

1 **05 July 2022**

2 **Title:**

3 **Genomic epidemiology of the cholera outbreak in Yemen reveals the spread of a multi-**
4 **drug resistance plasmid between diverse lineages of *Vibrio cholerae***

5
6 Florent Lassalle^{1*}, Salah Al-Shalali², Mukhtar Al-Hakimi², Elisabeth Njamkepo³, Ismail
7 Mahat Bashir⁴, Matthew J. Dorman¹, Jean Rauzier³, Grace A. Blackwell^{1,5}, Alyce Taylor-
8 Brown¹, Mathew A. Beale¹, Ali Abdullah Al-Somainy⁶, Anas Al-Mahbashi², Khaled
9 Almoayed⁷, Mohammed Aldawla⁸, Abdulelah Al-Harazi⁶, Marie-Laure Quilici^{3§}, François-
10 Xavier Weill^{3§}, Ghulam Dhabaan^{9*§}, Nicholas R. Thomson^{1,10*§}

11
12 [§]Joint last authors

13 ^{*}corresponding authors

14
15 *Affiliations*

16 ¹ Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus,
17 Hinxton, Cambridge, CB10 1SA, United Kingdom

18 ² Faculty of Science, Sana'a University, Sana'a, Yemen

19 ³ Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, F-75015,
20 Paris, France

21 ⁴ WHO Yemen country office, Sana'a, Yemen

22 ⁵ EMBL-EBI, Wellcome Genome Campus, Hinxton, United Kingdom

23 ⁶ National Centre of Public Health Laboratories, Sana'a, Yemen

24 ⁷ Ministry of Public Health and Populations, Diseases Control & Surveillance, Sana'a, Yemen

25 ⁸ Ministry of Public Health and Populations, Infection Control Unit, Sana'a, Yemen

26 ⁹ Department of laboratory Medicine and Pathobiology, Faculty of Medicine, University of
27 Toronto, Canada

28 ¹⁰ London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom

29
30 **Abstract**

31 The humanitarian crisis in Yemen led in 2016 to the biggest cholera outbreak documented in
32 modern history, with more than 2.5 million suspected cases to date. In late 2018,
33 epidemiological surveillance showed that *V. cholerae* isolated from cholera patients had turned
34 multi-drug resistant (MDR). We generated genomes from 260 isolates sampled in Yemen
35 between 2018 and 2019 to identify a possible shift in circulating genotypes. 84% of *V. cholerae*
36 isolates were serogroup O1 belonging to the seventh pandemic El Tor (7PET) lineage,
37 sublineage T13 – same as in 2016 and 2017 – while the remaining 16% of strains were non-
38 toxicigenic and belonged to divergent *V. cholerae* lineages, likely reflecting sporadic gut
39 colonisation by endemic strains. Phylogenomic analysis reveals a succession of T13 clones,
40 with 2019 dominated by a clone that carried an IncC-type plasmid harbouring an MDR pseudo-
41 compound transposon (PCT). Identical copies of these mobile elements were found
42 independently in several unrelated lineages, suggesting exchange and recombination between
43
44 independently in several unrelated lineages, suggesting exchange and recombination between

45 endemic and epidemic strains. Treatment of severe cholera patients with macrolides in Yemen
46 from 2016 to early 2019 coincides with the emergence of the plasmid-carrying T13 clone. The
47 unprecedented success of this genotype where an SXT-family integrative and conjugative
48 element (SXT/ICE) and an IncC plasmid cohabit show the stability of this MDR plasmid in
49 the 7PET background, which may durably reduce options for epidemic cholera case
50 management. We advocate a heightened genomic epidemiology surveillance of cholera to help
51 control the spread of this highly-transmissible, MDR clone.

52

53 **Introduction**

54

55 Since 2016, Yemen has seen the largest epidemic of cholera ever recorded. This occurred
56 against the backdrop of a civil war turned international conflict and famine which together
57 fueled extensive population movement, with more than 4 million people internally displaced
58 by the end of 2020¹. The Electronic Disease Early Warning System (eDEWS), a surveillance
59 programme coordinated by the Ministry of Public Health and Population of Yemen (MPHP) in
60 Sana'a tasked with monitoring the epidemic², had recorded a total of almost 2.4 million
61 suspected cholera cases up until August 2019³. These cases exhibited a seasonal profile, with
62 peaks in July 2017 and September 2018 (16,000 and 50,000 cases per week, respectively)³.
63 The lower reported case incidence in 2018 was ascribed to the mass vaccination campaign led
64 by the World Health Organization (WHO) and United Nation Children's Fund (UNICEF), who
65 delivered the oral cholera vaccine (OCV) to 540,000 people in August 2018 (387,000 at follow-
66 up in September) in targeted districts in Aden, Hudaydah and Ibb governorates^{4,5}.
67 Notwithstanding this focussed vaccination campaign, cholera cases were recorded nationwide
68 in 2019, peaking at over 30,000 cases per week. Despite the mass vaccination campaign, case
69 numbers declined at a slower rate than in previous years³.

70

71 Pandemic cholera is caused by discrete phylogenetic lineages of the bacterium *Vibrio cholerae*
72 that are associated with epidemic spread, and carry lipopolysaccharide O-antigens of
73 serogroups O1 or O139. The large majority of epidemic strains associated with cholera
74 outbreaks from the last 60 years belong to the seventh pandemic El Tor (7PET) lineage of *V.*
75 *cholerae* O1, which swept the planet in three pandemic waves⁶. We previously used genomic
76 epidemiology to show that the first two waves of the cholera outbreak in Yemen (2016 and
77 2017) were driven by a single clonal expansion⁷ belonging to Wave 3 of the global 7PET
78 lineage and had an Ogawa serotype. This indicated the Yemen outbreak was seeded by a single
79 international transmission event linked to the 7PET sublineage involved in the thirteenth
80 recorded intercontinental introduction of cholera (T13)⁷.

81

82 Our ongoing surveillance activities in Yemen found that the fluctuating peaks in incidence in
83 Yemen were accompanied by a sudden change in the antibiotic susceptibility profile reported
84 by the reference laboratory at the MPHP in Sana'a. Whilst strains isolated in 2016-2018 were
85 sensitive to most of the antibiotics usually used for the treatment of cholera (excepting
86 quinolones, where reduced susceptibility to ciprofloxacin prevented the use of this antibiotic as
87 a single dose treatment), by 2019, resistance was observed for multiple drugs including third
88 generation cephalosporins, macrolides (including azithromycin) and cotrimoxazole. Whilst the

89 main treatment for cholera is rehydration therapy, antibiotics can be used to limit the volume
90 and duration of the acute watery diarrhoea, and reduce the risk of transmission⁸⁻¹⁰. In Yemen,
91 macrolides were used extensively up to early 2019 to treat moderate to severe cases of cholera
92 in pregnant woman and children, the latter forming the large majority of cases¹¹. Multiple drug
93 resistance (MDR) in *V. cholerae* is strongly associated with the acquisition of mobile genetic
94 elements (MGEs) such as SXT-family integrative and conjugative elements (SXT/ICE) or
95 plasmids of the incompatibility type C (IncC, formerly known as IncA/C2; ref. 12), which often
96 carry and disseminate antimicrobial resistance (AMR) gene cargo¹³.

97
98 We hypothesised that the MDR phenotype seen in the Yemen *V. cholerae* isolates from 2019
99 could be explained either by gain of resistance (either through *de novo* mutations or acquisition
100 of resistance-conferring MGEs) in the previously susceptible 7PET-T13 *V. cholerae* strain
101 already circulating in Yemen, or through the replacement of that strain with locally or globally
102 derived MDR strain(s). Distinguishing between these hypotheses is important for
103 understanding the ongoing dynamics of cholera in Yemen, and will be important for cholera
104 control strategies. We therefore applied genomic epidemiology approaches to determine the
105 molecular basis for the observed switch to the MDR phenotype and its link to global and local
106 evolutionary dynamics of pandemic cholera. In doing so, we highlight the role of globally
107 circulating MGEs in making an epidemic pathogen resistant to multiple drugs and subsequently
108 reducing treatment options. We also show that these MGEs and their cargo AMR genes were
109 repeatedly exchanged among diverse *V. cholerae* lineages found in Yemen.

110
111

Results

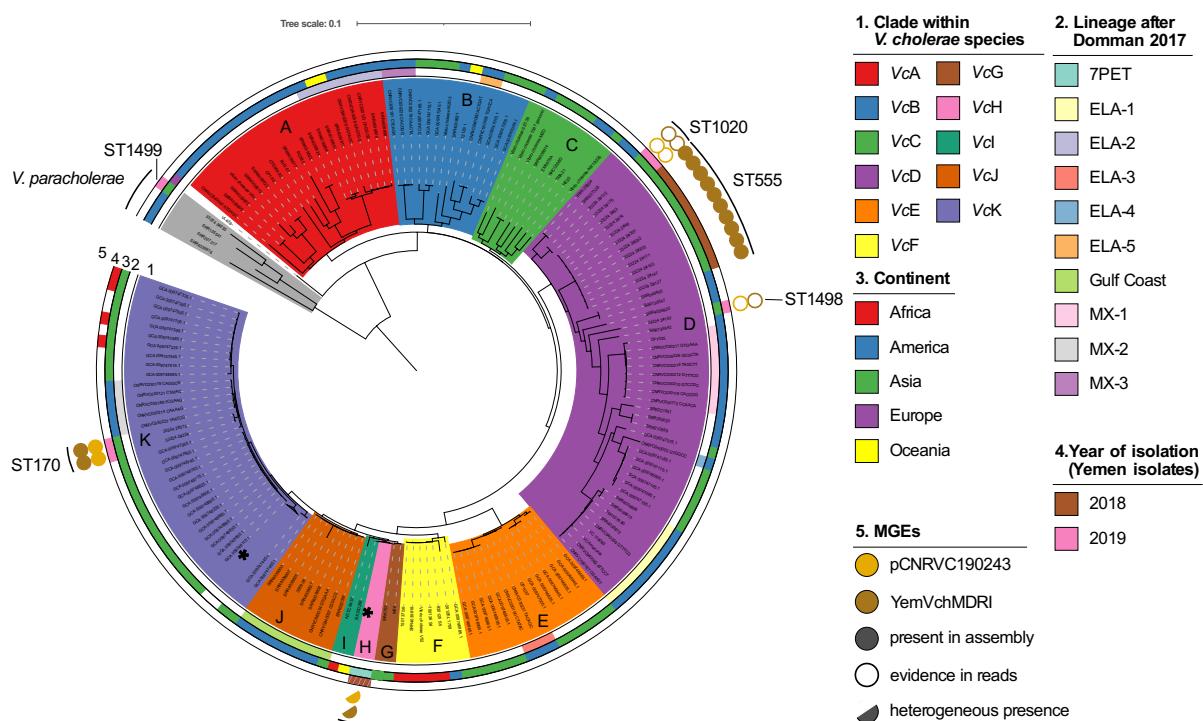
Sampling of *V. cholerae* in Yemen in 2018 and 2019

114 The National Centre of Public Health Laboratories (NCPHL) in Sana'a, the capital city,
115 received 6,311 and 3,225 clinical samples collected from suspected cholera patients, in 2018
116 and 2019 respectively. Of these, 2,204 (35%) and 2,171 (67%) were confirmed to be positive
117 for *V. cholerae* O1 by culture (identification based on biochemical tests and detection of Ogawa
118 and Inaba serotypes; Table S7; Figure S1). Among the 1,642 *V. cholerae* isolated at the NCPHL
119 from January to October 2018, 623 were tested for susceptibility to a range of antibiotics by
120 the disk diffusion method, of which 620 (99.6%) were phenotypically resistant to nalidixic acid
121 and nitrofurantoin, but otherwise sensitive to all other antimicrobials tested (Figure S2; Tables
122 S7). In contrast, all tested *V. cholerae* isolates ($n = 2,172$) from January 2019 onwards were
123 resistant to nalidixic acid, azithromycin, co-trimoxazole and cefotaxime (Figure S2; Tables
124 S7), a pattern maintained up to late 2021 (WHO EMRO, personal communication). The
125 transition in phenotype occurred during November 2018, when 159/175 (90.8%) tested isolates
126 already showed the MDR profile. 250 of the 2018-2019 clinical *V. cholerae* isolates were
127 randomly chosen for further characterization (Table S1). These samples originated from eight
128 of the 21 Yemen governorates, comprising 71 out of 333 districts (Table S1), with 101 samples
129 collected in 2018 (from mid-July to late October) and 149 in 2019 (from late February to late
130
131

132 April and from early August to mid-October). In addition, ten environmentally-derived strains
133 were isolated from sewerage in Sana'a in October 2019 (Table S1).

134
135 Extended antibiotic sensitivity testing of these 260 isolates at NCPHL and Institut Pasteur (IP)
136 (Figure S3) reflected the phenotypic switch to MDR observed in the wider sample set, further
137 showing that all tested 2019 strains were resistant to ampicillin, cefotaxime, nalidixic acid,
138 azithromycin, erythromycin and co-trimoxazole (Tables S1, S2; Supplementary text).

139
140 **Phylogenetic diversity of the *V. cholerae* isolated in Yemen in 2018 and 2019**


141
142 We isolated a single colony for 240 out of the 260 *V. cholerae* isolates indicated above, and
143 multiple independent colony picks for the remaining 20 isolates, for a total of 281 isolates on
144 which we performed whole genome sequencing (Figure S3; Tables S1, S2). After quality
145 filtering, this yielded 232 high-quality isolate genome assemblies (selecting a single isolate
146 from each initial sample), which we combined with 650 previously published *V. cholerae* O1
147 and non-O1 genomes for context, totaling 882 assembled genomes (Table S4; Figure S3). We
148 inferred a core-genome phylogeny for this genome set, which described the sequenced diversity
149 of the *V. cholerae* species, rooted by the genomes that belong to its newly described sister
150 species *V. paracholerae*¹⁴. We subdivided *V. cholerae* genomes according to their distribution
151 in eleven crown clades of the core-gene phylogeny clades, referred to henceforth as *VcA* to
152 *VcK* (Figures 1, S3; Table S4). *VcH* contained all 7PET epidemic lineage genomes utilised in
153 this dataset, including 663 contextual genomes, the the majority (216/232) of the Yemen 2018-
154 2019 genomes, and all 42 previously reported 2016-2017 Yemeni genomes⁷ (Figure S4).

155
156 Whilst Yemeni *VcH* isolates show limited genomic diversity (99.98-100.00% ANI similarity;
157 0 to 97 SNPs), the remaining 16 Yemeni genomes belonged to clades *V. paracholerae* (*Vpc*),
158 *VcD* and *VcK* and were overall more diverse than *VcH* isolate genomes (96.24-99.99% ANI
159 similarity; Figure 1; Table 1); these represent “non-7PET” lineages. Based on core genome
160 phylogeny and MLST, we found five distinct clusters within three non-7PET clades: *Vpc* ($n =$
161 1; novel ST1499), *VcD* ($n = 21$; ST555, ST1020 and novel ST1498; Table S6) and *VcK* ($n = 2$;
162 ST170) (Figure 1).

163
164 Although highly clonal, phylogenetic structure within *VcH* allowed it to be further subdivided
165 into subclades *VcH.1* to *VcH.10* (Figure S5). All the Yemen 2016-2019 isolates fell within
166 *VcH.9*, which corresponds to the T13 sublineage of 7PET Wave 3 (ref. 7). We selected one
167 representative isolate (CNRVC190243) of *VcH.9*, and used PacBio sequencing to generate long
168 reads in addition to the Illumina short reads obtained for all samples, which enabled us to
169 generate a closed hybrid assembly. We subsequently used Oxford Nanopore sequencing to do
170 the same for a *VcD* representative isolate (CNRVC190247). To obtain greater phylogenetic
171 resolution within *VcH.9*, we then mapped sequencing reads to our new *VcH.9* CNRVC190243
172 reference genome to build a “mapped genome tree”. Here, together with our novel *VcH.9*
173 genomes ($n = 238$), we included 218 previously published genomes that reside in this subclade
174 and close outgroups, for a total of 456 genomes (Table S5). This approach allowed us to further
175 subdivide *VcH.9* into phylogenetic clusters named *VcH.9.a* to *VcH.9.h* (Figure 2A). Yemeni

176 genomes form a monophyletic group (clusters *VcH.9.e* to *VcH.9.h*), emerging from the genetic
 177 diversity of East African genomes (clusters *VcH.9.c* and *VcH.9.d*), which in turn branch out of
 178 a cluster of South Asian genomes (*VcH.9.b*), consistent with previous observations on the
 179 origins of 7PET-T13, introduced from South Asia into Africa^{7,15}. Clusters *VcH.9.g* and
 180 *VcH.9.h* together comprise the majority of 2018-2019 Yemen isolates (235/281) and form a
 181 well-supported clade (94% bootstrap) that branches from within *VcH.9.f* (Table 1). Cluster
 182 *VcH.9.h* includes the majority of the Yemeni 7PET-T13 isolates (78/87) from 2018, with just
 183 one isolate from March 2019. In contrast, Cluster *VcH.9.g* comprises mostly 2019 isolates
 184 (150/156), and a minority from 2018 (6/156) (Table 1). All of the 2016-2017 Yemen isolates
 185 ($n = 42$) belong to sister clusters *VcH.9.e* and *VcH.9.f*.

186

187

188 Figure 1: Phylogenetic diversity of *Vibrio cholerae* isolates from Yemen

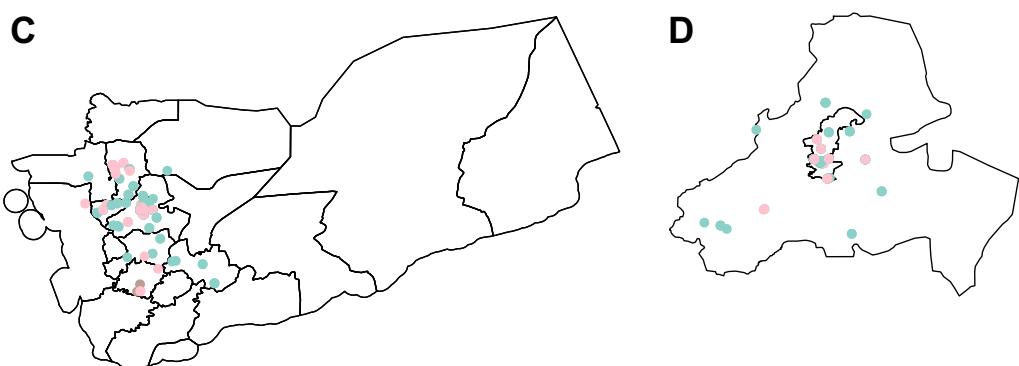
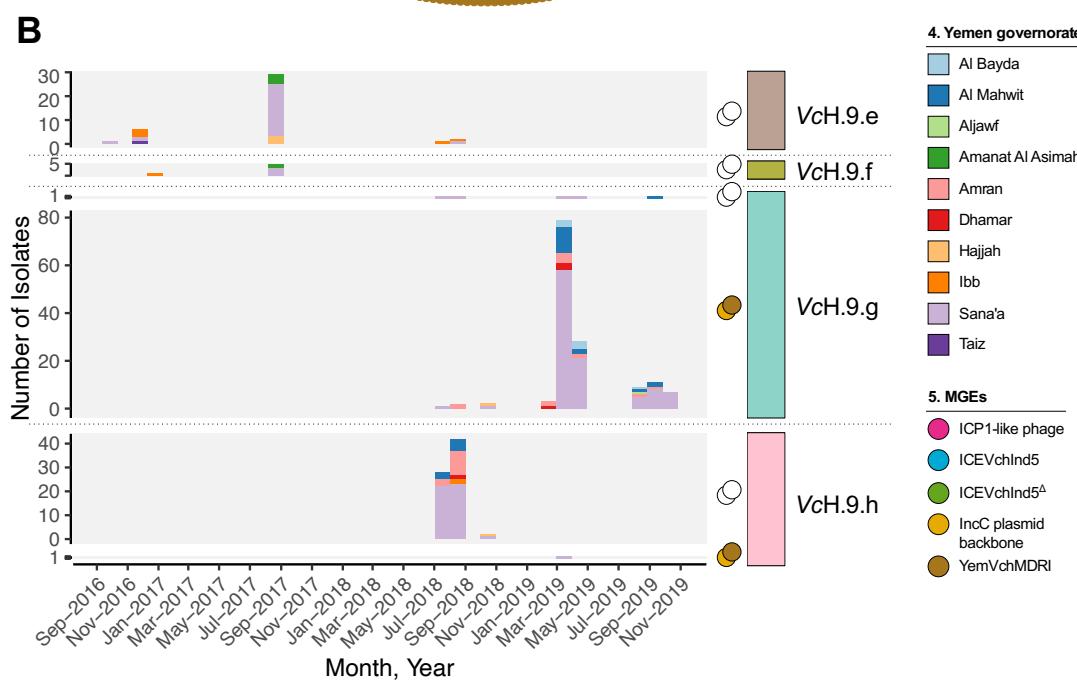
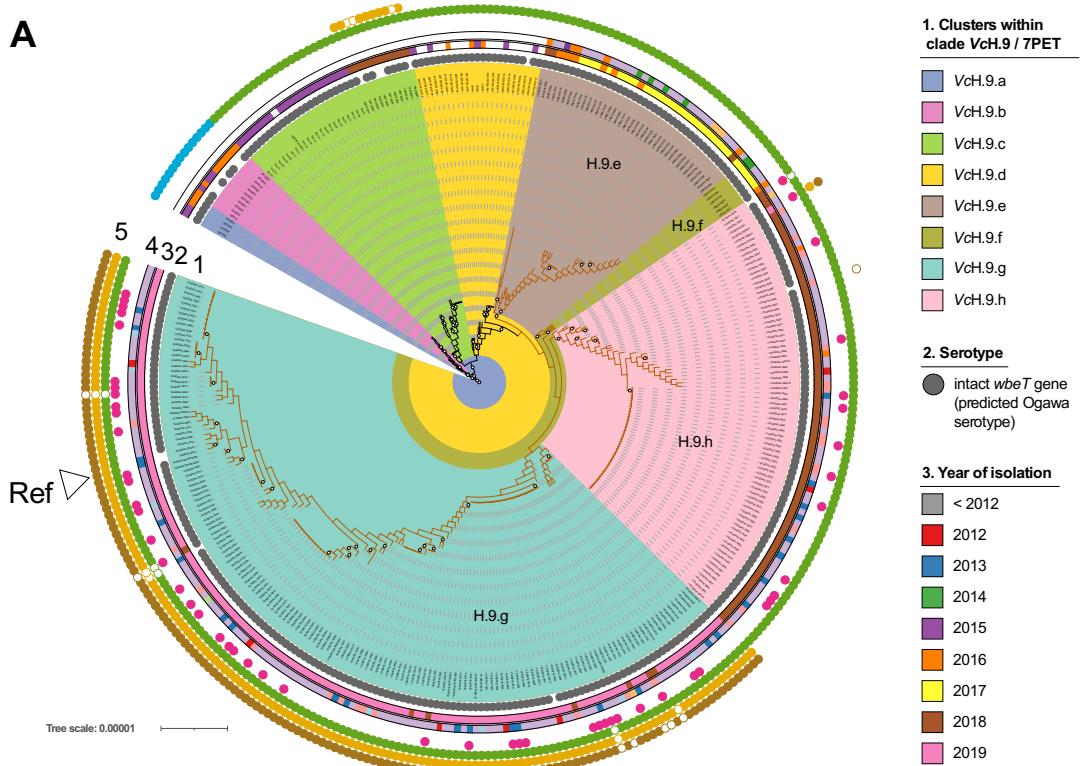
189 Maximum-likelihood phylogeny of 882 assembled *V. cholerae* genomes based on the 37,170 SNP sites from the
 190 concatenated alignments of 291 core genes. Low-diversity clades (*VcH* and part of *VcK*) are collapsed and marked
 191 by black stars. Clades are highlighted with background colours (legend key 1). Coloured rings outside the tree
 192 depict the match with previously described lineages (ring 2), the geographical origin of isolates at the level of
 193 continents (ring 3), and their year of isolation when from Yemen (ring 4). Presence of parts of the plasmid
 194 pCNRVC190243 are indicated by coloured circles (ring 5 in A): IncC plasmid backbone (light brown) and the
 195 MDR pseudo-compound transposon YemVchMDRI (dark brown); full circles indicate over 70% coverage in
 196 assemblies of the reference length, hollow circles indicate 30-70% coverage in assemblies and confirmed presence
 197 based on mapped reads, with even coverage over the MGE reference sequence, while half-circles represent
 198 heterogeneous presence in a collapsed clade. Tree plots were generated with iTOL v4¹⁶ and adapted with Inkscape.
 199 The scale bar represents the number of nucleotide substitutions per site.

200

201 Spatiotemporal distribution of *V. cholerae* isolates

202

203 To delineate the evolutionary dynamics of the cholera outbreak in Yemen, we plotted *VcH.9*
 204 isolates by phylogenetic cluster over time (based on the date of sample collection) and between




205 administrative divisions (linked to reporting hospital). From Figure 2B it is clear that each
206 annual wave was dominated by a single cluster: 2016 and 2017 by *VcH.9.e*; 2018 by *VcH.9.h*;
207 2019 by *VcH.9.g*. There was no evidence of geographic restriction for any of these clusters,
208 even when accounting for dispersal over time (Fig 2C, 2D; Table S5; Supplemental data online,
209 doi: [10.6084/m9.figshare.19097111](https://doi.org/10.6084/m9.figshare.19097111)). Next, we analysed the relationship between temporal and
210 spatial distances, based on the date and GPS coordinates of sample collection, as well as with
211 the pairwise phylogenetic distances between genomes. We found no significant correlation
212 between the spatial and temporal distances, nor between the spatial and phylogenetic distances
213 (Table S8). These data did show a positive correlation between the temporal and phylogenetic
214 distances ($R^2 = 0.181$; Mantel test p -value $< 10^{-6}$) (Table S8), with root-to-tip distances
215 significantly correlated with sampling date (Pearson's $R^2 = 0.437$; $p < 10^{-15}$).

216

217 **Figure 2: Phylogenetic diversity and spatiotemporal distribution of *Vibrio cholerae* 7PET-T13 isolates**
218 **(*VcH.9*) from Yemen**

219 A. Subtree of the maximum-likelihood phylogeny of 456 7PET genomes mapped to reference *VcH.9* strain
220 CNRVC190243 genome, including 335/456 genomes covering *VcH.9* (as defined in Figure S5), which
221 corresponds to the 7PET-T13 sublineage and close South Asian relatives. The full tree containing the 456 genomes
222 is available as supplementary material on Figshare (<https://figshare.com/s/4d83a32cce78a52b413e>; doi:
223 10.6084/m9.figshare.16595999) and was obtained based on 2,092 SNP sites from concatenated whole-
224 chromosome alignments. Brown branches indicate the clade grouping all Yemeni 7PET-T13 isolates. Bootstrap
225 support over 70% is indicated by white circles. Phylogenetic clusters within *VcH.9* are highlighted with
226 background colours (legend key 1). Coded tracks outside the tree depict the serotype of isolates (ring 2) as
227 predicted from genomic data, year of isolation when isolated in 2012 or later (ring 3), the governorate of isolation
228 if in Yemen (ring 4). The presence of mobile genetic elements (MGEs) is indicated by coloured circles in the
229 outermost track (ring 5): ICP1-like phage (pink), SXT/ICE ICE*Vch*Ind5 (blue), ICE*Vch*Ind5 Δ i.e. featuring the
230 characteristic 10-kb deletion in the variable region III (green), IncC plasmid backbone (light brown) and the MDR
231 pseudo-compound transposon Yem*Vch*MDRI (dark brown); filled and unfilled circles indicate different level of
232 coverage in assemblies (see Figure 1 legend). The position of the reference sequence to which all other genomes
233 were mapped to generate the alignment is labelled. The scale bar represents the number of nucleotide substitutions
234 per site. B. Frequency of each phylogenetic subcluster among Yemen isolates per month since the onset of the
235 Yemen outbreak. Where relevant, the cluster group is subdivided by the presence or absence of the IncC plasmid
236 as indicated by the filled brown (present) or open (absence) circle on the right of the chart. The contribution of
237 each governorate of isolation is indicated by the coloured portion of each bar. C and D. A map of Yemen
238 governorates (C) and a focus on the Sana'a and Amanat Al Asimah governorates (inner and outer capital city; D),
239 with dots corresponding to isolates, coloured by phylogenetic subcluster.

240

242

243 We inferred a timed phylogeny for *VcH.9* (Figure S6), which revealed that the most recent
244 common ancestor (MRCA) of all Yemeni *V. cholerae* 7PET-T13 genomes was estimated to
245 have existed in February 2015 (95% confidence interval [95%CI], April 2014 and July 2015).
246 Moreover, the MRCA for clusters *VcH.9.e* and *VcH.9.f* (mostly sampled in 2016 and 2017)
247 were dated May and June 2015, respectively, and the MRCA for clusters *VcH.9.g* and *VcH.9.h*
248 (sampled in 2018 and 2019) were dated February and March 2017, respectively. In addition,
249 we dated the MRCA of the clade grouping clusters *VcH.9.g* and *VcH.9.h*, which represent the
250 majority of 2018-2019 Yemen isolates, to September 2016 (Figure S6).

251

252 The distribution of non-7PET isolates across Yemen was mostly sporadic (Table S4;
253 Suplementary Text; Supplementary data online <https://figshare.com/s/73fc5e1b4958c97ef78>,
254 doi: [10.6084/m9.figshare.19097111](https://doi.org/10.6084/m9.figshare.19097111)). However, we characterised a cluster of eighteen closely
255 related *VcD* isolates belonging to ST555 (Table S6), which we found to differ from each other
256 by 0 to 10 SNPs (average 99.98% ANI similarity). Of these 18 isolates, 13 were isolated over
257 a period of 11 days in late July/early August 2018, two at the end of August, two in October
258 2018, and one in March 2019 (Table S6). They were obtained from patients in the neighbouring
259 governorates of Sana'a ($n = 7$), Al Mahwit ($n = 4$) and Amran ($n = 1$), which surround the
260 capital city. Genomes from other ST555 isolates, including strains reported as linked to
261 travelers returning to the UK from India in September 2015 and July 2016 (strains 229152 and
262 338360)¹⁷, as well as closest relatives from our core-genome tree, were gathered to build a
263 mapped genome tree of *VcD* genomes using the complete genome of 2018 Yemen strain
264 CNRVC190247 as a reference (Figure S7). The closest relative to Yemeni ST555 isolates,
265 strain 338360, differs from the *VcD* ST555 genomes sequenced here by between 763-800
266 SNPs, ruling out direct clonal relationships.

267

268 Predicted phenotypic properties of *V. cholerae* isolates

269

270 Consistent with our previous report⁷, Yemeni *VcH.9* isolates – which all belong to 7PET-T13
271 sublineage – all carried genes or mutations known to confer resistance to trimethoprim (*dfrA1*)
272 and to nalidixic acid (*gyrA_S83I* and *parC_S85L*). They also carried the *Vibrio* pathogenicity
273 island 1 (VPI-1, encoding the toxin co-regulated pilus TCP), VPI-2, the *Vibrio* seventh
274 pandemic islands I and II (VSP-I and VSP-II), and the CTX prophage, which all featured the
275 cholera toxin genes, *ctxAB*, of the allelic type *ctxB7*. None of the non-7PET genomes from
276 Yemen possessed a CTX prophage or the *ctxAB* genes. However, Yemni isolates belonging to
277 *VcK* (ST170, related to previously described lineage MX-2), which were derived from the stool
278 of patients presenting cholera-like disease, carried all the genes coding for the TCP.

279

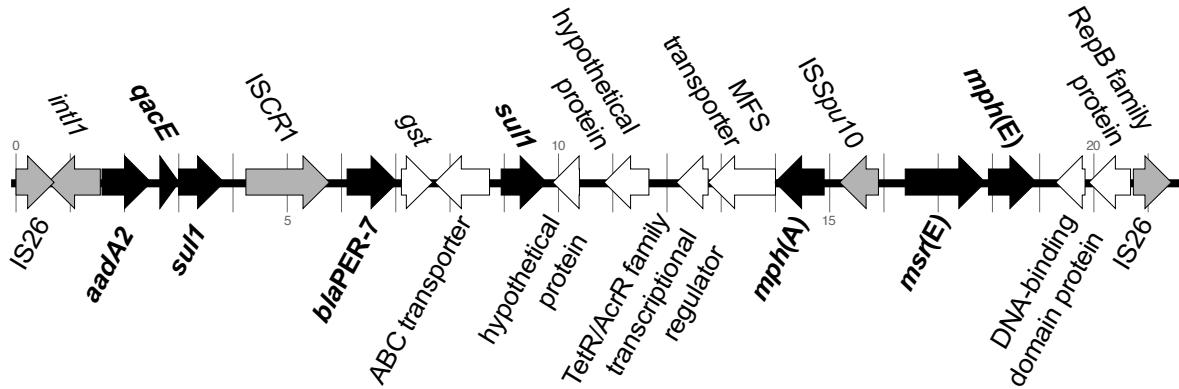
280 These *ctxAB*⁻, *tcpA*⁺ *VcK* genomes also carried the O1 LPS O-antigen biosynthetic gene cluster,
281 consistent with what has been seen previously in related non-7PET isolates¹⁸. The genomes of
282 the *VcD* isolates belonging to ST555, ST1020, ST1498 and the *V. paracolerae* isolate
283 (ST1499), carried LPS O-antigen biosynthetic gene clusters encoding unknown serogroups;
284 these were conserved within and specific to each ST (Table S4; Figure S7A). Of the 216
285 Yemeni 2018-2019 *VcH* isolates, 213 were predicted to produce a serogroup O1 LPS O-antigen

286 based on presence of a full biosynthetic gene cluster; in the three remaining assemblies this
287 genomic region was interrupted (YE-NCPHL-19012) or completely missing (YE-NCPHL-
288 18033 and YE-NCPHL-19140), likely due to limited genome sequence coverage (Table S3).
289 All predicted O1 serogroup isolates were predicted to be Ogawa serotype except two that
290 showed a disruption in *wbeT*, indicative of an Inaba phenotype (YE-NCPHL-18053 and YE-
291 NCPHL-19014, with gene truncation and point mutation respectively; Table S5). These
292 predictions were imperfectly reflected by the results of serological assays conducted at NCPHL
293 (Table S2; Figure S8), suggesting issues in initial laboratory testing (see Supplementary Text).
294

295 **Genome variation of *VcH.9* (7PET-T13) isolates circulating in Yemen**

296

297 Given the change in antimicrobial susceptibility seen in the 2018-2019 Yemen isolates, we
298 compared in detail all of the *VcH.9* isolate genomes from Yemen to each other and related
299 isolates taken elsewhere, focusing on genotypic traits that were conserved in pandemic
300 sublineages occurring in Yemen. We identified three, four, and 21 fixed SNPs in the the crown
301 clade containing *VcH.9.e,f,g,h*, the clade containing *VcH.9.g,h*, and *VcH.9.h*, respectively
302 (including 2, 2 and 11 non-synonymous SNPs, respectively; Table S9). Changes fell largely
303 within genes predicted to be involved in carbohydrate metabolism, signal transduction and
304 chemotaxis, none of which could be directly linked to change in virulence (Table S9).
305


306

307 Previously, the 2016-2017 Yemeni isolates carried an SXT ICE differing by only three or four
308 SNPs from the ICE*Vch*Ind5/ICE*Vch*Ban5 reference sequence (Genbank accession
309 GQ463142.1)¹⁹, but which possessed a 10-kb deletion in variable region III, which explained
310 the phenotypic loss of resistance to streptomycin, chloramphenicol and sulphonamides (only
311 retaining resistance to trimethoprim via the *dfrA1* gene)⁷. All 2018-2019 *VcH.9* genomes
312 carried the same SXT ICE variant, with a maximum of 2 SNP differences and displaying the
313 same deletion. Hence, the change in antimicrobial resistance profile was not linked to variation
314 in SXT ICE.

315

316 Looking across all genes within the pangenome, the only variation directly associated with the
317 Yemen 2018-2019 genomes, compared to those sequenced from 2016-2017, was the presence
318 of a novel 139-kb plasmid, which we named pCNRVC190243 (Table S10). The backbone of
319 this new plasmid includes a replicon of the IncC type, as well as genes encoding a complete
320 type F conjugative apparatus and a MOBH-type relaxase, suggesting it is self-transmissible.
321 Plasmid pCNRVC190243 also carries a 20-kb genomic region (which we denoted
322 Yem*Vch*MDRI) predicted to encode a quaternary ammonium compound efflux pump (*qac*), an
323 extended-spectrum beta-lactamase (ESBL; *bla*PER-7), sulphonamide resistance (*sull*),
324 aminoglycoside resistance (*aadA2*), and macrolide resistance (*mph*(A), *mph*(E) and *msr*(E))
325 (Figure 3; Table S4). Yem*Vch*MDRI is a pseudo-compound transposon (PCT) – a structure
326 bounded by IS26 elements²⁰ – and includes a class 1 integron with *aadA2* encoding resistance
327 to streptomycin and spectinomycin as a gene cassette, associated with an ISCR1 element
328 carrying the ESBL *bla*PER-7 gene, a structure similar to one previously seen in *Acinetobacter*
329 *baumannii*^{21,22}. We found that pCNRVC190243 was present in 6/89 (6.7%) Yemeni *VcH.9*
isolates from 2018, but this rose to 100% (151/151) in 2019 (Figure 2B). This was linked to

330 phylogenetic cluster, with only 1/79 (1.3%) *VcH.9.h* isolates harbouring the plasmid, compared
331 to all (156/156) *VcH.9.g* isolates (Figure 2A).
332

333
334 **Figure 3: Genetic organisation of the MDR pseudo-compound transposon YemVchMDRI**
335 Antimicrobial resistance (AMR) genes are filled in black and labelled in boldface; genes encoding endonucleases
336 transposases and other genes involved in genetic mobility are filled in grey. Genomic position is indicated by
337 tickmarks every kilobase, in reference to the pCNRVC190243 plasmid coordinates.
338

339 **Distribution and relatedness of MDR mobile genetic elements**

340 Analysis of the broader phylogenetic context of pCNRVC190243 suggested at least three
341 independent acquisitions of this plasmid (and associated YemVchMDRI), since it was also
342 present in three *VcD* (ST1499 and ST1020) and two *VcK* (ST170) isolates collected in 2019 in
343 Yemen. Comparing the full-length sequence of all pCNRVC190243 plasmids from *VcH.9* and
344 *VcK* and *VcD* isolates showed all sequences were identical except for two isolates: one varied
345 by a single SNP resulting in an amino-acid change S71F in the sulphonamide resistance protein
346 Sul1 (YE-NCPLH-19105; G26720A SNP); the other by a single intergenic SNP. We also found
347 the YemVchMDRI element integrated into chromosome 2, without the pCNRVC190243
348 backbone (Figure 1; Supplementary Text) in all eighteen of the ST555 isolates.

349 Searching a broader prokaryotic genome database, closely related but non-identical elements
350 were found in different combinations in other *V. cholerae* and diverse bacterial taxa: an IncC
351 plasmid, named pYA00120881 (GenBank accession MT151380), was identified in 13 closely
352 related *VcH.9.a* and *VcH.9.c* isolates (Figure 2A) that were collected in 2015 and 2018 in
353 Zimbabwe¹⁵. The backbones of these IncC plasmids share 99.98% nucleotide sequence
354 identity, but pYA00120881 carries a different MDR genomic region – featuring a *bla* gene
355 encoding a CTX-M-15 ESBL – inserted at the same locus (Figure S9). Furthermore, 59 *V.*
356 *cholerae* O139 (ST69) isolates collected in China from 1998 to 2009^{23,24} (unpublished genomic
357 data released in BioProject PRJNA303115; Table S11) carry IncC-type plasmids that show
358 similarity to pCNRVC190243 and also include YemVchMDRI-like PCT elements, albeit
359 lacking ISCR1 and its associated *blaPER-7* gene.
360

361 Importantly, when using the YemVchMDRI sequence alone for database searches, we found
362 the genome of *V. cholerae* ST555 strain 338360 (Table S6) shared 100% nucleotide identity

363 with the complete Yemeni ST555 YemVchMDRI sequence, including the *bla*_{PER-7}-carrying
364 ISCR1 (ISCR1_{bla}_{PER-7}; Table S12). Likewise, ISCR1_{bla}_{PER-7} has also been previously observed
365 in the genomes of *A. baumanii* strains^{21,25} from France and the United Arab Emirates (UAE).
366 Those from UAE were located on the plasmid pAB154, where the sequence homology with
367 ISCR1_{bla}_{PER-7} extended beyond the canonical element and included YemVchMDRI flanking
368 regions, suggesting that the ISCR1_{bla}_{PER-7} carried by pAB154 is derived from YemVchMDRI,
369 or a closely related element (Figure S10). Moreover, outside of *V. cholerae*, pCNRVC190243-
370 and/or YemVchMDRI-like elements are widely distributed with *Escherichia coli*, *Salmonella*
371 *enterica* and *Klebsiella pneumoniae* genomes presenting >95% shared nucleotide *k*-mers
372 (Table S11, S12; Figure S11), with the closest matches outside of *V. cholerae* being seen in *K.*
373 *pneumoniae*. This indicates that similar regions may be widely distributed in MGEs across
374 bacterial taxa.

375

376 A recent study reported that two anti-plasmid defence systems, DdmABC and DdmDE, cause
377 the instability of plasmids in *V. cholerae* cells, including those with IncC-type replicons²⁶.
378 These proteins are encoded by all 7PET genomes, which according to this study would explain
379 the incapacity of plasmids to be maintained in a 7PET background. We here show that a 139-
380 kb IncC-type plasmid has been stably propagated in a clone of the 7PET lineage. We verified
381 the presence and integrity of the DdmABC and DdmDE systems and found they were present
382 and intact in all 7PET genomes in our 882 assembled genome dataset – including those
383 harbouring pCNRVC190243 (Table S5). This shows that these defence systems are not
384 sufficient to destabilise pCNRVC190243 to the point of it being lost from the population within
385 the 15-month period covered by our study, or even for the following two years, as suggested
386 by 2021 antibiotic susceptibility profiles.

387

388

389 Discussion

390

391 Characterising the genomic nature of the pathogens causing an outbreak can reveal changing
392 epidemiological dynamics through adaptative evolution of the pathogen or the introduction of
393 distinct pathogen lineages. Such events may lead to the emergence of a more virulent or drug
394 resistant genotype of the pathogen, and impact disease control efforts. Our genomic
395 epidemiology analysis shows that despite seasonal fluctuation, the vast majority of cholera in
396 Yemen is caused by the 7PET-T13 lineage (*VcH.9*), and is derived from a single introduction
397 into Yemen. Using a larger sample set, we refined our previous date estimate⁷ and show that
398 the progenitor of the Yemeni outbreak emerged between April 2014 and September 2015,
399 contemporarily to the onset of the civil war in Yemen, and existed one to two years prior to the
400 declaration of a cholera outbreak^{3,7}.

401

402 Using our high-resolution phylogenomic tree, we were able to subtype the majority of Yemeni
403 genomes into four different phylogenetic clusters that dominated the outbreak at different
404 points in time. We observed two large clonal expansions for the sister clades that dominated
405 2018 and 2019 (clusters *VcH.9.h* and *VcH.9.g*, respectively), which both emerged in early
406 2017. Founding effects at the onset of each cholera season, associated with rapid expansions,

407 may explain the dominance of each cluster in these respective epidemic waves. However, it is
408 also possible that an adaptive advantage participated in driving the replacement of *VcH.9.h* by
409 its sister clone, *VcH.9.g*. In the absence of samples from subsequent years (with surveillance
410 efforts hampered by the Covid-19 pandemic), it was not possible to establish whether these or
411 another MDR lineage persisted past 2019.

412

413 In Yemen, pregnant women and children (one third of cholera patients were aged 15 or under;
414 Table S7; ref. 11) were treated with erythromycin and azithromycin between 2016 and late
415 2018. The 2019 wave of the Yemen cholera outbreak was associated with a sudden change in
416 antibiotic resistance profile, from being largely sensitive to antimicrobials between 2016-2018,
417 to being resistant to multiple therapeutically relevant drugs in 2019. Our data showed that this
418 phenomenon coincided with the appearance in late 2018 of plasmid pCNRVC190243 in
419 isolates belonging to *VcH.9.g*, the phylogenetic cluster which dominated our 2019 samples.
420 Plasmid pCNRVC190243 carries the pseudo-compound transposon Yem*Vch*MDRI, which in
421 turn includes a type 1 integron and the ISCR1_{bla}PER-7 element. These elements confer resistance
422 to third-generation cephalosporins, aminoglycosides, macrolides and sulphonamides (and,
423 combined with the *dfrA1* gene present on the SXT ICE, to co-trimoxazole), plus disinfectant
424 tolerance provided by the *qac* gene²⁷. The acquisition of Yem*Vch*MDRI element by an ancestor
425 of *VcH.9.g* was followed by its dramatic spread – a clonal expansion which we show to occur
426 in 2018 (Figure S6), a time when there would have been a selective pressure towards macrolide
427 resistance in symptomatic cases due to the large-scale administration of these drugs.

428

429 We also identified a small number of non-7PET *V. cholerae* amongst 2018-2019 Yemen
430 isolates: 8% of unique clinical isolates (21/254) and 30% of environmental isolates (3/10)
431 belonged to three diverse lineages. The location and times of isolation of these non-7PET *V.*
432 *cholerae* isolates suggest they largely represented sporadic infection events linked to endemic
433 strains. The only sizable cluster of non-7PET isolates were the 18 *VcD/ST555* isolates which
434 had near-identical genomes and isolated in 2018 and 2019 in several districts near the capital
435 city of Sana'a (Figure 1; Figure S7; Table S4). The short time range in which 15 of these strains
436 were isolated (31 days in July-August 2018) could be explained by repeated acquisitions from
437 a point source, although we cannot rule out that they stem from small-scale outbreaks, as has
438 been reported previously for non-O1/non-O139 strains^{28,29}. However, we found no evidence of
439 long range spread of these non-pandemic clones across Yemen, characteristic of 7PET *V.*
440 *cholerae* isolates linked to epidemic disease. Importantly, the reappearance of this *VcD/ST555*
441 genotype later in October 2018 and March 2019, with as little as 2 SNPs difference from
442 summer 2018 isolates, could suggest this genotype is able to persist in the environment,
443 possibly through similar ecological mechanisms as those that lead to the seasonal dynamics of
444 epidemic cholera following its initial introduction¹¹. These ST555 strains might in fact
445 represent an endemic population of *V. cholerae* that can be carried without causing any disease.
446 These ST555 strains could have been isolated from a gut co-colonised by a cholera-causing
447 7PET strain, in an epidemic context where the pathogen is routinely isolated from cholera
448 patients using culture and enrichment techniques that are selective of the whole *V. cholerae*
449 species. This hypothesis of incidental isolation of ST555 strains in samples also containing a
450 toxigenic 7PET strain is supported by the original serotyping of all samples as O1 (Table S1;

451 Supplementary Text), and the positive detection of the *rfbO1* marker by PCR in samples from
452 which the four ST555 strains were isolated at the Institut Pasteur (IP) – samples which, when
453 sequenced at the Wellcome Sanger Institute (WSI), yielded 7PET genomes (Figure S3; Table
454 S13; Supplementary Text).

455

456 Sequences completely or near identical to plasmid pCNRVC190243, carrying the PCT
457 Yem*Vch*MDRI, were present in i) 7PET-T13 (*VcH.9*) isolates, ii) all isolates from two of the
458 three different STs of *VcD* (ST1499 and ST1020), and iii) the two *VcK*/ST170 isolates; all of
459 which were collected in 2019 in Yemen. The only *VcH.9.h* isolate from 2019 also carried this
460 plasmid. It is possible to explain these observations by multiple acquisitions of the plasmid
461 from independent sources or, more parsimoniously, as direct horizontal gene transfer events
462 between the *V. cholerae* lineages we report here. The large population sizes attained by the
463 epidemic lineages in Yemen make the latter hypothesis more likely, in a scenario of spill over
464 from the dominant cluster at the time, *VcH.9.g*. However, we could not infer directionality due
465 to the limited available sampling from the diverse lineages in this study.

466

467 The Yem*Vch*MDRI PCT was also carried chromosomally by Yemeni ST555 strains. This PCT
468 is itself a composite element, including *ISCR1blaPER-7*, a rare element that has only been
469 observed once in another *V. cholerae* background – the relatively closely-related ST555 strain
470 338360 (436 SNPs vs. reference strain CNRVC019247), isolated from a traveler returning from
471 India – and in two plasmids associated with *A. baumanii* strains isolated in Gulf countries.
472 Comparison of these homologous *ISCR1* elements suggests they all are derived from the same
473 ancestral element (Figure S10). Presence of the full, identical PCT Yem*Vch*MDRI in two
474 closely related, but distinct ST555 strains isolated from completely different geographical
475 origins, suggests this element is stably associated with this genotype. From this, we can
476 speculate that Yem*Vch*MDRI was originally present in Yemen in a ST555 genomic
477 background, and later combined with an IncC plasmid backbone to produce pCNRVC190243.
478 Again, directionality cannot be confidently inferred because of uneven sampling of host
479 lineages, and the potentially large number of unobserved donor bacteria.

480

481 Whilst pCNRVC190243 is a novel element, plasmids such as pYAM00120881 identified in
482 *VcH.9* *V. cholerae* from Zimbabwe in 2015 and 2018¹⁵ shared almost identical plasmid
483 backbones. In addition, similar plasmids, some of which also carry Yem*Vch*MDRI-related
484 elements, have been observed in *V. cholerae* O139 isolates from China as well as detected in a
485 range of other bacterial genera, illustrating how widely distributed these IncC plasmids are.
486 Similarly, Yem*Vch*MDRI may occur in more diverse and more widely spread genomic
487 backgrounds that haven't been sampled yet. It is therefore possible that parts of this plasmid
488 have combined outside of Yemen from identical or similar genomic sources, independently
489 from the Yem*Vch*MDRI-carrying Yemeni ST555 strain.

490

491 While other MDR IncC plasmids were previously observed in *V. cholerae* in DRC, Kenya (in
492 a T10 sublineage genetic background) and Zimbabwe (T11 background in 2015), these were
493 only linked to sporadic cases or small-scale cholera outbreaks³⁰, despite selective conditions
494 linked to the widespread and uncontrolled use of antibiotics. Recently, it has been shown that

495 two defence systems, called DdmABC and DdmDE had the capacity to destabilise plasmids,
496 including large IncC-type plasmids²⁶. These defence systems, encoded in all 7PET *V. cholerae*
497 genomes, were proposed to be responsible for the lack of maintenance of MDR plasmids in
498 populations of this pandemic lineage when not under stringent selective pressure for antibiotic
499 resistance. A first exception to the pattern of plasmid instability in 7PET *V. cholerae* was the
500 Zimbabwean cholera outbreak of 2018, which lasted six months and produced over 10,000
501 suspected cases, and was associated with a strain of the T13 background carrying the MDR
502 IncC plasmid pYA00120881¹⁵. The Yemeni cholera outbreak provides a further example, with
503 the T13 strain of the *VcH.9.g* clone, carrying pCNRVC190243, being presumably associated
504 with more than a million suspected cases recorded since its emergence in late 2018. However,
505 the intact presence of the genes encoding the Ddm proteins in Yemeni and Zimbabwean
506 *VcH.9/7PET-T13* genomes presenting MDR IncC plasmids indicates there may be other
507 mechanisms that impact plasmid stability in 7PET genomes.

508
509 One possibility would be that an unknown environmental factor has applied a consistently
510 strong selective pressure for a trait carried by these plasmids. Even though the treatment of
511 cholera patients with macrolides was stopped in Yemen in early 2019, antibiotic pressure
512 remains a potential selective factor, as antibiotics and particularly azithromycin have been
513 reported to be overused by the general population in Yemen during the Covid-19 crisis³¹.
514 Another possible factor would be the interaction with other mobile elements, including ICP1
515 phages, which we detected in a significant fraction of the samples (see Supplementary Text).
516 It has also been proposed previously that the presence of an SXT ICE in these genomes could
517 prevent the stable replication of an IncC-type plasmid, through an unknown functional
518 interference mechanism^{7,15}. The unique occurrence of a 10-kb deletion in the SXT ICE
519 (ICE*Vch*Ind5/ICE*Vch*Ban5) in T13 isolates may provide these genomes with the novel capacity
520 to stably host an IncC plasmid; molecular genetic investigation of this locus should be
521 conducted to test whether it encodes another plasmid destabilisation factor. Whatever the
522 mechanism, it appears that both MDR elements SXT ICE and IncC plasmid are stably
523 propagated together in the Yemeni T13 strain, which population in Yemen has reached a
524 unprecedented size. This emerging MDR strain has therefore a high potential to spread and
525 seed further adapted lineages, as well as to disseminate its MDR plasmid and PCT to other
526 organisms.

527

528 Conclusion

529

530 The emergence of this multi-drug resistant pathogen demonstrates the necessity of continued
531 genomic surveillance of the microbial population associated with the ongoing Yemen cholera
532 outbreak, and for new outbreaks that may take place in regionally connected areas. Such
533 surveillance will enable Yemeni public health authorities to rapidly adapt clinical practices to
534 minimize AMR selective pressures. This also warrants increased efforts in research on the
535 molecular mechanisms and evolution of interactions between mobile genetic elements, to learn
536 about the constraints ruling their colonization of bacterial genomes. Such knowledge is
537 essential for us to be able to disentangle the role of MGEs from that of their bacterial hosts in
538 driving epidemics, so to propose practical definitions of pathogens that focus on the relevant

539 genes, mobile elements or prokaryotic organisms, and to implement appropriate molecular
540 epidemiology surveillance schemes.

541

542

543 **Materials and Methods**

544

545 **Definitions and surveillance data**

546 Cholera cases were notified to the the Ministry of Public Health and Population of Yemen
547 (MPHP) and recoded through the Electronic Disease Early Warning System (eDEWS)².
548 Suspected and confirmed cholera cases were defined according to the WHO in a declared
549 outbreak setting. Briefly, a suspected case is any person presenting with or dying from acute
550 watery diarrhoea (AWD) and a confirmed case is a suspected case with *Vibrio cholerae* O1 or
551 O139 infection confirmed by culture.

552

553 **Sample collection, microbiological testing and clinical metadata**

554 Clinical samples, i.e. stool and rectal swabs, were collected in Yemen by epidemiological
555 surveillance teams from suspected cholera cases during 2018 and 2019¹¹ and were transported
556 to the National Centre of Public Health Laboratories (NCPHL) in the capital city Sana'a in
557 Cary-Blair transport medium (Oxoid, USA). To probe the diversity of vibrios shed by
558 unreported cholera cases, as well as *V. cholerae* that may naturally occur in effluent waters,
559 environmental samples were collected during the day time in October 2019 from the sewage
560 system around Sana'a city and the vicinity and then transported to NCPHL for testing; each
561 sample was collected in sterile bottles containing enrichment media comprised of 250 mL of
562 sewage and alkaline peptone broth (APB, Difco Laboratories, Detroit, Michigan) at a 1:1 ratio
563 and incubated for 20 h at room temperature including the transportation time into the NCPHL
564 and processed as described previously³². All samples were cultured and identified according to
565 the Centers for Disease Control and Prevention (CDC) guidelines³³. Resistance to antibiotics
566 was tested by the disk diffusion method according to the CLSI guidelines³⁴ for a range of
567 antibiotics as described in Table S1.

568 Live clinical isolates (n=120) were sent to the Institut Pasteur (IP; Paris, France), where only
569 21 samples were culture positive, due to poor sample preservation during shipment (Table S2;
570 Figure S3), leading to the final isolation of 22 *V. cholerae* strains (including two from mixed
571 culture YE-NCPHL-18020). Strains re-isolated at IP were characterized by biochemical and
572 serotyping methods according to standard practice of the French National Reference Centre for
573 Vibrios and Cholera (CNRVC)³⁵. Separate antibiotic susceptibility testing (Table S2) was
574 performed by the disk diffusion method according to EUCAST guidelines (EUCAST 2020³⁶)
575 and MIC determination using the SensititreTM (Thermo Scientific) and the Etest[®] (bioMérieux,
576 Marcy-l'Étoile, France) systems. Interpretation into S (Susceptible), I (Intermediate), and R
577 (Resistant) categories was performed according to the 2020 edition of EUCAST
578 recommendation on interpretation of the diameter of the zones of inhibition of
579 *Enterobacteriaceae*³⁷, and to the 2013 CA-SFM (Comité de l'Antibiogramme de la Société
580 Française de Microbiologie) standards for *Enterobacteriaceae*³⁸ for antibiotics for which
581 critical diameters are no longer reported in the latest published guidelines. *E. coli* CIP 76.24 (=
582 ATCC 25922) was used as a reference strain.

583

584 **DNA extraction and sequencing**

585 Genomic DNA was extracted at the NCPHL from subcultures inoculated with single bacterial
586 colonies and grown in nutrient agar (Oxoid, USA) at 37°C overnight according to the
587 manufacturer instructions (Wizard® Genomic DNA Purification kit, Promega, UK). Genomic
588 DNA samples (derived from 10 environmental and 250 clinical samples, which includes the
589 120 samples sent to IP) were sent to the Wellcome Sanger Institute (WSI; Hinxton, UK) and
590 sequenced on the WSI sequencing pipeline (Figure S3) using the Illumina HiSeq platform X10
591 as previously described²⁸.

592 Two MDR *V. cholerae* strains were selected among the 22 held at the IP for long-read
593 sequencing. The first strain, CNRVC190243 (= YE-NCPHL-19014-PI), a 7PET *V. cholerae*
594 O1 strain was sequenced by Single-Molecule Real-Time (SMRT) sequencing (Pacific
595 Bioscience). The genomic DNA was prepared at the IP as follows: strain CNRVC190243 was
596 cultured in Brain-Heart-Infusion (BHI) broth (Difco) overnight at 37 °C with shaking (200
597 rpm—Thermo Scientific MaxQ 6800). Then, 100 µL of the overnight culture was inoculated
598 into a 10 ml BHI broth and cultured 2 hours at 37°C with shaking. After centrifugation, the
599 bacterial cells were processed as described previously³⁹, except that MaXtract High Density
600 columns (Qiagen) were used (instead of phase lock tubes) and DNA was resuspended in
601 molecular biology grade water (instead of 10 mM Tris pH 8.0). Library preparation and the
602 sequencing were performed by the GATC platform (Eurofins Genomics Europe Sequencing
603 GmbH; Konstanz, Germany) using their standard genomic library protocol and PacBio RS
604 sequencer. The second strain, CNRVC190247 (= YE-NCPHL-18035-PI), a non-O1/non-O139
605 *V. cholerae* strain further characterized as ST 555, was sequenced using the MinION nanopore
606 sequencer (Oxford Nanopore Technologies). Genomic DNA was prepared at the IP as follows:
607 strain CNRVC19247 was cultured in alkaline nutrient agar (casein meat peptone E2 from
608 Organotechnie, 20 g; sodium chloride from Sigma, 5 g; Bacto agar from Difco, 15g; distilled
609 water to 1 L; adjusted to pH 8.4; autoclaved at 121°C for 15 min) overnight at 37 °C. A few
610 isolated colonies of the overnight culture were inoculated into a 20 ml of Brain-Heart-Infusion
611 (BHI) broth and cultured until a final OD₆₀₀=0.8 at 37°C with shaking (200 rpm). After
612 centrifugation, the bacterial cells were processed as described above. The library was prepared
613 according to the instructions of the “Native barcoding genomic DNA (with EXP-NBD104,
614 EXP-NBD114, and SQK-LSK109)” procedure provided by Oxford Nanopore Technology.
615 The sequencing was then performed using a R9.4.1 flow cell on the MinION Mk1C apparatus
616 (Oxford Nanopore Technologies). The genomes of 21/22 strains cultivated at the IP (all but
617 CNRVC190251, which was isolated later; Table S2) were also sequenced using Illumina short-
618 read technology at the IP using the equipment and services of the iGenSeq platform at the
619 Institut du cerveau et de la moëlle épinière (Paris, France) from genomic DNA extracted with
620 the Maxwell 16-cell DNA purification kit (Promega) in accordance with the manufacturer's
621 recommendations.

622

623 **Genome assembly and annotation**

624 The 260 sequencing read sets produced at the WSI (Figure S3) were processed with the WSI
625 Pathogen Informatics pipeline⁴⁰: quality of sequencing runs was assessed based on quality of
626 mapping of 10% reads to the genome of reference strain N16961 (GenBank Assembly

627 accession GCA_900205735.1) using the Burrows-Wheeler Aligner (BWA)⁴¹; read sets passed
628 the check if at least 80% bases were mapped after clipping, the base and indel error rate were
629 smaller than 0.02, and less than 80% of the insert sizes fell within 25% of the most frequent
630 size. Contamination was assessed manually based on Kraken classification of reads using the
631 standard WSI Pathogen reference database, which contains all viral, archaeal and bacterial
632 genomes and the mouse and human reference published in the RefSeq database as of the 21st
633 May 2015 (Table S3). Sequences were assembled *de novo* into contigs as described
634 previously⁴², using SPAdes v3.10.0 as the core assembler⁴³. Poor assemblies were filtered out
635 if differing of more than 20% from the expected genome size of 4.2 Mb, or when more than
636 10% of reads were assigned by Kraken to another organism than *V. cholerae* (notably including
637 the *Vibrio* phage ICP1) or to synthetic constructs, or were unclassified. This led to the omission
638 of 28 genome assemblies, resulting in 232 high-quality assembled genomes. The genome of
639 strains CNRVC190243 and CNRVC190247 were assembled based on long and short reads
640 using a hybrid approach with UniCycler⁴⁴ v0.4.7 and v0.4.8, respectively, using pilon⁴⁵ v1.23
641 for the polishing step, to produce high-quality reference sequences comprised of both
642 chromosomes and, for strain CNRVC190243, of an additional plasmid, pCNRVC190243. New
643 genomes were annotated with Prokka version v1.5.0⁴⁶.

644

645 **Contextual genomic data (882 “assembled *V. cholerae* genomes” dataset)**

646 To provide phylogenetic context, we also included in this analysis previously published
647 genome sequences from a globally representative set of isolates. We first gathered genome
648 assemblies generated at the WSI using the pipeline described above based on previously
649 published short reads sets from *V. cholerae* isolates belonging to sublineage T13 of 7PET Wave
650 3 (7PET-T13) and from strains isolated in close spatio-temporal context i.e. within a decade in
651 Africa and South Asia (where the ancestor of T13 is thought to originate⁷). These include all
652 42 Yemen 2016-2017 isolates⁷, 103 recent isolates from East Africa including from Kenya⁷,
653 Tanzania⁴⁷, Uganda⁴⁸ and Zimbabwe¹⁵ and 74 isolates from South Asia⁴⁹. In addition, we
654 included genomes spanning the wider diversity of *V. cholerae*, including all 119 genomes from
655 China¹⁸, as well as 312 genomes from the collections of contextual genomes used in previous
656 studies^{7,28}. Together with the 232 Yemen 2018-2019 isolate genome assemblies (see above),
657 our final dataset consisted of 882 assembled *V. cholerae* genomes (Table S4; Figure S3).

658

659 **Identification and typing of mobile genetic elements, virulence factors, AMR genes and** 660 **anti-phage defense systems**

661 The presence of AMR genes, plasmid replicon regions or virulence factors were predicted using
662 Abricate⁵⁰, searching the reference databases NCBI AMR+⁵¹, Plasmidfinder⁵² or VFDB⁵³,
663 respectively. BLASTN⁵⁴ (v2.7.1+, with default parameters) was used to identify known mobile
664 genetic elements (MGEs): the SXT/ICE ICEVchInd5 (GenBank accession GQ463142.1);
665 ICP1-like vibriophages ICP1_VMJ710 and ICP1_2012_A (GenBank accessions MN402506.2
666 and MH310936.1, respectively)⁵⁵ and the ICP1-like vibriophage YE-NCPHL-19021, which
667 genome was the only assembled contig from the reads obtained from sample YE-NCPHL-
668 19021 (this study; Genbank accession MW911613.1); the IncC-type plasmid
669 pCNRVC190243, obtained from the hybrid assembly of strain CNRVC190243 described
670 above (this study; ENA sequence accession OW443149.1); the MDR pseudo-compound

671 transposon (PCT) Yem*Vch*MDRI, extracted from this plasmid (positions 16,442 to 36,862);
672 PICI-like elements (PLE) 1, 2 and 3 (GenBank accessions KC152960.1, KC152961.1,
673 MF176135.1)^{56,57}. Absence of elements was verified at the read level as described below.
674 Sequences similar to the reference sequences of the plasmid pCNRVC190243, the MDR PCT
675 Yem*Vch*MDRI and the ICP1-like phage genome YE-NCPHL-19021 were also searched in a
676 database of 661,405 genome assemblies⁵⁸ using a *k*-mer-based COBS index⁵⁹; alignment of
677 best matches were further characterized using BLASTN. We typed the conjugation apparatus
678 of pCNRVC190243 with CONJScan⁶⁰ on the Pasteur Institute Galaxy server (Galaxy Version
679 1.0.5+galaxy0). We searched for presence of CRISPR-Cas arrays using MacSyFinder⁶¹ v1.0.5
680 with default parameters and the built-in Cas system reference database; genomes positive for
681 Cas systems were further analysed with CRISPRCasFinder⁶² on the Pasteur Institute Galaxy
682 server to retrieve CRISPR arrays.

683

684 **Prediction of serotype, serogroup and multi-locus sequene type**

685 To predict the antigenic serogroup, we screened the assemblies against a custom reference
686 database using Hamburger⁶³. In brief, a database was constructed by selecting flanking and
687 marker genes for the operon encoding the *V. cholerae* O-antigen, with representative genes for
688 both O1 and non-O1 serogroups included (Table S15). Gene sequences were individually
689 aligned using Clustal Omega (version 1.2.4), prior to HMM construction with HMMER
690 (version 3.2.1) and concatenation of the HMM alignments. Assemblies were screened againts
691 this database using Hamburger (version 836a77c)⁶⁴ to identify the operon, and genetic structure
692 was compared across the assemblies and references to designate serogroups. The HMMER
693 database is available online at <https://figshare.com/s/5dd21a52f0d5a39a670f> (doi:
694 10.6084/m9.figshare.19575148).

695 For O1 serotype prediction (Inaba or Ogawa), we used a combination of approaches including
696 BLASTN search against the 882 assembled *V. cholerae* genomes (as described above) and
697 ARIBA (v2.14.6+, with default parameters)⁶⁵ to screen the sequencing read sets against the
698 *wbeT* gene sequence from strain NCTC 9420 (positions 311,049-311,909 of GenBank
699 accession CP013319.1) as a reference, as previously described²⁸. Multi-locus sequence typing
700 (MLST) of non-7PET isolates was conducted on PubMLST.org⁶⁶ under the non-O1/non-O139
701 *V. cholerae* seven-gene typing scheme.

702

703 **Identification of single nucleotide variants (456 “mapped 7PET genomes” and 33 704 “mapped *VcD* genomes” datasets)**

705 For variant calling, Illumina short reads were mapped against the novel reference genomes
706 from strains CNRVC190243 and CNRVC190247, or the in-house MGE database described
707 above. We mapped all 260 short read sets from 2018-2019 Yemeni isolates sequenced at the
708 WSI, including those 28 read sets which assembly showed low coverage or appeared
709 contaminated with phage genomes (Table S3), so to recover variation data evidenced at the
710 read level, provided reads were mapped at a sufficient depth (see below). We also mapped read
711 sets from the 21 strains sequenced at the IP, and from contextual isolates of the 7PET-T13
712 sublineage and close relatives (see “Contextual genomic data”), for a total of 468 mapped
713 genomes. Reads were trimmed with Trimmomatic, mapped to both CNRVC190243 reference
714 chromosomes with BWA-MEM and the IncC plasmid pCNRVC190243. Mapped genomes

715 with an average read depth below 5x over the two chromosomes were deemed of insufficient
716 read depth and were excluded (12 read sets mapped to CNRVC190243, all from this study and
717 generated at WSI, were excluded for a final set of 456 mapped 7PET genomes [Table S5]; no
718 read set mapped to CNRVC190247 was excluded). We used the software suite
719 samtools/bcftools⁶⁷ v1.9 to call single nucleotide variants with a minimum coverage of 10x
720 read depth; see custom script ‘map_yemen_reads2MGEs.sh’⁶⁸ for a detailed description of the
721 parameters used. Resulting consensus sequences were combined into a whole-genome
722 alignment, which was processed with snp-sites⁶⁹ to produce a single nucleotide polymorphism
723 (SNP) alignment.

724 Overall genome similarity was assessed by computing SNP distances based on the above
725 alignments using the function ‘dist.dna’ from the R package ‘ape’⁷⁰, and average nucleotide
726 identity (ANI, accounting for unaligned regions) was computed using fastANI⁷¹ v1.3 with
727 default parameters.

728

729 **Phylogenetic inference**

730 The Pantagruel pipeline⁷² was used to infer a maximum-likelihood (ML) “core-genome tree”
731 using the “-S” option and otherwise default parameters. Briefly, 291 single-copy core-genome
732 genes (with expected high degree of sequence conservation and relatively low prevalence of
733 HGT compared to other core genes) were extracted from the 882 assembled *V. cholerae*
734 genomes, their alignments were concatenated and the resulting supermatrix was reduced to its
735 37,170 polymorphic positions, from which a ML tree was computed from RAxML v8.2.11⁷³
736 (model ASC_GTRGAMMAX using Stamatakis’ ascertainment bias correction; one starting
737 parsimony tree; 200 rapid bootstraps for estimating branch supports); supporting
738 supplementary data are available on Figshare at
739 <https://figshare.com/s/3fe31c131b00a2a08bb9>. Phylogenies were also inferred from whole-
740 genome alignments of the concatenated consensus sequences of both chromosomes from the
741 SNP alignment of the 456 mapped 7PET genomes and 33 mapped *VcD* genomes. These
742 alignments contained 2,092 and 91,312 polymorphic positions, respectively, and were used as
743 input to RAxML-NG v1.0.1⁷⁴ to build the ML “mapped genome trees” using the following
744 options: “all --tree pars{10} --bs-trees 200 --model GTR+G4+ASC_STAM”. Alternative
745 topologies were compared using RAxML-NG option “--sitelh” to generate per-site likelihood
746 values and the ‘SH.test’ function from the ‘phangorn’ R package⁷⁵ to test hypotheses.

747

748 The 882 assembled *V. cholerae* core-genome tree was rooted using the clade of sequences
749 identified as *V. paracholerae*¹⁴ as an outgroup. The remaining part of the tree (*V. cholerae*
750 *sensu stricto*) was subdivided into clades named *VcA* to *VcK* based on visual examination with
751 the aim to coincide with previously described lineages such as 7PET, Gulf Coast, etc. or based
752 on balanced subdivisions of the tree diversity. *VcH*, corresponding to the 7PET lineage, was
753 further subdivided into clades of even depth, named Subclades H.1 to H.9. The 456 mapped
754 7PET genomes were similarly classified into clusters based on the tree topology, with genomes
755 assigned to subclades named *VcH.5*, *VcH.6*, *VcH.8* or *VcH.9* (according to their position in the
756 882 assembled *V. cholerae* core-genome tree). Genomes belonging to *VcH.9*, which
757 corresponds to the 7PET-T13 sublineage, were further separated into *VcH.9.a* to *VcH.9.h*,
758 based on visual examination of the tree structure and aiming to maximise uniformity of the

759 spatio-temporal metadata associated to genomes in each cluster; clusters correspond to clades,
760 either entirely or at the exclusion of another cluster included in the clade i.e. genome clusters
761 can emerge from each other. Final trees for the mapped genome datasets were rooted manually
762 according to the branching pattern in the 882 assembled *V. cholerae* core-genome tree, which
763 diversity encompasses that of the mapped genome trees.

764

765 From a subset of the 456 mapped 7PET genome alignments (n=335) corresponding to *VcH.9*,
766 a recombination-free phylogeny was inferred using ClonalFrameML v1.11⁷⁶ with default
767 parameters and using the ML mapped genome tree (restricted to the *VcH.9* genome tips) as a
768 starting tree. BactDating⁷⁷ v1.1 was then used to estimate a timed phylogeny (using 100,000
769 Monte-Carlo Markov chain iterations and otherwise default parameters) of the Yemen 2016-
770 2019 genomes and relatives using the ClonalFrameML tree and day-resolved dates as input;
771 median day of the year of isolation was used for isolates where these data were missing. Three
772 independent chains were run from different random seeds and yielded close results.

773

774 Supporting data for phylogenetic analyses of the 882 assembled *V. cholerae*, 456 mapped
775 7PET genomes and 33 mapped *VcD* genomes are available on Figshare repository at
776 <https://figshare.com/s/3fe31c131b00a2a08bb9> (doi: 10.6084/m9.figshare.16611823),
777 <https://figshare.com/s/4d83a32cce78a52b413e> (doi: 10.6084/m9.figshare.16595999) and
778 <https://figshare.com/s/0be28064870c811120c5> (doi: 10.6084/m9.figshare.18304961),
779 respectively.

780

781 **Correlation of spatio-temporal and phylogenetic distances**

782 GPS data associated to the site of sample collection (health centres) were used to compute
783 spatial geodetic distances using R script ‘gps_coords.r’^{78,79}. Temporal distances were computed
784 from the difference between day of collection (only available for 2018 and 2019 Yemen
785 isolates). Phylogenetic distances were computed from the mapped genome tree using the
786 function ‘cophenetic’ from the core R package ‘stats’⁸⁰. Spatial, temporal and phylogenetic
787 distances were compared using a Monte-Carlo approximation of the Mantel test as implemented
788 in the ‘mantel.randtest’ function from the R package ‘ade4’⁸¹, using 100,000 permutations to
789 compute the simulated *p*-value. Maps showing the distribution of genomes clusters over the
790 Yemen territory and in the region of Sana'a were obtained using QGIS 3.16.3 and the
791 QuickOSM API to retrieve OpenStreetMap data, specifically level 4 administrative boundaries
792 (governorates) in Yemen (last accessed 11 February 2021).

793

794 **Clade-specific SNPs and pangenome analysis**

795 The synteny-aware pangenome pipeline Panaroo⁸² (v1.2.3) was run on the 882 assembled *V.*
796 *cholerae* genome set with the option “--clean-mode strict” and default parameters otherwise.
797 In parallel, a combined VCF file containing information on all SNP variation within the 456
798 mapped genome set was obtained using the ‘bcftools merge’ command. To identify clade-
799 specific SNPs and accessory gene presence/absence patterns, we used custom R scripts⁶⁸ to
800 compare the combined VCF file and the gene presence/absence table output of Panaroo,
801 respectively, to the mapped genome tree. Based on lists of genomes assigned to various clades
802 and clusters (see Results), we identify SNPs or accessory genes that are specific of a focus

803 clade in contrast to a background group or a sister clade, considering the contrast significant
804 when the Bonferroni-corrected p-value is below 0.05 and when the frequency of an allele is
805 above 0.8 in the focus clade and below 0.2 in the background clade, or conversely. Pangenome
806 analysis files are available at <https://figshare.com/s/675d2a9e424ad4f11646> (doi:
807 10.6084/m9.figshare.19519105). Putative anti-phage defense systems were searched by testing
808 correlation of presence/absence patterns between ICP1-like phage and each pangenome gene
809 cluster; only associations with Pearson correlation coefficients lower than -0.9 or greater than
810 0.9 and p-values lower than 10^{-5} were retained as significant.

811

812 **Data availability**

813 Novel genomic data are available from the ENA/NCBI/DDBJ short read archive under the
814 BioProject PRJEB34436. Four of the resulting assemblies comprised a single 123-kb contig
815 corresponding to the ICP1-like phage; these assemblies were deemed uncontaminated and
816 complete ICP1-like phage genomes and were deposited to GenBank under the accessions
817 MW911612-MW911615. Complete hybrid genome assemblies for reference strains
818 CNRVC019243 and CNRVC019247 were deposited to the ENA under the BioProject
819 accessions PRJEB52123 and PRJEB47951 (Assemblies GCA_937000105 and
820 GCA_937000115), respectively. Supplementary data are available online on the Figshare
821 repository, under the following digital object identifiers (doi):
822 <https://doi.org/10.6084/m9.figshare.16595999>, <https://doi.org/10.6084/m9.figshare.16611823>,
823 <https://doi.org/10.6084/m9.figshare.18304961>, <https://doi.org/10.6084/m9.figshare.19097111>,
824 <https://doi.org/10.6084/m9.figshare.19519105>, <https://doi.org/10.6084/m9.figshare.19575148>.

825

826

827 **Acknowledgements**

828

829 This research was funded in whole, or in part, by the Wellcome Trust (grants number 206194
830 and 108413/A/15/D). For the purpose of Open Access, the author has applied a CC-BY public
831 copyright licence to any Author Accepted Manuscript version arising from this submission.
832 This work was supported by *Institut Pasteur, Santé publique France*, and by the French
833 Government's *Investissement d'Avenir* program, *Laboratoire d'Excellence "Integrative*
834 *Biology of Emerging Infectious Diseases*" (grant no. ANR-10-LABX-62-IBEID). We wish to
835 thank Sally Kay, Joseph Woolfolk, Simon Clare and Charlotte Tolley for their support in
836 sample management and logistics at WSI. We thank the WSI Pathogen Informatics team for
837 support on informatics and the use of genomics analysis pipelines.

838 M.J.D. is an Official Fellow of Churchill College, Cambridge, and was previously supported
839 by a Junior Research Fellowship at the College.

840

841 **References**

842

- 843 1. UNHCR Yemen 2021 Country Operational Plan. *UNHCR Operational Data Portal*
844 (*ODP*) <https://data2.unhcr.org/en/documents/details/85850> (2021).

845 2. Dureab, F. *et al.* Assessment of electronic disease early warning system for improved
846 disease surveillance and outbreak response in Yemen. *BMC Public Health* **20**, 1422
847 (2020).

848 3. WHO-EMRO. Cholera outbreaks. *World Health Organization - Regional Office for the*
849 *Eastern Mediterranean* <http://www.emro.who.int/health-topics/cholera-outbreak/cholera-outbreaks.html> (2021).

850 4. WHO. Health workers in Yemen reach more than 306,000 people with cholera vaccines
851 during four-day pause in fighting – WHO, UNICEF. *World Health Organization*
852 <https://www.who.int/news-room/detail/05-10-2018-health-workers-in-yemen-reach-more-than-306-000-people-with-cholera-vaccines-during-four-day-pause-in-fighting-who-unicef>
853 (2018).

854 5. Federspiel, F. & Ali, M. The cholera outbreak in Yemen: lessons learned and way
855 forward. *BMC Public Health* **18**, 1338 (2018).

856 6. Mutreja, A. *et al.* Evidence for several waves of global transmission in the seventh
857 cholera pandemic. *Nature* **477**, 462–465 (2011).

858 7. Weill, F.-X. *et al.* Genomic insights into the 2016–2017 cholera epidemic in Yemen.
859 *Nature* **565**, 230 (2019).

860 8. Bai, Z. G. *et al.* Azithromycin versus penicillin G benzathine for early syphilis. *Cochrane*
861 *Database Syst Rev* CD007270 (2012) doi:10.1002/14651858.CD007270.pub2.

862 9. Rabaan, A. A. Cholera: an overview with reference to the Yemen epidemic. *Front Med*
863 **13**, 213–228 (2019).

864 10. Global Task Force on Cholera Control. Technical note on the use of antibiotics for the
865 treatment and control of cholera. <https://www.gtfcc.org/wp-content/uploads/2019/10/gtfcc-technical-note-on-use-of-antibiotics-for-the-treatment-of-cholera.pdf> (2018).

870 11. Camacho, A. *et al.* Cholera epidemic in Yemen, 2016–18: an analysis of surveillance
871 data. *The Lancet Global Health* **6**, e680–e690 (2018).

872 12. Ambrose, S. J., Harmer, C. J. & Hall, R. M. Compatibility and entry exclusion of IncA
873 and IncC plasmids revisited: IncA and IncC plasmids are compatible. *Plasmid* **96–97**, 7–
874 12 (2018).

875 13. De, R. Mobile Genetic Elements of *Vibrio cholerae* and the Evolution of Its
876 Antimicrobial Resistance. *Frontiers in Tropical Diseases* **2**, 7 (2021).

877 14. Islam, M. T. *et al.* Population analysis of *Vibrio cholerae* in aquatic reservoirs reveals a
878 novel sister species (*Vibrio paracholerae* sp. nov.) with a history of association with
879 human infections. *bioRxiv* 2021.05.05.442690 (2021) doi:10.1101/2021.05.05.442690.

880 15. Mashe, T. *et al.* Highly Resistant Cholera Outbreak Strain in Zimbabwe. *New England
881 Journal of Medicine* **383**, 687–689 (2020).

882 16. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new
883 developments. *Nucleic Acids Research* **47**, W256–W259 (2019).

884 17. Greig, D. R. *et al.* Evaluation of Whole-Genome Sequencing for Identification and
885 Typing of *Vibrio cholerae*. *Journal of Clinical Microbiology* **56**, (2018).

886 18. Wang, H. *et al.* Genomic epidemiology of *Vibrio cholerae* reveals the regional and global
887 spread of two epidemic non-toxigenic lineages. *PLOS Neglected Tropical Diseases* **14**,
888 e0008046 (2020).

889 19. Spagnolletti, M. *et al.* Acquisition and Evolution of SXT-R391 Integrative Conjugative
890 Elements in the Seventh-Pandemic *Vibrio cholerae* Lineage. *mBio* **5**, e01356-14 (2014).

891 20. Harmer, C. J., Pong, C. H. & Hall, R. M. Structures bounded by directly-oriented
892 members of the IS26 family are pseudo-compound transposons. *Plasmid* **111**, 102530
893 (2020).

894 21. Bonnin, R. A. *et al.* PER-7, an Extended-Spectrum β -Lactamase with Increased Activity
895 toward Broad-Spectrum Cephalosporins in *Acinetobacter baumannii*. *Antimicrobial*
896 *Agents and Chemotherapy* **55**, 2424–2427 (2011).

897 22. Toleman, M. A., Bennett, P. M. & Walsh, T. R. ISCR Elements: Novel Gene-Capturing
898 Systems of the 21st Century? *Microbiology and Molecular Biology Reviews* **70**, 296–316
899 (2006).

900 23. Yu, L. *et al.* Multiple Antibiotic Resistance of *Vibrio cholerae* Serogroup O139 in China
901 from 1993 to 2009. *PLOS ONE* **7**, e38633 (2012).

902 24. Wang, R. *et al.* IncA/C plasmids harboured in serious multidrug-resistant *Vibrio cholerae*
903 serogroup O139 strains in China. *International Journal of Antimicrobial Agents* **45**, 249–
904 254 (2015).

905 25. Opazo, A. *et al.* Plasmid-encoded PER-7 β -lactamase responsible for ceftazidime
906 resistance in *Acinetobacter baumannii* isolated in the United Arab Emirates. *Journal of*
907 *Antimicrobial Chemotherapy* **67**, 1619–1622 (2012).

908 26. Jaskolska, M., Adams, D. W. & Blokesch, M. Two defence systems eliminate plasmids
909 from seventh pandemic *Vibrio cholerae*. *Nature* 1–7 (2022) doi:10.1038/s41586-022-
910 04546-y.

911 27. Ceccarelli, D., Salvia, A. M., Sami, J., Cappuccinelli, P. & Colombo, M. M. New Cluster
912 of Plasmid-Located Class 1 Integrons in *Vibrio cholerae* O1 and a dfrA15 Cassette-
913 Containing Integron in *Vibrio parahaemolyticus* Isolated in Angola. *Antimicrobial Agents*
914 *and Chemotherapy* (2006) doi:10.1128/AAC.01310-05.

915 28. Dorman, M. J. *et al.* Genomics of the Argentinian cholera epidemic elucidate the
916 contrasting dynamics of epidemic and endemic *Vibrio cholerae*. *Nature Communications*
917 **11**, 4918 (2020).

918 29. Haley, B. J. *et al.* Genomic and Phenotypic Characterization of *Vibrio cholerae* Non-O1
919 Isolates from a US Gulf Coast Cholera Outbreak. *PLOS ONE* **9**, e86264 (2014).

920 30. Weill, F.-X. *et al.* Genomic history of the seventh pandemic of cholera in Africa. *Science*
921 **358**, 785–789 (2017).

922 31. Dhabaan, G., Chahin, A., Buhaish, A. & Shorman, M. COVID-19 pandemic in Yemen: A
923 questionnaire based survey, what do we know? *The Journal of Infection in Developing
924 Countries* **14**, 1374–1379 (2020).

925 32. Madico, G. *et al.* Active surveillance for *Vibrio cholerae* O1 and vibriophages in sewage
926 water as a potential tool to predict cholera outbreaks. *Journal of Clinical Microbiology*
927 **34**, 2968–2972 (1996).

928 33. CDC. Laboratory Methods for the Diagnosis of *Vibrio cholerae*. *Centers for Disease
929 Control and Prevention* [https://www.cdc.gov/cholera/pdf/laboratory-methods-for-the-
diagnosis-of-vibrio-cholerae-chapter-4.pdf](https://www.cdc.gov/cholera/pdf/laboratory-methods-for-the-
930 diagnosis-of-vibrio-cholerae-chapter-4.pdf) (2021).

931 34. Weinstein, M. P. *M100: Performance Standards for Antimicrobial Susceptibility Testing,
932 31st Edition*. (Clinical & Laboratory Standards Institute).

933 35. Dodin, A. & Fournier, J. M. Laboratory methods for the diagnosis of cholera vibrio and
934 other vibrios. in *Diagnosis of the cholera vibrio*. 59–82 (Institut Pasteur, 1992).

935 36. CASFM & EUCAST. Recommandations 2020, V.1.1 (Avril). (2020).

936 37. EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint
937 tables for interpretation of MICs and zone diameters. Version 10.0. (2020).

938 38. CASFM. Recommandations 2013. (2013).

939 39. von Mentzer, A. *et al.* Long-read-sequenced reference genomes of the seven major
940 lineages of enterotoxigenic *Escherichia coli* (ETEC) circulating in modern time. *Sci Rep*
941 **11**, 9256 (2021).

942 40. WSI Pathogen Informatics. *vr-codebase Github repository*. (Pathogen Informatics,
943 Wellcome Sanger Institute, 2022).

944 41. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
945 *arXiv* (2013) doi:1303.3997v1 [q-bio.GN].

946 42. Page, A. J. *et al.* Robust high-throughput prokaryote de novo assembly and improvement
947 pipeline for Illumina data. *Microbial Genomics* **2**, (2016).

948 43. Bankevich, A. *et al.* SPAdes: A New Genome Assembly Algorithm and Its Applications
949 to Single-Cell Sequencing. *Journal of Computational Biology* **19**, 455–477 (2012).

950 44. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial
951 genome assemblies from short and long sequencing reads. *PLOS Computational Biology*
952 **13**, e1005595 (2017).

953 45. Walker, B. J. *et al.* Pilon: An Integrated Tool for Comprehensive Microbial Variant
954 Detection and Genome Assembly Improvement. *PLOS ONE* **9**, e112963 (2014).

955 46. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–
956 2069 (2014).

957 47. Kachwamba, Y. *et al.* Genetic Characterization of *Vibrio cholerae* O1 isolates from
958 outbreaks between 2011 and 2015 in Tanzania. *BMC Infectious Diseases* **17**, 157 (2017).

959 48. Bwire, G. *et al.* Molecular characterization of *Vibrio cholerae* responsible for cholera
960 epidemics in Uganda by PCR, MLVA and WGS. *PLOS Neglected Tropical Diseases* **12**,
961 e0006492 (2018).

962 49. Morita, D. *et al.* Whole-Genome Analysis of Clinical *Vibrio cholerae* O1 in Kolkata,
963 India, and Dhaka, Bangladesh, Reveals Two Lineages of Circulating Strains, Indicating
964 Variation in Genomic Attributes. *mBio* **11**, (2020).

965 50. Seemann, T. *ABRicate*. (2021).

966 51. Feldgarden, M. *et al.* Validating the AMRFinder Tool and Resistance Gene Database by
967 Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of
968 Isolates. *Antimicrobial Agents and Chemotherapy* **63**, e00483-19.

969 52. Carattoli, A. *et al.* In Silico Detection and Typing of Plasmids using PlasmidFinder and
970 Plasmid Multilocus Sequence Typing. *Antimicrobial Agents and Chemotherapy* **58**,
971 3895–3903 (2014).

972 53. Chen, L., Zheng, D., Liu, B., Yang, J. & Jin, Q. VFDB 2016: hierarchical and refined
973 dataset for big data analysis—10 years on. *Nucleic Acids Res* **44**, D694–D697 (2016).

974 54. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421
975 (2009).

976 55. Angermeyer, A., Das, M. M., Singh, D. V. & Seed, K. D. Analysis of 19 Highly
977 Conserved *Vibrio cholerae* Bacteriophages Isolated from Environmental and Patient
978 Sources Over a Twelve-Year Period. *Viruses* **10**, 299 (2018).

979 56. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes
980 its own CRISPR/Cas adaptive response to evade host innate immunity. *Nature* **494**, 489–
981 491 (2013).

982 57. O’Hara, B. J., Barth, Z. K., McKitterick, A. C. & Seed, K. D. A highly specific phage
983 defense system is a conserved feature of the *Vibrio cholerae* mobilome. *PLoS Genet* **13**,
984 e1006838 (2017).

985 58. Blackwell, G. A. *et al.* Exploring bacterial diversity via a curated and searchable snapshot
986 of archived DNA sequences. *PLOS Biology* **19**, e3001421 (2021).

987 59. Bingmann, T., Bradley, P., Gauger, F. & Iqbal, Z. COBS: A Compact Bit-Sliced
988 Signature Index. in *String Processing and Information Retrieval* (Springer International
989 Publishing, 2019).

990 60. Cury, J., Abby, S. S., Doppelt-Azeroual, O., Néron, B. & Rocha, E. P. C. Identifying
991 Conjugative Plasmids and Integrative Conjugative Elements with CONJscan. in
992 *Horizontal Gene Transfer: Methods and Protocols* (ed. de la Cruz, F.) 265–283 (Springer
993 US, 2020). doi:10.1007/978-1-4939-9877-7_19.

994 61. Abby, S. S., Néron, B., Ménager, H., Touchon, M. & Rocha, E. P. C. MacSyFinder: A
995 Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas
996 Systems. *PLoS ONE* **9**, e110726 (2014).

997 62. Pourcel, C. *et al.* CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and
998 cas genes from complete genome sequences, and tools to download and query lists of
999 repeats and spacers. *Nucleic Acids Research* **48**, D535–D544 (2020).

1000 63. Williams, D. J. *et al.* *The phylogenomic landscape of the genus Serratia*.
1001 2022.01.11.475790 <https://www.biorxiv.org/content/10.1101/2022.01.11.475790v1>
1002 (2022) doi:10.1101/2022.01.11.475790.

1003 64. Williams, D. *hamburger*. (2021).

1004 65. Hunt, M. *et al.* ARIBA: rapid antimicrobial resistance genotyping directly from
1005 sequencing reads. *Microbial Genomics* **3**, (2017).

1006 66. Jolley, K. A., Bray, J. E. & Maiden, M. C. J. Open-access bacterial population genomics:
1007 BIGSdb software, the PubMLST.org website and their applications. (2018)
1008 doi:10.12688/wellcomeopenres.14826.1.

1009 67. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *GigaScience* **10**, giab008
1010 (2021).

1011 68. Lassalle, F. *flass/yemenpaper Github repository*. (Wellcome Sanger Institute, 2022).

1012 69. Page, A. J. *et al.* SNP-sites: rapid efficient extraction of SNPs from multi-FASTA
1013 alignments. *Microbial Genomics*, **2**, e000056 (2016).

1014 70. Paradis, E. *Analysis of Phylogenetics and Evolution with R*. (Springer New York, 2012).

1015 71. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High
1016 throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries.
1017 *Nature Communications* **9**, 5114 (2018).

1018 72. Lassalle, F., Jauneikaite, E., Veber, P. & Didelot, X. Automated reconstruction of all
1019 gene histories in large bacterial pangenome datasets and search for co-evolved gene
1020 modules with Pantagruel. *bioRxiv* 586495 (2019) doi:10.1101/586495.

1021 73. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
1022 large phylogenies. *Bioinformatics* btu033 (2014) doi:10.1093/bioinformatics/btu033.

1023 74. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast,
1024 scalable and user-friendly tool for maximum likelihood phylogenetic inference.
1025 *Bioinformatics* doi:10.1093/bioinformatics/btz305.

1026 75. Schliep, K. P. phangorn: phylogenetic analysis in R. *Bioinformatics* **27**, 592–593 (2011).

1027 76. Didelot, X. & Wilson, D. J. ClonalFrameML: Efficient Inference of Recombination in
1028 Whole Bacterial Genomes. *PLoS Comput Biol* **11**, e1004041 (2015).

1029 77. Didelot, X., Croucher, N. J., Bentley, S. D., Harris, S. R. & Wilson, D. J. Bayesian
1030 inference of ancestral dates on bacterial phylogenetic trees. *Nucleic Acids Research* **46**,
1031 e134–e134 (2018).

1032 78. Lassalle, F. *flass/microbiomes Github repository*. (2018).

1033 79. Lassalle, F. *et al.* Oral microbiomes from hunter-gatherers and traditional farmers reveal
1034 shifts in commensal balance and pathogen load linked to diet. *Molecular Ecology* **27**,
1035 182–195 (2018).

1036 80. R Core Team. *R: A Language and Environment for Statistical Computing*. (R Foundation
1037 for Statistical Computing, 2020).

1038 81. Dufour, A.-B. & Dray, S. The ade4 Package: Implementing the Duality Diagram for
1039 Ecologists. *Journal of Statistical Software* **22**, (2007).

1040 82. Tonkin-Hill, G. *et al.* Producing polished prokaryotic pangenomes with the Panaroo
1041 pipeline. *Genome Biology* **21**, 180 (2020).

1042 83. Sullivan, M. J., Petty, N. K. & Beatson, S. A. Easyfig: a genome comparison visualizer.
1043 *Bioinformatics* **27**, 1009–1010 (2011).

1044 84. Hoshino, K. *et al.* Development and evaluation of a multiplex PCR assay for rapid
1045 detection of toxigenic *Vibrio cholerae* O1 and O139. *FEMS Immunology & Medical*
1046 *Microbiology* **20**, 201–207 (1998).

1047 85. Nonaka, L. & Suzuki, S. New Mg²⁺-Dependent Oxytetracycline Resistance Determinant
1048 Tet 34 in *Vibrio* Isolates from Marine Fish Intestinal Contents. *Antimicrobial Agents and*
1049 *Chemotherapy* **46**, 1550–1552 (2002).

1050 86. Roberts, M. C. Update on acquired tetracycline resistance genes. *FEMS Microbiology*
1051 *Letters* **245**, 195–203 (2005).

1052 87. Seed, K. D. *et al.* Evidence of a Dominant Lineage of *Vibrio cholerae*-Specific Lytic
1053 Bacteriophages Shed by Cholera Patients over a 10-Year Period in Dhaka, Bangladesh.
1054 *mBio* **2**, (2011).

1055 88. Nelson, E. J. *et al.* Gold Standard Cholera Diagnostics Are Tarnished by Lytic
1056 Bacteriophage and Antibiotics. *Journal of Clinical Microbiology* **58**, (2020).

1057 89. LeGault, K. N. *et al.* Temporal shifts in antibiotic resistance elements govern phage-
1058 pathogen conflicts. *Science* **373**, (2021).

1059
1060
1061
1062

1063 **Table 1. Number of *V. cholerae* isolate genomes from Yemen by year and phylogenetic**
1064 **lineage**

1065

1066	Year	Total	Clades		Clusters				n.d. ⁴
			<i>Vpc</i> ¹	<i>VcD</i> ²	<i>VcK</i> ¹	<i>VcH/H.9</i> ³	H.9.e	H.9.f	
1067									
1068									
1069	2016	8			8	7	1		
1070	2017	34			34	29	5		
1071	2018	112		17	87	3		6	8
1072	2019	169	1	4	2	151		150	11
1073	Total	323	1	21	2	280	39	6	79
									19

1074

¹ Assigned based on the “882 assembled *V. cholerae* genomes” dataset

² Assigned based on the “33 mapped *VcD* genomes” dataset

³ Assigned based on the 456 “mapped 7PET genomes”

⁴ Poor quality genome data or no coverage of the bacterial genomes (e.g. in case of complete contamination by ICP1 virus genome).

1080

1081 **Figure Legends**

1082

1083 **Figure 1: Phylogenetic diversity of *Vibrio cholerae* isolates from Yemen**

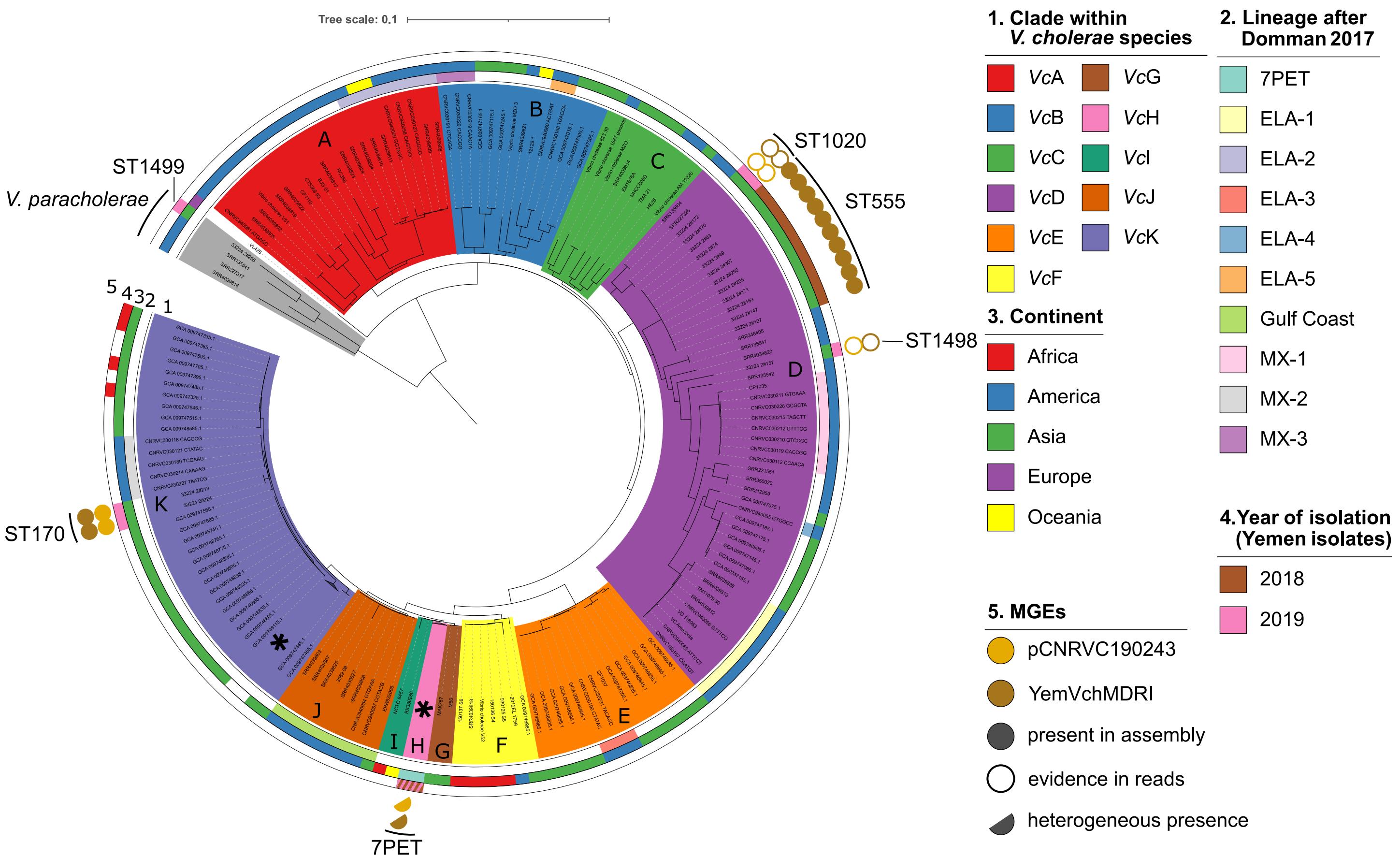
1084 Maximum-likelihood phylogeny of 882 assembled *V. cholerae* genomes based on the 37,170
1085 SNP sites from the concatenated alignments of 291 core genes. Low-diversity clades (*VcH* and
1086 part of *VcK*) are collapsed and marked by black stars. Clades are highlighted with background
1087 colours (legend key 1). Coloured rings outside the tree depict the match with previously
1088 described lineages (ring 2), the geographical origin of isolates at the level of continents (ring
1089 3), and their year of isolation when from Yemen (ring 4). Presence of parts of the plasmid
1090 pCNRVC190243 are indicated by coloured circles (ring 5 in A): IncC plasmid backbone (light
1091 brown) and the MDR pseudo-compound transposon YemVchMDRI (dark brown); full circles
1092 indicate over 70% coverage in assemblies of the reference length, hollow circles indicate 30-
1093 70% coverage in assemblies and confirmed presence based on mapped reads, with even
1094 coverage over the MGE reference sequence, while half-circles represent heterogeneous
1095 presence in a collapsed clade. Tree plots were generated with iTOL v4¹⁶ and adapted with
1096 Inkscape. The scale bar represents the number of nucleotide substitutions per variable site.

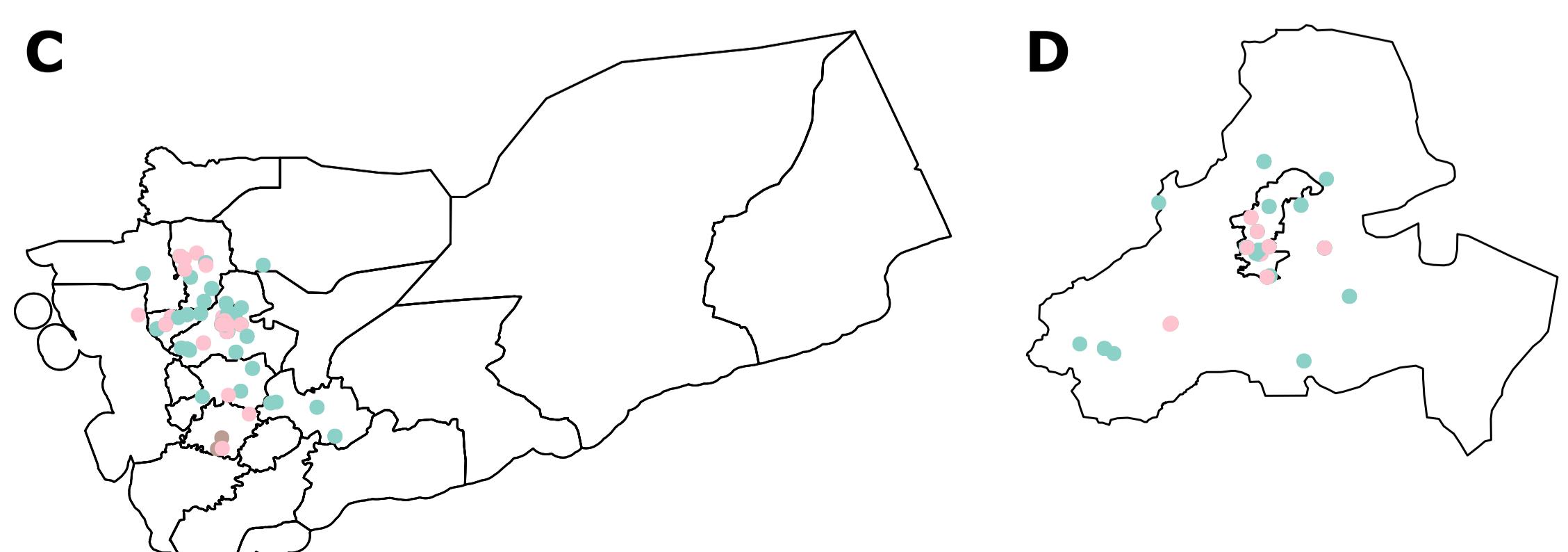
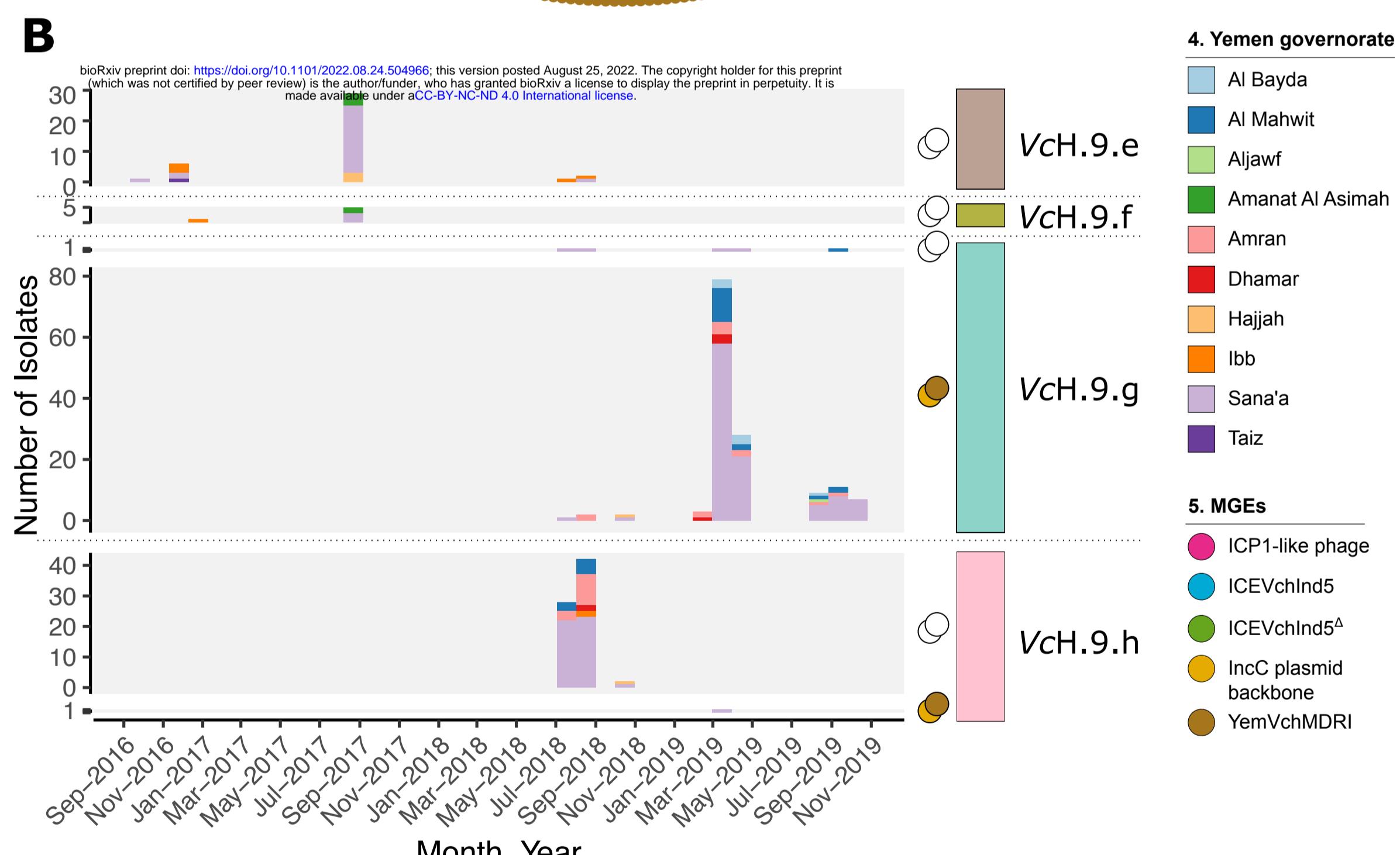
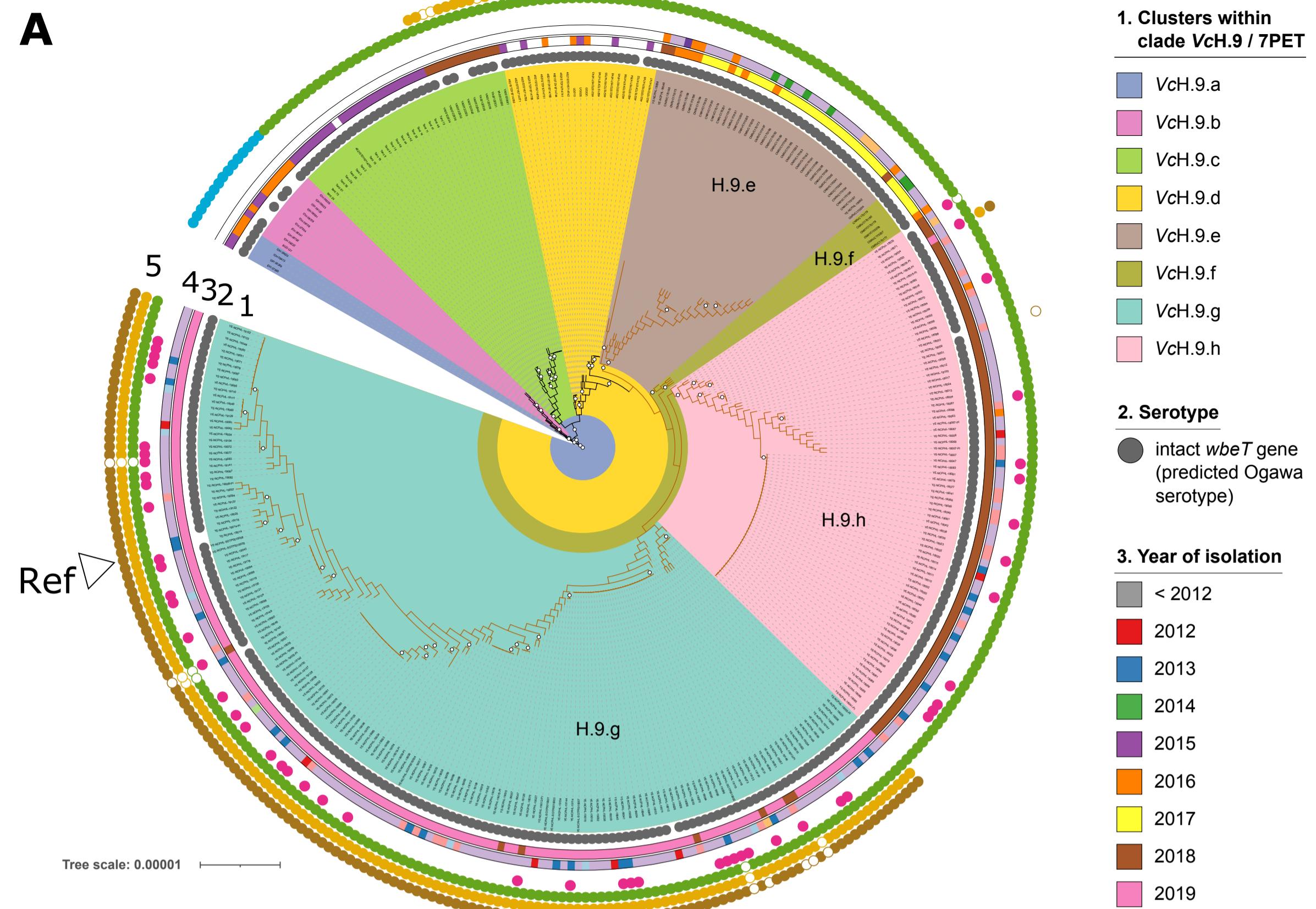
1097

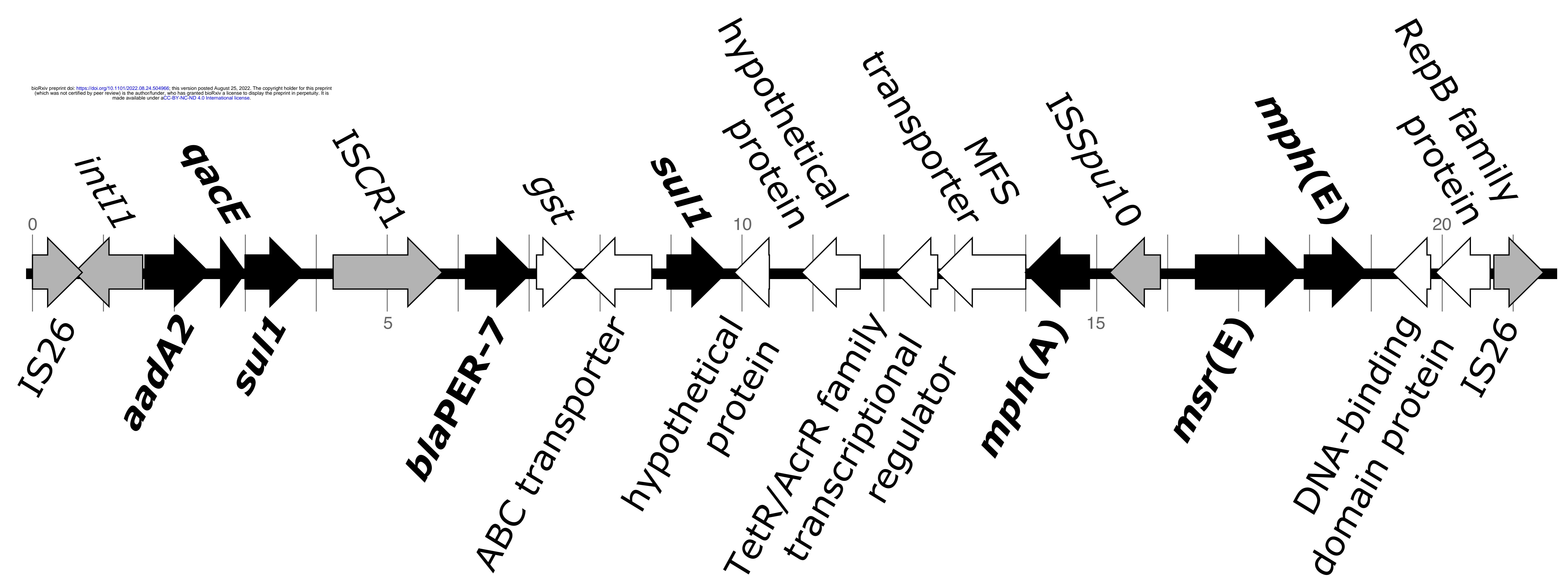
1098 **Figure 2: Phylogenetic diversity and spatiotemporal distribution of *Vibrio cholerae* 7PET-
1099 T13 isolates (*VcH.9*) from Yemen**

1100 **A.** Subtree of the maximum-likelihood phylogeny of 456 7PET genomes mapped to reference
1101 *VcH.9* strain CNRVC190243 genome, including 335/456 genomes covering *VcH.9* (as defined
1102 in Figure S5), which corresponds to the 7PET-T13 sublineage and close South Asian relatives.
1103 The full tree containing the 456 genomes is available as supplementary material on Figshare
1104 (<https://figshare.com/s/4d83a32cce78a52b413e>; doi: 10.6084/m9.figshare.16595999) and was
1105 obtained based on 2,092 SNP sites from concatenated whole-chromosome alignments. Brown
1106 branches indicate the clade grouping all Yemeni 7PET-T13 isolates. Bootstrap support over
1107 70% is indicated by white circles. Phylogenetic clusters within *VcH.9* are highlighted with
1108 background colours (legend key 1). Coded tracks outside the tree depict the serotype of isolates
1109 (ring 2) as predicted from genomic data, year of isolation when isolated in 2012 or later (ring
1110 3), the governorate of isolation if in Yemen (ring 4). The presence of mobile genetic elements
1111 (MGEs) is indicated by coloured circles in the outermost track (ring 5): ICP1-like phage (pink),
1112 SXT/ICE ICEVchInd5 (blue), ICEVchInd5^Δ i.e. featuring the characteristic 10-kb deletion in
1113 the variable region III (green), IncC plasmid backbone (light brown) and the MDR pseudo-
1114 compound transposon YemVchMDRI (dark brown); filled and unfilled circles indicate
1115 different level of coverage in assemblies (see Figure 1 legend). The position of the reference
1116 sequence to which all other genomes were mapped to generate the alignment is labelled. The
1117 scale bar represents the number of nucleotide substitutions per site. **B.** Frequency of each
1118 phylogenetic subcluster among Yemen isolates per month since the onset of the Yemen
1119 outbreak. Where relevant, the cluster group is subdivided by the presence or absence of the
1120 IncC plasmid as indicated by the filled brown (present) or open (absence) circle on the right of
1121 the chart. The contribution of each governorate of isolation is indicated by the coloured portion
1122 of each bar. **C and D.** A map of Yemen governorates (C) and a focus on the Sana'a and Amanat
1123 Al Asimah governorates (inner and outer capital city; D), with dots corresponding to isolates,
1124 coloured by phylogenetic subcluster.

1125


1126 **Figure 3: Genetic organisation of the MDR pseudo-compound transposon YemVchMDRI**




1127 Antimicrobial resistance (AMR) genes are filled in black and labelled in boldface; genes


1128 encoding endonucleases transposases and other genes involved in genetic mobility are filled in

1129 grey. Genomic position is indicated by tickmarks every kilobase, in reference to the

1130 pCNRVC190243 plasmid coordinates.

