

1 Antibiotic heteroresistance generated by 2 multi-copy plasmids

3 **JCR Hernandez-Beltran^{1,†}, J Rodríguez-Beltrán², B Aguilar-Luviano¹, J Velez-Santiago¹,**
4 **O Mondragón-Palomino³, RC MacLean⁴, A Fuentes-Hernández¹, A San Millán⁵, and**
5 **R Peña-Miller^{1,*}**

6 ¹ Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210, Cuernavaca, México

7 ² Department of Microbiology, Ramón y Cajal University Hospital (IRYCIS) and CIBERINFEC, Madrid, Spain

8 ³ Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892

9 ⁴ Department of Zoology, University of Oxford, OX1 3SZ, Oxford, UK

10 ⁵ Department of Microbial Biotechnology, Centro Nacional de Biotecnología – CSIC, 28049, Madrid, Spain

11 [†]Present address: Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology,
12 24306 Plön, Germany

13 ^{*}Corresponding author: rpm@ccg.unam.mx

14 ABSTRACT

16
17
18 Heteroresistance – in which a clonal bacterial population contains a cell subpopulation with higher resistance to
19 antibiotics than the main population – is a growing clinical problem that complicates susceptibility determination
20 and threatens therapeutic success. Despite the high prevalence of heteroresistance in clinical settings, the
21 underlying genetic mechanisms that stably maintain heterogeneous bacterial populations are poorly understood.
22 Using fluorescence microscopy, single-cell microfluidics, and quantitative image analysis, we show that random
23 replication and segregation of multicopy plasmids produce populations of bacterium *Escherichia coli* MG1655
24 in which cells with low- and high-plasmid copy numbers stably co-exist. By combining stochastic simulations
25 of a computational model with high-throughput single-cell measurements of *bla*_{TEM-1} expression, we show
26 that copy number variability confers the bacterial population with transient resistance to a lethal concentration
27 of a β -lactam antibiotic. Moreover, this surviving, high plasmid copy minority is capable of regenerating a
28 heterogeneous bacterial population with low and high plasmid copy numbers through segregational instability,
29 rapidly alleviating the fitness burden of carrying large numbers of plasmids. Our results provide further support
30 for the tenet that plasmids are more than simple vehicles for horizontal transmission of genetic information
31 between cells, as they can also drive bacterial adaptation in dynamic environments by providing a platform for
32 rapid amplification and attenuation of gene copy number that can accelerate the rate of resistance adaptation
33 and can lead to treatment failure.

36 **Keywords:** antibiotic heteroresistance, multicopy plasmids, plasmid copy number variability

37 Introduction

38 The evolution and spread of antimicrobial resistance in clinical pathogens represent a major public
39 health problem that threatens to become a global crisis.¹ In general, drug resistance is considered
40 to be the consequence of stable genetic mutations or the acquisition of antibiotic resistance genes
41 through horizontal gene transfer.² However, treatment failure can also result from the presence of
42 subpopulations of bacterial cells with higher levels of resistance than those of the rest of the population.³
43 This phenomenon is known as heteroresistance^{4,5} and has been identified in diverse bacterial species
44 and in a wide range of antimicrobial classes.⁶⁻⁸

45 Previous studies have shown that increased tolerance to antimicrobial substances can be achieved
46 through a subset of dormant cells, known as persisters, that survive drug exposure and resume growth
47 once the antibiotic is withdrawn.⁹ Moreover, there are several genetic and metabolic mechanisms
48 that generate subpopulations with differing degrees of drug tolerance,^{10,11} for instance through the
49 heterogeneous production of drug-degrading enzymes^{8,12} or signaling molecules.¹³ Heterogeneous
50 drug susceptibility within a population can also arise from the stochastic expression of genes encoding
51 intrinsic antibiotic-resistance mechanisms, notably efflux pumps.^{14,15}

52 Rapid adaptation to antibiotics can also be achieved through genomic duplications that increase the
53 dosage of known drug-resistance genes,^{8,16,17} for instance through amplification of efflux pump
54 operons^{18,19} or genes encoding drug-modifying enzymes.^{20,21} Laboratory studies have shown that
55 genomic amplifications scale up with the strength of the selective pressure,¹⁶ and are unstable in the
56 absence of selection due to the fitness burden associated with the duplication of large chromosome
57 regions.^{16,22,23}

58 In the clinic, heteroresistance due to spontaneous tandem gene amplification has been proposed as
59 a plausible cause of treatment failure,²⁴ with the incidences likely to be underestimated due to the
60 intrinsic limitations of standard microbiology assays.²⁵ A recent large-scale analysis of heteroresistant
61 clinical isolates found a high incidence of genomic amplifications that increased resistance to multiple
62 antibiotics.²⁶ Interestingly, whole-genome sequencing revealed that, while some duplications occurred
63 in large chromosomal regions containing known drug resistance genes, a considerable fraction of
64 sequence amplifications were found in plasmids.

65 Plasmids are DNA molecules that replicate independently of the chromosome and play an essential role
66 in the dissemination of resistance genes among clinically important pathogens.²⁷ Crucially, plasmids
67 can be present in multiple copies per cell, from a few copies to dozens for high-copy plasmids. Although
68 some plasmids can be transferred horizontally, thus spreading resistance genes between bacterial hosts,
69 a large fraction of plasmids are non-conjugative and are carried in multiple copies per cell.²⁸ A recent
70 clinical study showed that a large fraction of pathogenic *Escherichia coli* isolates carry small ColE1
71 plasmids.²⁹ The number of plasmids carried by each cell is a key driver of virulence³⁰ and horizontal
72 gene transfer.³¹ Furthermore, cells within a biofilm contain high plasmid copy numbers and therefore
73 have elevated transcription of antibiotic resistance genes.³²

74 For multicopy plasmids lacking active partitioning or postsegregational killing mechanisms,³³ segregation
75 occurs randomly upon division, with the probability of a plasmid being inherited to a given cell
76 following a binomial distribution.^{34–36} The interaction between replication and segregation, and the
77 complex population dynamics this produces^{37,38} is known to enhance bacterial adaptation to novel
78 environmental conditions,³⁹ as well as to determine the repertoire of genes carried in plasmids⁴⁰ and
79 their stability in the absence of selection.^{41,42} Moreover, recent studies have shown that multicopy plas-
80 mids can accelerate bacterial adaptation,⁴³ for instance by promoting intracellular genetic diversity⁴⁴
81 and increasing the probability of the appearance of beneficial mutations and subsequently amplifying
82 mutant gene expression.⁴⁵

83 In addition to amplifying gene dosage, an increase in copy number is also associated with a decrease
84 in the probability of plasmid loss and with a higher metabolic burden.⁴⁶ A consequence of this trade-
85 off is that plasmid replication is subject to two conflicting levels of selection:^{35,47,48} plasmids that
86 overreplicate have a higher chance of overcoming segregational loss and becoming fixed in descendant
87 cells, but cells with more plasmid copies have a lower probability of becoming fixed in the population.
88 As a result, plasmid control is a tightly regulated process⁴⁹ that depends on the host's genetic⁵⁰ and
89 physiological state,⁵¹ as well as on the extracellular environmental conditions.^{52,53} For high-copy
90 plasmids, however, replicative noise emerges as intracellular selection favors overreplication, thereby
91 relieving intracellular selection for precise copy number control.³⁵

92 We hypothesized that heteroresistance to a β -lactam antibiotic can emerge from cell-to-cell differences
93 in plasmid copy number (PCN) in otherwise genetically identical cells. In the present study, we used
94 a combination of single-cell and population-level experiments to show that encoding drug resistance
95 genes in multicopy plasmids is beneficial in rapidly changing environments, as it enables bacterial com-
96 munities to implement a reversible phenotypic tolerance mechanism based on the stable co-existence of
97 susceptible and resistant cells. These experimental results were recapitulated by a computational model
98 in which plasmid copy number variability was the main driver of cell-to-cell differences.

99 Results

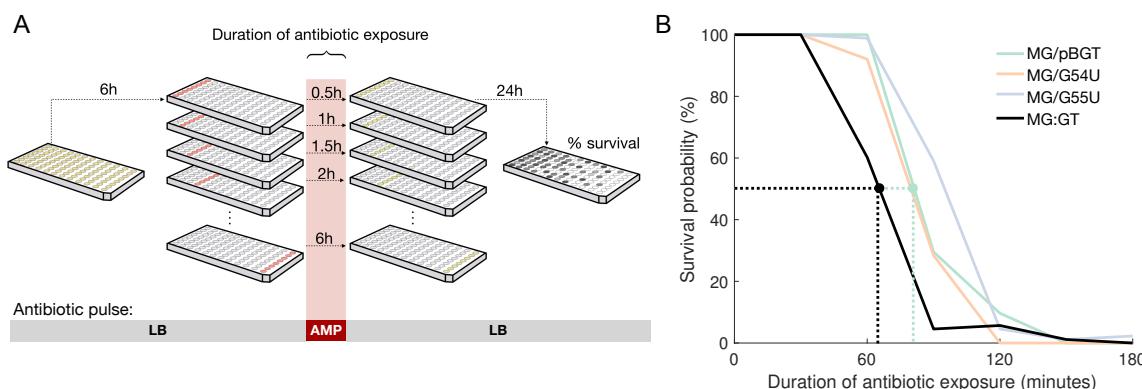

100 Environmental modulation of PCN distributions in bacterial populations

101 To investigate the distribution of plasmids in bacterial populations, we used an experimental model
102 system consisting of *E. coli* MG1655 carrying pBGT, a ColE1-like plasmid containing a GFP fluorescent
103 marker (*eGFPmut2*) and *bla*_{TEM-1}, a gene that encodes a TEM-1 β -lactamase, which inactivates β -
104 lactam antibiotics by hydrolyzing the β -lactam ring.⁵⁴ β -lactam resistance genes are generally located
105 on plasmids and, in particular, TEM-1 has a plasmid origin, with more than two-hundred TEM
106 β -lactamase variants descending from this allele recorded.⁵⁵ We denote the strain carrying this well-
107 characterized,^{45,56} non-conjugative, and multicopy plasmid as MG/pBGT (average copy number=19.12,
108 s.d.= 1.53; Figure 1A-C).⁴⁵

109 As a control, we used a fluorescently tagged strain carrying a chromosomally encoded *bla*_{TEM-1}, which
110 we term MG:GT. Moreover, to explore the association between PCN and fluorescence, we also used
111 strains obtained in a previous experimental evolution study,⁴⁵ with mutations in the origin of replication
112 (Table S1) that result in a high mean PCN, with correspondingly high fluorescence intensity and
113 elevated drug resistance compared with MG/pBGT.

114 In a recent study, direct, fluorescent-reporter-based measurement of PCN, promoter activity, and
115 protein abundance at single-cell resolution revealed a positive correlation between PCN and protein
116 expression.⁵⁷ In our experimental system, we similarly observed a correlation between PCN measured
117 by qPCR³⁹ and fluorescence intensity quantified using a fluorescence spectrophotometer ($R^2 = 0.9387$;
118 Figure 1D). To validate the correlation between PCN and GFP in our system, we sorted the plasmid-
119 bearing cell population according to GFP intensity into clusters with low, medium, and high fluorescence
120 and confirmed the positive correlation between fluorescence and mean PCN estimated by qPCR
121 ($R^2 = 0.879$; Figure S1).

122 To measure the effect of the strength of antibiotic selection pressure on the distribution of PCN, we
123 exposed a population of MG/pBGT cells to a range of ampicillin (AMP) concentrations, and used
124 flow cytometry to measure GFP abundance in single cells. We found that the mean GFP abundance
125 increased with the strength of selection (Figure 1E), and that the coefficient of variation for the PCN
126 distribution decreased as a function of drug concentration ($R^2 = 0.593$, p-value< 0.01; Figure S3).
127 When the same experiment was repeated with MG:GT cells, mean fluorescence and its coefficient of
128 variation remained constant across all AMP concentrations ($R^2 = 0.052$, p-value> 0.5; Supplementary
129 Figure S2).


Figure 1. Experimental model system. A) Schematic representation of plasmid pBGT encoding *bla*_{TEM-1} (in blue) and *eGFPmut2* (in green). The reading frames for genes are represented with arrows, with arrowheads indicating the direction of transcription. B) DIC microscopy image of a plasmid-bearing population (MG/pBGT). C) Fluorescence microscopy image of this population shows high levels of GFP heterogeneity between cells. D) Mean fluorescence and mean plasmid copy number are positively correlated in bacterial populations. The circle's diameter is proportional to each strain's drug resistance level. E) Fluorescence distributions of MG/pBGT exposed to a range of ampicillin concentrations.

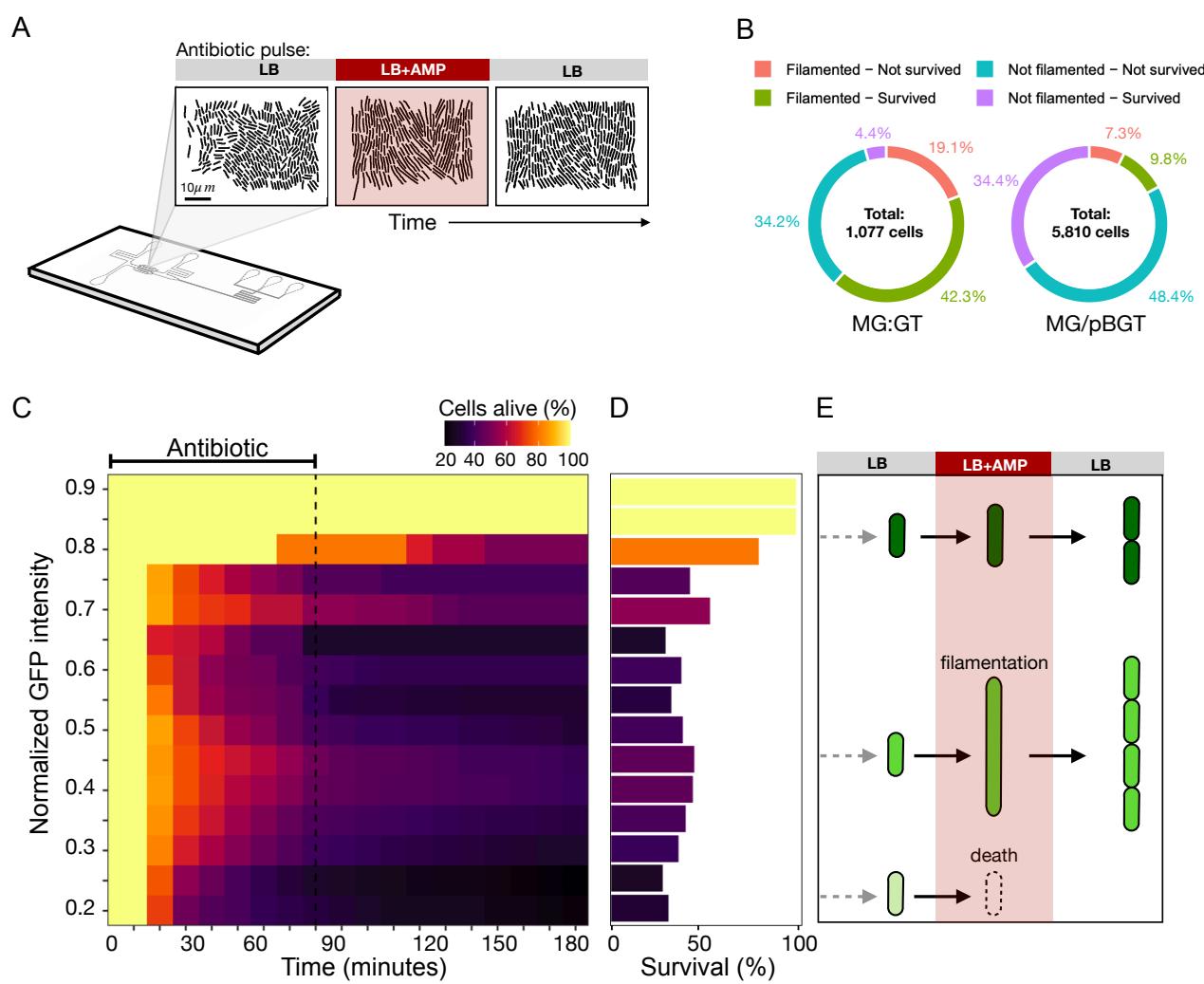
161 **PCN variability enhances the survival of bacterial populations exposed to fluctuating
162 selection**

163 To determine if between-cell differences in drug resistance produced heteroresistance at a population-
164 level, we examined the response to AMP of 88 clonal populations of plasmid-bearing strains with
165 different mean PCNs (strains MG/pBGT, MG/G54U and MG/G55U, with 19, 44, and 88 plasmid
166 copies, respectively). When the cultures reached exponential growth, ~ 1% of each population was
167 transferred to an environment containing replenished media and a lethal AMP concentration (Figure
168 3A). After 30 minutes, a sample was transferred back to drug-free medium. This sampling process
169 was repeated every 30 minutes and, for each duration of drug exposure, we counted the number of
170 replicates showing growth after 24h.

171 Relative to MG:GT, all plasmid-bearing populations exhibited increased survival of fluctuating selection
172 (Figure 3B; log-rank test, p -value < 0.005). For instance, the probability of survival after 90 minutes
173 of AMP exposure was > 50% for all plasmid-bearing strains, whereas < 5% of the MG:GT replicate
174 populations survived. It should be noted that the lethal drug concentration was determined independently
175 for each strain (see Table S1 for MICs used). For each strain, we estimated the duration of drug exposure
176 such that the probability of survival was 50% (60 min for MG:GT at 2 mg/mL AMP, and 80 min at
177 32 mg/mL AMP for MG/pBGT; dotted lines in Figure 3B). We refer to exposure to this concentration
178 and duration as a *semi-lethal pulse*.

180 **Figure 3. Multi-copy plasmids increase survival to antibiotic pulses.** A) Diagram of a survival assay
181 consisting in transiently exposing 88 populations of MG:GT and MG/pBGT to a lethal concentration of AMP. By
182 sampling each population every 30 minutes and transferring it to drug-free media, we estimate the probability of
183 survival of each strain based on the percentage of surviving populations after 24 hours of growth in drug-free
184 media. B) Kaplan-Meier plot comparing survival probabilities as a function of the time exposed to a lethal
185 ampicillin concentration (with MIC determined separately for each strain). Dotted lines represent the duration of
186 drug exposure that results in a 50% survival probability (MG:GT in black, MG/pBGT in green).

188 To confirm that the increased tolerance to a semi-lethal pulse presented by plasmid-bearing strains was
189 not a consequence of a decrease in growth rate associated with the metabolic burden inherent to carrying
190 plasmids (rather than selection of a subpopulation with more copies of *bla*_{TEM-1}), we performed a
191 survival assay for MG/pBGT in the presence of 256 μ g/L of the β -lactamase inhibitor sulbactam. As
192 expected, fluorescence remained constant independently of the ampicillin concentration, and only one
193 out of eight populations survived exposure to 2 mg/mL of AMP (Figure S5).


194 **Quantifying heterogeneity in *bla_{TEM-1}* expression and survival after a semi-lethal pulse**

195 In a microfluidic experiment, MG/pBGT and MG:GT populations were exposed separately to a semi-
196 lethal pulse of AMP, with the critical dose and duration of the antibiotic pulse determined independently
197 for each strain (Figure 4A). We acquired time-series of the fluorescent intensity of individual cells,
198 recorded division events, and estimated the duplication rates of 5,810 lineages for MG/pBGT and
199 1,077 MG:GT lineages, respectively obtained from 46 and 8 separate microfluidic chambers (see
200 Supplementary Movies 2 and 3 for sample time-lapse movies). The criteria for including a single-cell
201 lineage in the analysis was that they were observed for a period spanning the antibiotic pulse.

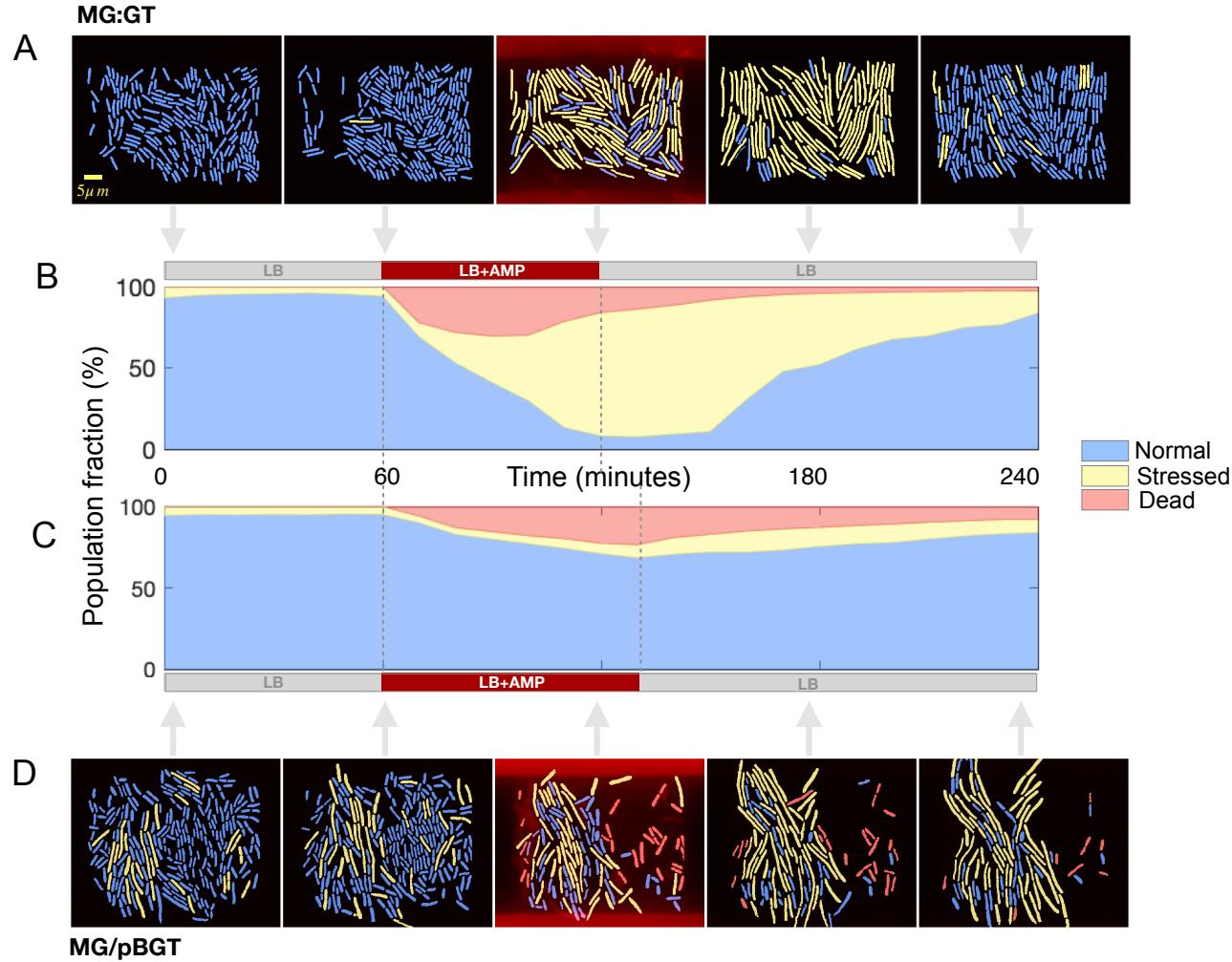
202 AMP-induced cell lysis was estimated by staining the medium with rhodamine and measuring the
203 accumulation of fluorescent dye. After a recovery period in drug-free medium, cells were classified
204 according to whether they died or survived the semi-lethal pulse. As the antibiotic concentration and
205 duration of treatment were determined separately for each strain, we expected the semi-lethal pulse to
206 kill approximately half the population. In line with this prediction, only 46.7% of MG:GT cells and
207 44.2% of MG/pBGT cells survived the antibiotic pulse (Figure 4B).

208 A retrospective analysis of surviving and non-surviving cells revealed that surviving cells had an
209 elevated duplication rate, measured as the time elapsed between cell division events (87.09 and 106.7
210 minutes, respectively; Figure S6; p-value< 0.005). Similarly, surviving cells had a higher rate of
211 elongation (changes in cell length between consecutive frames) than cells that were killed (Figure S7;
212 p-value< 0.005). These results suggest that an enhanced probability of survival is a consequence not of
213 reduced metabolic activity, but of heterogeneity in *bla_{TEM-1}* expression.

214 Changes in the fraction of surviving cells as a function of GFP expression before drug exposure are
215 shown in Figure 4C. As expected, cells with very high GFP expression had a high probability of survival
216 (54% survival for the top quartile), whereas the mean survival rate for cells in the bottom quartile was
217 below 34%. Interestingly, survival probability was not a monotonously increasing function of GFP
218 intensity, since high survival rates were also observed in cells with intermediate GFP expression (Figure
219 4D).

220
221 **Figure 4. Single-cell analysis of a semi-lethal pulse** A) Schematic diagram illustrating a microfluidic
222 experiment exposing populations of MG:GT and MG/pBGT to a semi-lethal antibiotic pulse. B) Summary of
223 results obtained after tracking individual cell lineages in time-lapse movies. Cell lineages are classified based on
224 whether they were able to survive treatment (in green and purple, for cells that produced filaments or not,
225 respectively) or if they died during drug exposure (in red cells that filamented but died, in light blue cells that
226 were killed without triggering the stress response). C) Fraction of cells alive as a function of time for lineages
227 present when the antibiotic was introduced. Y-axis denotes the initial fluorescence of cells in each initial GFP
228 bin, and each box represents the proportion of cells that are still alive in each time step (high survival rates in a
229 light color) D) Histogram of GFP expression in a population of MG/pBGT cells estimated at the end of the
230 microfluidic experiment. The size of each bar represents the probability of survival estimated for each GFP level
231 after exposure to a semi-lethal pulse of AMP. Note how the distribution appears bimodal, with high survival rates
232 at intermediate and very high fluorescent intensities. E) Diagram illustrating that this bimodal distribution is a
233 consequence of a stress response mechanism that produces filamented cells and provides transient resistance to
234 ampicillin in cells with intermediate fluorescent values. Cells with low GFP values before drug exposure have a
235 low probability of survival, while cells with high fluorescent intensities are highly tolerant to the antibiotic.

237 **Plasmid-driven phenotypic noise produces a heterogeneous stress response**


238 To investigate if this bimodality in the survival distribution is a consequence of a heterogeneous stress
239 response triggered by a subpopulation of cells, we exposed a MG:GT population to a semi-lethal pulse
240 of AMP and recapitulated the life history of the surviving cells (Figure 5A-B). Note that shortly after
241 being exposed to the antibiotic, some cells ceased dividing but continued to grow, thus producing
242 filaments (see also Figure 4E). Conditional filamentation can be triggered by multiple molecular
243 mechanisms,⁵⁸ including a general stress response – the SOS regulatory network – that regulates the
244 expression of over 50 genes involved in DNA repair, DNA damage tolerance, and the induction of a
245 DNA damage checkpoint that transiently suppresses cell division.⁵⁹

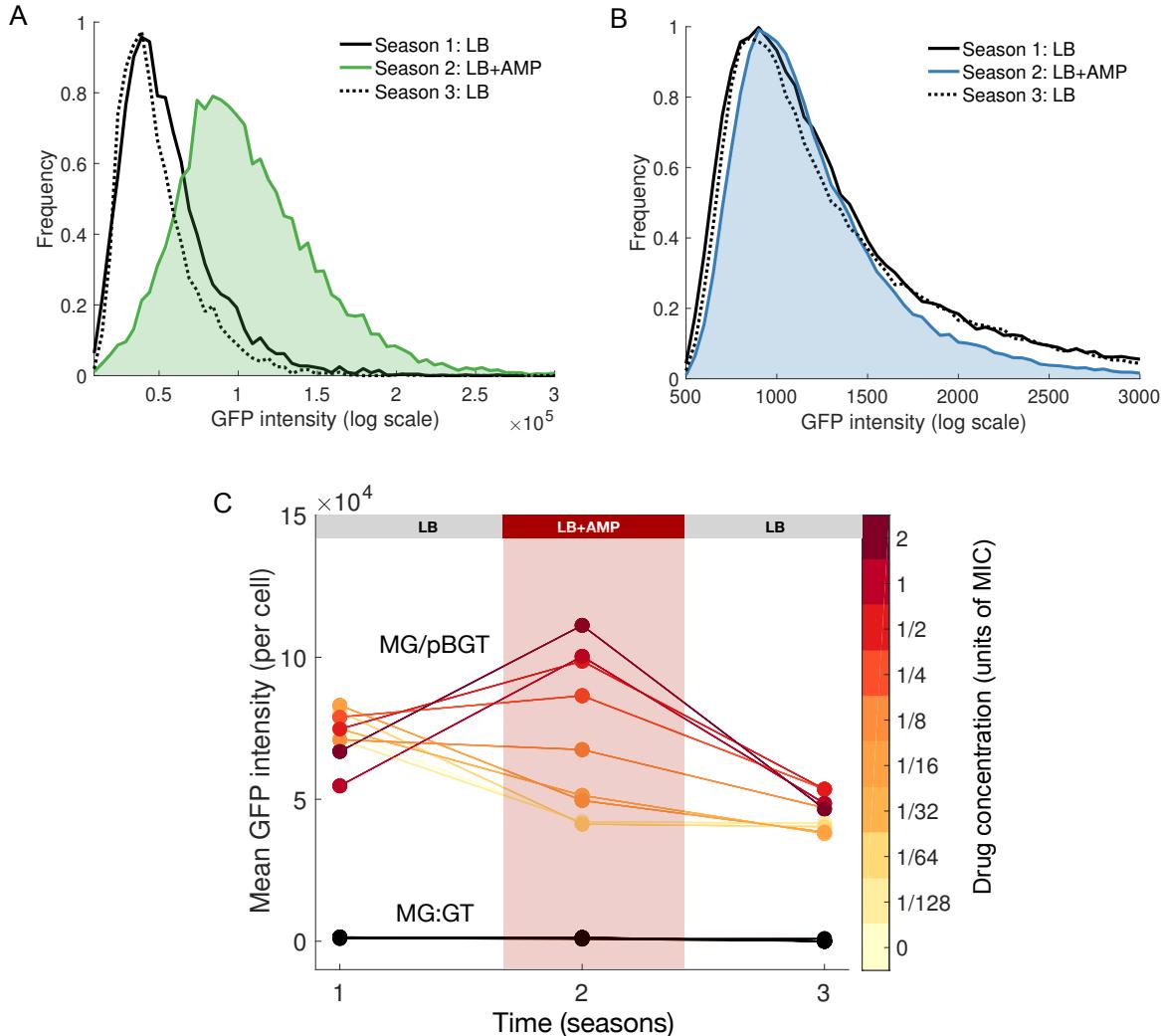
246 In particular, the SOS response can be triggered by the binding of β -lactamase molecules to penicillin-
247 binding protein 3 (PBP3). Lactamase-bound PBP3 acts through DpiBA, a two-component signal
248 transduction system⁶⁰ that induces *sulA*, which in turn inhibits septation by blocking FtsZ polymeriza-
249 tion. As a result, cell division is suppressed and bacterial filaments are produced.^{61,62} Crucially, once
250 the stress is removed, filamented cells reorganize the FtsZ ring, divide, and resume normal growth.^{63,64}

251 Furthermore, consistent with previous studies,⁶⁵ the temporal expression of genes in the SOS system ap-
252 peared to be tightly regulated, with 61.4% of cells in the MG:GT population responding synchronously
253 to the antibiotic input and producing filaments (we define a filamented cell as a cell with more than
254 two standard deviations from the mean length of the population before drug exposure). In contrast,
255 the plasmid-bearing population produced a very heterogeneous response, with only 17.1% of cells
256 producing filaments (Figure 5C-D). This was expected, as we have established that variability in PCN
257 maintains a subpopulation of cells that overproduce β -lactamase and hence avoid triggering the stress
258 response by maintaining a low periplasmic AMP concentration. Conversely, cells with low PCN are
259 killed by the antibiotic before they can trigger the SOS response.

260 Histograms of GFP fluorescence in cells of each subpopulation before the introduction of AMP was
261 introduced into the microfluidic device are shown in Figure S8. As expected, the MG:GT population
262 exhibited low variance, with no significant differences in mean GFP intensity detected between
263 subpopulations. In contrast, the plasmid-bearing population exhibited a GFP intensity distribution with
264 high variance. We classified each cell according to whether it was killed or survived drug exposure
265 and according to whether or not the stress response was triggered. Surviving cells in the MG/pBGT
266 population, either had high fluorescence intensity and did not trigger the SOS response (a consequence
267 of increased β -lactamase synthesis), or had intermediate GFP fluorescence and survived antibiotic
268 exposure by elongating and delaying cell division.

269 We also performed an exploratory data analysis, which showed that while PCN (measured by proxy
270 through GFP intensity) is important for cell survival, so is cell length at the moment of the environmental
271 perturbation (see PCA plot in Figure S9). This analysis confirmed that cells with increased survival are
272 small cells with high GFP fluorescence, or cells that were already filamented when exposed to AMP
273 (Figure S10). Our data suggests that plasmid-driven phenotypic noise produces random conditional
274 filamentation, thus enabling the population to adapt to a rapid increase in drug concentration.

276 **Figure 5. Microscopy montage of a microfluidics semi-lethal pulse.** A) Cell classification for a MG:GT
277 population: normal cells (blue), filamented cells (yellow), and dead cells (red). When the antibiotic is introduced
278 into the microfluidic device, MG:GT cells synchronously trigger the SOS response and produce filaments. When
279 the antibiotic is removed, elongated cells resolve and resume normal growth. B) Fraction of the MG:GT
280 population in each cellular state as a function of time (normal cells in blue, stressed in yellow, and dead in red).
281 Most surviving cells exhibit conditional filamentation upon antibiotic exposure and resume normal growth once
282 the drug is withdrawn. C) Fraction of the MG/pBGT population in each cell state. In this case, a smaller fraction
283 of cells produce filaments, as high PCN cells maintain low periplasmic levels of antibiotics and survive without
284 triggering the stress response system. D) Selected frames from a time-lapse movie showing how the
285 plasmid-bearing population responds heterogeneously to antibiotic exposure.


287 **High levels of antibiotic resistance are unstable in the absence of selection**

288 In our microfluidics data, the mean time elapsed between cell duplication events was significantly
289 different between the two strains (36.6 minutes for MG:GT and 88.2 minutes for MG/pBGT; p-
290 value < 0.001; Figure S11). Similarly, at the population-level, a comparison of growth rate in strains with
291 different PCNs with respect to plasmid-free cells revealed a negative correlation between growth rate
292 and mean PCN in the absence of selection for plasmid-encoded genes ($R^2 = 0.562$; Figure S12). The cost
293 associated with bearing plasmids is well-documented,^{66–68} particularly for ColE1-like plasmids,^{69,70}
294 and has been reported for multiple plasmid-host associations in a wide range of bacterial species.^{45,71–73}

295 The burden associated with plasmid carriage is highly variable and depends on the interaction between
296 plasmids and their bacterial hosts.⁵⁰ This fitness cost can be ameliorated through mutations in genes
297 located either on the chromosome or the plasmid.^{74–77} In addition to these compensatory mutations,
298 another strategy to ameliorate the burden of carrying high-copy plasmids is to reduce the number of
299 plasmids carried per cell. For instance, a previous experimental evolution study reported that mutations
300 near the origin of replication generated a 10-fold amplification in mean PCN, but at a very high fitness
301 cost that resulted in high levels of antibiotic resistance being unstable in the population once the
302 antibiotic was removed.⁴¹

303 To assess how rapidly PCN amplification is reversed once the antibiotic is withdrawn, we performed a
304 three-season serial dilution experiment in which a MG/pBGT population was exposed to fluctuating
305 selection (season 1, drug-free; season 2, 32 mg/ml AMP; season 3, drug-free). The GFP fluorescence
306 distribution was recorded at the end of each season (Figure 6A). In the presence of AMP, the GFP
307 fluorescence distribution shifted to high expression but rapidly returned to the original fluorescence
308 distribution once the antibiotic was removed. This effect was also observed with high-copy plasmids
309 (Figure S13).

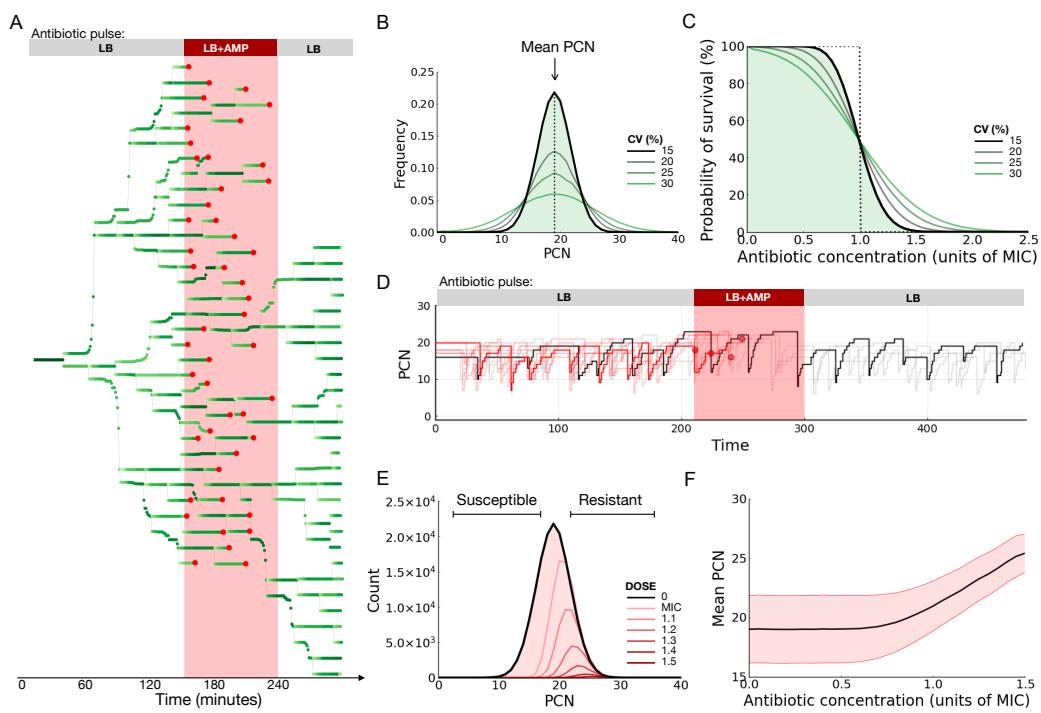
310 Repeat runs of the experiment with different drug concentrations revealed that mean GFP fluorescence
311 of the MG/pBGT population increased proportionally to the strength of selection, and the shift towards
312 higher copy number cells was rapidly reversed after removing the antibiotic (Figure 6C). In contrast, the
313 GFP intensity distribution in MG:GT cultures was the same independently of the presence of antibiotic
314 in the medium (Figure 6B).

315

316 **Figure 6. Adaptation to fluctuating environments with different strengths of selection.** A) GFP
 317 histogram in a population of MG/pBGT exposed to fluctuating selection (Season 1 (LB): solid black line, season
 318 2 (LB+AMP): green area/line, season 3 (LB): dotted black line). Note that the antibiotic shifts the GFP
 319 distribution to the right (green area) and is later restored when the antibiotic is removed. B) GFP histogram for
 320 MG:GT reveals that GFP distributions coincide independently of the environmental drug concentration. C)
 321 Increase in mean fluorescence in the presence of antibiotics is correlated with drug dose (darker red, higher drug
 322 concentrations). Once the antibiotic is removed, mean GFP intensity is restored to pre-exposure levels. The black
 323 line shows that fluorescent intensity for MG:GT remains constant during the experiment.

325 **Stochastic plasmid dynamics promotes heteroresistance in a computational model**

326 To further explore the interaction between the stochastic plasmid dynamics and the strength of selection
327 for plasmid-encoded genes, we used a multi-level computational model that incorporates intracellular
328 plasmid dynamics into an ecological framework (Methods). Briefly, the agent-based model explicitly
329 simulates key cellular processes: cell duplication, resource-dependent growth, antimicrobial-induced
330 death, and random plasmid replication and segregation. Propensities of each process are determined
331 from the concentrations of a limiting resource and a bactericidal antibiotic present in a well-mixed
332 environment.


333 Figure 7A shows numerical realizations of the agent-based model simulating an exponentially-growing
334 population of cells descended from a parental plasmid-bearing cell. We considered the number of
335 plasmids carried by each cell as a time-dependent variable subject to two main sources of noise: (1)
336 imperfect PCN control,⁷⁸ with plasmid replication occurring in discrete events distributed stochastically
337 over time, and (2) plasmid segregation occurring randomly between daughter cells upon division. A
338 consequence of this stochastic plasmid dynamics is that PCN in any individual cell is highly variable
339 over time and, as the culture is no longer synchronous after a few cell duplications, plasmid-bearing
340 populations exhibit high levels of copy number heterogeneity. This heterogeneity results in a PCN
341 distribution with large variance (Figure 7B).

342 Based on our experimental data and previous reports,^{79,80} we assume a linear relationship between
343 PCN and gene dosage. Therefore the probability of an individual cell dying upon exposure to a given
344 antibiotic concentration can be estimated from the number of plasmid copies it carries and the degree
345 of resistance conferred by each plasmid-encoded gene. For instance, if we assume that every cell in the
346 population is equally sensitive to the antibiotic (i.e. a population with low-variance PCN distribution),
347 then we find a drug concentration that kills all cells simultaneously (a dose referred to in the clinical
348 literature as the minimum inhibitory concentration, MIC). Hence the survival probability function of
349 such a homogeneous population is a stepwise function that switches from 1 to 0 at this critical drug
350 concentration (black dotted line in Figure 7C).

351 However, when we consider a heterogeneous population characterized by a PCN distribution with large
352 variance then, by definition, the population contains cells with fewer or more gene copies than the
353 expected value (green lines in Figure 7B). This implies that the survival probability of heterogeneous
354 populations is lower than that predicted for a homogeneous population at sub-MIC concentrations and
355 higher than the predicted value in high-drug environments (Figure 7C). Indeed, temporal changes in
356 PCN can result in cells with differing degrees of drug susceptibility; as a result, when antibiotics are
357 introduced into the system, only that fraction of cells that had overreplicated the plasmid was able to
358 survive drug exposure (Figure 7D).

359 In our computational experiments, exposure to antibiotics reduced total bacterial density, but, as cells
360 with low levels of resistance are cleared first from the population, the PCN distribution shifts towards
361 higher values (red lines in Figure 7E). Furthermore, the computational model predicts that the intensity
362 of drug-induced PCN amplification in the population is proportional to the strength of the selective
363 pressure (Figure 7F), with selection for high-copy plasmid cells occurring even at sub-lethal drug
364 concentrations (resulting from killing cells with fewer plasmids than the mean PCN).

365 Moreover, once the antibiotic was withdrawn, cells that survived continued to grow and divide, therefore
366 randomly replicating and segregating plasmids (see Figure S14). A consequence of this stochastic
367 plasmid dynamics is that cells with low PCN are readily produced through segregational drift. These
368 low-copy cells are at a competitive advantage relative to high-copy sub-populations, and consequently
369 the mean PCN of the population returns to the level observed prior to antibiotic exposure. Similarly
370 with the experimental data, repetition of the computational experiment for different selection strengths
371 revealed that the degree of PCN amplification appears to be correlated not only with the strength of
372 selection, but also with its rate of decay once the antibiotic is removed.

373 **Figure 7. Stochastic plasmid dynamics yield heteroresistant populations.** A) Simulations of the plasmid
374 dynamics model of a population growing in drug-free media from a single plasmid-bearing cell. PCN as a
375 function of time is represented in a gradient of greens. The red area represented the time interval when the
376 population was exposed to a lethal drug concentration. Most cells are killed (death events denoted in red), but a
377 few cells carried large PCN during drug exposure and proliferate once the antibiotic is withdrawn. B) Histogram
378 of PCNs estimated using the computational model. The black line denotes the PCN distribution obtained using
379 parameter values described in Table S2, while the green lines illustrate other simulations that produce
380 distributions with larger variance. C) Probability density functions of Normal distributions with a fixed mean and
381 increasing standard deviations. The dotted line illustrates the case when the PCN distribution has zero variance.
382 As the variance of the PCN distribution increases, so does the fraction of cells with an increased probability of
383 survival at high drug concentrations. D) Intracellular plasmid dynamics for individual cells. Lines denote PCN in
384 each cell, with changes in PCN resulting from two random processes: plasmids replicate during cell growth, and
385 segregate between daughter cells during cell division. The red area denotes an interval of drug exposure, and
386 cells killed have trajectories denoted in red. In gray, cells that survived drug treatment and continued segregating
387 and replicating plasmids. E) PCN distributions obtained for different antibiotic concentrations: black line for
388 drug-free environments and, in a gradient of red, the distributions obtained after exposing the heterogeneous
389 population to increasing drug concentrations. F) Mean PCN (black line) and standard deviation (red area) were
390 presented by PCN distributions obtained after exposing the population to a range of antibiotic concentrations.
391 The dotted line illustrates the MIC of the homogeneous population. Note that selection for cells with multiple
392 plasmids occurs even at sub-MIC concentrations.

395 Discussion

396 The evolution of antimicrobial resistance in response to the industrialized consumption of antibiotics,
397 specifically those of the β -lactam class, is one of the most serious health threats societies face today.⁸¹
398 In clinical isolates, heteroresistance can be the result of unstable genomic amplifications,²⁶ and has been
399 shown to be the first stage in the progression to β -lactam resistance.⁸² Taken together, our data show that
400 cell-to-cell differences in PCN in a clonal population can produce heterogeneity in drug susceptibility
401 in the population, thus enabling plasmid-bearing populations to implement a nonresponsive adaptive
402 strategy that increases their survival in a context of fluctuating selection pressures. Microfluidics
403 uniquely enabled us to connect the plasmid copy number of individual cell lineages (GFP fluorescence)
404 to their phenotypic variability (survival, elongation, or death) under antibiotic pressure and to examine
405 their fate after the antibiotic was removed. Single-cell traces also allowed us to compare our experiments
406 to dynamic computational models.

407 Moreover, the combination of high-throughput fluorescence measurements with single-cell and population-
408 level susceptibility assays enabled us to show that PCN distribution is modulated by the strength of
409 selection for plasmid-encoded genes, rapidly increasing the mean resistance of the population during
410 selective conditions. Our analysis focused on non-conjugative, multi-copy plasmids that are usually
411 carried at around 10-30 copies per cell; however, plasmid-driven phenotypic noise is not exclusive to
412 high-copy plasmids.⁷⁹ A recent study showed that a conjugative, low PCN populations (1-8 copies
413 per cell) also exhibited large copy number heterogeneity that resulted in noisy expression of plasmid-
414 encoded genes.⁸³

415 We also found that PCN heterogeneity promoted variability in the SOS system, a stress response mech-
416 anism that is known to increase resistance to heavy metals^{84,85} and antimicrobial substances.^{86,87} This
417 stress response is also known to increase genetic variation⁸⁸ by promoting bacterial mutagenesis^{89,90}
418 and enabling the horizontal transmission of virulence factors⁹¹ and antibiotic resistance genes.⁹² The
419 SOS system also produces bacterial filaments, which have been shown to be an adaptive trait with many
420 benefits,⁵⁸ including the promotion of tissue colonization⁹³ and increased tolerance to cell wall damage
421 produced by the antibiotics used in this study.^{64,94}

422 Our study, combined with previous reports, shows that having a phenotypically diverse population
423 is an effective adaptive strategy to survive fluctuating environmental conditions.⁹⁵⁻⁹⁷ Transitions
424 between phenotypic states can result from promoter noise;⁹⁸ asymmetry in the cell division process;⁹⁹
425 or stochastic fluctuations in the concentrations of proteins, mRNAs, and other macromolecules present
426 at low-copy numbers in the cell.¹⁰⁰⁻¹⁰² We proposed that the stochastic nature of plasmid replication
427 and segregation also produces heterogeneous populations, in which a minority of cells that carried
428 more copies of a plasmid encoding the antibiotic resistance gene *bla_{TEM-1}* survived exposure to a lethal
429 AMP concentration.

430 Upon removal of the antibiotic from the environment, surviving cells continued growing and dividing,
431 therefore replicating and segregating plasmids. As a result, low PCN cells with increased competitive
432 fitness relative to the highly-tolerant subpopulation emerged, therefore restoring drug susceptibility
433 and compensating for the cost imposed by bearing multiple plasmid copies. Altogether, these results
434 indicate that multicopy plasmids provide a platform for implementing a reversible phenotypic tolerance
435 mechanism that rapidly compensates for the burden of carrying multiple plasmid copies.

436 Furthermore, transient amplification of selective genes encoded in multicopy plasmids may not be
437 exclusive to *bla*_{TEM-1}, as similar effects would be achieved by antimicrobial resistance genes encoding
438 efflux proteins or other drug-modifying enzymes.^{8,103–105} Other systems where gene dosage is relevant
439 and that scale with gene copy number may also use multi-copy plasmids as platforms for fine-tuning
440 gene activity.^{106,107} A recent study showed that precise control of gene expression in genetic engi-
441 neering and synthetic biology can be achieved by tuning PCN in individual cells.⁸⁰ This provides a
442 promising tool for the optimization of synthetic circuits, but also represents a novel approach that can
443 be used for the design of rational treatment strategies that are effective at suppressing heteroresistant
444 populations.

445 Acknowledgements

446 We thank S. Brom, J. Stavans, D. Romero, P. Padilla, M. Ackermann and R. Beardmore for useful
447 discussions and comments on earlier versions of this manuscript. We are also thankful with A.
448 Saralegui from Laboratorio Nacional de Microscopía Avanzada for assistance using the flow cytometer
449 and J. Escudero for the gift of the strains. We also thank the LABNALCIT-UNAM (CONACYT) for
450 technical support using the cell sorter. JCRHB was a doctoral student in Programa de Doctorado en
451 Ciencias Biomédicas, Universidad Nacional Autónoma de México, and received fellowship 59691
452 from CONACYT. BAL is a student in Programa de Doctorado en Ciencias Bioquímicas, Universidad
453 Nacional Autónoma de México and received fellowship 886346 from CONACYT. JVS received a
454 scholarship from PAPIIT-UNAM (grant IN209419). ASM is funded by the European Union's Horizon
455 2020 research and innovation program (ERC grant agreement no.757440-PLASREVOLUTION).
456 JR-B is supported by a Miguel Servet contract from Instituto de Salud Carlos III (ISCIII; grant no.
457 CP20/00154), co-funded by ESB, 'Investing in your future'. RPM and RCM were supported by a
458 Newton Advanced Fellowship awarded by the Royal Society (NA140196). AFH and RPM were
459 supported by PAPIIT-UNAM (grants IA201418 and IN209419, respectively). This project was also
460 funded by CONACYT Ciencia Básica (grant A1-S-32164) awarded to RPM.

461 Materials and Methods

462 Bacterial strains and culture conditions

463 In this study, we used *Escherichia coli* K12 MG1655 bearing a ColE1-like (p15a) plasmid, pBGT, en-
464 coding for the β -lactamase resistance gene *bla*_{TEM-1} that confers resistance to ampicillin, an *eGFPmut2*
465 gene under an arabinose inducible promoter, and the *araC* repressor. Mean PCN=19.12, s.d.= 1.53.⁴⁵
466 As a control, a strain *E. coli* K12 MG1655 was used, carrying the *pBADgfp2*, *araC*, and the *bla*_{TEM-1}
467 integrated into the chromosome through the λ -phage. Strains bearing plasmid variants G54U and
468 G55U contained a point mutation in the origin of replication: G to U changes at positions 54 and 55 of
469 the RNAI placed in the loop of the central hairpin and affect the RNAI-RNAII kissing complex that
470 controls plasmid replication and PCN. All experiments were conducted in Lysogeny Broth- Lenox (LB)
471 (Sigma-L3022) supplemented with arabinose (0.5% w/v) and appropriate ampicillin concentrations
472 were supplemented as indicated in each experiment. Arabinose stocks solutions were prepared at 20%
473 w/v by diluting 2 g of arabinose (Sigma-A91906) in 10 ml DD water sterilized by 0.22 μ m filtration.
474 AMP stock solutions (100 mg/ml) were prepared by diluting ampicillin (Sigma-A0166) directly in
475 0.5% w/v arabinose LB.

476 Antibiotic susceptibility determination

477 The minimum inhibitory concentration (MIC) of different strains was calculated using dose-response
478 curves performed in 200 μ L of liquid media. 96-well plates (Corning CLS3370) supplemented with
479 LB (0.5% w/v arabinose) and a logarithmically-separated range of drug concentrations were used.
480 Antibiotic plates were inoculated from a master plate using a 96-pin microplate replicator (Boekel
481 140500). Inoculation plates were prepared by adding 200 μ L of overnight culture into each well and
482 incubating at 37 °C with 200 rpm shaking. Optical density measurements were performed using a
483 BioTek ELx808 Absorbance Microplate Reader at 630 nm. MIC was determined when the reader was
484 unable to detect bacterial growth (2, 32, 43, and 46 mg/mL for strains MG:GT, pBGT, G54U, and
485 G55U, respectively).

486 Plasmid copy number determination

PCN per chromosome was determined using quantitative polymerase chain reaction (qPCR) with a CFX96 Touch Real-Time PCR Detection System. Specific primers were used for the *E. coli*'s *dxs* monocopy gene as chromosomal reference (dxs-F CGAGAAACTGGCGATCCTTA, dxs-R CTTCAT-CAAGCGGTTTCACA) and primers for the *bla*_{TEM-1} plasmid-encoded gene (Tem-F: ACATTTC-CGTGTCGCCCTT, Tem-R: CACTCGTGCACCCAACTGA) both with amplicon sizes 100 bp as previously described.⁴⁵ In short, samples were prepared following a previously published protocol:¹⁰⁸ 100 μ l culture samples were centrifuged at 16,000 g for 60", the supernatant was removed, and the pellet was resuspended in an equal volume of MilliQ water. Then, samples were boiled at 95 °C for 10' using a thermoblock and stored at -20 °C for later use. Primers were diluted in TE buffer at 10 μ M and stored a -20 °C. Primers' final concentration was 300 nM. qPCR reactions were performed using SYBR Select Master Mix (Applied Biosystems - 4472908) in 96-well flat-bottom polystyrene microplates

497
498 (Corning 3370) sealed with sterile optical film (Sigma-Aldrich Z369667-100EA). Amplification was
499 performed by an initial 2 min at 50°C activation, then an initial denaturation for 2 min at 95 °C,
500 following 40 cycles of 15 sec denaturation at 95 °C, 1 min annealing, and 1 min extension at 60 °C.
501 After the amplification, a melting curve analysis was performed by cooling the reaction to 60 °C and
502 then heating slowly to 95 °C. PCN was determined using the $\Delta\Delta C_T$ method.¹⁰⁹

503 **Flow cytometry**

504 GFP fluorescence distributions were calculated using imaging flow cytometry in an Amnis ImageStream
505 Mark II by Luminex. INSPIRE software was used to control the machine and acquire data. GFP
506 fluorescence was excited at 488 nm using 75 mv intensity. Data files were processed using IDEAS 6.2
507 software to only take into account cells on focus using area, aspect ratio, and side scatter features. Files
508 were exported to text files and analyzed with custom scripts in Python and MATLAB. Fluorescence-
509 activated cell sorting of the MG/pBGT strain using a BD FACSaria. An overnight culture was grown
510 on 20 ml of LB 0.5% w/v arabinose at 30 °C, and 200 rpm was sorted into subpopulations. Four
511 subpopulations were categorized by fluorescence intensity and SSC-area features. DNA extraction of
512 sorted subpopulations was made as previously described for qPCR and stored at -20 °C for later use.
513 Plasmid copy number measurements were performed in each subpopulation to evaluate the association
514 between copy number and fluorescence intensity.

515 **Fitness costs determination**

516 To determine competitive fitness in the absence of antibiotics, each strain was cultured in a 96-well
517 plate with LB supplemented with arabinose 0.5% w/v. A Synergy H1 microplate reader was used to
518 obtain the growth kinetics of each strain by inoculating a 96-well plate with an overnight culture of
519 each strain and growing at 37 °C for 24 hours, reading every 20 minutes, after 30 seconds of shaking.
520 Maximum growth rate estimates were obtained by fitting the mean optical density of N=8 using the R
521 package *GrowthRates* using non-parametric smoothing splines fit.¹¹⁰

522 **Semi-lethal pulse in bacterial populations**

523 Strains of MG::GT and MG/pBGT were exposed to a three-season serial transfer experiment using
524 96-well plates (8 replicates per strain). An initial inoculation plate was made by putting 200 ml of
525 overnight culture per well. Season 1 (LB) was inoculated from an inoculation plate using a microplate
526 pin replicator. Season 2 (LB-AMP) was inoculated from season 1 after 12 hours of growth. We used the
527 following ampicillin gradient: 0, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, and 2 MIC units. In season
528 3, cultures were transferred to a new LB plate after 12 hours of growth, allowing bacteria to grow for
529 another 12 hours. Plates were sealed using an X-Pierce film (Sigma Z722529) perforating every well
530 to avoid condensation and grown at 37 °C inside a BioTek ELx808 Absorbance Microplate Reader.
531 Measurements were taken every 20 minutes, after 30 seconds of linear shaking at 567 cpm (3 mm).
532 At the end of each season, end-point fluorescence intensity was measured using a BioTek Synergy
533 H1 using OD (630nm) and eGFP (479.520nm). Plates were then stored at 4°C before imaging flow
534 cytometry was performed the following day. A complete independent four-replicate experiment was
535 performed for each strain. DNA samples were extracted at the end of each season to quantify PCN.

536 Population-level survival assay

537 Strains were grown in an LB+Amp media in a 96-well plate under a concentration of AMP determined
538 based on the MIC of each strain. For each LB+AMP plate, we considered 88 populations growing in
539 antibiotics and 8 without antibiotics as controls. Inoculated plates were incubated in a BioTek ELx808
540 absorbance microplate reader at 30°C, with optical density measurements (630nm) obtained every 30
541 min, after 1 min of shaking. After each read, plates were taken out, and a plate sample was taken with a
542 microplate replicator to inoculate a new LB plate. Samples were taken every 30 min, from 0 to 8 hours,
543 then at 18 and 24 hours. New plates were grown in a static incubator at 30 °C for 24 hours. Growth
544 was measured using OD (630nm) and eGFP (479,520 nm) in a Synergy H1 microplate reader after 5
545 min shaking. An additional experiment was performed for the MG:GT and MG/pBGT strains sampling
546 every 2 hours from 0 to 12 hours and a final sampling at 24 hours.

547 β -lactamase inhibitor experiment

548 For the β -lactamase inhibition assay, sulbactam (Sigma-S9701) was used. First, the ampicillin con-
549 centration was fixed to be that of the MIC of MG:GT (2 mg/ml). Then, a sulbactam dose-response
550 experiment with MG/pBGT was performed and found that the minimum sulbactam concentration
551 achieved that complete growth suppression was 256 μ g/l. Critical AMP and sulbactam concentrations
552 were used to performed a population-level survival assay consisting on exposing 8 replicate populations
553 to fluctuating selection: LB \rightarrow LB+AMP+ sulbactam \rightarrow LB. Samples of four replicates were used for
554 flow cytometry, and the remaining four replicate samples were used for PCN quantification.

555 Single-cell microfluidics

556 A microfluidic device built-in PDMS (polydimethylsiloxane; Sylgard 04019862) from molds manufac-
557 tured by Micro resist technology GmbH using soft photolithography (SU-8 2000.5) was used for this
558 study. In particular, a micro-chemostat that contains two media inputs and 48 rectangular chambers
559 (40x50x0.95 μ m³).¹¹¹ Each confinement chamber traps approximately 1,000 cells in the same focal
560 plane, enabling us to use time-lapse microscopy to follow thousands of individual cells in time. Chips
561 were fabricated by pouring PDMS into the mold before baking it for 2 hours at 65 °C. Solid chip prints
562 were cut, punched, and bound to a glass coverslip using a plasma cleaner machine (Harrick Plasma -
563 PDC-001) at full power for 1 min and 15 sec. Then we baked them again overnight at 45 °C to ensure
564 binding. Moreover, for each strain, MG/pBGT and MG:GT200, a 1 l titration flask was inoculated with
565 200 μ l of an overnight culture (LB at 30 °C and 200 rpm) when the culture reached 0.2-0.3 OD630; it
566 was split into 4 falcon tubes and centrifuged for 5 min at 7,000 rpm. Supernatant was disposed of, and
567 cells were resuspended by serial transfers into 5 ml of fresh media supplemented with arabinose 0.5%
568 w/v. This dense culture was used to inoculate the microfluidic device. Data acquisitions started 5 hrs
569 after the device chambers were filled and cells were growing exponentially.

After 60 minutes of growth, we switched the environment from LB to LB+AMP. Drug concentration was determined independently for each strain (2mg/ml and 8mg/ml for MG:GT and MG/pBGT, respectively). Media and antibiotics were introduced into the microfluidic device using a bespoke dynamic pressure control system based on vertical linear actuators (adapted from¹¹²). The duration

572

573

574 of drug exposure was determined based on the time elapsed before the probability of survival of the
575 population exposed to the MIC is below 50% (a semi-lethal pulse; an exposure of $2\text{mg}/\text{ml}$ for 60 min
576 for MG:GT, and of $8\text{mg}/\text{ml}$ for 80 min for MG/pBGT). At the end of the period of drug exposure, the
577 population was transferred to a drug-free environment and grown for 120 min for MG:GT, and 100 min
578 for MG/pBGT. Growth media was supplemented with arabinose at 0.5% and Tween20 (Sigma-P2287)
579 at 0.075%, and filtered with $.22\mu\text{m}$ filters. Experiments were conducted at $30\text{ }^{\circ}\text{C}$, and the ampicillin
580 media was stained by adding $5\text{ }\mu\text{l}$ and $3\text{ }\mu\text{l}$ of a fluorescent dye (rhodamine, Sigma S1402) in 100ml of
581 media used to grow MG:GT and MG/pBGT cells, respectively. This red fluorescent dye allowed us to
582 calibrate media inputs inside the microfluidic device and also worked as a dead-cell marker. Rhodamine
583 stock solution was prepared, diluting the powder in ethanol, and stored at $4\text{ }^{\circ}\text{C}$.

584 **Fluorescence microscopy**

585 Microscopy was performed in a Nikon Ti-E inverted microscope equipped with Nikon's Perfect Focus
586 System and a motorized stage. Temperature control is achieved with a Lexan Enclosure Unit with Oko-
587 touch. The microscope was controlled with NIS-Elements 4.20 AR software. Image acquisition was
588 taken with a 100x Plan APO objective without analog gain and with the field and aperture diaphragms
589 as closed as possible to avoid photobleaching. DIC channel captures were made with a 9v DIA-lamp
590 intensity, red channel (excitation from 540 to 580nm , emission from 600 to 660nm filter), green channel
591 (excitation from 455 to 485nm , emission from 500 to 545nm). Exposure times were 200ms , 200ms ,
592 and 600ms for DIC, green and red channels, respectively. Multi-channel, multi-position images were
593 obtained every 10 minutes in the following order: Red, Green, Lamp-ON, DIC, Lamp-OFF. We
594 added the Lamp-ON optical configuration to allow the bright-light lamp to be fully powered before
595 acquiring the DIC image, while the Lamp-OFF configuration was added to make sure that the lamp
596 was completely off before capturing the next position.

597 **Image analysis**

598 Microscopy time-lapse images were analyzed using μJ , an ImageJ-Python-Napari image analysis
599 pipeline that implements Deep Learning for image segmentation. In short, the pipeline uses ImageJ
600 macros to arrange and manipulate microscopy images. Image segmentation was performed using
601 DeepCell.¹¹³ Binary masks were corrected manually using bespoke ImageJ macros. Cell tracking was
602 performed using a nearest-neighbor weighted algorithm coded in Python. Cell-tracking was corrected
603 manually using a custom cell viewer coded in Napari.¹¹⁴ Lineage reconstruction was performed in
604 Python, obtaining thousands of single-cell time-series of fluorescent intensity and cell length, as well
605 as time-resolved population-level statistics, including the probability of survival to the antibiotic shock
606 and the distribution of fluorescent intensities. Our cell viewer also allows easy lineage data visualization
607 and plotting. Code used to analyze images is available in a public repository: <https://github.com/ccg->
608 esb-lab/uJ/

609 Computational model

610 A stochastic individual-based model was developed, where cells are modelled as computational objects.
611 Each cell may have a specific plasmid copy number derived from a Normal distribution $N(\mu, \sigma)$ where
612 μ is the mean copy number of the population and σ stands for the copy number variability. Cells grow
613 by incorporating a limiting resource, R , following a Michaelis-Menten function; this function the cost
614 entailed by the number of plasmids. The plasmid cost follows a linear relationship with respect to
615 plasmid copy number. Cells divide when they reach an energy threshold. Upon division, plasmids
616 are segregated randomly (with a probability of 0.5) to the daughter cells. They began to replicate
617 plasmids following a probability determined by $1 - \frac{\mu_i(t)}{\hat{\mu}_i}$, where $\mu_i(t)$ denotes the number of copies of a
618 plasmid at time t , and $\hat{\mu}_i$ the cell-specific maximum plasmid copy number. The action of the antibiotic
619 is implemented using an individual resistance/susceptibility profile derived from a linear approximation
620 of the experimentally determined population MIC and population copy number, so each cell survival
621 decision was based on their resistance profile, the actual antibiotic concentration, and a random noise
622 modifying this threshold. Numerical experiments of the model were implemented in Julia, with code
623 available in a public repository: <https://github.com/ccg-esb-lab/pBGT/>

624 References

- 625 1. Organization, W. H. *et al.* *Antimicrobial resistance: global report on surveillance* (World Health Organization, 2014).
- 626 2. Alekshun, M. N. & Levy, S. B. Molecular mechanisms of antibacterial multidrug resistance. *Cell* **128**, 1037–1050 (2007).
- 627 3. El-Halfawy, O. M. & Valvano, M. A. Antimicrobial heteroresistance: an emerging field in need of clarity. *Clinical microbiology reviews* **28**, 191–207 (2015).
- 628 4. Band, V. I. & Weiss, D. S. Heteroresistance: A cause of unexplained antibiotic treatment failure? *PLoS pathogens* **15**, e1007726 (2019).
- 629 5. Andersson, D. I., Nicoloff, H. & Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. *Nature Reviews Microbiology* **1** (2019).
- 630 6. Anderson, S. E., Sherman, E. X., Weiss, D. S. & Rather, P. N. Aminoglycoside heteroresistance in *Acinetobacter baumannii* ab5075. *mSphere* **3**, e00271–18 (2018).
- 631 7. Hjort, K., Nicoloff, H. & Andersson, D. I. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in *Salmonella enterica*. *Molecular microbiology* **102**, 274–289 (2016).
- 632 8. Wang, X. *et al.* Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination. *mBio* **5**, e00942–13 (2014).
- 633 9. Balaban, N. Q. *et al.* Definitions and guidelines for research on antibiotic persistence. *Nature Reviews Microbiology* **1** (2019).
- 634 10. Kester, J. C. & Fortune, S. M. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. *Critical reviews in biochemistry and molecular biology* **49**, 91–101 (2014).

646 11. Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and
647 persistence to antibiotic treatment. *Nature Reviews Microbiology* **14**, 320–330 (2016).

648 12. Scheler, O. *et al.* Droplet-based digital antibiotic susceptibility screen reveals single-cell clonal heteroresis-
649 tance in an isogenic bacterial population. *Scientific reports* **10**, 1–8 (2020).

650 13. Lee, H. H., Molla, M. N., Cantor, C. R. & Collins, J. J. Bacterial charity work leads to population-wide
651 resistance. *Nature* **467**, 82–5 (2010).

652 14. El Meouche, I., Siu, Y. & Dunlop, M. J. Stochastic expression of a multiple antibiotic resistance activator
653 confers transient resistance in single cells. *Scientific reports* **6**, 19538 (2016).

654 15. Sánchez-Romero, M. A. & Casadesús, J. Contribution of phenotypic heterogeneity to adaptive antibiotic
655 resistance. *Proceedings of the National Academy of Sciences* **111**, 355–360 (2014).

656 16. Laehnemann, D. *et al.* Genomics of rapid adaptation to antibiotics: convergent evolution and scalable
657 sequence amplification. *Genome biology and evolution* **6**, 1287–1301 (2014).

658 17. Fuentes-Hernandez, A. *et al.* Using a sequential regimen to eliminate bacteria at sublethal antibiotic
659 dosages. *PLoS biology* **13**, e1002104 (2015).

660 18. Pena-Miller, R. *et al.* When the most potent combination of antibiotics selects for the greatest bacterial
661 load: the smile-frown transition. *PLoS biology* **11**, e1001540 (2013).

662 19. Reding, C., Hewlett, M., Bergmiller, T., Gudelj, I. & Beardmore, R. Fluorescence photography of patterns
663 and waves of bacterial adaptation at high antibiotic doses. *bioRxiv* 806232 (2019).

664 20. Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic
665 resistance. *Nature Reviews Microbiology* **7**, 578 (2009).

666 21. Anderson, S. E., Sherman, E. X., Weiss, D. S. & Rather, P. N. Aminoglycoside heteroresistance in
667 *acinetobacter baumannii* ab5075. *mSphere* **3**, e00271–18 (2018).

668 22. Reams, A. B. & Roth, J. R. Mechanisms of gene duplication and amplification. *Cold Spring Harbor
669 perspectives in biology* **7**, a016592 (2015).

670 23. Adler, M., Anjum, M., Berg, O. G., Andersson, D. I. & Sandegren, L. High fitness costs and instability of
671 gene duplications reduce rates of evolution of new genes by duplication-divergence mechanisms. *Molecular
672 biology and evolution* **31**, 1526–1535 (2014).

673 24. Lázár, V. & Kishony, R. Transient antibiotic resistance calls for attention. *Nature microbiology* **4**, 1606–1607
674 (2019).

675 25. Pereira, C., Larsson, J., Hjort, K., Elf, J. & Andersson, D. I. The highly dynamic nature of bacterial
676 heteroresistance impairs its clinical detection. *Communications biology* **4**, 1–12 (2021).

677 26. Nicoloff, H., Hjort, K., Levin, B. R. & Andersson, D. I. The high prevalence of antibiotic heteroresistance
678 in pathogenic bacteria is mainly caused by gene amplification. *Nature microbiology* **4**, 504 (2019).

679 27. San Millan, A. Evolution of plasmid-mediated antibiotic resistance in the clinical context. *Trends in
680 microbiology* **26**, 978–985 (2018).

681 28. Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. & de la Cruz, F. Mobility of plasmids.
682 *Microbiol. Mol. Biol. Rev.* **74**, 434–452 (2010).

683 29. Stoesser, N. *et al.* Evolutionary history of the global emergence of the *Escherichia coli* epidemic clone
684 st131. *mBio* **7**, e02162–15 (2016).

685 30. Wang, H. *et al.* Increased plasmid copy number is essential for yersinia t3ss function and virulence. *Science*
686 **353**, 492–495 (2016).

687 31. Dimitriu, T., Matthews, A. C. & Buckling, A. Increased copy number couples the evolution of plasmid
688 horizontal transmission and plasmid-encoded antibiotic resistance. *Proceedings of the National Academy
689 of Sciences* **118** (2021).

690 32. Cook, L. & Dunny, G. Effects of biofilm growth on plasmid copy number and expression of antibiotic
691 resistance genes in enterococcus faecalis. *Antimicrobial agents and chemotherapy* **57**, 1850–1856 (2013).

692 33. Salje, J. Plasmid segregation: how to survive as an extra piece of dna. *Critical reviews in biochemistry and
693 molecular biology* **45**, 296–317 (2010).

694 34. Summers, D. K. The kinetics of plasmid loss. *Trends in biotechnology* **9**, 273–278 (1991).

695 35. Paulsson, J. Multileveled selection on plasmid replication. *Genetics* **161**, 1373–1384 (2002).

696 36. Novick, R. P. Plasmid incompatibility. *Microbiological reviews* **51**, 381–395 (1987).

697 37. Zwanzig, M. The ecology of plasmid-coded antibiotic resistance: a basic framework for experimental
698 research and modeling. *Computational and Structural Biotechnology Journal* **19**, 586 (2021).

699 38. Hernández-Beltrán, J., San Millán, A., Fuentes-Hernández, A. & Peña-Miller, R. Mathematical models of
700 plasmid population dynamics. *Frontiers in Microbiology* **12** (2021).

701 39. San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate
702 the evolution of antibiotic resistance in bacteria. *Nature ecology & evolution* **1**, 1–8 (2016).

703 40. Rodríguez-Beltrán, J. *et al.* Genetic dominance governs the evolution and spread of mobile genetic elements
704 in bacteria. *Proceedings of the National Academy of Sciences* **117**, 15755–15762 (2020).

705 41. San Millan, A. *et al.* Positive selection and compensatory adaptation interact to stabilize non-transmissible
706 plasmids. *Nature communications* **5**, 5208 (2014).

707 42. Wein, T., Wang, Y., Hülter, N. F., Hammerschmidt, K. & Dagan, T. Antibiotics interfere with the evolution
708 of plasmid stability. *Current Biology* **30**, 3841–3847 (2020).

709 43. Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond
710 horizontal gene transfer: the role of plasmids in bacterial evolution. *Nature Reviews Microbiology* 1–13
711 (2021).

712 44. Rodriguez-Beltran, J. *et al.* Multicopy plasmids allow bacteria to escape from fitness trade-offs during
713 evolutionary innovation. *Nature ecology & evolution* **2**, 873 (2018).

714 45. San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate
715 the evolution of antibiotic resistance in bacteria. *Nature ecology & evolution* **1**, 0010 (2017).

716 46. Paulsson, J. & Ehrenberg, M. Trade-off between segregational stability and metabolic burden: a mathematical model of plasmid *cole1* replication control. *Journal of molecular biology* **279**, 73–88 (1998).

717

718 47. Garoña, A., Hülter, N. F., Romero Picazo, D. & Dagan, T. Segregational drift constrains the evolutionary rate of prokaryotic plasmids. *Molecular Biology and Evolution* (2021).

719

720 48. Miró Pina, V. *et al.* Plasmid stability in fluctuating environments: population genetics of multi-copy plasmids. *bioRxiv* (2022). URL <https://www.biorxiv.org/content/early/2022/04/13/2022.03.15.484385>.

721

722

723 49. Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: plasmid copy number control. *Quarterly reviews of biophysics* **34**, 1–59 (2001).

724

725 50. Alonso-del Valle, A. *et al.* Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. *Nature communications* **12**, 1–14 (2021).

726

727 51. Camps, M. Modulation of *cole1*-like plasmid replication for recombinant gene expression. *Recent Patents on DNA & Gene Sequences (Discontinued)* **4**, 58–73 (2010).

728

729 52. Wkegrzyn, G. Replication of plasmids during bacterial response to amino acid starvation. *Plasmid* **41**, 1–16 (1999).

730

731 53. Lin-Chao, S. & Bremer, H. Effect of the bacterial growth rate on replication control of plasmid pbr322 in *Escherichia coli*. *Molecular and general genetics MGG* **203**, 143–149 (1986).

732

733 54. Knox, J. R. Extended-spectrum and inhibitor-resistant tem-type beta-lactamases: mutations, specificity, and three-dimensional structure. *Antimicrobial Agents and Chemotherapy* **39**, 2593–2601 (1995).

734

735 55. Salverda, M. L., De Visser, J. A. G. & Barlow, M. Natural evolution of tem-1 β -lactamase: experimental reconstruction and clinical relevance. *FEMS microbiology reviews* **34**, 1015–1036 (2010).

736

737 56. Hernandez-Beltran, J., Rodríguez-Beltrán, J., San Millán, A., Peña-Miller, R. & Fuentes-Hernández, A. Quantifying plasmid dynamics using single-cell microfluidics and image bioinformatics. *Plasmid* **113**, 102517 (2021).

738

739

740 57. Shao, B. *et al.* Single-cell measurement of plasmid copy number and promoter activity. *Nature communications* **12**, 1–9 (2021).

741

742 58. Karasz, D. C., Weaver, A. I., Buckley, D. H. & Wilhelm, R. C. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. *Environmental Microbiology* **24**, 1–17 (2022).

743

744 59. Simmons, L. A., Foti, J. J., Cohen, S. E. & Walker, G. C. The sos regulatory network. *EcoSal Plus* **2008** (2008).

745

746 60. Miller, C. *et al.* Sos response induction by β -lactams and bacterial defense against antibiotic lethality. *Science* **305**, 1629–1631 (2004).

747

748 61. Dajkovic, A., Mukherjee, A. & Lutkenhaus, J. Investigation of regulation of *ftsZ* assembly by *sula* and development of a model for *ftsZ* polymerization. *Journal of bacteriology* **190**, 2513–2526 (2008).

749

750 62. Sánchez-Gorostiaga, A. *et al.* Life without division: physiology of *Escherichia coli* *ftsZ*-deprived filaments. *mBio* **7**, e01620–16 (2016).

751

752 63. Wehrens, M. *et al.* Size laws and division ring dynamics in filamentous *Escherichia coli* cells. *Current*
753 *Biology* **28**, 972–979 (2018).

754 64. Sulaiman, J. E. & Lam, H. Proteomic study of the survival and resuscitation mechanisms of filamentous
755 persisters in an evolved *Escherichia coli* population from cyclic ampicillin treatment. *mSystems* **5**, e00462–
756 20 (2020).

757 65. Friedman, N., Vardi, S., Ronen, M., Alon, U. & Stavans, J. Precise temporal modulation in the response of
758 the sos dna repair network in individual bacteria. *PLoS biology* **3**, e238 (2005).

759 66. Baltrus, D. A. Exploring the costs of horizontal gene transfer. *Trends in ecology & evolution* **28**, 489–495
760 (2013).

761 67. San, A. M. & Maclean, R. C. Fitness costs of plasmids: a limit to plasmid transmission. *Microbiology*
762 *spectrum* **5** (2017).

763 68. Hall, J. P. *et al.* Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by
764 compensatory mutation. *PLoS biology* **19**, e3001225 (2021).

765 69. Bentley, W. E., Mirjalili, N., Andersen, D. C., Davis, R. H. & Kompala, D. S. Plasmid-encoded protein:
766 the principal factor in the “metabolic burden” associated with recombinant bacteria. *Biotechnology and*
767 *bioengineering* **35**, 668–681 (1990).

768 70. Klumpp, S. Growth-rate dependence reveals design principles of plasmid copy number control. *PLoS one* **6**,
769 e20403 (2011).

770 71. Santos-Lopez, A. *et al.* Compensatory evolution facilitates the acquisition of multiple plasmids in bacteria.
771 *bioRxiv* 187070 (2017).

772 72. Harrison, E., Koufopanou, V., Burt, A. & Maclean, R. The cost of copy number in a selfish genetic element:
773 the 2- μ m plasmid of *Saccharomyces cerevisiae*. *Journal of evolutionary biology* **25**, 2348–2356 (2012).

774 73. Santos-Lopez, A. *et al.* A naturally occurring single nucleotide polymorphism in a multicopy plasmid
775 produces a reversible increase in antibiotic resistance. *Antimicrobial agents and chemotherapy* **61**, e01735–
776 16 (2017).

777 74. Harrison, E., Guymer, D., Spiers, A. J., Paterson, S. & Brockhurst, M. A. Parallel compensatory evolution
778 stabilizes plasmids across the parasitism-mutualism continuum. *Current Biology* **25**, 2034–2039 (2015).

779 75. Loftie-Eaton, W. *et al.* Compensatory mutations improve general permissiveness to antibiotic resistance
780 plasmids. *Nature ecology & evolution* **1**, 1354–1363 (2017).

781 76. Hall, J. P., Wright, R. C., Guymer, D., Harrison, E. & Brockhurst, M. A. Extremely fast amelioration of
782 plasmid fitness costs by multiple functionally diverse pathways. *Microbiology* **166**, 56–62 (2020).

783 77. Porse, A., Schønning, K., Munck, C. & Sommer, M. O. Survival and evolution of a large multidrug
784 resistance plasmid in new clinical bacterial hosts. *Molecular biology and evolution* **33**, 2860–2873 (2016).

785 78. Jahn, M., Vorpahl, C., Hübschmann, T., Harms, H. & Müller, S. Copy number variability of expression
786 plasmids determined by cell sorting and droplet digital pcr. *Microbial cell factories* **15**, 1–12 (2016).

787 79. Ng, J. W., Chatenay, D., Robert, J. & Poirier, M. G. Plasmid copy number noise in monoclonal populations
788 of bacteria. *Physical Review E* **81**, 011909 (2010).

789 80. Rouches, M. V., Xu, Y., Cortes, L. & Lambert, G. A plasmid system with tunable copy number. *bioRxiv*
790 (2021).

791 81. Bush, K. & Bradford, P. A. β -lactams and β -lactamase inhibitors: an overview. *Cold Spring Harbor*
792 *perspectives in medicine* **6**, a025247 (2016).

793 82. Band, V. I. & Weiss, D. S. Heteroresistance to beta-lactam antibiotics may often be a stage in the progression
794 to antibiotic resistance. *PLoS Biology* **19**, e3001346 (2021).

795 83. Sánchez-Romero, M. A., Mérida-Floriano, Á. & Casadesús, J. Copy number heterogeneity in the virulence
796 plasmid of salmonella enterica. *Frontiers in microbiology* **11** (2020).

797 84. Ackerley, D., Barak, Y., Lynch, S., Curtin, J. & Matin, A. Effect of chromate stress on *Escherichia coli*
798 k-12. *Journal of Bacteriology* **188**, 3371–3381 (2006).

799 85. Hossain, S. T., Mallick, I. & Mukherjee, S. K. Cadmium toxicity in *Escherichia coli*: cell morphology,
800 z-ring formation and intracellular oxidative balance. *Ecotoxicology and environmental safety* **86**, 54–59
801 (2012).

802 86. Baharoglu, Z. & Mazel, D. Sos, the formidable strategy of bacteria against aggressions. *FEMS microbiology*
803 *reviews* **38**, 1126–1145 (2014).

804 87. Bos, J. *et al.* Emergence of antibiotic resistance from multinucleated bacterial filaments. *Proceedings of*
805 *the National Academy of Sciences* **112**, 178–183 (2015).

806 88. Blázquez, J., Couce, A., Rodríguez-Beltrán, J. & Rodríguez-Rojas, A. Antimicrobials as promoters of
807 genetic variation. *Current opinion in microbiology* **15**, 561–569 (2012).

808 89. Thi, T. D. *et al.* Effect of reca inactivation on mutagenesis of *Escherichia coli* exposed to sublethal
809 concentrations of antimicrobials. *Journal of Antimicrobial Chemotherapy* **66**, 531–538 (2011).

810 90. Gutierrez, A. *et al.* β -lactam antibiotics promote bacterial mutagenesis via an rpos-mediated reduction in
811 replication fidelity. *Nature communications* **4**, 1610 (2013).

812 91. Maiques, E. *et al.* β -lactam antibiotics induce the sos response and horizontal transfer of virulence factors
813 in staphylococcus aureus. *Journal of bacteriology* **188**, 2726–2729 (2006).

814 92. Beaber, J. W., Hochhut, B. & Waldor, M. K. Sos response promotes horizontal dissemination of antibiotic
815 resistance genes. *Nature* **427**, 72 (2004).

816 93. Tran, T. D., Ali, M. A., Lee, D., Félix, M.-A. & Luallen, R. J. Bacterial filamentation as a mechanism for
817 cell-to-cell spread within an animal host. *Nature communications* **13**, 1–11 (2022).

818 94. Justice, S. S., Hunstad, D. A., Cegelski, L. & Hultgren, S. J. Morphological plasticity as a bacterial survival
819 strategy. *Nature Reviews Microbiology* **6**, 162 (2008).

820 95. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments.
821 *Science* **309**, 2075–2078 (2005).

822 96. Acar, M., Mettetal, J. T. & Van Oudenaarden, A. Stochastic switching as a survival strategy in fluctuating
823 environments. *Nature genetics* **40**, 471–475 (2008).

824 97. Arnoldini, M., Mostowy, R., Bonhoeffer, S. & Ackermann, M. Evolution of stress response in the face of
825 unreliable environmental signals. *PLoS Computational Biology* (2012).

826 98. Sanchez, A., Garcia, H. G., Jones, D., Phillips, R. & Kondev, J. Effect of promoter architecture on the
827 cell-to-cell variability in gene expression. *PLoS computational biology* **7**, e1001100 (2011).

828 99. Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. *Nature*
829 *genetics* **43**, 95 (2011).

830 100. Raser, J. M. & O'shea, E. K. Noise in gene expression: origins, consequences, and control. *Science* **309**,
831 2010–2013 (2005).

832 101. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell.
833 *Science* **297**, 1183–1186 (2002).

834 102. Jahn, M., Günther, S. & Müller, S. Non-random distribution of macromolecules as driving forces for
835 phenotypic variation. *Current opinion in microbiology* **25**, 49–55 (2015).

836 103. Zwart, M. P. *et al.* Unraveling the causes of adaptive benefits of synonymous mutations in tem-1 β -lactamase.
837 *Heredity* **121**, 406–421 (2018).

838 104. Martinez, J. *et al.* Resistance to beta-lactam/clavulanate. *The Lancet* **330**, 1473 (1987).

839 105. Sun, L., Ashcroft, P., Ackermann, M. & Bonhoeffer, S. Stochastic gene expression influences the selection
840 of antibiotic resistance mutations. *Molecular biology and evolution* **37**, 58–70 (2020).

841 106. Million-Weaver, S., Alexander, D. L., Allen, J. M. & Camps, M. Quantifying plasmid copy number to
842 investigate plasmid dosage effects associated with directed protein evolution. In *Microbial Metabolic*
843 *Engineering*, 33–48 (Springer, 2012).

844 107. San Millan, A. *et al.* Integrative analysis of fitness and metabolic effects of plasmids in *pseudomonas*
845 *aeruginosa* pao1. *The ISME journal* **12**, 3014–3024 (2018).

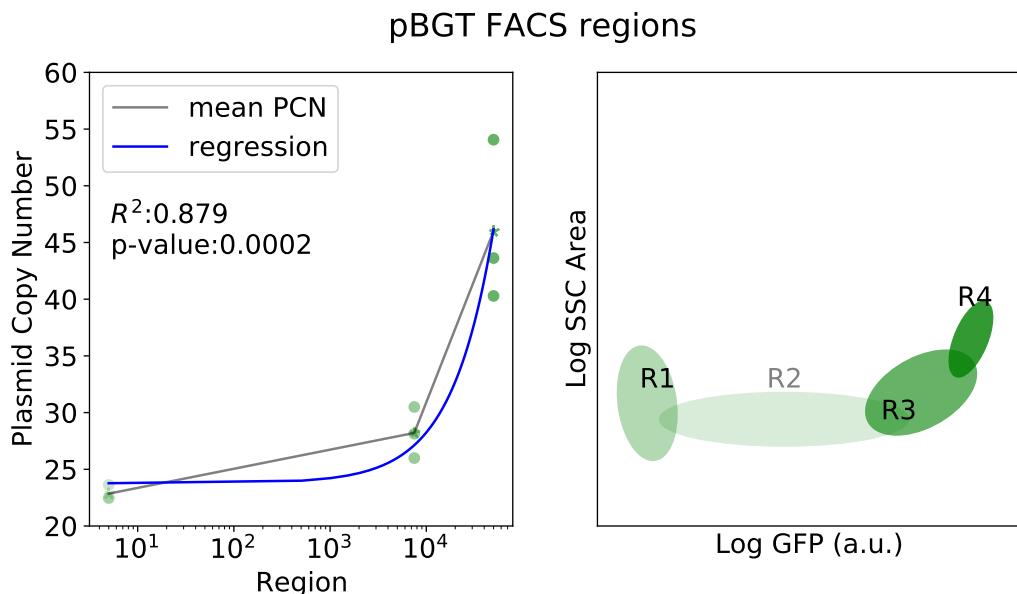
846 108. Škulj, M. *et al.* Improved determination of plasmid copy number using quantitative real-time pcr for
847 monitoring fermentation processes. *Microbial cell factories* **7**, 1–12 (2008).

848 109. Lee, C., Kim, J., Shin, S. G. & Hwang, S. Absolute and relative qpcr quantification of plasmid copy number
849 in *Escherichia coli*. *Journal of biotechnology* **123**, 273–280 (2006).

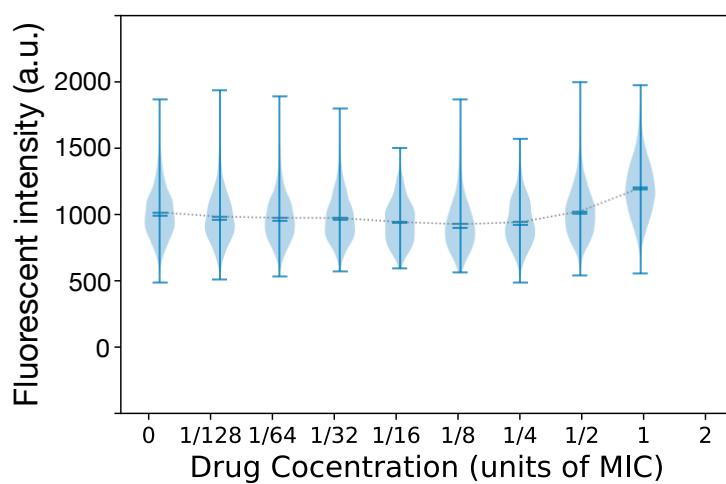
850 110. Hall, B. G., Acar, H., Nandipati, A. & Barlow, M. Growth rates made easy. *Molecular biology and*
851 *evolution* **31**, 232–238 (2014).

852 111. Mondragón-Palomino, O., Danino, T., Selimkhanov, J., Tsimring, L. & Hasty, J. Entrainment of a
853 population of synthetic genetic oscillators. *Science* **333**, 1315–1319 (2011).

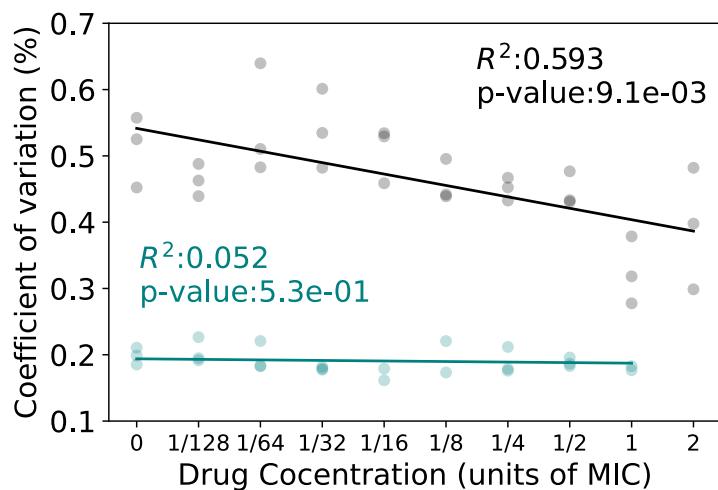
854 112. Ferry, M. S., Razinkov, I. A. & Hasty, J. Microfluidics for synthetic biology: from design to execution. In
855 *Methods in enzymology*, vol. 497, 295–372 (Elsevier, 2011).


856 113. Van Valen, D. A. *et al.* Deep learning automates the quantitative analysis of individual cells in live-cell
857 imaging experiments. *PLoS computational biology* **12** (2016).

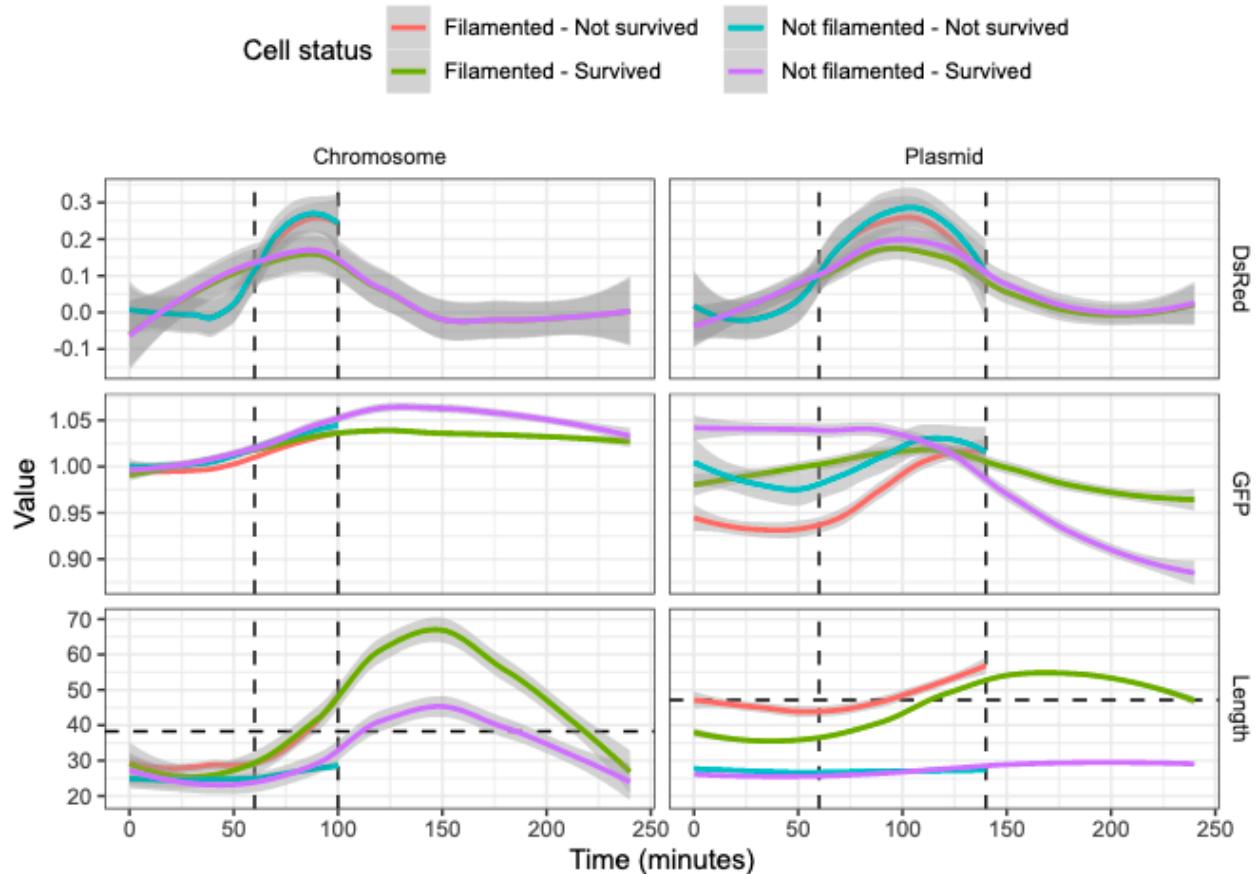
858 114. Sofroniew, N. *et al.* napari/napari: 0.4. 4rc0 (2021).


859 **Supplementary material**

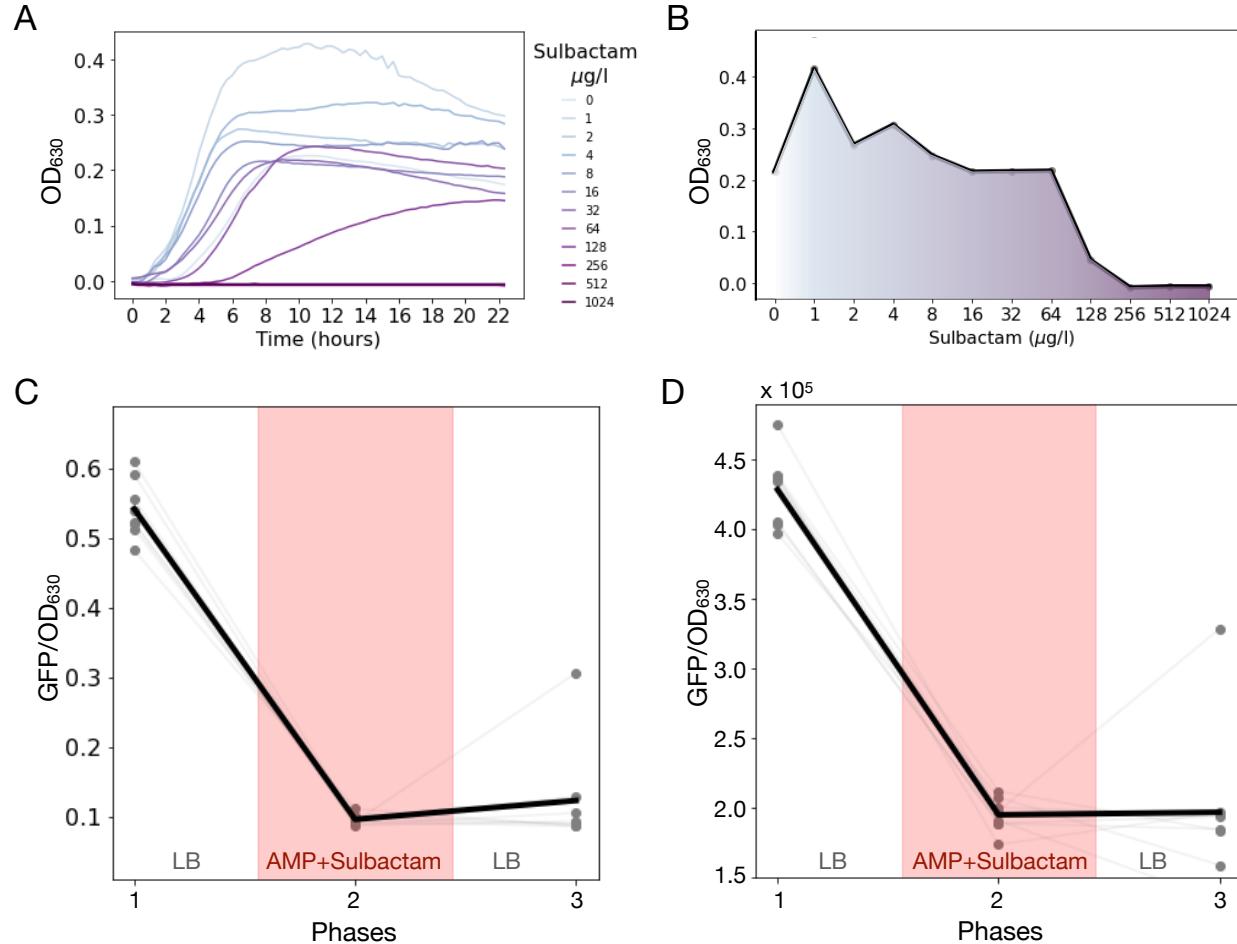
860 Movie S1: MG/pBGT exposed to an antibiotic ramp.
861 Movie S2: MG/pBGT exposed to a semi-lethal pulse of AMP.
862 Movie S3: MG:GT exposed to a semi-lethal pulse of AMP.


863

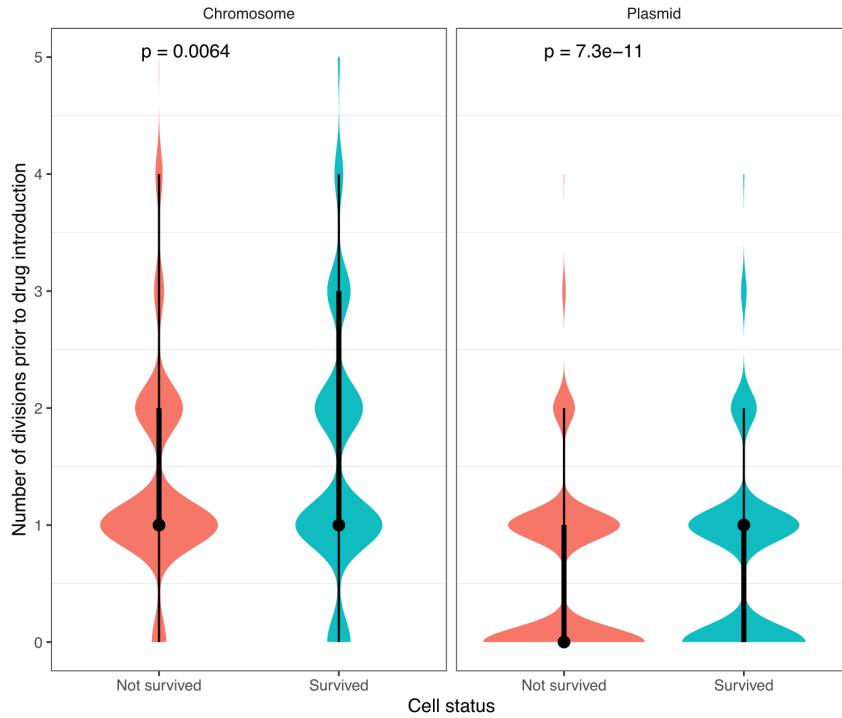
865 **Figure S1. Correlation between PCN and fluorescent intensity.** A) Positive correlation between
866 GFP intensity and plasmid copy number estimated using qPCR, for different subpopulations obtained
867 by sorting cells based on their fluorescent intensity. B) Regions used to separate cells based on their
868 fluorescent intensity using a flow cytometer cell sorter.



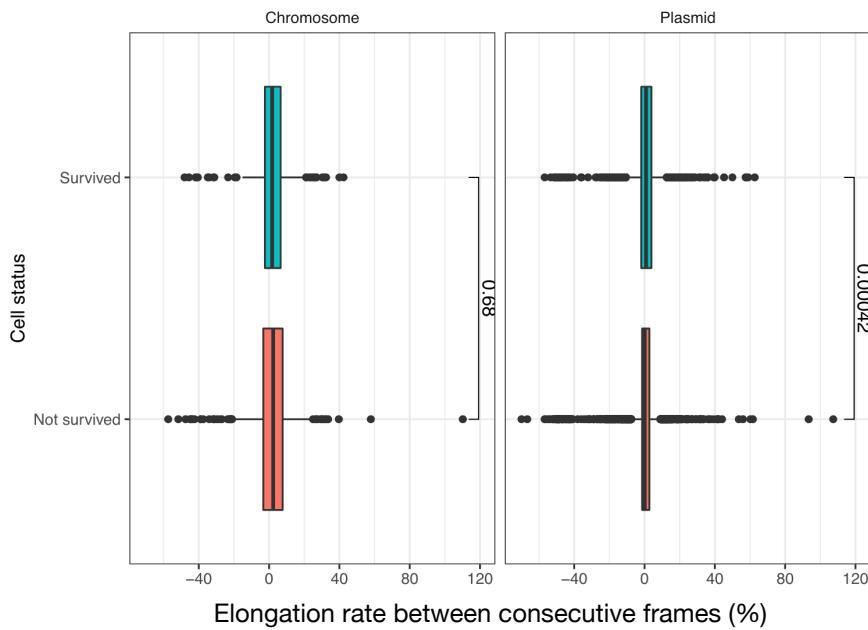
870
871 **Figure S2.** Mean fluorescence of GFP distributions remains constant in populations of MG:GT
872 exposed to increasing concentrations of antibiotic.


874

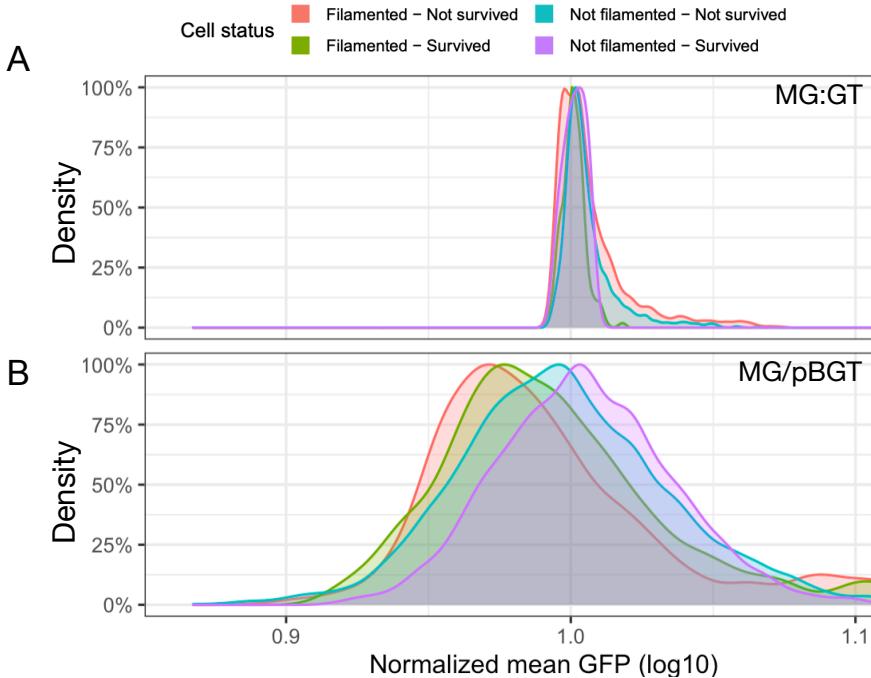
875 **Figure S3. Coefficient of variation of GFP distributions in response to selection.** Data for
876 MG/pBGT is denoted with grey circles and for MG:GT in blue circles. Best fit linear regression is
877 shown as solid lines. The Pearson correlation coefficient for the coefficient of variation in pBGT is
878 $R^2 = 0.593$, suggesting that selection is acting upon the plasmid copy number distribution. In contrast,
880 the coefficient of variation MG:GT remains constant as a function of drug concentration ($R^2 = 0.052$).


881

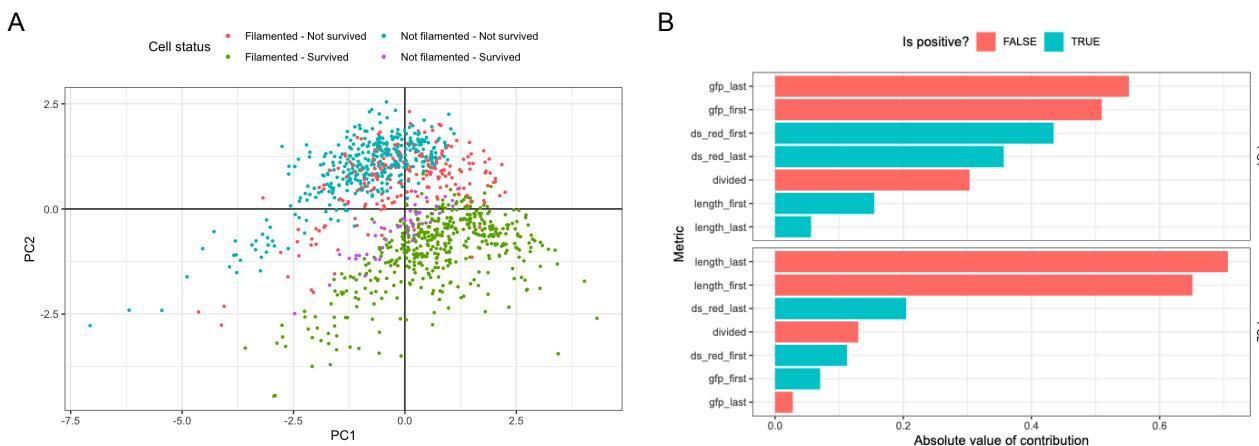
882 **Figure S4. Population-level analysis of microfluidics data.** Colored lines represent the average
883 value of each metric as a function of time, with gray shaded area representing the 95% confidence
884 interval. Dotted vertical lines represent the start and end of antibiotic exposure. A) Note a faster
885 increase of DsRed intensity for the non-surviving populations in both experiments, consistent with an
886 increase in the concentration of red fluorescent dye inside the cell. B) For the GFP fluorescent intensity,
887 the chromosomal strain exhibits a stable expression over time, while the plasmid-bearing strain shows
888 a decline in GFP observed for the population that did not survive. C) GFP intensity as a function of
889 time. Note that MG:GT cells that did not filament continued to grow past the filamentation threshold
890 (horizontal dotted line) even after the antibiotic is withdrawn. Eventually mean length of the
891 population reduces as filamented cells resolve and continue growing normally. For the plasmid-bearing
892 strain, note that filamented cells that were killed exhibited a larger cell length than surviving cells when
893 the antibiotic was introduced into the environment.


895

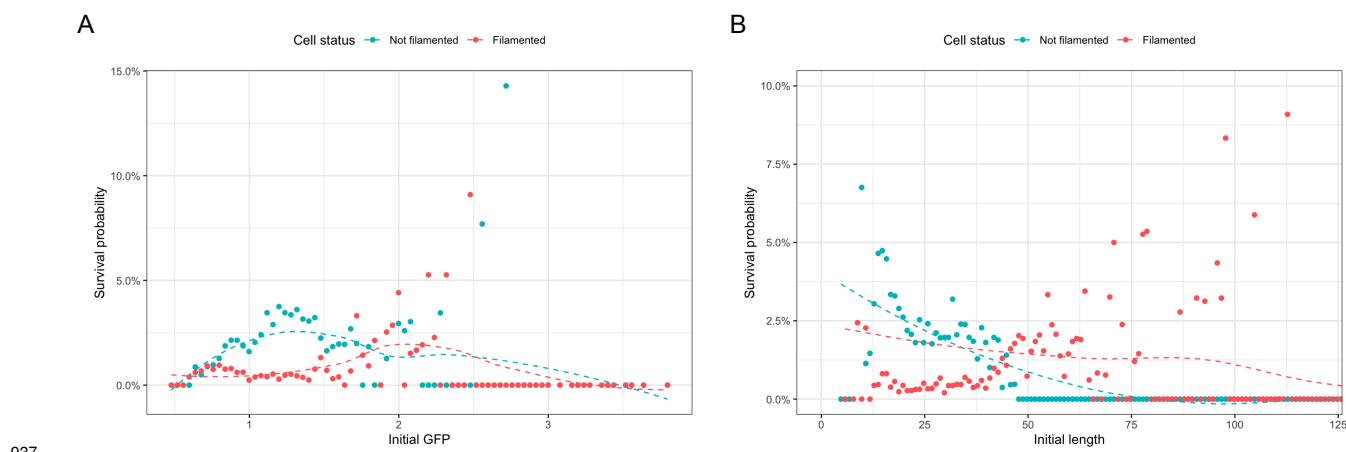
896 **Figure S5. Survival assay with AMP and a β -lactamase inhibitor.** A) Growth curves obtained
 897 for MG/pBGT populations exposed to 2 mg/ml of AMP and a range of subbactam concentrations (low
 898 subbactam doses in light blue, high concentrations in purple). B) Final optical density as a function of
 899 subbactam concentration. We consider that bacterial growth is completely suppressed at concentrations
 900 higher than 256 $\mu\text{g/l}$ of subbactam. C) Optical density (OD₆₀₀) measured after 12 hours of growth in a
 901 3-season survival assay (season 1: LB; season 2: LB + subbactam (256 $\mu\text{g/l}$) + AMP (2 mg/ml);
 902 season 3: LB). Gray lines represent different replicates ($N = 8$), with the mean OD₆₀₀ represented with
 903 a black line. Of note, only one replicate exhibited growth after the recovery period. D) Normalized
 904 fluorescence intensity of populations exposed to a 3-season serial dilution experiment. Note that
 905 supplementing the media with subbactam reduced the relative fluorescent intensity exhibited by the
 906 population during the drug exposure period, in contrast to previous experiments performed in the
 907 absence of subbactam, where we observed an increase in fluorescence during AMP exposure.


909

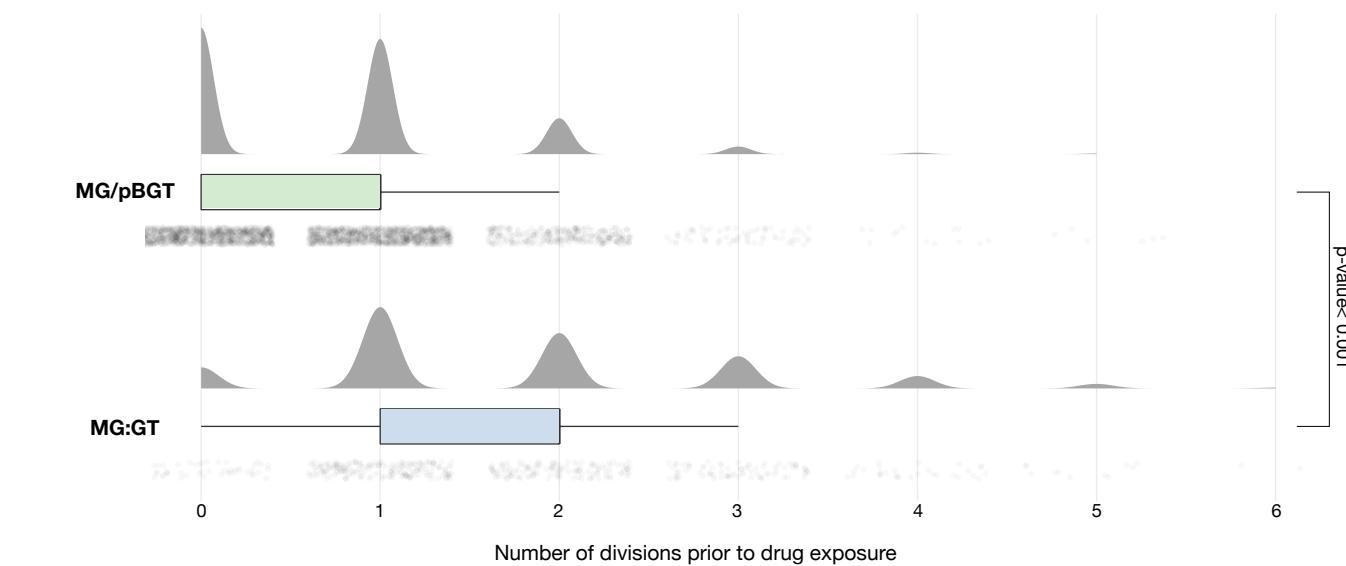
910 **Figure S6. Single-cell duplication rates.** Division events were recorded for each cell lineage
911 during the hour prior to drug exposure for MG:GT (left) and MG/pBGT (right). Cells that survived the
912 semi-lethal pulse are denoted in green, and cells killed by the antibiotic in red.


914

915 **Figure S7. Single-cell elongation rates.** Difference in cell length for individual cells in consecutive
916 frames. (left: MG:GT, right: MG/pBGT). In green, cells that survived the semi-lethal pulse and, in red,
918 cells that were killed by the antibiotic.


919

920 **Figure S8. Histograms of fluorescent intensity for classified cells.** A) Cells in MG:GT exhibit a
 921 fluorescent distribution with low variance and with no significant differences in mean GFP between
 922 cells that produced filaments and were killed (red) or survived (green), as well as for cells that did not
 923 produce filaments and died (blue), and those that survived drug exposure (purple). B) GFP distributions
 924 of the plasmid-bearing population exhibit large variance. Cells that survived showed increased mean
 925 fluorescence relative to cells that were killed. For surviving cells, mean GFP was significantly lower
 926 for cells that did not produce filaments with respect to cells that triggered the SOS response system.



928

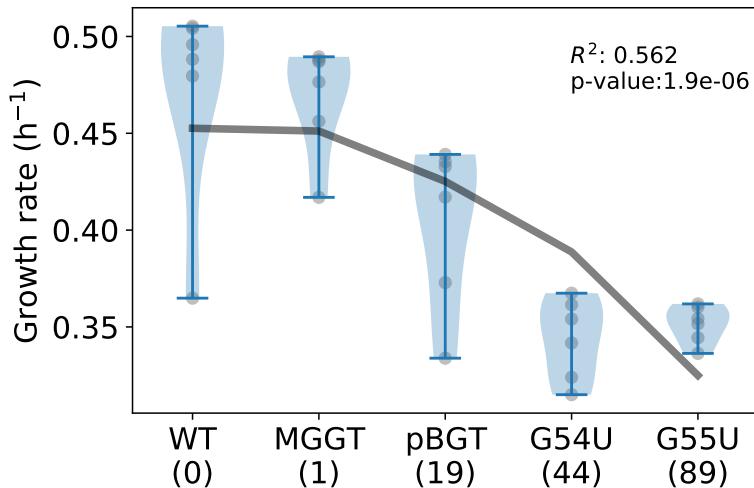

929 **Figure S9. Principal Component Analysis emphasizes the importance of cell length and GFP**
 930 **intensity in cell survival.** A) When integrating quantitative information obtained by analyzing
 931 time-lapse movies of a semi-lethal pulse, a dimensionality reduction analysis showed a clear separation
 932 between the surviving cells and those that were killed by the action of the antibiotic. B) Individual
 933 contribution of each variable for the first two components of the PCA analysis. For the first component,
 934 the initial and final GFP measurements explained most of the variability. The second component was
 935 determined by the length of the cell.

Figure S10. Survival probability of cells with different cell lengths and fluorescent intensities prior to drug exposure. A) Survival of cells that did not produce filaments (blue dots) is maximized at low values of fluorescent intensity. At intermediate GFP levels, a large fraction of surviving cells produced were cells that produced filaments (red dots). B) Cell length at the moment the antibiotic was introduced into the system is an important factor in determining if cells produced filaments or not. At low values of cell length, non-filamented cells exhibited a larger probability of survival than cells that filamented. In contrast, cells that produced filaments exhibited a survival probability that correlates with cell length. Survival probability for very long cells is very low.

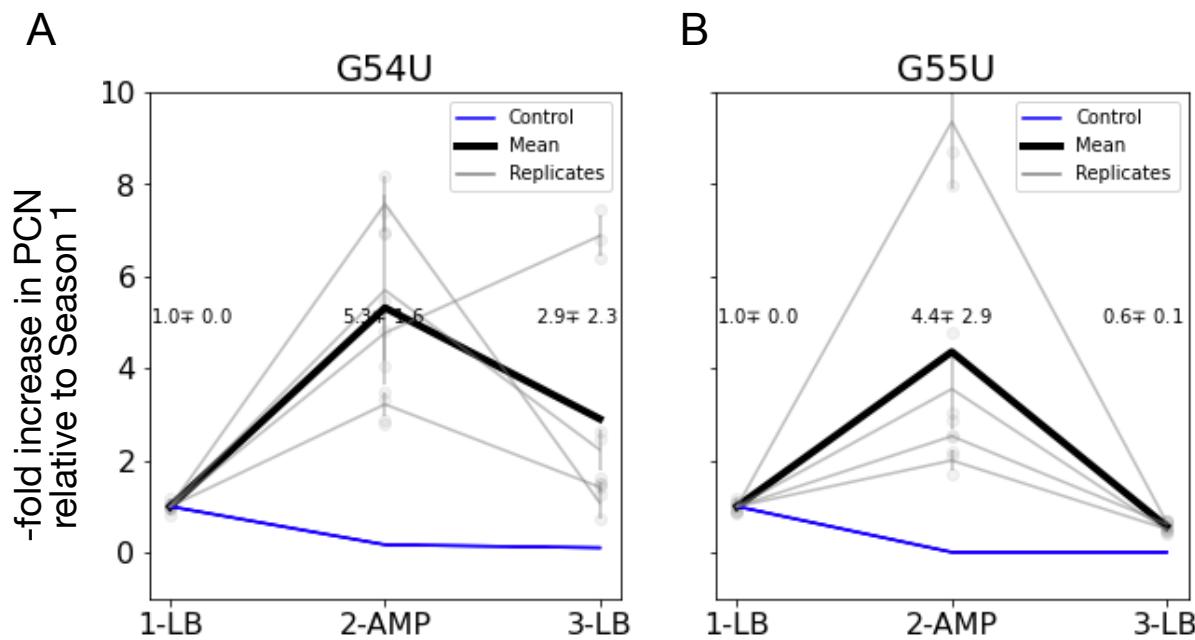
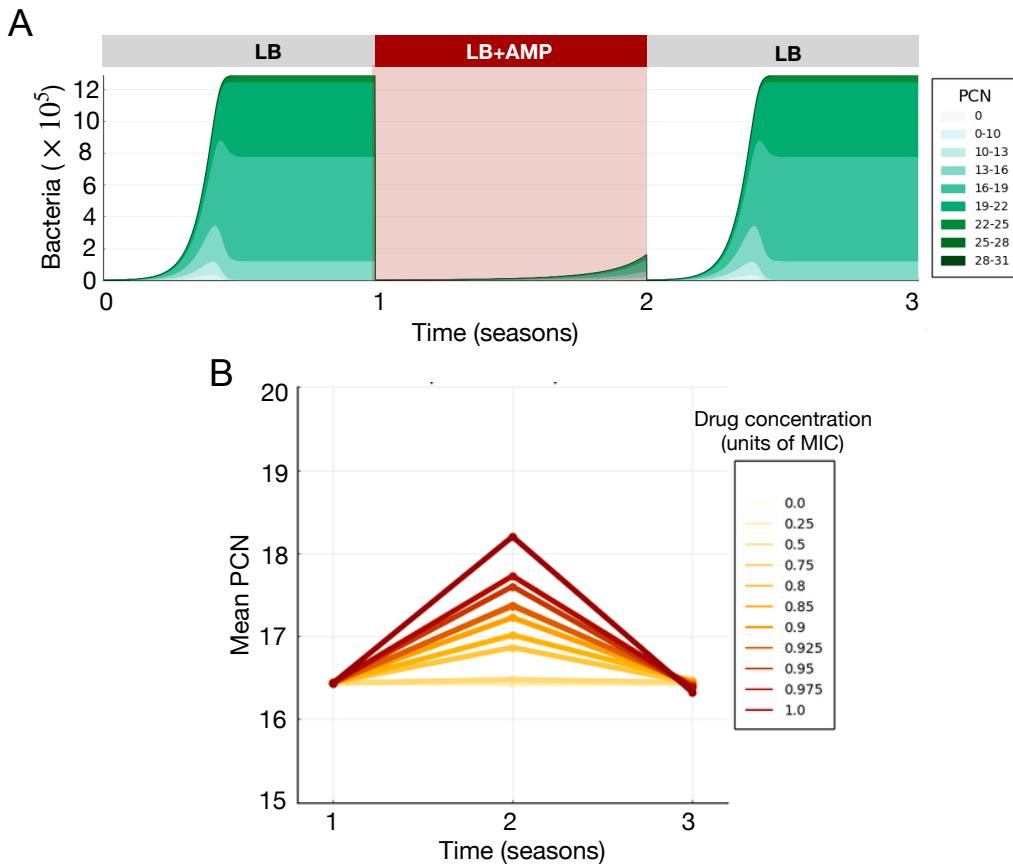


Figure S11. Fitness cost measured in single-cell data. Number of cell divisions before drug exposure for MG/pBGT (green) and MG:GT (blue). Note that the plasmid-bearing strain presented significantly fewer divisions compared to the chromosomal strain, consistent with prior studies showing that carrying plasmids is associated with a fitness cost in non-selective conditions.


953

954 **Figure S12. Fitness cost estimated at a population-level.** Growth rates for different strains
955 obtained by fitting a growth curve using non-parametric smoothing splines. As expected, there is a
956 negative correlation between fitness in drug-free environments and the number of plasmids carried by
957 each cell. Growth rates ANOVA p-value is 2.91e-07 indicating significant differences. A follow-up
958 Tukey's Honest Significant Differences analysis yields the following strain pairs with p-value < 0.05 :
959 WT-pBGT, pBGT-MGGT, pBGT-G54U.

961

962 **Figure S13. Rapid gene amplification is unstable in high-copy plasmids.** A) Fold increase in
963 PCN (relative to season 1) for strain MG/G54U in a three-season serial dilution experiment (black line
964 represents the mean over $N = 4$ replicates, in grey). During the second season, a sub-lethal
965 concentration of AMP is deployed, selecting for high-copy plasmid cells, therefore increasing five-fold
966 the mean PCN in the population. In the third season, the antibiotic is removed and the mean GFP
967 fluorescence intensity decrease to the levels exhibited prior to drug exposure. B) Mean GFP intensity
968 for MG/G55U also shows a rapid increase in fluorescence during drug exposure and a rapid decline
969 once the drug is removed.

971

972 **Figure S14. Stability of PCN amplification in the computational model.** A) Number of bacteria
973 as a function of time in a three-season serial dilution experiment (with antibiotic deployed in season 2).
974 Stacked areas represent the fraction of cells in the population with different PCNs (plasmid-free in
975 white and increasing PCNs in a range of green). B) Mean PCN at the end of each season in
976 experiments performed with increasing concentrations of antibiotics (low doses in yellow and a lethal
977 dose in red). Note how the increase in mean PCN observed during the selective phase of the
978 experiment is proportional to the drug concentration. The antibiotic was removed in season 3, and the
979 mean PCN exhibited by the population is restored to levels displayed before drug exposure.

981

982

Strain ID	Mean PCN	MIC ($\mu\text{g}/\text{mL}$)	Fitness (relative to MG)
MG	NA	4	1
MG:GT	NA	512	1.01
MG/pBGT	19.12 ± 1.53	8,192	0.943
MG/G55U	44.5 ± 3.81	32,768	0.793
MG/G54U	88.93 ± 15.65	32,768	0.557

Table S1. List of *Escherichia coli* MG1655 strains used in this study.

984

986

Parameter	Description	Value
μ	Max plasmid copy number	19
σ	Coefficient of variation max PCN	0.1
c	Cell efficiency	1×10^6
V_{max}	Maximal uptake rate	2.5×10^{-8}
K_m	Half-saturation constant	0.25
p	Cost per plasmid	0.003
ATP_{max}	Critical ATP concentration for division	1
δ	Antibiotic degradation	1×10^{-10}
B_0	Initial number of cells	1×10^3

Table S2. Parameter values used in the numerical simulations of the agent-based model.