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Abstract

How the connectivity of cortical networks determines the neural dynamics and the
resulting computations is one of the key questions in neuroscience. Previous works have
pursued two complementary strategies to quantify the structure in connectivity, by
specifying either the local statistics of connectivity motifs between small groups of
neurons, or by defining network-wide low-rank patterns of connectivity that determine
the resulting low-dimensional dynamics. A direct relationship between these two
approaches is however currently missing, and in particular it remains to be clarified how
local connectivity statistics are related to the global connectivity structure and shape
the low-dimensional activity. To bridge this gap, here we develop a method for mapping
local connectivity statistics onto an approximate global low-rank structure. Our method
rests on approximating the global connectivity matrix using dominant eigenvectors,
which we compute using perturbation theory for random matrices. This approach
demonstrates that multi-population networks defined from local connectivity properties
can in general be approximated by low-rank connectivity with Gaussian-mixture
statistics. We specifically apply this method to excitatory-inhibitory networks, and show
that it leads to accurate predictions for both the low-dimensional dynamics, and for the
activity of individual neurons. Altogether, our approach allows us to disentangle the
effects of mean connectivity and reciprocal motifs on the global recurrent feedback, and
provides an intuitive picture of how local connectivity shapes global network dynamics.

Author summary

The structure of connections between neurons is believed to determine how cortical 1

networks control behaviour. Current experimental methods typically measure 2

connections between small numbers of simultaneously recorded neurons, and thereby 3

provide information on statistics of local connectivity motifs. Collective network 4

dynamics are however determined by network-wide patterns of connections. How these 5

global patterns are related to local connectivity statistics and shape the dynamics is an 6

open question that we address in this study. Starting from networks defined in terms of 7

local statistics, we develop a method for approximating the resulting connectivity by 8

global low-rank patterns. We apply this method to classical excitatory-inhibitory 9

networks and show that it allows us to predict both collective and single-neuron activity. 10

More generally, our approach provides a link between local connectivity statistics and 11

global network dynamics. 12
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Introduction 13

One of the central questions in neuroscience is how the connectivity structure of 14

cortical networks determines the collective dynamics of neural activity and their 15

function. Experimental assessments of connectivity are typically based on measurements 16

of synaptic weights between small numbers of neurons recorded simultaneously [1–9]. 17

The most common approach to quantify connectivity therefore focuses on local statistics, 18

and starts by characterizing the connection probability between pairs of neurons based 19

on their type, before considering progressively more complex connectivity motifs. 20

Linking these local connectivity statistics to the emerging network dynamics has been an 21

active topic of investigations [10–24]. A second approach, motivated by computational 22

network models instead of experimental measurements [25–29], instead specifies the 23

connectivity in terms of a low-rank structure defined by network-wide patterns of 24

connectivity [30–39]. This global connectivity structure directly determines the 25

low-dimensional dynamics and resulting computations [30, 31, 33], yet it remains unclear 26

how it is related to local connectivity statistics that can be recorded experimentally. In 27

this study, we aim to bridge this gap, by mapping local connectivity statistics onto a 28

global, low-rank description of connectivity and comparing the resulting dynamics. 29

Starting from random networks with connectivity defined in terms of local, cell-type 30

dependent statistics, we develop a low-rank approximation based on the dominant 31

eigenmodes of the connectivity matrix. Using perturbation theory, we show that the 32

obtained low-rank connectivity patterns universally obey Gaussian-mixture statistics 33

and therefore lead to analytically tractable dynamics [31, 33]. We specifically apply this 34

approach to excitatory-inhibitory networks with connections consisting of independent 35

and reciprocal parts, and exploit the low-rank approximation to predict the emerging 36

dynamics. 37

We first show that, although the dominant low-rank structure is set on average by 38

the mean synaptic weights [40–42], a perturbative approach accurately predicts the 39

components of individual neurons on the dominant eigenvectors for individual instances 40

of the random connectivity. As a result, our low-rank approximation analytically 41

predicts the activity of individual neurons in the original E-I network defined based on 42

local statistics. The analytic description of the dynamics in the low-rank approximation 43

moreover leads to the identification of two distinct sources of recurrent feedback 44

corresponding respectively to the mean connectivity and reciprocal connections between 45

neurons. In particular, the reciprocal motifs impact dynamics by modulating both the 46

dominant eigenvalue and the corresponding eigenvectors, and can give rise to additional 47

bistability in the network. Altogether, our analytical mapping of the local EI statistics 48

to a low-rank description provides a quantitative and intuitive description of how local 49

connectivity statistics determine global low-dimensional dynamics. 50
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1 Results 51

1.1 Local vs. global representations of random recurrent 52

connectivity. 53

We study networks of N rate units with random recurrent connectivity given by the 54

connectivity matrix J, where the entry Jij corresponds to the strength of the synapse 55

from neuron j to neuron i. A full statistical description of the random connectivity 56

would require specifying the joint distribution P ({Jij}) of the N2 synaptic weights. 57

Determining the dynamics from this high-dimensional distribution is however in general 58

intractable. We therefore focus on connectivity models that make simplifying 59

assumptions on the underlying statistics. 60

Our specific goal is to relate two different classes of such models, which we refer to as 61

the local and the global representations of recurrent connectivity. Both representations 62

assume that the network consists of P populations, and the statistics of connectivity 63

depend only on the pre- and post-synaptic populations. The two representations 64

however take as starting points different statistical features of the connectivity. 65

The local representation defines the connectivity statistics by starting from the 66

marginal distributions Prob(Jij = J) of individual synaptic weights, and by including 67

progressively higher-order correlations referred to as connectivity motifs [1, 10,14]. In 68

this work, we will consider only the first two orders, i. e. the distribution of individual 69

weights and the pairwise correlations ηij between reciprocal connections Jij and Jji 70

that quantify pairwise motifs (Fig 1A). Our key assumption is that both the marginal 71

distributions of Jij and the correlations ηij depend only on the populations p and q that 72

the post- and pre-synaptic neurons belong to: 73

Prob(Jij = J) = fpq(J), p, q = 1 . . . P,

ηij = ηpq.
(1)

All synapses connecting the same two populations therefore have identical statistics, 74

leading to a block-like statistical structure for the connectivity matrix J (Fig 1B left 75

panel). 76

The global representation of connectivity instead refers to the situation where J is 77

defined as a low-rank matrix [30,31,33]: 78

J =
1

N

R∑
r=1

m(r)n(r)ᵀ. (2)

Here m(r) = {m(r)
i }i=1...N and n(r) = {n(r)i }i=1...N for r = 1 . . . R are referred to as 79

connectivity vectors, where R is the rank of J. In this representation, the statistics of 80

connectivity are defined by the distribution of vector elements, rather than directly by 81

the distribution of synaptic weights as in the local representation. Specifically, each 82

neuron i is characterized by its set of entries (m
(1)
i , . . . ,m

(R)
i , n

(1)
i , . . . , n

(R)
i ) over the 83

connectivity vectors. For each neuron, these 2R entries are generated from a joint 84

distribution, independently of the other neurons, and the parameters of this joint 85

distribution depend on the population p the neuron belongs to. Here we focus on the 86

broad class of Gaussian-mixture low-rank networks, in which for population p, the joint 87

distribution of elements is a multi-variate Gaussian defined by the means and 88

covariances of the 2R entries [31,33] (Fig 1C). 89

To relate the local and the global representations of connectivity, a key observation 90

is that any matrix J generated from the local statistics defined in Eqs. (1) can be 91

expressed as 92
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Fig 1. Local vs global representations of recurrent connectivity. (A) The local representation defines the statistics
of synaptic weights Jij by starting from the marginal probability distribution of individual synaptic weights (left) and then
specifying reciprocal motifs in terms of correlations ηij between reciprocal weights Jij and Jji connecting neurons i and j
(right). Both the marginal distribution and the reciprocal correlations are assumed to depend only on the populations p and q
that the neurons i and j belong to. (B) The resulting connectivity matrix J has block-structured statistics, where different
blocks correspond to connections between the P different populations (P = 2 in this illustration). It can be decomposed into
a superposition of a mean component J̄, and a remaining zero-mean random connectivity component Z that has
block-structured variances. (C) The global, low-rank representation defines the connectivity matrix J as the sum of R outer
products between connectivity vectors m(r), n(r) for r = 1 . . . R. The statistics of connectivity are defined in terms of the

joint probability distribution over neurons i of their entries (m
(1)
i , . . . ,m

(R)
i , n

(1)
i , . . . , n

(R)
i ) on connectivity vectors. We

specifically consider the class of Gaussian-mixture low-rank models, where each neuron is first assigned to a population p, and
within each population the entries on connectivity vectors are generated from a multivariate Gaussian distribution with fixed
statistics. Here we illustrate this distribution for one pair of connectivity vectors (R = 1) and P = 2 populations. Each dot

represents the connectivity parameters (m
(r)
i , n

(r)
i ) of one neuron i, the red and blue colours denote the two populations,

white dots and the rotations of the dot clouds indicate the mean and covariance of the distribution for each population. (D)
Relating the local and global representations of recurrent connectivity for a simplified excitatory-inhibitory network. In this
model, the mean connectivity depends only on the presynaptic population (indicated by red and blue colours). The mean
connectivity J̄ is in this case rank-one, and can be written as an outer product of vectors m̄ and n̄. We approximate the full
connectivity by a rank-one matrix, with connectivity vectors m and n obtained from m̄ and n̄ using perturbation theory.
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J = J̄ + Z (3)

where J̄ contains the mean values of the connections, and Z contains the remaining, 93

zero-mean random part [40]. Because of the underlying population structure (Eqs. (1)), 94

J̄ consists of P × P blocks with identical values within each block (Fig 1B middle 95

panel), and is therefore at most of rank P . The random part Z is instead in general of 96

rank N , but obeys block-like statistics, with variance and normalized covariance 97

parameters defined by P × P matrices (Methods Secs. 2.1.1-2.1.2, Eqs. (25), (30)). 98

For the sake of simplicity, in this study, we focus on a simplified 99

excitatory-inhibitory model [41,43]. This network consists of one excitatory and one 100

inhibitory population, so P = 2 and in the following we use the population indices 101

p, q = E, I. A central simplifying assumption in this model is that the mean synaptic 102

weights depend only on the pre-synaptic population, so that J̄EE = J̄IE > 0 and 103

J̄II = J̄EI < 0. The mean connectivity matrix J̄ therefore consists of only two blocks 104

and is unit rank (Fig 1D). The statistics of the random part Z instead depend on both 105

pre- and post-synaptic populations, and are therefore described by 2× 2 matrices of 106

variance and normalized covariance parameters (see Methods Sec. 2.1.3, Eq. (35)). 107

1.2 Approximating locally-defined connectivity with low-rank 108

connectivity. 109

To relate the local and global representations of connectivity, we start from a 110

connectivity matrix J generated from the local statistics (Eqs. (1)) and approximate it 111

by a rank-R matrix of the form given in Eq. (2). As the locally-defined connectivity 112

matrix J is of rank N , this is equivalent to the classical low-rank approximation 113

problem, for which a variety of methods exist [30, 31, 33]. Here we use simple truncated 114

eigen-decomposition as it preserves the dominant eigenvalues that determine non-linear 115

dynamics. 116

Applying the standard eigenmode decomposition, J can be in general factored as 117

J =
1

N

N∑
r=1

m(r)n(r)ᵀ, (4)

where m(r) and n(r) are rescaled versions of the r-th right and left eigenvectors 118

(Methods Sec. 2.3, Eqs (42)-(47)), ordered by the absolute value of their eigenvalue λr 119

for r = 1 . . . N . A rank-R approximation that preserves the top R eigenvalues can then 120

be obtained by simply keeping the first R terms in the sum in Eq. (4). In this study, we 121

focus on R = 1, corresponding to the dominant eigenvalue. Higher order approximations 122

will be described elsewhere. 123

Eigenvalues and eigenvectors are in general complex non-linear functions of the 124

entries of the matrix J. To determine the dominant eigenvalues and the corresponding 125

vectors of J, we capitalize on the observation in Eq. (3) that a locally-defined 126

connectivity matrix can in general be expressed as a sum of a low-rank matrix of mean 127

values J̄ and the remaining random part Z. Previous studies have found that the 128

eigenspectra of matrices with such structure typically consist of two components in the 129

complex plane: a continuously-distributed bulk determined by the random part, and 130

discrete outliers controlled by the low-rank structure [30,32,39,44–46]. In this study, we 131

extend previous approaches to determine the influence of the block-like statistics of Z 132

on the outliers that correspond to dominant eigenvalues. We then use perturbation 133

theory to determine the corresponding left and right eigenvectors and their statistical 134
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structure. Here we summarize the main steps of this analysis (full details are provided 135

in Methods), and then apply it to specific cases in the following sections. 136

We focus on the simplified E-I network for which the mean part of the connectivity 137

is unit rank and can therefore be written as J̄ = m̄n̄ᵀ/N , so that the full connectivity 138

matrix is 139

J =
1

N
m̄n̄ᵀ + Z. (5)

The mean part J̄ of the connectivity has a unique non-trivial eigenvalue λ0 = n̄ᵀm̄/N 140

which can give rise to one or several outliers λ in the eigenspectrum of J. To determine 141

how the random part of the connectivity influences λ, we start from the characteristic 142

equation for the eigenvalues of J and exploit Eq. (5) to apply the matrix determinant 143

lemma (Eq. (57)). This leads to a non-linear equation for λ [32]: 144

λ =
∞∑
k=0

θk
λk

with θk =
1

N
n̄ᵀZkm̄. (6)

Truncating the sum to second order yields an approximate third order polynomial for λ: 145

λ3 = λ0λ
2 + θ1λ+ θ2, with θ1 = n̄ᵀZm̄/N θ2 = n̄ᵀZ2m̄/N. (7)

The statistics of the outlying eigenvalue can then be obtained by averaging over the 146

random part of the connectivity Z. 147

An approximate expression for the right and left connectivity vectors m and n of J 148

corresponding to the outliers λ can be determined using first order perturbation 149

theory [47]. We first note that m̄ and n̄ are the right- and left-eigenvectors of J̄ 150

corresponding to the non-trivial eigenvalue λ0. Interpreting the full connectivity matrix 151

J as J̄ perturbed by a random matrix Z, at first order m and n can be expressed as 152

m = m̄ + ∆m

n = n̄ + ∆n,
(8)

with 153

∆m = Zm̄/λ0

∆n = Zᵀn̄/λ0.
(9)

A key observation is that each element of ∆m and ∆n is a sum of N random variables. 154

The central limit theorem therefore predicts that, in the limit of large N , the statistics 155

of ∆mi and ∆ni, and therefore mi and ni, follow a Gaussian distribution. In general, 156

the mean and variance of mi and ni and their correlation are determined by the mean, 157

variance and correlation of the elements of Z, but not the specific form of the 158

probability distribution. Since the matrix Z has block-like statistics determined by the 159

population structure, the statistics of the resulting mi and ni depend on the population 160

p the neuron i belongs to. Overall, the distribution of elements of m and n obtained 161

from perturbation theory therefore follow a Gaussian-mixture distribution, so that our 162

approach effectively approximates a locally-defined J by a Gaussian-mixture low-rank 163

model specified by the means m̄p, n̄p, the variances σ2
mp , σ2

np and the covariances σpnm 164

of the entries on the connectivity vectors for p = E, I. 165

We next apply the perturbative approach described here to networks with 166

independent random components, and then to networks with reciprocal motifs. 167
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Fig 2. Eigenvalues and dominant eigenvectors for locally-defined Gaussian connectivity with independent
synaptic weights. (A) Eigenvalue spectra of excitatory-inhibitory connectivity matrices J with elements generated from
Gaussian distributions with identical variances g2/N over neurons. The coloured dots in the circular bulk shows 600
eigenvalues for one realization of the random connectivity for each value of g. Different colours correspond to different values
of g. Dashed envelopes indicate the theoretical predictions for the radius rg of the circular bulk computed according to
Eqs. (146), (147). Outlying eigenvalues are shown for 30 realizations of the random connectivity, and for different g their
location on the y-axis is shifted to help visualization. The red arrow points to the eigenvalue λ0 of the mean connectivity
matrix J̄. (B) Statistics of outlying eigenvalues over realizations of random connectivity. Empirical distribution (the red area
shows mean ± standard deviation), compared with the theoretical predictions for the mean (black dashed line) and standard
deviation (gray dashed line) obtained using Eq. (78). (C) Scatter plot showing for each neuron i its entry ni on the left
eigenvector against its entry mi on the right eigenvector. Red and blue colours represent respectively excitatory and
inhibitory neurons. The white dots and the dashed lines respectively indicate the means and covariances for each population
obtained from simulations. (D) Comparison between eigenvector entries obtained from direct eigen-decomposition of J with
predictions of perturbation theory (Eqs. (8), (9)). (E) Comparison between simulations (full lines) and theory (dashed lines)
for the variances σ2

np , σ2
mp of eigenvector entries corresponding to different populations (Eq. (88)). (F-J) Identical quantities

for connectivity matrices in which the variance parameters are heterogeneous: gEE : gEI : gIE : gII = 1.0 : 0.5 : 0.2 : 0.8, gEE
increases from 0 to 1. Other network parameters NE = 4NI = 1200 and JE = 2.0, JI = 0.6 in all simulations.
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1.3 Low-rank structure induced by independently generated 168

synaptic connections 169

We first apply our approach for a low-rank approximation to the simplest version of the 170

locally-defined excitatory-inhibitory network where each Jij is generated independently 171

from a Gaussian distribution with a mean that depends only on the pre-synaptic 172

population, i. e. [Jij ] = J̄pq = J̄q with p, q ∈ E, I. The entries of the eigenvectors m̄ 173

and n̄ of the mean connectivity matrix J̄ are then given by: 174

m̄i = 1, i = 1 . . . N (10)

n̄i = n̄E =
N

NE
JE i ∈ NE (11)

n̄i = n̄I = − N

NI
JI i ∈ NI . (12)

We first consider the case where the variance of Jij is uniform across all connections and 175

given by g2/N . In that situation, the entries of the random part of the connectivity Z 176

are independent, identically distributed Gaussians, and the eigenvalue spectrum of Z 177

converges to a uniform distribution on the complex plane within a circle of radius 178

g [48–50]. Previous studies [30, 32, 44, 45] have shown that adding a unit rank matrix on 179

top of an i. i. d. random matrix as in Eq. (3) leads to an eigenspectrum that is the 180

superposition of the two spectra, and therefore consists of a circular bulk of radius g and 181

an outlier on average located at the eigenvalue λ0 of J̄. Our analyses of the eigenvalues 182

of J confirm this result (Fig 2A). Indeed, averaging over Z in Eq. (6), [θk] = 0 for all 183

k [32], so that the outlier is on average given by [λ] = λ0. Our approach moreover gives 184

an expression for the standard deviation of the outlier which grows linearly with g 185

(Fig 2B, Eq. (78)). Examining the entries of the left and right eigenvectors n and m of 186

J corresponding to the outlier, we find that perturbation theory accurately predicts the 187

individual entries of the eigenvectors as long as g is sufficiently below unity (Fig 2D). As 188

expected, the distribution of (mi, ni) is well described by a mixture of two Gaussians 189

centred at m̄p, n̄p. Perturbation theory provides a lower bound for the values of the 190

corresponding variances (Fig 2E). For large values of g, the distributions remain 191

Gaussian, but their variances increase above the predictions of perturbation theory. 192

Importantly, the entries of the left and right eigenvectors are uncorrelated, and only 193

their means, but not their variances, differ between the two populations (Figs 2C, E). 194

We next turned to the case where the variances of synaptic weights depend on the 195

pre- and post-synaptic populations q, p, and are given by g2pq/N . In that case, the 196

entries of the random part of the connectivity Z are independent, but not identically 197

distributed Gaussians. Previous studies [11,44] have shown that the spectrum of Z 198

remains circularly symmetric, but its radius rg is determined by a combination of 199

variance parameters gpq (S4 Appendix, Eqs. (146), (147)). Examining the resulting 200

connectivity matrix J, we found that the results for the uniform case directly extend to 201

this heterogeneous situation. The eigenspectrum of J still consists of an independent 202

superposition of the spectra of Z and J̄ (Fig 2F). In particular, the random part of the 203

connectivity does not modify the average value of the outlier, but only impacts its 204

variance, which now depends on a combination of the variances gpq (Fig 2G, Eq. (88)). 205

Similarly to the uniform case, the distribution of the entries of the left and right 206

eigenvectors is well described by a mixture of two Gaussians, with variances predicted 207

by perturbation theory (Fig 2I). The entries of the left and right eigenvectors are 208

uncorrelated, but now both their means and variances depend on the population the 209

neuron belongs to (Figs 2H, J). 210

In summary, when synaptic connections Jij are generated independently across pairs 211

of neurons, the equivalent global representation is a Gaussian-mixture low-rank model 212
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Fig 3. Eigenvalues and dominant eigenvectors for locally-defined Gaussian connectivity with reciprocal
motifs. (A) Eigenvalue spectra of excitatory-inhibitory connectivity matrices J, with homogeneous reciprocal correlations η.
Different colours correspond to networks with different values of η. The dots in the elliptical bulk show 600 eigenvalues for one
realization of the random connectivity. Outlying eigenvalues are shown for 30 realizations of the random connectivity. The
red arrow on the top points to the eigenvalue λ0 of the mean connectivity J̄. Coloured circles are the eigenvalues predicted
using determinant lemma (Eq. (7)). (B) Comparison of the eigenvalues from the finite-size simulation with the predictions of
the determinant lemma as the reciprocal correlation η is increased. The coloured solid lines show the roots of the third-order
polynomial in Eq. (7). The light purple area indicates the empirical distribution of the dominant outlier, while the black
dashed line is the unperturbed eigenvalue λ0. The grey areas represent the areas covered by the eigenvalue bulk. (C) Scatter
plot showing for each neuron i its entry ni on the left eigenvector against its entry mi on the right eigenvector. Red and blue
colours represent respectively excitatory and inhibitory neurons. The white dots and the dashed lines respectively indicate the
means and covariances for each population. (D) Comparison between eigenvector entries obtained from direct
eigen-decomposition of J with predictions of perturbation theory (Eqs. (8), (9)). (E) Comparison between simulations
(coloured areas) and theoretical predictions (coloured lines, Eq. (95)) for the population covariance σpnm of the entries on the
left and right connectivity eigenvectors to different populations. (F) Comparison of the overall covariance σnm (Eq. (70))
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Fig 3. (Continued from previous page.) with the deviation ∆λ of the dominant outlying eigenvalue from the unperturbed
value λ0. Empirical covariance (gradient blue area, colour depth represents η) compared with the theoretical prediction (black
line) obtained using Eqs. (95), (90). The x-axis uses the theoretical prediction of the deviation of the eigenvalue λ from λ0.
(G-L) Same as (A-F) for a connectivity matrix with heterogeneous reciprocal correlations: ηEE = ηEI = −ηII > 0, and ηEE
increasing from 0 to 1. (M-R) Same as (A-F) for a connectivity matrix with heterogeneous reciprocal correlations:
ηEE = −ηEI = −ηII > 0, and ηEE increasing from 0 to 1. Other network parameters: NE = 4NI = 1200 and homogeneous
variance parameters gpq = g = 0.3 in all simulations, JE = 2.0, JI = 1.2 for networks in (A-F), JE = 2.0, JI = 1.3 for
networks in (G-L), JE = 2.0, JI = 1.4 for networks in (M-R).

where the entries of the structure vectors are independent with mean values determined 213

by the low-rank structure of the mean connectivity matrix J̄. Importantly, in that 214

situation, the dominant outlying eigenvalues of J are on average identical to those of J̄. 215

1.4 Low-rank structure induced by reciprocal motifs. 216

We next turn to locally-defined excitatory-inhibitory networks with reciprocal 217

connectivity motifs quantified by the correlation ηij between reciprocal synaptic weights 218

Jij and Jji. We assumed that these reciprocal correlations are identical for any pair of 219

neurons i and j belonging to a given pair of populations p and q, and used the 220

corresponding parameters ηpq to generate the connectivity matrix J (Methods 221

Sec. 2.1.2). Within the decomposition of J in a mean J̄ and random part Z (Eq. (22)), 222

the additional reciprocal correlations affect only the statistics of Z. 223

We first consider the homogeneous case where the reciprocal correlation is identical 224

across all populations, i. e. ηpq = η. Previous studies have shown that a random matrix 225

Z with zero mean and reciprocal correlations η has a continuous spectrum that is 226

deformed from a circle into an ellipse as η is increased [18,51]. Superpositions between 227

correlated random matrices, and low-rank structure such as J̄ have to our knowledge 228

not been previously studied. Inspecting the eigenspectrum of J = J̄ + Z, we found that 229

it still consists of a continuous bulk and discrete outliers (Fig 3A). The continuous bulk 230

is contained in an ellipse in the complex plane identical to the spectrum of Z, as in the 231

uncorrelated case. In contrast, we found that the outliers deviated from the eigenvalues 232

of J̄ as η was increased. These deviations were well captured by our analytic approach 233

summarized in Eq. (7). Indeed, when averaging Eq. (7) over Z, reciprocal correlations 234

generate a non-zero [θ2] = [n̄ᵀZ2m̄]/N due to Z2. This term leads to a cubic equation 235

in Eq. (7) and therefore has two potential effects. First, the non-zero θ2 induces 236

deviations of the outliers from the eigenvalue λ0 of J̄. The direction of these deviations 237

is positive if excitation dominates (λ0 = JE − JI > 0) and negative if inhibition 238

dominates (λ0 = JE − JI < 0, Figs 4F-H). Second, the cubic equation can have up to 239

three solutions and therefore potentially generates additional outliers, and in particular 240

complex conjugate ones (Fig 3M). Whether these additional outliers are observed 241

depends on the accuracy of the third-order approximation to the determinant lemma, 242

and on the norm of these outliers compared to the spectral radius (Fig 4E). 243

We next examine the right- and left-eigenvectors m and n corresponding to the 244

dominant outlier. Analogous to the uncorrelated case in the networks with independent 245

connections, the individual entries of these vectors are accurately predicted by 246

perturbation theory and exhibit Gaussian-mixture statistics (Fig 3D). Unlike in the 247

uncorrelated case, reciprocal correlations now induce correlations between ∆mi and ∆ni 248

(Fig 3C). Indeed, perturbation theory predicts that the first-order effects ∆m and ∆n 249

of the random connectivity on m and n are respectively determined by Z and its 250

transpose Zᵀ (Eq. (9)). Reciprocal correlations between zij and zji directly lead to 251

correlations between Z and Zᵀ and therefore a non-zero covariance σnm between 252

elements of m and n, that can be predicted by mean field theory (Fig 3E, Eq. (70)). 253
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Fig 4. Eigenvalues and dominant eigenvectors for different network connectivity with reciprocal motifs. (A)
Eigenvalue spectra of excitatory-inhibitory connectivity matrices J, with homogeneous reciprocal correlations η but
cell-type-dependent variance parameters gEE : gEI : gIE : gII = 1.0 : 0.5 : 0.2 : 0.8 and gEE = 0.3. Different colours
correspond to networks with different η. The elliptical bulk shows 600 randomly sampled eigenvalues for one realization of the
random connectivity. Outlying eigenvalues are shown for 30 realizations of the random connectivity. The red arrow on the top
points to the unperturbed eigenvalue λ0 of the mean connectivity J̄. Coloured circles are the eigenvalues predicted using
determinant lemma. (B) Comparison of the eigenvalues from the finite-size simulation with the predictions of the determinant
lemma as the reciprocal correlation η is increased. The coloured solid lines show the roots of the third-order polynomial in
Eq. (7). The light purple area indicates the empirical distribution of the dominant outlier, while the black dashed line is the
unperturbed eigenvalue λ0. The grey areas represent the eigenvalue bulk. (C) Scatter plot showing for each neuron i its entry
ni on the left eigenvector against its entry mi on the right eigenvector, with the eigenvectors corresponding to eigenvalue
outliers λ that deviate from λ0. Red and blue colours represent respectively excitatory and inhibitory neurons. The white
dots and the dashed lines respectively indicate the means and covariances for each population. (D) Comparison between the
population covariance σpnm of the entries on the left and right connectivity eigenvectors to different populations (coloured
areas) and the predictions of perturbation theory (coloured lines, Eq. (95)). Other network parameters for (A-D):
JE = 2.0, JI = 1.2, NE = 4NI = 1200. (E) Same as (A) for a connectivity matrix with homogeneous reciprocal correlations
η, the coloured circles are solutions considering k up to 2 and the coloured triangles are solutions considering k up to 4. Other
network parameters: JE = 1.5, JI = 1.2, gEE : gEI : gIE : gII = 1.0, 0.5, 0.2, 0.8, gEE = 0.2 and NE = 4NI = 1200. (F, G)
Same as (A, B) for an inhibition dominates connectivity matrix where JI = 2.0, JE = 1.2, with homogeneous reciprocity η
and variance parameters g = 0.3. (H) Comparison of the overall covariance σnm with the deviation ∆λ of the dominant
outlying eigenvalue from the unperturbed value λ0.
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When the network has both homogeneous variance parameters and correlation 254

parameters, the excitatory and inhibitory populations have the same covariance 255

σEnm = σInm = (JE − JI)g2η/λ2 (Figs 3C, E, Eq. (95)). If the synaptic variances gpq 256

differ across populations, the covariances σnm are different for excitatory and inhibitory 257

populations even if the reciprocal correlations are uniform (Figs 4C, D). The strength of 258

the overall covariance reflects the strength of the additional feedback loop due to 259

reciprocal correlations, and is therefore directly related to the deviations of the outlying 260

eigenvalue from the uncorrelated value λ0 (Fig 3F). 261

These results directly extend to networks with heterogeneous reciprocal correlations 262

ηpq, p, q = E, I. In particular, in this case finite-size simulations confirm the presence of 263

additional, complex conjugate outliers predicted by the cubic term in Eq. (7) (coloured 264

circles containing outlier scatters at conjugate positions in Fig 3M). Moreover, the 265

covariances σpnm between the entries of low-rank connectivity vectors in this case differ 266

between the excitatory and inhibitory population (Figs 3I, K, O, Q). 267

1.5 Approximating low-dimensional dynamics for 268

locally-defined connectivity. 269

In previous sections, we developed a rank-one approximation of locally-defined 270

excitatory-inhibitory connectivity. Here we use this approximation to describe the 271

resulting low-dimensional dynamics. We consider networks of rate units, where the 272

activation xi of unit i obeys 273

ẋi(t) = −xi(t) +
N∑
j=1

Jijφ(xj(t)). (13)

Here φ(x) = 1 + tanh (x− θ) is a positive transfer function, and for simplicity, we focus 274

on autonomous dynamics without external inputs. We start from a locally-defined 275

excitatory-inhibitory connectivity matrix, and compare the resulting activity with the 276

theoretical predictions of our rank-one approximation, for which the dynamics are 277

low-dimensional and analytically tractable. We first summarize the theoretical 278

predictions for those dynamics, and then examine the specific cases of independent and 279

reciprocally-correlated connectivity. 280

Recent works have showed that in networks with a rank R connectivity matrix, the 281

trajectories x(t) = {xi(t)}i=1...N are confined to a low-dimensional subspace of the 282

N−dimensional space describing the activity of all units [30–33]. In absence of external 283

inputs, this subspace is R-dimensional and spanned by the set of connectivity 284

eigenvectors m(r) for r = 1 . . . R, so that the trajectories can be parametrized as 285

x =
∑R
r=1 κrm

(r) where κr is a collective latent variable representing activity along 286

m(r). For a rank-one (R = 1) connectivity corresponding to an approximation of our 287

locally-defined E-I network, the dynamics can therefore be represented by a single latent 288

variable κ, so that the activation of unit i is given by 289

xi(t) = κmi (14)

= κm̄i + κ∆mi, (15)

where we inserted the expression for mi obtained from a first-order perturbation 290

(Eq. (8), (9)). Note that since m̄i = 1, the first term in the r. h. s. of Eq. (15) 291

corresponds to population-averaged activity, while the second term is the deviation of 292

the activity of unit i from the population average. Inserting the values for ∆mi 293

obtained using specific realizations of random connectivity in Eq. (9), the rank-one 294

approximation provides predictions for the activity of single units in individual instances 295

of locally-defined networks. Moreover, the rank-one theory predicts that both the 296
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population-average and the standard deviation of activations in the network are 297

proportional to κ. 298

The values taken by the latent variable κ can be determined by projecting Eq. (13) 299

onto m and inserting Eq. (15) (Methods Secs. 2.6.1, 2.6.2). This leads to a closed 300

equation for the dynamics of κ(t): 301

κ̇ = −κ+
∑
p=E,I

αp

(
n̄p
〈
φ(κm̄p, κ2σ2

mp)
〉

+
〈
φ′(κm̄p, κ2σ2

mp)
〉
σpnmκ

)
, (16)

where the brackets denote a Gaussian average (see Eq. (110)). The steady state then 302

obeys 303

κ = Fmean(κ) + Fcov(κ) (17)

where 304

Fmean(κ) =
∑
p=E,I

αpn̄
p
〈
φ(κm̄p, κ2σ2

mp)
〉
,

Fcov(κ) =
∑
p=E,I

αp
〈
φ′(κm̄p, κ2σ2

mp)
〉
σpnmκ.

(18)

The two terms in the r. h. s. of Eq. (17) show that the contributions of recurrent 305

synaptic inputs to the latent dynamics κ come from two sources: (i) the population 306

means of the left and right connectivity eigenvectors n̄p and m̄p that contribute to 307

Fmean(κ) (Eqs. (52)-(54)); (ii) the covariance σpnm between the left and right 308

connectivity eigenvectors that contributes only to Fcov(κ). In the low-rank 309

approximation of the locally-defined E-I connectivity, these two terms have distinct 310

origins: the mean comes from the independent components of the connectivity 311

(Eqs. (53), (54)); while the covariance comes from reciprocal correlations between 312

connections (Eqs. (94), (95)). We therefore next examine separately the effects on 313

dynamics of these two connectivity components. 314

1.5.1 Independently generated local connectivity 315

When synaptic connections are generated independently from a Gaussian distributions 316

based on the identities of pre- and post-synaptic populations, the rank-one 317

approximation of connectivity leads to uncorrelated left and right connectivity vectors n 318

and m, so that σpnm = 0 for p = E, I. In consequence, only the first term is present in 319

the r. h. s. of Eq. (17), and the fixed point of the latent dynamics is given by a 320

difference between excitatory and an inhibitory feedback (Eq. (114)): 321

κ = JE〈φ(κ, κ2σ2
mE )〉 − JI〈φ(κ, κ2σ2

mI )〉. (19)

As long as the mean inhibition JI is strong enough to balance the mean excitation JE , 322

Eq. (19) predicts a single fixed point. As JE is increased, positive feedback begins to 323

dominate and leads to a bifurcation to a bistable regime for the latent dynamic variable 324

κ (Figs 5A-C, S2 Appendix). 325

This bistability due to positive feedback is expected on the basis of mean 326

connectivity alone. Indeed replacing the connectivity matrix by its mean J̄ is equivalent 327

to a rank-one approximation with m = m̄ and n = n̄ which lead to Eq. (113) with 328

σ2
mp = 0 for p = E, I. The additional first-order perturbation term in the rank-one 329

approximation (Eqs. (8), (9)) additionally takes into account fluctuations in the 330

connectivity, which leads to a non-zero σ2
mp , and modifies the fixed points predicted by 331
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Fig 5. Predicting low-dimensional dynamics using a rank-one approximation of networks with independent
Gaussian connectivity. (A) Fixed points of the latent variable κ in the rank-one approximation. The lines show the
dynamics κ̇ as function of κ, predicted by Eq. (16) (solid line: JE = 2.4; dashed line: JE = 1.5). The intersections with y = 0
correspond to fixed points (filled dots: stable; unfilled dot: unstable). (B) Contribution of mean connectivity to the latent
dynamics, Fmean(κ) in Eq. (18), for two values of JE . (C) Bifurcation diagram for increasing JE : analytical predictions of
Eq. (19) compared with simulations of the full network with locally-defined connectivity. Blue line: analytical prediction
including only the mean part of the connectivity (σ2

mp = 0 in Eq. (19)); purple line: analytical prediction including the
first-order perturbation term in the rank-one approximation; gray: projection of simulated activity x onto the connectivity
vector m computed by perturbation theory (Eq. (102)). (D) Comparison between predictions and simulations for the activity
of individual units in a given realization of the random connectivity. For each unit i, a dot shows the deviation ∆xi of its
steady-state activity from the population average, against its value ∆mi of the perturbed part of the connectivity vector m
(Eq. (15)). The low-rank theory predicts ∆xi = κ∆mi. Red and blue scatters show excitatory or inhibitory populations, each
for several values of JE . Lines represent y = κx, where κ is obtained from Eq. (19). Upper panels show the result in a
realization with a high fixed point, bottom panels show the result in a realization with a low fixed point. (E) Comparison
between the predictions (solid lines) and simulations (shaded areas) for the population-averaged variances of ∆xi. Shaded
areas show mean±std. Network parameters: NE = 4NI = 1200, JI = 0.6, gEE : gEI : gIE : gII = 1.0 : 0.5 : 0.2 : 0.8 and
gEE = 0.8. The transfer function φ has parameter θ = 1.5.

Eq. (19). In consequence, the bifurcation to bistability takes place at higher values of 332

JE than predicted from mean connectivity alone (purple lines compared to blue lines in 333

Fig 5C). 334

More importantly, we find that the first-order perturbation in the rank-one 335

approximation accurately predicts the firing rates of individual neurons for specific 336

instances of the random, locally-defined connectivity (Fig 5D), and therefore the 337

variance of the steady state of population dynamics ∆p
x. In particular, cell-type 338

dependent variances in the synaptic connectivity, lead to distinct variances ∆E
x and ∆I

x 339

for excitatory and inhibitory populations (Eqs. (88), (129), Fig 5E). 340

Note that the independently generated local connectivity can be treated analytically 341

without resorting to a rank-one approximation, by using a different variant of 342

mean-field theory originally developed for randomly connected networks. [30, 52]. That 343

theory is not perturbative, and takes into account an additional term in the variance 344

(see Methods Sec. 2.6.3 and S3 Appendix for more details). However, in contrast to the 345

rank-one approximation, it does not predict the activity of individual neurons, and is 346

challenging to extend beyond independent random connectivity. 347
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Fig 6. Predicting low-dimensional dynamics using a rank-one approximation of networks with homogeneous
reciprocal motifs. (A) Influence of reciprocal correlations on fixed points of the latent variable κ in the rank-one
approximation. The lines show the dynamics κ̇ as function of κ, predicted by Eq. (16) (solid line: η = 1; dashed line: η = 0).
The intersections with y = 0 correspond to fixed points (filled dots: stable; unfilled dot: unstable). (B) Comparison of the
contributions of mean connectivity Fmean(κ) and covariance Fcov(κ) to the latent dynamics of κ (Eq. (18)) for η = 1. (C)
Bifurcation diagram for increasing η at fixed JE . Solid purple lines: analytical predictions of Eqs. (17), (18); gray areas:
projection of simulated activity x onto the connectivity vector m computed by perturbation theory (Eq. (102)). (D)
Comparison between predictions and simulations for the activity of individual units in a given realization of the random
connectivity. For each unit i, a dot shows the deviation ∆xi of its steady-state activity from the population average, against
its value ∆mi of the perturbed part of the connectivity vector m (Eq. (15)). The low-rank theory predicts ∆xi = κ∆mi. Red
and blue scatters show excitatory or inhibitory populations, each for two values of η. Lines represent y = κx, where κ is
obtained from Eqs. (17), (18). Upper panels show the result in a realization with a high fixed point, bottom panels show the
result in a realization with a low fixed point. (E) Comparison between the predictions (solid lines, Eq. (133)) and simulations
(shaded areas) for the population-averaged variances of ∆xi. Shaded areas show mean±std. Network parameters:
NE = 4NI = 1200, JE = 1.9, JI = 0.6, gEE : gEI : gIE : gII = 1.0 : 0.5 : 0.2 : 0.8 and gEE = 0.8. The transfer function φ has
parameter θ = 1.5.

1.5.2 Reciprocal motifs. 348

We next turn to the predictions of the rank-one approximation for dynamics resulting 349

from locally-defined connectivity with reciprocal motifs. In this case, the additional 350

reciprocal correlations in the random part of the connectivity lead to a non-zero 351

covariance σnm between the connectivity vectors n and m in the rank-one 352

approximation (Eqs. (90), (95)). This covariance in turn generates an additional 353

feedback component in the dynamics of the latent variable, the second term in the 354

r. h. s. of Eq. (17). 355

Specifically, positive reciprocal correlations combined with excitation-dominated 356

connectivity enhance positive feedback with respect to mean connectivity alone. As a 357

result, progressively increasing the reciprocal correlations can therefore induce a 358

bifurcation to bistability, even if the mean excitation is not sufficient by itself to support 359

two stable states (Figs 6A-C). This is a major novel effect of reciprocal motifs on 360

collective dynamics. As in the case of independent connectivity, we moreover found that 361

the perturbative term in the rank-one approximation correctly predicts the activity of 362

individual neurons in specific realizations of the connectivity (Fig 6D), and therefore 363

also the cell-type dependent variances of activity (Fig 6E). 364

August 25, 2022 15/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.25.505122doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505122
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 7. Predictions for low-dimensional dynamics using a rank-one approximation of networks with
non-homogeneous and anti-symmetric reciprocal motifs. (A-D) Fixed points of latent dynamics in networks with
heterogeneous, cell-type-dependent reciprocal correlations: ηEE = ηEI = −ηII . Network parameters: NE = 4NI = 1200,
gEE : gEI : gIE : gII = 1.0 : 0.5 : 0.2 : 0.8, gEE = 0.8, JE = 1.9 and JI = 0.6. (E-H) Fixed points of latent dynamics in
networks with homogeneously anti-symmetric motifs, ηpq = η ∈ [−1, 0]. Network parameters: NE = 4NI = 1200,
gEE : gEI : gIE : gII = 1.0 : 0.5 : 0.2 : 0.8, gEE = 0.8, JE = 2.2 and JI = 0.6. In C and F, gray areas show projections of
simulated activity x onto the connectivity vector m computed by perturbation theory (Eq. (102)), shaded areas show
mean±std.

More generally, our rank-one approximation allows us to describe the latent 365

dynamics when the degree of reciprocal correlation depends across the pre- and 366

post-synaptic populations (Results Sec. 1.4). Such heterogeneity in reciprocal 367

correlations can enhance different types of feedback. For example, antisymmetric 368

connectivity within inhibitory populations (ηII < 0) disinhibits excitatory population 369

and thus facilitates bistable transitions (Figs 7A-C) compared to networks with 370

homogeneous reciprocal correlations. In contrast, excitation-dominated connectivity 371

with homogeneous negative reciprocity (η < 0) generate negative feedback and therefore 372

suppress the global dynamics from bistable state to quiescent (Figs 7D-F). 373

Importantly, describing the role of reciprocal correlations on latent dynamics relies 374

on our global low-rank approximation of locally-defined connectivity. In particular, the 375

effects of such correlations cannot be captured by considering only mean connectivity 376

and population-averaged activity (first term in the r. h. s. of Eq. (17)). Moreover, 377

including reciprocal correlations in classical mean-field approaches to randomly 378

connected networks is technically challenging [18]. 379

1.6 Extension: E-I networks with sparse connectivity. 380

In previous sections, we examined locally-defined connectivity generated using Gaussian 381

distributions of individual synaptic weights (function fpq in Eqs. (1)). Our results for 382

the low-rank approximation of locally-defined connectivity are however independent of 383

the precise form of the distribution fpq. In particular, our finding that the resulting 384

low-rank structure obeys Gaussian-mixture statistics is universal, in the sense that it is 385

valid for any distribution fpq for which the central limit theorem holds (see Discussion). 386

To illustrate this universality, here we turn to networks with sparse connectivity, 387

generated from Bernoulli distributions fpq taking values 0 and Aq (where Aq = AE , AI 388

refer to strengths of excitatory and inhibitory connections), with a uniform fraction c of 389
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Fig 8. Rank-one approximation and predicted low-dimensional dynamics for sparse excitatory-inhibitory
networks. (A) Left: Comparison of the predicted eigenvalue outlier λ0 = c(NEAE +NIAI) (black line) with finite-size
simulations (red area shows mean±std for 30 realizations). The gray area represents the area covered by the eigenvalue bulk.
Right: example spectrum of one realization of connectivity matrix with E/I ratio AE/AI = 0.33, and the radius rg of the
eigenvalue bulk computed from the statistically equivalent Gaussian connectivity (see S4 Appendix). (B) Scatter plot showing
for each neuron i its entry ni on the left eigenvector against its entry mi on the right eigenvector. Red and blue colours
represent respectively excitatory and inhibitory neurons. The white dots and the dash lines respectively indicate the means
and covariances for each population obtained from simulations. For visualization purposes, the x− and y-axis are scaled
unequally. (C) Comparison between eigenvector entries obtained from direct eigen-decomposition of J with predictions of
perturbation theory (Eqs. (8), (9)). (D) Bifurcation diagram for increasing the ratio AE/AI : analytical predictions of
Eq. (115) compared with simulations of the full network with locally generated sparse connectivity. Purple line: analytical
prediction including the first-order perturbation term in the rank-one approximation; gray: projection of simulated activity
onto the connectivity vector m computed by perturbation theory Eq. (102). (E) Comparison between the predictions (solid
lines) and simulations (shaded areas) for the population-averaged variances of ∆xi. Shaded areas show mean±std. (F)
Comparison between predictions and simulations for the activity of individual units in a given realization of the sparse
connectivity. For each unit i, a dot shows the deviation ∆xi of the steady-state activity from the population average, against
the corresponding value ∆mi of the perturbed part of the connectivity vector m (Eq. (15)). The low-rank theory predicts
∆xi = κ∆mi. Red and blue scatters show excitatory or inhibitory populations, each for two values of the ratio AE/AI . Lines
represent y = κx, where κ is obtained from Eqs. (17), (18). Upper panels show the result in a realization with a high fixed
point, bottom panels show the result in a realization with a low fixed point. The gray vertical dashed line in A left, D, E
correspond to the critical point c at which the absolute value of the outlier is equal to the radius of the eigenvalue bulk.
Network parameters: NE = 4NI = 800, c = 0.3, AE = 0.025. The transfer function φ has parameter θ = 1.5.
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non-zero connections (see Eq. (26)). The statistics of the corresponding rank-one 390

approximation are fully determined by the mean, variance and covariance of synaptic 391

weights in the excitatory and inhibitory populations. Here we compare the predictions 392

of our perturbative approximation with direct simulations of full-rank networks with 393

locally-defined connectivity. We first consider independently generated connectivity, and 394

then turn to reciprocal motifs. 395

1.6.1 Independently generated sparse connectivity. 396

For networks with independently generated sparse connectivity, the mean and variance 397

of individual synaptic weights are given by cAq and c(1− c)A2
q , where q = E, I refers to 398

the population of the presynaptic neuron. Previous works have shown that such sparse 399

networks have a random, circularly distributed bulk of random eigenvalues with a radius 400

rg determined by the overall variance of synaptic weights (Eq. (148), Fig 8A) [53,54], as 401

expected from the universality theorem for random matrices [49]. The overall mean of 402

the synaptic weights instead determines the mean outlying eigenvalue (Fig 8A). In 403

sparse networks, the main novelty with respect to the Gaussian case is that the mean 404

and variance of synaptic weights are not independent parameters, but are instead both 405

set by the synaptic couplings AE and AI as well as the network’s sparsity c. In 406

consequence, varying these couplings changes both the radius of the bulk and the 407

outlying eigenvalue, and can lead to intersections where the outliers dip into the bulk 408

(see S4 Appendix for details). 409

As long as the outlier lies outside of the eigenvalue bulk, our perturbative 410

approximation Eq. (67) predicts well the individual entries of the right- and 411

left-eigenvectors corresponding to the outlier from the fluctuation matrix Z (Fig 8C). 412

As expected, the resulting statistics of eigenvectors entries are well described by a 413

Gaussian-mixture distribution with parameters fully determined by the mean and 414

variance of the synaptic weights (Fig 8B). 415

Our predictions for the low-dimensional dynamics based on the rank-one 416

approximation therefore directly extend to sparse networks. Comparing with direct 417

simulations, we found that Eq. (115) predicts well the global latent variable κ obtained 418

by projecting the activity x onto the approximated rank-one eigenvector m (Eq. (102)). 419

As the E/I ratio is increased, positive feedback increases, and the latent variable κ 420

undergoes a transition from a single fixed point to two bistable states (Fig 8D). 421

For individual realizations of the sparse connectivity, the rank-one approximation 422

x = κm predicts well the activation xi of individual neurons in the simulations (Fig 8F). 423

From the statistics of the right eigenvector m (Eq. (89)), our analysis moreover predicts 424

the heterogeneity of activity in terms of population-averaged variances ∆
E/I
x (Fig 8E). 425

This heterogeneity is identical in excitatory and inhibitory populations, as their right 426

eigenvectors have identical fluctuations (Figs 8C, E). 427

1.6.2 Sparse EI networks with reciprocal motifs. 428

For sparse E-I networks, we generate reciprocal motifs by introducing a fraction ρpq of 429

reciprocally connected pairs of neurons. Together with the sparsity c and the synaptic 430

strengths, the parameter ρpq determines the cell-type dependent reciprocal correlation 431

ηpq (Methods Sec. 2.1.2 Eqs. (32), (37), Fig 9A). 432

We first examine the effect of the reciprocal motifs on the statistical properties of 433

the eigenvalues and eigenvectors. The spectrum still consists of continuous eigenvalues 434

and a discrete outlier. Since in the independent case the outlier depends only on AE/I 435

and sparsity c, here we fix these two variables but increase ηEE = −ηEI while keeping 436

ηII constant. As in the case of dense, Gaussian networks, the outlier increases with the 437

increasing reciprocal correlation and deviates from the outlier of the corresponding 438
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Fig 9. Characterizing connectivity statistical properties and low-dimensional dynamics for the sparse
network with reciprocal motifs. (A) Schematics of a sparse EI network with four forms of paired connections. White and
black rectangles represent the non-zero excitatory and inhibitory sparse connections. (B) Eigenvalue spectrum of the sparse
connectivity (upper panel) and from the equivalent Gaussian connectivity (bottom panel) with reciprocal motifs.
Cell-type-dependent reciprocal correlations are ηEE = 0.71, ηEI = −0.71, ηII = −0.43 in both connectivity matrices,
continuous eigenvalue bulks show eigenvalues for one realization of the network connectivity. Red arrows point to the
unperturbed eigenvalue λ0. Outlying eigenvalues are shown for 30 realizations of the network connectivity. Coloured circles
are the eigenvalues predicted using determinant lemma. (C) Comparison of the eigenvalues from the finite-size simulation of
the sparse connectivity, with the predictions of the determinant lemma as progressively increasing the reciprocal correlation
ηEE (−ηEI). The coloured solid lines show the roots of the third-order polynomial in Eq. (7). The purple area indicates the
empirical distribution of the dominant outlier, while the black dashed line is the eigenvalue λ0 of the corresponding
independent sparse connectivity matrix (Eq. (76)). The gray areas correspond to the areas covered by the eigenvalue bulk.
(D) Scatter plot showing for each neuron i its entry ni on the left eigenvector against its entry mi on the right eigenvector.
Red and blue colours represent respectively excitatory and inhibitory neurons. The white dots indicate the means for each
population obtained from simulations. For visualization purposes, the x- and y-axis are scaled unequally. (E) Comparison
between eigenvector entries obtained from direct eigen-decomposition of J with predictions of perturbation theory
(Eqs. (8), (9)). (F) Comparison between the population covariance σpnm of the entries on the left and right connectivity
eigenvectors to different populations (coloured areas) and the predictions of perturbation theory (coloured lines, Eq. (97)).
(G) Bifurcation diagram for increasing the reciprocal correlation ηEE (−ηEI): analytical predictions of Eq. (117) compared
with simulations of the full network with locally generated sparse connectivity and reciprocal motifs. Purple line: analytical
prediction including the first-order perturbation term in the rank-one approximation; gray: projection of simulated activity
onto the connectivity vector m computed by perturbation theory Eq. (102). (H) Comparison between predictions and
simulations for the activity of individual units in a given realization of the sparse connectivity. For each unit i, a dot show the
deviation ∆xi of the steady-state activity from the population average, against its value ∆mi of the perturbed part of the
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Fig 9. (Continued from previous page.) connectivity vector m (Eq. (15)). The low-rank theory predicts ∆xi = κ∆mi. Red
and blue scatters show excitatory or inhibitory populations, eachfor two values of the reciprocal correlation ηEE . Lines
represent y = κx, where κ is obtained from Eqs. (17)-(18). Upper panels show the result in a realization with a high fixed
point, bottom panels show the result in a realization with a low fixed point. (I) Comparison between the predictions (solid
lines) and simulations (shaded areas) from the population-averaged variances of ∆xi, shaded areas show mean±std. In
C, F, G, I, the reciprocal correlations ηEE = −ηEI progressively increase from −0.43 to 1.0 while keeping ηII = −0.43
constant ( ρEE = ρEI increase from 0 to 1 and ρII = 0 is fixed). Network parameters: NE = 4NI = 800, c = 0.3, AE = 0.023,
AE/AI = 0.3. The transfer function φ has parameter θ = 1.5.

independent sparse connectivity matrix (Figs 9B, C). Moreover, in the large network 439

limit, we find that if means, variances, and reciprocal correlations are identical, dense 440

Gaussian connectivity leads to the same eigenvalue spectrum as the sparse connectivity 441

(Methods Secs. 2.1.2, 2.1.3 Eqs. (36), (37)). We furthermore mathematically predict two 442

additional conjugate eigenvalue outliers generated by the reciprocal connections in the 443

sparse case (Eqs. (80), (86), (87), Fig 9B). 444

As for uncorrelated connectivity, perturbation theory predicts the individual left and 445

right eigenvector entries, which altogether follow Gaussian statistics as expected 446

(Figs 9D, E). Importantly, reciprocal correlations induce a non-zero covariance σnm 447

between the entries mi and ni of the right and left eigenvectors (Eq. (97), Fig 9F). 448

Finally, we examine the population dynamics in the sparse network with reciprocal 449

motifs using the low-rank approximation derived above. The reciprocal motifs in the 450

example network generate an overall positive feedback. Therefore, gradually increasing 451

the reciprocal correlation ηEE (−ηEI) in the example network induces a bifurcation into 452

bistability (Eq. (117), Fig 9G). Analogous to the predictions of individual eigenvector 453

entries, the low-rank approximation gives analytical predictions for the activity of 454

individual neurons in specific connectivity realizations (Fig 9H), and hence the cell-type 455

dependent variances of neuronal activation ∆
E/I
x (Fig 9I) obtained from finite-size 456

simulations of the original sparse networks. 457

Discussion 458

In this work, we unified two different descriptions of connectivity in multi-population 459

networks and thereby connected two broad classes of models. Starting from local 460

statistics of synaptic weights, we approximated the resulting connectivity matrix in 461

terms of a low-rank structure. The obtained, approximate low-rank network model then 462

allowed us to determine the influence of the local connectivity motifs on the global 463

low-dimensional dynamics. 464

A key ingredient in our approach is a low-rank approximation of the locally-defined 465

connectivity matrix. Approximating an arbitrary full-rank matrix by a rank-R one is a 466

classical problem in numerical analysis, for which a number of different methods are 467

available depending on the objective of approximation [55]. The most common method 468

is to perform a singular value decomposition (SVD), and keep the top R terms [56]. 469

This method minimizes the Frobenious norm of the difference between the original 470

matrix and its low-rank approximation. Our goal in this study was however to obtain a 471

low-rank approximation that preserves the dominant eigenvalues of the original matrix, 472

as these eigenvalues determine the autonomous dynamics in the network. An SVD-based 473

approximation preserves the top singular values, but in general not the top eigenvalues. 474

We therefore opted for an approximation based on truncated eigen-decomposition. 475

When studying input-driven and transient dynamics, different methods for low-rank 476

approximation may be more appropriate, and are a topic of active research [57–61] 477

To perform the eigen-decomposition of excitatory-inhibitory connectivity matrices, 478
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we leveraged the fact that they can be expressed as a sum of a block-like deterministic 479

low-rank matrix and a full-rank random matrix with zero-mean [40]. The 480

eigen-spectrum of such matrices in general consists of a continuously-distributed bulk 481

and discrete outliers [44,45]. While a number of works have examined the bulk of the 482

eigenvalue spectrum for random matrices [11,18,32,44,49,52,62,63], the outliers, and in 483

particular the corresponding eigenvectors have to our knowledge received less attention. 484

The main technical novelty in this work is the use of matrix perturbation theory [47, 64] 485

to approximate the eigenvectors corresponding to the outliers in the eigenspectrum of 486

the locally-defined connectivity matrices. A key output of this approach is the finding 487

that entries of the left- and right-eigenvectors follow multivariate Gaussian distributions, 488

the statistics of which depend on the population the neurons belong to. This result 489

provides a general theoretical mapping from locally-defined multi-population models to 490

Gaussian-mixture low-rank networks [31,33]. It however holds only as long as the 491

distribution of synaptic weights satisfies the assumptions of the central limit theorem. 492

This in particular excludes heavy tailed distributions often found in experimental 493

studies [1, 65]. 494

In the networks we considered, the non-random structure in connectivity comes only 495

from the multi-population organization. More specifically, the low-rank skeleton of the 496

locally-defined connectivity matrix is fully specified by the mean synaptic weights 497

between different populations (Eq. (3)). This mean connectivity structure largely 498

controls the outlying eigenvalue, and the average values of the corresponding eigenvector 499

entries. The random part of the connectivity and reciprocal motifs can modify the 500

outlying eigenvalue, and add heterogeneity as well as correlations to this underlying 501

structure. Our perturbative theory allows us to quantify these effects and predict 502

dynamics on a single-neuron basis. This approach can be directly extended to networks 503

with additional structure, in which the low-rank skeleton is not solely determined by the 504

mean connectivity but possibly by more general patterns. 505

A key insight from our study is a general relationship between reciprocal motifs in 506

locally-defined connectivity and overlaps among connectivity vectors in low-rank 507

networks. Indeed, we have shown that correlations between reciprocal synaptic weights 508

generate overlaps beyond the mean in the corresponding low-rank approximation 509

(Eq. (93)). Conversely, zero-mean overlaps between connectivity vectors in a low-rank 510

model necessarily imply non-vanishing reciprocal correlations (Eq. (41) and S5 511

Appendix). Since overlaps between connectivity vectors determine the autonomous 512

recurrent dynamics in low-rank networks, this relationship allowed us to quantify how 513

reciprocal connectivity motifs contribute to network dynamics. 514

Local statistics of synaptic connectivity are believed to play an important role in the 515

global network dynamics [1, 17,32,62]. Our study, provides a mathematical theory that 516

relates the local connectivity statistics to global recurrent dynamics through a low-rank 517

approximation. This computational framework is not restricted to the reciprocal motifs 518

that we have emphasized in this work, but can be extended to various forms of local 519

connectivity motifs [10]. As a result, our framework can be applied more broadly to 520

study experimentally-obtained connectivity databases and connectivity consisting of 521

different types of motifs. [6, 7, 15]. 522
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Table 1. List of notations.

Notation Description

i, j Single neuron indices

p, q Neuron population indices

αp Fraction of neurons belonging to population p

J̄pq Mean synaptic weights between populations p, q

JE/I Re-scaled mean excitatory/inhibitory synaptic weights

σzpq Standard deviation of the synaptic weights between populations p, q

gpq Re-scaled standard deviation of the synaptic weights between populations p, q

ηpq Reciprocal correlation of connectivity weights between populations p, q

AE/I Excitatory/inhibitory synaptic weights in the sparse network

c Homogeneous sparsity of the sparse network, cpq = c

σ2
mp , σ2

np Variances of components on connectivity vectors mp and np

σpnm Covariance between connectivity vectors mp and np

µpx, ∆p
x Population-averaged mean and variance of activation

2 Materials and methods 523

Throughout this study, we consider recurrent networks of N neurons and denote by J 524

the recurrent connectivity matrix, where Jij is the synaptic strength of the connection 525

from neuron j to neuron i. 526

2.1 Locally-defined multi-population connectivity 527

In this section, we introduce a first class of connectivity models, in which the synaptic 528

couplings are generated based on local statistics determined by the identity of pre- and 529

post-synaptic neurons. The N neurons in the network are organized in P populations, 530

where population p has Np neurons. Denoting by p and q the populations neurons i and 531

j belong to, the value of the synaptic coupling Jij is drawn randomly from a 532

distribution in which statistics depend on the pre- and postsynaptic population q and p. 533

The full connectivity matrix J therefore has a block structure, in the sense that all 534

connections within the same block share identical statistics. 535

We examine two variants of this model class: (1) independent random 536

connectivity [52]; (2) connectivity with reciprocal motifs [10, 66]. In each case, we 537

examine two specific examples of distributions of synaptic strengths, Gaussian, and 538

Sparse distributions. 539

2.1.1 Independent random connectivity 540

For networks with independent random connectivity, the recurrent connections Jij are 541

sampled independently for each (i, j) pair from 542

Prob(Jij = J) = fpq(J), (20)

where fpq denotes a probability density function, and q, p are the pre- and post-synaptic 543

populations. Separating the mean and random components, for an arbitrary 544

distribution Eq. (20) can be re-expressed as 545

Jij = J̄pq + zij . (21)
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Here J̄pq is the mean value of the connections from population q to population p, and 546

zij is the remaining zero-mean random part of each connection. Defining J̄ as the 547

N ×N deterministic matrix consisting of mean values, and Z as the noise matrix 548

consisting of the random parts zij , the connectivity matrix J can be written as 549

J = J̄ + Z. (22)

The matrix J̄ is of size N ×N and consists of P 2 blocks with identical values within 550

each block. The rank of J̄ is therefore at most P [40]. In contrast, the noise matrix Z is 551

in general of rank N . The full connectivity matrix J can then be interpreted as a rank-P 552

deterministic matrix perturbed by the random matrix Z with block-dependent statistics. 553

In the case of Gaussian connectivity, connections from population q to population p 554

are sampled independently from a Gaussian distribution. 555

fpq(J) = N (J̄pq, σ
2
zpq ), (23)

with variances 556

σ2
zpq =

g2pq
N
. (24)

The noise matrix Z therefore has block-structured variances g2pq/N that we specify 557

by a P × P matrix Gm: 558

Gm =

 g211/N · · · g21P /N
...

...
g2P1/N · · · g2PP /N

 . (25)

In the case of sparse connectivity, Jpqij is a Bernoulli random variable. The 559

connectivity weights Jpqij from population q to population p are non-zero with 560

probability cpq and zero otherwise. All non-zero connection weights within a block take 561

the same value Apq, so that analogously to Eq. (20), the sparse connectivity is defined as 562

fpq(Jij = J) =

{
cpq for J = Apq,

1− cpq for J = 0.
(26)

The mean connectivity weight between populations p, q is then 563

J̄pq = cpqApq. (27)

and the variance of the remaining random part zij is 564

σ2
zpq = [z2ij ]i∈Np,j∈Nq

= (1− cpq)cpqA2
pq, (28)

to simplify the parameters in sparse networks, we assume that Apq depend only on 565

presynaptic population q, and that the connection probability cpq is a homogeneous 566

network parameter independent of p, q that we denote by c. 567

2.1.2 Reciprocal connectivity motifs 568

To go beyond independent connectivity, we consider pairwise motifs, i. e. correlations 569

between reciprocal pairs of weights Jij and Jji. We quantify this correlation using the 570

normalized covariance ηij defined as 571

ηij =
( [(Jij − [Jij ])(Jji − [Jji])]√

[(Jij − [Jij ])2][(Jji − [Jji])2]

)
J
, (29)
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where [·] denotes the average over the full connectivity distribution. Reciprocal 572

connections are fully independent when ηij = 0 for all i, j, fully symmetric when ηij = 1 573

and fully anti-symmetric when ηij = −1. 574

Our key assumption is that the statistics of connectivity are block-like, implying that 575

all pairs of connections between populations p, q share the same correlation coefficient 576

ηpq, so that the statistics are defined by a P × P reciprocal correlation matrix ηm 577

ηm =

 η11 · · · η1P
...

...
ηP1 · · · ηPP

 , (30)

where, by definition ηpq = ηqp. 578

For Gaussian statistics, we generate connectivity matrices with a specified set of ηpq 579

in the following manner. We first generate an N ×N matrix Y′ with entries 580

independently sampled from the normal distribution N (0, 1). We then form a linear 581

combination Y′ and its transpose Y′ᵀ to generate a matrix Y with reciprocal 582

correlations ηpq. Specifically, we set 583

yij = γpqy
′
ij +

√
1− γ2pqy′ji (31)

with γpq =
√

1−
√

1− η2pq/2 for ηpq > 0, and −
√

1−
√

1− η2pq/2 for ηpq < 0. Finally, 584

we scale each block by gpq/
√
N to obtain the random connectivity component Z, which 585

is added to the mean connectivity component J̄ to finally obtain the full connectivity 586

matrix J. 587

For sparse networks, we first generate a connectivity matrix without reciprocal 588

correlations. We then consider the upper triangle of this matrix, randomly select a 589

fraction ρpq of the non-zero connections Jij with value Aq and set their reciprocal 590

connectivity weights Jji to have a non-zero weight Ap. For the remaining 1− ρpq 591

fraction of non-zero connections in the upper triangle, we set the reciprocal connectivity 592

weights to zero. The corresponding cell-type dependent reciprocal correlations for the 593

multi-population sparse connectivity are then 594

ηpq =
ApAq(ρpq − c)
|ApAq|(1− c)

, p, q = 1 . . . P, (32)

where c is the homogeneous connection probability (Table. 1). 595

2.1.3 Excitatory-inhibitory networks 596

In this work, we specifically focus on excitatory-inhibitory networks composed of P = 2 597

populations, one excitatory and one inhibitory, with respectively NE and NI neurons. 598

We denote the two populations by indices E and I, so that there are four types of 599

connections: EE, EI, IE and II. Based on the usual anatomical estimates for 600

neocortex, we choose NE = 0.8N, NI = 0.2N , and further define αE = NE/N , 601

αI = NI/N , as the fractions of excitatory and inhibitory neurons. 602

For Gaussian networks, we enforce Dale’s law only on the mean, i. e. we set J̄EE and 603

J̄IE to be positive, while J̄EI and J̄II are negative. The N ×N mean connectivity 604

matrix J̄ is therefore in general rank-two. To further simplify the setting, we follow [43], 605

and consider networks where the mean weights of all excitatory connections, and 606

respectively all inhibitory connections, are equal and set by parameters JE and JI : 607

J̄EE = J̄IE = JE/NE (33)

J̄EI = J̄II = −JI/NI . (34)
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Under these additional assumptions, the entries in the first NE columns of the mean 608

connectivity matrix J̄ have the same positive weight JE/NE , and the entries in the 609

following NI columns have the same negative weight −JI/NI , so that J̄ becomes rank 610

one. 611

We however allow the variances g2pq/N and reciprocal correlations ηpq to depend on 612

both the pre- and post-synaptic population, so that the corresponding parameters form 613

2× 2 matrices 614

Gm =

[
g2EE/N g2EI/N
g2IE/N g2II/N

]
, ηm =

[
ηEE ηEI
ηIE ηII

]
, (35)

where ηEI = ηIE . 615

For sparse excitatory-inhibitory networks, all non-zero excitatory (resp. inhibitory) 616

synaptic weights are equal and positive, AE > 0 (resp. AI < 0). From Eqs. (27), (28) 617

the mean and the variance of the synaptic weights in the sparse network can be 618

matched to the parameters of the Gaussian model: 619

JE
NE

= cAE , g2EE/N = g2IE/N = A2
Ec (1− c) ,

− JI
NI

= cAI , g2EI/N = g2II/N = A2
Ic (1− c) ,

(36)

In particular, for the sparse networks with pairwise reciprocal motifs, on top of the 620

matching means and variances, the cell-type dependent reciprocal correlations satisfy 621

(Eq. (32)) 622

ηEE =
ρEE − c

1− c
, ηEI = −ρEI − c

1− c
, ηII =

ρII − c
1− c

. (37)

2.2 Globally-defined connectivity: Gaussian-mixture low-rank 623

networks 624

In this section, we introduce a second broad class of connectivity models, 625

Gaussian-mixture low-rank networks [31,33], in which the connectivity matrix is 626

generated from a global statistics of vectors over neurons. 627

Low-rank networks are a class of recurrent neural networks in which the connectivity 628

matrix J is restricted to be of rank R, assumed to be much smaller than the number of 629

neurons N . Such a connectivity matrix can be expressed as a sum of R unit rank terms 630

J =
1

N

R∑
r=1

m(r)n(r)ᵀ. (38)

We refer to n(r) = {n(r)i }i=1...N and m(r) = {m(r)
i }i=1...N as the r-th left and right 631

connectivity vectors. The 2R connectivity vectors together fully specify the connectivity 632

matrix. Each neuron i is then characterized by its set of 2R entries 633

(m
(1)
i , n

(1)
i , . . . ,m

(R)
i , n

(R)
i ) on these vectors. For unit-rank networks, the main focus of 634

this study, the connectivity matrix is simply given by the outer product of a pair of 635

connectivity vectors m and n: 636

JR1 =
1

N
mnᵀ. (39)

Gaussian-mixture low-rank networks are a subset of the class of low-rank networks, 637

for which the entries of the connectivity vectors are drawn independently for each 638
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neuron from a mixture of Gaussians distribution [31]. Specifically, a fraction αp of 639

neurons is assigned to a population p, and within each population, the entries on the 640

connectivity vectors are generated from a given 2R-dimensional Gaussian distribution. 641

For a unit-rank network, for a neuron i in the population p, the connectivity parameters 642

(mi, ni) are generated from a bi-variate Gaussian distribution with mean (m̄p, n̄p), 643

variance (σ2
mp , σ2

np) and covariance σpnm. 644

For any unit-rank matrix of the form in Eq. (39), the only potentially non-zero 645

eigenvalue is given by λ = nᵀm/N , and the corresponding right (resp. left) eigenvector 646

is m (resp. n). For a Gaussian-mixture model, in the large N limit this eigenvalue 647

becomes 648

λ =
P∑
p=1

αp (m̄pn̄p + σpnm) (40)

Starting from a Gaussian-mixture low-rank model in which the connectivity is 649

globally defined, it is straightforward to compute the resulting local statistics of the 650

connectivity, i. e. the mean J̄pq, variance σ2
zpq (Methods Sec. 2.1.1) and reciprocal 651

correlation ηpq (Methods Sec. 2.1.2) as: 652

J̄pq =
1

N
m̄pn̄q,

σ2
zpq =

1

N2

(
σ2
mp(n̄q)2 + (m̄p)2σ2

nq + σ2
mpσ2

nq

)
,

ηpq =
(σpnmm̄

qn̄q + σqnmm̄
pn̄p + σpnmσ

q
nm)√(

σ2
mp(n̄q)2 + (m̄p)2σ2

nq + σ2
mpσ2

nq

)(
σ2
mq (n̄p)2 + (m̄q)2σ2

np + σ2
mqσ2

np

) .
(41)

The expression for the local statistics of network connectivity using rank-R connectivity 653

is in S5 Appendix. 654

2.3 Approximating locally-defined connectivity with 655

Gaussian-mixture low-rank models 656

In this section, we describe our general approach for approximating an arbitrary 657

connectivity matrix J with a rank-R matrix JR. We then show that for J corresponding 658

to locally-defined multi-population connectivity (Methods Sec. 2.1), the resulting 659

approximation JR in general obeys Gaussian-mixture low-rank statistics as defined in 660

Methods Sec. 2.2. 661

To approximate a full rank matrix J with a rank-R matrix JR, we use truncated 662

eigen-decomposition, which preserves the dominant eigenvalues. We start from the full 663

eigen-decomposition of J: 664

J =
N∑
r=1

λrRrL
T
r , (42)

where λr is the r-th eigenvalue of J (ordered by decreasing absolute value), while Rr 665

and Lr are the corresponding right- and left-eigenvectors that obey 666

JRr = Rrλr (43)

Lᵀ
rJ = λrL

ᵀ
r (44)

LTr Rr′ = δrr′ . (45)

In the following, we constrain the right eigenvectors Rr to be of unit norm, while the 667

normalization of the left eigenvector is determined by Eq. (45). 668
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We obtain a rank-R approximation JR of J by keeping the first R terms in Eq. (42): 669

JR =
R∑
r=1

λrRrL
T
r . (46)

The R non-trivial eigenvalues and eigenvectors of JR therefore correspond to the first R 670

eigenvalues and eigenvectors of J. We then set 671

m(r) =
√
NRr (47)

n(r) =
√
NλrLr (48)

to have the same normalization for JR as in Eq. (38). 672

To obtain a low-rank approximation for a connectivity matrix J generated from 673

locally-defined statistics defined in Methods Sec. 2.1, we first determine its dominant 674

eigenvalues and eigenvectors. Starting from Eq. (22), this problem becomes equivalent 675

to finding the dominant eigenvalues and eigenvectors of a low-rank matrix J̄ perturbed 676

by a random matrix Z with block-like statistics. We compute the statistics of these 677

eigenvalues and eigenvectors by combining the Matrix’s Determinant Lemma, the 678

Matrix Perturbation Theory and the Central Limit Theorem. Below we summarize this 679

general approach before applying it to different specific cases in Methods Secs. 2.4, 2.5. 680

We focus on the case where J̄ is unit rank as in the simplified excitatory-inhibitory 681

network introduced in Methods Sec. 2.1.3. In that case, the unique non-zero eigenvalue 682

of J̄ is 683

λ0 = JE − JI , (49)

and the corresponding left and right eigenvectors are 684

L̄ =
[ √

NJE
NE(JE − JI)

, . . . ,−
√
NJI

NI(JE − JI)
, . . .

]ᵀ
,

R̄ = [
1√
N
, . . . ,

1√
N
, . . . ]ᵀ.

(50)

J̄ can then be rewritten as 685

J̄ =
1

N
m̄n̄ᵀ, (51)

where the structure vectors m̄ and n̄ are uniquely defined by rescaling the left and right 686

eigenvectors L̄, R̄ of J̄ (Eq. (50)) as in Eq. (47), so that 687

m̄i = 1, i = 1 . . . N (52)

n̄i = n̄E =
N

NE
JE i ∈ NE (53)

n̄i = n̄I = − N

NI
JI i ∈ NI , (54)

The full connectivity matrix J can be then expressed as 688

J = m̄n̄ᵀ/N + Z. (55)

Eigenvalues. For a random matrix Z with independently distributed elements, the 689

eigenvalues are distributed on a disk of radius rg centred at the origin in the complex 690

plane [11,44,50]. Correlations between elements in general modify the shape of this 691

continuous spectrum [18,67]. In contrast, adding a low-rank component typically 692

induces isolated eigenvalues outside the continuous part of the spectrum [44,45]. To 693
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obtain a low-rank approximation of the full matrix, we focus on determining these 694

outliers when they exist. 695

All eigenvalues λ of J satisfy the characteristic equation 696

det (J− Iλ) = 0. (56)

To determine the outlying eigenvalues of a random connectivity with low-rank structure, 697

we apply the matrix determinant lemma to the l. h. s. of the characteristic 698

equation [32]: 699

det

(
1

N
m̄n̄ᵀ + Z− Iλ

)
=

(
1 +

1

N
n̄ᵀ (Z− Iλ)

−1
m̄

)
det (Z− Iλ) . (57)

As outliers by definition cannot be eigenvalues of Z, they correspond to zeros of the first 700

term in the r. h. s. , and therefore satisfy: 701

λ =
1

N
n̄ᵀ(1− Z/λ)−1m̄. (58)

Expanding (1− Z/λ)−1 in series, we further get [32] 702

λ =
∞∑
k=0

θk
λk
, (59)

with 703

θk =
1

N
n̄ᵀZkm̄. (60)

Here θ0 corresponds to the eigenvalue λ0 of J̄ (Eq. (49)), and the higher order terms 704

specify how this eigenvalue is modified by the random part of the connectivity. 705

Truncating Eq. (59) at a given order, and averaging over Z yields a polynomial equation 706

for the mean eigenvalues of J. In Methods Sec. 2.4, we exploit this equation to 707

determine the effects of different cell-type specific random connectivity Z on the 708

outlying eigenvalues. 709

Note that within first-order perturbation theory, the eigenvalues are given by 710

λ = λ0 + ∆λ with 711

∆λ = L̄ᵀZR̄ =
1

Nλ0
n̄ᵀZm̄. (61)

Eigenvectors. To determine the eigenvectors corresponding to the outlying eigenvalue 712

of J, we treat it as J̄ perturbed by Z (Eq. (22)). Matrix perturbation theory then states 713

that, at first order, the right- and left-eigenvectors R and L of J corresponding to the 714

outlying eigenvalue λ are given by [47]: 715

R = R̄ + ∆R (62)

L = L̄ + ∆L (63)

where R̄ and L̄ are the right- and left-eigenvectors of J̄ defined in Eq. (50), and 716

∆R =
1

λ0
ZR̄

∆Lᵀ =
1

λ0
L̄ᵀZ.

(64)

Using the normalization in Eq. (47), we then get 717

m =
√
NR = m̄ + ∆m,

nᵀ = λ
√
NLᵀ = n̄ᵀ + ∆nᵀ,

(65)

August 25, 2022 28/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.25.505122doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505122
http://creativecommons.org/licenses/by-nc-nd/4.0/


with constant entries on m̄ and n̄ defined in Eqs. (52)-(54) and 718

∆m =
1

λ0
Zm̄

∆nᵀ =
1

λ0
n̄ᵀZ.

(66)

where we approximated λ at first order by λ0. 719

Statistics of Eigenvector entries. While m̄ and n̄ are deterministic vectors, the 720

perturbations ∆m̄ and ∆n̄ are random variables obtained by multiplying m̄ and n̄ with 721

the random matrix Z (Eq. (66)). We therefore next consider the statistics of the 722

elements mi and ni of m and n defined in Eq. (65). 723

Since the elements of Z have zero mean, the mean values of mi and ni are given by 724

m̄i and n̄i defined in Eqs. (52)-(54). The mean value of ni, but not mi, therefore 725

depends on whether the neuron i belongs to the excitatory or inhibitory population. 726

Taking into account that Z has block-like statistics, we split the matrix product in 727

Eq. (66) into the sum of items corresponding to excitatory and inhibitory pre-synaptic 728

neurons. Using Eqs. (52)-(54), ∆mi and ∆ni can be written as 729

∆mi =
1

λ0

∑
j∈NE

zij +
1

λ0

∑
j∈NI

zij

∆ni =
1

λ0

∑
j∈NE

n̄Ezji +
1

λ0

∑
j∈NI

n̄Izji,

(67)

We next take the limit NE , NI →∞, and apply the central limit theorem, which states 730

that each sum converges to a Gaussian random variable, so that we have 731

∆mp
i ∼

1

λ0

∑
q=E,I

√
NqN (0, σ2

zpq )

∆npi ∼
1

λ0

∑
q=E,I

√
Nqn̄

qN (0, σ2
zqp).

(68)

where p ∈ E, I is the population the neuron i belongs to, and σ2
zpq , σ

2
zqp are the 732

variance of zij , zji respectively, for i, j in populations p, q. The perturbations ∆mi and 733

∆ni. therefore converge to Gaussian random variables of zero mean and variances σ2
mp 734

and σ2
np given by: 735

σ2
mp =

∑
q=E,I

Nqσ
2
zpq

λ20

σ2
np =

∑
q=E,I

Nq(n̄
q)2σ2

zqp

λ20
.

(69)

The population covariance σpnm between elements mi and ni with i belonging to 736

population p can furthermore be written as 737

σpnm =
1

Np
∆npᵀ∆mp =

1

Npλ20

∑
s,q=E,I

(
n̄s
∑
i∈Ns

∑
j∈Nq

∑
k∈Np

zikzkjm̄
q
)
, (70)

while the overall covariance σnm between all mi and ni reads 738

σnm =
∑
p=E,I

αpσ
p
nm. (71)
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Altogether, mi and ni determined by perturbation theory therefore follow 739

Gaussian-mixture statistics, where the mean and variance depend on whether the 740

neuron i belongs to the excitatory or inhibitory population. 741

Comparison with simulations. The theoretical predictions for eigenvalues obtained 742

from Eqs. (59), (60) can be verified by comparing them with the eigenvalue outliers 743

computed by direct eigen-decomposition of the full matrix J. We compute the average 744

and standard deviation of eigenvalue outliers over 30 realizations of J. 745

The predictions of perturbation theory for eigenvectors given by Eq. (64) can also be 746

verified by direct eigen-decomposition, but to compare individual entries, an appropriate 747

normalization is required [47]. Indeed, perturbation theory assumes that R̄ is 748

normalized and L̄ satisfies L̄ᵀR̄ = 1 (Eq. (50)), but the perturbed eigenvectors in 749

Eq. (62) do not obey the same normalization. We therefore first use numerical 750

eigen-decomposition to get the right- and left-eigenvector R̂ and L̂ of J. We then 751

normalize R̂ to 1, and L̂ so that L̂ᵀR̂ = 1. To compare L̂, R̂ with perturbation theory, 752

we then normalize L̂, R̂ as 753

R =

(
L̂ᵀR̄

L̄ᵀR̂

)1/2

R̂,

L =

(
R̂ᵀL̄

R̄ᵀL̂

)1/2

L̂,

(72)

the eigenvectors L, R after normalization have the same statistics as (L̄ + ∆L), 754

(R̄ + ∆R) (Eqs. (50), (64)). 755

2.4 Eigenvalues 756

Here, we apply Eqs. (59), (60) to determine the mean and variance of outlying 757

eigenvalues for different forms of local connectivity statistics. 758

2.4.1 Independent random connectivity 759

In the case of independent random connectivity, the elements of Z are zero-mean, 760

independently distributed and uncorrelated with m̄ and n̄. Averaging Eq. (60) over Z 761

then leads to [32]: 762

[θk] =

[
1

N
n̄ᵀZkm̄

]
(73)

= 0, (74)

and therefore the mean eigenvalue [λ] of J is given by the eigenvalue λ0 of J̄. For 763

Gaussian random connectivity, we have 764

[λ] = JE − JI , (75)

and for sparse connectivity 765

[λ] = c(NEAE +NIAI). (76)

The variance σ2
λ of λ can be computed by keeping only the linear term in Eq. (59), 766

which leads to Eq. (61) under the assumption that λ ≈ λ0. Applying the central limit 767

theorem then yields 768

σ2
λ =

1

λ20

(
J2
E

(
σ2
zEE

+
NI
NE

σ2
zEI

)
+ J2

I

(
NE
NI

σ2
zIE + σ2

zII

))
. (77)
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For independent Gaussian random connectivity, we substitute σ2
zpq using Gaussian 769

variance parameters (Eq. (23), (25)) 770

σ2
λ =

1

Nλ20

(
J2
E

(
g2EE +

NI
NE

g2EI

)
+ J2

I

(
NE
NI

g2IE + g2II

))
. (78)

For independent sparse random connectivity, we replace σ2
zpq and Jp with the variances 771

and means of the sparse model given in Eqs. (27), (28) and get 772

σ2
λ =

1

λ20

(
A2
ENE +A2

INI
)2

(1− c) c3. (79)

2.4.2 Reciprocal motifs 773

In the case of connectivity with reciprocal correlations, zij and zji are correlated, so 774

that the average [θk] over Z in Eq. (60) is non-zero for even k. Here we compute [θk] for 775

k = 2 and truncate Eq. (59) at second order to get a third-order polynomial equation 776

for the mean eigenvalue: 777

f(λ) = λ3 −
(
λ0λ

2 + [θ1]λ+ [θ2]
)

= 0. (80)

For Gaussian connectivity we have θ0 = λ0 = JE − JI , and θ1 is given by 778

θ1 = n̄ᵀZm̄/N =
∑

p,q=E,I

n̄p
∑

i∈Np,j∈Nq

zijm̄
q/N, (81)

so that [θ1] = 0. 779

The next term θ2 is 780

θ2 = n̄ᵀZ2m̄/N =
∑

p,q=E,I

n̄p
( ∑
i∈Np

∑
j∈Nq

N∑
k=1

zikzkj

)
m̄q/N. (82)

Given the reciprocal correlations defined in Eq. (29), only items with i = j in θ2 are 781

non-zero after averaging over Gaussian realizations, so that 782

[θ2] = [n̄ᵀZ2m̄]/N =
∑
p=E,I

n̄p
[ ∑
i∈Np

N∑
k=1

zikzki

]
m̄p/N. (83)

We then write 783[ N∑
k=1

zikzki

]
= αEg

2
EEηEE + αIgEIgIEηEI , i ∈ NE

[ N∑
k=1

zikzki

]
= αEgIEgEIηEI + αIg

2
IIηII , i ∈ NI .

(84)

and substitute Eq. (84) and n̄p, m̄p into Eq. (83) to obtain 784

[θ2] = JE
(
αEg

2
EEηEE + αIgEIgIEηEI

)
− JI

(
αEgIEgEIηEI + αIg

2
IIηII

)
.

(85)

For sparse connectivity with reciprocal motifs, the correlations can be written as 785[ N∑
k=1

zikzki

]
=cA2

ENE(ρEE − c)− cAEAINI(c− ρEI), i ∈ NE

[ N∑
k=1

zikzki

]
=− cAEAINE(c− ρEI) + cA2

INI(ρII − c), i ∈ NI .

(86)
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Then, combining Eqs. (36) and Eqs. (52)-(54), the second-order coefficient [θ2] for the 786

sparse network is 787

[θ2] = A3
Ec

2N2
E (ρEE − c) +A2

EAIc
2NENI (ρEI − c)

+AEA
2
Ic

2NINE (ρEI − c) +A3
Ic

2N2
I (ρII − c) ,

(87)

Using Eqs. (36), (37), it can be seen that Eq. (87) is equivalent to Eq. (85). 788

2.5 Eigenvectors 789

Here we apply Eqs. (69) and (70) to determine the variances and covariances of 790

eigenvector entries obtained from perturbation theory for different forms of local 791

connectivity statistics. 792

2.5.1 Independent random connectivity 793

In the case of independent random connectivity, because zik and zkj are not correlated 794

in Eq. (70), the covariances σpnm between the eigenvector entries are zero. For 795

independent Gaussian connectivity, introducing Eq. (24) into Eqs. (69) the variances of 796

eigenvector entries can be written as 797

σ2
mE =

1

λ20

(
αEg

2
EE + αIg

2
EI

)
, σ2

mI =
1

λ20

(
αEg

2
IE + αIg

2
II

)
,

σ2
nE =

1

λ20

(
1

αE
J2
Eg

2
EE +

1

αI
J2
I g

2
IE

)
, σ2

nI =
1

λ20

(
1

αE
J2
Eg

2
EI +

1

αI
J2
I g

2
II

)
.

(88)

For independent sparse connectivity, substituting Eq. (28) into Eqs. (69), leads to 798

σ2
mE = σ2

mI =
1

λ20

(
NEA

2
Ec(1− c) +NIA

2
Ic(1− c)

)
,

σ2
nE =

1

λ20

(
A2
ENE +A2

INI
)
A2
EN

2c3(1− c),

σ2
nI =

1

λ20

(
A2
ENE +A2

INI
)
A2
IN

2c3(1− c).

(89)

2.5.2 Reciprocal motifs 799

In the case of connectivity with reciprocal correlations, the variances of eigenvector 800

entries are identical to the independent case. 801

As we have shown in Eq. (70), noise correlation between the rank-one vectors arises 802

from the correlation between pairwise random connectivity weights in the situation with 803

reciprocal motifs, only items with i = j (for zik, zkj) in the same population q are 804

non-zero, so that we have 805

σnm =
∑
p=E,I

αpσ
p
nm (90)

with 806

σpnm =
1

Npλ20

∑
q=E,I

(
n̄q
∑
i∈Nq

∑
k∈Np

zikzkim̄
q
)
. (91)
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For Gaussian connectivity with reciprocal correlations, the covariances between entries 807

on Z matched by population can be written as 808[ ∑
i∈NE

∑
k∈NE

zikzki

]
= NEαEg

2
EEηEE[ ∑

i∈NE

∑
k∈NI

zikzki

]
= NEαIgEIgIEηEI[ ∑

i∈NI

∑
k∈NE

zikzki

]
= NIαEgIEgEIηEI[ ∑

i∈NI

∑
k∈NI

zikzki

]
= NIαIg

2
IIηII .

(92)

Combining Eq. (92) and the mean rank-one connectivity loadings Eqs. (52)-(54), we 809

obtain the population covariances as 810

σEnm =
1

λ20

(
JEg

2
EEηEE − JIgEIgIEηEI

)
,

σInm =
1

λ20

(
JEgEIgIEηEI − JIg2IIηII

)
.

(93)

We note that the large deviation of the dominant eigenvalue λ in the network with 811

reciprocal motifs also increases the nonlinearity of the vector perturbations. To account 812

for this nonlinearity, we start from Eq. (40) for λ and get 813

σnm = λ−
∑
p=E,I αpm̄

pn̄p = λ− λ0, then we compare with Eq. (80) and get the 814

approximation relationship 815

σnm ≈
θ2
λ2

=
1

N

(n̄ᵀZ)(Zm̄)

λ2
. (94)

Similarly, for the covariance of each population we have 816

σEnm =
1

λ2
(
JEg

2
EEηEE − JIgEIgIEηEI

)
,

σInm =
1

λ2
(
JEgEIgIEηEI − JIg2IIηII

)
.

(95)

For sparse connectivity with reciprocal correlations, the calculations are similar, with 817

entries of Z being Bernoulli-distributed 818[ ∑
i∈NE

∑
k∈NE

zikzki

]
= N2

EA
2
Ec(ρEE − c)[ ∑

i∈NE

∑
k∈NI

zikzki

]
= −NENIAEAIc(c− ρEI)[ ∑

i∈NI

∑
k∈NE

zikzki

]
= −NINEAEAIc(c− ρEI)[ ∑

i∈NI

∑
k∈NI

zikzki

]
= N2

IA
2
Ic(ρII − c).

(96)

and we have the population covariance 819

σEnm =
1

λ2
NAEc

2
(
A2
ENE (ρEE − c) +A2

INI (ρEI − c)
)
,

σInm =
1

λ2
NAIc

2
(
A2
ENE (ρEI − c) +A2

INI (ρII − c)
)
.

(97)

Using Eqs. (36), (37), it can be seen that Eq. (97) is equivalent to Eq. (95). 820
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2.6 Dynamics 821

In this section, we show how approximating locally-defined connectivity by a global 822

low-rank structure allows us to analyse the emerging low-dimensional dynamics. We 823

first summarize the mean-field theory (MFT) for Gaussian-mixture low-rank 824

networks [31,33]. We then apply it to unit-rank connectivity obtained as an 825

approximation of locally-defined connectivity. We finally compare the resulting 826

description of the dynamics with an alternate mean-field approach for random 827

connectivity consisting of a superposition of low-rank and full-rank random parts as in 828

Eq. (22) [30,32]. 829

Throughout this study, we consider recurrent networks of rate units with recurrent 830

interactions defined by a connectivity matrix J. The dynamical activity of unit i is 831

represented by a variable xi(t), which we interpret as the total synaptic input current. 832

The firing rate of unit i is given by ri(t) = φ(xi(t)) where φ(x) = 1 + tanh (x− θ) is a 833

positive transfer function. We focus on networks without external inputs, so that the 834

dynamics of synaptic input to neuron i is given by 835

ẋi(t) = −xi(t) +
N∑
j=1

Jijφ(xi(t)). (98)

In Figs 5-7, we compare the dynamics determined by direct simulations for a 836

locally-defined connectivity matrix with a mean-field description obtained for a 837

unit-rank approximation. 838

2.6.1 Mean-field theory for Gaussian-mixture low-rank connectivity 839

Here we review the mean-field theory for networks in which the connectivity matrix is 840

exactly low-rank, with components of connectivity vectors moreover drawn from 841

Gaussian-mixture distribution. Previous works have shown that in this case, the 842

dynamics of the collective activity x(t) = {xi}i=1...N are embedded in a linear subspace 843

of dimension R spanned by the connectivity vectors m(r) [30–33]. Thus, x(t) can be 844

expressed as 845

x(t) =
R∑
r=1

κr(t)m
(r), (99)

where κr(t) for r = 1 . . . R are collective latent variables that quantify the components 846

of x(t) along the connectivity vectors m(r). We assume that m(r) are orthogonal to 847

each other, so that κr(t) can be expressed as 848

κr(t) =
x(t)ᵀm(r)

||m(r)||2
. (100)

For simplicity, here we moreover assume that the initial value of x(t) lies in the 849

subspace spanned by the vectors m(r). More generally, the initial state can be included 850

as an additional input to the dynamics [31,33]. 851

For a unit rank connectivity J = mnᵀ/N , there is a single latent variable κ 852

corresponding to the connectivity vector m, and the dynamics of x(t) is expressed as 853

x(t) = κ(t)m, (101)

with κ(t) given by 854

κ(t) =
x(t)ᵀm

||m||2
. (102)
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Substituting Eq. (101) into Eq. (98) and inserting the unit-rank connectivity, the 855

dynamics of the latent variable κ can be expressed as 856

κ̇(t) = −κ(t) + κrec(t) (103)

where 857

κrec(t) =
1

N

N∑
i=1

niφ(κ(t)mi). (104)

The quantity κrec(t) represents the total recurrent input to κ. The sum in the 858

r. h. s. of Eq. (104) can moreover be interpreted as the empirical average of 859

niφ(κ(t)mi) over the neurons in the network. In the limit of large network size N , this 860

average converges to the integral of nφ(κ(t)m) over the distribution P (m,n) of the 861

components of connectivity vectors. For low-rank networks, the mean-field limit 862

corresponds to replacing κrec(t) with this integral [31,33]: 863

κrec =

∫
dmdnP (m,n)nφ(κm). (105)

In the Gaussian-mixture low-rank model, each neuron i is assigned to a population p 864

for p = 1 . . . P . Within each population, the components (mi, ni) are generated from a 865

multivariate Gaussian distribution P p(m,n), that is 866

P p(m,n) = N
((

m̄p

n̄p

)
,

(
σ2
mp σpnm
σpnm σ2

np

))
. (106)

In the mean-field limit, κrec is therefore given by 867

κrec =
P∑
p=1

αp

∫
dmdnP p(m,n)nφ(κm), (107)

where αp is the fraction of neurons in population p. 868

Integrating by parts, κrec can be re-expressed as (S1 Appendix) 869

κrec =
P∑
p=1

αp(n̄
p〈φ(µpx,∆

p
x)〉+ 〈φ′(µpx,∆p

x)〉σpnmκ). (108)

Here µpx, ∆p
x are the mean and variance of the inputs to population p, given by 870

µpx = κm̄p,

∆p
x = κ2σ2

mp ,
(109)

and the symbol 〈f(µ,∆)〉 stands for the expected value of a function f(x) with respect 871

to a Gaussian variable x with mean and variance µ, ∆, that is 872

〈f(µ,∆)〉 =

∫
dx(2π)−1/2 exp (−x2/2)f

(
µ+
√

∆x
)
. (110)

Altogether, using MFT for Gaussian-mixture low-rank networks gives the closed 873

dynamics of the latent variable κ: 874

κ̇ = −κ+
P∑
p=1

αp(n̄
p〈φ(κm̄p, κ2σ2

mp)〉+ 〈φ′(κm̄p, κ2σ2
mp)〉σpnmκ). (111)
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In particular, the corresponding steady state is given by 875

κ =
P∑
p=1

αp(n̄
p〈φ(κm̄p, κ2σ2

mp)〉+ 〈φ′(κm̄p, κ2σ2
mp)〉σpnmκ). (112)

Note that the first and second terms on the r. h. s. respectively correspond to the 876

mean and covariance of the entries of the unit-rank connectivity vectors m and n. 877

2.6.2 Approximate dynamics for locally-defined connectivity 878

We next apply the MFT to unit-rank connectivity obtained as an approximation of 879

locally-defined connectivity for the different considered cases. 880

Independent connectivity. We start from the network with independent connectivity, 881

in which case the unit-rank connectivity vectors obtained by approximating 882

locally-defined connectivity have no covariance, i. e. σpnm = 0 (Methods Sec. 2.5). 883

The dynamical system for the latent variable κ therefore contains only the mean 884

term 885

κ̇ = −κ+

P∑
p=1

αpn̄
p〈φ(κm̄p, κ2σ2

mp)〉. (113)

For the Gaussian random model, inserting the expressions for m̄p and n̄p 886

(Eqs. (52)-(54)), the fixed point obeys 887

κ = JE〈φ(κ, κ2σ2
mE )〉 − JI〈φ(κ, κ2σ2

mI )〉, (114)

where the variance σ2
mp of connectivity components mi is given by Eq. (88). 888

For the sparse random model, we further consider n̄p given by Eqs. (36), (52)-(54) 889

and the fixed point is 890

κ = cNEAE〈φ(κ, κ2σ2
mE )〉+ cNIAI〈φ(κ, κ2σ2

mI )〉, (115)

where σ2
mp is obtained from Eq. (89). 891

Reciprocal motifs. Correlations between reciprocal connections lead to non-zero 892

covariance σpnm between the unit-rank connectivity vectors obtained by approximating 893

locally-defined connectivity (Methods Sec. 2.3, Eq. (70)). The dynamical system for the 894

latent variable κ therefore contains both the mean and covariance terms (Eq. (112)). 895

For the Gaussian random model, combining Eqs. (52)-(54), (88), (95) the fixed point 896

obeys 897

κ =
∑
p=E,I

αp

(
n̄p〈φ(κm̄p, κ2σ2

mp)〉

+
1

λ2
〈φ′(κm̄p, κ2σ2

mp)〉(JEgpEgEpηEp − JIgIpgpIηIp)κ
) (116)

with the variance σ2
mp of connectivity components mi given by Eq. (88). For the sparse 898

model, combining Eqs. (36), (52)-(54), (89), (97), the fixed point obeys 899

κ =
∑
p=E,I

αp

(
n̄p〈φ(κm̄p, κ2σ2

mp)〉

+
1

λ2
〈φ′(κm̄p, κ2σ2

mp)〉NApc2
(
A2
ENE(ρEp − c) +A2

INI(ρIp − c)
)
κ
)
.

(117)

with the variance σ2
mp of connectivity components mi given by Eq. (89). 900
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2.6.3 Mean-field theory for superpositions of low-rank and full rank 901

random connectivity 902

Here we review an alternate form of mean-field theory for random connectivity 903

consisting of a superposition of a low-rank structure and full-rank random part [30, 32]. 904

This form of MFT can be directly applied to independently generated connections, 905

where the connectivity matrix consists precisely of a superposition of a low-rank part 906

corresponding to the mean, and a full-rank random part corresponding to fluctuations 907

(Eqs. (22), (119)). Extending this type of MFT to the situation where reciprocal 908

connections are present is however challenging [18]. Moreover, in contrast to the case 909

where connectivity is exactly low-rank, when the additional full-rank random part is 910

present the mean-field theory describes only the steady-state activity (and linearized 911

dynamics around it), but not the full dynamics as in Eq. (98). 912

The key assumption of MFT for randomly connected networks is that the total input 913

xi to each unit can be approximated as a stochastic Gaussian process [52]. The first two 914

cumulants (mean and variance) of that Gaussian process are then computed 915

self-consistently to characterize the steady-state activity. 916

At a fixed point, the total input xi obeys 917

xi =
N∑
j=1

Jijφ(xj). (118)

Replacing Jij , where i, j belong to populations p, q respectively, by the superposition 918

of rank-one mean and full-rank random connectivity components m̄pn̄q/N + zij we get 919

xi =
m̄p

N

∑
q=1...P

n̄q
∑
j∈Nq

φ(xj(t)) +
N∑
j=1

zijφ(xj). (119)

Denoting by [·] the average over the distribution of xi, the mean of xi can then be 920

expressed as 921

[xi] = m̄pκ̄ (120)

where we introduced 922

κ̄ =
P∑
p=1

n̄p
∑
i∈Np

[φ(xi)]/N, (121)

(122)

and we assumed that the zero-mean random connectivity zij is uncorrelated with the 923

firing rate φ(xj), so that 924

N∑
j=1

[zijφ(xj)] = 0. (123)
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Similarly, the correlation between xi and xj , where i ∈ Np and j ∈ Nq, is given by 925

[
xixj

]
=
m̄p

N

P∑
s=1

n̄s
∑
k∈Ns

[φ(xk)]
m̄q

N

P∑
t=1

n̄t
∑
l∈Nt

[φ(xl)]

+
m̄p

N

P∑
s=1

n̄s
∑
k∈Ns

[φ(xk)]
N∑
l=1

zjl[φ(xl)]

+
m̄q

N

P∑
t=1

n̄t
∑
l∈Nt

[φ(xl)]
N∑
k=1

zik[φ(xk)]

+
[ N∑
l=1

zjlφ(xl)
N∑
k=1

zikφ(xk)
]

= m̄pm̄qκ̄2 + δij
∑
k=1

[z2ik][φ2(xk)]

(124)

where we assume the neuronal activities are decorrelated [φ(xi)φ(xj)] = [φ(xi)][φ(xj)] 926

when i 6= j. This assumption holds for independently-generated connections, but not in 927

presence of reciprocal correlations [18]. The covariance between xi and xj therefore 928

becomes 929

[
xixj

]
− [xi][xj ] = δij

N∑
k=1

[z2ik][φ2(xk)]. (125)

Within the mean-field approximation, neuronal activation xi are therefore 930

uncorrelated Gaussian variables with mean and variance given by Eqs. 120 and 125 931

µxi
:= [xi] = m̄pκ̄,

∆xi := [x2i ]− [xi]
2 = δij

∑
k=1

[z2ik][φ2(xk)]. (126)

To determine κ̄ and [φ(xk)2], we finally express Eqs. (121) and (126) as Gaussian 932

integrals over xi in population p: 933

κ̄ =

P∑
q=1

αqn̄
q〈φ(µqx,∆

q
x)〉,

∑
k=1

[z2ik][φ(xk)2] =
P∑
q=1

Nqσ
2
zpq 〈φ(µqx,∆

q
x)2〉.

(127)

Here we replaced m̄p = 1 and
∑N
k=1[z2ik]f(·) =

∑P
q=1Nqσ

2
zpqf(·) given the eigenvector 934

normalization in Eq. (52), and the assumption that variances [z2ik] depend on the 935

populations the units i and k belong to (Eqs. (24), (28), (52)). Therefore, the 936

stationary mean and variance of the dynamics of synaptic inputs in population p are 937

µpx := m̄pκ̄,

∆p
x :=

P∑
q=1

Nqσ
2
zpq 〈φ(µqx,∆

q
x)2〉.

(128)

Eqs. (128), (127) give the self-consistent equations for the stationary solutions of the 938

dynamics. 939
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More specifically, in the Gaussian random model, we combine connectivity statistics 940

given by Eqs. (24), (52)-(54), so that we have 941

µpx := JE〈φ(µEx ,∆
E
x )〉 − JI〈φ(µIx,∆

I
x)〉,

∆p
x :=

∑
q=E,I

αqg
2
pq〈φ2(µqx,∆

q
x)〉, (129)

while for the sparse random model, we combine connectivity statistics given by 942

Eqs. (27), (28), (36), (52)-(54), so that we have 943

µpx := cNEAE〈φ(µEx ,∆
E
x )〉+ cNIAI〈φ(µIx,∆

I
x)〉,

∆p
x :=

∑
q=E,I

Nqc(1− c)A2
q〈φ2(µqx,∆

q
x)〉. (130)

Code Availability 944

Code will be made available upon publication. 945

Supporting information 946

S1 Appendix. Dynamics in Gaussian-mixture low-rank networks. Here, we 947

provide the derivation for the dynamics of the latent variable κ (Eq. (111)) in the 948

Gaussian-mixture low-rank network model. We consider a rank-one connectivity 949

consisting of P populations, with the neurons in each population accounting for a αp 950

percentage of all neurons. The entries on the left and right eigenvectors np, mp
951

assigned to population p are sampled from a multivariate Gaussian distribution with 952

mean n̄p, m̄p, variance σ2
np , σ2

mp and covariance σpnm (Methods Sec. 2.3) So, κrec in 953

Eq. (107) is further decomposed into two integrals involving the contributions from the 954

mean and random connected components, respectively, 955

κrec =
P∑
p=1

αp

∫
dmP p(m)n̄pφ(κm)

+

P∑
p=1

αp

∫
dmdnP p(m,n)(n− n̄p)φ(κm),

(131)

here, P p(m) represents the marginal Gaussian distribution for connectivity loadings mi 956

of neurons in population p 957

P p(m) = N (m̄p, σ2
mp), (132)

and P p(m,n) represents the multivariate Gaussian distribution for connectivity loadings 958

mi, ni of neurons in population p (Eq. (106)). 959

Note that the synaptic input to neurons in population p is a scaled Gaussian variable 960

xi = κmi corresponding to the Gaussian loadings mi ∼ N (m̄p, σ2
mp), so it conforms to a 961

Gaussian distribution N (µpx,∆
p
x) with the population-averaged mean and variance 962

µpx = κm̄p,

∆p
x = κ2σ2

mp .
(133)

Thus, the first term in Eq. (131) is 963∫
dmN (m̄p, σ2

mp)φ(κm) = 〈φ(κm̄p, κ2σ2
mp)〉 = 〈φ(µpx,∆

p
x)〉, (134)
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a Gaussian integral term. 964

We then use Stein’s lemma 965∫
Dzzf(z) =

∫
Dz d

dz
f(z) (135)

and further replace the multivariate Gaussian distribution by Eq. (106), to compute the 966

second term in Eq. (131) attributed to the random connectivity component as 967∫
dmdnN

((
m̄p

n̄p

)
,

(
σ2
mp σpnm
σpnm σ2

np

))
(n− n̄p)φ(κm)

= 〈φ(κm̄p, κ2σ2
mp)〉σpnmκ

= 〈φ(µpx,∆
p
x)〉σpnmκ.

(136)

Finally, combining the contributions from both the mean and random components, we 968

re-express κrec in Eq. (107) and retrieve Eq. (111). 969

S2 Appendix. Linear stability at fixed points in rank-one networks. To 970

determine the stability of fixed points of the network with rank-one connectivity 971

structure, we consider the rank-one connectivity JR1 and study the stability of the 972

one-dimensional latent dynamical variable κ in the neighbourhood area of its fixed point 973

κ0. We set the fixed point of synaptic input x0i , define the perturbation of the latent 974

variable κ1 and the perturbation of the synaptic input x1i = κ1mi, the temporal 975

evolution of κ1 is expressed as 976

κ̇1 = −κ1 + 〈ni[φ′(x0i )x1i ]〉

= −κ1 +
∑
p=E,I

αp〈npi φ
′(xp,0i )xp,1i 〉, (137)

for the rank-one approximation network JR1 = mnᵀ/N , we remove symbol [·]. Next, in 977

the Gaussian-mixture low-rank framework, the entries npi and mp
i are jointly sampled 978

from a bivariate Gaussian distribution characterized by means, variances and 979

covariances, m̄p, n̄p and σ2
mp , σ2

np , σpnm. Using a similar approach to previous 980

studies [30,31], we set 981

npi = n̄p +
(√

1− γζpn +
√
γζp
)
σnp

mp
i = m̄p +

(√
1− γζpm +

√
γζp
)
σmp

σpnm = γσnpσmp

(138)

where ζpm, ζ
p
n and ζp are three independent normal random variables N (0, 1). By 982

substituting variables in Eq. (138), after some linear algebra, we get 983

〈npi φ
′(xp,0i )xp,1i 〉 = 〈npi φ

′(xp,0i )κ1mp,1
i 〉

=
(
(n̄pm̄p + σpnm)〈φ′〉+ n̄pσ2

mp〈φ′′〉κ0 + m̄pσpnm〈φ′′〉κ0

+ σ2
mpσpnm〈φ′′′〉(κ0)2

)
κ1.

(139)

We finally obtain the time evolution of κ 984

κ̇1 = −κ1 +
∑
p=E,I

αp
(
(n̄pm̄p + σpnm)〈φ′〉+ n̄pσ2

mp〈φ′′〉κ0

+ m̄pσpnm〈φ′′〉κ0 + σ2
mpσpnm〈φ′′′〉(κ0)2

)
κ1.

(140)
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The Jacobian for the latent dynamical variable’s fixed point κ0 is 985

Sκ = −1 +
∑
p=E,I

αp
(
(n̄pm̄p + σpnm)〈φ′〉+ n̄pσ2

mp〈φ′′〉κ0

+ m̄pσpnm〈φ′′〉κ0 + σ2
mpσpnm〈φ′′′〉(κ0)2

)
,

(141)

which is a scalar in our rank-one network. The fixed point is stable when Sκ < 0 and 986

unstable when Sκ > 0. All the above parameters are expressed and calculated in the 987

text, so that we can check the stability of each fixation point using the formulas above. 988

S3 Appendix. Comparison between dynamics in full-rank connectivity 989

with rank-one approximation. Here, we compare the dynamics solved in the 990

full-rank network with dynamics solved by the rank-one approximation, considering the 991

limitations of applying the classical MFT, we only discuss networks with independent 992

connections. 993

Using the rank-one approximation, global dynamics is characterized by the latent 994

dynamical variable κ, which satisfies 995

κ = JE〈φ(κ, κ2σ2
mE )〉 − JI〈φ(κ, κ2σ2

mI )〉. (142)

Combining the connectivity statistics given in Eqs. (52)-(54), (88), we thus express the 996

self-consistent equations for the population mean and variance of the synaptic inputs xi 997

using κ (Eq. (109)) 998

µEx = µIx = JE〈φ(µEx ,∆
E
x )〉 − JI〈φ(µIx,∆

I
x)〉 (143)

and 999

∆E
x =

1

λ20

(
JE〈φ(µEx ,∆

E
x )〉 − JI〈φ(µIx,∆

I
x)〉
)2(

αEg
2
EE + αIg

2
EI

)
∆I
x =

1

λ20

(
JE〈φ(µEx ,∆

E
x )〉 − JI〈φ(µIx,∆

I
x)〉
)2(

αEg
2
IE + αIg

2
II

)
.

(144)

Comparing with the self-consistent equations for population mean and variance in the 1000

full-rank network Eq. (129), we find in particular that the expression for µpx is the same 1001

in both representations, but the expressions for the variance ∆p
x are different. 1002

Specifically, the low-rank approximation shows that the different heterogeneity between 1003

excitatory and inhibitory populations depends only on the block-structured variances, 1004

i. e. ,
∑
q=E,I αpg

2
pq/λ

2
0, and independent of the historical population activity. The 1005

full-rank dynamics, on the other hand, shows that the different heterogeneity depends 1006

on the local relationship between block structured variance and the structure of 1007

historical population activity [68]. 1008

For a simplified network example, where the locally defined connectivity has 1009

homogeneous random parameters gpq = g, p = E, I, the variance of the rank-one 1010

perturbation eigenvector σ2
mp is thereby the same for both excitatory and inhibitory 1011

populations. Because λ0 = JE − JI , means and variances in Eqs. (143), (144) are 1012

µx = µEx = µIx = λ0〈φ(µx,∆x)〉,
∆x = ∆E

x = ∆I
x = g2〈φ(µx,∆x)〉2.

(145)

So that, for this simple example, the heterogeneity of dynamics in the full-rank 1013

approximation is g2〈(φ(µx,∆x))2〉 (Eq. (129)), while the heterogeneity in the rank-one 1014

approximation is g2〈φ(µx,∆x)〉2, the difference does not substantially change the 1015

bistable transition and the performance of the low-rank approximation. 1016

August 25, 2022 41/47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.25.505122doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.25.505122
http://creativecommons.org/licenses/by-nc-nd/4.0/


S4 Appendix. Chaotic dynamical transition point for networks with 1017

independent connectivity. Conventionally, the collective dynamics of random neural 1018

network becomes chaotic when the effect of random component is too strong. Based on 1019

previous study [11], when the effective random gain, also known as the radius of the 1020

random eigenvalue bulk rg, exceed the critical threshold 1, the network enters the 1021

chaotic dynamical state. 1022

Considering the block-like E-I random network with i. i. d. random connectivity, we 1023

define a R2×2 matrix with elements αqg
2
pq 1024

Mg =

[
αEg

2
EE αIg

2
EI

αEg
2
IE αIg

2
II

]
, (146)

the first eigenvalue of Mg determines the radius of the continuous eigenvalues bulk of J, 1025

that is 1026

rg =
√
λMg

. (147)

For the sparse E-I network, considering the relationships given by Eq. (36), we 1027

calculate the radius for the sparse network as 1028

rg =
√

(NEA2
E +NIA2

I)c(1− c). (148)

S5 Appendix. Local connectivity statistics in rank-R Gaussian-mixture 1029

models. We show that the statistical properties of the entries on the rank-R 1030

connectivity vectors m̄(r),p, n̄(r),p, σ,
mp

r
σ2
np
r

and σpnrmr′
directly determine the means 1031

J̄pq, variances σ2
zpq and reciprocal correlations ηpq of the resulting local synaptic weights 1032

Jij , where i ∈ Np, j ∈ Nq. Considering Eq. (2), the cell-type-dependent mean 1033

J̄pq =
1

N

R∑
r=1

m̄
(r)
i n̄

(r)
j =

1

N

R∑
r=1

m̄(r),pn̄(r),q, (149)

and the cell-type-dependent variance of locally defined connections is 1034

σ2
zpq =

1

N2

[( R∑
r=1

m
(r)
i n

(r)
j −

R∑
r=1

m̄(r),pn̄(r),q
)2]

=
1

N2

[( R∑
r=1

∆m
(r)
i n̄(r),q + m̄(r),p∆n

(r)
j + ∆m

(r)
i ∆n

(r)
j

)2]
=

1

N2

R∑
r=1

(
σ2
mp

r
(n̄(r),q)2 + (m̄(r),p)2σ2

nq
r

+ σ2
mp

r
σ2
nq
r

)
.

(150)

Finally the correlation between the pairwise weights Jij , Jji is computed as 1035[
(Jij − [Jij ])(Jji − [Jji])

]
J

=
1

N2

[ R∑
r,r′=1

m
(r)
i n

(r)
j m

(r′)
j n

(r′)
i −

R∑
r,r′=1

m
(r)
i n

(r)
j m̄(r′),qn̄(r

′),p

−
R∑

r,r′=1

m̄(r),pn̄(r),qm
(r′)
j n

(r′)
i +

R∑
r,r′=1

m̄(r),pn̄(r),qm̄(r′),qn̄(r
′),p
]

=
1

N2

R∑
r,r′=1

(
σpnr′mr

m̄(r′),qn̄(r),q + σqnrmr′
m̄(r),pn̄(r

′),p + σqnrmr′
σpnr′mr

)
.

(151)

Substituting Eqs. (150), (151) into Eq. (29) leads to the resulting reciprocal correlation 1036

ηpq. 1037
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