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Abstract

How the connectivity of cortical networks determines the neural dynamics and the
resulting computations is one of the key questions in neuroscience. Previous works have
pursued two complementary strategies to quantify the structure in connectivity, by
specifying either the local statistics of connectivity motifs between small groups of
neurons, or by defining network-wide low-rank patterns of connectivity that determine
the resulting low-dimensional dynamics. A direct relationship between these two
approaches is however currently missing, and in particular it remains to be clarified how
local connectivity statistics are related to the global connectivity structure and shape
the low-dimensional activity. To bridge this gap, here we develop a method for mapping
local connectivity statistics onto an approximate global low-rank structure. Our method
rests on approximating the global connectivity matrix using dominant eigenvectors,
which we compute using perturbation theory for random matrices. This approach
demonstrates that multi-population networks defined from local connectivity properties
can in general be approximated by low-rank connectivity with Gaussian-mixture
statistics. We specifically apply this method to excitatory-inhibitory networks, and show
that it leads to accurate predictions for both the low-dimensional dynamics, and for the
activity of individual neurons. Altogether, our approach allows us to disentangle the
effects of mean connectivity and reciprocal motifs on the global recurrent feedback, and

provides an intuitive picture of how local connectivity shapes global network dynamics.

Author summary

The structure of connections between neurons is believed to determine how cortical
networks control behaviour. Current experimental methods typically measure
connections between small numbers of simultaneously recorded neurons, and thereby
provide information on statistics of local connectivity motifs. Collective network
dynamics are however determined by network-wide patterns of connections. How these
global patterns are related to local connectivity statistics and shape the dynamics is an
open question that we address in this study. Starting from networks defined in terms of
local statistics, we develop a method for approximating the resulting connectivity by
global low-rank patterns. We apply this method to classical excitatory-inhibitory

networks and show that it allows us to predict both collective and single-neuron activity.

More generally, our approach provides a link between local connectivity statistics and
global network dynamics.
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Introduction

One of the central questions in neuroscience is how the connectivity structure of
cortical networks determines the collective dynamics of neural activity and their
function. Experimental assessments of connectivity are typically based on measurements
of synaptic weights between small numbers of neurons recorded simultaneously [1-9].
The most common approach to quantify connectivity therefore focuses on local statistics,
and starts by characterizing the connection probability between pairs of neurons based
on their type, before considering progressively more complex connectivity motifs.
Linking these local connectivity statistics to the emerging network dynamics has been an
active topic of investigations [10+24]. A second approach, motivated by computational
network models instead of experimental measurements [25H29|, instead specifies the
connectivity in terms of a low-rank structure defined by network-wide patterns of
connectivity [30H39]. This global connectivity structure directly determines the
low-dimensional dynamics and resulting computations [30,[31,/33], yet it remains unclear
how it is related to local connectivity statistics that can be recorded experimentally. In
this study, we aim to bridge this gap, by mapping local connectivity statistics onto a
global, low-rank description of connectivity and comparing the resulting dynamics.

Starting from random networks with connectivity defined in terms of local, cell-type
dependent statistics, we develop a low-rank approximation based on the dominant
eigenmodes of the connectivity matrix. Using perturbation theory, we show that the
obtained low-rank connectivity patterns universally obey Gaussian-mixture statistics
and therefore lead to analytically tractable dynamics [31}/33]. We specifically apply this
approach to excitatory-inhibitory networks with connections consisting of independent
and reciprocal parts, and exploit the low-rank approximation to predict the emerging
dynamics.

We first show that, although the dominant low-rank structure is set on average by
the mean synaptic weights [40H42], a perturbative approach accurately predicts the
components of individual neurons on the dominant eigenvectors for individual instances
of the random connectivity. As a result, our low-rank approximation analytically
predicts the activity of individual neurons in the original E-I network defined based on
local statistics. The analytic description of the dynamics in the low-rank approximation
moreover leads to the identification of two distinct sources of recurrent feedback
corresponding respectively to the mean connectivity and reciprocal connections between
neurons. In particular, the reciprocal motifs impact dynamics by modulating both the
dominant eigenvalue and the corresponding eigenvectors, and can give rise to additional
bistability in the network. Altogether, our analytical mapping of the local EI statistics
to a low-rank description provides a quantitative and intuitive description of how local
connectivity statistics determine global low-dimensional dynamics.
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1 Results

1.1 Local vs. global representations of random recurrent
connectivity.

We study networks of N rate units with random recurrent connectivity given by the
connectivity matrix J, where the entry J;; corresponds to the strength of the synapse
from neuron j to neuron i. A full statistical description of the random connectivity
would require specifying the joint distribution P({.J;;}) of the N? synaptic weights.
Determining the dynamics from this high-dimensional distribution is however in general
intractable. We therefore focus on connectivity models that make simplifying
assumptions on the underlying statistics.

Our specific goal is to relate two different classes of such models, which we refer to as
the local and the global representations of recurrent connectivity. Both representations
assume that the network consists of P populations, and the statistics of connectivity
depend only on the pre- and post-synaptic populations. The two representations
however take as starting points different statistical features of the connectivity.

The local representation defines the connectivity statistics by starting from the
marginal distributions Prob(J;; = J) of individual synaptic weights, and by including
progressively higher-order correlations referred to as connectivity motifs [1,[L0L/14]. In
this work, we will consider only the first two orders, i. e. the distribution of individual
weights and the pairwise correlations 7;; between reciprocal connections J;; and Jj;
that quantify pairwise motifs (Fig ) Our key assumption is that both the marginal
distributions of J;; and the correlations 7;; depend only on the populations p and ¢ that
the post- and pre-synaptic neurons belong to:

Prob(J;; = J) = fP(J), p,q=1...P,
Mij = Tpq-

(1)

All synapses connecting the same two populations therefore have identical statistics,
leading to a block-like statistical structure for the connectivity matrix J (Fig left
panel).

The global representation of connectivity instead refers to the situation where J is
defined as a low-rank matrix [30L[31}[33]:

R
1
_ (1) ()
J_N}:lan T, (2)

Here m(") = {mgr)}i=1___N and n(") = {ngr)}izl,,_N for r = 1...R are referred to as
connectivity vectors, where R is the rank of J. In this representation, the statistics of
connectivity are defined by the distribution of vector elements, rather than directly by
the distribution of synaptic weights as in the local representation. Specifically, each
neuron 14 is characterized by its set of entries (ml(»l), . ,mER), ngl), . ,nz(-R)) over the
connectivity vectors. For each neuron, these 2R entries are generated from a joint
distribution, independently of the other neurons, and the parameters of this joint
distribution depend on the population p the neuron belongs to. Here we focus on the
broad class of Gaussian-mixture low-rank networks, in which for population p, the joint
distribution of elements is a multi-variate Gaussian defined by the means and
covariances of the 2R entries [31,33] (Fig[I[C).

To relate the local and the global representations of connectivity, a key observation
is that any matrix J generated from the local statistics defined in Egs. can be

expressed as
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Fig 1. Local vs global representations of recurrent connectivity. (A) The local representation defines the statistics
of synaptic weights J;; by starting from the marginal probability distribution of individual synaptic weights (left) and then
specifying reciprocal motifs in terms of correlations 7n;; between reciprocal weights J;; and Jj; connecting neurons ¢ and j
(right). Both the marginal distribution and the reciprocal correlations are assumed to depend only on the populations p and ¢
that the neurons ¢ and j belong to. (B) The resulting connectivity matrix J has block-structured statistics, where different
blocks correspond to connections between the P different populations (P = 2 in this illustration). It can be decomposed into
a superposition of a mean component J, and a remaining zero-mean random connectivity component Z that has
block-structured variances. (C) The global, low-rank representation defines the connectivity matrix J as the sum of R outer
products between connectivity vectors m("), n(") for r = 1... R. The statistics of connectivity are defined in terms of the
joint probability distribution over neurons i of their entries (mgl), e ,mER), nz(-l), . nER)) on connectivity vectors. We
specifically consider the class of Gaussian-mixture low-rank models, where each neuron is first assigned to a population p, and
within each population the entries on connectivity vectors are generated from a multivariate Gaussian distribution with fixed
statistics. Here we illustrate this distribution for one pair of connectivity vectors (R = 1) and P = 2 populations. Each dot
(r)y ()

represents the connectivity parameters (m,; ’,n; ') of one neuron 4, the red and blue colours denote the two populations,
white dots and the rotations of the dot clouds indicate the mean and covariance of the distribution for each population. (D)
Relating the local and global representations of recurrent connectivity for a simplified excitatory-inhibitory network. In this
model, the mean connectivity depends only on the presynaptic population (indicated by red and blue colours). The mean
connectivity J is in this case rank-one, and can be written as an outer product of vectors m and n. We approximate the full

connectivity by a rank-one matrix, with connectivity vectors m and n obtained from m and n using perturbation theory.

ey
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I=J+7% (3)

where J contains the mean values of the connections, and Z contains the remaining,
zero-mean random part [40]. Because of the underlying population structure (Egs. (1f)),
J consists of P x P blocks with identical values within each block (Fig|1|B middle
panel), and is therefore at most of rank P. The random part Z is instead in general of
rank IV, but obeys block-like statistics, with variance and normalized covariance
parameters defined by P x P matrices (Methods Secs. Eqgs. , )
For the sake of simplicity, in this study, we focus on a simplified
excitatory-inhibitory model [41,43]. This network consists of one excitatory and one
inhibitory population, so P = 2 and in the following we use the population indices
p,q = E,I. A central simplifying assumption in this model is that the mean synaptic
weights depend only on the pre-synaptic population, so that Jgz = J;g > 0 and
Jrr = Jgr < 0. The mean connectivity matrix J therefore consists of only two blocks
and is unit rank (Fig[I]D). The statistics of the random part Z instead depend on both
pre- and post-synaptic populations, and are therefore described by 2 x 2 matrices of
variance and normalized covariance parameters (see Methods Sec. Eq. )

1.2 Approximating locally-defined connectivity with low-rank
connectivity.

To relate the local and global representations of connectivity, we start from a
connectivity matrix J generated from the local statistics (Eqs. ) and approximate it
by a rank-R matrix of the form given in Eq. . As the locally-defined connectivity
matrix J is of rank N, this is equivalent to the classical low-rank approximation
problem, for which a variety of methods exist [30L[31}33]. Here we use simple truncated
eigen-decomposition as it preserves the dominant eigenvalues that determine non-linear
dynamics.

Applying the standard eigenmode decomposition, J can be in general factored as

1 N
J — szmn(rm (4)
r=1

where m(™ and n") are rescaled versions of the r-th right and left eigenvectors
(Methods Sec. Egs —), ordered by the absolute value of their eigenvalue A,
for r =1...N. A rank-R approximation that preserves the top R eigenvalues can then
be obtained by simply keeping the first R terms in the sum in Eq. . In this study, we
focus on R = 1, corresponding to the dominant eigenvalue. Higher order approximations
will be described elsewhere.

Eigenvalues and eigenvectors are in general complex non-linear functions of the
entries of the matrix J. To determine the dominant eigenvalues and the corresponding
vectors of J, we capitalize on the observation in Eq. that a locally-defined
connectivity matrix can in general be expressed as a sum of a low-rank matrix of mean
values J and the remaining random part Z. Previous studies have found that the
eigenspectra of matrices with such structure typically consist of two components in the
complex plane: a continuously-distributed bulk determined by the random part, and
discrete outliers controlled by the low-rank structure [301/32,/39}/44H46]. In this study, we
extend previous approaches to determine the influence of the block-like statistics of Z
on the outliers that correspond to dominant eigenvalues. We then use perturbation
theory to determine the corresponding left and right eigenvectors and their statistical
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structure. Here we summarize the main steps of this analysis (full details are provided
in Methods), and then apply it to specific cases in the following sections.

We focus on the simplified E-I network for which the mean part of the connectivity
is unit rank and can therefore be written as J = mnT /N, so that the full connectivity
matrix is

1
J= Nmfﬂ +Z. (5)

The mean part J of the connectivity has a unique non-trivial eigenvalue Ao = nTm/N
which can give rise to one or several outliers A in the eigenspectrum of J. To determine
how the random part of the connectivity influences A\, we start from the characteristic
equation for the eigenvalues of J and exploit Eq. to apply the matrix determinant

lemma (Eq. (57)). This leads to a non-linear equation for A [32]:

o 0 1
A=S"E  with 0r = nTZ"m. (6)

Truncating the sum to second order yields an approximate third order polynomial for A:
A= XA+ 01N+ 0y, with 6, =nTZm/N 6y =nTZ*m/N. (7)

The statistics of the outlying eigenvalue can then be obtained by averaging over the
random part of the connectivity Z.

An approximate expression for the right and left connectivity vectors m and n of J
corresponding to the outliers A can be determined using first order perturbation
theory [47]. We first note that m and n are the right- and left-eigenvectors of J
corresponding to the non-trivial eigenvalue \g. Interpreting the full connectivity matrix
J as J perturbed by a random matrix Z, at first order m and n can be expressed as

m=m-+ Am

(8)

n=n+ An,
with
Am = ZIYI/)\O 9
An = ZTfl/)\Q. ( )

A key observation is that each element of Am and An is a sum of N random variables.

The central limit theorem therefore predicts that, in the limit of large IV, the statistics
of Am; and An,;, and therefore m; and n;, follow a Gaussian distribution. In general,
the mean and variance of m; and n; and their correlation are determined by the mean,
variance and correlation of the elements of Z, but not the specific form of the
probability distribution. Since the matrix Z has block-like statistics determined by the
population structure, the statistics of the resulting m; and n; depend on the population
p the neuron i belongs to. Overall, the distribution of elements of m and n obtained
from perturbation theory therefore follow a Gaussian-mixture distribution, so that our
approach effectively approximates a locally-defined J by a Gaussian-mixture low-rank
model specified by the means m?, nP, the variances 02,,, 02, and the covariances o®,
of the entries on the connectivity vectors for p = E, I.
We next apply the perturbative approach described here to networks with
independent random components, and then to networks with reciprocal motifs.
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Fig 2. Eigenvalues and dominant eigenvectors for locally-defined Gaussian connectivity with independent
synaptic weights. (A) Eigenvalue spectra of excitatory-inhibitory connectivity matrices J with elements generated from
Gaussian distributions with identical variances g?/N over neurons. The coloured dots in the circular bulk shows 600
eigenvalues for one realization of the random connectivity for each value of g. Different colours correspond to different values
of g. Dashed envelopes indicate the theoretical predictions for the radius r4 of the circular bulk computed according to
Egs. (146)), . Outlying eigenvalues are shown for 30 realizations of the random connectivity, and for different g their
location on the y-axis is shifted to help visualization. The red arrow points to the eigenvalue Ay of the mean connectivity
matrix J. (B) Statistics of outlying eigenvalues over realizations of random connectivity. Empirical distribution (the red area
shows mean + standard deviation), compared with the theoretical predictions for the mean (black dashed line) and standard
deviation (gray dashed line) obtained using Eq. (78). (C) Scatter plot showing for each neuron i its entry n; on the left
eigenvector against its entry m; on the right eigenvector. Red and blue colours represent respectively excitatory and
inhibitory neurons. The white dots and the dashed lines respectively indicate the means and covariances for each population
obtained from simulations. (D) Comparison between eigenvector entries obtained from direct eigen-decomposition of J with
predictions of perturbation theory (Egs. (§), (9)). (E) Comparison between simulations (full lines) and theory (dashed lines)
for the variances 02,, 02, of eigenvector entries corresponding to different populations (Eq. ) (F-J) Identical quantities
for connectivity matrices in which the variance parameters are heterogeneous: gpp : ggr : 9rg : gr71 = 1.0:0.5:0.2: 0.8, ggp
increases from 0 to 1. Other network parameters Ng = 4N; = 1200 and Jg = 2.0, J; = 0.6 in all simulations.
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1.3 Low-rank structure induced by independently generated
synaptic connections

We first apply our approach for a low-rank approximation to the simplest version of the
locally-defined excitatory-inhibitory network where each J;; is generated independently
from a Gaussian distribution with a mean that depends only on the pre-synaptic
population, i. e. [J;;] = qu = jq with p, ¢ € E,I. The entries of the eigenvectors m
and n of the mean connectivity matrix J are then given by:

mi = 1, i=1...N (10)
N

n; = ﬁE:FEJE 1€ Ng (11)
N

= ﬁI:—EJI i € Nj. (12)

We first consider the case where the variance of J;; is uniform across all connections and
given by g?/N. In that situation, the entries of the random part of the connectivity Z
are independent, identically distributed Gaussians, and the eigenvalue spectrum of Z
converges to a uniform distribution on the complex plane within a circle of radius
g |48150]. Previous studies [301|32,/44},45] have shown that adding a unit rank matrix on
top of an i. i. d. random matrix as in Eq. leads to an eigenspectrum that is the
superposition of the two spectra, and therefore consists of a circular bulk of radius g and
an outlier on average located at the eigenvalue Ao of J. Our analyses of the eigenvalues
of J confirm this result (Fig ) Indeed, averaging over Z in Eq. @, [0r] = 0 for all
k [32], so that the outlier is on average given by [A] = Ag. Our approach moreover gives
an expression for the standard deviation of the outlier which grows linearly with g
(Fig , Eq. ) Examining the entries of the left and right eigenvectors n and m of
J corresponding to the outlier, we find that perturbation theory accurately predicts the
individual entries of the eigenvectors as long as ¢ is sufficiently below unity (Fig ) As
expected, the distribution of (m;,n;) is well described by a mixture of two Gaussians
centred at mP, nP. Perturbation theory provides a lower bound for the values of the
corresponding variances (Fig ) For large values of g, the distributions remain
Gaussian, but their variances increase above the predictions of perturbation theory.
Importantly, the entries of the left and right eigenvectors are uncorrelated, and only
their means, but not their variances, differ between the two populations (Figs , E).

We next turned to the case where the variances of synaptic weights depend on the
pre- and post-synaptic populations ¢, p, and are given by g]%q /N. In that case, the
entries of the random part of the connectivity Z are independent, but not identically
distributed Gaussians. Previous studies [11,44] have shown that the spectrum of Z
remains circularly symmetric, but its radius 74 is determined by a combination of
variance parameters gpq Eqgs. , ) Examining the resulting
connectivity matrix J, we found that the results for the uniform case directly extend to
this heterogeneous situation. The eigenspectrum of J still consists of an independent
superposition of the spectra of Z and J (Fig ) In particular, the random part of the
connectivity does not modify the average value of the outlier, but only impacts its
variance, which now depends on a combination of the variances g, (Fig , Eq. )
Similarly to the uniform case, the distribution of the entries of the left and right
eigenvectors is well described by a mixture of two Gaussians, with variances predicted
by perturbation theory (Fig[2[). The entries of the left and right eigenvectors are
uncorrelated, but now both their means and variances depend on the population the
neuron belongs to (Figs , J).

In summary, when synaptic connections J;; are generated independently across pairs
of neurons, the equivalent global representation is a Gaussian-mixture low-rank model
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Fig 3. Eigenvalues and dominant eigenvectors for locally-defined Gaussian connectivity with reciprocal
motifs. (A) Eigenvalue spectra of excitatory-inhibitory connectivity matrices J, with homogeneous reciprocal correlations 7.
Different colours correspond to networks with different values of 7. The dots in the elliptical bulk show 600 eigenvalues for one
realization of the random connectivity. Outlying eigenvalues are shown for 30 realizations of the random connectivity. The
red arrow on the top points to the eigenvalue Ao of the mean connectivity J. Coloured circles are the eigenvalues predicted
using determinant lemma (Eq. (7). (B) Comparison of the eigenvalues from the finite-size simulation with the predictions of
the determinant lemma as the reciprocal correlation 7 is increased. The coloured solid lines show the roots of the third-order
polynomial in Eq. @ The light purple area indicates the empirical distribution of the dominant outlier, while the black
dashed line is the unperturbed eigenvalue Ag. The grey areas represent the areas covered by the eigenvalue bulk. (C) Scatter
plot showing for each neuron 7 its entry n; on the left eigenvector against its entry m; on the right eigenvector. Red and blue
colours represent respectively excitatory and inhibitory neurons. The white dots and the dashed lines respectively indicate the
means and covariances for each population. (D) Comparison between eigenvector entries obtained from direct
eigen-decomposition of J with predictions of perturbation theory (Egs. , (ED) (E) Comparison between simulations
(coloured areas) and theoretical predictions (coloured lines, Eq. ) for the population covariance o2, of the entries on the
left and right connectivity eigenvectors to different populations. (F) Comparison of the overall covariance o, (Eq. (70))
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Fig 3. (Continued from previous page.) with the deviation A\ of the dominant outlying eigenvalue from the unperturbed
value Ag. Empirical covariance (gradient blue area, colour depth represents 7) compared with the theoretical prediction (black
line) obtained using Egs. , . The z-axis uses the theoretical prediction of the deviation of the eigenvalue A from .
(G-L) Same as (A-F) for a connectivity matrix with heterogeneous reciprocal correlations: ngg = ngr = —nrr > 0, and ngg
increasing from 0 to 1. (M-R) Same as (A-F) for a connectivity matrix with heterogeneous reciprocal correlations:

negg = —ngr = —nrr > 0, and ngg increasing from 0 to 1. Other network parameters: Ng = 4N; = 1200 and homogeneous
variance parameters gpq = ¢ = 0.3 in all simulations, Jg = 2.0, Jr = 1.2 for networks in (A-F), Jg = 2.0, J; = 1.3 for
networks in (G-L), Jg = 2.0, J;r = 1.4 for networks in (M-R).

where the entries of the structure vectors are independent with mean values determined
by the low-rank structure of the mean connectivity matrix J. Importantly, in that
situation, the dominant outlying eigenvalues of J are on average identical to those of J.

1.4 Low-rank structure induced by reciprocal motifs.

We next turn to locally-defined excitatory-inhibitory networks with reciprocal
connectivity motifs quantified by the correlation 7;; between reciprocal synaptic weights
Ji; and Jj;. We assumed that these reciprocal correlations are identical for any pair of
neurons ¢ and j belonging to a given pair of populations p and ¢, and used the
corresponding parameters 7,, to generate the connectivity matrix J (Methods

Sec. . Within the decomposition of J in a mean J and random part Z (Eq. )7
the additional reciprocal correlations affect only the statistics of Z.

We first consider the homogeneous case where the reciprocal correlation is identical
across all populations, i. e. 1, = 7. Previous studies have shown that a random matrix
Z with zero mean and reciprocal correlations 7 has a continuous spectrum that is
deformed from a circle into an ellipse as 7 is increased [18,/51]. Superpositions between
correlated random matrices, and low-rank structure such as J have to our knowledge
not been previously studied. Inspecting the eigenspectrum of J = J + Z, we found that
it still consists of a continuous bulk and discrete outliers (Fig ) The continuous bulk
is contained in an ellipse in the complex plane identical to the spectrum of Z, as in the
uncorrelated case. In contrast, we found that the outliers deviated from the eigenvalues
of J as 1 was increased. These deviations were well captured by our analytic approach
summarized in Eq. @ Indeed, when averaging Eq. over Z, reciprocal correlations
generate a non-zero [fo] = [ATZ2m]/N due to Z2. This term leads to a cubic equation
in Eq. (@ and therefore has two potential effects. First, the non-zero 6> induces
deviations of the outliers from the eigenvalue \g of J. The direction of these deviations
is positive if excitation dominates (A\g = Jg — J; > 0) and negative if inhibition
dominates (Ao = Jg — Jr <0, Figs —H). Second, the cubic equation can have up to
three solutions and therefore potentially generates additional outliers, and in particular
complex conjugate ones (Fig ) Whether these additional outliers are observed
depends on the accuracy of the third-order approximation to the determinant lemma,
and on the norm of these outliers compared to the spectral radius (Fig {E).

We next examine the right- and left-eigenvectors m and n corresponding to the
dominant outlier. Analogous to the uncorrelated case in the networks with independent
connections, the individual entries of these vectors are accurately predicted by
perturbation theory and exhibit Gaussian-mixture statistics (Fig D). Unlike in the
uncorrelated case, reciprocal correlations now induce correlations between Am; and An;
(Fig ) Indeed, perturbation theory predicts that the first-order effects Am and An
of the random connectivity on m and n are respectively determined by Z and its
transpose ZT (Eq. @D) Reciprocal correlations between z;; and z;; directly lead to
correlations between Z and ZT and therefore a non-zero covariance o,,,, between
elements of m and n, that can be predicted by mean field theory (Fig , Eq. )
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Fig 4. Eigenvalues and dominant eigenvectors for different network connectivity with reciprocal motifs. (A)
Eigenvalue spectra of excitatory-inhibitory connectivity matrices J, with homogeneous reciprocal correlations n but
cell-type-dependent variance parameters ggpp : ggr : grg : 917 = 1.0:0.5:0.2: 0.8 and ggg = 0.3. Different colours
correspond to networks with different 1. The elliptical bulk shows 600 randomly sampled eigenvalues for one realization of the
random connectivity. Outlying eigenvalues are shown for 30 realizations of the random connectivity. The red arrow on the top
points to the unperturbed eigenvalue Ao of the mean connectivity J. Coloured circles are the eigenvalues predicted using
determinant lemma. (B) Comparison of the eigenvalues from the finite-size simulation with the predictions of the determinant
lemma as the reciprocal correlation 7 is increased. The coloured solid lines show the roots of the third-order polynomial in
Eq. . The light purple area indicates the empirical distribution of the dominant outlier, while the black dashed line is the
unperturbed eigenvalue Ag. The grey areas represent the eigenvalue bulk. (C) Scatter plot showing for each neuron i its entry
n; on the left eigenvector against its entry m; on the right eigenvector, with the eigenvectors corresponding to eigenvalue
outliers A that deviate from Ag. Red and blue colours represent respectively excitatory and inhibitory neurons. The white
dots and the dashed lines respectively indicate the means and covariances for each population. (D) Comparison between the
population covariance o, of the entries on the left and right connectivity eigenvectors to different populations (coloured
areas) and the predictions of perturbation theory (coloured lines, Eq. (95)). Other network parameters for (A-D):

Jg =20, Jy =12, Ng = 4N; = 1200. (E) Same as (A) for a connectivity matrix with homogeneous reciprocal correlations
7, the coloured circles are solutions considering k£ up to 2 and the coloured triangles are solutions considering k up to 4. Other
network parameters: Jg = 1.5, Jy =1.2, ggg : gpr : 915 : 917 = 1.0,0.5,0.2,0.8, ggg = 0.2 and Ny = 4N; = 1200. (F, G)
Same as (A, B) for an inhibition dominates connectivity matrix where J; = 2.0, Jg = 1.2, with homogeneous reciprocity n
and variance parameters g = 0.3. (H) Comparison of the overall covariance o, with the deviation A\ of the dominant
outlying eigenvalue from the unperturbed value \g.
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When the network has both homogeneous variance parameters and correlation
parameters, the excitatory and inhibitory populations have the same covariance

of =0l = (Jg— Jr)g*n/)\? (Figs , E, Eq. (95)). If the synaptic variances g,
differ across populations, the covariances o,,, are different for excitatory and inhibitory
populations even if the reciprocal correlations are uniform (Figs , D). The strength of
the overall covariance reflects the strength of the additional feedback loop due to
reciprocal correlations, and is therefore directly related to the deviations of the outlying
eigenvalue from the uncorrelated value Ao (Fig BJF).

These results directly extend to networks with heterogeneous reciprocal correlations
Mpg, D,q = F, 1. In particular, in this case finite-size simulations confirm the presence of
additional, complex conjugate outliers predicted by the cubic term in Eq. (coloured
circles containing outlier scatters at conjugate positions in Fig 3M). Moreover, the
covariances o = between the entries of low-rank connectivity vectors in this case differ
between the excitatory and inhibitory population (Figs , K, O, Q).

1.5 Approximating low-dimensional dynamics for
locally-defined connectivity.

In previous sections, we developed a rank-one approximation of locally-defined
excitatory-inhibitory connectivity. Here we use this approximation to describe the
resulting low-dimensional dynamics. We consider networks of rate units, where the
activation x; of unit 7 obeys

N

i(t) = =i (t) + Y Jiyd(y(t). (13)

j=1

Here ¢(x) = 1 4 tanh (xz — 6) is a positive transfer function, and for simplicity, we focus
on autonomous dynamics without external inputs. We start from a locally-defined
excitatory-inhibitory connectivity matrix, and compare the resulting activity with the
theoretical predictions of our rank-one approximation, for which the dynamics are
low-dimensional and analytically tractable. We first summarize the theoretical
predictions for those dynamics, and then examine the specific cases of independent and
reciprocally-correlated connectivity.

Recent works have showed that in networks with a rank R connectivity matrix, the
trajectories x(t) = {«;(¢) }i=1...v are confined to a low-dimensional subspace of the
N —dimensional space describing the activity of all units [30433]. In absence of external
inputs, this subspace is R-dimensional and spanned by the set of connectivity
eigenvectors m(") for r = 1... R, so that the trajectories can be parametrized as
X = Zle k,m") where k, is a collective latent variable representing activity along
m("”). For a rank-one (R = 1) connectivity corresponding to an approximation of our
locally-defined E-I network, the dynamics can therefore be represented by a single latent
variable k, so that the activation of unit ¢ is given by

zi(t) = kmy (14)
= km; + KAm;, (15)

where we inserted the expression for m; obtained from a first-order perturbation

(Eq. , @D) Note that since m; = 1, the first term in the r. h. s. of Eq.
corresponds to population-averaged activity, while the second term is the deviation of
the activity of unit ¢ from the population average. Inserting the values for Am;
obtained using specific realizations of random connectivity in Eq. @D, the rank-one
approximation provides predictions for the activity of single units in individual instances
of locally-defined networks. Moreover, the rank-one theory predicts that both the
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population-average and the standard deviation of activations in the network are
proportional to .
The values taken by the latent variable x can be determined by projecting Eq.

onto m and inserting Eq. (Methods Secs. [2.6.1} [2.6.2). This leads to a closed

equation for the dynamics of x(t):
= —K+ Z ap (ﬁp<¢(nmp, 112031,7)> + (¢ (k?, HQO'znp)>O'£mH>, (16)
p=E,I

where the brackets denote a Gaussian average (see Eq. (110)). The steady state then
obeys

R = Fmean(’{) + Fcov(/{/) (17)
where
Fmean(ﬁ) - apﬁp<¢(,€mpa KQJZPLP)>7
p=Et L, (18)
Foon(k) = (@' (KMP, K2 0pp) )OE, K.
p=E,I

The two terms in the r. h. s. of Eq. show that the contributions of recurrent
synaptic inputs to the latent dynamics £ come from two sources: (i) the population
means of the left and right connectivity eigenvectors nP and mP that contribute to
Frean(k) (Egs. (52)-(54)); (ii) the covariance o2, between the left and right
connectivity eigenvectors that contributes only to Fi,, (). In the low-rank
approximation of the locally-defined E-I connectivity, these two terms have distinct
origins: the mean comes from the independent components of the connectivity
(Egs. , ); while the covariance comes from reciprocal correlations between
connections (Egs. , ) We therefore next examine separately the effects on
dynamics of these two connectivity components.

1.5.1 Independently generated local connectivity

When synaptic connections are generated independently from a Gaussian distributions
based on the identities of pre- and post-synaptic populations, the rank-one
approximation of connectivity leads to uncorrelated left and right connectivity vectors n
and m, so that o2 =0 for p = E,I. In consequence, only the first term is present in
the r. h. s. of Eq. , and the fixed point of the latent dynamics is given by a
difference between excitatory and an inhibitory feedback (Eq. (114)):

k= Tp(0(k, K202%0)) — Ti{b (k. K20%1)). (19)

As long as the mean inhibition J; is strong enough to balance the mean excitation Jg,
Eq. predicts a single fixed point. As Jg is increased, positive feedback begins to
dominate and leads to a bifurcation to a bistable regime for the latent dynamic variable
* (Figs BA-C. 52 Appendi).

This bistability due to positive feedback is expected on the basis of mean
connectivity alone. Indeed replacing the connectivity matrix by its mean J is equivalent
to a rank-one approximation with m = m and n = n which lead to Eq. with
02, =0 for p= E,I. The additional first-order perturbation term in the rank-one
approximation (Egs. (8)), (9)) additionally takes into account fluctuations in the

connectivity, which leads to a non-zero o2, and modifies the fixed points predicted by
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Fig 5. Predicting low-dimensional dynamics using a rank-one approximation of networks with independent
Gaussian connectivity. (A) Fixed points of the latent variable  in the rank-one approximation. The lines show the
dynamics & as function of x, predicted by Eq. (solid line: Jg = 2.4; dashed line: Jg = 1.5). The intersections with y = 0
correspond to fixed points (filled dots: stable; unfilled dot: unstable). (B) Contribution of mean connectivity to the latent
dynamics, Fp,eqn (k) in Eq. , for two values of Jg. (C) Bifurcation diagram for increasing Jg: analytical predictions of
Eq. compared with simulations of the full network with locally-defined connectivity. Blue line: analytical prediction
including only the mean part of the connectivity (02,, = 0 in Eq. ); purple line: analytical prediction including the
first-order perturbation term in the rank-one approximation; gray: projection of simulated activity x onto the connectivity
vector m computed by perturbation theory (Eq. ) (D) Comparison between predictions and simulations for the activity
of individual units in a given realization of the random connectivity. For each unit 4, a dot shows the deviation Az; of its
steady-state activity from the population average, against its value Am; of the perturbed part of the connectivity vector m
(Eq. ) The low-rank theory predicts Az; = kAm;. Red and blue scatters show excitatory or inhibitory populations, each
for several values of Jg. Lines represent y = xx, where & is obtained from Eq. . Upper panels show the result in a
realization with a high fixed point, bottom panels show the result in a realization with a low fixed point. (E) Comparison
between the predictions (solid lines) and simulations (shaded areas) for the population-averaged variances of Az;. Shaded
areas show mean+std. Network parameters: Ny = 4N; = 1200, J; = 0.6, gpg : 9e1 : 915 : gr7 = 1.0:0.5:0.2: 0.8 and
gee = 0.8. The transfer function ¢ has parameter 6 = 1.5.

Eq. (19). In consequence, the bifurcation to bistability takes place at higher values of
JE than predicted from mean connectivity alone (purple lines compared to blue lines in
Fig )

More importantly, we find that the first-order perturbation in the rank-one
approximation accurately predicts the firing rates of individual neurons for specific
instances of the random, locally-defined connectivity (Fig )7 and therefore the
variance of the steady state of population dynamics AP. In particular, cell-type
dependent variances in the synaptic connectivity, lead to distinct variances AL and AZ
for excitatory and inhibitory populations (Egs. , , Fig )

Note that the independently generated local connectivity can be treated analytically
without resorting to a rank-one approximation, by using a different variant of
mean-field theory originally developed for randomly connected networks. [30,52]. That
theory is not perturbative, and takes into account an additional term in the variance
(see Methods Sec. [2.6.3| and [S3 Appendix]| for more details). However, in contrast to the
rank-one approximation, it does not predict the activity of individual neurons, and is
challenging to extend beyond independent random connectivity.
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Fig 6. Predicting low-dimensional dynamics using a rank-one approximation of networks with homogeneous
reciprocal motifs. (A) Influence of reciprocal correlations on fixed points of the latent variable « in the rank-one

approximation. The lines show the dynamics £ as function of x, predicted by Eq. (solid line: n = 1; dashed line: n = 0).

The intersections with y = 0 correspond to fixed points (filled dots: stable; unfilled dot: unstable). (B) Comparison of the
contributions of mean connectivity Fyeqn (k) and covariance Fi,, (k) to the latent dynamics of k (Eq. (18)) for n =1. (C)
Bifurcation diagram for increasing n at fixed Jg. Solid purple lines: analytical predictions of Eqgs. , (18); gray areas:
projection of simulated activity x onto the connectivity vector m computed by perturbation theory (Eq. (102))). (D)
Comparison between predictions and simulations for the activity of individual units in a given realization of the random
connectivity. For each unit i, a dot shows the deviation Az; of its steady-state activity from the population average, against
its value Am; of the perturbed part of the connectivity vector m (Eq. ) The low-rank theory predicts Ax; = kAm;. Red
and blue scatters show excitatory or inhibitory populations, each for two values of 7. Lines represent y = kx, where & is
obtained from Egs. , . Upper panels show the result in a realization with a high fixed point, bottom panels show the
result in a realization with a low fixed point. (E) Comparison between the predictions (solid lines, Eq. ) and simulations
(shaded areas) for the population-averaged variances of Az;. Shaded areas show mean+tstd. Network parameters:

Ng =4N; =1200, Jg =19, J; =0.6, ggg : 9pr : 915 : 911 = 1.0: 0.5: 0.2 : 0.8 and ggg = 0.8. The transfer function ¢ has
parameter # = 1.5.

1.5.2 Reciprocal motifs.

We next turn to the predictions of the rank-one approximation for dynamics resulting
from locally-defined connectivity with reciprocal motifs. In this case, the additional
reciprocal correlations in the random part of the connectivity lead to a non-zero
covariance o,,, between the connectivity vectors n and m in the rank-one
approximation (Egs. , ) This covariance in turn generates an additional
feedback component in the dynamics of the latent variable, the second term in the

r. h.s. of Eq. .

Specifically, positive reciprocal correlations combined with excitation-dominated
connectivity enhance positive feedback with respect to mean connectivity alone. As a
result, progressively increasing the reciprocal correlations can therefore induce a
bifurcation to bistability, even if the mean excitation is not sufficient by itself to support
two stable states (Figs @A—C). This is a major novel effect of reciprocal motifs on
collective dynamics. As in the case of independent connectivity, we moreover found that
the perturbative term in the rank-one approximation correctly predicts the activity of
individual neurons in specific realizations of the connectivity (Fig[6D), and therefore
also the cell-type dependent variances of activity (Fig @E)
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Fig 7. Predictions for low-dimensional dynamics using a rank-one approximation of networks with
non-homogeneous and anti-symmetric reciprocal motifs. (A-D) Fixed points of latent dynamics in networks with
heterogeneous, cell-type-dependent reciprocal correlations: ngp = ng; = —nyr. Network parameters: Ng = 4Ny = 1200,
9eE 9E1 - g1E g9 = 1.0:05:0.2:0.8, ggg = 0.8, Jg = 1.9 and J; = 0.6. (E-H) Fixed points of latent dynamics in
networks with homogeneously anti-symmetric motifs, 7, = n € [—1,0]. Network parameters: Ny = 4N; = 1200,

9eE 91 - 91 - 911 = 1.0:0.5:0.2:0.8, ggg = 0.8, Jg = 2.2 and J; = 0.6. In C and F, gray areas show projections of
simulated activity x onto the connectivity vector m computed by perturbation theory (Eq. ), shaded areas show

mean-+tstd.

More generally, our rank-one approximation allows us to describe the latent
dynamics when the degree of reciprocal correlation depends across the pre- and
post-synaptic populations (Results Sec. . Such heterogeneity in reciprocal
correlations can enhance different types of feedback. For example, antisymmetric
connectivity within inhibitory populations (n;; < 0) disinhibits excitatory population
and thus facilitates bistable transitions (Figs[7A-C) compared to networks with
homogeneous reciprocal correlations. In contrast, excitation-dominated connectivity
with homogeneous negative reciprocity (1 < 0) generate negative feedback and therefore
suppress the global dynamics from bistable state to quiescent (Figs —F).

Importantly, describing the role of reciprocal correlations on latent dynamics relies
on our global low-rank approximation of locally-defined connectivity. In particular, the
effects of such correlations cannot be captured by considering only mean connectivity
and population-averaged activity (first term in the r. h. s. of Eq. ) Moreover,
including reciprocal correlations in classical mean-field approaches to randomly
connected networks is technically challenging [18].

1.6 Extension: E-I networks with sparse connectivity.

In previous sections, we examined locally-defined connectivity generated using Gaussian
distributions of individual synaptic weights (function f?¢ in Egs. (I)). Our results for
the low-rank approximation of locally-defined connectivity are however independent of
the precise form of the distribution fP?. In particular, our finding that the resulting
low-rank structure obeys Gaussian-mixture statistics is universal, in the sense that it is

valid for any distribution fP? for which the central limit theorem holds (see Discussion).

To illustrate this universality, here we turn to networks with sparse connectivity,
generated from Bernoulli distributions fP? taking values 0 and A, (where A, = Ap, A;
refer to strengths of excitatory and inhibitory connections), with a uniform fraction ¢ of
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Fig 8. Rank-one approximation and predicted low-dimensional dynamics for sparse excitatory-inhibitory
networks. (A) Left: Comparison of the predicted eigenvalue outlier \g = ¢(NgAg + N1 Aj) (black line) with finite-size
simulations (red area shows mean-+tstd for 30 realizations). The gray area represents the area covered by the eigenvalue bulk.
Right: example spectrum of one realization of connectivity matrix with E/I ratio Ag/A; = 0.33, and the radius r,; of the
eigenvalue bulk computed from the statistically equivalent Gaussian connectivity (see . (B) Scatter plot showing
for each neuron i its entry n; on the left eigenvector against its entry m; on the right eigenvector. Red and blue colours
represent respectively excitatory and inhibitory neurons. The white dots and the dash lines respectively indicate the means
and covariances for each population obtained from simulations. For visualization purposes, the z— and y-axis are scaled
unequally. (C) Comparison between eigenvector entries obtained from direct eigen-decomposition of J with predictions of
perturbation theory (Egs. , @) (D) Bifurcation diagram for increasing the ratio Ag/A;: analytical predictions of

Eq. compared with simulations of the full network with locally generated sparse connectivity. Purple line: analytical
prediction including the first-order perturbation term in the rank-one approximation; gray: projection of simulated activity
onto the connectivity vector m computed by perturbation theory Eq. . (E) Comparison between the predictions (solid
lines) and simulations (shaded areas) for the population-averaged variances of Ax;. Shaded areas show mean+tstd. (F)
Comparison between predictions and simulations for the activity of individual units in a given realization of the sparse
connectivity. For each unit 4, a dot shows the deviation Ax; of the steady-state activity from the population average, against
the corresponding value Am; of the perturbed part of the connectivity vector m (Eq. ) The low-rank theory predicts
Az; = kAm;. Red and blue scatters show excitatory or inhibitory populations, each for two values of the ratio Ag/A;. Lines
represent y = kx, where x is obtained from Egs. , . Upper panels show the result in a realization with a high fixed
point, bottom panels show the result in a realization with a low fixed point. The gray vertical dashed line in A left, D, E
correspond to the critical point ¢ at which the absolute value of the outlier is equal to the radius of the eigenvalue bulk.
Network parameters: Ng = 4N; = 800, ¢ = 0.3, A = 0.025. The transfer function ¢ has parameter 6 = 1.5.
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non-zero connections (see Eq. ) The statistics of the corresponding rank-one
approximation are fully determined by the mean, variance and covariance of synaptic
weights in the excitatory and inhibitory populations. Here we compare the predictions
of our perturbative approximation with direct simulations of full-rank networks with
locally-defined connectivity. We first consider independently generated connectivity, and
then turn to reciprocal motifs.

1.6.1 Independently generated sparse connectivity.

For networks with independently generated sparse connectivity, the mean and variance
of individual synaptic weights are given by cA, and ¢(1 — c)A?I, where ¢ = FE, I refers to
the population of the presynaptic neuron. Previous works have shown that such sparse
networks have a random, circularly distributed bulk of random eigenvalues with a radius
r4 determined by the overall variance of synaptic weights (Eq. (148), Fig ) [53454], as
expected from the universality theorem for random matrices [49]. The overall mean of
the synaptic weights instead determines the mean outlying eigenvalue (Fig[SJA). In
sparse networks, the main novelty with respect to the Gaussian case is that the mean
and variance of synaptic weights are not independent parameters, but are instead both
set by the synaptic couplings Ar and A; as well as the network’s sparsity c. In
consequence, varying these couplings changes both the radius of the bulk and the
outlying eigenvalue, and can lead to intersections where the outliers dip into the bulk
(see for details).

As long as the outlier lies outside of the eigenvalue bulk, our perturbative
approximation Eq. predicts well the individual entries of the right- and
left-eigenvectors corresponding to the outlier from the fluctuation matrix Z (Fig )
As expected, the resulting statistics of eigenvectors entries are well described by a
Gaussian-mixture distribution with parameters fully determined by the mean and
variance of the synaptic weights (Fig )

Our predictions for the low-dimensional dynamics based on the rank-one
approximation therefore directly extend to sparse networks. Comparing with direct
simulations, we found that Eq. predicts well the global latent variable x obtained

by projecting the activity x onto the approximated rank-one eigenvector m (Eq. (102)).

As the E/I ratio is increased, positive feedback increases, and the latent variable s
undergoes a transition from a single fixed point to two bistable states (Fig )
For individual realizations of the sparse connectivity, the rank-one approximation

x = rm predicts well the activation z; of individual neurons in the simulations (Fig[8F).

From the statistics of the right eigenvector m (Eq. ), our analysis moreover predicts
the heterogeneity of activity in terms of population-averaged variances Af/ ! (Fig )
This heterogeneity is identical in excitatory and inhibitory populations, as their right
eigenvectors have identical fluctuations (Figs [BC, E).

1.6.2 Sparse EI networks with reciprocal motifs.

For sparse E-I networks, we generate reciprocal motifs by introducing a fraction p,, of
reciprocally connected pairs of neurons. Together with the sparsity ¢ and the synaptic
strengths, the parameter p,, determines the cell-type dependent reciprocal correlation
Npg (Methods Sec. Eqgs. , 7 Fig |§|A)

We first examine the effect of the reciprocal motifs on the statistical properties of
the eigenvalues and eigenvectors. The spectrum still consists of continuous eigenvalues
and a discrete outlier. Since in the independent case the outlier depends only on Ag;
and sparsity ¢, here we fix these two variables but increase ngg = —ng; while keeping
nrr constant. As in the case of dense, Gaussian networks, the outlier increases with the
increasing reciprocal correlation and deviates from the outlier of the corresponding

August 25, 2022

18 /47

390

391

392

393

394

395

396

397

398

399

400

401

402

403

405

406

407

408

410

411

412

413

415

416

417

418

419

420

421

423

424

425

427

428

429

430

431

432

433

434

435

436

438


https://doi.org/10.1101/2022.08.25.505122
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.25.505122; this version posted August 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B D H

@ EE=O7 MEE=0TT_ nl nf\ Excitatory Inhibitory
— 2t 3 3.0 3.0
Mmee i [“i 2
(2/3).(___. \g 5 - 1@ ” ';; TIEE: 1.0 ——
N[y, L “0+5- .0 NEE=0.64
C. -
(4) . . =1 VRS X |
2 -30 0 20 A%
E mee=1.0 -
=z c 4 20 8
1 5.3 o E I 7 i DI
— A N N N 2 K <
= e | £ 9 / ] ‘
E [ > o g€ |- /3 05 :
N A ' ¥ b3 / =
L e 2 2% 20
-1 “ 33 k -
%R(A) Eigenvector entries 15 / 15-15 / 15
€
F 5 -05 -0.5
v 3 Tnm Am,
s |
§ 1
S
8 AE o
< ol
0 Vi
; G W
]
,-\1'5 € 25 E 1
= e . — &
S B <1 T
S < 1 > =
& ’\ -8 ] A£ 7
-1.5 = 00 L /

i 0
-043 NEE 1.0 -043 NEE 1.0 -043 NEE 1.0

Fig 9. Characterizing connectivity statistical properties and low-dimensional dynamics for the sparse
network with reciprocal motifs. (A) Schematics of a sparse EI network with four forms of paired connections. White and
black rectangles represent the non-zero excitatory and inhibitory sparse connections. (B) Eigenvalue spectrum of the sparse
connectivity (upper panel) and from the equivalent Gaussian connectivity (bottom panel) with reciprocal motifs.
Cell-type-dependent reciprocal correlations are ngg = 0.71, ngy = —0.71, n;;r = —0.43 in both connectivity matrices,
continuous eigenvalue bulks show eigenvalues for one realization of the network connectivity. Red arrows point to the
unperturbed eigenvalue \g. Outlying eigenvalues are shown for 30 realizations of the network connectivity. Coloured circles
are the eigenvalues predicted using determinant lemma. (C) Comparison of the eigenvalues from the finite-size simulation of
the sparse connectivity, with the predictions of the determinant lemma as progressively increasing the reciprocal correlation
nee (—ner). The coloured solid lines show the roots of the third-order polynomial in Eq. @) The purple area indicates the
empirical distribution of the dominant outlier, while the black dashed line is the eigenvalue Ay of the corresponding
independent sparse connectivity matrix (Eq. ) The gray areas correspond to the areas covered by the eigenvalue bulk.
(D) Scatter plot showing for each neuron i its entry n; on the left eigenvector against its entry m; on the right eigenvector.
Red and blue colours represent respectively excitatory and inhibitory neurons. The white dots indicate the means for each
population obtained from simulations. For visualization purposes, the z- and y-axis are scaled unequally. (E) Comparison
between eigenvector entries obtained from direct eigen-decomposition of J with predictions of perturbation theory

(Egs. , @D) (F) Comparison between the population covariance o, of the entries on the left and right connectivity
eigenvectors to different populations (coloured areas) and the predictions of perturbation theory (coloured lines, Eq. @)
(G) Bifurcation diagram for increasing the reciprocal correlation nggr (—ngr): analytical predictions of Eq. compared
with simulations of the full network with locally generated sparse connectivity and reciprocal motifs. Purple line: analytical
prediction including the first-order perturbation term in the rank-one approximation; gray: projection of simulated activity
onto the connectivity vector m computed by perturbation theory Eq. (102). (H) Comparison between predictions and
simulations for the activity of individual units in a given realization of the sparse connectivity. For each unit 4, a dot show the
deviation Ax; of the steady-state activity from the population average, against its value Am; of the perturbed part of the
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Fig 9. (Continued from previous page.) connectivity vector m (Eq. ) The low-rank theory predicts Az; = kAm;. Red
and blue scatters show excitatory or inhibitory populations, eachfor two values of the reciprocal correlation ngg. Lines
represent y = Kz, where x is obtained from Egs. —. Upper panels show the result in a realization with a high fixed
point, bottom panels show the result in a realization with a low fixed point. (I) Comparison between the predictions (solid
lines) and simulations (shaded areas) from the population-averaged variances of Ax;, shaded areas show mean+std. In

C, F, G, I, the reciprocal correlations ngg = —ng progressively increase from —0.43 to 1.0 while keeping n;; = —0.43
constant ( ppg = per increase from 0 to 1 and py; = 0 is fixed). Network parameters: Ny = 4N; = 800, ¢ = 0.3, Ag = 0.023,
Ag/Ar = 0.3. The transfer function ¢ has parameter § = 1.5.

independent sparse connectivity matrix (Figs 7 C). Moreover, in the large network
limit, we find that if means, variances, and reciprocal correlations are identical, dense
Gaussian connectivity leads to the same eigenvalue spectrum as the sparse connectivity
(Methods Secs. Eqgs. , ) We furthermore mathematically predict two
additional conjugate eigenvalue outliers generated by the reciprocal connections in the
sparse case (Eqgs. , , , Fig )

As for uncorrelated connectivity, perturbation theory predicts the individual left and
right eigenvector entries, which altogether follow Gaussian statistics as expected
(Figs @D, E). Importantly, reciprocal correlations induce a non-zero covariance o,
between the entries m; and n; of the right and left eigenvectors (Eq. , Fig E[F)

Finally, we examine the population dynamics in the sparse network with reciprocal
motifs using the low-rank approximation derived above. The reciprocal motifs in the
example network generate an overall positive feedback. Therefore, gradually increasing
the reciprocal correlation ngpg (—ngr) in the example network induces a bifurcation into
bistability (Eq. , Fig Ep) Analogous to the predictions of individual eigenvector
entries, the low-rank approximation gives analytical predictions for the activity of

individual neurons in specific connectivity realizations (Fig |§|H)7 and hence the cell-type
dependent variances of neuronal activation A1 (Fig|9) obtained from finite-size

simulations of the original sparse networks.

Discussion

In this work, we unified two different descriptions of connectivity in multi-population
networks and thereby connected two broad classes of models. Starting from local
statistics of synaptic weights, we approximated the resulting connectivity matrix in
terms of a low-rank structure. The obtained, approximate low-rank network model then
allowed us to determine the influence of the local connectivity motifs on the global
low-dimensional dynamics.

A key ingredient in our approach is a low-rank approximation of the locally-defined
connectivity matrix. Approximating an arbitrary full-rank matrix by a rank-R one is a
classical problem in numerical analysis, for which a number of different methods are
available depending on the objective of approximation [55]. The most common method
is to perform a singular value decomposition (SVD), and keep the top R terms [56].
This method minimizes the Frobenious norm of the difference between the original
matrix and its low-rank approximation. Our goal in this study was however to obtain a
low-rank approximation that preserves the dominant eigenvalues of the original matrix,
as these eigenvalues determine the autonomous dynamics in the network. An SVD-based

approximation preserves the top singular values, but in general not the top eigenvalues.

We therefore opted for an approximation based on truncated eigen-decomposition.

When studying input-driven and transient dynamics, different methods for low-rank

approximation may be more appropriate, and are a topic of active research [57-61]
To perform the eigen-decomposition of excitatory-inhibitory connectivity matrices,
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we leveraged the fact that they can be expressed as a sum of a block-like deterministic
low-rank matrix and a full-rank random matrix with zero-mean [40]. The
eigen-spectrum of such matrices in general consists of a continuously-distributed bulk
and discrete outliers [44]|45]. While a number of works have examined the bulk of the
eigenvalue spectrum for random matrices [11,/1832,/44,49,/52,/62,/63], the outliers, and in
particular the corresponding eigenvectors have to our knowledge received less attention.
The main technical novelty in this work is the use of matrix perturbation theory [47}64]
to approximate the eigenvectors corresponding to the outliers in the eigenspectrum of
the locally-defined connectivity matrices. A key output of this approach is the finding
that entries of the left- and right-eigenvectors follow multivariate Gaussian distributions,
the statistics of which depend on the population the neurons belong to. This result
provides a general theoretical mapping from locally-defined multi-population models to
Gaussian-mixture low-rank networks [31,/33]. It however holds only as long as the
distribution of synaptic weights satisfies the assumptions of the central limit theorem.
This in particular excludes heavy tailed distributions often found in experimental
studies |11/65].

In the networks we considered, the non-random structure in connectivity comes only
from the multi-population organization. More specifically, the low-rank skeleton of the
locally-defined connectivity matrix is fully specified by the mean synaptic weights
between different populations (Eq. ) This mean connectivity structure largely
controls the outlying eigenvalue, and the average values of the corresponding eigenvector
entries. The random part of the connectivity and reciprocal motifs can modify the
outlying eigenvalue, and add heterogeneity as well as correlations to this underlying
structure. Our perturbative theory allows us to quantify these effects and predict
dynamics on a single-neuron basis. This approach can be directly extended to networks
with additional structure, in which the low-rank skeleton is not solely determined by the
mean connectivity but possibly by more general patterns.

A key insight from our study is a general relationship between reciprocal motifs in
locally-defined connectivity and overlaps among connectivity vectors in low-rank
networks. Indeed, we have shown that correlations between reciprocal synaptic weights
generate overlaps beyond the mean in the corresponding low-rank approximation
(Eq. ) Conversely, zero-mean overlaps between connectivity vectors in a low-rank
model necessarily imply non-vanishing reciprocal correlations (Eq. and
. Since overlaps between connectivity vectors determine the autonomous
recurrent dynamics in low-rank networks, this relationship allowed us to quantify how
reciprocal connectivity motifs contribute to network dynamics.

Local statistics of synaptic connectivity are believed to play an important role in the
global network dynamics [1,{17,[32,[62]. Our study, provides a mathematical theory that
relates the local connectivity statistics to global recurrent dynamics through a low-rank
approximation. This computational framework is not restricted to the reciprocal motifs
that we have emphasized in this work, but can be extended to various forms of local
connectivity motifs [10]. As a result, our framework can be applied more broadly to
study experimentally-obtained connectivity databases and connectivity consisting of
different types of motifs. [6,|7,[15].
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Table 1. List of notations.

Notation | Description

i, j Single neuron indices

D, q Neuron population indices

ay, Fraction of neurons belonging to population p

qu Mean synaptic weights between populations p, ¢

JE/1 Re-scaled mean excitatory/inhibitory synaptic weights

O Standard deviation of the synaptic weights between populations p, ¢
9pq Re-scaled standard deviation of the synaptic weights between populations p, ¢
Tpg Reciprocal correlation of connectivity weights between populations p, g
Ap/r Excitatory/inhibitory synaptic weights in the sparse network

c Homogeneous sparsity of the sparse network, c,; = ¢

02, 02, | Variances of components on connectivity vectors m? and n?

ol Covariance between connectivity vectors m? and n”

ub, AP Population-averaged mean and variance of activation

2 Materials and methods

Throughout this study, we consider recurrent networks of N neurons and denote by J
the recurrent connectivity matrix, where J;; is the synaptic strength of the connection
from neuron j to neuron 1.

2.1 Locally-defined multi-population connectivity

In this section, we introduce a first class of connectivity models, in which the synaptic
couplings are generated based on local statistics determined by the identity of pre- and
post-synaptic neurons. The N neurons in the network are organized in P populations,
where population p has IV, neurons. Denoting by p and ¢ the populations neurons i and
J belong to, the value of the synaptic coupling J;; is drawn randomly from a

distribution in which statistics depend on the pre- and postsynaptic population ¢ and p.

The full connectivity matrix J therefore has a block structure, in the sense that all
connections within the same block share identical statistics.

We examine two variants of this model class: (1) independent random
connectivity [52]; (2) connectivity with reciprocal motifs [10,[66]. In each case, we
examine two specific examples of distributions of synaptic strengths, Gaussian, and
Sparse distributions.

2.1.1 Independent random connectivity

For networks with independent random connectivity, the recurrent connections J;; are
sampled independently for each (i, j) pair from

PI‘Ob(Jij = J) = qu(J), (20)

where fP? denotes a probability density function, and g, p are the pre- and post-synaptic
populations. Separating the mean and random components, for an arbitrary
distribution Eq. can be re-expressed as

quj = qu + zij. (21)
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Here qu is the mean value of the connections from population ¢ to population p, and
z;j is the remaining zero-mean random part of each connection. Defining J as the

N x N deterministic matrix consisting of mean values, and Z as the noise matrix
consisting of the random parts z;;, the connectivity matrix J can be written as

J=J+7Z (22)

The matrix J is of size N x N and consists of P2 blocks with identical values within
each block. The rank of J is therefore at most P [40]. In contrast, the noise matrix Z is
in general of rank N. The full connectivity matrix J can then be interpreted as a rank-P

deterministic matrix perturbed by the random matrix Z with block-dependent statistics.

In the case of Gaussian connectivity, connections from population ¢ to population p
are sampled independently from a Gaussian distribution.

frJ) :N(quaggpq)a (23)
with variances )
g

T = N (24)

The noise matrix Z therefore has block-structured variances gqu /N that we specify
by a P x P matrix G,;,:

9%1/ N Q%P/ N
Gn=| - (25)
91291/ N 91231:’/ N
In the case of sparse connectivity, J/' is a Bernoulli random variable. The
connectivity weights J/' from population ¢ to population p are non-zero with

probability c,q and zero otherwise. All non-zero connection weights within a block take
the same value A,,, so that analogously to Eq. 7 the sparse connectivity is defined as

c for J=A
qu(Jij — J) — Pq Pa> (26)
1—-cpq forJ=0.
The mean connectivity weight between populations p, ¢ is then
Jpq = CpgApg- (27)
and the variance of the remaining random part z;; is
Ug,,q = [Z?j]ieNpJGNq =(1- Cpq)cqu;%qa (28)

to simplify the parameters in sparse networks, we assume that A,, depend only on
presynaptic population ¢, and that the connection probability c,, is a homogeneous
network parameter independent of p, q that we denote by c.

2.1.2 Reciprocal connectivity motifs

To go beyond independent connectivity, we consider pairwise motifs, i. e. correlations
between reciprocal pairs of weights J;; and Jj;;. We quantify this correlation using the
normalized covariance n;; defined as

o (Ui = [T (i — [Jji])]
v = (o ) 29
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where [-] denotes the average over the full connectivity distribution. Reciprocal
connections are fully independent when 7;; = 0 for all 4, j, fully symmetric when 7;; = 1
and fully anti-symmetric when 7n;; = —1.

Our key assumption is that the statistics of connectivity are block-like, implying that
all pairs of connections between populations p, g share the same correlation coefficient
Tpg, SO that the statistics are defined by a P x P reciprocal correlation matrix n,,

i - P
Ny = ) (30)
ne1 -+ 7NPP

where, by definition 7, = 7gp.

For Gaussian statistics, we generate connectivity matrices with a specified set of 7,4
in the following manner. We first generate an N x N matrix Y’ with entries
independently sampled from the normal distribution A'(0,1). We then form a linear
combination Y’ and its transpose Y'T to generate a matrix Y with reciprocal
correlations 7,4. Specifically, we set

Yii = Yog¥i; + V1= 1o (31)
with 7,y = V1 = V1 =12, /2 for 1y, > 0, and =V 1 — V1 —n2 /2 for n,, < 0. Finally,

we scale each block by ¢,q/ VN to obtain the random connectivity component Z, which
is added to the mean connectivity component J to finally obtain the full connectivity
matrix J.

For sparse networks, we first generate a connectivity matrix without reciprocal
correlations. We then consider the upper triangle of this matrix, randomly select a
fraction p,q of the non-zero connections J;; with value A, and set their reciprocal
connectivity weights Jj; to have a non-zero weight A,. For the remaining 1 — p,,
fraction of non-zero connections in the upper triangle, we set the reciprocal connectivity
weights to zero. The corresponding cell-type dependent reciprocal correlations for the
multi-population sparse connectivity are then

ApAq(ppq — ©)
"’/ = y p’ q = 1 e ‘P7 32
" Ay A=) 32
where ¢ is the homogeneous connection probability (Table. .

2.1.3 Excitatory-inhibitory networks

In this work, we specifically focus on excitatory-inhibitory networks composed of P = 2
populations, one excitatory and one inhibitory, with respectively Ng and N; neurons.
We denote the two populations by indices F and I, so that there are four types of
connections: FE, EI, IFE and I1. Based on the usual anatomical estimates for
neocortex, we choose Ng = 0.8N, N;y = 0.2N, and further define ap = Ng/N,

ay = Nj/N, as the fractions of excitatory and inhibitory neurons.

For Gaussian networks, we enforce Dale’s law only on the mean, i. e. we set Jgg and
Jrg to be positive, while Jg; and J;; are negative. The N x N mean connectivity
matrix J is therefore in general rank-two. To further simplify the setting, we follow [43],
and consider networks where the mean weights of all excitatory connections, and
respectively all inhibitory connections, are equal and set by parameters Jg and J;:

Jeg = Jig=Jg/Ng (33)
Jpr = Ji=-Ji/Nr. (34)
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Under these additional assumptions, the entries in the first Ng columns of the mean
connectivity matrix J have the same positive weight Jz/Ng, and the entries in the
following Ny columns have the same negative weight —J; /Ny, so that J becomes rank
one.

We however allow the variances ggq /N and reciprocal correlations 7,, to depend on
both the pre- and post-synaptic population, so that the corresponding parameters form
2 X 2 matrices

2 2
9ee/N  g5/N NEE 7NEI
G, = : - 35

" 9ie/N  97;/N hm e N1 (35)

where ng;r = k.

For sparse excitatory-inhibitory networks, all non-zero excitatory (resp. inhibitory)
synaptic weights are equal and positive, Ag > 0 (resp. A; < 0). From Egs. (27),
the mean and the variance of the synaptic weights in the sparse network can be
matched to the parameters of the Gaussian model:

J

Ni:CAEa g%E/N:g%E/N:A%‘C(l_C)v

' (36)
_FII = cAy, 912E1/N = Q%I/N = A%C(l —c),

In particular, for the sparse networks with pairwise reciprocal motifs, on top of the
matching means and variances, the cell-type dependent reciprocal correlations satisfy

(Ba. (32))

PEE — C PEI — C prr — ¢
Neg = —F— MNEI=——F", I =
1—c 1—c 1—c

. (37)

2.2 Globally-defined connectivity: Gaussian-mixture low-rank
networks

In this section, we introduce a second broad class of connectivity models,
Gaussian-mixture low-rank networks [31,33], in which the connectivity matrix is
generated from a global statistics of vectors over neurons.

Low-rank networks are a class of recurrent neural networks in which the connectivity
matrix J is restricted to be of rank R, assumed to be much smaller than the number of
neurons N. Such a connectivity matrix can be expressed as a sum of R unit rank terms

R
1
- — (GOINC)
J= TE_lm n'"'T. (38)

We refer to n(™ = {nf.”}i:l___N and m(") = {ml(.T)}izl,__N as the r-th left and right
connectivity vectors. The 2R connectivity vectors together fully specify the connectivity
matrix. Each neuron i is then characterized by its set of 2R entries

(mgl)7 ngl), . ,ml(-R), nER)) on these vectors. For unit-rank networks, the main focus of
this study, the connectivity matrix is simply given by the outer product of a pair of

connectivity vectors m and n:
1 T
Jr1 = wmn'. (39)

Gaussian-mixture low-rank networks are a subset of the class of low-rank networks,
for which the entries of the connectivity vectors are drawn independently for each
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neuron from a mixture of Gaussians distribution [31]. Specifically, a fraction «, of
neurons is assigned to a population p, and within each population, the entries on the
connectivity vectors are generated from a given 2R-dimensional Gaussian distribution.
For a unit-rank network, for a neuron 7 in the population p, the connectivity parameters
(m4,n;) are generated from a bi-variate Gaussian distribution with mean (m?,n?),
variance (02,,, 02,) and covariance o2, .

For any unit-rank matrix of the form in Eq. , the only potentially non-zero
eigenvalue is given by A = nTm/N, and the corresponding right (resp. left) eigenvector
is m (resp. n). For a Gaussian-mixture model, in the large N limit this eigenvalue
becomes

P
A=Y "oy, (MPRP +0h,,) (40)

p=1

Starting from a Gaussian-mixture low-rank model in which the connectivity is
globally defined, it is straightforward to compute the resulting local statistics of the
connectivity, i. e. the mean J,, variance 02,,q (Methods Sec. [2.1.1)) and reciprocal

correlation 7,4 (Methods Sec. [2.1.2)) as:

- 1
Jpq - ﬁmpﬁq,

1 _ _
ogpq =33 (J?np ()% + (mP)?%0%, + ofnpaiq), (41)
(gg’ﬂlmqﬁq + O’?E’frbmpﬁp + 0-51771/0-’?1’”1)

Mlpq = .
V (02 (19)2 + (77)202, + 02,0%0) (030 (77)2 + ()22, + 02,002

The expression for the local statistics of network connectivity using rank-R connectivity

is in 55 Appendig

2.3 Approximating locally-defined connectivity with
Gaussian-mixture low-rank models

In this section, we describe our general approach for approximating an arbitrary
connectivity matrix J with a rank-R matrix Jg. We then show that for J corresponding
to locally-defined multi-population connectivity (Methods Sec. , the resulting
approximation Jg in general obeys Gaussian-mixture low-rank statistics as defined in
Methods Sec. 221

To approximate a full rank matrix J with a rank-R matrix Jg, we use truncated
eigen-decomposition, which preserves the dominant eigenvalues. We start from the full
eigen-decomposition of J:

N
J=> AR,L], (42)
r=1

where A, is the r-th eigenvalue of J (ordered by decreasing absolute value), while R,
and L, are the corresponding right- and left-eigenvectors that obey

JR, =R\, (43)
L1J =\ L] (44)
L'R, = 6, (45)

In the following, we constrain the right eigenvectors R, to be of unit norm, while the
normalization of the left eigenvector is determined by Eq. .
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We obtain a rank-R approximation Jg of J by keeping the first R terms in Eq. :

R
Jr=> AR,LL. (46)

r=1

The R non-trivial eigenvalues and eigenvectors of Jp therefore correspond to the first R
eigenvalues and eigenvectors of J. We then set

m" = VNR, (47)
n = VN)L, (48)

to have the same normalization for Jr as in Eq. .

To obtain a low-rank approximation for a connectivity matrix J generated from
locally-defined statistics defined in Methods Sec. we first determine its dominant
eigenvalues and eigenvectors. Starting from Eq. , this problem becomes equivalent
to finding the dominant eigenvalues and eigenvectors of a low-rank matrix J perturbed
by a random matrix Z with block-like statistics. We compute the statistics of these
eigenvalues and eigenvectors by combining the Matrix’s Determinant Lemma, the
Matrix Perturbation Theory and the Central Limit Theorem. Below we summarize this
general approach before applying it to different specific cases in Methods Secs. 2:4] 2.5]

We focus on the case where J is unit rank as in the simplified excitatory-inhibitory
network introduced in Methods Sec. In that case, the unique non-zero eigenvalue
of J is

X =Jg—Jg, (49)

and the corresponding left and right eigenvectors are

E_ \/NJE _ \/NJI :|T
Ng(Jg—Jr) 77 Ne(Jg—Jp)’ 17 (50)
R— [ T
VN VN
J can then be rewritten as 1
J= NﬁlﬁT, (51)

where the structure vectors m and n are uniquely defined by rescaling the left and right
eigenvectors L, R of J (Eq. ) as in Eq. , so that

m; = 1, i=1...N (52)
g = ﬁE:ﬁJE i € Ng (53)
(3 NE

N
ni = ﬁI:—EJI i € Ny, (54)

The full connectivity matrix J can be then expressed as
J=mnT/N + Z. (55)

FEigenvalues. For a random matrix Z with independently distributed elements, the
eigenvalues are distributed on a disk of radius r, centred at the origin in the complex
plane [11}{44,)50]. Correlations between elements in general modify the shape of this
continuous spectrum [18}/67]. In contrast, adding a low-rank component typically
induces isolated eigenvalues outside the continuous part of the spectrum [44}45]. To
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obtain a low-rank approximation of the full matrix, we focus on determining these
outliers when they exist.
All eigenvalues A of J satisfy the characteristic equation

det (J —IX) =0. (56)
To determine the outlying eigenvalues of a random connectivity with low-rank structure,
we apply the matrix determinant lemma to the 1. h. s. of the characteristic
equation [32]:
1 __ 1_ 1
det NmnT +Z-I\|=(1+ NnT (Z—-1IN)" "m|det(Z—-1N). (57)

As outliers by definition cannot be eigenvalues of Z, they correspond to zeros of the first
term in the r. h. s. , and therefore satisfy:

1 L
A= N0 (1-Z/)) " 'm. (58)

Expanding (1 — Z/\)~! in series, we further get [32]

e’} ak
A= (59)
k=0
with
ok::QEﬁTzkﬁl (60)
~ .

Here 6 corresponds to the eigenvalue \g of J (Eq. ), and the higher order terms
specify how this eigenvalue is modified by the random part of the connectivity.
Truncating Eq. at a given order, and averaging over Z yields a polynomial equation
for the mean eigenvalues of J. In Methods Sec. 2.4 we exploit this equation to
determine the effects of different cell-type specific random connectivity Z on the
outlying eigenvalues.

Note that within first-order perturbation theory, the eigenvalues are given by
A= Ag + AX with

I 1
—L'ZR = —n"Zm. 1
AN=LTZR N)\On Zm (61)

FEigenvectors. To determine the eigenvectors corresponding to the outlying eigenvalue
of J, we treat it as J perturbed by Z (Eq. ) Matrix perturbation theory then states
that, at first order, the right- and left-eigenvectors R and L of J corresponding to the
outlying eigenvalue X are given by [47]:

R=R+ AR (62)
L=L+AL (63)

where R and L are the right- and left-eigenvectors of J defined in Eq. , and

AR:%ZR
N (64)
ALT = —LTZ.
Ao
Using the normalization in Eq. , we then get
m=+VNR=m+ Am,
(65)

n" = \WNLT =aT + AnT,
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with constant entries on m and n defined in Egs. - and

1
N (66)
AnT = )\—OﬁTZ.

where we approximated A at first order by Ag.

Statistics of Eigenvector entries. While m and n are deterministic vectors, the
perturbations Am and An are random variables obtained by multiplying m and n with
the random matrix Z (Eq. ) We therefore next consider the statistics of the
elements m; and n; of m and n defined in Eq. .

Since the elements of Z have zero mean, the mean values of m; and n; are given by
m; and 7n; defined in Egs. —. The mean value of n;, but not m;, therefore
depends on whether the neuron ¢ belongs to the excitatory or inhibitory population.
Taking into account that Z has block-like statistics, we split the matrix product in
Eq. into the sum of items corresponding to excitatory and inhibitory pre-synaptic
neurons. Using Egs. —, Am; and An; can be written as

DI T D I

. jEN geNI (67)
IR L8
0 jENE jENI

We next take the limit Ng, Ny — oo, and apply the central limit theorem, which states
that each sum converges to a Gaussian random variable, so that we have

Am Ni Z \/>N qu

q EI (68)
1
An? ~ T Y VNRIN(0,02,).
0
q=FE,I

where p € E, I is the population the neuron i belongs to, and 62 | ¢2 are the

variance of z;;, z;; respectively, for 4, j in populations p,q. The perturbations Am; and
An;. therefore converge to Gaussian random variables of zero mean and variances ofnp
and o2, given by:

N, o2
2 E 97 zpq
Ump = 7)\2
=Bl "0 (69)
2 2: N(I(ﬁq)Qggw
an = 7A(2)

q=FE,I

The population covariance 0%, between elements m; and n; with ¢ belonging to
population p can furthermore be written as

1 1
O'f”n: FAinAmp: Np)\% Z (ﬁs Z Z Z Zikzkjﬁlq), (70)

P s,q=E,I iEN, jEN, kEN,

while the overall covariance o,,,, between all m; and n; reads

Z PO (71)

p=FE,I
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Altogether, m; and n; determined by perturbation theory therefore follow
Gaussian-mixture statistics, where the mean and variance depend on whether the
neuron ¢ belongs to the excitatory or inhibitory population.

Comparison with simulations. The theoretical predictions for eigenvalues obtained
from Eqgs. , can be verified by comparing them with the eigenvalue outliers
computed by direct eigen-decomposition of the full matrix J. We compute the average
and standard deviation of eigenvalue outliers over 30 realizations of J.

The predictions of perturbation theory for eigenvectors given by Eq. can also be
verified by direct eigen-decomposition, but to compare individual entries, an appropriate
normalization is required [47]. Indeed, perturbation theory assumes that R is
normalized and L satisfies LTR = 1 (Eq. ), but the perturbed eigenvectors in
Eq. do not obey the same normalization. We therefore first use numerical
eigen-decomposition to get the right- and left-eigenvector R and L of J. We then
normalize R to 1, and I; so that LTR = 1. To compare L, R with perturbation theory,

we then normalize L, R as
i)
R=|== R,
LR

AN
L=|-——] L
RTL
the eigenvectors L, R after normalization have the same statistics as (L + AL),

(R + AR) (Egs. 7 )

(72)

2.4 Eigenvalues

Here, we apply Egs. , to determine the mean and variance of outlying
eigenvalues for different forms of local connectivity statistics.

2.4.1 Independent random connectivity

In the case of independent random connectivity, the elements of Z are zero-mean,
independently distributed and uncorrelated with m and n. Averaging Eq. over Z
then leads to [32):

[;[nTka} (73)

(0]
= 0, (74)

and therefore the mean eigenvalue [\] of J is given by the eigenvalue Ao of J. For
Gaussian random connectivity, we have

N = Jg—Jm, (75)
and for sparse connectivity

The variance af\ of A can be computed by keeping only the linear term in Eq. ,
which leads to Eq. under the assumption that A &~ \g. Applying the central limit
theorem then yields

1 Ny Ng
O'i = )\7(2) (J% (OEEE + ]VEU'EEI> +J12 (MgglE +U§”>) . (77)
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For independent Gaussian random connectivity, we substitute o2 , using Gaussian 70

variance parameters (Eq. . . 770
1 N, N,
2 2 I 2 2 E 2 2

= J% — Ji | — . 78

oX A ( E (gEE + NEQEI) +J7 (Nz 91E +911>> (78)
For independent sparse random connectivity, we replace (72 and J, with the variances m
and means of the sparse model given in Egs. . . and get 0

o2 = F (ALNg + AIN)* (1 =) &, (79)

0

2.4.2 Reciprocal motifs 773
In the case of connectivity with reciprocal correlations, z;; and z;; are correlated, so 774

that the average [0x] over Z in Eq. is non-zero for even k. Here we compute [0i] for s
k = 2 and truncate Eq. at second order to get a third-order polynomial equation 7
for the mean eigenvalue: 7

FO) =X = (AoX? + [61]A + [62]) = 0. (80)

For Gaussian connectivity we have 8y = \g = Jg — Jy, and 6 is given by 778

6 =nTZm/N= > na’ > z;miN, (81)

p,q=E,I 1€EN,,JEN

so that [91] =0. 779
The next term 6, is 780
N
0, = nTZ*m/N = Z ﬁ"( Z Z Zzikzkj)mq/N. (82)
p,q=E,I 1€ENp jENg k=1

Given the reciprocal correlations defined in Eq. (29)), only items with ¢ = j in 0 are 781
non-zero after averaging over Gaussian realizations, so that 782

[05) = [ATZ°m]/N = Y np[ 3 izkzk} P /N. (83)

p=E,I €N, k=1

We then write 783
N
[Z Zikzkz} = apgypNEE + 19E191ENEL § € NE
k=1
- (84)
[Z Zikzkz} = apgregeMmer + gy, i € Ni.
k=1
and substitute Eq. and nP, mP into Eq. to obtain 784

0] = JE (OéEggEEUEE + argp1grener)

— Jr (aBgiegemer + crgimin) - (85)
For sparse connectivity with reciprocal motifs, the correlations can be written as 785
N
[Zzikzki} =cALNg(peg — ¢) — cApANi(c — pp1), i € Ng
M=t (86)

{Zzzkzlﬂ} = — cApANg(c— ppr) + cA2Ni(prr —¢), i € Ny.
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Then, combining Egs. and Egs. —, the second-order coefficient [f3] for the

sparse network is

[02]

= A3

2.5 Eigenvectors

Here we apply Egs. and to determine the variances and covariances of
eigenvector entries obtained from perturbation theory for different forms of local
connectivity statistics.

2.5.1 Independent random connectivity

CzNé (,DEE — C) =+ AQEA]CQNEN[ (pE] — C)
+ ApAIPNiNg (ppr — ¢) + A7 N7 (prr — ¢

Using Egs. (36), (37), it can be seen that Eq. is equivalent to Eq. (8F).

(87)

In the case of independent random connectivity, because z;; and zp; are not correlated

in Eq. ([70)), the covariances o®,

9 1

Ope = /\2 ( Je9ee + JIgIE) o

1
mE = )\2 (aEgEE + aIgEI)

between the eigenvector entries are zero. For
independent Gaussian connectivity, introducing Eq. (24]) into Eqgs. the variances of
eigenvector entries can be written as

v (O‘EQ?E + 0419%1) )

1
Vi (J gEI+ J 911>
(67 2)

(83)

For independent sparse connectivity, substituting Eq. into Eqs. , leads to

O,1

2

=0 ;=

m

)\

)\2(

)\2(

- (A Ng + A7N[) AEN?E(1

ALNEg + AIN[) AIN?C(1

2.5.2 Reciprocal motifs

NgAge(l—c) + NiAfe(l —¢)),
- ),
—c).

(89)

In the case of connectivity with reciprocal correlations, the variances of eigenvector

entries are identical to the independent case.

As we have shown in Eq. , noise correlation between the rank-one vectors arises
from the correlation between pairwise random connectivity weights in the situation with
reciprocal motifs, only items with ¢ = j (for z;x, 2x;) in the same population ¢ are
non-zero, so that we have

with

Unm

N, )\2 Z nq Z Z Zik Zki T )

qEI

(90)

(91)
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For Gaussian connectivity with reciprocal correlations, the covariances between entries
on Z matched by population can be written as

T 2
[ E E Zikzki| = NEQEGEENEE
iENEg kENE B

{ > ziezki| = Neorgeigiene:

i€Np kENT (92)
{Z Z Zikzki| = NIQEJIEYEINET
i€ENr kENE )
2
[Z Z Zikzkz} = Nrargimir-
i€Nr kENy

Combining Eq. and the mean rank-one connectivity loadings Eqgs. —, we
obtain the population covariances as

1
Ohm = 2 (JegEneE — J19E191ENET) |
N (93)
I = (J — Jrgimrr)
Onm )\2( EYEIJIENEI 1911M11) -
0

We note that the large deviation of the dominant eigenvalue A in the network with
reciprocal motifs also increases the nonlinearity of the vector perturbations. To account
for this nonlinearity, we start from Eq. for A and get

Onm = A — Zp:E,I apmPnP = X\ — Ag, then we compare with Eq. and get the
approximation relationship

0 _ 1 (072)(Zm)

Tnm 7~ 2N A2 (94)
Similarly, for the covariance of each population we have
1
Ohm = 2 (JegEneE — J1gE191ENET) |
95
o= — (J — Jigiiir) .
nm = 33 EYEIYIENEI 1911"171) -

For sparse connectivity with reciprocal correlations, the calculations are similar, with
entries of Z being Bernoulli-distributed

[ Z Z Zikzki} = N%AQEC(PEE —¢)

1€ENg kENE

[ Z Z RikZki

i€Np kENT

:| 7NEN]AEA]C(C — pEI)
[ S>> Zikzkni| = —N;NgAgAic(c - pEr)

(96)

i€ENr kENEg

DT

i€Nr kENT

N?A2c(prr — c).

and we have the population covariance

Thim, = )\2 NAEC (ALNg (ppE — ¢) + AIN; (pp1r —©)),
(97)
T = pNAICQ (ALNEg (ppr — ) + AIN; (pr1 — ¢)) -

Using Egs. , , it can be seen that Eq. is equivalent to Eq. .
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2.6 Dynamics

In this section, we show how approximating locally-defined connectivity by a global
low-rank structure allows us to analyse the emerging low-dimensional dynamics. We
first summarize the mean-field theory (MFT) for Gaussian-mixture low-rank
networks [31},33]. We then apply it to unit-rank connectivity obtained as an
approximation of locally-defined connectivity. We finally compare the resulting
description of the dynamics with an alternate mean-field approach for random
connectivity consisting of a superposition of low-rank and full-rank random parts as in
Eq. [30,132].

Throughout this study, we consider recurrent networks of rate units with recurrent
interactions defined by a connectivity matrix J. The dynamical activity of unit ¢ is
represented by a variable z;(t), which we interpret as the total synaptic input current.
The firing rate of unit 4 is given by r;(t) = ¢(z;(t)) where ¢(x) =1 + tanh (z — 0) is a
positive transfer function. We focus on networks without external inputs, so that the
dynamics of synaptic input to neuron i is given by

N
(1) = —wi(t) + Y Jiyd(wi(t)). (98)
j=1

In Figs Bl[7} we compare the dynamics determined by direct simulations for a
locally-defined connectivity matrix with a mean-field description obtained for a
unit-rank approximation.

2.6.1 Mean-field theory for Gaussian-mixture low-rank connectivity

Here we review the mean-field theory for networks in which the connectivity matrix is
exactly low-rank, with components of connectivity vectors moreover drawn from
Gaussian-mixture distribution. Previous works have shown that in this case, the
dynamics of the collective activity x(t) = {z;}i=1.. v are embedded in a linear subspace
of dimension R spanned by the connectivity vectors m() [30/:33]. Thus, x(¢) can be
expressed as

R

x(t) = > ke(t)m™, (99)

r=1

where k,.(t) for r =1... R are collective latent variables that quantify the components
of x(t) along the connectivity vectors m("). We assume that m(") are orthogonal to
each other, so that k,(t) can be expressed as

x(t)Tm(")
kr(t) = GRS (100)
For simplicity, here we moreover assume that the initial value of x(t) lies in the
subspace spanned by the vectors m(™. More generally, the initial state can be included
as an additional input to the dynamics [31}33].
For a unit rank connectivity J = mnT /N, there is a single latent variable x
corresponding to the connectivity vector m, and the dynamics of x(t) is expressed as

x(t) = k(t)m, (101)

with x(t) given by
(102)
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Substituting Eq. (101)) into Eq. and inserting the unit-rank connectivity, the
dynamics of the latent variable k can be expressed as

A(t) = —=K(t) + Frec(t) (103)
where
1 N
Firee(t) = 7 > nig(k(t)m;). (104)
i=1

The quantity f,..(t) represents the total recurrent input to x. The sum in the
r. h.s. of Eq. can moreover be interpreted as the empirical average of
n;¢(k(t)m;) over the neurons in the network. In the limit of large network size N, this
average converges to the integral of n¢(x(t)m) over the distribution P(m,n) of the
components of connectivity vectors. For low-rank networks, the mean-field limit
corresponds to replacing Kre.(t) with this integral [31}33]:

Krec = /dman(m, n)ng(km). (105)

In the Gaussian-mixture low-rank model, each neuron ¢ is assigned to a population p
for p=1... P. Within each population, the components (m;,n;) are generated from a
multivariate Gaussian distribution PP(m,n), that is

. 2
P =8 () (T 7). (106)

In the mean-field limit, K. is therefore given by

P
Krec = Zap/dmdnpp(m,n)mb(/im), (107)

p=1

where a,, is the fraction of neurons in population p.

Integrating by parts, k,e. can be re-expressed as (S1 Appendix])
P
Kree = D ap(@P (Gl A)) + (@' (18, AL)) 0%, k). (108)
p=1

Here pP, AP are the mean and variance of the inputs to population p, given by

P _— P
/”Lm_’%mv

AP = k%02

mP>

(109)

and the symbol (f(u, A)) stands for the expected value of a function f(z) with respect
to a Gaussian variable x with mean and variance pu, A, that is

(P, A)) = /dx(27r)_1/2 exp (—2/2)f (1 + VAz). (110)

Altogether, using MFT for Gaussian-mixture low-rank networks gives the closed
dynamics of the latent variable x:

P
==kt ) ap(@P(@(rm?, K2op,)) + (¢ (kmP, K207,,)) o). (111)
p=1
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In particular, the corresponding steady state is given by
k=Y ap(AP(G(kmP, K2or,)) + (¢ (kP K20700))0h,, ). (112)

Note that the first and second terms on the r. h. s. respectively correspond to the
mean and covariance of the entries of the unit-rank connectivity vectors m and n.

2.6.2 Approximate dynamics for locally-defined connectivity

We next apply the MFT to unit-rank connectivity obtained as an approximation of
locally-defined connectivity for the different considered cases.

Independent connectivity. We start from the network with independent connectivity,
in which case the unit-rank connectivity vectors obtained by approximating
locally-defined connectivity have no covariance, i. e. 02, = 0 (Methods Sec. [2.5)).

The dynamical system for the latent variable x therefore contains only the mean
term

k=—K+ Z apf (p(kmP, K202,)). (113)

For the Gaussian random model, inserting the expressions for m? and n?
(Egs. —), the fixed point obeys

k= Je(0(r, K202 e)) — Tr{o(k, K20%,0)), (114)

where the variance 2, of connectivity components m; is given by Eq. (88).
For the sparse random model, we further consider n? given by Egs. (36)), —
and the fixed point is

K = cNpAp(d(k, K°05,8)) + cNIAHP(k, K207,10)), (115)
where 02, is obtained from Eq. (89).

Reciprocal motifs. Correlations between reciprocal connections lead to non-zero
covariance o® = between the unit-rank connectivity vectors obtained by approximating
locally- deflned connectivity (Methods Sec. n 2.3] Eq. . The dynamical system for the
latent variable x therefore contains both the mean and covariance terms (Eq. )

For the Gaussian random model, combining Egs. —, , the fixed point
obeys

> ap (A lo(rm?, 120%,))
P*E I (116)

+ F«b (kmP, “20 )>(JE9pE9Ep77Ep - Jlglpgpﬂ]lp) )

with the variance o2, of connectivity components m; given by Eq. (88). For the sparse

model, combining Eqs. , —, , (@, the fixed point obeys

> ap (A lo(rm?, 120%,))
p1=EJ (117)
55 (0 (ki k202, ) N Ay (AR N (pp — ) + AFN1(p1y — ) ).

with the variance 02,, of connectivity components m; given by Eq. .

August 25, 2022

36,47

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900


https://doi.org/10.1101/2022.08.25.505122
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.25.505122; this version posted August 26, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

2.6.3 Mean-field theory for superpositions of low-rank and full rank
random connectivity

Here we review an alternate form of mean-field theory for random connectivity

consisting of a superposition of a low-rank structure and full-rank random part [30,32].

This form of ME'T can be directly applied to independently generated connections,
where the connectivity matrix consists precisely of a superposition of a low-rank part
corresponding to the mean, and a full-rank random part corresponding to fluctuations
(Egs. , ) Extending this type of MFT to the situation where reciprocal
connections are present is however challenging |18]. Moreover, in contrast to the case
where connectivity is exactly low-rank, when the additional full-rank random part is
present the mean-field theory describes only the steady-state activity (and linearized
dynamics around it), but not the full dynamics as in Eq. .

The key assumption of MFT for randomly connected networks is that the total input
x; to each unit can be approximated as a stochastic Gaussian process [52]. The first two
cumulants (mean and variance) of that Gaussian process are then computed
self-consistently to characterize the steady-state activity.

At a fixed point, the total input x; obeys

N
T; = Zjij¢($j)- (118)

Replacing J;;, where i, j belong to populations p, ¢ respectively, by the superposition
of rank-one mean and full-rank random connectivity components m?Pn9/N + z;; we get

—p N
;= % Dot Y o) + Y zyo(ay). (119)
g=1...P  jEN, Jj=1

Denoting by [-] the average over the distribution of z;, the mean of x; can then be
expressed as

[zi] = mPR (120)
where we introduced
P
R= 30 B/, (121)
p=1  i€EN,

(122)

and we assumed that the zero-mean random connectivity z;; is uncorrelated with the
firing rate ¢(z;), so that

[2i;¢(x;)] = 0. (123)

M-

<
Il
s
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Similarly, the correlation between x; and x;, where i € N, and j € Ny, is given by 925
mP P s md P 4
[ziz;] = N Z n Z [¢($k>]ﬁ Z n [p(21)]
s=1  keN, t=1  leN;
p L N
+ IS S 0] Y al()
s=1  keN, 1=1
! o a (124)
—t
TN Z n [p(21)] Z zik[o(@k)]
t=1 leN, k=1
N
{ZZ]@ 1) Zzzk¢ (k }
=1 k=1
= mPmIR + 8y Y [25][6° ()]
k=1
where we assume the neuronal activities are decorrelated [¢(x;)o(z;)] = [p(x:)][@(z;)] o2
when 4 # j. This assumption holds for independently-generated connections, but not in a7
presence of reciprocal correlations [18]. The covariance between x; and x; therefore 928
becomes 92
N
[wia;] = [wil[2;] = 615 Y123 ][0% (an)]- (125)
k=1
Within the mean-field approximation, neuronal activation xz; are therefore 030
uncorrelated Gaussian variables with mean and variance given by Egs. [I20] and [125] 031
lu’wi = [x’b] = mpR‘)
A, 1= (0] = ]? = 6y Y[ [0% () (126)
k=1
To determine & and [¢(zy)?], we finally express Eqgs. (121)) and (126)) as Gaussian o3
integrals over x; in population p: 033

ﬁ\
M*u

agn™(¢(pg, AL)),

<
[l
—

(127)

M~

PIEAICCANE

k=1

Ngo2, (d(ud, AL)?).

Q
Il
—

Here we replaced m? = 1 and Ek NEAVIOE Zq | Nyo? () given the eigenvector s

normalization in Eq. (52 ., and the assumption that Varlances [sz] depend on the 035

populations the units ¢ and k belong to (Egs. , , ) Therefore, the 036

stationary mean and variance of the dynamics of synaptic inputs in population p are 037
wb = mPR,

Lif 128
A7 =3 Nyo? (6, AD)?). (128)
qg=1

Eqgs. (128)), (127) give the self-consistent equations for the stationary solutions of the 03
dynamics. 939
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More specifically, in the Gaussian random model, we combine connectivity statistics

given by Eqs. , —, so that we have
pE = Je(o(uy, AD)) = Jr(d(pg, AL)),

A= 37 gl (6 (ud, AL)), (129)
q=FE,I

while for the sparse random model, we combine connectivity statistics given by

Eqgs. , , 7 —, so that we have
ph = eNpAp(o(ny, A7) + eNrAH(d(uy, A7),

AP = N7 Nye(1 — o) A2(¢? (ud, AL)). (130)
q=E,I

Code Availability

Code will be made available upon publication.

Supporting information

S1 Appendix. Dynamics in Gaussian-mixture low-rank networks. Here, we
provide the derivation for the dynamics of the latent variable x (Eq. ) in the
Gaussian-mixture low-rank network model. We consider a rank-one connectivity
consisting of P populations, with the neurons in each population accounting for a «,
percentage of all neurons. The entries on the left and right eigenvectors n?, mP?
assigned to population p are sampled from a multivariate Gaussian distribution with
mean 7i¥, mP, variance 02,, 02, and covariance of, (Methods Sec. S0, Krec in
Eq. is further decomposed into two integrals involving the contributions from the
mean and random connected components, respectively,

P
Kree = Zap/dep(m)ﬁpgﬁ(ﬂm)

. (131)
+ Zl oy / dmdnP?(m,n)(n — aP)é(km),

here, PP(m) represents the marginal Gaussian distribution for connectivity loadings m;
of neurons in population p

PP(m) = N(mP,02,), (132)

and PP(m,n) represents the multivariate Gaussian distribution for connectivity loadings
m;, n; of neurons in population p (Eq. )

Note that the synaptic input to neurons in population p is a scaled Gaussian variable
x; = km; corresponding to the Gaussian loadings m; ~ N (m?, anp), so it conforms to a
Gaussian distribution N (2, AP) with the population-averaged mean and variance

ply = Km®,
AP = K202, (133)
Thus, the first term in Eq. (131) is
/dmN(mp,UinW(Hm) = (d(kmP, K?op0)) = (i, AD)), (134)
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a Gaussian integral term.
We then use Stein’s lemma

/Dzzf /Dz—zf( ) (135)

and further replace the multivariate Gaussian distribution by Eq. (106), to compute the
second term in Eq. (131) attributed to the random connectivity component as

Jamann (7). (% %) o= ampotem
= (5 K207,0)) o5

= ((ufz, AL))oh -

Finally, combining the contributions from both the mean and random components, we
re-express Kree in Eq. (107)) and retrieve Eq. (111)).

(136)

S2 Appendix. Linear stability at fixed points in rank-one networks. To
determine the stability of fixed points of the network with rank-one connectivity
structure, we consider the rank-one connectivity Jg; and study the stability of the
one-dimensional latent dynamical variable x in the neighbourhood area of its fixed point

k0. We set the fixed point of synaptic input z¥, define the perturbation of the latent
variable k! and the perturbation of the synaptic input #} = x'm;, the temporal
evolution of k! is expressed as

L=kt (e (2)1])
==kt + Yyl (@ )al?), (187)
p=E,I
for the rank-one approximation network Jr; = mnT /N, we remove symbol []. Next, in

the Gaussian-mixture low-rank framework, the entries n’ and m? are jointly sampled
from a bivariate Gaussian distribution characterized by means, variances and
covariances, mP, 7P and o2 ,, 02,, of, . Using a similar approach to previous
studies [30,31], we set

D=0+ (V1= 9CE + AP on
mf = m? + (/1 =9k, + VACP) o (138)

oF = YOnrOmp

n.

where (2, (P and (P are three independent normal random variables A/(0,1). By
substituting variables in Eq. (138]), after some linear algebra, we get

(nf¢! (@l )2l = (nf'¢! () i)
= (PP + of, (@) + P orns (@)k° + mPal, (@")k°  (139)
4 Umpgp <¢W>(I<;0)2)I€l.
We finally obtain the time evolution of x
R =k Y ap (P + b, ) () + 0%, ()R
p=E,I (140)
+ Pl (87K + op b (6" (K)?) K1
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The Jacobian for the latent dynamical variable’s fixed point s is
Se= =1+ > (WP +0%,)(¢) + Pk, ()K"
p=E,I (141)
+mPol, (@)K + ook, (@) (57)%),

which is a scalar in our rank-one network. The fixed point is stable when S, < 0 and
unstable when S,; > 0. All the above parameters are expressed and calculated in the

text, so that we can check the stability of each fixation point using the formulas above.

S3 Appendix. Comparison between dynamics in full-rank connectivity
with rank-one approximation. Here, we compare the dynamics solved in the
full-rank network with dynamics solved by the rank-one approximation, considering the
limitations of applying the classical MFT, we only discuss networks with independent
connections.

Using the rank-one approximation, global dynamics is characterized by the latent
dynamical variable s, which satisfies

k= Jg{o(k, Hzagﬁ)) — Jr{o(k, nzofnf)>. (142)

Combining the connectivity statistics given in Egs. —, , we thus express the
self-consistent equations for the population mean and variance of the synaptic inputs x;

using  (Eq. (109))

uE =t = Tp(o(uf, AF) — Jrto(ul, AD) (143)
and
AF = 5 (Tnlo(il, AF) — Jil(ul, A1) (amghs + crgh)
0
(144)
AL = 55 (T{o(l, AF)) ~ T, AD)) (ags + arghy).
0

Comparing with the self-consistent equations for population mean and variance in the
full-rank network Eq. , we find in particular that the expression for u? is the same
in both representations, but the expressions for the variance AP are different.
Specifically, the low-rank approximation shows that the different heterogeneity between
excitatory and inhibitory populations depends only on the block-structured variances,
e, >, G=E.T apggq /A2, and independent of the historical population activity. The
full-rank dynamics, on the other hand, shows that the different heterogeneity depends
on the local relationship between block structured variance and the structure of
historical population activity [68].

For a simplified network example, where the locally defined connectivity has
homogeneous random parameters g,q = g, p = I, I, the variance of the rank-one
perturbation eigenvector o2, is thereby the same for both excitatory and inhibitory
populations. Because A\g = Jg — J;, means and variances in Egs. , are

fo = 1y = Hy = Mo{d(Hay Do), (145)
Ao = AF = AL = ¢2(p(ta, B,)

So that, for this simple example, the heterogeneity of dynamics in the full-rank
approximation is ¢%((¢(pte, Az))?) (Eq. )7 while the heterogeneity in the rank-one
approximation is g%(é(u., Az))?, the difference does not substantially change the
bistable transition and the performance of the low-rank approximation.
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S4 Appendix. Chaotic dynamical transition point for networks with
independent connectivity. Conventionally, the collective dynamics of random neural
network becomes chaotic when the effect of random component is too strong. Based on
previous study [11], when the effective random gain, also known as the radius of the
random eigenvalue bulk 7,4, exceed the critical threshold 1, the network enters the
chaotic dynamical state.

Considering the block-like E-I random network with i. i. d. random connectivity, we
define a R**? matrix with elements a4g2,

2 2
O (146)
Op9re Q1911
the first eigenvalue of M, determines the radius of the continuous eigenvalues bulk of J,

that is
’I"g = )\]ug. (147)

For the sparse E-I network, considering the relationships given by Eq. , we
calculate the radius for the sparse network as

rg =/ (NpA% + NiA2)e(1 - o). (148)

S5 Appendix. Local connectivity statistics in rank-R Gaussian-mixture
models. We show that the statistical properties of the entries on the rank-R

connectivity vectors (P AP o " J2p and of, ., directly determine the means
2

Jpq, variances o7 and rec1procal correlatlons 7pq Of the resulting local synaptic weights
Jij, where ¢ € Np, j € Ny. Considering Eq. ( . the cell-type-dependent mean

= 1 & _(r) =(r 1 & —(r),p=(r
JIpg = szf )n§- ) — sz( )P )’q, (149)
r=1 r=1

and the cell-type-dependent variance of locally defined connections is

R
O’Zm N2 [ Z m(T) (7) Z m(r)mﬁ(r)’q)Q]
r=1

1 e . M)A (r
=2 {(2Am§ Ja(ra 4 )’pAn; )+ Amg )Ang ))2} (150)
=32 Z a2 4 (mr )p)202q + 02 p0'2q)

Finally the correlation between the pairwise weights J;;, Jj; is computed as

[(Jij = [T (s = 5])]

R
1 r) (r r r’
=2 Z mg (" m )ng ) Z m ) g (e () e
ror/=1 ror'=1
i R
-y MmO P4 4 S mm,pﬁ(r),qmm,qﬁ(r’),p} (151)
rr'=1 rr'=1

R
— % Z (O-P m(r (a4 ga m(MPrr")p 4 5 P )
N Tt Moy Ny M,r Ny Myr 2 Mt My

ror/=1
Substituting Egs. (150), (151]) into Eq. leads to the resulting reciprocal correlation

Mpq-
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