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ABSTRACT  

Recent state-of-the-art multiplex imaging techniques have expanded the depth of information that can be captured within 
a single tissue sample by allowing for panels with dozens of markers. Despite this increase in capacity, space on the 

panel is still limited due to technical artifacts, tissue loss, and long imaging acquisition time. As such, selecting which 

markers to include on a panel is important, since removing important markers will result in a loss of biologically relevant 

information, but identifying redundant markers will provide a room for other markers. To address this, we propose 

computational approaches to determine the amount of shared information between markers and select an optimally 

reduced panel that captures maximum amount of information with the fewest markers. Here we examine several panel 

selection approaches and evaluate them based on their ability to reconstruct the full panel images and information within 

breast cancer tissue microarray datasets using cyclic immunofluorescence as a proof of concept. We show that all 
methods perform adequately and can re-capture cell types using only 18 of 25 markers (72% of the original panel size). 

The correlation-based selection methods achieved the best single-cell marker mean intensity predictions with a Spearman 

correlation of 0.90 with the reduced panel. Using the proposed methods shown here, it is possible for researchers to 

design more efficient multiplex imaging panels that maximize the amount of information retained with the limited number 

of markers with respect to certain evaluation metrics and architecture biases. 

Author Summary 

Multiplex tissue imaging techniques utilize large panels of markers that attempt to gather as much information as possible, 
but increasing the number of stains does come with the downsides of increased autofluorescence and tissue degradation. 

There exists a theoretical subsampling of markers that is able to recreate the same information as a full panel; therefore, 

removing the self-correlating information with such a subset would increase the efficiency of the imaging process and 

maximize the information collected. By selecting an idealized subsample of markers, a deep learning model can be 

trained to predict the same information as a full dataset with fewer rounds of staining. Here we evaluate several methods 

of subsample marker selection and demonstrate their ability to reconstruct the full panel’s information.  

Introduction  

The imaging of histologic features and the examination of cellular subtypings are essential components of 

modern-day cancer research and clinical management1–6. As such, many state-of-the-art multiplex imaging 

modalities, such as Cyclic Immunofluorescence (CyCIF)7, co-detection by indexing (CODEX)8 and multiplexed 
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immunohistochemistry (mIHC)1, have been developed that allow for a more in-depth interrogation of spatial 

biology by staining a single tissue sample with dozens of markers. The use of these modalities and vast panels 

have provided an unprecedented tool for tissue spatial biology and enabled better understanding into aspects 

of cell phenotyping and spatial distribution3,6,9,10. These imaging modalities come with their own downsides, 

however, since they require specific expertise necessitating choosing panels and the order of staining, and 

resources as they can take ∼ 1 week or more to collect data depending on tissue and panel size7.  

Despite the increased potential for high-dimensional single cell phenotyping that may serve as diagnostic 

biomarkers or therapeutic targets, the panels used for an experiment must still be chosen intelligently and with 

purpose because each additional round of staining comes with increasing levels of autofluorescence, tissue 

degradation, and tissue loss that can make later rounds of staining unusable for downstream analysis7,11. As 

such, when selecting a panel, experts must pay considerable attention to the biology of the disease in order to 

capture specific features of interest, but it is not always possible for experts to know the full extent of marker 

co-expression, co-localization, and importance within a dataset ahead of time. Data generation and analysis 

are expensive and time consuming, and choices often have to be made to reduce the scope of experiments, 

which will result in the loss of potentially vital information. If we can computationally determine the extent of 

marker co-expression and predictability beforehand, then we can reduce the panel sizes of breast cancer (BC) 

tissue microarrays (TMAs) in such a way that the maximum amount of information is retained in a minimum 

image size with the optimized marker panels.  

Previous methods attempting to reduce the burden and expense of immunofluorescence imaging have sought 

to use the information found in Hematoxylin and Eosin (H&E) images alone12,13, transmitted light microscope 

images14, and electron micrograph inputs15 to predict immunofluorescence staining information with decent 

success. We reasoned that just as it is possible to use deep learning architectures to predict 

immunofluorescence information from features in H&E or another modality alone, so too is it possible to predict 

shared information from one marker or combination of markers to another within a breast cancer CyCIF 

dataset. Markers with high degrees of co-expression can easily be imputed from the expression of other similar 

markers on the panel and therefore can be removed, while other markers might have no co-expressed marker 

pairs and therefore cannot be removed. By selecting an idealized subsample of markers, a deep learning 

model such as variational autoencoder (VAE) can be trained to predict the same information as a full dataset 

with fewer rounds of staining.  

In this study, we propose a two-steps approach: 1) create optimally-designed reduced marker panels and 2) 

reconstruct the full panel’s information from a reduced marker set. We evaluate several methods of optimally 

reduced marker selection and demonstrate the ability of deep learning architectures to reconstruct the full 

panel’s information from a reduced marker set using BC TMA data with CyCIF staining.  

Results  

Proof-of-concept for using a generative model to impute missing markers  
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Image-to-Image translation is the task of taking images from one domain and transforming them into another 

domain by learning the mapping between two domains16, and it can be applied to a wide range of applications 

including biomedical imaging12–15,17,18. Also, recent studies showed theoretically and experimentally, when 

genes are co-regulated, one might infer the expression of other individual genes from a much smaller number 

of composite measurements19,20. Thus, we reasoned that it is possible to predict the CyCIF staining of one 

panel using another panel or combination of stains. This can be used to reduce the number of stains in CyCIF 

protocols by using a reduced panel set to predict a larger panel of markers without actually having to stain for 

them. The question then becomes, what is the theoretically best selection of markers for maximizing the 

amount of information retained and generating the whole panel image predictions.  

To test this process, we use a breast cancer tissue microarray (TMA) dataset comprised of 88 cores, 6 

different breast cancer subtypes (plus normal), and 25 markers in the CyCIF panel (Table S1) (see Methods 

and Supplementary Information). The panel consisted of both general cell structure markers such as Hoechst 

and Lamin for nuclear staining, as well as specific breast cancer subtype markers such as multiple 

cytokeratins, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2). 

The full panel also includes immune markers such as CD3 and CD45, vascular markers such as CD31, and 

cancer markers such as E-cadherin. This panel was designed by researchers for other biological studies and is 

therefore reflective of real-world experiments and data. Our implementation consists of three steps as shown in 

Figure 1: A) panel selection, B) train deep learning model to reconstruct full panel information, and C) 

evaluation. For selecting an optimal reduced panel set, we evaluate 4 different methods: correlation-based 

selection, sparse subspace-based selection, gradient-based selection, and random selection as shown in 

Figure 1 (see Methods). The reduced panels of each method were then used to reconstruct the initial full panel 

using a multi-encoder variational autoencoder (ME-VAE)9, which encodes the markers of single cell image in 

the reduced panel into a latent descriptor and generates all 25 markers of single cell image in the full panel set. 

The reconstructed images of each method are then evaluated using various metrics including single-cell based 

structural similarity index measure (SSIM) from the reconstructed image, mean intensity correlation between 

real stained and the reconstructed image, and cluster overlap to determine whether information is retained in 

the reduced panel and prediction pipeline.  

Before we create optimally-designed reduced marker panels, we evaluate a proof of concept to demonstrate 

how information from a reduced panel set can adequately predict unseen information within the full set using 

ME-VAE model. To do this, we first randomly selected 50% of the full panel as shown in (Table S2) which was 

used to predict the other 50% marker panel as shown in Figure 2. As can be seen qualitatively in the real and 

predicted image pairs, the morpho-spatial features of size, shape, distribution, and relative intensity are 

preserved, regardless of whether the marker was present in the training or withheld panel. Quantitatively this is 

captured using the structural similarity index measure (SSIM)21, which is a widely used measure of image 

similarity as perceived by the human visual system12. The overall quantification shows a mean SSIM of 0.75. 

The predictions also achieve a Spearman correlation 0.75 to the withheld stains, which demonstrate feasibility 
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of marker prediction using a generative model with reduced panel.  

To help ground the quantitative metrics in this proof-of-concept experiment in a more interpretable context, we 

compare the degree of error to other forms of common technical noise (blurring, salt/pepper, and differences in 

segmentation as simulated by erosion/dilation) as can be seen in Figure S1. One can see visually and 

quantitatively that each of the different noises have varying degrees of severity, with blurring having the 

smallest effect on intensity and overall structure of the image. Differences in segmentation via erosion/dilation 

has the largest effect as the inclusion and exclusion of a few pixels can make a significant difference when the 

overall size of the cell is only about 10-20 pixels across12. The effect of this mis-segmentation will also have a 

larger effect on membrane stains or densely packed cell populations. With regards to the structure of the 

predicted image, the randomly selected panel of 12 stains achieves an average SSIM of 0.75, just behind 

blurring at 0.78 and well above salt/pepper and erosion/dilation at 0.68 and 0.67, respectively. Although the 

predictions from the randomly chosen panel of 12 stains rank lowest in mean intensity correlation at 0.80, the 

score is still comparable to segmentation noise at 0.83. Framed in this context one can see that even when a 

panel is randomly reduced by 50%, it is possible to recapitulate the full spectrum of information held within the 

full panel within the margins of normal technical variation. Technical noise and deviance like those shown in 

Figure S1 are common and accepted in biomedical image analysis. Although perfect information retention 

would be ideal, the reconstructions from the reduced panel are shown to be comparable to other forms of 

accepted noise and variance. Evaluation of the utility of these reconstructions will be discussed in later 

experiments. The question still remains, however, to what degree selecting the reduced panel methodologically 

can improve these results. Thus, we further focus on how to optimally select a reduced marker panel, instead 

of testing several reconstruction architectures. To do this, each selection method is given the same full panel 

information to select from, and then we evaluate its selection using the same reconstruction architecture 

across all selection methods for comparable evaluation of reduced panels.  

Evaluating panel reduction methods with imputed marker correlation  

Our evaluation of panel reduction methods was conducted by correlating the original and reconstructed panels’ 

mean intensities at the single cell level as shown in Figure 3 and quantified in Table S3. This was done over an 

increasing number of stains in the reduced set to show how each method performs with different levels of 

information available in the reduced panel.  

For a baseline comparison, the intensities of the reduced panel were used as a 1-to-1 substitute for the 

missing stains; for example, if CK19 is included in the reduced panel and PanCK is not included, then the 

CK19 expression will be directly used as the prediction of PanCK expression since it is PanCK’s highest 

correlate within the reduced panel. This baseline of 1-to-1 substitution resulted in subpar predictions that did 

not converge to a correlation approximating the full panel until nearly all stains were included in the reduced 

set, indicating the need for predictive models to retain information on removed markers (Figure 3).  

Random selection performed moderately better than baseline, achieving a mean Spearman correlation of 0.77 
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for withheld markers and 0.89 for all markers when 18 of 25 markers (72%) are included in training. 

Additionally, random selection had a variance in its correlations of 0.005 in both the withheld set and full set. 

As previously mentioned in the proof-of-concept above and further seen here, the random selection of a 

reduced panel performs well. This, however, is primarily a result of the generative capacities of deep learning 

models to process and predict patterns missing from the data. Random selection here can be used as a 

computational baseline to illustrate the increased performance and predictive power that comes from deep 

learning regardless of intelligent panel design. Without the constraints of time and processing power, this study 

could be improved by training and evaluating predictive models using dozens of randomly selected panels; 

however, each deep learning model (for each panel arrangement and size) can take more than a day to train 

and evaluate. For this study only a single randomly selected panel at 6 different sizes is used, which prohibits 

analysis as to the variability of random predictions.  

Sparse subspace-based selection performs slightly better than random selection and baseline, achieving mean 

Spearman correlations of 0.80 and 0.89 for withheld markers and all markers, respectively. Subspace-based 

selection had variances in its correlations of 0.004 in the withheld set and 0.005 in full set. By looking at the 

correlations with respect to panel size (Figure 3), however, one can see that sparse subspace-based selection 

performs even better at lower panels sizes compared to random, for instance, correlation for withheld markers 

with 12 stains in reduced set.  

Gradient-based selection performs better than random or sparse subspace-based selection methods within the 

withheld marker predictions, achieving a max correlation of 0.81. It is worth noting that this prediction method 

appears to be less stable with prediction metrics fluctuating when different panel sizes are used. Within the full 

marker set, gradient-based selection performs similarly to random and subspace selection methods, achieving 

a correlation of 0.88. Gradient-based selection had variances in its correlations of 0.003 in the withheld set and 

0.006 in full set.  

Finally, correlation-based selection also performs well at reconstructing the mean intensities of each stain, both 

within and withheld from the reduced panel. For most every panel size, correlation-based selection achieves 

the highest Spearman correlations compared to the other selection methods, obtaining a correlation of 0.86 

and 0.90 for withheld and all markers, respectively. For the purpose of reconstructing mean intensity 

information, the other selection methods only perform similarly to correlation-based selection at extremely low 

panel sizes where there is insufficient information. Gradient selection had variances in its correlations of 0.001 

in the withheld set and 0.003 in full set.  

Model generalizability  

In order for a reduced panel to be consistently effective, it must be generalizable across datasets and similar 

pathological states. An example of this is breast cancer subtyping where unique expression patterns will vary 

and classification can fail if important markers are not able to be predicted properly based on the underlying 

information of that specific biology. To test this pathological state generalizability, we applied the highest 
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performing panel (correlation-based with 18 markers) to all the different cancer subtypes within the BC TMA 

dataset composed of 88 cores and different BC subtypes including luminal A, luminal B, luminal B/HER2, 

HER2, Triple Negative (TN), Invasive Lobular Carcinoma (ILC), Normal Breast separately and evaluated the 

predicted expressions as shown in Figure 4. Although there is some slight variance, the panel performs well 

consistently across all subtypes, achieving Spearman correlations between 0.72 and 0.83 within the excluded 

markers. However, the specific markers that scored the highest and lowest correlations in each subtype, did 

vary based on the relative biological expression. It can be further observed in Figure 5 that the markers that 

performed poorly simply did not have large variation across the specific subtype. This can be seen distinctly in 

PR, H2AX, and PCNA. The predictions receive poor correlations for all subtypes when the marker does not 

show substantial positive expression, and the predictions receive good correlations whenever the subtype 

does show a variable expression range. Although many of the low correlation scores around 0.70 are still 

adequate, their reduced performance compared to the other markers is due to their low variability in a breast 

cancer subtype. This can be further seen in PCNA where the correlation metric is 0.39 when the marker is 

completely absent from the subtype. This absence of markers skews the evaluation of the models. This also 

further illustrates the consistency of the panel across subtypes despite the differences in biology and marker 

expression, since the predictions only score low correlations for absent and low variability samples. Portions of 

all patient samples were used during training due to small dataset size, so generalizability here is only with 

respect to breast cancer subtypes. 

Evaluating selection methods with cluster matching  

Although it is important to be able to reconstruct the mean intensities of single cells, downstream analysis such 
as single cell phenotyping and clustering is important for biological research, and if such analytical methods 

were to be affected, then the reduced panel predictions would not be useful for complex research methods. As 

shown in Figure 6, although the selection methods have varied levels of performance at predicting mean 

intensity, when 18 of 25 markers are included in the reduced panel sets, all selection methods perform well at 

recapturing the same clusters extracted from the full panel set, as measured by normalized mutual information 

(NMI)9:  

           (1)  

where U and V are the reduced panel predicted and full panel (ground truth) cluster labels and H(U) and H(V) 
represent the entropy of U and V, respectively. The predicted clusters were then paired to their full panel 

counterpart by examining the population compositions to maximize consistency.  

This again shows that the information within the 7 withheld markers is able to be predicted using the 18 

markers in the reduced panel, enough to produce similar downstream results for clustering and potentially cell 

phenotyping. Although it would be ideal to compare results to ground truth cell types, the dataset was limited 
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by lack of labeled cell type information; therefore, the clustering results from the full panel mean intensity 

dataset were used as ground truth for the single cell populations that can be extracted. Using k-means as the 

clustering method (with n = 10 selected using silhouette score), the correlation-based method achieved the 

highest NMI of 0.64, while gradient-based, subspace-based, and random selection achieved only slightly lower 

NMIs of 0.60, 0.63, and 0.60, respectively. All k-means clustering results are significantly larger than the 

baseline NMI of randomly shuffled cluster labels (NMI = 0.0002). Using PhenoGraph22 as the clustering 

method (with nearest neighbors set to 500 and minimum cluster size set to 2000), the correlation-based 

selection method achieved the highest NMI of 0.65, while the gradient-based, subspace-based, and random 

selection methods achieved lower NMIs of 0.60, 0.59, and 0.59, respectively. All PhenoGraph clustering 

results are significantly larger than the baseline NMI of randomly shuffled cluster labels (NMI = 0.0009).  

Although the spatial distance in the illustrated Uniform Manifold Approximation and Projection (UMAP)23 cluster 

plots is not quantitative in regards to similarity of clusters, one can qualitatively see the same overall pattern 

and organization of clusters between the full panel and all selection methods. This shows that while intelligent 

selection of the reduced panel will matter for some forms of downstream analysis such as mean intensity 

metrics, the selection method might be irrelevant to the end result of other analytics such as clustering since 

the deep learning architectures can learn to capture the most defining information of a full panel so long as 

they receive enough information volume during training.  

Discussion  

Despite the increased panel capacity of many novel multiplex imaging modalities, it is important to select the 

most biologically relevant markers in order to save resource, time and effort, and to reduce the amount of 

negative tissue effects such as tissue degradation or tissue loss in later rounds of staining as well as to add a 

room for other biologically important markers. Because of the complex inter-connectedness of cellular biology 

within breast cancer TMAs, many markers are self-correlated and do not add significant information that is not 

already conveyed by other markers on the panel. Here we present that by using marker correlation to select an 

optimal panel, we can reduce the panel size by 72% while retaining expression information with a 0.90 

correlation (Figure 3), and recapitulate downstream clustering results (Figure 6) within a CyCIF breast cancer 

TMA dataset.  

The integration of computational panel design into existing multiplex imaging pipelines will enable researchers 

to design more efficient panels, maximizing the biological findings while using less time, effort, and resources 

to produce their images. Furthermore, by removing easily predicted markers from their panels, researchers will 

be able to introduce new markers that they couldn’t include before, allowing them to capture new information 

that is not redundant with the other markers already on the panel. Although there will always be the potential 

for information loss when removing markers and it cannot be known which markers will have unique 

expressions in a sample ahead of time, this methodology can help guide researchers to make decisions that 

will capture the most relevant data from the samples with less reliance on unquantifiable decisions.  
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The limitation of all these methods of panel selection is that they require a round of staining to be conducted 

first so that the marker interactions can be measured and evaluated to determine the level of panel self-

correlation. After an initial pilot panel, these optimally reduced panels would be able to improve experiment 

time and expense by decreasing the number of staining rounds required. Ideally, it would be best to use the 

information gained from these selection methods to design panels for new datasets without having to stain, 

test, and design for every new dataset, tissue, or patient. The selected subpanels, however, would only be 

applicable within the context of the same full panel and biological context, and may not extend properly outside 

of that setting. This work also does not reflect the capacity to extend findings to new patient data, as portions of 

data from all patients were used during training. Furthermore, the information retained after withheld stain 

prediction might only be with respect to the metrics used for evaluation and biases of the architecture used for 

imputation. There is likely information not tested for that is being lost through imputation even when scores 

show good results by certain metrics and there is information that one sampling method will retain that another 

method will not, even if the architecture is unable to reconstruct that information due to the inherit inductive 

biases in reconstruction method. The findings shown here are not necessarily a general evaluation of stain 

overlap or reducibility, but are only an evaluation with respect to the detailed metrics for a single imputation 

architecture. 

Single cell stain prediction has been performed previously; 24 however, this work only used one segmentation 

method to create single cell images, so additional research can be conducted to determine how well prediction 

and reduction methods generalize to various segmentation qualities. Similarly, only one architecture for unseen 

stain imputation was utilized here. It is possible that different architectures and methods for stain prediction will 

favor different sampling and reduction methods. We recommend further research to determine the degree to 

which this effects results. Although we demonstrate this method’s utility for identifying reducible markers within 

a single diverse dataset of BC subtype as a proof-of-concept study, to the best of our knowledge, this is the 

first study for intelligent marker selection and evaluation of several marker selection methods in the multiplex 

imaging setting. Future research can look into the deployment of the designed panels to new datasets, disease 

states, and patient samples without the need for retraining. Research can also be done into the biological 

relevance of the reduced sets so that researchers can better design panels on their own with fewer excess 

predictable markers. By identifying which markers are consistently well predicted and which consistently fail 

regardless of panel reduction method, researchers can design future panels with informed decisions to include 

the poorly performing markers and exclude the easily predicted markers.  

Methods  

Panel reduction dataset  

The dataset used for testing panel reduction methodologies was a breast cancer tissue microarray (TMA) 

available on synapse from the human tumor atlas network (HTAN) TNP-TMA24. As part of this paper all 

images at full resolution and all derived image data (e.g. segmentation masks) will be publicly released via the 
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NCI-recognized repository for Human Tumor Atlas Network (HTAN; https://humantumoratlas.org/) at Sage 

Synapse. A version of this data is available at https://www.synapse.org/#!Synapse:syn22041595. 

The BC TMA dataset is comprised of 88 cores and 6 different cancer subtypes: luminal A, luminal B, 

luminalB/HER2+, HER2+, Triple Negative, and Invasive Lobular Carcinoma. Reference tissue, normal breast, 

and cell lines are also included. The BC TMA was imaged using cyclic immunofluorescence with 40 marker 

channels. The imaging channels were filtered down to 25 channels of interest by removing autofluorescent and 

duplicate marker channels such as nuclear staining (see Table S1). The stained images were normalized using 

histogram stretching to the 1st and 99th percentiles, ignoring background area which was thresholded manually. 

Cell masks were generated by UnMicst/S3seg using MCMICRO pipeline25, 26 where the cell ring mask was 

dilated 3 pixels from the nuclear mask. The segmentation resulted in a total of 737,653 single cells images. As 

described in9, transformational features of single cell images can skew the latent spaces of encoding models 

like a variational autoencoder (VAE). For this reason, the single cell images were corrected by rotating all 

images such that the major axes of all cell masks were aligned and were corrected for polar orientation by 

flipping the images such that the center of staining mass was located in the same quadrant for all cells. By 

doing this, the model can focus on relevant staining information and ignore transformation information that is 

irrelevant to retaining panel information. All selection methods listed in the following sections were performed 

using the correlations, interactions, and intensities of the full dataset. The image reconstruction model was 

trained using a randomly selected 90% of the single cell images. The other 10% of the single cell images were 

used for quantitative and comparative analysis of the selection methods, i.e. reconstruction accuracy, intensity 

correlation, subtype generalizability, and downstream clustering (Figure 2, Figure 3, Figure 5, Figure 6).  

Methodologies for selecting the optimal reduced panel  

Within a set of markers, intensity information is often correlated when a portion of the proteins of interest 

operate along the same pathways, are mutually expressed, or are tied to similar phenotypic states. This can be 

true for markers that localize to different regions of the cell so long as they are correlated in overall expression 

for different cell states (Figure 7). Although some of these correlated stains might be selected for biologically 

relevant reasons, quantitatively the information from one or more markers can be used to predict the 

information of another, meaning that they can be reduced. Based on this, there exists an optimally reduced 

panel that maximizes the amount of information gained using the fewest markers while preserving all 

information.  

Baseline 1-to-1 intensity substitution using reduced panel only  

In order to create a baseline comparison of reduced panel performance, it is necessary to access the 

maximum amount of information retained using just a reduced panel without computational inference. Since 

the metric for evaluation is the correlation between predicted and ground truth marker expression it was 

necessary to create predictions of withheld markers from the reduced panel without computation. A simple 1-

to-1 expression substitution was used for baseline because it is the least computationally intensive method. To 
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do this we simply computed the correlation for each marker within the full panel set and paired each withheld 

marker to its highest correlated partner as shown in Figure 7 within the randomly selected reduced panel set of 

a given size. To simulate the predictive inference that would be made by only having the reduced panel set 

and no reconstruction methods, the predicted intensity for each withheld stain was simply the intensity of its 

matched partner. This produced fairly low correlations for all panel sizes that only converged to 1 when nearly 

all the stains were included in the reduced panel (Figure 3).  

Random selection  

In order to determine the importance of intelligently selecting panels, we simply generated random panels for 

each panel size to be used as a baseline panel selection comparison. For ease of testing, we generated a 

random sequence of markers, and the markers were sequentially added to the panel in that order. The list of 

markers used for each randomly selected panel can be seen in Table S2.  

Intensity correlation-based panel selection  

In order to determine an optimally reduced panel, the stains that maximized the correlation to all the stains 

withheld from the panel were chosen. If the correlations between all the stains in the dataset are pre-computed 

(Figure 7), one can quickly perform a combinatorial test of all possible reduced panels with n markers. For 

every combinatorially created potential panel, the withheld markers are paired with their highest correlated 

marker within the potential panel, and the max correlations for all withheld markers are averaged to assign a 

score to that potential panel:  

          (2) 

where R is the potential reduced panel being evaluated, W is the set of withheld markers, and Wi is the 

intensities of each withheld marker that is being paired. Once we have scored every potential panel of a given 

size, we then select the panel that has the greatest score, indicating its predictive capacity toward the withheld 

markers. Although this method is simplistic, utilizing only mean intensity information, it is quick and is not 

computationally intensive, making it amenable to rapid panel design and testing. Using this method, the 

markers are re-selected for each panel size, meaning a specific marker might be included in a panel of one 

size but not in the next. It is worth noting that for all selection methods, the nuclear staining marker was a 

requirement for inclusion in the panel since it is a common marker among currently implemented panels and is 

a necessary marker for most segmentation pipelines. Also, as Hoechst visualizes nuclear DNA content and it 

has been used to assess cell morphology or cell cycle phase estimation, it is a potentially important marker to 

predict other marker expression in the reduced panel setting. The panels selected using this method can be 

seen in Table S4.  

Sparse subspace-based panel selection  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.24.505142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.505142
http://creativecommons.org/licenses/by-nd/4.0/


Although the correlation-based method is quick, simple correlation of mean intensities ignores potentially more 

complex interactions between markers, as two or more markers might be required to predict the expression of 

a third. Also, combinatorial testing, while quick on small numbers of stains, can become exponentially more 

burdensome to compute with large panel sets. Inspired by sparse subspace clustering27 or using self-

expressiveness property, the next method tested seeks to detect complex interactions across the panel set. 

The key idea is that, among many possible representations of a single cell marker expression in terms of other 

markers, a sparse representation corresponds to selecting a few marker expressions from the same subspace. 

To do this we train a coefficient matrix (C) such that the matrix multiplication of C and the single cell marker-

wise intensity vector (I) reconstructs I as accurately as possible (Figure 8). Here I is an n × 1 matrix where n is 

the number of markers in the full panel set. During training the diagonal of C is forced to be 0 so that the matrix 

does not converge to the identity matrix and the off-diagonal coefficients (Ci j ) give information of the 

interactions necessary for reconstruction. Training of the C matrix uses the following loss:  

          (3) 

where Cii = 0, i = {1, · · · , n}. Before clustering and analysis all interactions with a value below a threshold 

(here < 0.05) are dropped. This process penalizes the non-zero element of C such that 1) it remains sparse 

and only places weights on a few interactions that contribute the most to reconstruction of the intensity vector 

and 2) penalizes the accuracy of I reconstruction such that the model learns to compute accurate and relevant 

interactions as shown in Figure 8 right. Looking at the resultant interaction map, one can see that many 

markers can play a part in predicting the relative intensity of another marker. To determine an optimal panel set 

from the interaction map, a similar combinatorial method was used, similar to the correlation-based method. 

Here, however, we attempted to select a theoretical reduced panel that maximized the interactions to the 

withheld markers, while minimizing the interactions within the panel:  

     (4) 

where R is the potential reduced panel being evaluated, W is the set of withheld markers, Wi is the interactions 

of each withheld marker to the markers in panel R, and Ri is the interactions of each included marker to the 

other markers in the reduced panel. Once we have scored every potential panel of a given size, we then select 

the panel that has the greatest score, indicating its predictive capacity toward the withheld markers. Just like 

with correlation-based selection, the reduced set of markers is re-selected for each panel size, meaning a 

specific marker might be included in a panel of one size but not in the next. The reduced panels selected using 

this method can be found in Table S5.  

Deep learning gradient-based selection  
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While both of the previous methods rely solely on mean intensity information, image data has significantly 

more information than intensity readouts alone. The localization, texture, and shape of cells can also tell us 

about potential co-staining patterns and interactions. In order to quantify how these features may be important, 

we use a deep learning method that quantifies the channel-wise importance for reconstructing imaging 

features across all channels. A similar method to the one described here uses the gradient of the model to 

determine the channel-wise importance for cell type classification28. The key difference of our proposed 

method is the objective of the model (reconstruction instead of classification) which requires a different 

architecture. Instead of using a series of ResNet encoders and fully connected classification layers, we use a 

series of encoders equal to the number of input channels and a decoder for the purpose of reconstructing the 

combined input channels (Figure 9). This forces the gradient at the encoding layer to be greater for channels 

that play a bigger role in the reconstruction of the full panel image, including localization, textures, and intensity 

information. Since the encodings of each channel are kept separate and concatenated, the magnitude of the 

gradients can be averaged for each channel separately and evaluated for their importance. The gradient at the 

encoding layer is determined using the Tensorflow built-in method of GradientTape29. The reduced panel set is 

then selected by taking the top n channels ranked by importance, where n is the desired panel size. Because 

the importance is static and can be sequentially added in order or ranking, the selected panels have the 

advantage of simply being expansions of the smaller panels, potentially making panel design easier. The list of 

ranked markers can be found in Table S6.  

Model architecture for imputing full images and calculating gradient  

In order to impute the full panel image from the reduced panel, we trained a multi-encoder variational 

autoencoder (ME-VAE)9 where the inputs to each encoder were the channels of the input set and the output 

was the full panel image. The encodings from each input were concatenated into a single vector before being 

passed to the decoder. Each encoder and decoder network has 3 layers deep, and each layer used a rectified 

linear unit activation, except for the output layer which used a sigmoid activation. The concatenated encoding 

dimension was kept to ∼ 128 for all reduced panel sizes. Each input is encoded into its own latent space, 

equivalent in length to the latent space of all other inputs, meaning that it was not always possible to get a total 

concatenated latent space of 128 depending on panel size. For this reason a total latent space as close to 128 

was chosen for each panel size. Gradient calculation was performed using the same model, where the input 

was the reduced panel channels, the output was the full panel image, and each channel’s encoding was kept 

separate, allowing for evaluation of gradient and the per channel level. These models use a modified ME-VAE 

loss:  

      (5) 

where each encoder’s (qi) individual latent space (zi) is combined in a concatenation layer to create a mutual 
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latent space (zall), xi represents a different channel of image x, and n represents the number of markers in the 

reduced panel. Using the described setup, models were trained for 10 epochs and 90% of the dataset.  

Metrics for reduced panel evaluation  

Three metrics were used in the evaluation of reduced panels. In order to evaluate the mean marker intensity 

predictions, Spearman correlation was used comparing each marker’s mean intensity between ground truth 

and reconstructed images. The Spearman correlation was computed for each stain individually, and then the 

average correlation across all stains in the set was reported. Correlation variance was also computed across 

stains to determine whether stain prediction was consistent i.e., predicting all stains reasonably well instead of 

just some stains extremely well and others not. In order to evaluate the quality of the reconstructed CyCIF 

image, we also computed the Structural Similarity Index Measure (SSIM)21 between each single cell image and 

its reconstruction, which is a standard metric for tasks like image translation, image denoising, and image 

restoration because it evaluates both the intensity and spatial information of the image. SSIM was 

implemented in python using the sci-kit learn package30. This was done for each channel individually, and then 

the average across all cells and channels was reported. In order to evaluate the retention of information 

necessary for downstream phenotyping, Normalized Mutual Information (NMI) was computed for the cluster 

labels created from the full panel intensities and for the reconstructed intensities of each selection method. NMI 

was implemented in python using the sci-kit learn package30. For each selection method, the panel size used 

for this test was 18. For full panel and all selection methods, k-means was used for clustering with k set to 10 

(determined using the elbow method on silhouette score for the full panel dataset). K-means and silhouette 

score were computed in python using the sci-kit learn package30. UMAP embeddings, calculated from 

reconstructed intensities, were also used to visualize the clustered data using the UMAP package23. Cluster 

labels were colored such that the reduced panel clusters matched to the cell composition of the full panel 

clusters. PhenoGraph22 was also used to create clusters for evaluation of each method, with nearest neighbors 

set to 500 and minimum cluster size set to 2000. PhenoGraph cluster plots could not be paired 1-to-1 for color 

matching on plots since each selection method produced a different number of clusters. Outliers from 

PhenoGraph analysis are shown in grey.  

Methods for simulating technical noise  

In order to frame the accuracy of predictions in a biological context (Figure S1), we simulated several types of 

technical noise commonly found in imaging data (blurring, salt/pepper, and variation in segmentation method). 

To simulate image blurring, we used the scikit-image implementation of gaussian blur30 with sigma set to 1. To 

simulate salt/pepper noise, we used the scikit-image implementation of random_noise with the mode set to 

"s&p" and the amount set to 0.130, which created a moderate amount of salt and pepper noise in the image. To 

simulate variation in segmentation, we applied erosions and dilations to image masks, eroding half the image 

and dilating the other half. The half of the image that was to be eroded/dilated was chosen arbitrarily and kept 

consistent across all single cell images. This created a mask deformed from the original by a few pixels, as can 
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reasonably be expected from different segmentation methods. Images were then re-extracted using the new 

masks.  
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FIGURE LEGENDS 

Figure 1. An illustrative schema for panel reduction and prediction: In order to select an optimally reduced 

panel from a designed full panel, four different selection methods were tested: intensity correlation-based, 

sparse subspace-based, gradient-based, and random selection. Using the reduced panels selected from each 

method, a ME-VAE was used to impute the full panel set. The full set of imputations were then evaluated by 

comparing them to the original images using important features of downstream analyses such as mean 

intensity correlations, structural similarity index measure, and cluster overlap using Normalized Mutual 

Information.  

Figure 2. A proof of concept full panel imputation: 12 stains were randomly selected to create a reduced panel 

which were then used to train a ME-VAE to reconstruct the full panel of stains. Here we show a representative 

3 stains from the included and withheld marker sets across 8 cells. Real and predicted staining and their 

compilation images are shown side by side to qualitatively demonstrate that a reduced panel can reconstruct 

relevant unseen information.  

Figure 3. All panel selection methods were evaluated across a range of panel sizes to determine how well 

their reduced panels can be used to reconstruct the full panel. Spearman correlation was measured for each 

stain independently and then averaged across the whole dataset. Variance in mean correlation accuracy was 

also calculated across markers for each panel size and method (n = 25). The data was split into withheld 

markers (left) and all markers (right) to illustrate each model’s generalizability and performance in both 

domains. 1-to-1 substitutions of marker intensity were used as the baseline, where makers withheld from the 

reduced panel set were simply assigned the intensity of their closest match as described in the Methods 

section.  

Figure 4. The full panels of six different breast cancer subtypes and normal were predicted using the highest 

performing reduced panel (correlation-based selection with 18 markers). Spearman correlations were 

calculated between the full panel expressions and the expressions of the predicted markers for the included 

markers and excluded markers separately. The expression correlation plots for the best and worst predicted 

markers are shown for each subtype.  

Figure 5. A sample of a few of the lowest scoring and highest scoring makers were selected to directly 

compare the Spearman correlations across all the breast cancer subtypes. True and predicted expressions 

were compared for each marker and subtype individually.  

Figure 6. Clustering was performed on the full panel intensities to generate ground truth cell type clusters 

using k-means (k=10, chosen with elbow method on silhouette score) and PhenoGraph22 (with nearest 

neighbors set to 500 and minimum cluster size set to 2000). Random, correlation-based, gradient-based, and 

subspace-based selection methods were also clustered using reconstructed intensities as input to k-means 

and PhenoGraph using the same parameters. Clustering similarity to ground truth was performed using 
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normalized mutual information (NMI). A baseline NMI for comparison was generated using randomly shuffled 

cluster labels. The clusters were projected into a UMAP23 embedding and plotted to visually show the cluster 

results. For k-means clustering, cluster colors were matched for all selection methods by pairing each cluster’s 

cell compositions with the full panel. This was not done in PhenoGraph because each method had a different 

number of clusters, preventing 1-to-1 pairing. Outliers from PhenoGraph clustering are shown in grey.  

Figure 7. Heatmap of mean marker intensity correlations in the full TMA panel set, computed across single cell 

images. Heatmap visualization is clustered using hierarchical clustering of rows and columns. Highly correlated 

marker clusters show where markers can potentially predict one another and thus can be reduced. Markers 

with no good correlates will likely need to be included in a reduced panel as there will be no other marker that 

is predictive of their expression (using intensity information alone). Baseline 1-to-1 substitution will use these 

correlations to determine marker pairs for intensity substitution. Correlation-based selection will combinatorially 

create and test all possible panels of size n to determine which reduced panel produces the max correlation to 

all withheld markers.  

Figure 8. Diagram demonstrating the trained coefficient matrix and the resultant interaction map used to select 

a reduced panel. A model is trained to optimize the Coefficient Matrix (C) with a forced zero diagonal, such that 

it is sparse and when multiplied by the intensity vector of each single cell (I) it can reconstruct I as closely as 

possible. The resultant interaction map is the trained weights of C, showing the interactions of each marker 

necessary to adequately reconstruct each other marker in an image. Some makers are capable of being 

reconstructed from only one other marker, other markers require a more complex combination, and some are 

not well predicted by any.  

Figure 9. A multi encoder variational autoencoder architecture is implemented with each channel being used 

as the input to parallel encoders. The encodings of each channel are concatenated and decoded into a full 

panel image. The gradients of the model are then backpropagated to the encoding layer. If the magnitude of 

the gradient is interpreted as importance, the channel gradients can be averaged across the dataset to 

determine which markers are most important for reconstructing image features within the model.  
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SUPPORTING INFORMATION 

Figure S1. To frame the extent of error in the predicted results from a randomly selected reduced panel of 12 

stains, several technical noises were simulated and evaluated for the same metrics. The average SSIM was 

measured for each stain individually and averaged. Likewise, the Spearman correlation between the original 

stain intensity and the resultant stain intensity was calculated for each stain independently and averaged 

across the withheld panel set.  

Table S1. A list of full breast cancer TMA panel marker set. 

Table S2. Randomly selected reduced panel set.  

Table S3. Metrics of model comparison. 

Table S4. Correlation-based reduced panel set.  

Table S5. Sparse subspace-based reduced panel set.  

Table S6. Gradient-based reduced panel set.  
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Figure 3 
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Figure 5 
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Figure 6 

 
 

 

 

 

Figure 7 
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Figure S1. To frame the extent of error in the predicted results from a randomly selected reduced panel of 12
stains, several technical noises were simulated and evaluated for the same metrics. The average SSIM was measured
for each stain individually and averaged. Likewise, the Spearman correlation between the original stain intensity and
the resultant stain intensity was calculated for each stain independently and averaged across the withheld panel set.
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Channel Target Name Vendor Catalog #

1 Hoechst Cell Signaling Technology 4082S
2 CD3 Abcam ab11089
3 ERK-1 Cell Signaling Technology 4370
4 hRAD51 Thermo Fisher Scientific MA5-14419
5 CyclinD1 Abcam ab190194
6 VIM Cell Signaling Technology 9855
7 aSMA eBioscience 50-9760-80, 50-9760-82
8 ECad Cell Signaling Technology 3199
9 ER Cell Signaling Technology 74244

10 PR Abcam ab199455
11 EGFR Cell Signaling Technology 5616S
12 Rb Cell Signaling Technology 8957S
13 HER2 Abcam ab225510
14 Ki67 Cell Signaling Technology 11882S
15 CD45 Biolegend 304039
16 p21 Cell Signaling Technology 8587S
17 CK14 Abcam ab77684
18 CK19 Abcam ab203444
19 CK17 Abcam ab196199
20 LaminABC Cell Signaling Technology 8617S
21 Androgen Receptor Cell Signaling Technology 8956S
22 Histone H2AX BioLegend 613407
23 PCNA Cell Signaling Technology 8580
24 PanCK Thermo Fisher Scientific (eBioscience) 41-9003-80, 41-9003-82
25 CD31 Abcam ab218582

Table S1. A list of full breast cancer TMA panel marker set

Selection Order Marker Selection Order Marker

1 Hoechst 10 hRAD51
2 ERK-1 11 Histone H2AX
3 Ki67 12 PCNA
4 LaminABC 13 CD3
5 CyclinD1 14 ER
6 p21 15 PanCK
7 Androgen Receptor 16 EGFR
8 VIM 17 CK17
9 ECad 18 CK19

Table S2. Randomly selected reduced panel set.
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Metric Panel Size Random Correlation-based Gradient-based SSC-based

Mean Spearman Correlation (Withheld) 3 0.46 0.46 0.45 0.28
Mean Spearman Correlation (Withheld) 6 0.55 0.63 0.59 0.58
Mean Spearman Correlation (Withheld) 9 0.63 0.70 0.71 0.66
Mean Spearman Correlation (Withheld) 12 0.65 0.76 0.69 0.76
Mean Spearman Correlation (Withheld) 15 0.76 0.84 0.81 0.79
Mean Spearman Correlation (Withheld) 18 0.77 0.86 0.80 0.80

Spearman Correlation Variance (Withheld) 3 0.019 0.029 0.023 0.015
Spearman Correlation Variance (Withheld) 6 0.021 0.018 0.020 0.019
Spearman Correlation Variance (Withheld) 9 0.022 0.012 0.025 0.022
Spearman Correlation Variance (Withheld) 12 0.013 0.007 0.012 0.013
Spearman Correlation Variance (Withheld) 15 0.003 0.002 0.004 0.005
Spearman Correlation Variance (Withheld) 18 0.005 0.001 0.003 0.004
Mean Spearman Correlation (Full Panel) 3 0.50 0.50 0.50 0.31
Mean Spearman Correlation (Full Panel) 6 0.63 0.69 0.66 0.65
Mean Spearman Correlation (Full Panel) 9 0.73 0.77 0.73 0.74
Mean Spearman Correlation (Full Panel) 12 0.77 0.83 0.79 0.79
Mean Spearman Correlation (Full Panel) 15 0.87 0.88 0.86 0.86
Mean Spearman Correlation (Full Panel) 18 0.89 0.90 0.88 0.89

Spearman Correlation Variance (Full Panel) 3 0.031 0.040 0.036 0.028
Spearman Correlation Variance (Full Panel) 6 0.034 0.029 0.032 0.031
Spearman Correlation Variance (Full Panel) 9 0.025 0.018 0.024 0.027
Spearman Correlation Variance (Full Panel) 12 0.017 0.010 0.017 0.015
Spearman Correlation Variance (Full Panel) 15 0.006 0.005 0.005 0.09
Spearman Correlation Variance (Full Panel) 18 0.005 0.003 0.006 0.005

SSIM (Withheld) 18 0.79 0.81 0.81 0.82
K-means NMI 18 0.60 0.64 0.60 0.63

PhenoGraph NMI 18 0.59 0.65 0.60 0.59

Table S3. Metrics of model comparison

3-Channel 6-Channel 9-Channel 12-Channel 15-Channel 18-Channel

Hoechst Hoechst Hoechst Hoechst Hoechst Hoechst
PCNA CyclinD1 CyclinD1 hRAD51 CD3 CD3
ECad VIM VIM CyclinD1 ERK-1 ERK-1

ER ER VIM hRAD51 hRAD51
PCNA EGFR EGFR CyclinD1 CyclinD1
PanCK HER2 HER2 VIM VIM

CK17 CD45 aSMA aSMA
PCNA p21 EGFR ER
PanCK CK17 HER2 EGFR

PCNA CD45 Rb
PanCK p21 HER2
CD31 CK17 CD45

PCNA p21
PanCK CK17
CD31 Androgen Receptor

PCNA
PanCK
CD31

Table S4. Correlation-based reduced panel set.
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3-Channel 6-Channel 9-Channel 12-Channel 15-Channel 18-Channel

Hoechst Hoechst Hoechst Hoechst Hoechst Hoechst
ERK-1 PR ERK-1 ERK-1 aSMA CD3

PR Ki67 PR aSMA PR VIM
p21 Rb PR Rb aSMA

CK17 p21 Rb HER2 Ecad
CD31 CK17 HER2 Ki67 PR

Histone H2AX Ki67 CD45 EGFR
PanCK CD45 p21 Rb
CD31 p21 CK14 Ki67

CK17 CK17 CD45
Histone H2AX LaminABC p21

CD31 Androgen Receptor CK14
Histone H2AX CK17

PCNA LaminABC
CD31 Androgen Receptor

Histone H2AX
PCNA
CD31

Table S5. Sparse subspace-based reduced panel set.

Ranked Importance Marker Ranked Importance Marker

1 Hoechst 10 ECad
2 CyclinD1 11 VIM
3 CK19 12 ERK-1
4 CK14 13 Rb
5 CK17 14 HER2
6 Ki67 15 CD31
7 EGFR 16 PanCK
8 CD3 17 LaminABC
9 PR 18 Histone H2AX

Table S6. Gradient-based reduced panel set.

20/20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.24.505142doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.24.505142
http://creativecommons.org/licenses/by-nd/4.0/

