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ABSTRACT

Cardiac allograft vasculopathy (CAV) is the leading cause of late allograft failure and mortality after heart
transplantation. As current standards of diagnosis and treatment of CAV have significant limitations,
understanding cell-specific responses may prove critical for developing improved detection strategies and
novel therapeutics. This study is the first to successfully utilize human endomyocardial biopsy (EMB) samples
to isolate large numbers of intact nuclei for single-nuclear transcriptomics. These data also lay the groundwork
for ongoing experiments to study serial, routinely-collected EMB specimens after heart transplantation to
identify novel biomarkers and pathways through which early CAV pathogenesis can be interrupted, thereby

prolonging allograft survival.
INTRODUCTION

Cardiac allograft vasculopathy (CAV) is the leading cause of late allograft failure and mortality after heart
transplantation. As current standards of diagnosis and treatment of CAV have significant limitations,
understanding cell-specific responses may prove critical for developing improved detection strategies and
novel therapeutics. This study is the first to successfully utilize human endomyocardial biopsy (EMB) samples
to isolate large numbers of intact nuclei for single-nuclear transcriptomics. These data also lay the groundwork
for ongoing experiments to study serial, routinely-collected EMB specimens after heart transplantation to
identify novel biomarkers and pathways through which early CAV pathogenesis can be interrupted, thereby

prolonging allograft survival.

Cardiac allograft vasculopathy (CAV) is the leading cause of late allograft failure and mortality after heart
transplantation®. Histologically, CAV is chronic vascular rejection characterized by diffuse intimal thickening of
macro- and microvasculature. While in vitro cellular models and in vivo histologic observations suggest
coordinated responses of endothelial, fibroblast, and smooth muscle cells in CAV pathology, cell-specific
transcriptional signatures among these in the transplanted human heart have not been studied. As current
standards of diagnosis and treatment of CAV have significant limitations, understanding cell-specific responses

may prove critical for developing improved detection strategies and novel therapeutics.

Here, we used single-nuclear RNA sequencing (SnRNA-seq) to elucidate the transcriptomic landscape of CAV.

Importantly, we establish the feasibility of performing shRNA-seq from human endomyocardial biopsy (EMB)
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specimens (3-10 mg in size) obtained at the time of right heart catheterization, enabling high-resolution
molecular profiling of samples collected during routine clinical practice. We compared tissue obtained at the
time of re-transplantation from 4 individuals with severe CAV to EMB specimens from 3 individuals post-
transplant without CAV (Figure 1A). For all 7 individuals, samples were obtained from the right ventricle (RV).

In 3 out of 4 patients with severe CAV, left ventricular (LV) samples were also obtained (for a total 10

samples).
METHODS

After nuclear isolation with modifications to account for low tissue mass, libraries were generated, sequenced,
quality-controlled, and analyzed as previously described?. Raw FASTQ files are deposited at the NIH NCBI
GEO data repository (GSE203548) and code used for these analyses are deposited at
https://github.com/learning-MD/CAV. This study was approved by the Vanderbilt University Medical Center’'s

Institutional Review Board.
RESULTS

We successfully isolated 62,465 nuclei and identified 17 major cell types with heterogenous distribution across
the ten different samples (Figures 1B, 1C). When comparing RV samples, endothelial cells and fibroblasts in
CAV exhibited increased expression of SERPINE1, which promotes neointimal hyperplasia and fibrosis?®.
Endothelial cells were enriched for pathways involved in angiogenesis, cell migration, and extracellular matrix
(ECM) organization (Figures 1D, 1E). Fibroblasts in CAV exhibited increased expression of genes involved in
ECM deposition and fibrosis (e.g., MMP2, CCN1, THBS1) while also highly expressing IL6ST, involved in IL-6
signaling. As expected, macrophages in CAV showed increased expression of genes associated with
inflammation (e.g., TLR2, IFNARZ2). While no significant differences in T cells were noted between conditions,
subclusters included CD4 central memory T cells (IL7R, TCF7), CD4 T regulatory cells (FOXP3, CTLA4,
IL2RA), and CD4 T cells exhibiting markers of exhaustion (LAG3, CTLA4, PDCD1), along with CD8 memory T

cells (CCL5). No major differences in gene expression were noted between RV and LV CAV samples.

We repurposed a genotype-free demultiplexing tool to infer donor- and recipient-derived nuclei from each
individual CAV sample. Using 5 of the 7 combined CAV samples (including both LV and RV tissue), 2,827

nuclei were confidently called as donor- or recipient-derived in the absence of genotyping (Figure 1F).
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85  Endothelial cells exhibited significant donor-recipient chimerism (21.8% recipient-derived). Donor-derived
86  endothelial cells were enriched for markers of endothelial-to-mesenchymal transition (EndoMT; SERPINEL,
87 VIM, COL3AL; Figure 1G). In contrast, immune cells were largely replaced by those originating from the
88  recipient (91.1% of macrophages/monocytes, 92.6% of NK cells, 88% of T cells). Recipient-derived
89  macrophages included both CCR2" monocyte-derived macrophages and CCR2- MRC1" tissue resident
90 macrophages, traditionally thought to be involved in cardiac repair* (Figure 1H). Macrophages exhibited

91  markers of activation, including HLA-DRA and CD74, and increased expression of TGFB1, a potential driver

92 for the EndoMT observed in donor-derived endothelial cells.
93 DISCUSSION

94  This study is the first to successfully utilize human EMB samples to isolate large numbers of intact nuclei for
95  single-nuclear transcriptomics. As expected from an ischemic allograft, we see enrichment for genes and
96 pathways involved in inflammation, fibrosis, and tissue healing. We highlight several unique findings enabled
97 Dby this approach: 1) cell composition amongst EMB samples is highly heterogeneous, suggesting that bulk
98 RNA-seq approaches may exhibit high levels of variability due to sampling bias; 2) there are unique
99 transcriptomic signatures of donor- versus recipient-derived cells, particularly endothelial cells, highlighting
100 putative novel avenues for investigation; and 3) the presence of recipient-derived CCR2" macrophages
101 warrants further study, as only a small percentage would be expected to be recipient-derived*. However,
102  recent single-cell data have implicated partial replacement of MHC-II"CCR2- cardiac macrophages by

103  monocytes, suggesting a still evolving understanding of macrophage subsets®.

104  Our study is limited by a small sample size and the use of samples derived from severe CAV. However, these
105 data demonstrate feasibility of performing snRNA-seq using frozen EMBSs, presenting a unique opportunity that
106  may have broad ramifications on the fields of heart transplantation and cardio-oncology/immunology. These
107 data also lay the groundwork for ongoing experiments to study serial, routinely-collected EMB specimens after
108 heart transplantation to identify novel biomarkers and pathways through which early CAV pathogenesis can be

109 interrupted, thereby prolonging allograft survival.
110
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Figure 1. A) Clinical characteristics of all seven patients studied. B) Uniform Manifold Approximation and
Projection (UMAP) of 62,465 nuclei identified 17 major cell types using canonical marker genes. C) Cell
compositional analyses were performed using scCODA v0.1.6. Labels correspond to patients described in
Figure 1A. No significant difference in cell composition was noted using an automated reference cluster. D)
Differential gene expression was performed using MAST. Volcano plot representing right ventricular CAV vs.
control samples for the endothelial cell cluster. E) Biological pathway enrichment analysis of differentially
upregulated genes in RV CAV endothelial cells using Metascape. F) Genotype-free inference of donor- versus
recipient-derived nuclei was performed using souporcell v2.0. UMAP of donor- vs. recipient-derived nuclei. The
clusters correspond to the same clusters annotated in Figure 1B. G) Donor-derived endothelial cells are
enriched for markers of endothelial-to-mesenchymal transition. H) The monocyte/macrophage cluster is largely
recipient-derived. Presence of distinct CCR2* monocytes and CCR2MCR1* macrophages is highlighted using
Nebulosa. LVEF = left ventricular ejection fraction; HTN = hypertension; DM2 = type 2 diabetes mellitus; CKD
= chronic kidney disease; DSA = donor-specific antibodies; ACR = acute cellular rejection; AMR = antibody-
mediated rejection; ER = extended release; MMF = mycophenolate mofetil; RV = samples from right ventricle;

LV = samples from left ventricle; CAV = cardiac allograft vasculopathy; EndoMT = endothelial-to-mesenchymal

transition.
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