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Abstract

Epilepsy is a serious neurological disorder characterised by a tendency to have recurrent,
spontaneous, seizures. Classically, seizures are assumed to occur at random. However,
recent research has uncovered underlying rhythms both in seizures and in key signatures
of epilepsy - so-called interictal epileptiform activity - with timescales that vary from
hours and days through to months. Understanding the physiological mechanisms that

determine these rhythmic patterns of epileptiform discharges remains an open question.

Many people with epilepsy identify precipitants of their seizures, the most common of
which include stress, sleep deprivation and fatigue. To quantify the impact of these
physiological factors, we analysed 24-hour EEG recordings from a cohort of 107 people
with idiopathic generalized epilepsy. We found two subgroups with distinct distributions
of epileptiform discharges: one with highest incidence during sleep and the other during
day-time. We interrogated these data using a mathematical model that describes the

transitions between background and epileptiform activity in large-scale brain networks.

This model was extended to include a time-dependent forcing term, where the
excitability of nodes within the network could be modulated by other factors. We
calibrated this forcing term using independently-collected human cortisol (the primary
stress-responsive hormone characterised by circadian and ultradian patterns of
secretion) data and sleep-staged EEG from healthy human participants. We found that
either the dynamics of cortisol or sleep stage transition, or a combination of both, could
explain most of the observed distributions of epileptiform discharges. Our findings
provide conceptual evidence for the existence of underlying physiological drivers of
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rhythms of epileptiform discharges. These findings should motivate future research to
explore these mechanisms in carefully designed experiments using animal models or
people with epilepsy.

Author summary

65 million people have epilepsy worldwide. Many of these people report specific triggers
that make their seizures (the primary symptom of epilepsy) more likely. Here, we use a
mathematical model to understand the relationship between possible triggers and
rhythms in epileptiform activity observed across the day.

The mathematical model describes the activity of connected brain regions, and how
the excitability of these regions can change in response to different stimuli. Based on
data collected from people with idiopathic generalized epilepsy, we identify transitions
between sleep stages and variation in concentration of the stress-hormone cortisol as
candidate factors that influence how likely it is for epileptiform activity to occur. By
including those factors into the model, we show they can explain most of the daily
variability. More broadly, our approach provides a framework for better understanding
what factors drive the occurrence of epileptiform activity and offers the potential to
suggest experiments that can validate model predictions.

Introduction

Epilepsy is a common neurological disorder, affecting 65 million people globally [1H3].
The primary symptom of epilepsy — seizures — is believed to occur as a result of
disruptions in the level of neuronal excitability. In particular, mechanisms that govern
the normal balance between excitation and inhibition can become compromised causing
parts of the brain to become hyperexcitable, which can be characterised at different
scales. For example, at the cellular level it is strongly associated with the so-called
paroxysmal depolarization shift (PDS) of cortical pyramidal cells [4,5]. At the
macroscale, it manifests in pathological electrical activity, captured using
electroencephalography (EEG), called epileptiform discharges (EDs). EDs can be
thought of as an umbrella term that encompasses both interictal (i.e., between seizures)
epileptiform activity (e.g., spikes) as well as ictal activity (i.e., seizures).

Epileptiform activity has classically been thought to occur at random, but recent
studies have presented compelling evidence for underlying rhythmicity in EDs [6-9].
Although such cycles have been shown to follow several temporal scales, including
ultradian, circadian, multidien and even circannual rhythms [10,[11], relatively little is
currently known about the mechanisms governing these rhythms and how intrinsic and
extrinsic factors can modulate the likelihood of EDs. This limits the extent to which
this knowledge of rhythmicity can be used for clinical benefit.

Many people with epilepsy identify triggers that appear to make them more likely,
and some of these triggers are physiological factors known to influence cortical
excitability. The most common of these are stress, sleep, hormones, and
medication [12H17].

In this study, we consider some of these factors as candidate mechanisms that
modulate the likelihood of EDs, and therefore provide insight into the mechanisms
underlying observed distributions of EDs [17].

The mammalian stress-response is driven by circulating glucocorticoid hormones:
predominantly cortisol in humans and corticosterone in rodents, herein CORT.
Ultradian and circadian rhythms of CORT are controlled by the
hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine axis, wherein a delayed
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negative-feedback loop mediates hormone secretion from the pituitary and adrenal
glands |18]. The impact of CORT on brain function is well established. For example,
rapid changes in CORT secretion not only have major effects on glucocorticoid receptor
activation in the brain [19] but also major effects on cognition [20]. Furthermore, Karst
et al. [21] demonstrated that neuronal excitability is rapidly and reversibly determined
by changes in CORT levels. At the macroscale, Schridde et al. [22] observed a CORT
dose-dependent increase in EDs in the genetically in-bred Wistar Albino Glaxo/Rij
(WAG-Rij) model of human idiopathic generalized epilepsy (IGE). A similar relationship
has been found more recently in people with stress-sensitive focal epilepsies [23].

One of the most direct ways of measuring human cortical excitability is via
transcranial magnetic stimulation (TMS), with motor and/or EEG responses taken as a
proxy for excitability. With this approach, prolonged wakefulness leading to sleep
deprivation has been shown to increase excitability or alter the excitatory-inhibitory
balance of the supplementary motor cortex [24-26]. In addition, TMS-derived cortical
excitability is also modulated by circadian phase, such that excitability is lowest in the
early evening prior to bedtime, and peaks at the end of the biological night [27]. These
observations have not always been consistent [28] with some suggestion of differences
between participants with and without epilepsy [28]. These results are generally
consistent with the changing probability of EDs associated with sleep deprivation
and/or fluctuations in the circadian rhythm [29,[30]. The probability of EDs also varies
through the sleep cycle, with non-rapid eye movement (NREM) sleep generally having a
facilitatory effect, and REM sleep an inhibitory effect [30H32]. The latter observation is
consistent with the increase in TMS-defined excitability associated with selective REM
sleep deprivation [33].

However, the complexity of these interrelating factors, alongside the difficulty of
simultaneously measuring their physiological correlates, makes unpacking them
challenging. In this paper, we analysed distributions of EDs from 107 people with IGE
collected over 24-hours. We found evidence to support the existence of two primary
groups with different mechanisms driving the overnight likelihood of EDs and their
likelihood during the day. To explore possible contributing factors underpinning these
different mechanisms we developed a mathematical modelling framework that:

a) describes transitions between background states and EDs;

b) relates excitability to the likelihood of these transitions;

¢) considers the impact of intrinsic and extrinsic factors on excitability.

We calibrated model parameters using independently collected 24-hour hormone
profiles from 6 healthy participants, and sleep staged polysomnography data from 42
healthy participants. We used synthetic minority oversampling to account for
discrepancies in group size, enabling us to generate synthetic distributions of EDs. We
explored the goodness of fit between these model derived distributions and those
observed in the cohort of people with IGE. Our mathematical analysis revealed evidence
to support the view that the likelihood of EDs is modulated by both transitions in sleep
stages, as well as by ultradian fluctuations in cycling CORT levels.

Results

We analysed distributions of EDs derived from 24-hour EEG recordings from 107
subjects with IGE (see Materials and Methods for a detailed description of this
data-set).
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Variability in the circadian distribution of epileptiform
discharges

We found that the median number of EDs over 24 hours was approximately 29,
although several individuals had more than 200 events (Fig|l} Panel A and B).
Examination of normalised ED patterns on an hourly basis (i.e., for each individual, the
number of EDs at each hour was divided by their total number of EDs and we then

normalised over the cohort), suggested that the likelihood of EDs varied across the day.
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Fig 1. ED distribution in people with IGE. (A) Number of EDs from 107
subjects with idiopathic generalized epilepsy (IGE). (B) Boxplot shows basic sample
statistics (minimum, lower quartile, median, upper quartile and maximum) of the
number of EDs. (C) normalised EDs rate per hour.

To investigate the possible temporal distribution of EDs across the 24-hour day
(herein referred to as the ‘circadian distribution’), we first considered similarities
between subjects. We used MATLAB R2021a (MathWorks Inc., Natick, MA) to
compute the cross-correlation coefficients of time series representing the individual
hourly ED rate. This leads to a correlation matrix C', with entries C;; corresponding to
the similarity between the pattern of EDs in subject ¢ and in subject j (Fig[2 A). The
closer the value of Cj; to 1, the more similar the distribution of EDs of subject ¢ and
subject j. Subsequently, we clustered subjects according to their correlation coefficients
using k-means clustering and the Calinski-Harabasz criterion to optimise the
number of clusters (see . This analysis revealed two primary groups within
the overall cohort of people with IGE that displayed different temporal ED distribution
patterns: Group 1 of 66 individuals and Group 2 of 41 individuals (Fig[2} B).
Importantly, the identified clusters were found to be consistent across a range of bin

widths (45-90 minutes) (see [S2 Appendix]).
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Fig 2. IGE subjects organised based on different circadian ED distribution
patterns. (A) A pairwise cross-correlation matrix (of size 107 x 107) was calculated
using ED hourly rate patterns in order to establish similarities within the IGE cohort.
(B) Group 1 (blue, N = 66) and Group 2 (red, N = 41) were identified based on the
similarities of hourly ED rate.
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We found that the groups identified by our cluster analysis were not caused by
imbalances in the type of epilepsy. Specifically, individuals with IGE were classified into
childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic
epilepsy (JME), generalized epilepsy with generalized tonic-clonic seizures only
(GTCSO), and genetic generalized epilepsy unspecified (GGEU) according to the
criteria published by the ILAE [36]. We fitted a linear model (using R version 4.0.2) to

assess the dependence of the groups on epilepsy type (see[S3 Appendix| for details),
finding no evidence of an association (p = 0.193: two-tailed ¢-test).

Candidate mechanisms impacting the distributions: sleep and
CORT

We explored candidate mechanisms that could explain differences in ED distributions
between the two groups identified by our cluster analysis. The (empirical) likelihood of
EDs in Group 1 (Fig[2| B top) displayed a significant increase in the propensity for EDs
during the night and lower levels during day-time. In contrast, the likelihood of EDs in
Group 2 (Fig[2] B bottom) displayed greater variation during waking hours.

To assess the impact of inter-individual timing of sleep and its duration on ED
distributions, we adjusted time within each subject such that t = 0 corresponded to
either their sleep onset or sleep offset. The resulting distributions are presented in Fig
Panels A-D. For Group 1, we found that the ED rate was higher for approximately 9
hours starting at habitual sleep onset (Panel A), while it was relatively low during the
rest of the day. In Panel B, we observed the same trend but shifted to the 9 hours
before waking. For Group 2 (Fig 3} C and D) we did not find increased levels of EDs
during sleep; instead, the distribution suggests a potential daytime ultradian rhythm.

To quantify this more explicitly, we introduced the parameter F;, ¢ = 1,2 to measure
the fraction of EDs occurring during sleep for each group:

N,
1 ~ EDg ;

=Y 284 1
N; = E Dy, (1)

Here Nj is the number of subjects in Group i, E'Dg ; and E Dy ; are the numbers
of ED occurrences for the j** subject in the i*" group occurring during during the
individual’s sleep time and across the full 24-hour period, respectively. We found
F1 = 0.8, suggesting that 80% of EDs in Group 1 were clustered during the sleep period.
In contrast Fy is 0.37, suggesting that in Group 2 just over a third of discharges occur
during the sleep period, consistent with the 8-9 hour sleep time (i.e., a third of 24-hour).
Interestingly, for Group 2 we found three peaks of similar height around 8 hours prior to
sleep, sleep onset, and sleep offset (Fig|3, C). We found the equivalent pattern when
aligning by sleep offset (Fig|3} D). A similar pattern can be observed in the levels of
plasma CORT over 24-hours, which displays a circadian rhythm that reaches a peak
soon after awakening and a nadir during the night [37}38].

Mathematical modelling and the relationship between sleep,
CORT and the distribution of EDs

To explore the hypothesis that sleep and CORT impact the distribution of EDs, we used
a computational modelling framework. Within this framework, we assessed how changes
to the overall excitability of brain regions impacted the overall likelihood of in silico
EDs (see Materials and Methods for a detailed description of the model).

For Group 1, we used sleep staged polysomnography data collected from healthy
controls (see Materials and Methods) as an external input to the excitability of the
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Fig 3. Impact of timing of sleep and its duration on ED distributions.
Epileptiform discharges for Group 1 (top row) and Group 2 (bottom row) with time
normalised such that ¢ = 0 corresponds with sleep onset (A and C) and with sleep offset
(B and D). The transparent grey box highlights the average habitual sleep period.

model Aex. In Fig[d Panel A we compared the model output for a virtual cohort of 66
individuals (in green) with the observed ED distributions for Group 1 (in blue).

The model predicted a sharp increase in ED occurring during the first part of the
sleep period, followed by a sharp decrease in the morning. The slow reduction in the
number of EDs during the night is consistent with the observation that NREM sleep is
predominant during the first part of the sleep, while REM is predominant during the
second half [39]. Although the model captured most of the Group 1 ED variability
(R?=0.9), it failed to capture the bimodal distribution in ED rate shown in the
overnight data. It further failed to capture daytime variability in the ED rate,
suggesting the presence of at least a second mechanism governing the ED propensity.

For Group 2, we used levels of CORT measured from healthy controls over the
course of 24 hours (see Materials and Methods) as an external input to the excitability
of the model Aeyi. The model prediction for a virtual cohort of 41 individuals is shown
in Fig[4] (in green). Comparing the model result with the data (in red), we found that
the model captures the morning and afternoon peaks displayed by Group 2, although
the latter occurs about an hour earlier in the model. We also note that the simulation
does not account for the evening peak around 21:00. The overall variability explained
by CORT in Group 2 is ~60% (R%=0.59).

Combined mechanism: sleep and CORT

For each group, we identified candidate mechanisms that could explain the majority of
the observed distribution of EDs. However, we found that the model failed to capture
some variability. For example in Group 1 the bimodal distribution during sleep, as well
as some variability during the day, was not fully explained by the model. We therefore
explored how combining the mechanisms of sleep and CORT impacted the ED
distribution (see Materials and Methods). The strength of the influence of sleep and
CORT is given by the parameters ps and pc, respectively. Each parameter can vary
from 0 (no impact on ED occurrence) to 1.5 (strong impact on ED occurrence). We
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Fig 4. Model results compared with IGE data. (A) Histogram of EDs from
Group 1 with IGE (blue) and histogram of EDs simulated using the model with At
defined to mimic the different brain excitability during sleep stages (green). (B)
Histogram of EDs from Group 2 with IGE (red) and histogram of EDs simulated using
the model with Ayt defined to mimic the impact of CORT on the brain excitability
(green).

used residual sum of squares (RSS) to identify the best fit (see Fig [5| and
for R?).

A Group 1 B Group 2
100
100 100
80
R 50 50 60
= z
40
0 0
15 15 20
0.5 0 0.5 0
0 15 ! 03 0 s ! 03 ’
ps pC ps pc

Fig 5. RSS values for the combined mechanism. Values of the residual sum of
squares (RSS) computed over a grid of values of ps and pc for Group 1 (A) and
Group 2 (B).

In Group 1, we found the best fit (lowest RSS values) was obtained when ps, pc > 0
(Panel A). This result is consistent with our previous observation that sleep can explain
the overnight peaks in EDs, with the contribution of CORT explaining variability
during the day. This result suggests the coexistence of the two mechanisms (sleep and
CORT) in Group 1. Fig |§| shows the model output corresponding to the lowest RSS for
this group, which is when both sleep and CORT terms are present with pg = 1 and
pc = 1.2. Combining these mechanisms increases the explained variability from 90%
(only sleep) to 95% (R? = 0.95).

Conversely, the lowest values of RSS in Group 2 were obtained when ps = 0 (Fig [5)),
suggesting that the best fit is obtained when CORT is the sole mechanism considered in
the model (as in Fig @ Panel B). Although additional mechanisms could be considered
in explaining the remaining variance using this computational framework it is important
to recognize the relatively modest sample-size of the remaining subgroups combined

with the possibility of true random events (see [S5 Appendix]).

Discussion

In this study, we provide a computational framework for assessing how the likelihood of
epileptiform discharges is impacted by different physiological mechanisms and processes,
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Fig 6. Best model fit for Group 1 compared with IGE data. Histogram of
EDs from Group 1 with IGE (blue) and histogram of EDs simulated using the model
with Aext defined to mimic the impact of the combined mechanism (sleep and CORT)

on excitability (green). In this simulation, pg = 1 and pc = 1.2.

such as sleep and stress. First, a data-driven analysis of the distributions of epileptiform
activity from a large cohort of people with generalized epilepsies revealed the presence
of two distinct groups within this cohort. To explain the underlying differences between

these groups, we used a phenomenological mathematical model for simulating the

activity of brain networks and excitability. Using this framework, we found that the
patterns in the first group (Group 1) are strongly correlated with sleep, whereas the
daily changes in ED likelihood in the second group (Group 2) can partially be explained
by CORT. This framework provides an intuitive way of assessing the impact of external
factors (e.g. sleep, stress, medication) on the overall likelihood of epileptiform activity,

and can be used in the context of future experimental studies.

A data-driven approach was applied to the histograms of epileptiform discharges
derived from 107 subjects with generalized epilepsies. First, we found that correlation
and cluster analysis suggested the presence of two distinct groups within the overall
cohort (of size 66 and 41 respectively). These two groups were not aligned with the
clinical sub-types of IGE. Determining the periods of maximum ED likelihood in the

two groups suggested sleep stages and CORT levels as candidate drivers for these

ED

distributions. EDs are increasingly understood as emerging from brain networks, with
alterations to both the connectivity between brain regions, as well as the dynamics
within regions, contributing to this emergence . In this regard, both sleep stage
and levels of CORT have been shown to impact both functional connectivity and
cortical excitability [44]45]. Several studies have shown the correlation between sleep

and epileptiform discharges and how vigilance states may influence the

likelihood of EDs in subjects with IGE . CORT is the main stress hormone in

humans and its production and secretion are controlled by the

hypothalamic-pituitary-adrenal (HPA) axis, the primary stress response system . In

stressful situations, the activity of the HPA axis increases, resulting in a higher

secretion of CORT. In unstressed, basal conditions, cycling levels of CORT rise and fall
over the day, with characteristic ultradian pulses . This finding is consistent with
the literature and self-reported data showing ED frequency increasing during the night

time, early in the morning, and in stressful situations.
To investigate the impact of sleep and CORT on the ED likelihood during the

day,

we employed a phenomenological mathematical model to simulate brain excitability
when perturbed by those external forces. Unlike in previous works where the variation
of the brain excitability was constant or perturbed by a fixed constant , this

model describes cortical excitability as a dynamical variable that is modulated by

dynamic external factors, such as sleep or CORT. We used sleep stages and CORT

levels collected from healthy subjects to inform the dynamics of the variable
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representing the status of brain activity. However, in future work, the analysis should
include CORT levels and sleep stage data derived from the EEG from the same
individual, given that both of these variables show considerable inter-individual
variability. Despite this limitation, our work shows a good fit between our model
simulations and the observations. Indeed, we find that sleep accounts for 90% of the
variability in Group 1 (R? = 0.9) and CORT for ~60% (R? = 0.59) in Group 2.

Importantly, sleep alone cannot account for the changes in ED likelihood during
wakefulness observed in Group 1. Furthermore, the model predicts a reduction in ED
likelihood during the sleep time after an initial sharp increase during the first hours.
This effect can be explained by the fact that NREM sleep, which is positively correlated
to an increase of EDs, is predominant during the first third of the sleep period.
However, the data shows an increase in ED occurrence before waking, which the model
simulations fail to capture. Given that the level of CORT is known to increase around
waking, this result suggests a combined effect of sleep and CORT. This result is
quantitatively highlighted by the improvement in the accuracy of our model prediction
when a combination of sleep and CORT have been considered and by the high
percentage of variability explained by the combined model (95%, R? = 0.95). It is
important to emphasise that we only considered linear combinations, and future work
could investigate a richer class of non-linear interactions and effects, especially given
that sleep and stress themselves interact. This interaction may potentially lead to
non-linear impacts on the likelihood of EDs.

Our model predicts peaks occurring during the day, for example one around 13:00
and one around 19:00, in Group 2. Those two peaks seem to occur a couple of hours
earlier in the model than in the IGE cohort. The reason for such behaviour requires
further investigation. One explanation could be additional physiological or behavioural
drivers that we have not yet accounted for. Alternatively, it is important to highlight
that CORT levels were measured in an independent control cohort. A future study
would critically include simultaneous recordings of EEG and CORT, as well as detailed
summaries of any anti-seizure treatment (e.g. timing and dose).

In summary, we provide a mathematical model as a tool to examine the role of
external factors on the modulation of ED likelihood. We provide quantitative evidence
that underlying physiological modulators for ED events exist. We identified sleep and
CORT as such modulators by comparing our model predictions with data on ED events
collected from IGE patients. Our choice of such factors is guided by the ED distribution
in the EEG data and by previous studies investigating sleep and CORT, and the
influence they have over the cortical excitability dynamics. Using only these two
processes, we are able to account for the majority of the variability in the two groups.
However, our results do not exclude other potential mechanisms affecting cortical

excitability during the day, such as sleep deprivation or anti-seizure medication [27}29].

Furthermore, other factors showing circadian rhythms, such as melatonin production or
glucose levels, have also been shown to impact seizure incidence [50,/51,51L[52]. Further
research is needed to fully understand the overall mechanism underlying the modulation
of ED events. In particular, simultaneous recordings of EEG and those factors are
necessary to overcome the high intra- and inter-individual variability of the latter.
Moreover, measurements should be taken from the same individual over prolonged
periods, which would then inform the model framework (in particular the network
structures and the excitability dynamics).

Ultimately, the modelling approach presented in this paper provides a framework to
better understand what drives the occurrence of epilepsy-related activity observed in
recordings of the brain.
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Materials and methods

EEG data: Epileptiform Discharges in people with Idiopathic
generalized Epilepsy

EDs were identified by an experienced EEG reader (U. S.) within EEGs from 107
people diagnosed with idiopathic generalized epilepsy (IGE). Scalp EEG recordings were
collected for 24 hours using a 32-channel ambulatory EEG system (Compumedics Ltd.;
Melbourne, Australia). Gold cup electrodes were attached with electrode paste
according to the international 10-20 system. Subjects were encouraged to have at least
seven to eight hours of night-time sleep prior to the EEG recording to guarantee
optimum capture of ED. The study was approved by the Human Research Ethics
Committees of St. Vincent’s Hospital and Monash Health. See [53] for more details.

EEG data: Sleep-stages from healthy participants

Sleep-stages from 77 healthy participants were identified from EEG data collected at
Monash University (Melbourne, Australia). Sleep polysomnography (PSG) was recorded
across two consecutive nights in the laboratory (Compumedics Grael, Melbourne,
Australia), using a bi-lateral 18-channel EEG, and two electro-oculographic (EOG, left
and right outer canthi) and three electro-myographic (EMG, sub-mentalis) channels.
EEG data were sampled at 512Hz. Sleep data for night 2 (following adaptation to the
laboratory on night 1), were scored by a trained scorer, and in accordance with AASM
criteria |54]. Monash University Human Research Ethics Committee approval was
obtained for sleep study data (CF14/2790-2014001546; 2017-4204-11012;
2017-6008-8120; and 2020-5453-43401). We restrict our analysis to the 42 participants
with sleep efficiency equal to or higher than 85% for night 2 (Table 7 as values less
than this can be indicative of sleep disturbance.

Table 1. Characteristics of the subjects from the sleep cohort used in the
simulations.

Number | Female | Male | Mean Age (min, max)
42 8 34 30.71 (18,64)

Blood data: CORT levels in healthy participants

Cortisol data was kindly provided by Elizabeth A. Young, University of Michigan.
Blood samples for cortisol assay were collected from 6 healthy adult subjects via an
intravenous catheter at 10 min intervals over a 24-hour period, as described
previously [38,/55].

Constructing a virtual cohort

A ‘virtual cohort’ approach was used to compensate for the differences in size and data
modality across study groups (Group 1 (people with IGE): 66, Group 2 (people with
IGE): 41, CORT (healthy participants): 6, sleep (healthy participants) : 42). In order
to assess the potential impact of CORT and sleep on the distributions of EDs, new time
series were sampled from the sleep and CORT data.

Sleep

To compensate for the smaller number of subjects in Group 1 compared to the sleep
cohort, we randomly added 24 subjects (without repetition) from the sleep cohort. For
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Fig 7. CORT 24-hour recordings. Blood samples for cortisol assay were collected
from 6 healthy adult subjects via an intravenous catheter at 10 min intervals over a
24-hour period.

Group 2, 41 subjects from the sleep cohort were randomly chosen from the 42 sleep
participants.

CORT

To address the significant difference in group sizes (6 healthy participants vs 66 or 41
people with IGE), at each time-point (i = 1,...,145), we used the synthetic minority
oversampling technique (SMOTE) to perform data augmentation. We therefore
generated 60 synthetic CORT profiles for Group 1 and 35 synthetic CORT profiles for
Group 2. SMOTE oversampling was performed with k = 3 (50% of the total) for the
k-nearest neighbours used in the algorithm.

A B 5o Group 2
! —==—-= Original
40
30
20
10 fo
P 0 % o N ¢
16 19 22 1 4 7 10 13 16 16 19 22 1 4 7 10 13 16
Clock Time (hour) Clock Time (hour)

Fig 8. Synthetic CORT surrogates created using SMOTE. Original (red) and
synthetic (blue) CORT profiles for Group 1 (A) and Group 2 (B). The synthetic data
are obtained with the SMOTE oversampling algorithm with k& = 3.

Mathematical model

The model used in this study is based on the normal form of a subcritical Hopf
bifurcation [48,[49,[57], whose co-existing states reflect two distinct types of neural
activity. The first is a background state, represented by a steady-state solution in the
model, whilst the second is an epileptiform state, represented by a high-amplitude
oscillation. Transitions between these states are typically governed by either a white
noise process or external perturbations. The model equations are given by:
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N
Zi = (N — 14 iw)z + 2z zi* — zilz)* + BZAij(Zj —z) +adW(t), (2)

j=1

. 1
)\i ; [Abase + (/\ext)i - )\i - |Z1|2} ) (3)

where z;(t) is dynamics of the i*" node (with i = 1,..., N), W(t) is a complex Wiener
process, A(t) is the excitability of node i, Apase the baseline level of excitability, and
Aext (t) the external perturbations to the excitability. Typical parameter values for the
model are given in Table [2] whilst A is an adjacency matrix, i.e. A;; is 1 if there is a
connection between the i*" and j** regions and 0 otherwise. For simplicity, all
simulations were performed with a directed and connected 4-node graph (N = 4)
(Fig[9), in line with [41].

Table 2. Parameters for the mathematical model.

Parameter
w=20rad/s | 8 =0.35 a = 0.055
T=3s Abase = 0.65

1@< >@ 2

A

v
3 @< >@4

Fig 9. Schematic of the network used in the simulations. The network
employed in the simulations is a directed and connected graph.

Influence of sleep

ED frequency has been observed to vary during sleep and to be higher during non-rapid
eye movement (NREM), especially during stages N2 and N3, sleep which is associated
with maximal synchronization, than during rapid eye movement (REM) sleep [58].

Therefore, we set Aext sleep tO its maximum value during the NREM state and to 0
during the REM phase. More precisely, Aext = 1 during N2 and N3, Aexy = 0.5 during
N1 and Aexy = 0 during REM and wakefulness.

Panel A in Fig|10|illustrates a hypnogram representing the sleep stages recorded
from a representative control participant (purple, top) and the corresponding rescaled
dext,sleep (Dlack, bottom). The rescaling factor was found by optimising the simulated
ED rate, when sleep is considered as external factor, and the data from Group 1. By
minimising RSS we found the rescaling factor for sleep data to be rg = 0.11.

Influence of CORT

We defined Aext,corT by rescaling the concentration values of CORT. Also, we account
for the delay due to the non-genetic effect of CORT [59], by introducing a delay 7 (min)
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in the Aext,corr compared to the corresponding CORT profile. In our simulations, 7 is
from a normal distribution N'(13,5) [60L[61]. Panel B in Fig[10]illustrates the CORT
profiles (purple, top) and the corresponding Aext,corr (black, bottom). The rescaling
factor was found by optimising the simulated ED rate, when CORT is considered as
external factor, and the data from Group 1. By minimising RSS we found the rescaling
factor for CORT data to be rc = 0.0033.

Aw w B&% 20
¢ N1 £ 10
;;; N2 LLL =
o N3 o 0
% 0 100 200 300 400 6 19 22 1 4 7 10 13 16
01 ‘ ‘ MR .o1
~ 0 <0
0 100 200 300 400 16 19 22 1 4 7 10 13 16
Time (min) Clock Time (hour)

Fig 10. Modelling external perturbations informed by data. The external
perturbation to brain excitability due to sleep, Acxt,sicep, and CORT, Aext,corT, Were
informed by using sleep stages (A) and CORT levels (B), respectively.

Combined influence of sleep and CORT To consider the combined effect of sleep
and CORT, we defined

Aext = pS)\ext,sleep + pC)\ext,CORT , (4)

where Acxt sicep aNd Aext,corT reflect the hypothesised physiological changes in brain
excitability due to sleep and CORT, respectively.

Simulations were carried out over a grid where 0 < pg < 1.5 and 0 < p¢ < 1.5. For
each parameter combination, we computed the residual sum of squares (RSS) to
measure the discrepancy between the data and model predictions. More precisely,
RSS = Z?il (y; — 9;)?, where y; is the reported ED rate in the 7*" 1-hour time interval,
while ¢; is the model prediction for the corresponding time window.
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Supporting information

S1 Appendix. Clustering and robustness of number of clusters. The values
of the Calinski-Harabasz criterion values for each number of potential clusters was
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tested for different numbers of bins.

S2 Appendix. Impact of histogram bin width. The size of the two clusters
across the different bin width values is found to be consistent.

S3 Appendix. Groups vs type of epilepsy. Individuals with IGE are classified
into childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile
myoclonic epilepsy (JME), generalized epilepsy with generalized tonic-clonic seizures
only (GTCSO), and genetic generalized epilepsy unspecified (GGEU), and divided into
the two groups.

S4 Appendix. R? statistic for the combined mechanism. Values of R?
statistic computer over a grid of values of ps and pc.

S5 Appendix. Subgroups. In both Group 1 and 2, identified two smaller
sub-groups based on the similarity within their ED distributions.
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