

1 Virome and nrEVome diversity of *Aedes albopictus* 2 mosquitoes from La Reunion Island and China

3 **Umberto Palatini¹ , Niccolò Alfano¹, Rebeca Lejarazu Carballar^{1*}, Xiaoguang Chen² Helene
4 Delatte³ and Mariangela Bonizzoni^{1,†}**

5 ¹ Department of Biology and Biotechnology, University of Pavia, Pavia, 27100, Italy; umberto.palatini01@universitadipavia.it

6 ² Southern Medical University of Guangzhou, China

7 ³ CIRAD, La Reunion

8 *Current address: University of California Irvine

9 [†]Correspondence: m.bonizzoni@unipv.it

10 **Abstract:**

11 **Background**

12 *Aedes albopictus* is a public health threat for its worldwide spread and ability to transmit arboviruses. Understanding
13 mechanisms of mosquito immunity can provide new tools to control arbovirus spread. The genomes of *Aedes*
14 mosquitoes contain hundreds of nonretroviral endogenous viral elements (nrEVes), which are enriched in piRNA
15 clusters and produce piRNAs, with the potential to target cognate viruses. Recently, one nrEVE was shown to limit
16 cognate viral infection through nrEVE-derived piRNAs. These findings suggest that nrEVes constitute an archive
17 of past viral infection and that the landscape of viral integrations may be variable across populations depending on
18 their viral exposure.

19 **Methods**

20 We used bioinformatics and molecular approaches to identify known and novel (i.e. absent in the reference
21 genome) viral integrations in the genome of wild collected *Aedes albopictus* mosquitoes and characterize their
22 virome.

23 **Results**

24 We showed that the landscape of viral integrations is dynamic with seven novel viral integrations being
25 characterised, but does not correlate with the virome, which includes both viral species known and unknown to
26 infect mosquitoes. However, the small RNA coverage profile of nrEVes and the viral genomic contigs we identified
27 confirmed an interaction among these elements and the piRNA and siRNA pathways in mosquitoes.

28 **Conclusions**

29 Mosquitoes nrEVes have been recently described as a new form of heritable, sequence-specific mechanism of
30 antiviral immunity. Our results contribute to understanding the dynamic distribution of nrEVes in the genomes of
31 wild *Ae. albopictus* and their interaction with mosquito viruses.

32 **Keywords:** *Aedes albopictus*, viral integrations, Virome, RNAi, viral vector

33
34
35 Following its rapid global spread, the Asian tiger mosquito *Aedes albopictus* has emerged as a
36 serious public health threat for its ability to transmit over twenty human pathogenic viruses, including
37 dengue, chikungunya and Zika viruses, and the nematode *Dirofilaria immitis* (1, 2). Besides

38 arboviruses, mosquitoes can be infected with viruses that are not able to replicate in vertebrate cells
39 and are thus called insect-specific viruses (ISVs) (3, 4). ISVs are phylogenetically related to
40 arboviruses, for instance, the *Flaviviridae* family contains two ISVs groups called classical Insect-
41 Specific Flaviviruses (cISFVs) and dual-host ISFVs, respectively. Dual-host ISFVs are
42 phylogenetically nested within mosquito-borne viruses, whereas cISFs are a monophyletic group
43 thought to be an ancestral lineage of Flaviviruses (5). ISVs are also abundant in the *Rhabdoviridae*,
44 *Bunyaviridae* and *Reoviridae* families and are present, but have not been so frequently identified yet,
45 in the *Togaviridae* family (6). Phylogenetic analyses within the *Bunyaviridae* family support the
46 hypothesis that arboviruses of this viral family evolved from ISVs by overcoming the barriers
47 preventing infection of vertebrates. ISVs have also been proposed as new biological control agents
48 against arboviruses based on the observation that some ISVs, such as Eilat Virus in *Ae. albopictus*,
49 alter mosquito vector competence by upregulating the antiviral immune responses or through
50 superinfection exclusion (7). Despite the recognized significance of ISVs, knowledge on the virome
51 diversity of wild-collected *Ae. albopictus* mosquitoes is still limited (8–11). *Aedes albopictus*
52 populations are usually classified into native, old and invasive (1). Native populations are endemic in
53 the species home range in Southeast Asia; old populations can be found in the islands of the Indian
54 Ocean, which were colonized in the '800 century, and invasive are populations resulting from
55 overlapping and chaotic incursions which took place in both tropical and temperate regions of the
56 world in the past 50–60 years (12).

57 Both ISVs and arboviral infections elicit RNA interference (RNAi) pathways in mosquitoes. RNAi
58 depends on the production of small (s)RNAs, which are classified on the basis of their size, biogenesis
59 and interacting proteins into microRNAs of ~20– 22 bp; small interfering (si)RNAs of ~20– 22 bp, , and
60 PIWI interacting (pi)RNAs of ~25-30 bp (13). miRNAs derive from hairpin-like structure forming in long
61 single-stranded RNA molecule, siRNAs are processed from long double stranded RNAs, while piRNAs
62 are produced both in the nucleus (primary piRNAs) from *ad hoc* genomic regions called piRNA clusters
63 and in the cytoplasm (secondary piRNAs) from self-amplification of primary piRNAs after target
64 recognition and processing (14). While during viral infection of mosquitoes, siRNAs are consistently
65 found and homogeneously cover infecting viral genomes, production of virus-derived miRNAs is
66 controversial and the profile of piRNAs appears to be tissue-specific and both viral and host-specific

67 (15–17). On this basis, the pattern of small RNAs, *in primis* siRNAs, has been used to reconstruct the
68 sequences of viruses infecting mosquitoes and other animals (16, 18, 19).
69 piRNA clusters of *Aedes* mosquitoes, but not those of *Drosophila melanogaster* nor *Anophelinae*, are
70 enriched in non-retroviral RNA virus endogenous elements (nrEVEs) (20–24). The genome of *Ae.*
71 *albopictus* hosts a total of 456 nrEVEs (20). The most represented viral families from which nrEVEs
72 originate are *Rhabdoviridae* (Rhabdo-nrEVEs), *Flaviviridae* (Flavi-nrEVEs) and the newly discovered
73 *Chuviridae* (20, 23, 25), besides unclassified viruses identified in arthropods but whose host range is
74 still unknown. *Aedes albopictus* nrEVEs produce piRNAs which are antisense with respect to cognate
75 viruses suggesting antiviral activity (21). Reduction of cognate viral infection due to nrEVE-derived
76 piRNAs has been shown for selected nrEVEs of both *Ae. aegypti* and Aag2 cells (6, 26, 27). Despite
77 an antiviral activity of nrEVEs have not been proven in *Ae. albopictus*, results in *Ae. aegypti* suggest
78 that nrEVEs are involved in shaping the relationships among mosquitoes, ISVs and, possibly,
79 arboviruses. However, information on the co-occurrence between nrEVEs and ISVs in geographic
80 mosquito populations is lacking. To address this knowledge gap, we sampled *Ae. albopictus*
81 mosquitoes from the native home range in Southern China and in La Reunion Island (1) and combined
82 whole genome (WG) and small RNA sequencing approaches to characterize the concomitant patterns
83 of viral integrations and their the small RNA profile while also detecting the mosquito virome.

84

85 **2. Materials and Methods**

86

87 *2.1. Wild samples collection and sequencing*

88 Adult *Ae. albopictus* individuals were collected in public areas from four sites in La Reunion Island
89 (France) and two sites in the Guangzhou prefecture (China), which did not require ethical approval (Fig.
90 1). Mosquitoes collected in La Reunion Island were immediately processed in pools of 10 females and
91 homogenized in DNA/RNA-shield (Zymo Research, Irvine CA, USA) with a Kimble electric pestle (DWK
92 Life Sciences, Mainz, Germany). Samples were stored at 4°C before being transferred to the University
93 of Pavia where each pool was divided into two volumes that were used for either DNA or RNA extraction.
94 DNA was extracted from mosquito pools using the DNeasy Blood and Tissue Kit (Qiagen, Hilden,
95 Germany), according to manufacturer's protocol and stored at -20 °C. RNA was extracted using a
96 standard protocol based on Trizol (Ambion/Invitrogen, Waltham MA, USA), treated with DNase I

97 (Sigma-Aldrich, St. Louis MO, USA) and stored at -80 °C. Nucleic acids from three pools were further
98 pooled to generate a sample. For each locality we processed two samples, which were sent to
99 Biodiversa (Rovereto, Italy) for library preparation and sequencing resulting in the analyses of a total of
100 60 mosquitoes per site (**Table S1**). WG and Small RNA libraries were prepared using the Nextera DNA
101 Library Preparation Kit for paired end reads (Illumina, San Diego CA, USA) and the NEBNext Small
102 RNA Library Prep Set (New England Biolabs, Ipswich MA, USA), respectively. DNA and small-RNA
103 Libraries were sequenced on an Illumina HiSeq 2500 instrument.
104 Samples from China were also processed in pools of 10 mosquitoes each. DNA was extracted using
105 the Universal Genomic DNA extraction kit (Takara, Kusatsu, Japan) according to the supplier protocol
106 and stored at -20 °C. RNA was extracted using a custom protocol based on Trizol (Ambion/Invitrogen,
107 Waltham MA, USA), treated with DNase I (Takara, Kusatsu, Japan) and stored at -80 °C. DNA and
108 RNA. As for samples from La Reunion, 3 pools of the nucleic acids of 10 mosquitoes each were further
109 pooled and sent to the Beijing Genomics Institute (BGI), China, for library preparation and sequencing
110 (**Table S1**). DNA WGS libraries were prepared with the Nextera DNA Library Preparation Kit (Illumina,
111 San Diego CA, USA) and were sequenced on an Illumina HiSeq X instrument. Small RNA libraries were
112 prepared with the TruSeq Small RNA Library Prep Kit (Illumina, San Diego CA, USA) and sequenced
113 on an Illumina HiSeq 4500 sequencer.

114

115 2.2. *nrEVEome*

116 WGS data were analyzed to identify the landscape of nrEVEs of wild-collected mosquitoes using as
117 reference the nrEVEs that we previously annotated in the *Ae. albopictus* reference genome (AalbF2)
118 (20). Reads were checked and cleaned with with FastQC v. 0.11.9
119 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) and trimmomatic v. 0.40 (28),
120 respectively, and mapped on the AalbF2 genome using the SVD pipeline as previously described .
121 Given that we sequenced pools of 30 individuals, we estimated the frequency of nrEVEs in each pool
122 based on read coverage. Briefly, single copy orthologs were identified in the AalbF2 genome assembly
123 using BUSCO v5.3.1 (29), configured with the diptera_odb10 database. Normalized depth values of a
124 selected set of 359 orthologs, which satisfied a minimum BUSCO score of 1000 (**table S2**), and of all
125 the reference nrEVEs were extracted using FeatureCounts in the SubRead package (30). Average
126 normalized depth for single copy orthologs was calculated for each sample and used as a reference to

127 estimate nrEVE allelic frequency in pooled samples (**Fig. S1**). nrEVEs were considered “present” in a
128 sample when the estimated allelic frequency was higher than 0.2. The Principal Component Analysis
129 (PCA) classifying our samples based on their pattern of nrEVEs was computed using the Exponential
130 family PCA method in the LogisticPCA R (31) package and plotted with ggplot2.

131

132 *2.3. Characterization of novel viral integration sites in wild collected mosquitoes*

133 The Vy-PER and ViR pipelines were run as previously described (32) to identify in the DNA of wild-
134 collected mosquitoes nrEVEs which are absent in the AalbF2 assembly. Bioinformatic predictions of
135 each of the newly identified viral integrations were molecularly confirmed by PCR using the DreamTaq
136 Green PCR Master Mix 2X (Thermo Fisher) and nrEVE specific primers (**Table S3**). PCR products were
137 cloned into *E. Coli* OneShot TOP10 chemically competent cells (Invitrogen) using the TOPO TA Cloning
138 Kit for Sequencing (Thermo Fisher, USA). Plasmids containing the PCR product were extracted with
139 the QIAprep Spin Miniprep Kit (Qiagen, Germany). Plasmid products were Sanger sequenced by
140 Macrogen Europe (Amsterdam, The Netherlands) using the M13F and M13R plasmid primers.
141 The presence of the newly identified nrEVEs was also tested by PCR on single mosquitoes of laboratory
142 strains derived from mosquitoes sampled in Canton (China), Chiang Mai (Thailand), La Reunion Island,
143 Crema (Italy) and Tapachula (Mexico). DNA was extracted from single mosquitoes using the Wizard
144 genomic DNA purification kit (Promega) and PCRs were performed as described above

145

146 *2.4. Virome analyses*

147 Raw small-RNA (sRNA) sequencing data were checked for quality with FastQC v. 0.11.9
148 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>); the presence of adapters was confirmed
149 with DNApi v. 1.1 (33). Adapters and bases with baseQ inferior to 20 were trimmed from the reads using
150 Cutadapt v. 2.9 (34), also removing clean reads smaller than 10 bp and longer than 50 bp. Low
151 complexity reads were excluded with the Duster.pl script from the NGS-toolbox package
152 (<https://sourceforge.net/p/ngs-toolbox/wiki/Home/>). Briefly, reads were mapped to the *Ae. albopictus*
153 genome (AalbF2 assembly) after masking nrEVEs using BEDtools maskfasta v. 2.28 (35). Small-RNA
154 reads were mapped on the masked genome with Bowtie v. 1.1.2 (36) optimizing the parameters for
155 small-RNA reads (-n 1 -l 18 --best). The reads that did not map to the *Ae. albopictus* genome were
156 extracted with SAMtools view v. 1.4 (37) and converted to fastq with SAMtools fastq. Contigs were

157 reconstructed from unmapped sRNA reads using the Oases pipeline (38) with Velvet v.1.2.10
158 (<https://www.ebi.ac.uk/~zerbino/velvet/>) testing k-mer lengths from 13 to 31 bp. Sequences assembled
159 by Oases and longer than 100bp were filtered to remove nrEVEs-derived assemblies using BLASTn v.
160 2.6.0 (39) by comparing all the assembled sequences against nrEVEs annotated in AalbF2 (20).
161 Contigs with a percentage of identity higher than 90% and covering at least 50% of an existing nrEVE
162 were considered nrEVEs assemblies rather than viral contigs. Redundant assemblies were clustered
163 using CD-HIT v. 4.8.0 (40) with the following options: -c 0.9 -n 8 -d 60 -g 1. The clustered assemblies
164 were screened against the entire NCBI nr peptides database
165 (<https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/>, downloaded in march 2020) using
166 DIAMOND v. 0.9.31 (41) BLASTx algorithm with an e-value cutoff of $1e^{-5}$. DIAMOND hits were loaded
167 on MEGAN6 community edition v. 6.19.9 (42). MEGAN6 was run with the naive LCA algorithm.
168 Assemblies assigned to viruses by MEGAN6 were manually validated against the nr database using
169 BLASTx (39).

170

171 *2.5. small RNA profile of viral contigs and novel nrEVEs*

172 Selected assembled viral contigs, including viral contigs of at least 1500bp and Flavivirus-like viral
173 contigs shorter than 500 bp, were used for the realignment of sRNA reads from the samples in which
174 the contigs were detected. Clean sRNA reads were mapped using Bowtie v. 1.1.2 (36) as described
175 above. Sequences between 20–22 bp and 25–30 bp were filtered as siRNAs/miRNAs and piRNAs,
176 respectively, using BBMap reformat (sourceforge.net/projects/bbmap/). Small RNAs that mapped to
177 viral contigs (hereafter called viral sRNA) were then re-mapped to the AalbF2 genome assembly, then
178 split by orientation with samtools view and counted with BBMap pileup.sh
179 (sourceforge.net/projects/bbmap/). The reads were categorized as either mapping exclusively on viral
180 contigs or mapping on both viral contigs and nrEVEs. Reads size distributions were plotted on Python
181 3 using the Plotly v. 5.7.0 graphing library (43).

182 To understand the siRNA coverage of the novel viral integrations identified in wild-collected mosquitoes,
183 the sRNA reads from each mosquito pool in which the viral integration had been identified were re-
184 mapped to the viral integration using the methodology described above. Coverage profile of mapped
185 piRNA and siRNA was plotted with GraphPad Prism 8 (www.graphpad.com).

186

187 **RESULTS**

188 Adult *Ae. albopictus* mosquitoes were collected from four localities from La Reunion Island and two
189 sites in the Guangzhou prefecture (China) (**Fig. 1**). Sampling sites included sites from the Eastern
190 (Bras-Panon [RE1, RE2] and Saint-Rose [RE3, RE4]) and the western (Tampon [RW1, RW2] and Saint
191 Pierre [RW3, RW4]) part of La Reunion Island, which experience low and high incidence of arboviral
192 disease transmission, respectively (44). In the Guangzhou prefecture, we sampled mosquitoes from
193 the Baiyun district (CN1 sample), which is located at the northern outskirts of prefecture and is a forested
194 area known for its natural attractions and from the campus of the Southern Medical University (CN2
195 sample), an urban and densely populated area of the Guangzhou city, which is subjected to intense
196 vector control interventions (45). From all sites, WGS and small RNA data were concomitantly produced
197 from pools of 30 mosquitoes each (**Table S1**). WGS data were used to characterize the patterns of
198 nrEVEs and test for the presence of new viral integrations. sRNA data were used to estimate the sRNA
199 profile nrEVEs, including newly identified ones, and assemble viral contigs.

200

201 *3.1 Patterns of nrEVEs across samples*

202 Out of the 456 nrEVEs annotated in the *Ae. albopictus* genome, 222 nrEVEs appear to be absent in all
203 samples, while 234 nrEVEs were estimated to be present based on read coverage with respect to
204 mosquito single-copy ortholog genes. The majority of nrEVEs, which were not detected in any samples,
205 included Chuviridae-like nrEVEs and nrEVEs from unclassified viruses followed by Rhabdovirus-like
206 nrEVE. To determine if nrEVE patterns differ across samples based on their geographic origin, we used
207 Principal Component Analysis (PCA). While results showed a clear separation between samples from
208 China and La Reunion Island (**Fig. 2A**), within La Reunion, samples from the East and West coast did
209 not group separately, consistent with high gene flow among populations of the island (44).

210 We further used the Vy-PER and ViR pipelines to align WGS data to the *Ae. albopictus* genome (AalbF2
211 assembly), identify unmapped reads containing viral sequences and characterize novel integration
212 sites. A total of 7 new integrations were identified: 6 were detected in samples from La Reunion Island
213 and one in Chinese mosquitoes (**Table 1**, **Fig. 2B**, **Table S1**). All newly identified nrEVEs derived from
214 ISVs of the *Flaviviridae* family, including Kamiti River Virus (KRV), Cell Fusing Agent Virus (CFAV) and
215 *Aedes* Flavivirus, with a percentage of nucleotide identity ranging from 67 to 78%. Additionally, these
216 nrEVEs, which range in size between 814 and 4705 bp, encompass one or more viral proteins without

217 breaks or rearrangement with respect to the original viral genome. Each of the newly identified nrEVE
218 was molecularly validated by PCR using specific primers followed by Sanger sequencing (**Table S3**).
219 Additional wild-caught mosquitoes from La Reunion Island and China, besides samples from Chiang
220 Mai (Thailand), Crema (Italy) and Tapachula (Mexico) were used to assess the frequency of the newly
221 identified nrEVE (**Fig. 2C**). Apart from KRV-1 and KRV-3 which were detected only in RE2 and CN1,
222 respectively, all other newly identified nrEVEs were found in mosquitoes from both native and invasive
223 populations, at frequency between 4% and 90% (**Fig. 2C**).
224

225 **Table 1:** List of novel viral integrations identified in wild-collected mosquitoes

nrEVE ID	Virus	Contig length	Viral bp	% AA ID	Detected in
KRV-1	Kamiti River Virus	814	309	74	RE4
KRV-2	Kamiti River Virus	4705	3974	67	RE4, RW2
CFAV-1	Cell Fusing Agent Virus	816	307	77	RE2, RE3, RW2, CN1
AGFV	Aedes Galloisi Flavivirus	977	549	73	RE3, RE4, RW2, RW4
CFAV-2	Cell Fusing Agent Virus	1623	891	71	RW2, RW4
AeFV	Aedes Flavivirus	1046	321	77	RE4
KRV-3	Kamiti River Virus	1882	947	74	CN1

226
227 Since it is known that viral integrations are enriched in piRNA clusters and may produce piRNAs, we
228 checked if, and where, piRNAs and siRNAs mapped on the newly detected nrEVE. Small RNAs in the
229 size of piRNA, but not siRNAs were seen mapping across the novel viral integrations; coverage was
230 not homogenous across the whole viral integration, but the overall profile was similar across samples
231 (**Fig. 3**).
232

233 3.2 The virome of *Ae. albopictus* mosquitoes

234 A total of 122 viral contigs corresponding to 25 viral species were assembled from small RNAs of
235 Chinese mosquitoes. A total of 126 viral contigs corresponding to 26 viral species were assembled from
236 small RNAseq data of samples from La Reunion (**Fig. 4**). Viral contigs ranged in size between 101 and
237 5847 bp and had a highly variable percentage of nucleotide identity (between 33 and 100%, with a
238 median of 70%) with respect to known circulating viruses (**Fig. 4**). Most assembled contigs had
239 similarities to *bona fide* arthropod viruses and included ISVs of the *Flaviviridae* family (i.e. CFAV, KRV,
240 La Tina virus, and Aedes Flavivirus [AeFV]) (5, 7, 46), the *Mononegavirales* order (*Culex*
241 *tritaeniorhynchus rhabdovirus* [CTR] (47) and *Merida* virus (48) and *Aedes Anphenvirus* (49) from the

242 *Rhabdoviridae* and *Xinmonoviridae* families, respectively); Yongsang bunyavirus 1, previously identified
243 in *Aedes vexans* mosquitoes from Korea (50), Phasi-Charoen Like Virus (family *Phenuiviridae*), which
244 is highly prevalent in both wild-caught *Ae. aegypti* and *Ae. albopictus* mosquitoes (51), along with less
245 known viruses, which have been recently characterized from insect samples, such as Wuhan Mosquito
246 Virus, Wenzhou sobemo-like virus, Guadalupe mosquito virus, Hubei mosquito virus, Chuvirus
247 Mos8Chu0, Croada virus and Kaiowa virus (11, 52, 53). We did not assemble any contigs from
248 arboviruses, except for a contig of 168 bp with sequence similarity to a member of the Vesicular
249 stomatitis virus serogroup of the *Rhabdoviridae* family, the Yug Bogdanovac virus (YBV), which was
250 initially isolated from sandflies (54), and we assembled from small RNAs of the RE1 sample from the
251 Eastern side of La Reunion.

252 Because viral replication elicits RNAi and results in a small RNAs profile skewed towards siRNAs that
253 target both strands of a viral genome, we checked this size signature on the viral species for which we
254 assembled contigs of at least 1500bp, including Sarawak virus; *Aedes aegypti* toti-like virus; *Aedes*
255 *aegypti* virga-like virus; Guadeloupe mosquito mononega-like virus; Chuvirus Mos8Chu0, Point-Douro
256 narna-like virus, *Aedes albopictus* negev-like virus and Shinobi tetravirus with a contig of 3450 bp (**Fig.**
257 **5**). Importantly, none of the assembled viral contigs matched to *Ae. albopictus* nrEVEs or newly
258 identified nrEVEs. However, because endogenous piRNAs can trigger production of trailer and
259 responder piRNAs from viral RNAs (55), we realigned piRNAs from the viral contigs to nrEVEs and
260 tagged them as possible nrEVEs-derived small RNAs. A profile indicative of active viral infection was
261 observed for the Sarawak, Shinobi tetravirus, the *Aedes albopictus* negev-like and, possibly, the
262 Guadeloupe mosquito mononega-like virus (**Fig. 5A**). On the contrary the smallRNA profile of the *Aedes*
263 *aegypti* toti-like virus was skewed towards piRNAs, some of which may also derive from viral
264 integrations despite the absence of sequence complementarity between the viral contig and nrEVEs
265 (55). Furthermore, the profiles of contigs classified as Chuvirus Mos8Chu0, *Aedes aegypti* toti-like virus
266 and *Aedes aegypti* virga-like virus were skewed to small RNAs of exclusively one strand and included
267 smallRNAs which also map to nrEVEs. Because piRNAs against a single orientation of the viral genome
268 with no siRNAs is a classic signature of nrEVEs, whereas siRNAs of positive and negative strand
269 polarity are typical for viral DNA (vDNA) fragments, which have been shown to be formed after mosquito
270 infection by a wide range of RNA viruses, possibly from their defective viral genomes (56–59), we
271 cannot exclude that the smallRNA pattern observed for the *Aedes aegypti* toti-like virus contig represent

272 an undetected novel nrEVE, whereas the profiles of the Chuvirus Mos8Chu0 and the *Aedes aegypti*
273 virga-like virus are difficult to interpret. We also verified the profile of assembled flaviviral contigs shorter
274 than 500 bp, which may represent vDNA fragments of flaviviruses or viral integrations which we were
275 not able to identify from WGS data. The observed profiles with a prevalence of small RNAs in the size
276 of piRNAs of only one orientation (**Fig. 5B**) points to nrEVEs, which are probably rare in the pool
277 samples analyzed thus resulting in DNA reads below the threshold for novel nrEVE detection.

278 As our analyses were being completed, independent groups of investigators used a metagenomic
279 approach to describe the virome of mosquitoes collected between 2017-2018 from urban Guangzhou
280 (60) and that of *Aedes* mosquitoes using published RNA-seq datasets (9, 11). A total of 42% of the viral
281 contigs we identified had already been detected in world-wide *Ae. albopictus* samples (**Fig. 3**), further
282 validating small RNA seq based virome identification and suggesting the existence of a core virome.

283

284 **DISCUSSION**

285

286 Eukaryotic genomes have integrated viral sequences, most of which derive from retroviruses encoding
287 for retrotranscriptase and integrases. Previous work conducted by us, and others, revealed the
288 presence of nrEVEs with similarity to, mostly, flaviviruses and rhabdoviruses in *Ae. albopictus* and *Ae.*
289 *aegypti*, but not in the genomes of *Anopheles* species and *Culex quinquefasciatus* (61). Additionally,
290 we have shown that the pattern of nrEVEs varies across geographic populations, with new integrations
291 being detectable in the genome of wild-collected mosquitoes (20, 23). Here we report the identification
292 of 7 novel nrEVEs in wild-collected *Ae. albopictus* mosquitoes. On average, these nrEVEs have a higher
293 sequence identity to corresponding viral genomes in comparison to reference nrEVEs, suggesting more
294 recent integration events. Newly identified *Ae. albopictus* nrEVEs have similarities to a range of cISFs,
295 including CFAV, AeFV and KRV, unlike the new nrEVEs identified in *Ae. aegypti* wild mosquitoes (23).
296 Additionally, newly identified nrEVEs appear broadly distributed across mosquitoes from different
297 locations, probably because of the quick and chaotic global invasion of *Ae. albopictus* (12). Of note
298 CFAV-2 and KRV-1 were exclusive of mosquitoes from Italy and La Reunion Island, among the sites
299 we tested, suggesting that these integrations occurred after *Ae. albopictus* established on La Reunion
300 island, which is a primary source of mosquito introductions to Italy (12). Small RNA profiles of newly
301 identified nrEVEs confirm the presence of low abundance piRNAs, and not siRNAs, which appear in

302 hotspots that are conserved across samples similarly to what is observed for reference nrEVEs of both
303 *Ae. aegypti* and *Ae. albopictus* (20, 23). Overall, these results indicate that, independently of the timing
304 of the integration event, piRNAs will derive from nrEVEs, but not throughout the nrEVE sequence. Thus,
305 endeavors aiming at using nrEVEs in strategies for vector control either as landmarks for effector
306 integration or taking advantage of their inherent antiviral activity against cognate viruses might require
307 experimental validation of their piRNA profile prior transgenic applications (62).

308 Given the abundance of nrEVEs in the genome of *Aedes* mosquitoes, we further asked whether the
309 presence of newly identified nrEVEs correlates with on-going viral infections and analyzed the virome
310 of the same mosquitoes in which we tested for novel nrEVEs. While our samples could be grouped
311 similarly based both on their nrEVE landscape and their virome (Fig. 2), indicating that sampling
312 location is the main factor influencing both virome and nrEVEome, we did not assemble viral contigs
313 from the same viruses for which novel nrEVEs were identified in any sample (Fig. 3, 4). These results
314 along with the number of newly identified nrEVEs with respect to the number of wild mosquitoes we
315 analyzed show that integration events are rare. Whether the load of infecting viruses or other ecological
316 and/or biological circumstances such as thermal stress, co-infections with bacteria or fungi and/or the
317 presence of active transposable elements are needed for an integration event to occur requires further
318 investigations.

319 Overall, our small-RNA-based virome analysis led to the identification of 43 viruses; 18 of these viral
320 species have already been described in *Aedes* spp. mosquitoes, with Phasi Charoen-like phasivirus,
321 Guadeloupe mosquito monomega-like virus, *Aedes* anphevirus, toti-like viruses and Chuivirus
322 Mos8Chu0 being the most prevalent (9, 11, 60). Detailed analysis of the smallRNA profiles of the
323 assembled viral contigs showed a profile with 21 bp peaks in sense and antisense orientations indicative
324 of active replication only for few viruses, such as Sarawak virus, Shinobi tetravirus and the *Aedes*
325 *albopictus* negev-like virus. Consequently, we cannot exclude that some of the assembled viral contigs
326 are simply related to the diet or are associated with mosquito microbiota. For instance, we assembled
327 contigs with similarities to *Virgaviridae*, which are plant viruses, and *Totiviridae* for which fungi and
328 protozoans are natural hosts, in both mosquitoes from China and La Reunion Island. Sarawak virus
329 was first identified in 2017 from *Ae. albopictus* males collected in 2013 on the Sarawak island of Borneo
330 and its genome sequence has been produced showing it is an *Alphatetraviridae* with three open reading
331 frames (ORFs) (63). Shinobi tetravirus was discovered in 2018 in *Ae. albopictus* C6/36 cells and its

332 presence was shown to suppress replication of Zika virus(64). Shinobi tetravirus readily infects *Ae.*
333 *albopictus* strains in laboratory conditions (65), but its prevalence in wild mosquitoes is uncertain. *Aedes*
334 *albopictus* negev-like virus was discovered in 2020 in the *Ae. albopictus* Aa23 cell line, where
335 Wolbachia wAlbB was shown to negatively affect its replication (66).

336 Overall, our results highlight the need not only to continue this type of studies to further understand the
337 diversity of viruses infecting mosquitoes, but also to start introducing a functional characterization of
338 these viruses and the effects of their infections on mosquitoes' fitness and metabolism.

339 Distinct small RNA profiles were observed for additional viral contigs, including Chuvirus Mos8Chu0,
340 which warrant further investigations. Chuviridae are a poorly characterized group of viruses, which have
341 been recently identified through metagenomic analyses in several insects from different orders including
342 Hemiptera, Diptera and Coleoptera (67, 68). Insects in which Chuviridae have been identified tend to
343 also harbor Chuviridae-like nrEVEs (25, 67), thus these viruses may represent an ideal model to study
344 the arm-race with insects resulting in integration events.

345

346 **References**

- 347 1. Bonizzoni M, Gasperi G, Chen X, James AA. 2013. The invasive mosquito species *Aedes*
348 *albopictus*: current knowledge and future perspectives. *Trends in Parasitology* 29:460–468.
- 349 2. Little EAH, Harriott OT, Akaratovic KI, Kiser JP, Abadam CF, Shepard JJ, Molaei G. 2021. Host
350 interactions of *Aedes albopictus*, an invasive vector of arboviruses, in Virginia, USA. *PLoS Negl*
351 *Trop Dis* 15:e0009173.
- 352 3. Huhtamo E, Cook S, Moureau G, Uzcátegui NY, Sironen T, Kuivanen S, Putkuri N, Kurkela S,
353 Harbach RE, Firth AE, Vapalahti O, Gould EA, de Lamballerie X. 2014. Novel flaviviruses from
354 mosquitoes: Mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-
355 borne flaviviruses. *Virology* 464–465:320–329.
- 356 4. Agboli, Leggewie, Altinli, Schnettler. 2019. Mosquito-Specific Viruses—Transmission and
357 Interaction. *Viruses* 11:873.

358 5. Cook S, Moureau G, Kitchen A, Gould EA, de Lamballerie X, Holmes EC, Harbach RE. 2012.
359 Molecular evolution of the insect-specific flaviviruses. *J Gen Virol* 93:223–234.

360 6. Olson KE, Bonizzoni M. 2017. Nonretroviral integrated RNA viruses in arthropod vectors: an
361 occasional event or something more? *Current Opinion in Insect Science* 22:45–53.

362 7. Carvalho VL, Long MT. 2021. Insect-Specific Viruses: An overview and their relationship to
363 arboviruses of concern to humans and animals. *Virology* 557:34–43.

364 8. de Almeida JP, Aguiar ER, Armache JN, Olmo RP, Marques JT. 2021. The virome of vector
365 mosquitoes. *Current Opinion in Virology* 49:7–12.

366 9. Parry R, James ME, Asgari S. 2021. Uncovering the Worldwide Diversity and Evolution of the
367 Virome of the Mosquitoes *Aedes aegypti* and *Aedes albopictus*. *Microorganisms* 9:1653.

368 10. Kubacki J, Flacio E, Qi W, Guidi V, Tonolla M, Fraefel C. 2020. Viral Metagenomic Analysis of
369 *Aedes albopictus* Mosquitos from Southern Switzerland. *Viruses* 12:E929.

370 11. Shi C, Zhao L, Atoni E, Zeng W, Hu X, Matthijnssens J, Yuan Z, Xia H. 2020. Stability of the Virome
371 in Lab- and Field-Collected *Aedes albopictus* Mosquitoes across Different Developmental Stages
372 and Possible Core Viruses in the Publicly Available Virome Data of *Aedes* Mosquitoes. *mSystems*
373 5:e00640-20.

374 12. Manni M, Guglielmino CR, Scolari F, Vega-Rúa A, Failloux A-B, Somboon P, Lisa A, Savini G,
375 Bonizzoni M, Gomulski LM, Malacrida AR, Gasperi G. 2017. Genetic evidence for a worldwide
376 chaotic dispersion pattern of the arbovirus vector, *Aedes albopictus*. *PLoS Negl Trop Dis*
377 11:e0005332.

378 13. Marconcini M, Pischedda E, Houé V, Palatini U, Lozada-Chávez N, Sogliani D, Failloux A-B,
379 Bonizzoni M. 2021. Profile of Small RNAs, vDNA Forms and Viral Integrations in Late Chikungunya
380 Virus Infection of *Aedes albopictus* Mosquitoes. *Viruses* 13.

381 14. Miesen P, Joosten J, van Rij RP. 2016. PIWIs Go Viral: Arbovirus-Derived piRNAs in Vector
382 Mosquitoes. *PLoS Pathog* 12:e1006017.

383 15. Goic B, Vodovar N, Mondotte JA, Monot C, Frangeul L, Blanc H, Gausson V, Vera-Otarola J,
384 Cristofari G, Saleh M-C. 2013. RNA-mediated interference and reverse transcription control the
385 persistence of RNA viruses in the insect model *Drosophila*. *Nat Immunol* 14:396–403.

386 16. Aguiar ERGR, Olmo RP, Marques JT. 2016. Virus-derived small RNAs: molecular footprints of
387 host–pathogen interactions. *WIREs RNA* 7:824–837.

388 17. Parameswaran P, Sklan E, Wilkins C, Burgon T, Samuel MA, Lu R, Ansel KM, Heissmeyer V, Einav
389 S, Jackson W, Doukas T, Paranjape S, Polacek C, dos Santos FB, Jalili R, Babrzadeh F,
390 Gharizadeh B, Grimm D, Kay M, Koike S, Sarnow P, Ronaghi M, Ding S-W, Harris E, Chow M,
391 Diamond MS, Kirkegaard K, Glenn JS, Fire AZ. 2010. Six RNA Viruses and Forty-One Hosts: Viral
392 Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems.
393 *PLoS Pathog* 6:e1000764.

394 18. Webster CL, Waldron FM, Robertson S, Crowson D, Ferrari G, Quintana JF, Brouqui J-M, Bayne
395 EH, Longdon B, Buck AH, Lazzaro BP, Akorli J, Haddrill PR, Obbard DJ. 2015. The Discovery,
396 Distribution, and Evolution of Viruses Associated with *Drosophila melanogaster*. *PLOS Biology*
397 13:e1002210.

398 19. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R. 2009. Complete viral
399 genome sequence and discovery of novel viruses by deep sequencing of small RNAs: A generic
400 method for diagnosis, discovery and sequencing of viruses. *Virology* 388:1–7.

401 20. Palatini U, Masri RA, Cosme LV, Koren S, Thibaud-Nissen F, Biedler JK, Krsticevic F, Johnston
402 JS, Halbach R, Crawford JE, Antoshechkin I, Failloux A-B, Pischedda E, Marconcini M, Ghurye J,
403 Rie A, Sharma A, Karagodin DA, Jenrette J, Gamez S, Miesen P, Masterson P, Caccone A,
404 Sharakhova MV, Tu Z, Papathanos PA, Van Rij RP, Akbari OS, Powell J, Phillip AM, Bonizzoni
405 M. 2020. Improved reference genome of the arboviral vector *Aedes albopictus*. *Genome Biol*
406 21:215.

407 21. Palatini U, Miesen P, Carballar-Lejarazu R, Ometto L, Rizzo E, Tu Z, van Rij RP, Bonizzoni M.
408 2017. Comparative genomics shows that viral integrations are abundant and express piRNAs in
409 the arboviral vectors *Aedes aegypti* and *Aedes albopictus*. *BMC Genomics* 18:512.

410 22. Suzuki Y, Frangeul L, Dickson LB, Blanc H, Verdier Y, Vinh J, Lambrechts L, Saleh M-C. 2017.
411 Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes Mosquito Genomes. *J Virol*
412 91:e00571-17.

413 23. Crava CM, Varghese FS, Pischedda E, Halbach R, Palatini U, Marconcini M, Gasmi L, Redmond
414 S, Afrane Y, Ayala D, Paupy C, Carballar-Lejarazu R, Miesen P, van Rij RP, Bonizzoni M. 2021.
415 Population genomics in the arboviral vector *Aedes aegypti* reveals the genomic architecture and
416 evolution of endogenous viral elements. *Mol Ecol* 30:1594–1611.

417 24. Whitfield ZJ, Dolan PT, Kunitomi M, Tassetto M, Seetin MG, Oh S, Heiner C, Paxinos E, Andino R.
418 2017. The Diversity, Structure, and Function of Heritable Adaptive Immunity Sequences in the
419 *Aedes aegypti* Genome. *Curr Biol* 27:3511-3519.e7.

420 25. Dezordi FZ, Vasconcelos CRDS, Rezende AM, Wallau GL. 2020. In and Outs of Chuviridae
421 Endogenous Viral Elements: Origin of a Potentially New Retrovirus and Signature of Ancient and
422 Ongoing Arms Race in Mosquito Genomes. *Front Genet* 11:542437.

423 26. Tassetto M, Kunitomi M, Whitfield ZJ, Dolan PT, Sánchez-Vargas I, Garcia-Knight M, Ribiero I,
424 Chen T, Olson KE, Andino R. 2019. Control of RNA viruses in mosquito cells through the acquisition
425 of vDNA and endogenous viral elements. *Elife* 8:e41244.

426 27. Ophinni Y, Palatini U, Hayashi Y, Parrish NF. 2019. piRNA-Guided CRISPR-like Immunity in
427 Eukaryotes. *Trends Immunol* 40:998–1010.

428 28. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data.
429 *Bioinformatics* 30:2114–2120.

430 29. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing
431 genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*
432 31:3210–3212.

433 30. Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning
434 sequence reads to genomic features. *Bioinformatics* 30:923–930.

435 31. Landgraf AJ, Lee Y. 2020. Dimensionality reduction for binary data through the projection of natural
436 parameters. *Journal of Multivariate Analysis* 180:104668.

437 32. Palatini U, Pischedda E, Bonizzoni M. 2022. Computational Methods for the Discovery and
438 Annotation of Viral Integrations. *Methods Mol Biol* 2509:293–313.

439 33. Tsuji J, Weng Z. 2016. DNApi: A De Novo Adapter Prediction Algorithm for Small RNA Sequencing
440 Data. *PLoS ONE* 11:e0164228.

441 34. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. 1.
442 *EMBnet.journal* 17:10–12.

443 35. Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features.
444 *Bioinformatics* 26:841–842.

445 36. Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of
446 short DNA sequences to the human genome. *Genome Biol* 10:R25.

447 37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000
448 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and
449 SAMtools. *Bioinformatics* 25:2078–2079.

450 38. Schulz MH, Zerbino DR, Vingron M, Birney E. 2012. Oases: robust de novo RNA-seq assembly
451 across the dynamic range of expression levels. *Bioinformatics* 28:1086–1092.

452 39. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.
453 BLAST+: architecture and applications. *BMC Bioinformatics* 10:421.

454 40. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or
455 nucleotide sequences. *Bioinformatics* 22:1658–1659.

456 41. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. *Nat*
457 *Methods* 12:59–60.

458 42. Baćci C, Beier S, Górska A, Huson DH. 2019. Introduction to the Analysis of Environmental
459 Sequences: Metagenomics with MEGAN. *Methods Mol Biol* 1910:591–604.

460 43. Sievert C. Interactive web-based data visualization with R, plotly, and shiny. <https://plotly-r.com/>.
461 Retrieved 1 August 2022.

462 44. Latreille AC, Milesi P, Magalon H, Mavingui P, Atyame CM. 2019. High genetic diversity but no
463 geographical structure of *Aedes albopictus* populations in Réunion Island. *Parasites Vectors*
464 12:597.

465 45. Li L, Liu W-H, Zhang Z-B, Liu Y, Chen X-G, Luo L, Ou C-Q. 2020. The effectiveness of early start
466 of Grade III response to dengue in Guangzhou, China: A population-based interrupted time-series
467 study. *PLoS Negl Trop Dis* 14:e0008541.

468 46. Hoshino K, Isawa H, Tsuda Y, Sawabe K, Kobayashi M. 2009. Isolation and characterization of a
469 new insect flavivirus from *Aedes albopictus* and *Aedes flavopictus* mosquitoes in Japan. *Virology*
470 391:119–129.

471 47. Kuwata R, Isawa H, Hoshino K, Tsuda Y, Yanase T, Sasaki T, Kobayashi M, Sawabe K. 2011.
472 RNA splicing in a new rhabdovirus from *Culex* mosquitoes. *J Virol* 85:6185–6196.

473 48. Charles J, Firth AE, Loroño-Pino MA, Garcia-Rejon JE, Farfan-Ale JA, Lipkin WI, Blitvich BJ, Briese
474 T. 2016. Merida virus, a putative novel rhabdovirus discovered in *Culex* and *Ochlerotatus* spp.
475 mosquitoes in the Yucatan Peninsula of Mexico. *J Gen Virol* 97:977–987.

476 49. Parry R, Asgari S. 2018. *Aedes Anphevirus*: an Insect-Specific Virus Distributed Worldwide in
477 *Aedes aegypti* Mosquitoes That Has Complex Interplays with Wolbachia and Dengue Virus
478 Infection in Cells. *J Virol* 92:e00224-18.

479 50. Sanborn MA, Klein TA, Kim H-C, Fung CK, Figueroa KL, Yang Y, Asafo-adjei EA, Jarman RG,
480 Hang J. 2019. Metagenomic Analysis Reveals Three Novel and Prevalent Mosquito Viruses from
481 a Single Pool of *Aedes vexans nipponii* Collected in the Republic of Korea. *Viruses* 11:222.

482 51. Zhang X, Huang S, Jin T, Lin P, Huang Y, Wu C, Peng B, Wei L, Chu H, Wang M, Jia Z, Zhang S,
483 Xie J, Cheng J, Wan C, Zhang R. 2018. Discovery and high prevalence of Phasi Charoen-like virus
484 in field-captured *Aedes aegypti* in South China. *Virology* 523:35–40.

485 52. Lara Pinto AZ de, Santos de Carvalho M, de Melo FL, Ribeiro ALM, Morais Ribeiro B, Dezengrini
486 Shlessarenko R. 2017. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado,
487 Midwestern Brazil. *PLoS One* 12:e0187429.

488 53. Atoni E, Zhao L, Hu C, Ren N, Wang X, Liang M, Mwaliko C, Yuan Z, Xia H. 2020. A dataset of
489 distribution and diversity of mosquito-associated viruses and their mosquito vectors in China. *Sci
490 Data* 7:342.

491 54. Pfeffer M, Dilcher M, Tesh RB, Hufert FT, Weidmann M. 2013. Genetic characterization of Yug
492 Bogdanovac virus. *Virus Genes* 46:201–202.

493 55. Joosten J, Overheul GJ, Van Rij RP, Miesen P. 2021. Endogenous piRNA-guided slicing triggers
494 responder and trailer piRNA production from viral RNA in *Aedes aegypti* mosquitoes. *Nucleic Acids
495 Res* 49:8886–8899.

496 56. Poirier EZ, Goic B, Tomé-Poderti L, Frangeul L, Boussier J, Gausson V, Blanc H, Vallet T, Loyd H,
497 Levi LI, Lanciano S, Baron C, Merkling SH, Lambrechts L, Mirouze M, Carpenter S, Vignuzzi M,
498 Saleh M-C. 2018. Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA
499 Viruses Modulates Antiviral Immunity in Insects. *Cell Host Microbe* 23:353-365.e8.

500 57. Nag DK, Kramer LD. 2017. Patchy DNA forms of the Zika virus RNA genome are generated
501 following infection in mosquito cell cultures and in mosquitoes. *J Gen Virol* 98:2731–2737.

502 58. Nag DK, Brecher M, Kramer LD. 2016. DNA forms of arboviral RNA genomes are generated
503 following infection in mosquito cell cultures. *Virology* 498:164–171.

504 59. Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V, Blanc H, Schemmel-Jofre N, Cristofari
505 G, Lambrechts L, Vignuzzi M, Saleh M-C. 2016. Virus-derived DNA drives mosquito vector
506 tolerance to arboviral infection. *Nat Commun* 7:12410.

507 60. He W, Chen Y, Zhang X, Peng M, Xu D, He H, Gao Y, Chen J, Zhang J, Li Z, Chen Q. 2021. Virome
508 in adult *Aedes albopictus* captured during different seasons in Guangzhou City, China. *Parasit
509 Vectors* 14:415.

510 61. Palatini U, Contreras CA, Gasmi L, Bonizzoni M. 2022. Endogenous viral elements in mosquito
511 genomes: current knowledge and outstanding questions. *Curr Opin Insect Sci* 49:22–30.

512 62. Macias VM, Palatini U, Bonizzoni M, Rasgon JL. 2020. Leaning Into the Bite: The piRNA Pathway
513 as an Exemplar for the Genetic Engineering Need in Mosquitoes. *Front Cell Infect Microbiol*
514 10:614342.

515 63. Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N, Tesh R, Delwart E. 2017. Genomes of
516 viral isolates derived from different mosquitos species. *Virus Research* 242:49–57.

517 64. Fujita R, Kato F, Kobayashi D, Murota K, Takasaki T, Tajima S, Lim C-K, Saijo M, Isawa H, Sawabe
518 K. 2018. Persistent viruses in mosquito cultured cell line suppress multiplication of flaviviruses.
519 *Heliyon* 4:e00736.

520 65. Frangeul L, Blanc H, Saleh M-C, Suzuki Y. 2020. Differential Small RNA Responses against Co-
521 Infecting Insect-Specific Viruses in *Aedes albopictus* Mosquitoes. 4. *Viruses* 12:468.

522 66. Bishop C, Parry R, Asgari S. 2020. Effect of Wolbachia wAlbB on a positive-sense RNA negev-like
523 virus: a novel virus persistently infecting *Aedes albopictus* mosquitoes and cells. *J Gen Virol*
524 101:216–225.

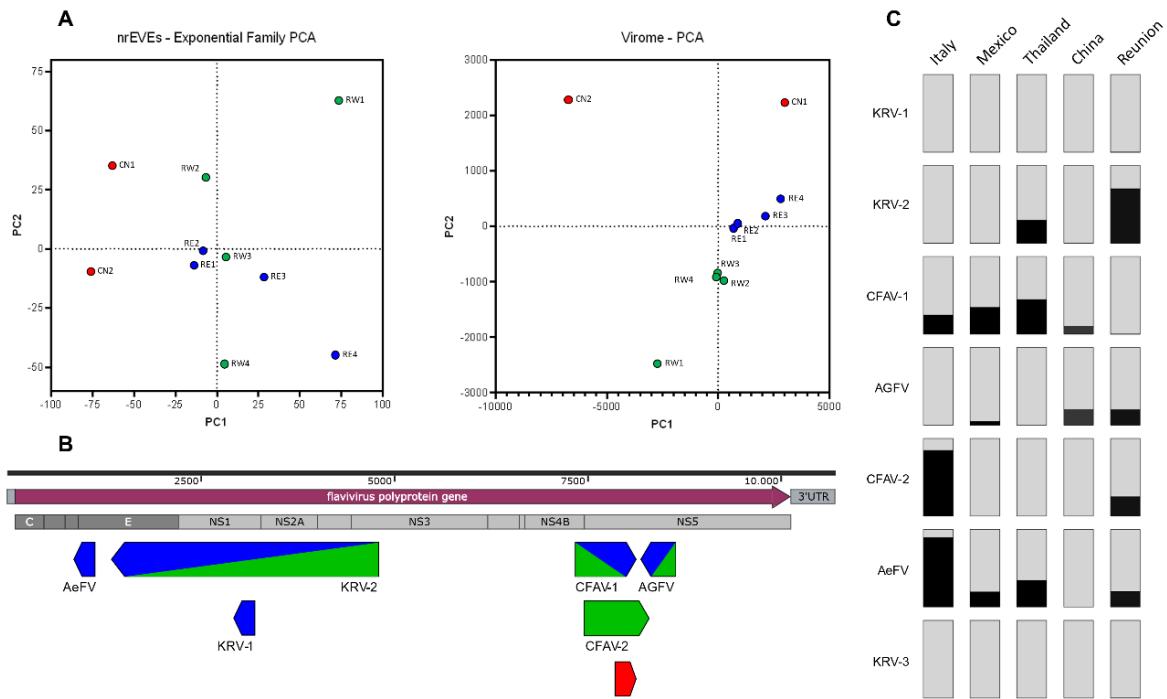
525 67. Li C-X, Shi M, Tian J-H, Lin X-D, Kang Y-J, Chen L-J, Qin X-C, Xu J, Holmes EC, Zhang Y-Z. 2015.
526 Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-
527 sense RNA viruses. *eLife* 4:e05378.

528 68. Käfer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, Jones TC, Liu S, Zhou
529 X, Middendorf M, Junglen S, Misof B, Drosten C. 2019. Re-assessing the diversity of negative
530 strand RNA viruses in insects. *PLOS Pathogens* 15:e1008224.

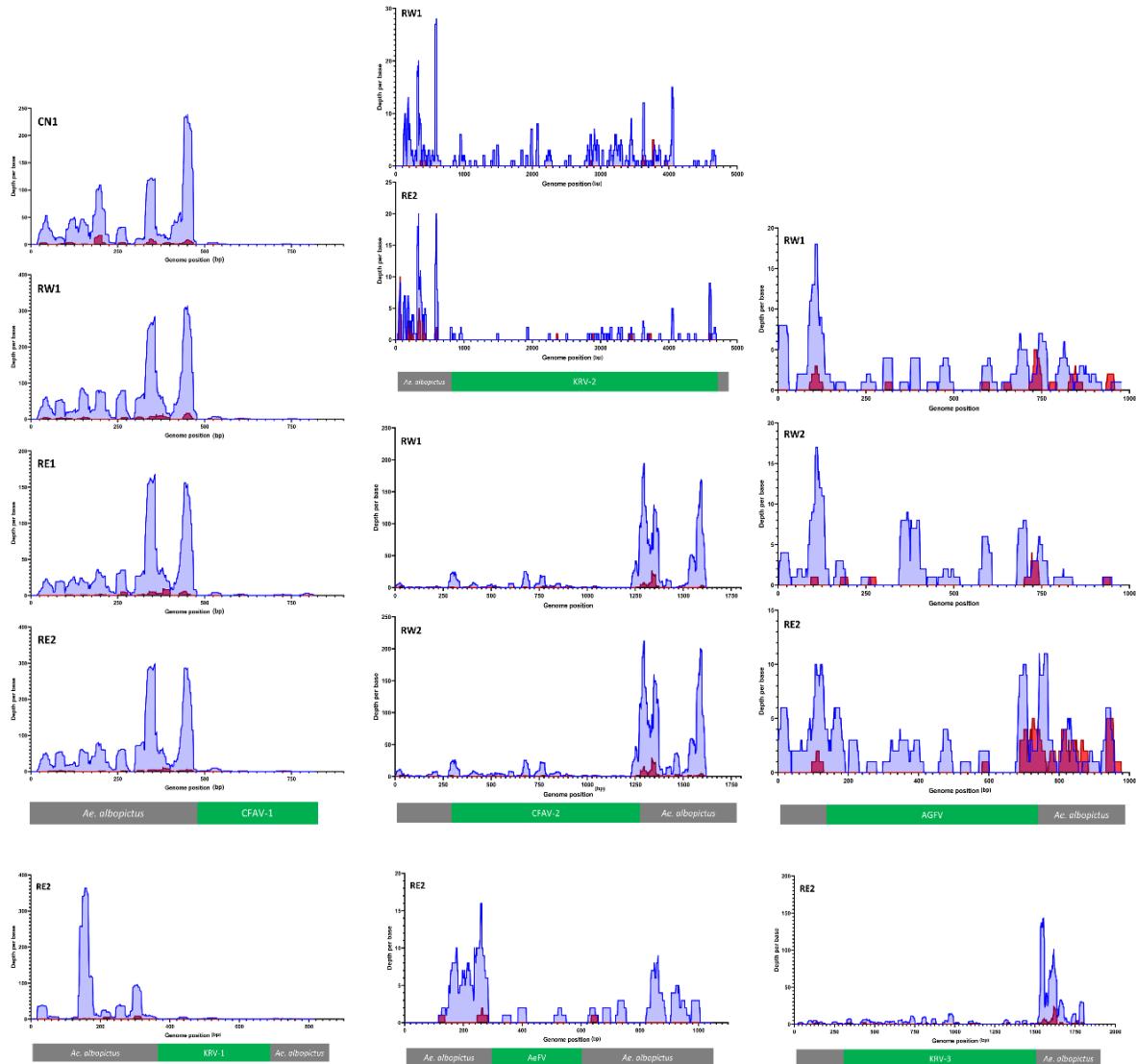
531

532

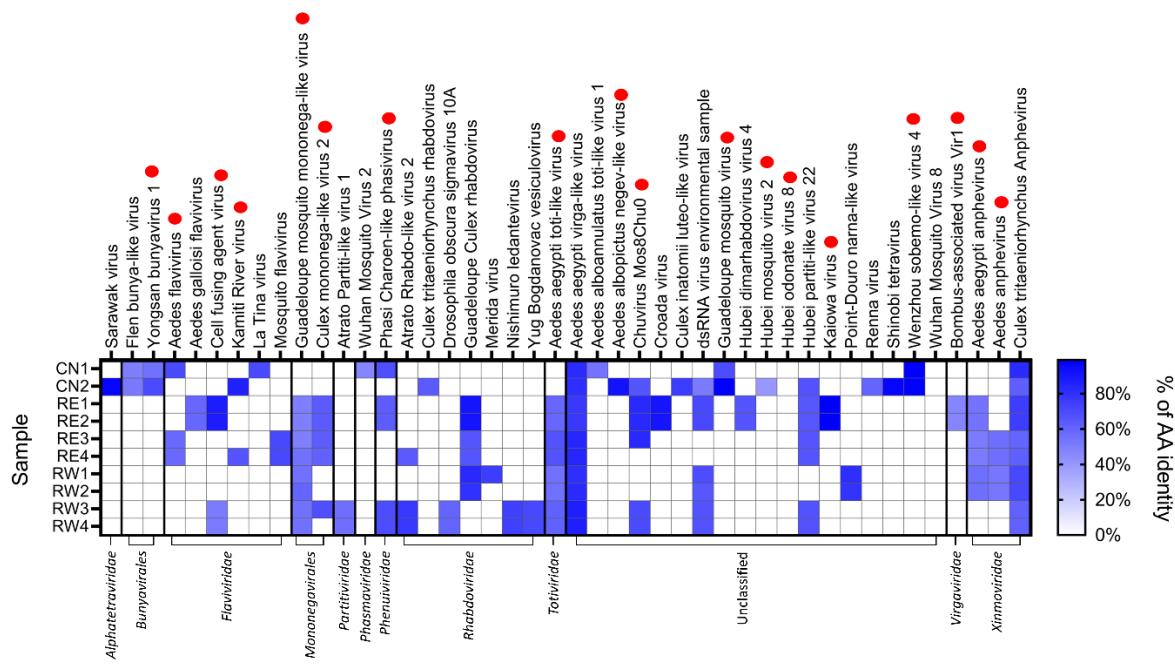
533


FIGURES

534


535

536 **Fig. 1 Collection sites of mosquitoes in Guangzhou (China) and La Réunion (France).** In Southern China,
537 two localities, CN1 and CN2, were sampled. In La Réunion, we sampled in four localities, two on the East part of
538 the island (RE) and two on the West (RW). For each site two samples, each of 30 mosquitoes, were analyzed.


539
540 **Fig. 2 nrEVEome and virome of wild *Ae. albopictus* mosquitoes from China and La Reunion Island.** (A)
541 Principal Component Analysis based on the presence/absence of nrEVEs across samples or assembled viral
542 contigs on the left and right panels, respectively. (B) Schemes of newly identified viral integrations with respect to
543 the genome of a representative *Flavivirus*. Samples or new viral integrations from China are in red. Samples or
544 new viral integrations from samples of the East and West side of La Reunion are in blue and green, respectively.
545 (C) Bar plots showing the frequency of each newly identified viral integration in mosquitoes from Crema (Italy),
546 Tapachula (Mexico), Chiang-Mai (Thailand) and Canton (China).

547

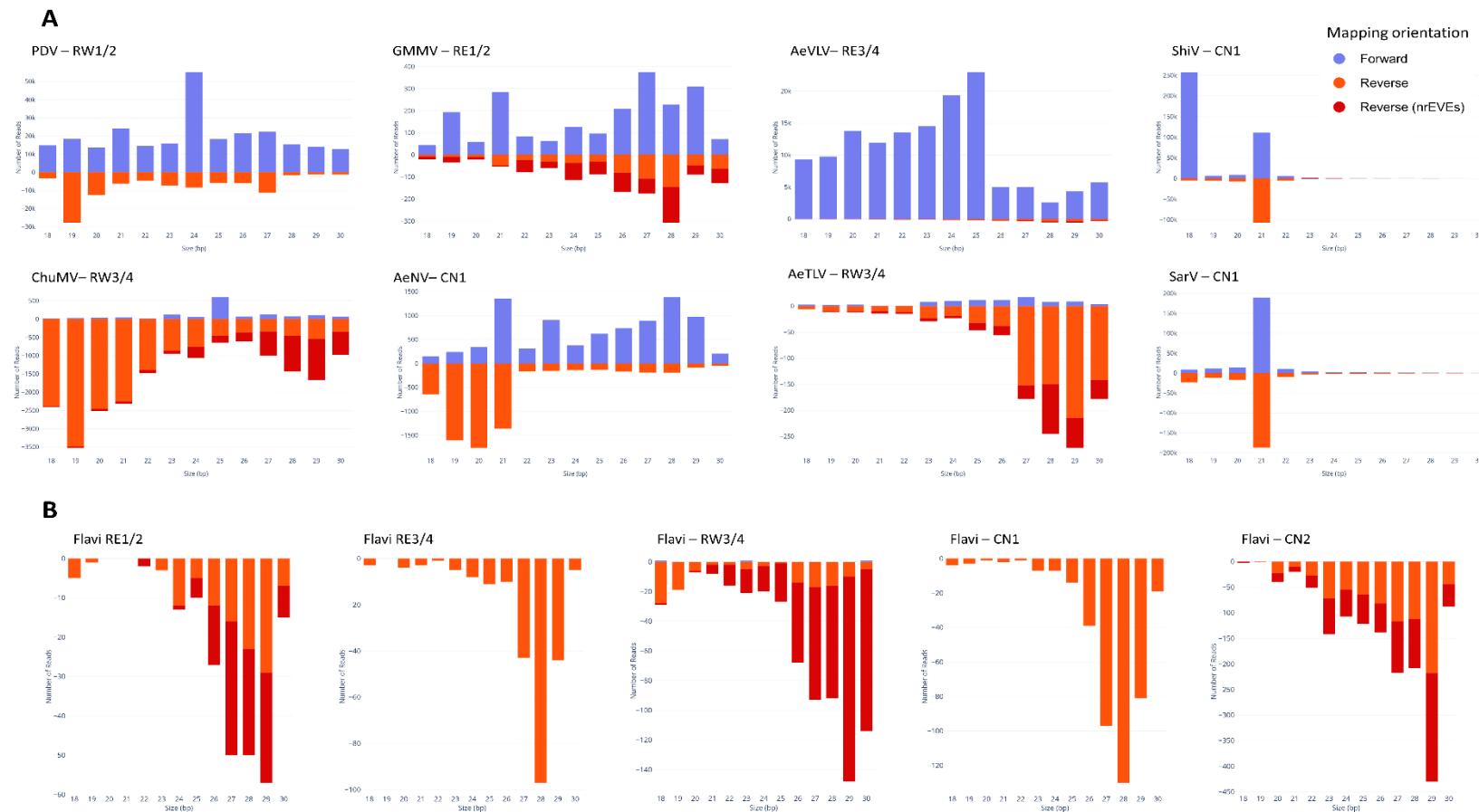

548

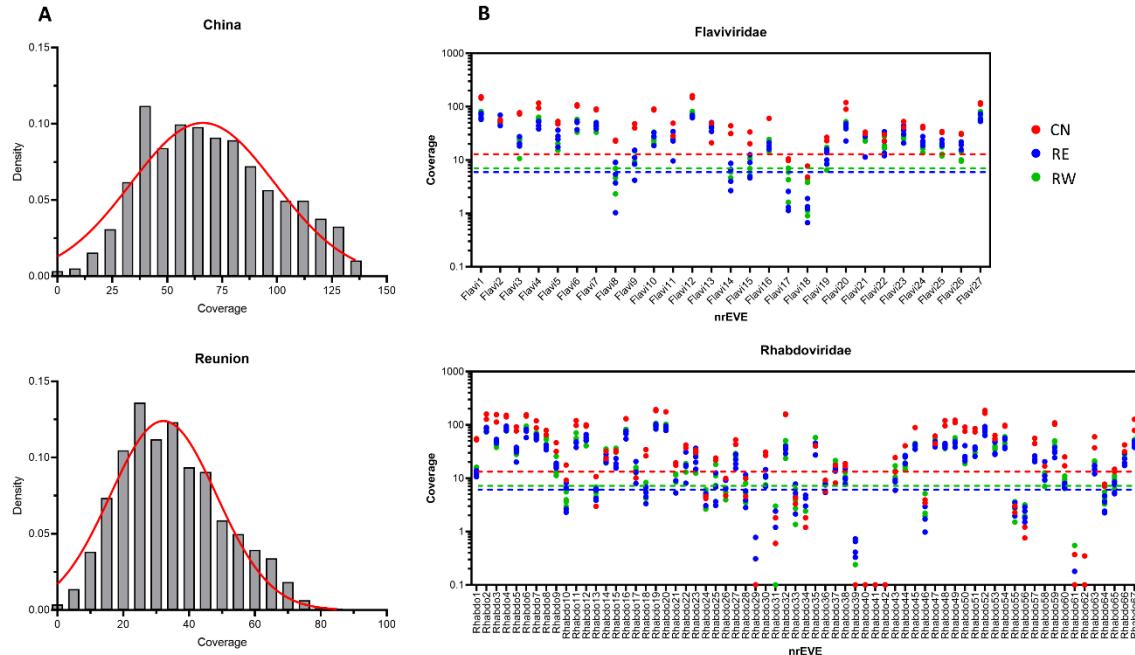
Fig. 3 Small RNA coverage profile of newly identified nrEVEs. Coverage was calculated for siRNA/miRNAs (20-22nt) and piRNAs (26-30nt) and plotted on the DNA sequence of newly identified nrEVEs. Read peaks represent siRNA/miRNA coverage, while blue peaks piRNA coverage. Abbreviation on the left inside of each panel indicate the samples in which the nrEVEs was annotated and whose smallRNA were used to assess the profile.

554
555
556
557
558

Fig. 4 Diversity of viral contigs assembled from small RNAs of *Ae. albopictus* mosquitoes. Heat map showing the aminoacidic identity of assembled viral contigs with respect to cognate viruses. Viral contigs are shown in samples in which they were identified. Red dots indicate viral species which have been previously detected in wild-collected *Aedes* mosquitoes (9).

559

560


561

562

563

564

Fig. 5 Profile of nucleotide lengths of small RNA reads mapping on viral contigs. (A) Profile of reads mapping on the 8 longest annotated viral contigs. (B) Profile of reads mapping to flaviviral contigs. piRNA -size read which also map to nrEVes are shown in dark red. On top of each panel the viral contig along with the sample name are indicated. PDV=Point-Douro narnavirus; GMMV=Guadeloupe mosquito mononega-like virus; AeVLV=Aedes aegypti virga-like virus; ShiV=Shinobi tetravirus; ChuMV=Chuvirus Mos8Chu0; AeNV=Aedes albopictus negev-like virus; AeTLV=Aedes aegypti toti-like virus; SarV=Sarawak Virus.

565
566
567
568
569
570

Fig. S1. Presence or absence of AalbF2 annotated nrEVEs in samples from China and La Reunion. (A) Average distribution of reads coverage for 359 BUSCO genes calculated from the WGS mosquito data from China and La Reunion described in the study. (B) WGS reads coverage for *flaviviridae*- and *rhabdoviridae*-derived annotated nrEVEs in samples from China (CN) and the Eastern and Western sides of La Reunion Island (RE and RW, respectively).