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Abstract 31 
 32 
The humanitarian crisis in Yemen led in 2016 to the biggest cholera outbreak documented in 33 
modern history, with more than 2.5 million suspected cases to date. In late 2018, 34 
epidemiological surveillance showed that V. cholerae isolated from cholera patients had turned 35 
multi-drug resistant (MDR). We generated genomes from 260 isolates sampled in Yemen 36 
between 2018 and 2019 to identify a possible shift in circulating genotypes. 84% of V. cholerae 37 
isolates were serogroup O1 belonging to the seventh pandemic El Tor (7PET) lineage, 38 
sublineage T13 – same as in 2016 and 2017 – while the remaining 16% of strains were non-39 
toxigenic and belonged to divergent V. cholerae lineages, likely reflecting sporadic gut 40 
colonisation by endemic strains. Phylogenomic analysis reveals a succession of T13 clones, 41 
with 2019 dominated by a clone that carried an IncC-type plasmid harbouring an MDR pseudo-42 
compound transposon (PCT). Identical copies of these mobile elements were found 43 
independently in several unrelated lineages, suggesting exchange and recombination between 44 
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endemic and epidemic strains. Treatment of severe cholera patients with macrolides in Yemen 45 
from 2016 to early 2019 coincides with the emergence of the plasmid-carrying T13 clone. The 46 
unprecedented success of this genotype where an SXT-family integrative and conjugative 47 
element (SXT/ICE) and an IncC plasmid coinhabit show the stability of this MDR plasmid in 48 
the 7PET background, which may durably reduce options for epidemic cholera case 49 
management. We advocate a heightened genomic epidemiology surveillance of cholera to help 50 
control the spread of this highly-transmissible, MDR clone.  51 
 52 
Introduction 53 
 54 
Since 2016, Yemen has seen the largest epidemic of cholera ever recorded. This occurred 55 
against the backdrop of a civil war turned international conflict and famine which together 56 
fueled extensive population movement, with more than 4 million people internally displaced 57 
by the end of 20201. The Electronic Disease Early Warning System (eDEWS), a surveillance 58 
programme coordinated by the Ministry of Public Health and Population of Yemen (MPHP) in 59 
Sana’a tasked with monitoring the epidemic2, had recorded a total of almost 2.4 million 60 
suspected cholera cases up until August 20193. These cases exhibited a seasonal profile, with 61 
peaks in July 2017 and September 2018 (16,000 and 50,000 cases per week, respectively)3. 62 
The lower reported case incidence in 2018 was ascribed to the mass vaccination campaign led 63 
by the World Health Organization (WHO) and United Nation Children’s Fund (UNICEF), who 64 
delivered the oral cholera vaccine (OCV) to 540,000 people in August 2018 (387,000 at follow-65 
up in September) in targeted districts in Aden, Hudaydah and Ibb governorates4,5. 66 
Notwithstanding this focussed vaccination campaign, cholera cases were recorded nationwide 67 
in 2019, peaking at over 30,000 cases per week. Despite the mass vaccination campaign, case 68 
numbers declined at a slower rate than in previous years3. 69 
 70 
Pandemic cholera is caused by discrete phylogenetic lineages of the bacterium Vibrio cholerae 71 
that are associated with epidemic spread, and carry lipopolysaccharide O-antigens of 72 
serogroups O1 or O139. The large majority of epidemic strains associated with cholera 73 
outbreaks from the last 60 years belong to the seventh pandemic El Tor (7PET) lineage of V. 74 
cholerae O1, which swept the planet in three pandemic waves6. We previously used genomic 75 
epidemiology to show that the first two waves of the cholera outbreak in Yemen (2016 and 76 
2017) were driven by a single clonal expansion7 belonging to Wave 3 of the global 7PET 77 
lineage and had an Ogawa serotype. This indicated the Yemen outbreak was seeded by a single 78 
international transmission event linked to the 7PET sublineage involved in the thirteenth 79 
recorded intercontinental introduction of cholera (T13)7.  80 
 81 
Our ongoing surveillance activities in Yemen found that the fluctuating peaks in incidence in 82 
Yemen were accompanied by a sudden change in the antibiotic susceptibility profile reported 83 
by the reference laboratory at the MPHP in Sana’a. Whilst strains isolated in 2016-2018 were 84 
sensitive to most of the antibiotics usually used for the treatment of cholera (excepting 85 
quinolones, where reduced suceptibility to ciprofloxacin prevented the use of this antibiotic as 86 
a single dose treatment), by 2019, resistance was observed for multiple drugs including third 87 
generation cephalosporins, macrolides (including azithromycin) and cotrimoxazole. Whilst the 88 
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main treatment for cholera is rehydration therapy, antibiotics can be used to limit the volume 89 
and duration of the acute watery diarrhoea, and reduce the risk of transmission8–10. In Yemen, 90 
macrolides were used extensively up to early 2019 to treat moderate to severe cases of cholera 91 
in pregnant woman and children, the latter forming the large majority of cases11. Multiple drug 92 
resistance (MDR) in V. cholerae is strongly associated with the acquisition of mobile genetic 93 
elements (MGEs) such as SXT-family integrative and conjugative elements (SXT/ICE) or 94 
plasmids of the incompatibility type C (IncC, formerly known as IncA/C2; ref. 12), which often 95 
carry and disseminate antimicrobial resistance (AMR) gene cargo13.  96 
 97 
We hypothesised that the MDR phenotype seen in the Yemen V. cholerae isolates from 2019 98 
could be explained either by gain of resistance (either through de novo mutations or acquisition 99 
of resistance-conferring MGEs) in the previously susceptible 7PET-T13 V. cholerae strain 100 
already circulating in Yemen, or through the replacement of that strain with locally or globally 101 
derived MDR strain(s). Distinguishing between these hypotheses is important for 102 
understanding the ongoing dynamics of cholera in Yemen, and will be important for cholera 103 
control strategies. We therefore applied genomic epidemiology approaches to determine the 104 
molecular basis for the observed switch to the MDR phenotype and its link to global and local 105 
evolutionary dynamics of pandemic cholera. In doing so, we highlight the role of globally 106 
circulating MGEs in making an epidemic pathogen resistant to multiple drugs and subsequently 107 
reducing treatment options. We also show that these MGEs and their cargo AMR genes were 108 
repeatedly exchanged among diverse V. cholerae lineages found in Yemen. 109 
 110 
 111 
Results 112 
 113 
Sampling of V. cholerae in Yemen in 2018 and 2019 114 
 115 
The National Centre of Public Health Laboratories (NCPHL) in Sana’a, the capital city, 116 
received 6,311 and 3,225 clinical samples collected from suspected cholera patients, in 2018 117 
and 2019 respectively. Of these, 2,204 (35%) and 2,171 (67%) were confirmed to be positive 118 
for V. cholerae O1 by culture (identification based on biochemical tests and detection of Ogawa 119 
and Inaba serotypes; Table S7; Figure S1). Among the 1,642 V. cholerae isolated at the NCPHL 120 
from January to October 2018, 623 were tested for susceptibility to a range of antibiotics by 121 
the disk diffusion method, of which 620 (99.6%) were phenotypically resistant to nalidixic acid 122 
and nitrofurantoin, but otherwise sensitive to all other antimicrobials tested (Figure S2; Tables 123 
S7). In contrast, all tested V. cholerae isolates (n = 2,172) from January 2019 onwards were 124 
resistant to nalidixic acid, azithromycin, co-trimoxazole and cefotaxime (Figure S2; Tables 125 
S7), a pattern maintained up to late 2021 (WHO EMRO, personal communication). The 126 
transition in phenotype occurred during November 2018, when 159/175 (90.8%) tested isolates 127 
already showed the MDR profile. 250 of the 2018-2019 clinical V. cholerae isolates were 128 
randomly chosen for further characterization (Table S1). These samples originated from eight 129 
of the 21 Yemen governorates, comprising 71 out of 333 districts (Table S1), with 101 samples 130 
collected in 2018 (from mid-July to late October) and 149 in 2019 (from late February to late 131 
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April and from early August to mid-October). In addition, ten environmentally-derived strains 132 
were isolated from sewerage in Sana’a in October 2019 (Table S1).  133 
 134 
Extended antibiotic sensitivity testing of these 260 isolates at NCPHL and Institut Pasteur (IP) 135 
(Figure S3) reflected the phenotypic switch to MDR observed in the wider sample set, further 136 
showing that all tested 2019 strains were resistant to ampicillin, cefotaxime, nalidixic acid, 137 
azithromycin, erythromycin and co-trimoxazole (Tables S1, S2; Supplementary text).  138 
 139 
Phylogenetic diversity of the V. cholerae isolated in Yemen in 2018 and 2019 140 
 141 
We isolated a single colony for 240 out of the 260 V. cholerae isolates indicated above, and 142 
multiple independent colony picks for the remaining 20 isolates, for a total of 281 isolates on 143 
which we performed whole genome sequencing (Figure S3; Tables S1, S2). After quality 144 
filtering, this yielded 232 high-quality isolate genome assemblies (selecting a single isolate 145 
from each initial sample), which we combined with 650 previously published V. cholerae O1 146 
and non-O1 genomes for context, totaling 882 assembled genomes (Table S4; Figure S3). We 147 
inferred a core-genome phylogeny for this genome set, which described the sequenced diversity 148 
of the V. cholerae species, rooted by the genomes that belong to its newly described sister 149 
species V. paracholerae14. We subdivided V. cholerae genomes according to their distribution 150 
in eleven crown clades of the core-gene phylogeny clades, referred to henceforth as VcA to 151 
VcK (Figures 1, S3; Table S4). VcH contained all 7PET epidemic lineage genomes utilised in 152 
this dataset, including 663 contextual genomes, the the majority (216/232) of the Yemen 2018-153 
2019 genomes, and all 42 previously reported 2016-2017 Yemeni genomes7 (Figure S4).  154 
 155 
Whilst Yemeni VcH isolates show limited genomic diversity (99.98-100.00% ANI similarity; 156 
0 to 97 SNPs), the remaining 16 Yemeni genomes belonged to clades V. paracholerae (Vpc), 157 
VcD and VcK and were overall more diverse than VcH isolate genomes (96.24-99.99% ANI 158 
similarity; Figure 1; Table 1); these represent “non-7PET” lineages. Based on core genome 159 
phylogeny and MLST, we found five distinct clusters within three non-7PET clades: Vpc (n = 160 
1; novel ST1499), VcD (n = 21; ST555, ST1020 and novel ST1498; Table S6) and VcK (n = 2; 161 
ST170) (Figure 1).  162 
 163 
Although highly clonal, phylogenetic structure within VcH allowed it to be further subdivided 164 
into subclades VcH.1 to VcH.10 (Figure S5). All the Yemen 2016-2019 isolates fell within 165 
VcH.9, which corresponds to the T13 sublineage of 7PET Wave 3 (ref. 7). We selected one 166 
representative isolate (CNRVC190243) of VcH.9, and used PacBio sequencing to generate long 167 
reads in addition to the Illumina short reads obtained for all samples, which enabled us to 168 
generate a closed hybrid assembly. We subsequently used Oxford Nanopore sequencing to do 169 
the same for a VcD representative isolate (CNRVC190247). To obtain greater phylogenetic 170 
resolution within VcH.9, we then mapped sequencing reads to our new VcH.9 CNRVC190243 171 
reference genome to build a “mapped genome tree”. Here, together with our novel VcH.9 172 
genomes (n = 238), we included 218 previously published genomes that reside in this subclade 173 
and close outgroups, for a total of 456 genomes (Table S5). This approach allowed us to further 174 
subdivide VcH.9 into phylogenetic clusters named VcH.9.a to VcH.9.h (Figure 2A). Yemeni 175 
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genomes form a monophyletic group (clusters VcH.9.e to VcH.9.h), emerging from the genetic 176 
diversity of East African genomes (clusters VcH.9.c and VcH.9.d), which in turn branch out of 177 
a cluster of South Asian genomes (VcH.9.b), consistent with previous observations on the 178 
origins of 7PET-T13, introduced from South Asia into Africa 7,15. Clusters VcH.9.g and 179 
VcH.9.h together comprise the majority of 2018-2019 Yemen isolates (235/281) and form a 180 
well-supported clade (94% bootstrap) that branches from within VcH.9.f (Table 1). Cluster 181 
VcH.9.h includes the majority of the Yemeni 7PET-T13 isolates (78/87) from 2018, with just 182 
one isolate from March 2019. In contrast, Cluster VcH.9.g comprises mostly 2019 isolates 183 
(150/156), and a minority from 2018 (6/156) (Table 1). All of the 2016-2017 Yemen isolates 184 
(n = 42) belong to sister clusters VcH.9.e and VcH.9.f.  185 
 186 

 187 
Figure 1: Phylogenetic diversity of Vibrio cholerae isolates from Yemen 188 
Maximum-likelihood phylogeny of 882 assembled V. cholerae genomes based on the 37,170 SNP sites from the 189 
concatenated alignments of 291 core genes. Low-diversity clades (VcH and part of VcK) are collapsed and marked 190 
by black stars. Clades are highlighted with background colours (legend key 1). Coloured rings outside the tree 191 
depict the match with previously described lineages (ring 2), the geographical origin of isolates at the level of 192 
continents (ring 3), and their year of isolation when from Yemen (ring 4). Presence of parts of the plasmid 193 
pCNRVC190243 are indicated by coloured circles (ring 5 in A): IncC plasmid backbone (light brown) and the 194 
MDR pseudo-compound transposon YemVchMDRI (dark brown); full circles indicate over 70% coverage in 195 
assemblies of the reference length, hollow circles indicate 30-70% coverage in assemblies and confirmed presence 196 
based on mapped reads, with even coverage over the MGE reference sequence, while half-circles represent 197 
heterogeneous presence in a collapsed clade. Tree plots were generated with iTOL v416 and adapted with Inkscape. 198 
The scale bar represents the number of nucleotide substitutions per site. 199 
 200 
Spatiotemporal distribution of V. cholerae isolates 201 
 202 
To delineate the evolutionary dynamics of the cholera outbreak in Yemen, we plotted VcH.9 203 
isolates by phylogenetic cluster over time (based on the date of sample collection) and between 204 
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administrative divisions (linked to reporting hospital). From Figure 2B it is clear that each 205 
annual wave was dominated by a single cluster: 2016 and 2017 by VcH.9.e; 2018 by VcH.9.h; 206 
2019 by VcH.9.g. There was no evidence of geographic restriction for any of these clusters, 207 
even when accounting for dispersal over time (Fig 2C, 2D; Table S5; Supplemental data online, 208 
doi: 10.6084/m9.figshare.19097111). Next, we analysed the relationship between temporal and 209 
spatial distances, based on the date and GPS coordinates of sample collection, as well as with 210 
the pairwise phylogenetic distances between genomes. We found no significant correlation 211 
between the spatial and temporal distances, nor between the spatial and phylogenetic distances 212 
(Table S8). These data did show a positive correlation between the temporal and phylogenetic 213 
distances (R2 = 0.181; Mantel test p-value < 10-6) (Table S8), with root-to-tip distances 214 
significantly correlated with sampling date (Pearson’s R2 = 0.437; p < 10-15).  215 
 216 
Figure 2: Phylogenetic diversity and spatiotemporal distribution of Vibrio cholerae 7PET-T13 isolates 217 
(VcH.9) from Yemen 218 
A. Subtree of the maximum-likelihood phylogeny of 456 7PET genomes mapped to reference VcH.9 strain 219 
CNRVC190243 genome, including 335/456 genomes covering VcH.9 (as defined in Figure S5), which 220 
corresponds to the 7PET-T13 sublineage and close South Asian relatives. The full tree containing the 456 genomes 221 
is available as supplementary material on Figshare (https://figshare.com/s/4d83a32cce78a52b413e; doi: 222 
10.6084/m9.figshare.16595999) and was obtained based on 2,092 SNP sites from concatenated whole-223 
chromosome alignments. Brown branches indicate the clade grouping all Yemeni 7PET-T13 isolates. Bootstrap 224 
support over 70% is indicated by white circles. Phylogenetic clusters within VcH.9 are highlighted with 225 
background colours (legend key 1). Coded tracks outside the tree depict the serotype of isolates (ring 2) as 226 
predicted from genomic data, year of isolation when isolated in 2012 or later (ring 3), the governorate of isolation 227 
if in Yemen (ring 4). The presence of mobile genetic elements (MGEs) is indicated by coloured circles in the 228 
outermost track (ring 5): ICP1-like phage (pink), SXT/ICE ICEVchInd5 (blue), ICEVchInd5Δ i.e. featuring the 229 
characteristic 10-kb deletion in the variable region III (green), IncC plasmid backbone (light brown) and the MDR 230 
pseudo-compound transposon YemVchMDRI (dark brown); filled and unfilled circles indicate different level of 231 
coverage in assemblies (see Figure 1 legend). The position of the reference sequence to which all other genomes 232 
were mapped to generate the alignment is labelled. The scale bar represents the number of nucleotide substitutions 233 
per site. B. Frequency of each phylogenetic subcluster among Yemen isolates per month since the onset of the 234 
Yemen outbreak. Where relevant, the cluster group is subdivided by the presence or absence of the IncC plasmid 235 
as indicated by the filled brown (present) or open (absence) circle on the right of the chart. The contribution of 236 
each governorate of isolation is indicated by the coloured portion of each bar. C and D. A map of Yemen 237 
governorates (C) and a focus on the Sana’a and Amanat Al Asimah governorates (inner and outer capital city; D), 238 
with dots corresponding to isolates, coloured by phylogenetic subcluster.  239 
 240 
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 242 
We inferred a timed phylogeny for VcH.9 (Figure S6), which revealed that the most recent 243 
common ancestor (MRCA) of all Yemeni V. cholerae 7PET-T13 genomes was estimated to 244 
have existed in February 2015 (95% confidence interval [95%CI], April 2014 and July 2015). 245 
Moreover, the MRCAs for clusters VcH.9.e and VcH.9.f (mostly sampled in 2016 and 2017) 246 
were dated May and June 2015, respectively, and the MRCAs for clusters VcH.9.g and VcH.9.h 247 
(sampled in 2018 and 2019) were dated February and March 2017, respectively. In addition, 248 
we dated the MRCA of the clade grouping clusters VcH.9.g and VcH.9.h, which represent the 249 
majority of 2018-2019 Yemen isolates, to September 2016 (Figure S6).  250 
 251 
The distribution of non-7PET isolates across Yemen was mostly sporadic (Table S4; 252 
Suplementary Text; Supplementary data online https://figshare.com/s/73fcd5e1b4958c97ef78, 253 
doi: 10.6084/m9.figshare.19097111). However, we characterised a cluster of eighteen closely 254 
related VcD isolates belonging to ST555 (Table S6), which we found to differ from each other 255 
by 0 to 10 SNPs (average 99.98% ANI similarity). Of these 18 isolates, 13 were isolated over 256 
a period of 11 days in late July/early August 2018, two at the end of August, two in October 257 
2018, and one in March 2019 (Table S6). They were obtained from patients in the neighbouring 258 
governorates of Sana’a (n = 7), Al Mahwit (n = 4) and Amran (n = 1), which surround the 259 
capital city. Genomes from other ST555 isolates, including strains reported as linked to 260 
travelers returning to the UK from India in September 2015 and July 2016 (strains 229152 and 261 
338360) 17, as well as closest relatives from our core-genome tree, were gathered to build a 262 
mapped genome tree of VcD genomes using the complete genome of 2018 Yemen strain 263 
CNRVC190247 as a reference (Figure S7). The closest relative to Yemeni ST555 isolates, 264 
strain 338360, differs from the VcD ST555 genomes sequenced here by between 763-800 265 
SNPs, ruling out direct clonal relationships. 266 
 267 
Predicted phenotypic properties of V. cholerae isolates 268 
 269 
Consistent with our previous report7, Yemeni VcH.9 isolates – which all belong to 7PET-T13 270 
sublineage – all carried genes or mutations known to confer resistance to trimethoprim (dfrA1) 271 
and to nalidixic acid (gyrA_S83I and parC_S85L). They also carried the Vibrio pathogenicity 272 
island 1 (VPI-1, encoding the toxin co-regulated pilus TCP), VPI-2, the Vibrio seventh 273 
pandemic islands I and II (VSP-I and VSP-II), and the CTX prophage, which all featured the 274 
cholera toxin genes, ctxAB, of the allelic type ctxB7. None of the non-7PET genomes from 275 
Yemen possessed a CTX prophage or the ctxAB genes. However, Yemni isolates belonging to 276 
VcK (ST170, related to previously described lineage MX-2), which were derived from the stool 277 
of patients presenting cholera-like disease, carried all the genes coding for the TCP.  278 
 279 
These ctxAB-, tcpA+ VcK genomes also carried the O1 LPS O-antigen biosynthetic gene cluster, 280 
consistent with what has been seen previously in related non-7PET isolates18. The genomes of 281 
the VcD isolates belonging to ST555, ST1020, ST1498 and the V. paracholerae isolate 282 
(ST1499), carried LPS O-antigen biosynthetic gene clusters encoding unknown serogroups; 283 
these were conserved within and specific to each ST (Table S4; Figure S7A). Of the 216 284 
Yemeni 2018-2019 VcH isolates, 213 were predicted to produce a serogroup O1 LPS O-antigen 285 
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based on presence of a full biosynthetic gene cluster; in the three remaining assemblies this 286 
genomic region was interrupted (YE-NCPHL-19012) or completely missing (YE-NCPHL-287 
18033 and YE-NCPHL-19140), likely due to limited genome sequence coverage (Table S3). 288 
All predicted O1 serogroup isolates were predicted to be Ogawa serotype except two that 289 
showed a disruption in wbeT, indicative of an Inaba phenotype (YE-NCPHL-18053 and YE-290 
NCPHL-19014, with gene truncation and point mutation respectively; Table S5). These 291 
predictions were imperfectly reflected by the results of serological assays conducted at NCPHL 292 
(Table S2; Figure S8), suggesting issues in initial laboratory testing (see Supplementary Text).  293 
 294 
Genome variation of VcH.9 (7PET-T13) isolates circulating in Yemen  295 
 296 
Given the change in antimicrobial suceptibility seen in the 2018-2019 Yemen isolates, we 297 
compared in detail all of the VcH.9 isolate genomes from Yemen to each other and related 298 
isolates taken elsewhere, focusing on genotypic traits that were conserved in pandemic 299 
sublineages occurring in Yemen. We identified three, four, and 21 fixed SNPs in the the crown 300 
clade containing VcH.9.e,f,g,h, the clade containing VcH.9.g,h, and VcH.9.h, respectively 301 
(including 2, 2 and 11 non-synonymous SNPs, respectively; Table S9). Changes fell largely 302 
within genes predicted to be involved in carbohydrate metabolism, signal transduction and 303 
chemotaxis, none of which could be directly linked to change in virulence (Table S9). 304 
 305 
Previously, the 2016-2017 Yemeni isolates carried an SXT ICE differing by only three or four 306 
SNPs from the ICEVchInd5/ICEVchBan5 reference sequence (Genbank accession 307 
GQ463142.1)19, but which possessed a 10-kb deletion in variable region III, which explained 308 
the phenotypic loss of resistance to streptomycin, chloramphenicol and sulphonamides (only 309 
retaining resistance to trimethoprim via the dfrA1 gene)7. All 2018-2019 VcH.9 genomes 310 
carried the same SXT ICE variant, with a maximum of 2 SNP differences and displaying the 311 
same deletion. Hence, the change in antimicrobial resistance profile was not linked to variation 312 
in SXT ICE.  313 
 314 
Looking across all genes within the pangenome, the only variation directly associated with the 315 
Yemen 2018-2019 genomes, compared to those sequenced from 2016-2017, was the presence 316 
of a novel 139-kb plasmid, which we named pCNRVC190243 (Table S10). The backbone of 317 
this new plasmid includes a replicon of the IncC type, as well as genes encoding a complete 318 
type F conjugative apparatus and a MOBH-type relaxase, suggesting it is self-transmissible. 319 
Plasmid pCNRVC190243 also carries a 20-kb genomic region (which we denoted 320 
YemVchMDRI) predicted to encode a quaternary ammonium compound efflux pump (qac), an 321 
extended-spectrum beta-lactamase (ESBL; blaPER-7), sulphonamide resistance (sul1), 322 
aminoglycoside resistance (aadA2), and macrolide resistance (mph(A), mph(E) and msr(E)) 323 
(Figure 3; Table S4). YemVchMDRI is a pseudo-compound transposon (PCT) – a structure 324 
bounded by IS26 elements20 – and includes a class 1 integron with aadA2 encoding resistance 325 
to streptomycin and spectinomycin as a gene cassette, associated with an ISCR1 element 326 
carrying the ESBL blaPER-7 gene, a structure similar to one previously seen in Acinetobacter 327 
baumanii21,22. We found that pCNRVC190243 was present in 6/89 (6.7%) Yemeni VcH.9 328 
isolates from 2018, but this rose to 100% (151/151) in 2019 (Figure 2B). This was linked to 329 
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phylogenetic cluster, with only 1/79 (1.3%) VcH.9.h isolates harbouring the plasmid, compared 330 
to all (156/156) VcH.9.g isolates (Figure 2A).  331 
 332 

 333 
Figure 3: Genetic organisation of the MDR pseudo-compound transposon YemVchMDRI 334 
Antimicrobial resistance (AMR) genes are filled in black and labelled in boldface; genes encoding endonucleases 335 
transposases and other genes involved in genetic mobility are filled in grey. Genomic position is indicated by 336 
tickmarcks every kilobase, in reference to the pCNRVC190243 plasmid coordinates. 337 
 338 
Distribution and relatedness of MDR mobile genetic elements 339 

Analysis of the broader phylogenetic context of pCNRVC190243 suggested at least three 340 
independent acquisitions of this plasmid (and associated YemVchMDRI), since it was also 341 
present in three VcD (ST1499 and ST1020) and two VcK (ST170) isolates collected in 2019 in 342 
Yemen. Comparing the full-length sequence of all pCNRVC190243 plasmids from VcH.9 and 343 
VcK and VcD isolates showed all sequences were identical except for two isolates: one varied 344 
by a single SNP resulting in an amino-acid change S71F in the sulphonamide resistance protein 345 
Sul1 (YE-NCPHL-19105; G26720A SNP); the other by a single intergenic SNP. We also found 346 
the YemVchMDRI element integrated into chromosome 2, without the pCNRVC190243 347 
backbone (Figure 1; Supplementary Text) in all eighteen of the ST555 isolates.   348 

Searching a broader prokaryotic genome database, closely related but non-identical elements 349 
were found in different combinations in other V. cholerae and diverse bacterial taxa: an IncC 350 
plasmid, named pYA00120881 (GenBank accession MT151380), was identified in 13 closely 351 
related VcH.9.a and VcH.9.c isolates (Figure 2A) that were collected in 2015 and 2018 in 352 
Zimbabwe15. The backbones of these IncC plasmids share 99.98% nucleotide sequence 353 
identity, but pYA00120881 carries a different MDR genomic region – featuring a bla gene 354 
encoding a CTX-M-15 ESBL – inserted at the same locus (Figure S9). Furthermore, 59 V. 355 
cholerae O139 (ST69) isolates collected in China from 1998 to 200923,24 (unpublished genomic 356 
data released in BioProject PRJNA303115; Table S11) carry IncC-type plasmids that show 357 
similarity to pCNRVC190243 and also include YemVchMDRI-like PCT elements, albeit 358 
lacking ISCR1 and its associated blaPER-7 gene. 359 
   360 
Importantly, when using the YemVchMDRI sequence alone for database searches, we found 361 
the genome of V. cholerae ST555 strain 338360 (Table S6) shared 100% nucleotide identity 362 
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with the complete Yemeni ST555 YemVchMDRI sequence, including the blaPER-7-carrying 363 
ISCR1 (ISCR1blaPER-7; Table S12). Likewise, ISCR1blaPER-7 has also been previously observed 364 
in the genomes of A. baumanii strains21,25 from France and the United Arab Emirates (UAE). 365 
Those from UAE were located on the plasmid pAB154, where the sequence homology with 366 
ISCR1blaPER-7 extended beyond the canonical element and included YemVchMDRI flanking 367 
regions, suggesting that the ISCR1blaPER-7 carried by pAB154 is derived from YemVchMDRI, 368 
or a closely related element (Figure S10). Moreover, outside of V. cholerae, pCNRVC190243- 369 
and/or YemVchMDRI-like elements are widely distributed with Escherichia coli, Salmonella 370 
enterica and Klebsiella pneumoniae genomes presenting >95% shared nucleotide k-mers 371 
(Table S11, S12; Figure S11), with the closest matches outside of V. cholerae being seen in K. 372 
pneumoniae. This indicates that similar regions may be widely distributed in MGEs across 373 
bacterial taxa. 374 
 375 
A recent study reported that two anti-plasmid defence systems, DdmABC and DdmDE, cause 376 
the instability of plasmids in V. cholerae cells, including those with IncC-type replicons26. 377 
These proteins are encoded by all 7PET genomes, which according to this study would explain 378 
the incapacity of plasmids to be maintained in a 7PET background. We here show that a 139-379 
kb IncC-type plasmid has been stably propagated in a clone of the 7PET lineage. We verified 380 
the presence and integrity of the DdmABC and DdmDE systems and found they were present 381 
and intact in all 7PET genomes in our 882 assembled genome dataset – including those 382 
harbouring pCNRVC190243 (Table S5). This shows that these defence systems are not 383 
sufficient to destabilise pCNRVC190243 to the point of it being lost from the population within 384 
the 15-month period covered by our study, or even for the following two years, as suggested 385 
by 2021 antibiotic susceptibility profiles. 386 
 387 
 388 
Discussion 389 
 390 
Characterising the genomic nature of the pathogens causing an outbreak can reveal changing 391 
epidemiological dynamics through adaptative evolution of the pathogen or the introduction of 392 
distinct pathogen lineages. Such events may lead to the emergence of a more virulent or drug 393 
resistant genotype of the pathogen, and impact disease control efforts. Our genomic 394 
epidemiology analysis shows that despite seasonal fluctuation, the vast majority of cholera in 395 
Yemen is caused by the 7PET-T13 lineage (VcH.9), and is derived from a single introduction 396 
into Yemen. Using a larger sample set, we refined our previous date estimate7 and show that 397 
the progenitor of the Yemeni outbreak emerged between April 2014 and September 2015, 398 
contemporarily to the onset of the civil war in Yemen, and existed one to two years prior to the 399 
declaration of a cholera outbreak3,7. 400 
 401 
Using our high-resolution phylogenomic tree, we were able to subtype the majority of Yemeni 402 
genomes into four different phylogenetic clusters that dominated the outbreak at different 403 
points in time. We observed two large clonal expansions for the sister clades that dominated 404 
2018 and 2019 (clusters VcH.9.h and VcH.9.g, respectively), which both emerged in early 405 
2017. Founding effects at the onset of each cholera season, associated with rapid expansions, 406 
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may explain the dominance of each cluster in these respective epidemic waves. However, it is 407 
also possible that an adaptive advantage participated in driving the replacement of VcH.9.h by 408 
its sister clone, VcH.9.g. In the absence of samples from subsequent years (with surveillance 409 
efforts hampered by the Covid-19 pandemic), it was not possible to establish whether these or 410 
another MDR lineage persisted past 2019. 411 
 412 
In Yemen, pregnant women and children (one third of cholera patients were aged 15 or under; 413 
Table S7; ref. 11) were treated with erythromycin and azithromycin between 2016 and late 414 
2018. The 2019 wave of the Yemen cholera outbreak was associated with a sudden change in 415 
antibiotic resistance profile, from being largely sensitive to antimicrobials between 2016-2018, 416 
to being resistant to multiple therapeutically relevant drugs in 2019. Our data showed that this 417 
phenomenon coincided with the appearance in late 2018 of plasmid pCNRVC190243 in 418 
isolates belonging to VcH.9.g, the phylogenetic cluster which dominated our 2019 samples. 419 
Plasmid pCNRVC190243 carries the pseudo-compound transposon YemVchMDRI, which in 420 
turn includes a type 1 integron and the ISCR1blaPER-7 element. These elements confer resistance 421 
to third-generation cephalosporins, aminoglycosides, macrolides and sulphonamides (and, 422 
combined with the dfrA1 gene present on the SXT ICE, to co-trimoxazole), plus disinfectant 423 
tolerance provided by the qac gene27. The acquisition of YemVchMDRI element by an ancestor 424 
of VcH.9.g was followed by its dramatic spread – a clonal expansion which we show to occur 425 
in 2018 (Figure S6), a time when there would have been a selective pressure towards macrolide 426 
resistance in symptomatic cases due to the large-scale administration of these drugs.  427 
 428 
We also identified a small number of non-7PET V. cholerae amongst 2018-2019 Yemen 429 
isolates: 8% of unique clinical isolates (21/254) and 30% of environmental isolates (3/10) 430 
belonged to three diverse lineages. The location and times of isolation of these non-7PET V. 431 
cholerae isolates suggest they largely represented sporadic infection events linked to endemic 432 
strains. The only sizable cluster of non-7PET isolates were the 18 VcD/ST555 isolates which 433 
had near-identical genomes and isolated in 2018 and 2019 in several districts near the capital 434 
city of Sana’a (Figure 1; Figure S7; Table S4). The short time range in which 15 of these strains 435 
were isolated (31 days in July-August 2018) could be explained by repeated acquisitions from 436 
a point source, although we cannot rule out that they stem from small-scale outbreaks, as has 437 
been reported previously for non-O1/non-O139 strains28,29. However, we found no evidence of 438 
long range spread of these non-pandemic clones across Yemen, characteristic of 7PET V. 439 
cholerae isolates linked to epidemic disease. Importantly, the reappearance of this VcD/ST555 440 
genotype later in October 2018 and March 2019, with as little as 2 SNPs difference from 441 
summer 2018 isolates, could suggest this genotype is able to persist in the environment, 442 
possibly through similar ecological mechanisms as those that lead to the seasonal dynamics of 443 
epidemic cholera following its initial introduction11. These ST555 strains might in fact 444 
represent an endemic population of V. cholerae that can be carried without causing any disease. 445 
These ST555 strains could have been isolated from a gut co-colonised by a cholera-causing 446 
7PET strain, in an epidemic context where the pathogen is routinely isolated from cholera 447 
patients using culture and enrichment techniques that are selective of the whole V. cholerae 448 
species. This hypothesis of incidental isolation of ST555 strains in samples also containing a 449 
toxigenic 7PET strain is supported by the original serotyping of all samples as O1 (Table S1; 450 
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Supplementary Text), and the positive detection of the rfbO1 marker by PCR in samples from 451 
which the four ST555 strains were isolated at the Institut Pasteur (IP) – samples which, when 452 
sequenced at the Wellcome Sanger Institute (WSI), yielded 7PET genomes (Figure S3; Table 453 
S13; Supplementary Text).  454 
 455 
Sequences completely or near identical to plasmid pCNRVC190243, carrying the PCT 456 
YemVchMDRI, were present in i) 7PET-T13 (VcH.9) isolates, ii) all isolates from two of the 457 
three different STs of VcD (ST1499 and ST1020), and iii) the two VcK/ST170 isolates; all of 458 
which were collected in 2019 in Yemen. The only VcH.9.h isolate from 2019 also carried this 459 
plasmid. It is possible to explain these observations by multiple acquisitions of the plasmid 460 
from independent sources or, more parsimoniously, as direct horizontal gene transfer events 461 
between the V. cholerae lineages we report here. The large population sizes attained by the 462 
epidemic lineages in Yemen make the latter hypothesis more likely, in a scenario of spill over 463 
from the dominant cluster at the time, VcH.9.g. However, we could not infer directionality due 464 
to the limited available sampling from the diverse lineages in this study.  465 
 466 
The YemVchMDRI PCT was also carried chromosomally by Yemeni ST555 strains. This PCT 467 
is itself a composite element, including ISCR1blaPER-7, a rare element that has only been 468 
observed once in another V. cholerae background – the relatively closely-related ST555 strain 469 
338360 (436 SNPs vs. reference strain CNRVC019247), isolated from a traveler returning from 470 
India – and in two plasmids associated with A. baumanii strains isolated in Gulf countries. 471 
Comparison of these homologous ISCR1 elements suggests they all are derived from the same 472 
ancestral element (Figure S10). Presence of the full, identical PCT YemVchMDRI in two 473 
closely related, but distinct ST555 strains isolated from completely different geographical 474 
origins, suggests this element is stably associated with this genotype. From this, we can 475 
speculate that YemVchMDRI was originally present in Yemen in a ST555 genomic 476 
background, and later combined with an IncC plasmid backbone to produce pCNRVC190243. 477 
Again, directionality cannot be confidently inferred because of uneven sampling of host 478 
lineages, and the potentially large number of unobserved donor bacteria.  479 
 480 
Whilst pCNRVC190243 is a novel element, plasmids such as pYAM00120881 identified in 481 
VcH.9 V. cholerae from Zimbabwe in 2015 and 201815 shared almost identical plasmid 482 
backbones. In addition, similar plasmids, some of which also carry YemVchMDRI-related 483 
elements, have been observed in V. cholerae O139 isolates from China as well as detected in a 484 
range of other bacterial genera, illustrating how widely distributed these IncC plasmids are. 485 
Similarly, YemVchMDRI may occur in more diverse and more widely spread genomic 486 
backgrounds that haven’t been sampled yet. It is therefore possible that parts of this plasmid 487 
have combined outside of Yemen from identical or similar genomic sources, independently 488 
from the YemVchMDRI-carrying Yemeni ST555 strain. 489 
 490 
While other MDR IncC plasmids were previously observed in V. cholerae in DRC, Kenya (in 491 
a T10 sublineage genetic background) and Zimbabwe (T11 background in 2015), these were 492 
only linked to sporadic cases or small-scale cholera outbreaks30, despite selective conditions 493 
linked to the widespread and uncontrolled use of antibiotics. Recently, it has been shown that 494 
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two defence systems, called DdmABC and DdmDE had the capacity to destabilise plasmids, 495 
including large IncC-type plasmids26. These defence systems, encoded in all 7PET V. cholerae 496 
genomes, were proposed to be responsible for the lack of maintenance of MDR plasmids in 497 
populations of this pandemic lineage when not under stringent selective pressure for antibiotic 498 
resistance. A first exception to the pattern of plasmid instability in 7PET V. cholerae was the 499 
Zimbabwean cholera outbreak of 2018, which lasted six months and produced over 10,000 500 
suspected cases, and was associated with a strain of the T13 background carrying the MDR 501 
IncC plasmid pYA0012088115. The Yemeni cholera outbreak provides a further example, with 502 
the T13 strain of the VcH.9.g clone, carrying pCNRVC190243, being presumably associated 503 
with more than a million suspected cases recorded since its emergence in late 2018. However, 504 
the intact presence of the genes encoding the Ddm proteins in Yemeni and Zimbabwean 505 
VcH.9/7PET-T13 genomes presenting MDR IncC plasmids indicates there may be other 506 
mechanisms that impact plasmid stability in 7PET genomes.  507 
 508 
One possibility would be that an unknown environmental factor has applied a consistently 509 
strong selective pressure for a trait carried by these plasmids. Even though the treatment of 510 
cholera patients with macrolides was stopped in Yemen in early 2019, antibiotic pressure 511 
remains a potential selective factor, as antibiotics and particularly azithromycin have been 512 
reported to be overused by the general population in Yemen during the Covid-19 crisis31. 513 
Another possible factor would be the interaction with other mobile elements, including ICP1 514 
phages, which we detected in a significant fraction of the samples (see Supplementary Text). 515 
It has also been proposed previously that the presence of an SXT ICE in these genomes could 516 
prevent the stable replication of an IncC-type plasmid, through an unknown functional 517 
interference mechanism7,15. The unique occurrence of a 10-kb deletion in the SXT ICE 518 
(ICEVchInd5/ICEVchBan5) in T13 isolates may provide these genomes with the novel capacity 519 
to stably host an IncC plasmid; molecular genetic investigation of this locus should be 520 
conducted to test whether it encodes another plasmid destabilisation factor. Whatever the 521 
mechanism, it appears that both MDR elements SXT ICE and IncC plasmid are stably 522 
propagated together in the Yemeni T13 strain, which population in Yemen has reached a 523 
unprecedented size. This emerging MDR strain has therefore a high potential to spread and 524 
seed further adapted lineages, as well as to disseminate its MDR plasmid and PCT to other 525 
organisms.  526 
 527 
Conclusion 528 
 529 
The emergence of this multi-drug resistant pathogen demonstrates the necessity of continued 530 
genomic surveillance of the microbial population associated with the ongoing Yemen cholera 531 
outbreak, and for new outbreaks that may take place in regionally connected areas. Such 532 
surveillance will enable Yemeni public health authorities to rapidly adapt clinical practices to 533 
minimize AMR selective pressures. This also warrants increased efforts in research on the 534 
molecular mechanisms and evolution of interactions between mobile genetic elements, to learn 535 
about the constraints ruling their colonization of bacterial genomes. Such knowledge is 536 
essential for us to be able to disentangle the role of MGEs from that of their bacterial hosts in 537 
driving epidemics, so to propose practical definitions of pathogens that focus on the relevant 538 
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genes, mobile elements or prokaryotic organisms, and to implement appropriate molecular 539 
epidemiology surveillance schemes. 540 
 541 
 542 
Materials and Methods 543 
 544 
Definitions and surveillance data 545 
Cholera cases were notified to the the Ministry of Public Health and Population of Yemen 546 
(MPHP) and recoded through the Electronic Disease Early Warning System (eDEWS)2. 547 
Suspected and confirmed cholera cases were defined according to the WHO in a declared 548 
outbreak setting. Briefly, a suspected case is any person presenting with or dying from acute 549 
watery diarrhoea (AWD) and a confirmed case is a suspected case with Vibrio cholerae O1 or 550 
O139 infection confirmed by culture. 551 
 552 
Sample collection, microbiological testing and clinical metadata 553 
Clinical samples, i.e. stool and rectal swabs, were collected in Yemen by epidemiological 554 
surveillance teams from suspected cholera cases during 2018 and 201911 and were transported 555 
to the National Centre of Public Health Laboratories (NCPHL) in the capital city Sana’a in 556 
Cary-Blair transport medium (Oxoid, USA). To probe the diversity of vibrios shed by 557 
unreported cholera cases, as well as V. cholerae that may naturally occur in effluent waters, 558 
environmental samples were collected during the day time in October 2019 from the sewage 559 
system around Sana’a city and the vicinity and then transported to NCPHL for testing; each 560 
sample was collected in sterile bottles containing enrichment media comprised of 250 mL of 561 
sewage and alkaline peptone broth (APB, Difco Laboratories, Detroit, Michigan) at a 1:1 ratio 562 
and incubated for 20 h at room temperature including the transportation time into the NCPHL 563 
and processed as described previously32. All samples were cultured and identified according to 564 
the Centers for Disease Control and Prevention (CDC) guidelines33. Resistance to antibiotics 565 
was tested by the disk diffusion method according to the CLSI guidelines34 for a range of 566 
antibiotics as described in Table S1.  567 
Live clinical isolates (n=120) were sent to the Institut Pasteur (IP; Paris, France), where only 568 
21 samples were culture positive, due to poor sample preservation during shipment (Table S2; 569 
Figure S3), leading to the final isolation of 22 V. cholerae strains (including two from mixed 570 
culture YE-NCPHL-18020). Strains re-isolated at IP were characterized by biochemical and 571 
serotyping methods according to standard practice of the French National Reference Centre for 572 
Vibrios and Cholera (CNRVC)35. Separate antibiotic susceptibility testing (Table S2) was 573 
performed by the disk diffusion method according to EUCAST guidelines (EUCAST 202036) 574 
and MIC determination using the SensititreTM (Thermo Scientific) and the Etestâ (bioMérieux, 575 
Marcy-l'Étoile, France) systems. Interpretation into S (Susceptible), I (Intermediate), and R 576 
(Resistant) categories was performed according to the 2020 edition of EUCAST 577 
recommendation on interpretation of the diameter of the zones of inhibition of 578 
Enterobacteriaceae37, and to the 2013 CA-SFM (Comité de l'Antibiogramme de la Société 579 
Française de Microbiologie) standards for Enterobacteriaceae38 for antibiotics for which 580 
critical diameters are no longer reported in the latest published guidelines. E. coli CIP 76.24 (= 581 
ATCC 25922) was used as a reference strain. 582 
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 583 
DNA extraction and sequencing 584 
Genomic DNA was extracted at the NCPHL from subcultures inoculated with single bacterial 585 
colonies and grown in nutrient agar (Oxoid, USA) at 37oC overnight according to the 586 
manufacturer instructions (Wizard® Genomic DNA Purification kit, Promega, UK). Genomic 587 
DNA samples (derived from 10 environmental and 250 clinical samples, which includes the 588 
120 samples sent to IP) were sent to the Wellcome Sanger Institute (WSI; Hinxton, UK) and 589 
sequenced on the WSI sequencing pipeline (Figure S3) using the Illumina HiSeq platform X10 590 
as previously described28.  591 
Two MDR V. cholerae strains were selected among the 22 held at the IP for long-read 592 
sequencing. The first strain, CNRVC190243 (= YE-NCPHL-19014-PI), a 7PET V. cholerae 593 
O1 strain was sequenced by Single-Molecule Real-Time (SMRT) sequencing (Pacific 594 
Bioscience). The genomic DNA was prepared at the IP as follows: strain CNRVC190243 was 595 
cultured in Brain-Heart-Infusion (BHI) broth (Difco) overnight at 37 °C with shaking (200 596 
rpm—Thermo Scientific MaxQ 6800). Then, 100 µL of the overnight culture was inoculated 597 
into a 10 ml BHI broth and cultured 2 hours at 37°C with shaking. After centrifugation, the 598 
bacterial cells were processed as described previously39, except that MaXtract High Density 599 
columns (Qiagen) were used (instead of phase lock tubes) and DNA was resuspended in 600 
molecular biology grade water (instead of 10 mM Tris pH 8.0). Library preparation and the 601 
sequencing were performed by the GATC platform (Eurofins Genomics Europe Sequencing 602 
GmbH; Konstanz, Germany) using their standard genomic library protocol and PacBio RS 603 
sequencer. The second strain, CNRVC190247 (= YE-NCPHL-18035-PI), a non-O1/non-O139 604 
V. cholerae strain further characterized as ST 555, was sequenced using the MinION nanopore 605 
sequencer (Oxford Nanopore Technologies). Genomic DNA was prepared at the IP as follows: 606 
strain CNRVC19247 was cultured in alkaline nutrient agar (casein meat peptone E2 from 607 
Organotechnie, 20 g; sodium chloride from Sigma, 5 g; Bacto agar from Difco, 15g; distilled 608 
water to 1 L; adjusted to pH 8.4; autoclavated at 121°C for 15 min) overnight at 37 °C. A few 609 
isolated colonies of the overnight culture were inoculated into a 20 ml of Brain-Heart-Infusion 610 
(BHI) broth and cultured until a final OD600=0.8 at 37°C with shaking (200 rpm). After 611 
centrifugation, the bacterial cells were processed as described above. The library was prepared 612 
according to the instructions of the “Native barcoding genomic DNA (with EXP-NBD104, 613 
EXP-NBD114, and SQK-LSK109)” procedure provided by Oxford Nanopore Technology. 614 
The sequencing was then performed using a R9.4.1 flow cell on the MinION Mk1C apparatus 615 
(Oxford Nanopore Technologies). The genomes of 21/22 strains cultivated at the IP (all but 616 
CNRVC190251, which was isolated later; Table S2) were also sequenced using Illumina short-617 
read technology at the IP using the equipment and services of the iGenSeq platform at the 618 
Institut du cerveau et de la moëlle épinière (Paris, France) from genomic DNA extracted with 619 
the Maxwell 16-cell DNA purification kit (Promega) in accordance with the manufacturer's 620 
recommendations. 621 
  622 
Genome assembly and annotation 623 
The 260 sequencing read sets produced at the WSI (Figure S3) were processed with the WSI 624 
Pathogen Informatics pipeline40: quality of sequencing runs was assessed based on quality of 625 
mapping of 10% reads to the genome of reference strain N16961 (GenBank Assembly 626 
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accession GCA_900205735.1) using the Burrows-Wheeler Aligner (BWA)41; read sets passed 627 
the check if at least 80% bases were mapped after clipping, the base and indel error rate were 628 
smaller than 0.02, and less than 80% of the insert sizes fell within 25% of the most frequent 629 
size. Contamination was assessed manually based on Kraken classification of reads using the 630 
standard WSI Pathogen reference database, which contains all viral, archaeal and bacterial 631 
genomes and the mouse and human reference published in the RefSeq database as of the 21st 632 
May 2015 (Table S3). Sequences were assembled de novo into contigs as described 633 
previously42, using SPAdes v3.10.0 as the core assembler43. Poor assemblies were filtered out 634 
if differing of more than 20% from the expected genome size of 4.2 Mb, or when more than 635 
10% of reads were assigned by Kraken to another organism than V. cholerae (notably including 636 
the Vibrio phage ICP1) or to synthetic constructs, or were unclassified. This led to the omission 637 
of 28 genome assemblies, resulting in 232 high-quality assembled genomes. The genome of 638 
strains CNRVC190243 and CNRVC190247 were assembled based on long and short reads 639 
using a hybrid approach with UniCycler44 v0.4.7 and v0.4.8, respectively, using pilon45 v1.23 640 
for the polishing step, to produce high-quality reference sequences comprised of both 641 
chromosomes and, for strain CNRVC190243, of an additional plasmid, pCNRVC190243. New 642 
genomes were annotated with Prokka version v1.5.046.  643 
 644 
Contextual genomic data (882 “assembled V. cholerae genomes” dataset) 645 
To provide phylogenetic context, we also included in this analysis previously published 646 
genome sequences from a globally representative set of isolates. We first gathered genome 647 
assemblies generated at the WSI using the pipeline described above based on previously 648 
published short reads sets from V. cholerae isolates belonging to sublineage T13 of 7PET Wave 649 
3 (7PET-T13) and from strains isolated in close spatio-temporal context i.e. within a decade in 650 
Africa and South Asia (where the ancestor of T13 is thought to originate7). These include all 651 
42 Yemen 2016-2017 isolates7, 103 recent isolates from East Africa including from Kenya7, 652 
Tanzania47, Uganda48 and Zimbabwe15 and 74 isolates from South Asia 49. In addition, we 653 
included genomes spanning the wider diversity of V. cholerae, including all 119 genomes from 654 
China18, as well as 312 genomes from the collections of contextual genomes used in previous 655 
studies7,28. Together with the 232 Yemen 2018-2019 isolate genome assemblies (see above), 656 
our final dataset consisted of 882 assembled V. cholerae genomes (Table S4; Figure S3). 657 
 658 
Identification and typing of mobile genetic elements, virulence factors, AMR genes and 659 
anti-phage defense systems 660 
The presence of AMR genes, plasmid replicon regions or virulence factors were predicted using 661 
Abricate50, searching the reference databases NCBI AMR+51, Plasmidfinder52 or VFDB53, 662 
respectively. BLASTN54 (v2.7.1+, with default parameters) was used to identify known mobile 663 
genetic elements (MGEs): the SXT/ICE ICEVchInd5 (GenBank accession GQ463142.1); 664 
ICP1-like vibriophages ICP1_VMJ710 and ICP1_2012_A (GenBank accessions MN402506.2 665 
and MH310936.1, respectively)55 and the ICP1-like vibriophage YE-NCPHL-19021, which 666 
genome was the only assembled contig from the reads obtained from sample YE-NCPHL-667 
19021 (this study; Genbank accession MW911613.1); the IncC-type plasmid 668 
pCNRVC190243, obtained from the hybrid assembly of strain CNRVC190243 described 669 
above (this study; ENA sequence accession OW443149.1); the MDR pseudo-compound 670 
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transposon (PCT) YemVchMDRI, extracted from this plasmid (positions 16,442 to 36,862); 671 
PICI-like elements (PLE) 1, 2 and 3 (GenBank accessions KC152960.1, KC152961.1, 672 
MF176135.1)56,57. Absence of elements was verified at the read level as described below. 673 
Sequences similar to the reference sequences of the plasmid pCNRVC190243, the MDR PCT 674 
YemVchMDRI and the ICP1-like phage genome YE-NCPHL-19021 were also searched in a 675 
database of 661,405 genome assemblies 58 using a k-mer-based COBS index 59; alignment of 676 
best matches were further characterized using BLASTN. We typed the conjugation apparatus 677 
of pCNRVC190243 with CONJScan 60 on the Pasteur Institute Galaxy server (Galaxy Version 678 
1.0.5+galaxy0). We searched for presence of CRISPR-Cas arrays using MacSyFinder61 v1.0.5 679 
with default parameters and the built-in Cas system reference database; genomes positive for 680 
Cas systems were further analysed with CRISPRCasFinder 62 on the Pasteur Institute Galaxy 681 
server to retrieve CRISPR arrays.  682 
 683 
Prediction of serotype, serogroup and multi-locus sequene type 684 
To predict the antigenic serogroup, we screened the assemblies against a custom reference 685 
database using Hamburger63. In brief, a database was constructed by selecting flanking and 686 
marker genes for the operon encoding the V. cholerae O-antigen, with representative genes for 687 
both O1 and non-O1 serogroups included (Table S15). Gene sequences were individually 688 
aligned using Clustal Omega (version 1.2.4), prior to HMM construction with HMMER 689 
(version 3.2.1) and concatenation of the HMM alignments. Assemblies were screened against 690 
this database using Hamburger (version 836a77c)64 to identify the operon, and genetic structure 691 
was compared across the assemblies and references to designate serogroups. The HMMER 692 
database is available online at https://figshare.com/s/5dd21a52f0d5a39a670f (doi: 693 
10.6084/m9.figshare.19575148). 694 
For O1 serotype prediction (Inaba or Ogawa), we used a combination of approaches including 695 
BLASTN search against the 882 assembled V. cholerae genomes (as described above) and 696 
ARIBA (v2.14.6+, with default parameters)65 to screen the sequencing read sets against the 697 
wbeT gene sequence from strain NCTC 9420 (positions 311,049-311,909 of GenBank 698 
accession CP013319.1) as a reference, as previously described28. Multi-locus sequence typing 699 
(MLST) of non-7PET isolates was conducted on PubMLST.org66 under the non-O1/non-O139 700 
V. cholerae seven-gene typing scheme. 701 
 702 
Identification of single nucleotide variants (456 “mapped 7PET genomes” and 33 703 
“mapped VcD genomes” datasets) 704 
For variant calling, Illumina short reads were mapped against the novel reference genomes 705 
from strains CNRVC190243 and CNRVC190247, or the in-house MGE database described 706 
above. We mapped all 260 short read sets from 2018-2019 Yemeni isolates sequenced at the 707 
WSI, including those 28 read sets which assembly showed low coverage or appeared 708 
contaminated with phage genomes (Table S3), so to recover variation data evidenced at the 709 
read level, provided reads were mapped at a sufficient depth (see below). We also mapped read 710 
sets from the 21 strains sequenced at the IP, and from contextual isolates of the 7PET-T13 711 
sublineage and close relatives (see “Contextual genomic data”), for a total of 468 mapped 712 
genomes. Reads were trimmed with Trimmomatic, mapped to both CNRVC190243 reference 713 
chromosomes with BWA-MEM and the IncC plasmid pCNRVC190243. Mapped genomes 714 
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with an average read depth below 5x over the two chromosomes were deemed of insufficient 715 
read depth and were excluded (12 read sets mapped to CNRVC190243, all from this study and 716 
generated at WSI, were excluded for a final set of 456 mapped 7PET genomes [Table S5]; no 717 
read set mapped to CNRVC190247 was excluded). We used the software suite 718 
samtools/bcftools67 v1.9 to call single nucleotide variants with a minimum coverage of 10x 719 
read depth; see custom script ‘map_yemen_reads2MGEs.sh’68 for a detailed description of the 720 
parameters used. Resulting consensus sequences were combined into a whole-genome 721 
alignment, which was processed with snp-sites 69 to produce a single nucleotide polymorphism 722 
(SNP) alignment. 723 
Overall genome similarity was assessed by computing SNP distances based on the above 724 
alignments using the function ‘dist.dna’ from the R package ‘ape’70, and average nucleotide 725 
identity (ANI, accounting for unaligned regions) was computed using fastANI71 v1.3 with 726 
default parameters. 727 
 728 
Phylogenetic inference  729 
The Pantagruel pipeline72 was used to infer a maximum-likelihood (ML) “core-genome tree” 730 
using the “-S” option and otherwise default parameters. Briefly, 291 single-copy core-genome 731 
genes (with expected high degree of sequence conservation and relatively low prevalence of 732 
HGT compared to other core genes) were extracted from the 882 assembled V. cholerae 733 
genomes, their alignments were concatenated and the resulting supermatrix was reduced to its 734 
37,170 polymorphic positions, from which a ML tree was computed from RAxML v8.2.1173 735 
(model ASC_GTRGAMMAX using Stamatakis’ ascertainment bias correction; one starting 736 
parsimony tree; 200 rapid bootstraps for estimating branch supports); supporting 737 
supplementary data are available on Figshare at 738 
https://figshare.com/s/3fe31c131b00a2a08bb9. Phylogenies were also inferred from whole-739 
genome alignments of the concatenated consensus sequences of both chromosomes from the 740 
SNP alignment of the 456 mapped 7PET genomes and 33 mapped VcD genomes. These 741 
alignments contained 2,092 and 91,312 polymorphic positions, respectively, and were used as 742 
input to RAxML-NG v1.0.174 to build the ML “mapped genome trees” using the following 743 
options: “all --tree pars{10} --bs-trees 200 --model GTR+G4+ASC_STAM”. Alternative 744 
topologies were compared using RAxML-NG option “--sitelh” to generate per-site likelihood 745 
values and the ‘SH.test’ function from the ‘phangorn’ R package75 to test hypotheses.  746 
 747 
The 882 assembled V. cholerae core-genome tree was rooted using the clade of sequences 748 
identified as V. paracholerae14 as an outgroup. The remaining part of the tree (V. cholerae 749 
sensu stricto) was subdivided into clades named VcA to VcK based on visual examination with 750 
the aim to coincide with previously described lineages such as 7PET, Gulf Coast, etc. or based 751 
on balanced subdivisions of the tree diversity. VcH, corresponding to the 7PET lineage, was 752 
further subdivided into clades of even depth, named Subclades H.1 to H.9. The 456 mapped 753 
7PET genomes were similarly classified into clusters based on the tree topology, with genomes 754 
assigned to subclades named VcH.5, VcH.6, VcH.8 or VcH.9 (according to their position in the 755 
882 assembled V. cholerae core-genome tree). Genomes belonging to VcH.9, which 756 
corresponds to the 7PET-T13 sublineage, were further separated into VcH.9.a to VcH.9.h, 757 
based on visual examination of the tree structure and aiming to maximise uniformity of the 758 
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spatio-temporal metadata associated to genomes in each cluster; clusters correspond to clades, 759 
either entirely or at the exclusion of another cluster included in the clade i.e. genome clusters 760 
can emerge from each other. Final trees for the mapped genome datasets were rooted manually 761 
according to the branching pattern in the 882 assembled V. cholerae core-genome tree, which 762 
diversity encompases that of the mapped genome trees. 763 
 764 
From a subset of the 456 mapped 7PET genome alignments (n=335) corresponding to VcH.9, 765 
a recombination-free phylogeny was inferred using ClonalFrameML v1.1176 with default 766 
parameters and using the ML mapped genome tree (restricted to the VcH.9 genome tips) as a 767 
starting tree. BactDating77 v1.1 was then used to estimate a timed phylogeny (using 100,000 768 
Monte-Carlo Markov chain iterations and otherwise default parameters) of the Yemen 2016-769 
2019 genomes and relatives using the ClonalFrameML tree and day-resolved dates as input; 770 
median day of the year of isolation was used for isolates where these data were missing. Three 771 
independent chains were run from different random seeds and yielded close results. 772 
 773 
Supporting data for phylogenetic analyses of the 882 assembled V. cholerae, 456 mapped 774 
7PET genomes and 33 mapped VcD genomes are avaible on Figshare repository at 775 
https://figshare.com/s/3fe31c131b00a2a08bb9 (doi: 10.6084/m9.figshare.16611823), 776 
https://figshare.com/s/4d83a32cce78a52b413e (doi: 10.6084/m9.figshare.16595999) and 777 
https://figshare.com/s/0be28064870c811120c5 (doi: 10.6084/m9.figshare.18304961), 778 
respectively. 779 
 780 
Correlation of spatio-temporal and phylogenetic distances 781 
GPS data associated to the site of sample collection (health centres) were used to compute 782 
spatial geodetic distances using R script ‘gps_coords.r’78,79. Temporal distances were computed 783 
from the difference between day of collection (only available for 2018 and 2019 Yemen 784 
isolates). Phylogenetic distances were computed from the mapped genome tree using the 785 
function ‘cophenetic’ from the core R package ‘stats’80. Spatial, temporal and phylogenetic 786 
distances were compared using a Monte-Carlo approximation of the Mantel test as implement 787 
in the ‘mantel.randtest’ function from the R package ‘ade4’81, using 100,000 permutations to 788 
compute the simulated p-value. Maps showing the distribution of genomes clusters over the 789 
Yemen territory and in the region of Sana'a were obtained using QGIS 3.16.3 and the 790 
QuickOSM API to retrieve OpenStreetMap data, specifically level 4 administrative boundaries 791 
(governorates) in Yemen (last accessed 11 February 2021). 792 
 793 
Clade-specific SNPs and pangenome analysis  794 
The synteny-aware pangenome pipeline Panaroo82 (v1.2.3) was run on the 882 assembled V. 795 
cholerae genome set with the option “--clean-mode strict” and default parameters otherwise. 796 
In parallel, a combined VCF file containing information on all SNP variation within the 456 797 
mapped genome set was obtained using the ‘bcftools merge’ command. To identify clade-798 
specific SNPs and accessory gene presence/absence patterns, we used custom R scripts68 to 799 
compare the combined VCF file and the gene presence/absence table output of Panaroo, 800 
respectively, to the mapped genome tree. Based on lists of genomes assigned to various clades 801 
and clusters (see Results), we identify SNPs or accessory genes that are specific of a focus 802 
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clade in contrast to a background group or a sister clade, considering the contrast significant 803 
when the Bonferonni-corrected p-value is below 0.05 and when the frequency of an allele is 804 
above 0.8 in the focus clade and below 0.2 in the background clade, or conversely. Pangenome 805 
analysis files are available at https://figshare.com/s/675d2a9e424ad4f11646 (doi: 806 
10.6084/m9.figshare.19519105). Putative anti-phage defense systems were searched by testing 807 
correlation of presence/absence patterns between ICP1-like phage and each pangenome gene 808 
cluster; only associations with Pearson correlation coefficients lower than -0.9 or greater than 809 
0.9 and p-values lower than 10-5 were retained as significant. 810 
 811 
Data availability 812 
Novel genomic data are available from the ENA/NCBI/DDBJ short read archive under the 813 
BioProject PRJEB34436. Four of the resulting assemblies comprised a single 123-kb contig 814 
corresponding to the ICP1-like phage; these assemblies were deemed uncontaminated and 815 
complete ICP1-like phage genomes and were deposited to GenBank under the accessions 816 
MW911612-MW911615. Complete hybrid genome assemblies for reference strains 817 
CNRVC019243 and CNRVC019247 were deposited to the ENA under the BioProject 818 
acessions PRJEB52123 and PRJEB47951 (Assemblies GCA_937000105 and 819 
GCA_937000115), respectively. Suplementary data are available online on the Figshare 820 
repository, under the following digital object ientifiers (doi): 821 
https://doi.org/10.6084/m9.figshare.16595999, https://doi.org/10.6084/m9.figshare.16611823, 822 
https://doi.org/10.6084/m9.figshare.18304961, https://doi.org/10.6084/m9.figshare.19097111, 823 
https://doi.org/10.6084/m9.figshare.19519105, https://doi.org/10.6084/m9.figshare.19575148. 824 
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Table 1. Number of V. cholerae isolate genomes from Yemen by year and phylogenetic 1063 
lineage 1064 
 1065 
Year Total Clades    Clusters    1066 
  Vpc1 VcD2 VcK1 VcH/H.9 3     n.d.4 1067 
      H.9.e H.9.f H.9.g H.9.h 1068 
2016 8    8 7 1   1069 
2017 34    34 29 5   1070 
2018 112  17  87 3  6 78  8 1071 
2019 169 1 4 2 151   150 1  11 1072 
Total 323 1 21 2 280 39 6 156 79  19 1073 
 1074 
1 Assigned based on the “882 assembled V. cholerae genomes” dataset 1075 
2 Assigned based on the “33 mapped VcD genomes” dataset 1076 
3 Assigned based on the 456 “mapped 7PET genomes” 1077 
4 Poor quality genome data or no coverage of the bacterial genomes (e.g. in case of complete 1078 
contamination by ICP1 virus genome). 1079 
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Figure Legends 1081 
 1082 
Figure 1: Phylogenetic diversity of Vibrio cholerae isolates from Yemen 1083 
Maximum-likelihood phylogeny of 882 assembled V. cholerae genomes based on the 37,170 1084 
SNP sites from the concatenated alignments of 291 core genes. Low-diversity clades (VcH and 1085 
part of VcK) are collapsed and marked by black stars. Clades are highlighted with background 1086 
colours (legend key 1). Coloured rings outside the tree depict the match with previously 1087 
described lineages (ring 2), the geographical origin of isolates at the level of continents (ring 1088 
3), and their year of isolation when from Yemen (ring 4). Presence of parts of the plasmid 1089 
pCNRVC190243 are indicated by coloured circles (ring 5 in A): IncC plasmid backbone (light 1090 
brown) and the MDR pseudo-compound transposon YemVchMDRI (dark brown); full circles 1091 
indicate over 70% coverage in assemblies of the reference length, hollow circles indicate 30-1092 
70% coverage in assemblies and confirmed presence based on mapped reads, with even 1093 
coverage over the MGE reference sequence, while half-circles represent heterogeneous 1094 
presence in a collapsed clade. Tree plots were generated with iTOL v416 and adapted with 1095 
Inkscape. The scale bar represents the number of nucleotide substitutions per variable site. 1096 
 1097 
Figure 2: Phylogenetic diversity and spatiotemporal distribution of Vibrio cholerae 7PET-1098 
T13 isolates (VcH.9) from Yemen 1099 
A. Subtree of the maximum-likelihood phylogeny of 456 7PET genomes mapped to reference 1100 
VcH.9 strain CNRVC190243 genome, including 335/456 genomes covering VcH.9 (as defined 1101 
in Figure S5), which corresponds to the 7PET-T13 sublineage and close South Asian relatives. 1102 
The full tree containing the 456 genomes is available as supplementary material on Figshare 1103 
(https://figshare.com/s/4d83a32cce78a52b413e; doi: 10.6084/m9.figshare.16595999) and was 1104 
obtained based on 2,092 SNP sites from concatenated whole-chromosome alignments. Brown 1105 
branches indicate the clade grouping all Yemeni 7PET-T13 isolates. Bootstrap support over 1106 
70% is indicated by white circles. Phylogenetic clusters within VcH.9 are highlighted with 1107 
background colours (legend key 1). Coded tracks outside the tree depict the serotype of isolates 1108 
(ring 2) as predicted from genomic data, year of isolation when isolated in 2012 or later (ring 1109 
3), the governorate of isolation if in Yemen (ring 4). The presence of mobile genetic elements 1110 
(MGEs) is indicated by coloured circles in the outermost track (ring 5): ICP1-like phage (pink), 1111 
SXT/ICE ICEVchInd5 (blue), ICEVchInd5Δ i.e. featuring the characteristic 10-kb deletion in 1112 
the variable region III (green), IncC plasmid backbone (light brown) and the MDR pseudo-1113 
compound transposon YemVchMDRI (dark brown); filled and unfilled circles indicate 1114 
different level of coverage in assemblies (see Figure 1 legend). The position of the reference 1115 
sequence to which all other genomes were mapped to generate the alignment is labelled. The 1116 
scale bar represents the number of nucleotide substitutions per site. B. Frequency of each 1117 
phylogenetic subcluster among Yemen isolates per month since the onset of the Yemen 1118 
outbreak. Where relevant, the cluster group is subdivided by the presence or absence of the 1119 
IncC plasmid as indicated by the filled brown (present) or open (absence) circle on the right of 1120 
the chart. The contribution of each governorate of isolation is indicated by the coloured portion 1121 
of each bar. C and D. A map of Yemen governorates (C) and a focus on the Sana’a and Amanat 1122 
Al Asimah governorates (inner and outer capital city; D), with dots corresponding to isolates, 1123 
coloured by phylogenetic subcluster.  1124 
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 1125 
Figure 3: Genetic organisation of the MDR pseudo-compound transposon YemVchMDRI 1126 
Antimicrobial resistance (AMR) genes are filled in black and labelled in boldface; genes 1127 
encoding endonucleases transposases and other genes involved in genetic mobility are filled in 1128 
grey. Genomic position is indicated by tickmarks every kilobase, in reference to the 1129 
pCNRVC190243 plasmid coordinates. 1130 
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