partial
datasets, created by sequentially leaving out participants. Therefore, the results of using the

classifier, as presented in Section 2.9, on each of the new datasets created by removing one
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Figure 3: Dysconnected network produced using NBS for the Afternoon scanning session
using ECP<LCP and t-statistic threshold 2.19. The top row from left to right are the lateral
view of the left hemisphere, top view and the lateral view of the right hemisphere. The
middle row from left to right are the medial view of the left hemisphere, bottom view and
the medial view of the right hemisphere. The bottom row shows the frontal side on the left
and the back side on the right. The interconnected networks (ICNs) 1-12 are given in Table
12.

subject in turn, from both the training set and the test set, are presented below.

3.3.1 Afternoon Scanning Session

The percentage of subjects who are labelled correct, incorrect and unclear when a particu-
lar subject is removed is shown in Table 5 and Table 6 for the contrasts [ECP>LCP| and
[ECP<LCP] respectively.

For the contrast [ECP>LCP| accuracy was zero for all subjects due to a majority of
subject classified as unclear. When comparing these results to the corresponding column in
Table 3 we see a high consistency, as all but one subject was classified as unclear.

For the contrast [ECP<LCP| there are certain subjects (5, 6, 7, 10, 16, 23, 26 and 38)

whose removal has positive effect on the accuracy of the classification. Indeed, except for
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Figure 4: Dysconnected network produced using NBS for the Evening scanning session using
ECP>LCP and t-statistic threshold 1.692. Subfigure information is the same as Figure 3.

Figure 5: Dysconnected network produced using NBS for the Morning scanning session using
ECP<LCP and t-statistic threshold 2.19. Subfigure information is the same as Figure 3.
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Figure 6: Dysconnected network produced using NBS for the Morning scanning session using
ECP<LCP and t-statistic threshold 2.79. Subfigure information is the same as Figure 3.
Subject 38, the accuracy is higher than random chance (50%) and in some cases the classifier
would be considered high performing. For example, the removal of Subject 16 sees accuracy
go from 0% up to 81%.

When comparing the results to the corresponding column in Table 3 we see a high cor-
respondence between the incorrectly labelled subjects in Table 3 and those subjects whose

removal sees a high accuracy, especially for the ECP cohort.

3.3.2 Evening Scanning Session

Table 7 and Table 8 show the percentage of subjects who were labelled correct, incorrect
and unclear when a particular subject was removed, for the contrasts [ECP>LCP| and
[ECP<LCP] respectively.

For the contrast [ECP<LCP] no subject was correctly labelled due to almost all subjects
being classified as unclear. When comparing these results to the corresponding column in

Table 3 we see extremely high consistency.
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Subject Accuracy Unclear Misclassified Subject Accuracy Unclear Misclassified
Removed Removed
1 0 0.94 0.06 1 0 0.75 0.25
2 0 0.97 0.03 2 0 0.83 0.17
3 0 0.97 0.03 3 0 0.81 0.19
4 0 0.97 0.03 4 0 0.89 0.11
5 0 0.97 0.03 5 0.64 0.03 0.33
6 0 0.97 0.03 6 0.72 0.11 0.17
7 0 0.97 0.03 7 0.69 0.03 0.28
8 0 0.94 0.06 8 0 0.78 0.22
9 0 0.94 0.06 9 0 0.78 0.22
10 0 0.83 0.17 10 0.78 0.003 0.19
11 NA NA NA 11 NA NA NA
12 0 1 0 12 0 0.86 0.14
13 0 1 0 13 0 0.81 0.19
14 0 1 0 14 0 0.97 0.03
15 0 1 0 15 0 0.61 0.39
16 0 0.94 0.06 16 0.81 0.11 0.083
17 0 0.94 0.06 17 0 0.92 0.08
18 0 1 0 18 0 0.83 0.17
19 0 0.94 0.06 19 0 0.78 0.22
20 0 0.97 0.03 20 0 0.75 0.25
21 0 0.94 0.06 21 0 0.75 0.25
22 0 0.92 0.08 22 0 0.78 0.22
23 0 0.94 0.06 23 0.61 0.06 0.33
24 0 1 0 24 0 0.72 0.28
25 0 1 0 25 0 0.86 0.14
26 0 0.97 0.03 26 0.64 0 0.36
27 0 0.92 0.08 27 0 0.89 0.11
28 0 0.94 0.06 28 0 0.75 0.25
29 0 1 0 29 0 0.78 0.22
30 0 1 0 30 0 0.86 0.14
31 0 1 0 31 0 0.69 0.31
32 0 0.94 0.06 32 0 0.94 0.06
33 0 0.97 0.03 33 0 0.81 0.19
34 0 1 0 34 0 0.94 0.06
35 0 1 0 35 0 0.72 0.28
36 0 0.97 0.03 36 0 0.67 0.33
37 0 1 0 37 0 0.67 0.33
38 0 0.97 0.03 38 0.39 0.28 0.33
Table 5: Afternoon [ECP>LCP]| Re- Table 6: Afternoon [ECP<LCP] Re-
sults: Partial Datasets. The percentage sults: Partial Datasets. The percentage
of correct, unclear and incorrect classifica- of correct, unclear and incorrect classifica-
tions when one subject was removed. tions when one subject was removed
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For the contrast [ECP>LCP] there are certain subjects (7, 8, 9, 16, 18, 19, 22, 25, 30, 32
and 34) whose removal results in a decrease in accuracy below random chance and far below
the 97.3% seen for the full dataset. In addition, the mean accuracy of the other subjects is
79.68% - a reduction from the average of 97.3%. However, it is worth noting that the removal
of Subject 36 - the only subject incorrectly classified in the original dataset - sees an increase
in accuracy from 0% to 76%.

The low or zero accuracy for those eleven subjects is mainly due to the majority of the
subjects being classified as unclear. There was no clear link to differences in the non-imaging
data (e.g., actigraphy, DLMO etc) that could provide a reason for these subjects having such

a clear influence on the classifier’s performance.

3.3.3 Morning Scanning Session

The percentage of subjects who were labelled correct, incorrect and unclear when a particular
subject was removed is shown in Table 9 and Table 10 for the contrasts [ECP>LCP| and
[ECP<LCP| respectively.

For the contrast [ECP>LCP| all subjects were classified as unclear, which is consistent
with the corresponding column in Table 3 where all subjects were classified as unclear.

For the contrast [ECP<LCP]| there are certain subjects (3, 10, 13, 20, 26, 27, 29, 34, 36,
38) whose removal has a positive effect on the accuracy of the data. In the case of Subjects
3, 10, 13, 20, 26, 27 and 38 their removal produces accuracy’s higher than random chance
(50%). For example, the removal of Subject 13 sees accuracy go from 0% up to 76%.

When comparing the results to the corresponding column in Table 3 we see a corre-
spondence between the subjects whose removal sees a high accuracy and incorrectly labelled
subjects in Table 3. However, Subjects 3 and 38 were not misclassified in Table 3 whilst Sub-
jects 2, 19, 36 and 37 were misclassified in Section 3.1.3 but their removal had no discernible

effect on the classifier.
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Subject Accuracy Unclear Misclassified Subject Accuracy Unclear Misclassified
Removed Removed
1 0.65 0.14 0.22 1 0 1 0
2 0.97 0.03 0 2 0 1 0
3 0.78 0.08 0.14 3 0 1 0
4 0.78 0.11 0.11 4 0 1 0
5 0.95 0.03 0.03 5 0 1 0
6 0.84 0.03 0.14 6 0 1 0
7 0 0.76 0.24 7 0 1 0
8 0 0.81 0.19 8 0 1 0
9 0 0.73 0.27 9 0 1 0
10 0.73 0.08 0.19 10 0 1 0
11 0.65 0.16 0.19 11 0 1 0
12 0.70 0.14 0.16 12 0 1 0
13 0.81 0.19 0 13 0 1 0
14 0.81 0.08 0.11 14 0 1 0
15 0.95 0.05 0 15 0 1 0
16 0 0.78 0.22 16 0 1 0
17 0.70 0.08 0.22 17 0 1 0
18 0.41 0.32 0.27 18 0 1 0
19 0 0.78 0.22 19 0 1 0
20 0.86 0.05 0.08 20 0 1 0
21 0.95 0 0.05 21 0 1 0
22 0.43 0.41 0.16 22 0 1 0
23 0.86 0.05 0.08 23 0 1 0
24 0.81 0.03 0.16 24 0 1 0
25 0 0.81 0.19 25 0 1 0
26 0.84 0.08 0.08 26 0 0.97 0.03
27 0.68 0.05 0.27 27 0 1 0
28 0.59 0.16 0.24 28 0 1 0
29 0.92 0.03 0.05 29 0 1 0
30 0.43 0.38 0.19 30 0 1 0
31 0.86 0.03 0.11 31 0 1 0
32 0 0.78 0.22 32 0 1 0
33 0.76 0.11 0.14 33 0 1 0
34 0 0.81 0.19 34 0 1 0
35 0.86 0.05 0.08 35 0 1 0
36 0.76 0.19 0.05 36 0 1 0
37 0.62 0.19 0.19 37 0 1 0
38 0.81 0.05 0.14 38 0 1 0

Table 7: Evening [ECP>LCP]| Results:
Partial Datasets. The percentage of cor-
rect, unclear and incorrect classifications
when one subject was removed
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Subject Accuracy Unclear Misclassified Subject Accuracy Unclear Misclassified
Removed Removed
1 0 1 0 1 0 0.95 0.05
2 0 1 0 2 0 0.65 0.35
3 0 1 0 3 0.73 0.03 0.24
4 0 1 0 4 0 0.73 0.27
5 0 1 0 5 0 0.81 0.19
6 0 1 0 6 0 0.81 0.19
7 0 1 0 7 0 0.78 0.22
8 0 1 0 8 0 0.76 0.24
9 0 1 0 9 0 0.95 0.05
10 0 1 0 10 0.65 0.05 0.30
11 0 1 0 11 0 0.95 0.05
12 0 1 0 12 0 0.89 0.11
13 0 1 0 13 0.78 0.05 0.16
14 0 1 0 14 0 0.78 0.22
15 0 1 0 15 0 0.92 0.08
16 0 1 0 16 0 0.84 0.16
17 0 1 0 17 0 0.86 0.14
18 0 1 0 18 0 0.86 0.14
19 0 1 0 19 0 0.78 0.22
20 0 1 0 20 0.62 0.14 0.24
21 0 1 0 21 0 0.89 0.10
22 0 1 0 22 0 0.89 0.10
23 0 1 0 23 0 0.76 0.24
24 0 1 0 24 0 0.86 0.14
25 0 1 0 25 0 0.84 0.16
26 0 1 0 26 0.57 0.16 0.27
27 0 1 0 27 0.73 0.11 0.16
28 0 1 0 28 0 0.86 0.14
29 0 1 0 29 0 0.68 0.32
30 0 1 0 30 0 0.92 0.08
31 0 1 0 31 0 0.89 0.11
32 0 1 0 32 0 0.86 0.14
33 0 1 0 33 0 0.86 0.14
34 0 1 0 34 0 0.76 0.24
315) 0 1 0 35 0 0.81 0.19
36 0 1 0 36 0 0.68 0.32
37 0 1 0 37 0 0.73 0.27
38 0 1 0 38 0.65 0.03 0.32
Table 9: Morning [ECP>LCP] Results: Table 10: Morning [ECP<LCP| Re-

Partial Datasets. The percentage of cor-
rect, unclear and incorrect classifications
when one subject was removed
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3.4 How the Significance Threshold Impacts Classifier Performance:

Partial Datasets

Due to the sensitivity of the classifier, both in terms of removing subjects resulting in in-
creased accuracy in the Morning and Afternoon scanning session [ECP<LCP] and the reduc-
tion in accuracy in the Evening scanning session [ECP>LCP], the influence of the choice of
significance threshold was investigated.

It is worth noting that the initial investigation into the classifier’s sensitivity to the removal
of subjects focused on the subjects themselves. Therefore, an investigation into the metadata
of subjects who were misclassified or whose removal led to high differences in accuracy was
undertaken. However, as seen in (Appendix D) the metadata is unable to provide an answer
for the classifiers’ sensitivity.

Figure 7 shows boxplots for all of the n accuracies when one subject in turn has been
removed from the training and test set for all possible values of the significance threshold «.
In addition, the mean and standard deviation for each « value are shown. Figure 8 shows
the mean value for the percentage of subjects labelled correct, incorrect and unclear for each
a value.

As can be seen from the Figures 7 there is an optimum value of « for each of the scanning
sessions, selected as the point where the ratio between accuracy and standard deviation is
highest.

However, it is only in the Evening [ECP>LCP] scan that the value of o which results
in the maximum accuracy matches the value of o which produces the minimum standard
deviation. This occurs at @ = 0.08 resulting in a mean accuracy of 75.25% showing that
there is the possibility to optimise the significance threshold for o and that selecting the
traditional significance level of o = 0.05 may be too conservative when there are additional

steps of the pipeline that help to prevent misclassifications.
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Figure 7: Boxplots Showing the Accuracy When Removing Subjects and Varying
Across Thresholds for Significance. For each value of significance, in the range 0 to 1
in increments of 0.01, a boxplot for the accuracy when removing each subject is shown as
as the mean accuracy (red, dashed) and the standard deviation (green, dashed and dotted).
The median of the boxplot is given by the black dot while values considered outliers (greater
than 2.7 standard deviations away from the mean) are depicted by small blue circles.
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Figure 8: Performance of the Classifier When Removing Subjects and Varying
Across Thresholds for Significance. Stacked bar chart showing the mean percentage
of subjects classified correctly, incorrectly, and unclear respectively (blue, red, yellow) when
removing one subject in turn and varying across the threshold for significance.
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3.5 How the Significance Threshold Impacts Classifier Performance:

Original Datasets

To understand how changing the significance threshold effects the performance of the classifier
when considering the original datasets, the results when varying the significance between
[0,1] in increments of 0.01 are shown below.

Figure 9 shows a stacked barchart showing the distribution of correct, incorrect and
unclear classification of each possible value of o when ranging from 0 to 1 in increments of
0.01 for the original full datasets. The maximum accuracy of 97% occurs for the Evening
[ECP>LCP]| scan for « in the range 0.04-0.07. Comparing Figure 9 to Figure 8 we see similar
trends with accuracy increasing with increasing a up to a point specific to each scan and
then steadily declining to a plateau once « is high enough. Table 11 shows the values of «

for which the maximum accuracy occurs.

ECP>LCP ECP<LCP
Afternoon  0.24-0.26 (57%) _ 0.09-0.11 (68%)
Evening 0.04-0.07 (97%) 0.45-0.47 (63%)
Morning  0.47, 0.49, 0.50 (74%)  0.08-0.1 (68%)

Table 11: Table showing the values of a which give the highest accuracy with the
accuracy values given in brackets.
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Figure 9: Performance of the Classifier When Varying Across Thresholds for Sig-
nificance. The percentage of subjects classified correctly, incorrectly, and unclear respec-
tively (blue, red, yellow) when varying across the threshold for significance.
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4 Discussion

To the best of our knowledge, this is the first study explicitly aiming to classify an individual’s
chronotype using rs-fMRI data. While previous studies (Elise R. Facer-Childs, Brunno M.
de Campos, et al. 2021; Elise R. Facer-Childs, Brunno M. Campos, et al. 2019; C. M.
Horne and Norbury 2018) have identified differences in functional connectivity associated with
chronotype, the question of whether these differences are sufficient to identify a participant’s
chronotype solely from fMRI data has not been asked. Following creation of FNs, NBS is
used as the base for a classifier. The classifier is innovation through its evaluation of whether
an ECP or LCP classification of the test subject leads to a clearer differentiation between
the two classes in a group-level comparison.

In addition, the classifier was presented alongside a principled way to select the t-statistic
thresholds, a criticism of NBS. This focused on the two percolation thresholds resulting from
the two different chronotype labellings a test subject can be assigned. Through concentrating
on edges located in dysconnected subnetworks there is evidence that rs-fMRI data does
contain enough information to distinguish between ECPs and LCPs. Indeed, for the Evening
[ECP>LCP] scan we see high classification accuracy of 97.3% when applying the percolation
thresholds.

The high level of accuracy is predominantly due to step one of the classifier, which com-
pares the significance of the MCCs E; and L; . This step contributed almost one third of
the correct classifications, as seen in Table 2. Since the MCC, when all subjects are correctly
labelled, covers all 70 ROIs with only 143 edges (Table 4), it suggests that the key differences
between the FNs of extreme chronotype are sparse and distributed during the evening.

This may explain why neither the seed-based approach in (Fafrowicz et al. 2019), nor the
graph metric approach in (Farahani, Fafrowicz, Karwowski, Bohaterewicz, et al. 2021) could
find significant differences between extreme chronotypes. Since the effect of chronotype is
subtle and seen only through the group level comparison of specific edges using a contrast

to compare between ECPs and LCPs, this would be lost in many graph metric approaches,
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which average over many nodes or the entire network reducing the focus on key edges. On the
other hand, seed-based approaches that rely on contrasts may identify differences (Elise R.
Facer-Childs, Brunno M. de Campos, et al. 2021; Elise R. Facer-Childs, Brunno M. Campos,
et al. 2019), but the focus on specific seeds could limit the ability to identify the distributed
effect seen in the Evening [ECP>LCP]| scan.

Meanwhile, the five results of 0% accuracy for the chosen thresholds raises questions
about why the classifier’s performance is so optimised for the Evening scan and why scans
at other time points seem to have no ability to differentiate between ECPs and LCPs. While
some variation in accuracy throughout the day may be expected, especially since time of day
effects have been linked to chronotype (Fafrowicz et al. 2019), such contrasting results have
no apparent explanation in chronobiological literature.

A key assumption in the pipeline is that all ROIs provide valuable information and the
effect of chronotype is therefore distributed throughout the brain. However, due to the poor
performance across the different scanning session this assumption seems unsuitable for the
Morning and Afternoon scans. Previous studies using the same data (Elise R. Facer-Childs,
Brunno M. Campos, et al. 2019; Elise R. Facer-Childs, Brunno M. de Campos, et al. 2021)
have suggested that the differences in FC associated with chronotype and time of day can
be restricted to individual nodes, or even sub-portions of individual nodes. The optimal
way to define a node (and related issues such as the optimal number of nodes to use etc.)
therefore remains an issue and its impact on the classifier requires further research (Korhonen,
Saariméki, et al. 2017; Korhonen, Zanin, and Papo 2021; Song, Panych, and Chen 2016).

The choice of the t-statistic threshold was investigated to understand the restriction of
the MCC assumption. Figure 2 shows it is possible at all three times of the day - under one
contrast - to find a t-statistic threshold that results in a highly accurate classifier for distin-
guishing between ECPs and LCPs. This expands the results presented in Section 3.1, which
focus on a specific threshold. However, we restricted our analysis to cases where a principled

approach could be taken to defining the threshold, rather than highlighting situations where
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good classification accuracy could be achieved with an arbitrary threshold. Clearly, the high
classification accuracy in these cases also supports the view that chronotype classification can
be undertaken with rs-fMRI data, although further work is needed to develop the statistical
methods to achieve this without the use of arbitrary thresholds.

Despite the problem of statistical significance arising from multiple comparisons, Figure
2 does offer some insights into the effect of chronotype over the day and especially in relation
to the classifier. For instance, the contrast resulting in high accuracy, when varying the
t-statistic threshold, changes over the course of the day. Simplistically, this generally follows
the pattern of high classification accuracy occurring when the chronotype with increased
tiredness (as measured using KSS (Elise R. Facer-Childs, Brunno M. Campos, et al. 2019)),
has a higher FC in the contrast. Hence, the contrast ECP>LCP performs better in the
evening when ECPs are likely to be more tired than LCPs. Similar logic follows for the
Morning scan, when forcing LCPs to awaken before their natural sleep pattern for an 08 : 00
scanning session will result in increased tiredness for that cohort. Finally, the contrast
ECP<LCP produces non-zero accuracy in the Afternoon. However, the range of t-statistic
thresholds, which produce non-zero accuracy, is smaller in the Afternoon compared to the
Morning. This could be associated to the greater similarity in KSS scores in the two groups at
this time. This may suggest that the classification is driven by tiredness (or Process S within
the two process model (Borbély and Achermann 1999)) rather than chronotype (related to
Process C) per se. Within a real-world setting, and not only in relation to rs-fMRI data,
differentiating the impacts of sleep homeostasis and circadian drive is difficult. Future studies
using laboratory based constant routine or forced desynchrony protocols (Duffy and Dijk
2002; Kyriacou and Hastings 2010) could help to understand how sleep drive and circadian
phase are differentially manifested in rs-fMRI data and brain networks more broadly.

Furthermore, the t-statistic thresholds producing high accuracy could provide an insight
into how chronotype affects the brain throughout the day. Indeed the size of the dysconnected

networks producing high accuracy is markedly different throughout the day. The large range
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of t-statistic thresholds in the Evening start at 0.71, representing a dense distributed effect,
while the highest peak in accuracy near 1.7 suggests a sparse but distributed effect. In
contrast, in the Afternoon and Morning the high t-statistic thresholds near 2.2 suggest a
focal effect concentrated on specific subsets of the brain’s FN. Finally, the second peak in
the Morning near 2.8 is focused on only 7 nodes and therefore represents a highly spatially
specific impact on the brain. More detailed investigation of the spatial distribution of network
changes as a function of time of day and chronotype would help to develop these ideas and
provide a more specific understanding of how the brain is impacted.

The change in the range of t-statistic thresholds that result in high accuracy explains
why the classifier only saw results of 97.3% for Evening [ECP>LCP| scan, and 0% for the
other scans and contrasts. This is because it is the only combination where the percolation
threshold when all subjects are correctly labelled, shown by the dashed line in Figure 2, falls
directly within the range of t-statistic thresholds that consistently sees non-zero accuracy.
For the other five combinations this is not the case. This indicates that the assumption
of connectedness, the focus on MCCs and the conventional choice of a = 0.05, is suitable
for the Evening [ECP>LCP] scan, while a different combination of parameters needs to be
used to optimize accuracy for the other scans. Given our results and the discussion above,
other approaches could be developed to extract the information needed to provide good
classification accuracy in the Morning and Afternoon. Our work would suggest that the
information is present in the data.

In addition, the stability of the classifier was investigated, through the creation of addi-
tional surrogate datasets using a leave-one-out approach. It is clear from the results across
all 3 scanning session, as seen in Tables 5 - 10, that the classifier is highly sensitive to the
removal or inclusion of certain subjects. In the case of the Afternoon and Morning scanning
sessions the removal of certain subjects led to a considerable increase in accuracy, while in the
Evening scanning session subject removal has the opposite effect, reducing accuracy, aside

from Subject 36.
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We see that when comparing the results from the partial datasets to the original datasets
there is a correspondence between improved accuracy when incorrectly labelled subjects
in Table 3 are removed. This may indicate that these subjects have properties closer to
the other chronotype, and hence why their removal improves the classifier. Similarly, we
might hypothesise that the near zero accuracy resulting from the removal of subjects in the
Evening scanning session could be because they have properties which clearly identify them
as their phenotype and hence their removal reduces the accuracy of the classifier. However,
this hypothesis was not supported by differences in the metadata as shown in Appendix D.
Similarly, the metadata offers no insight into why, for example, Subject 36 was misclassified
in the Evening [ECP>LCP] scan. Further work is needed to understand the subtleties of the
links between resting brain function measured with fMRI and more established markers of
chronotype.

Furthermore, it was observed that a large proportion of the subjects were classified as
unclear due to non-significant networks occurring at the traditional 0.05 significance level
when the number of subjects was reduced by one. To investigate if differentiable information
is present when using higher significance thresholds an investigation into the significance
threshold was also completed.

The accuracy of the classifier as well as the standard deviation of the n different dataset’s
accuracy for each significance threshold are presented in Figure 7. An optimal choice of
significance threshold could be selected for each scanning session and contrast to maximise
the accuracy across the n datasets and minimise the standard deviation. This relationship is
the clearest for the Evening scanning session and indeed using o = 0.08 shows the improved
ability to differentiate chronotypes in the Evening scanning session. For the other scanning
sessions and contrasts this relationship is not as distinct, but an optimal ratio between these
two factors could be located. Directly relating the parameter choice for significance to the
classifier’s stability offers a solution for how to improve the classifier’s performance in future

datasets.
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When comparing the optimal significance thresholds seen in Figure 7 for the partial
datasets, to the optimal values in Table 11 for the original datasets, we clearly see that
a = 0.05 is too conservative for n — 1 subjects compared to n subjects. One possible ex-
planation for this is that the number of subjects is quite low and reducing the size further
removes important information. Indeed, the reduction in the optimum value for o decreases
for the Evening [ECP>LCP]| for 38 subjects (0.04-0.07) compared to when 1 subject has
been removed (0.08), indicating that as the number of subjects increases, the stability of the
classifier increases. However, it is reasonable to assume this trend will not continue indefi-
nitely and that there will be an optimum number of subjects in the training set such that
they provide enough information for classification, while also allowing the test subject to
have enough influence that changing their label will have an effect on the t-statistic. This
highlights that the classifier is reliant on the fact that changing the label of one subject will
lead to a detectable impact on the t-statistics, while also having a large enough training set
to ensure there is enough distinction between the two cohorts. This approach is optimised
to smaller datasets, where mislabelling one subject will have a greater influence. If the num-
ber of subjects increased sufficiently (n — 00) it is reasonable to assume the dysconnected
networks produced will be the same irrespective of the labelling of the test subject. At that
stage this classifier would be redundant and NBS could be used in its traditional form.

For both the partial datasets in Figure 8 and the original datasets in Figure 9, we see the
optimal values of significance threshold follow a trend similar to that observed in Figure 2.
Indeed, we clearly see high differences in the optimal value of « for the different contrasts
in the Evening and Morning scan with the optimal significance threshold range being lower
when the contrast aligns with the group who are experiencing increased tiredness as measured
using KSS (Elise R. Facer-Childs, Brunno M. Campos, et al. 2019). In the Afternoon, while
there is a difference in the optimal parameter choice between the two contrasts in agreement
with KSS, the difference between the optimum « value in the two contrasts is smaller, which

again could be associated to both groups having a more similar state of tiredness.
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This pattern matches studies where excitability as measured through transcranial mag-
netic stimulation is higher when participants are more tired (Huber et al. 2012; Ly et al.
2016). In addition, (Petkov et al. 2014) showed that the propensity of people with epilepsy
to transition into a seizure state is greater for networks with higher mean degree, which are
therefore considered more excitable. If we view higher FC as a proxy for larger mean degree
then the pattern of scanning session, contrast and accuracy would be linked to excitability
and consequently tiredness of the two chronotype groups. This suggestions remains to be
investigated in more detail, potentially with studies involving explicit sleep deprivation.

Overall, optimising the parameters of the classifier, which include two thresholding choices,
should be the aim of future research. Both the value at which to threshold the t-statistic
matrix and the threshold for significance must be selected. In both cases the selection of this
value is somewhat arbitrary, and typically determined by convention. By varying over these
thresholds it becomes clear that there is differentiable and important information present
in the Afternoon and Morning scanning sessions and that optimising these parameters will
improve the accuracy and importantly the sensitivity of the classifier to new datasets. Fur-
ther research is needed to understand how a rigorous selection process or different underlying
assumption could result in selecting thresholds that optimise accuracy for the Morning or
Afternoon scanning session. Such research may also develop new ways in which fMRI can be
used in the study of chronotype as well as lead to greater insight into the impact of chrono-
types on brain FNs. This study also motivates the future use of other methods for quantifying
brain function to investigate human chronotype. For instance, assessing the pipelines’ suit-
ability for use with EEG data would be a natural extension, especially since MCCs were
originally shown to be useful at detecting subtle effects on FNs from EEG recordings (Vijay-
alakshmi et al. 2015). This may result in the Morning and Afternoon scans having non-zero
accuracy for the percolation thresholds, offer other interesting insights or simply increase
the practically of recording sessions in relation to cost and location. However, compared to

fMRI, EEG has limited spatial sampling of the brain, and a lack of sensitivity to deep brain
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structures which are known to be important to sleep and circadian regulation.
Furthermore, this study allowed subjects to sleep using their preferred schedule for two
weeks prior to the scans. It is currently unknown if the differentiation and accuracy seen at
the three scanning times would stay the same if LCPs were constrained to a more traditional
work schedule or if high accuracy would occur at a different time of the day. It seems likely
that with the additional sleep pressure associated with conforming to the societal day, LCPs

would be more easily differentiable from ECPs.

5 Conclusion

In conclusion, we have shown that extreme early and late chronotypes have differentiable
information in their rs-fMRI data that can be used to classify them. Indeed, this classifier
demonstrates that two groups of participants whose differences are relatively subtle (i.e., not
based on a clinical diagnosis) can be differentiated using rs-fMRI, when traditional seed-based
and graphical methods have struggled.

Through this study we have proposed a classifier and investigated its sensitivity and ro-
bustness to changes in parameters and the training set. In an ideal scenario the removal of
individual subjects would have a negligible effect on the classification accuracy. However,
we found the accuracy of the classifier to be strongly dependent on individual participants,
although these participants did not appear to be unusual based on the physiological and
behavioural data we had available. We found conditions under which this could be mitigated
by altering a combination of the threshold for the t-statistic, significance threshold for the
dysconnected network and contrast being used. For future chronotype datasets it is recom-
mended to use a contrast which reflects the tiredness of the two groups at the time of the
scan, while issues around the optimal thresholds for significance and t-statistic thresholds

remain to be clarified.
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A ROI Information

ICN MNI Node ICN MNI Node

Node Index ICN Coordinates Degree Node Index ICN Coordinates Degree
1 1 Anti Salience  [-33 45 28] 4 36 6 Ventral DMN [0 -59 59| 4
2 1 Anti Salience  [-45 11 2] 5 37 6 Ventral DMN  [23 19 53] 4
3 1 Anti Salience  [-1 13 51] ) 38 6 Ventral DMN 28 -37 -13] 2
4 1 Anti Salience  [27 43 33| 2 39 6 Ventral DMN 44 -77 37] 5
5 1 Anti Salience  [41 13 5] 1 40 7 Language [-53 21 4] 2
6 2 Post Saliance  [-39 33 34| 6 41 7 Language [-52 -5 -16] 4
7 2 Post Saliance  [-58 -41 45] 3 42 7 Language [-52 -35 1] 1
8 2 Post Saliance  [-9 -55 67| 3 43 7 Language [-54 -59 27] 7
9 2 Post Saliance  [11 -31 49] 1 44 7 Language [49 25 -5] 7
10 2 Post Saliance  [19 -51 75] 2 45 7 Language [56 -49 13| 7
11 2 Post Saliance  [60 -36 45] 2 46 8 LECN [-271752] 7
12 2 Post Saliance  [-12-279] 2 78 LECN [29432] 2
13 2 Post Saliance  [-36 -15 -1] 4 48 8 LECN [-42-6749] 6
14 2 Post Saliance  [12-17 13] 4 49 8 LECN [-58-45-7] 3
15 2 Post Saliance  [40 -9 -3] 5 50 8 LECN [-14 -31 7] 4
16 3 Auditory [54-1510] 5 519 RECN 39 2547] 8
17 3 Auditory [56 -1113] 2 529 RECN 37 49 5] 2
18 4 Basal Ganglia [15 -5 13] 2 53 9 RECN [48 -56 53] 2
19 4 Basal Ganglia [-14 -7 11] 3 54 9 RECN [5 35 50] 5
20 4 Basal Ganglia [-45 19 28] 2 55 9 RECN [11 -1 19] 3
21 4 Basal Ganglia [47 27 21] 7 56 10 Sensorimotor  [-31 -21 63] 5
22 5 Dorsal DMN  [-3 47 22] 7 57 10 Sensorimotor  [39 -20 61] 4
23 5 Dorsal DMN  [-48 -71 41] 6 58 10 Sensorimotor  [1 -15 67] 4
24 5 Dorsal DMN  [19 35 53] 5 59 10 Sensorimotor  [-2 -29 -15] 2
25 ) Dorsal DMN [0 -55 31] 6 60 11 Visual [-28 -91 7] 10
26 5 Dorsal DMN [1-17 41] 3 61 11 Visual [30 -91 13] 5
27 5 Dorsal DMN  [50 -67 39] 6 62 11  Visual 0-7917 6
28 5 Dorsal DMN  [-2-11 7] 1 63 12 Visuospatial ~ [-27 -3 61] 4
29 5 Dorsal DMN  [-24-35-5] 6 64 12 Visuospatial ~ [-32 -55 51] 5
30 5 Dorsal DMN  [26 -23 -13] 3 65 12 Visuospatial ~ [-49 7 32] 5
31 6 Ventral DMN  [-12 -61 21] 7 66 12 Visuospatial ~ [-48 -67 -1] 4
32 6 Ventral DMN  [-25 9 60] 5 67 12 Visuospatial ~ [27 -1 61] 6
33 6 Ventral DMN  [-28 -39 -11] 3 68 12 Visuospatial ~ [38 -49 53] 4
34 6 Ventral DMN  [-36 -85 39] 3 69 12 Visuospatial ~ [49 9 33] 2
35 6 Ventral DMN  [12 -57 19] 1 70 12 Visuospatial ~ [50 -61 -5] 3

Table 12: Table giving the nodes, ICNs and MNI Coordinates used for 70 func-
tional connectivity ROIS. In addition, the node degree resulting from the largest con-

nected component for correct labelling for each ROI using the Evening scanning session
[ECP>LCP]

B Derivation of Tikhonov Partial Correlation Matrix

Calculation of Tikhonov partial correlation is given below, extended from an outline provided

in Pervaiz et al. 2020.

44


https://doi.org/10.1101/2022.08.25.505246
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.25.505246; this version posted August 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Let x5 € R"" be the i, 7™ component of data matrix X™ for Subject m for a rs-fMRI
scan with ¢, time points and n ROIs. Then for the m'™ participant an emperical covariance

matrix, nm e R™". can be calculated using,

s(m) _ tl(Xm) 3 X(’”))'(X‘m) 3 X(’”)),
P

where ' denotes matrix transpose and X (™) is the matrix created from vertically stacking the

temporal average for each ROI ¢, times,

l.n
—(m) _(m) —(m) t
_om T T cee Iy, m 1 Ed
xtm = ? ; e — T
t 7.]
. . . p 1/=1
jgm) jém) . jglm)
Now the Tikhonov covariance matrix is given by,
2™ = 2™ a1, (1)

where I € R™" is an identity matrix. The positive constant A controls the strength of
the regularisation while the matrix I acts as the target matrix during the inversion process
(Kuismin and Sillanpaé 2017). Therefore, A = 0 will result in partial correlation whilst higher
values of A will increasingly force off-diagonal elements closer to 0 and diagonal elements closer

to 1. The Tikhonov precision matrix, Qf\m) e R™", with elements Qf\m) or to simply notation

J
(m)

w; ; » can then be calculated as,

Qlm — (Egm)—l CD

Y

using Cholesky decomposition as explained in (Krishnamoorthy and Menon 2013) to com-

putationally calculate the inverse of the Tikhonov covariance matrix using code provided by

45


https://doi.org/10.1101/2022.08.25.505246
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.25.505246; this version posted August 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

E. Blake (Blake 2015). Finally, the Tikhonov partial correlation matrix (TPCM), can be

calculated element wise for ¢ # j such that each element is given by,

(m)
(m) _ Wiy

ei’j - .
Vit

Partial correlation by definition requires two variables to compare whilst controlling for at
least one other, therefore i = j and the resulting e;;, = —1 is meaningless. Hence, values on
the main diagonal of the TPCM have been set to NaN and no self-links can be identified by
this method.

The values in the TPCM are the FC between different brain regions and can be used as
weights for the strength of statistical connections between different ROIs. If e;; = 0 then
under the assumption of fMRI data having Gaussian noise (Heras and Margalef 2013) there
will be no edge between ROIs ¢ and j.

The selection of the optimal regularisation parameter A in eq(1) is based upon minimising
an objective function.

First, let ¥ € R™" be the average empirical covariance for all N participants calculated
by taking the element wise mean across ™) for the N participants. Also, let O = (8)™' €
R™" be the precision matrix associated with the average empirical covariance matrix, with
)
j

elements €, ;. A matrix T’ E\m) e R™" with elements, F({” , can then be defined using,

m=1 m=1

N 2 N :
i - (Z (04 - Q>) - (Z S Q)) |

Each element is calculated by summing the difference between the 7, jth element of the average
precision matrix and each participant’s corresponding A specified Tikhonov precision matrix
element before squaring the result.

Therefore, the optimal value of A denoted A is the one which minimises the square root

of the sum of the upper triangular elements in I'y and hence is selected for Tikhonov partial
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correlation,

Aopt = argmin /Z [y, | = argmin (f())). (2)
A i< ’ A

Potential A values in the range [0.0001,1] in steps of 0.0001 are considered. However, for
new datasets it would still be important to check the data is standardised, A,y is unique
and that A, # A", The value of A" = 1 has been artificially set based on the data

"PPEY it would be important to understand the behaviour of f(\),

available however if A,y = A
to ensure that the argmin has actually been found. A simple example that highlights the
importance of this is that if f(\) is a monotonically decreasing function then a search range

of [0, \"""*"] would always result in A\, = A", Increasing A"

would therefore see A,
change accordingly despite no optimum actually existing.
Note that this provides one value of A for which to regularise the N participants being

considered. In this case one value of A was optimised across all 113 scanning session across

the 3 scanning times.

C Traditional Graph Metric Approach

benlnitially, group level analysis was considered using a traditional graph metric approach.

The FNs, as constructed in Section 2.4 are used for the base of this analysis.

C.1 Thresholding and Binarizing

Within this study the FNs are thresholded and binarized, such that values below the threshold
are set to 0 and values above the threshold are set to 1. The threshold for binarizing the
edges ranged incrementally in steps of 0.01 between the lower limit of 0 and the upper limit
given by the percolation threshold. The minimum percolation threshold across subjects was
selected as the maximum threshold to ensure all networks were connected at all thresholds
considered. This creates more physiologically accurate networks, as different brain regions

are known to be connected both structurally and functionally.
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C.2 Graph Metrics

After the networks have been thresholded and binarized graph metrics were calculated for
each network. A limited number of graph metrics ranging across local and global measures
were used. These are node degree, node strength, betweenness centrality, clustering, local
efficiency, global efficiency, characteristic path length, assortativity and small-world index and
small-world propensity. The graph metrics were calculated using using the freely available
Brain Connectivity Toolbox (Rubinov and Sporns 2010) as well as (Humphries and Gurney
2008) for small-worldness. In the case of local measures the mean across all nodes was
considered. It is worth noting these graph metrics align very closely to those used in a
concurrent chronotype study completed by (Farahani, Fafrowicz, Karwowski, Bohaterewicz,

et al. 2021.

C.3 Group-Level Analysis

Finally, a group level analysis was completed by considering if the graph metrics for the two
groups are significantly different at a given threshold value. Significance testing between
the two groups distributions were completed using permutation testing (n = 10,000 per-
mutations). In addition, corrections for multiple comparisons across graph metrics as well
as thresholds were completed using both a Bonferroni correction and the less conservative

Benjamini-Hochberg correction.

C.4 Results

The distributions for the different graph metrics for each group are given in Figures 10 to 12
for the three scanning sessions when thresholding and binarizing the whole brain network in
increments of 0.01 from 0 up to their MCC threshold.

Figures 10 to 12 show that while there are some combinations of threshold, scanning

session and graph metric that are significant with p < 0.05 this was only when uncorrected.
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Correcting for multiple comparisons occurring from testing at multiple thresholds as well as
using different graph metrics using a Bonferroni or the less conservative Benjamini-Hochberg
correction results in no significance. These results are consistent with those found indepen-

dently in (Farahani, Fafrowicz, Karwowski, Bohaterewicz, et al. 2021).
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Figure 10: Distribution of Graph Metrics for the Morning Scan: Whole Network
- Binarized. The values for various graph metrics for both ECPs and LCPs within the
context of the whole network when binarized for non-negative thresholds increasing in step
of 0.01 until the percolation threshold for the morning scan. The standard deviation between
participants in that group is shown by the error bars. The % indicates where the difference
between ECPs and LCPs is significant p < 0.05 (uncorrected).
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Figure 11: Distribution of Graph Metrics for the Afternoon Scan: Whole Network
- Binarized. The values for various graph metrics for both ECPs and LCPs within the
context of the whole network when binarized for non-negative thresholds increasing in step
of 0.01 until the percolation threshold for the afternoon scan. The standard deviation between
participants in that group is shown by the error bars. The % indicates where the difference
between ECPs and LCPs is significant p < 0.05 (uncorrected).
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Figure 12: Distribution of Graph Metrics for the Evening Scan: Whole Network
- Binarized. The values for various graph metrics for both ECPs and LCPs within the
context of the whole network when binarized for non-negative thresholds increasing in step
of 0.01 until the percolation threshold for the evening scan. The standard deviation between
participants in that group is shown by the error bars. The % indicates where the difference
between ECPs and LCPs is significant p < 0.05 (uncorrected).
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D Metadata

D.1 Subjects Metadata

All the subjects were screened as ECPs or LCPs through a combination of actigraphy data,
DLMO and CAR concentrations as well as their mid point of sleep on free days (MSF) when
corrected for sleep debt (MSFgc). Therefore, subject metadata was considered to see if this
offers an explanation for why the classifier is sensitive to certain subjects.

The metadata does seem to offer some explanation for why the classifier is so sensitive
to the removal of certain subjects, especially in the case of ECPs as the MSF and DLMO
appear to be lower for the subjects who were incorrectly labelled in the Afternoon and
Evening scan. However, when corrected for multiple comparisons using Benjamini-Hochberg
test no significance remains.

Therefore, across the three scanning sessions there no significant information to support
that the metadata of subjects provides explains the sensitivity of the classifier to a subjects
removal especially. This is further supported because, across the scanning sessions there is no
consistency in the subjects whose removal has the biggest effect. Indeed, across all 3 scanning
sessions the removal of 21 subjects leads to a high difference in the accuracy. Therefore, over
half of the subjects cannot be considered outliers according to the metadata or the data

would be fundamentally flawed.
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