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Abstract 1

Epilepsy is a serious neurological disorder characterised by a tendency to have recurrent, 2

spontaneous, seizures. Classically, seizures are assumed to occur at random. However, 3

recent research has uncovered underlying rhythms both in seizures and in key signatures 4

of epilepsy - so-called interictal epileptiform activity - with timescales that vary from 5

hours and days through to months. Understanding the physiological mechanisms that 6

determine these rhythmic patterns of epileptiform discharges remains an open question. 7

Many people with epilepsy identify precipitants of their seizures, the most common of 8

which include stress, sleep deprivation and fatigue. To quantify the impact of these 9

physiological factors, we analysed 24-hour EEG recordings from a cohort of 107 people 10

with idiopathic generalized epilepsy. We found two subgroups with distinct distributions 11

of epileptiform discharges: one with highest incidence during sleep and the other during 12

day-time. We interrogated these data using a mathematical model that describes the 13

transitions between background and epileptiform activity in large-scale brain networks. 14

This model was extended to include a time-dependent forcing term, where the 15

excitability of nodes within the network could be modulated by other factors. We 16

calibrated this forcing term using independently-collected human cortisol (the primary 17

stress-responsive hormone characterised by circadian and ultradian patterns of 18

secretion) data and sleep-staged EEG from healthy human participants. We found that 19

either the dynamics of cortisol or sleep stage transition, or a combination of both, could 20

explain most of the observed distributions of epileptiform discharges. Our findings 21

provide conceptual evidence for the existence of underlying physiological drivers of 22
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rhythms of epileptiform discharges. These findings should motivate future research to 23

explore these mechanisms in carefully designed experiments using animal models or 24

people with epilepsy. 25

Author summary 26

65 million people have epilepsy worldwide. Many of these people report specific triggers 27

that make their seizures (the primary symptom of epilepsy) more likely. Here, we use a 28

mathematical model to understand the relationship between possible triggers and 29

rhythms in epileptiform activity observed across the day. 30

The mathematical model describes the activity of connected brain regions, and how 31

the excitability of these regions can change in response to different stimuli. Based on 32

data collected from people with idiopathic generalized epilepsy, we identify transitions 33

between sleep stages and variation in concentration of the stress-hormone cortisol as 34

candidate factors that influence how likely it is for epileptiform activity to occur. By 35

including those factors into the model, we show they can explain most of the daily 36

variability. More broadly, our approach provides a framework for better understanding 37

what factors drive the occurrence of epileptiform activity and offers the potential to 38

suggest experiments that can validate model predictions. 39

Introduction 40

Epilepsy is a common neurological disorder, affecting 65 million people globally [1–3]. 41

The primary symptom of epilepsy – seizures – is believed to occur as a result of 42

disruptions in the level of neuronal excitability. In particular, mechanisms that govern 43

the normal balance between excitation and inhibition can become compromised causing 44

parts of the brain to become hyperexcitable, which can be characterised at different 45

scales. For example, at the cellular level it is strongly associated with the so-called 46

paroxysmal depolarization shift (PDS) of cortical pyramidal cells [4, 5]. At the 47

macroscale, it manifests in pathological electrical activity, captured using 48

electroencephalography (EEG), called epileptiform discharges (EDs). EDs can be 49

thought of as an umbrella term that encompasses both interictal (i.e., between seizures) 50

epileptiform activity (e.g., spikes) as well as ictal activity (i.e., seizures). 51

Epileptiform activity has classically been thought to occur at random, but recent 52

studies have presented compelling evidence for underlying rhythmicity in EDs [6–9]. 53

Although such cycles have been shown to follow several temporal scales, including 54

ultradian, circadian, multidien and even circannual rhythms [10,11], relatively little is 55

currently known about the mechanisms governing these rhythms and how intrinsic and 56

extrinsic factors can modulate the likelihood of EDs. This limits the extent to which 57

this knowledge of rhythmicity can be used for clinical benefit. 58

Many people with epilepsy identify triggers that appear to make them more likely, 59

and some of these triggers are physiological factors known to influence cortical 60

excitability. The most common of these are stress, sleep, hormones, and 61

medication [12–17]. 62

In this study, we consider some of these factors as candidate mechanisms that 63

modulate the likelihood of EDs, and therefore provide insight into the mechanisms 64

underlying observed distributions of EDs [17]. 65

The mammalian stress-response is driven by circulating glucocorticoid hormones: 66

predominantly cortisol in humans and corticosterone in rodents, herein CORT. 67

Ultradian and circadian rhythms of CORT are controlled by the 68

hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine axis, wherein a delayed 69
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negative-feedback loop mediates hormone secretion from the pituitary and adrenal 70

glands [18]. The impact of CORT on brain function is well established. For example, 71

rapid changes in CORT secretion not only have major effects on glucocorticoid receptor 72

activation in the brain [19] but also major effects on cognition [20]. Furthermore, Karst 73

et al. [21] demonstrated that neuronal excitability is rapidly and reversibly determined 74

by changes in CORT levels. At the macroscale, Schridde et al. [22] observed a CORT 75

dose-dependent increase in EDs in the genetically in-bred Wistar Albino Glaxo/Rij 76

(WAG-Rij) model of human idiopathic generalized epilepsy (IGE). A similar relationship 77

has been found more recently in people with stress-sensitive focal epilepsies [23]. 78

One of the most direct ways of measuring human cortical excitability is via 79

transcranial magnetic stimulation (TMS), with motor and/or EEG responses taken as a 80

proxy for excitability. With this approach, prolonged wakefulness leading to sleep 81

deprivation has been shown to increase excitability or alter the excitatory-inhibitory 82

balance of the supplementary motor cortex [24–26]. In addition, TMS-derived cortical 83

excitability is also modulated by circadian phase, such that excitability is lowest in the 84

early evening prior to bedtime, and peaks at the end of the biological night [27]. These 85

observations have not always been consistent [28] with some suggestion of differences 86

between participants with and without epilepsy [28]. These results are generally 87

consistent with the changing probability of EDs associated with sleep deprivation 88

and/or fluctuations in the circadian rhythm [29,30]. The probability of EDs also varies 89

through the sleep cycle, with non-rapid eye movement (NREM) sleep generally having a 90

facilitatory effect, and REM sleep an inhibitory effect [30–32]. The latter observation is 91

consistent with the increase in TMS-defined excitability associated with selective REM 92

sleep deprivation [33]. 93

However, the complexity of these interrelating factors, alongside the difficulty of 94

simultaneously measuring their physiological correlates, makes unpacking them 95

challenging. In this paper, we analysed distributions of EDs from 107 people with IGE 96

collected over 24-hours. We found evidence to support the existence of two primary 97

groups with different mechanisms driving the overnight likelihood of EDs and their 98

likelihood during the day. To explore possible contributing factors underpinning these 99

different mechanisms we developed a mathematical modelling framework that: 100

a) describes transitions between background states and EDs; 101

b) relates excitability to the likelihood of these transitions; 102

c) considers the impact of intrinsic and extrinsic factors on excitability. 103

We calibrated model parameters using independently collected 24-hour hormone 104

profiles from 6 healthy participants, and sleep staged polysomnography data from 42 105

healthy participants. We used synthetic minority oversampling to account for 106

discrepancies in group size, enabling us to generate synthetic distributions of EDs. We 107

explored the goodness of fit between these model derived distributions and those 108

observed in the cohort of people with IGE. Our mathematical analysis revealed evidence 109

to support the view that the likelihood of EDs is modulated by both transitions in sleep 110

stages, as well as by ultradian fluctuations in cycling CORT levels. 111

Results 112

We analysed distributions of EDs derived from 24-hour EEG recordings from 107 113

subjects with IGE (see Materials and Methods for a detailed description of this 114

data-set). 115
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Variability in the circadian distribution of epileptiform 116

discharges 117

We found that the median number of EDs over 24 hours was approximately 29, 118

although several individuals had more than 200 events (Fig 1, Panel A and B). 119

Examination of normalised ED patterns on an hourly basis (i.e., for each individual, the 120

number of EDs at each hour was divided by their total number of EDs and we then 121

normalised over the cohort), suggested that the likelihood of EDs varied across the day. 122
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Fig 1. ED distribution in people with IGE. (A) Number of EDs from 107
subjects with idiopathic generalized epilepsy (IGE). (B) Boxplot shows basic sample
statistics (minimum, lower quartile, median, upper quartile and maximum) of the
number of EDs. (C) normalised EDs rate per hour.

To investigate the possible temporal distribution of EDs across the 24-hour day 123

(herein referred to as the ‘circadian distribution’), we first considered similarities 124

between subjects. We used MATLAB R2021a (MathWorks Inc., Natick, MA) to 125

compute the cross-correlation coefficients of time series representing the individual 126

hourly ED rate. This leads to a correlation matrix C, with entries Cij corresponding to 127

the similarity between the pattern of EDs in subject i and in subject j (Fig 2, A). The 128

closer the value of Cij to 1, the more similar the distribution of EDs of subject i and 129

subject j. Subsequently, we clustered subjects according to their correlation coefficients 130

using k-means clustering [34] and the Calinski-Harabasz criterion [35] to optimise the 131

number of clusters (see S1 Appendix). This analysis revealed two primary groups within 132

the overall cohort of people with IGE that displayed different temporal ED distribution 133

patterns: Group 1 of 66 individuals and Group 2 of 41 individuals (Fig 2, B). 134

Importantly, the identified clusters were found to be consistent across a range of bin 135

widths (45-90 minutes) (see S2 Appendix). 136
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Fig 2. IGE subjects organised based on different circadian ED distribution
patterns. (A) A pairwise cross-correlation matrix (of size 107× 107) was calculated
using ED hourly rate patterns in order to establish similarities within the IGE cohort.
(B) Group 1 (blue, N = 66) and Group 2 (red, N = 41) were identified based on the
similarities of hourly ED rate.
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We found that the groups identified by our cluster analysis were not caused by 137

imbalances in the type of epilepsy. Specifically, individuals with IGE were classified into 138

childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic 139

epilepsy (JME), generalized epilepsy with generalized tonic-clonic seizures only 140

(GTCSO), and genetic generalized epilepsy unspecified (GGEU) according to the 141

criteria published by the ILAE [36]. We fitted a linear model (using R version 4.0.2) to 142

assess the dependence of the groups on epilepsy type (see S3 Appendix for details), 143

finding no evidence of an association (p = 0.193: two-tailed t-test). 144

Candidate mechanisms impacting the distributions: sleep and 145

CORT 146

We explored candidate mechanisms that could explain differences in ED distributions 147

between the two groups identified by our cluster analysis. The (empirical) likelihood of 148

EDs in Group 1 (Fig 2, B top) displayed a significant increase in the propensity for EDs 149

during the night and lower levels during day-time. In contrast, the likelihood of EDs in 150

Group 2 (Fig 2, B bottom) displayed greater variation during waking hours. 151

To assess the impact of inter-individual timing of sleep and its duration on ED 152

distributions, we adjusted time within each subject such that t = 0 corresponded to 153

either their sleep onset or sleep offset. The resulting distributions are presented in Fig 3 154

Panels A-D. For Group 1, we found that the ED rate was higher for approximately 9 155

hours starting at habitual sleep onset (Panel A), while it was relatively low during the 156

rest of the day. In Panel B, we observed the same trend but shifted to the 9 hours 157

before waking. For Group 2 (Fig 3, C and D) we did not find increased levels of EDs 158

during sleep; instead, the distribution suggests a potential daytime ultradian rhythm. 159

To quantify this more explicitly, we introduced the parameter Fi, i = 1, 2 to measure 160

the fraction of EDs occurring during sleep for each group: 161

Fi =
1

Ni

Ni∑
j=1

EDS,j

EDtot,j
. (1)

Here Ni is the number of subjects in Group i, EDS,j and EDtot,j are the numbers 162

of ED occurrences for the jth subject in the ith group occurring during during the 163

individual’s sleep time and across the full 24-hour period, respectively. We found 164

F1 = 0.8, suggesting that 80% of EDs in Group 1 were clustered during the sleep period. 165

In contrast F2 is 0.37, suggesting that in Group 2 just over a third of discharges occur 166

during the sleep period, consistent with the 8-9 hour sleep time (i.e., a third of 24-hour). 167

Interestingly, for Group 2 we found three peaks of similar height around 8 hours prior to 168

sleep, sleep onset, and sleep offset (Fig 3, C). We found the equivalent pattern when 169

aligning by sleep offset (Fig 3, D). A similar pattern can be observed in the levels of 170

plasma CORT over 24-hours, which displays a circadian rhythm that reaches a peak 171

soon after awakening and a nadir during the night [37,38]. 172

Mathematical modelling and the relationship between sleep, 173

CORT and the distribution of EDs 174

To explore the hypothesis that sleep and CORT impact the distribution of EDs, we used 175

a computational modelling framework. Within this framework, we assessed how changes 176

to the overall excitability of brain regions impacted the overall likelihood of in silico 177

EDs (see Materials and Methods for a detailed description of the model). 178

For Group 1, we used sleep staged polysomnography data collected from healthy 179

controls (see Materials and Methods) as an external input to the excitability of the 180
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Fig 3. Impact of timing of sleep and its duration on ED distributions.
Epileptiform discharges for Group 1 (top row) and Group 2 (bottom row) with time
normalised such that t = 0 corresponds with sleep onset (A and C) and with sleep offset
(B and D). The transparent grey box highlights the average habitual sleep period.

model λext. In Fig 4 Panel A we compared the model output for a virtual cohort of 66 181

individuals (in green) with the observed ED distributions for Group 1 (in blue). 182

The model predicted a sharp increase in ED occurring during the first part of the 183

sleep period, followed by a sharp decrease in the morning. The slow reduction in the 184

number of EDs during the night is consistent with the observation that NREM sleep is 185

predominant during the first part of the sleep, while REM is predominant during the 186

second half [39]. Although the model captured most of the Group 1 ED variability 187

(R2=0.9), it failed to capture the bimodal distribution in ED rate shown in the 188

overnight data. It further failed to capture daytime variability in the ED rate, 189

suggesting the presence of at least a second mechanism governing the ED propensity. 190

For Group 2, we used levels of CORT measured from healthy controls over the 191

course of 24 hours (see Materials and Methods) as an external input to the excitability 192

of the model λext. The model prediction for a virtual cohort of 41 individuals is shown 193

in Fig 4 (in green). Comparing the model result with the data (in red), we found that 194

the model captures the morning and afternoon peaks displayed by Group 2, although 195

the latter occurs about an hour earlier in the model. We also note that the simulation 196

does not account for the evening peak around 21:00. The overall variability explained 197

by CORT in Group 2 is ∼60% (R2=0.59). 198

Combined mechanism: sleep and CORT 199

For each group, we identified candidate mechanisms that could explain the majority of 200

the observed distribution of EDs. However, we found that the model failed to capture 201

some variability. For example in Group 1 the bimodal distribution during sleep, as well 202

as some variability during the day, was not fully explained by the model. We therefore 203

explored how combining the mechanisms of sleep and CORT impacted the ED 204

distribution (see Materials and Methods). The strength of the influence of sleep and 205

CORT is given by the parameters pS and pC, respectively. Each parameter can vary 206

from 0 (no impact on ED occurrence) to 1.5 (strong impact on ED occurrence). We 207
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Fig 4. Model results compared with IGE data. (A) Histogram of EDs from
Group 1 with IGE (blue) and histogram of EDs simulated using the model with λext
defined to mimic the different brain excitability during sleep stages (green). (B)
Histogram of EDs from Group 2 with IGE (red) and histogram of EDs simulated using
the model with λext defined to mimic the impact of CORT on the brain excitability
(green).

used residual sum of squares (RSS) to identify the best fit (see Fig 5 and S4 Appendix 208

for R2 ). 209

Fig 5. RSS values for the combined mechanism. Values of the residual sum of
squares (RSS) computed over a grid of values of pS and pC for Group 1 (A) and
Group 2 (B).

In Group 1, we found the best fit (lowest RSS values) was obtained when pS, pC > 0 210

(Panel A). This result is consistent with our previous observation that sleep can explain 211

the overnight peaks in EDs, with the contribution of CORT explaining variability 212

during the day. This result suggests the coexistence of the two mechanisms (sleep and 213

CORT) in Group 1. Fig 6 shows the model output corresponding to the lowest RSS for 214

this group, which is when both sleep and CORT terms are present with pS = 1 and 215

pC = 1.2. Combining these mechanisms increases the explained variability from 90% 216

(only sleep) to 95% (R2 = 0.95). 217

Conversely, the lowest values of RSS in Group 2 were obtained when pS = 0 (Fig 5), 218

suggesting that the best fit is obtained when CORT is the sole mechanism considered in 219

the model (as in Fig 4, Panel B). Although additional mechanisms could be considered 220

in explaining the remaining variance using this computational framework it is important 221

to recognize the relatively modest sample-size of the remaining subgroups combined 222

with the possibility of true random events (see S5 Appendix). 223

Discussion 224

In this study, we provide a computational framework for assessing how the likelihood of 225

epileptiform discharges is impacted by different physiological mechanisms and processes, 226
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Fig 6. Best model fit for Group 1 compared with IGE data. Histogram of
EDs from Group 1 with IGE (blue) and histogram of EDs simulated using the model
with λext defined to mimic the impact of the combined mechanism (sleep and CORT)
on excitability (green). In this simulation, pS = 1 and pC = 1.2.

such as sleep and stress. First, a data-driven analysis of the distributions of epileptiform 227

activity from a large cohort of people with generalized epilepsies revealed the presence 228

of two distinct groups within this cohort. To explain the underlying differences between 229

these groups, we used a phenomenological mathematical model for simulating the 230

activity of brain networks and excitability. Using this framework, we found that the 231

patterns in the first group (Group 1) are strongly correlated with sleep, whereas the 232

daily changes in ED likelihood in the second group (Group 2) can partially be explained 233

by CORT. This framework provides an intuitive way of assessing the impact of external 234

factors (e.g. sleep, stress, medication) on the overall likelihood of epileptiform activity, 235

and can be used in the context of future experimental studies. 236

A data-driven approach was applied to the histograms of epileptiform discharges 237

derived from 107 subjects with generalized epilepsies. First, we found that correlation 238

and cluster analysis suggested the presence of two distinct groups within the overall 239

cohort (of size 66 and 41 respectively). These two groups were not aligned with the 240

clinical sub-types of IGE. Determining the periods of maximum ED likelihood in the 241

two groups suggested sleep stages and CORT levels as candidate drivers for these ED 242

distributions. EDs are increasingly understood as emerging from brain networks, with 243

alterations to both the connectivity between brain regions, as well as the dynamics 244

within regions, contributing to this emergence [40,41]. In this regard, both sleep stage 245

and levels of CORT have been shown to impact both functional connectivity [42,43] and 246

cortical excitability [44,45]. Several studies have shown the correlation between sleep 247

and epileptiform discharges [30,32,39] and how vigilance states may influence the 248

likelihood of EDs in subjects with IGE [44,46]. CORT is the main stress hormone in 249

humans and its production and secretion are controlled by the 250

hypothalamic-pituitary-adrenal (HPA) axis, the primary stress response system [18]. In 251

stressful situations, the activity of the HPA axis increases, resulting in a higher 252

secretion of CORT. In unstressed, basal conditions, cycling levels of CORT rise and fall 253

over the day, with characteristic ultradian pulses [47]. This finding is consistent with 254

the literature and self-reported data showing ED frequency increasing during the night 255

time, early in the morning, and in stressful situations. 256

To investigate the impact of sleep and CORT on the ED likelihood during the day, 257

we employed a phenomenological mathematical model to simulate brain excitability 258

when perturbed by those external forces. Unlike in previous works where the variation 259

of the brain excitability was constant [48] or perturbed by a fixed constant [49], this 260

model describes cortical excitability as a dynamical variable that is modulated by 261

dynamic external factors, such as sleep or CORT. We used sleep stages and CORT 262

levels collected from healthy subjects to inform the dynamics of the variable 263
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representing the status of brain activity. However, in future work, the analysis should 264

include CORT levels and sleep stage data derived from the EEG from the same 265

individual, given that both of these variables show considerable inter-individual 266

variability. Despite this limitation, our work shows a good fit between our model 267

simulations and the observations. Indeed, we find that sleep accounts for 90% of the 268

variability in Group 1 (R2 = 0.9) and CORT for ∼60% (R2 = 0.59) in Group 2. 269

Importantly, sleep alone cannot account for the changes in ED likelihood during 270

wakefulness observed in Group 1. Furthermore, the model predicts a reduction in ED 271

likelihood during the sleep time after an initial sharp increase during the first hours. 272

This effect can be explained by the fact that NREM sleep, which is positively correlated 273

to an increase of EDs, is predominant during the first third of the sleep period. 274

However, the data shows an increase in ED occurrence before waking, which the model 275

simulations fail to capture. Given that the level of CORT is known to increase around 276

waking, this result suggests a combined effect of sleep and CORT. This result is 277

quantitatively highlighted by the improvement in the accuracy of our model prediction 278

when a combination of sleep and CORT have been considered and by the high 279

percentage of variability explained by the combined model (95%, R2 = 0.95). It is 280

important to emphasise that we only considered linear combinations, and future work 281

could investigate a richer class of non-linear interactions and effects, especially given 282

that sleep and stress themselves interact. This interaction may potentially lead to 283

non-linear impacts on the likelihood of EDs. 284

Our model predicts peaks occurring during the day, for example one around 13:00 285

and one around 19:00, in Group 2. Those two peaks seem to occur a couple of hours 286

earlier in the model than in the IGE cohort. The reason for such behaviour requires 287

further investigation. One explanation could be additional physiological or behavioural 288

drivers that we have not yet accounted for. Alternatively, it is important to highlight 289

that CORT levels were measured in an independent control cohort. A future study 290

would critically include simultaneous recordings of EEG and CORT, as well as detailed 291

summaries of any anti-seizure treatment (e.g. timing and dose). 292

In summary, we provide a mathematical model as a tool to examine the role of 293

external factors on the modulation of ED likelihood. We provide quantitative evidence 294

that underlying physiological modulators for ED events exist. We identified sleep and 295

CORT as such modulators by comparing our model predictions with data on ED events 296

collected from IGE patients. Our choice of such factors is guided by the ED distribution 297

in the EEG data and by previous studies investigating sleep and CORT, and the 298

influence they have over the cortical excitability dynamics. Using only these two 299

processes, we are able to account for the majority of the variability in the two groups. 300

However, our results do not exclude other potential mechanisms affecting cortical 301

excitability during the day, such as sleep deprivation or anti-seizure medication [27,29]. 302

Furthermore, other factors showing circadian rhythms, such as melatonin production or 303

glucose levels, have also been shown to impact seizure incidence [50,51,51,52]. Further 304

research is needed to fully understand the overall mechanism underlying the modulation 305

of ED events. In particular, simultaneous recordings of EEG and those factors are 306

necessary to overcome the high intra- and inter-individual variability of the latter. 307

Moreover, measurements should be taken from the same individual over prolonged 308

periods, which would then inform the model framework (in particular the network 309

structures and the excitability dynamics). 310

Ultimately, the modelling approach presented in this paper provides a framework to 311

better understand what drives the occurrence of epilepsy-related activity observed in 312

recordings of the brain. 313
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Materials and methods 314

EEG data: Epileptiform Discharges in people with Idiopathic 315

generalized Epilepsy 316

EDs were identified by an experienced EEG reader (U. S.) within EEGs from 107 317

people diagnosed with idiopathic generalized epilepsy (IGE). Scalp EEG recordings were 318

collected for 24 hours using a 32-channel ambulatory EEG system (Compumedics Ltd.; 319

Melbourne, Australia). Gold cup electrodes were attached with electrode paste 320

according to the international 10-20 system. Subjects were encouraged to have at least 321

seven to eight hours of night-time sleep prior to the EEG recording to guarantee 322

optimum capture of ED. The study was approved by the Human Research Ethics 323

Committees of St. Vincent’s Hospital and Monash Health. See [53] for more details. 324

EEG data: Sleep-stages from healthy participants 325

Sleep-stages from 77 healthy participants were identified from EEG data collected at 326

Monash University (Melbourne, Australia). Sleep polysomnography (PSG) was recorded 327

across two consecutive nights in the laboratory (Compumedics Grael, Melbourne, 328

Australia), using a bi-lateral 18-channel EEG, and two electro-oculographic (EOG, left 329

and right outer canthi) and three electro-myographic (EMG, sub-mentalis) channels. 330

EEG data were sampled at 512Hz. Sleep data for night 2 (following adaptation to the 331

laboratory on night 1), were scored by a trained scorer, and in accordance with AASM 332

criteria [54]. Monash University Human Research Ethics Committee approval was 333

obtained for sleep study data (CF14/2790-2014001546; 2017-4204-11012; 334

2017-6008-8120; and 2020-5453-43401). We restrict our analysis to the 42 participants 335

with sleep efficiency equal to or higher than 85% for night 2 (Table 1), as values less 336

than this can be indicative of sleep disturbance. 337

Table 1. Characteristics of the subjects from the sleep cohort used in the
simulations.

Number Female Male Mean Age (min, max)

42 8 34 30.71 (18,64)

Blood data: CORT levels in healthy participants 338

Cortisol data was kindly provided by Elizabeth A. Young, University of Michigan. 339

Blood samples for cortisol assay were collected from 6 healthy adult subjects via an 340

intravenous catheter at 10 min intervals over a 24-hour period, as described 341

previously [38,55]. 342

Constructing a virtual cohort 343

A ‘virtual cohort’ approach was used to compensate for the differences in size and data 344

modality across study groups (Group 1 (people with IGE): 66, Group 2 (people with 345

IGE): 41, CORT (healthy participants): 6, sleep (healthy participants) : 42). In order 346

to assess the potential impact of CORT and sleep on the distributions of EDs, new time 347

series were sampled from the sleep and CORT data. 348

Sleep 349

To compensate for the smaller number of subjects in Group 1 compared to the sleep 350

cohort, we randomly added 24 subjects (without repetition) from the sleep cohort. For 351
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Fig 7. CORT 24-hour recordings. Blood samples for cortisol assay were collected
from 6 healthy adult subjects via an intravenous catheter at 10 min intervals over a
24-hour period.

Group 2, 41 subjects from the sleep cohort were randomly chosen from the 42 sleep 352

participants. 353

CORT 354

To address the significant difference in group sizes (6 healthy participants vs 66 or 41 355

people with IGE), at each time-point (i = 1, ..., 145), we used the synthetic minority 356

oversampling technique (SMOTE) [56] to perform data augmentation. We therefore 357

generated 60 synthetic CORT profiles for Group 1 and 35 synthetic CORT profiles for 358

Group 2. SMOTE oversampling was performed with k = 3 (50% of the total) for the 359

k-nearest neighbours used in the algorithm. 360

Fig 8. Synthetic CORT surrogates created using SMOTE. Original (red) and
synthetic (blue) CORT profiles for Group 1 (A) and Group 2 (B). The synthetic data
are obtained with the SMOTE oversampling algorithm with k = 3.

Mathematical model 361

The model used in this study is based on the normal form of a subcritical Hopf 362

bifurcation [48,49,57], whose co-existing states reflect two distinct types of neural 363

activity. The first is a background state, represented by a steady-state solution in the 364

model, whilst the second is an epileptiform state, represented by a high-amplitude 365

oscillation. Transitions between these states are typically governed by either a white 366

noise process or external perturbations. The model equations are given by: 367
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żi = (λi − 1 + iω)zi + 2zi|zi|2 − zi|zi|4 + β
N∑
j=1

Aij(zj − zi) + αdW (t) , (2)

λ̇i =
1

τ

[
λbase + (λext)i − λi − |zi|2

]
, (3)

where zi(t) is dynamics of the ith node (with i = 1, ..., N), W (t) is a complex Wiener 368

process, λ(t) is the excitability of node i, λbase the baseline level of excitability, and 369

λext(t) the external perturbations to the excitability. Typical parameter values for the 370

model are given in Table 2, whilst A is an adjacency matrix, i.e. Ai,j is 1 if there is a 371

connection between the ith and jth regions and 0 otherwise. For simplicity, all 372

simulations were performed with a directed and connected 4-node graph (N = 4) 373

(Fig 9), in line with [41]. 374

Table 2. Parameters for the mathematical model.

Parameter

ω = 20 rad/s β = 0.35 α = 0.055
τ = 3 s λbase = 0.65

Fig 9. Schematic of the network used in the simulations. The network
employed in the simulations is a directed and connected graph.

Influence of sleep 375

ED frequency has been observed to vary during sleep and to be higher during non-rapid 376

eye movement (NREM), especially during stages N2 and N3, sleep which is associated 377

with maximal synchronization, than during rapid eye movement (REM) sleep [58]. 378

Therefore, we set λext,sleep to its maximum value during the NREM state and to 0 379

during the REM phase. More precisely, λext = 1 during N2 and N3, λext = 0.5 during 380

N1 and λext = 0 during REM and wakefulness. 381

Panel A in Fig 10 illustrates a hypnogram representing the sleep stages recorded 382

from a representative control participant (purple, top) and the corresponding rescaled 383

λext,sleep (black, bottom). The rescaling factor was found by optimising the simulated 384

ED rate, when sleep is considered as external factor, and the data from Group 1. By 385

minimising RSS we found the rescaling factor for sleep data to be rS = 0.11. 386

Influence of CORT 387

We defined λext,CORT by rescaling the concentration values of CORT. Also, we account 388

for the delay due to the non-genetic effect of CORT [59], by introducing a delay τ (min) 389
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in the λext,CORT compared to the corresponding CORT profile. In our simulations, τ is 390

from a normal distribution N (13, 5) [60,61]. Panel B in Fig 10 illustrates the CORT 391

profiles (purple, top) and the corresponding λext,CORT (black, bottom). The rescaling 392

factor was found by optimising the simulated ED rate, when CORT is considered as 393

external factor, and the data from Group 1. By minimising RSS we found the rescaling 394

factor for CORT data to be rC = 0.0033. 395

0 100 200 300 400
N3
N2
N1

R
WA

0 100 200 300 400
0

0.1

16 19 22 1 4 7 10 13 16
0

10

20
B

16 19 22 1 4 7 10 13 16
0

0.1

Fig 10. Modelling external perturbations informed by data. The external
perturbation to brain excitability due to sleep, λext,sleep, and CORT, λext,CORT, were
informed by using sleep stages (A) and CORT levels (B), respectively.

Combined influence of sleep and CORT To consider the combined effect of sleep 396

and CORT, we defined 397

λext = pSλext,sleep + pCλext,CORT , (4)

where λext,sleep and λext,CORT reflect the hypothesised physiological changes in brain 398

excitability due to sleep and CORT, respectively. 399

Simulations were carried out over a grid where 0 ≤ pS ≤ 1.5 and 0 ≤ pC ≤ 1.5. For 400

each parameter combination, we computed the residual sum of squares (RSS) to 401

measure the discrepancy between the data and model predictions. More precisely, 402

RSS =
∑24

i=1 (yi − ŷi)2, where yi is the reported ED rate in the ith 1-hour time interval, 403

while ŷi is the model prediction for the corresponding time window. 404
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tested for different numbers of bins. 418

S2 Appendix. Impact of histogram bin width. The size of the two clusters 419

across the different bin width values is found to be consistent. 420

S3 Appendix. Groups vs type of epilepsy. Individuals with IGE are classified 421

into childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile 422

myoclonic epilepsy (JME), generalized epilepsy with generalized tonic-clonic seizures 423

only (GTCSO), and genetic generalized epilepsy unspecified (GGEU), and divided into 424

the two groups. 425

S4 Appendix. R2 statistic for the combined mechanism. Values of R2
426

statistic computer over a grid of values of pS and pC. 427

S5 Appendix. Subgroups. In both Group 1 and 2, identified two smaller 428

sub-groups based on the similarity within their ED distributions. 429
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