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Abstract

Recently we have concluded that image-based features derived from the microenvironment have
an enormous impact on successfully determining the class of an object®. Here we demonstrate
that deep learning-based phenotypic analysis of cells with a properly chosen microenvironment-
size provides results comparable to our earlier neighbourhood-based methods that utilise hand-
crafted image features. We hypothesised that treating cells with equal weight, regardless of their
position within the cellular microenvironment, is suboptimal, and direct neighbours have a larger
impact on the phenotype of the cell-of-interest than cells in its larger proximity. Hence we
present a novel approach that (1) considers the fully featured view of the cell-of-interest, (2)
includes the neighbourhood and (3) gives lesser weight to cells that are far from the cell. To
achieve this, we present a transformation similar to those characteristic for fisheye cameras. Such
a transformation satisfies all the above defined criteria, with a fast rate of transform for any
images. Using the proposed transformation with proper settings we could significantly increase
the accuracy of single-cell phenotyping, both in case of cell culture and tissue-based microscopy
images. The range of potential applications of the proposed method goes beyond microscopy, as
we present improved results on the iWildCam 2020 dataset containing images of wild animals.
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Introduction

All living entities adjust to their environment, manifested as visually observable morphological
differences both at the macro- and microscales. Therefore, incorporating microenvironmental
information into object classification may have an enormous impact on the accuracy of
evaluation®. This phenomenon may be of particular interest when the phenotypes of cells are
determined.

The modern technological advancements in microscopy, sequential hybridization?3, and mass
spectrometry* have paved the way to evaluate cellular structures at high spatial and temporal
resolution. These measurements generate large datasets, hence automated computational
methods are required to obtain objective information from these images®®. Utilising the inherent
potentials of automated image analysis offers several advantages: it eliminates operator bias,
provides quantitative data, and identifies visual characteristics that would otherwise go
undetected.”®

Various computer vision and classical machine learning techniques have been used?® to support
researchers with tasks like image exploration (e.g. to find changes in cell structure in an imaging-
based drug screen??), image classification (e.g. to determine the distribution of different proteins
within cells!?), image segmentation (e.g. identifying single cells in images®3), or object tracking*.
Despite the acknowledged capabilities of these techniques, deep learning-based analyses often
perform more efficiently in recognizing biological patterns based on the pixels of images>16.

Deep learning has yielded fascinating results in solving biology-related issues'’. The phenotype
of a cell is determined by various cellular processes and factors (including the stochasticity of
gene expression, as well as a variety of proteomes and metabolomes®) that result in a particular
morphological arrangement. Deep learning has enabled the exploration of factors like replicative
age, organelle inheritance and response to stress®. It has been demonstrated to perform
comparable to human pathologists upon classifying whole-slide images into two categories of
cancerous and normal lung tissues (it was even able to predict the ten most commonly mutated
genes)'®. Another frequent challenge in cell biology lies in identifying various proteins and
determining their locations within the cells. Numerous models have been developed?®?! to
automatically identify subcellular localization patterns, based on the Human Protein Atlas??
which contains acquisitions of 12,003 human proteins at the single-cell level.

Single cell heterogeneity within cell populations is also influenced by the cell’s
microenvironment?324, Several studies have demonstrated that the peculiarities of cellular
neighbourhood can be exceptionally relevant when investigating the collective organisation of
cells in a variety of settings. Snijder et al. have reported that in a cell culture context one may
predict the burden of viral infection at the single cell level, solely based on each cell’s
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microenvironment?*. In a study of competitive interactions between wild-type Madin-Darby
canine kidney (MDCK) cells and cells depleted of the polarity protein scribble, Bove et al. found
that the probability of cell division is significantly higher for MDCK cells when their
neighbourhood is mostly populated by scribble cells?>. Several other examples of the importance
of cellular neighbourhood are also published in literature. For instance, neighbouring epidermal
stem cells affect each other (differentiation of a single stem cell is followed by division of a direct
neighbour)?®; ligand-producing hair cell precursors in the inner ear are smaller than their
neighbours?’.

In a previous work our group has also concluded that incorporating the features of the
microenvironment of cells improves phenotype classification in high content screens®. In that
study, we extracted commonly used cell-based features for every segmented cell. The centre of
mass was measured for each segmented area and was used as a reference point for distance
calculation. We used two different approaches to define cellular neighbourhoods: the K-nearest
neighbours (KNN) and the N-distance methods (Fig. 1a). Neighbourhood features were derived
from the mean, median, standard deviation, minimum, and maximum statistics of the previously
calculated cellular features. Then, we used these neighbourhood features to classify cells and we
got the best result using Multi-layer Perceptron classifier. Based on these findings, we
hypothesised that it is worth using environmental data for deep learning phenotypic profiling.

Recently, fisheye cameras have received significant interest from both technical professionals
and the public in general. Fisheye lenses are ultra-wide angle lenses capable of taking wide
panoramic or hemispheric images, however, they incorporate a significant optical distortion into
the process. Fisheye lenses utilise specific mapping (stereographic, equidistant, equisolid angle,
orthogonal) which lands the images a characteristic convex non-rectilinear appearance?®. These
specific lenses have a wide range of applications due to their ability to provide rich visual
information, including the generation of augmented or virtual reality?®, improving the
performance of intelligent robot vision systems3°, and simplifying the complexity of surveillance
systems3!. Various correction models have been proposed to rectify the distortion of fisheye
lenses32734,

In this paper we introduce a novel way of representing images to deep learning-based image
classification networks. The basic idea is the following: the original image includes the object of
interest (which is located in the middle of the image), as well as its microenvironment of a
predefined range. The images are then transformed by a fisheye-like spatial sampling method
that collects more pixels from the close proximity of the object-of-interest, and the resolution
decreases for larger proximity (Fig. 1d). Our results indicate that the proposed transformation
highly outperforms classical machine learning methods and deep learning-based classifiers
benchmarked on cell cultures, scans of cancerous tissues and real life images. We remark that
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our fisheye transform method provides improved classification accuracy, as demonstrated by
higher accuracy scores on several test datasets, compared to relying on feeding the network with
multi-scale images in parallel (i.e. an image pyramid). Also, the presented fisheye transformation
has the advantage that it can be incorporated into the network as a layer3>, although technically
it is more resource intensive when large images are fed into the network.

Materials and methods

Datasets

MCF-7 High-Content-Screening Dataset

We used a publicly available breast cancer cell line (MCF-7) dataset that included images of cells
treated with 113 different small molecules at eight different concentrations for 24 hours
(available online at the Broad Bioimage Benchmark Collection
https://www.broadinstitute.org/bbbc/BBBC021/). In brief, the MCF-7 cell line was treated with
a variety of targeted anticancer agents and standard cytotoxic compounds, resulting in a wide
range of visible and subtle phenotypic changes at the cellular level. After 24 hours of incubation,
the cells were fixed and stained for DNA, F-actin and B-tubulin before being scanned by

fluorescence microscopy. Images were collected from 55 microtiter plates of 96-well format. The
dataset contains more than 39,000 images of almost 2 million cells3. Piccinini and colleagues®’
published a single-cell phenotypic annotation method which we have adopted in our study. Nine
phenotypic classes (i.e. abundant, rounded, elongated, multinucleated, bundled microtubule,
peripheral cytoskeleton, punctate actin foci, decreased cell size and fragmented nucleus) and a
debris class were identified (Fig. 2a), and approximately 1,500 cells were labelled.

Urinary bladder cancer and lung cancer tissue sections

Images of urinary bladder cancer (UBC) and lung cancer (LC) tissues served as our second and
third test datasets (Fig. 2b,c). The slides of urinary and lung cancer tissues were stained with
hematoxylin-eosin (HE) in standard histopathological procedures. Formalin-fixed and paraffin-
embedded tissue sections were cut into 4 um thick slices, and were stained using a Tissue-Tek
DRS 2000E-D2 Slide Stainer (Sakura Finetek Japan) according to the manufacturer’s instructions.
Using the AxioVision SE64Rel.4.9.1.1 (Carl Zeiss Meditec AG, Germany) software, images were
captured with an Axio Imager Z.1 (Carl Zeiss Meditec AG, Germany) microscope equipped with
an EC Plan-NEOFLUOAR 20x/0.5NA lens.
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For the analysis of the bladder cancer tissue dataset, containing 38 images, we used the
annotation presented in our previous neighbourhood study!. We distinguished eight phenotypic
classes (cancer cell, lumen cell, endothelial cell, stroma cell, fibroblast-fibrocyte, lymphocyte-
plasma cell, smooth muscle cell and lipocyte), and labelled 1,200 cells. For the lung cancer
dataset, we differentiated 10 phenotypic classes (blood cell, cancer cell, cartilage, endothelial
cell, epithelium, fibroblast-fibrocyte, gland, lymphocyte-plasma cell, muscle cell and stroma cell),
and labelled 5,000 cells.

iWildCam 2020 dataset

The iWildCam 2020 dataset is derived from the iWildCam 2020 competition organised by Kaggle,
where the competition task focused on classifying animal species. Data were primarily provided
by the Wildlife Conservation Society, iNaturalist, the U.S. Geological Survey, and Microsoft Al for
Earth. The training dataset of the competition consists of 217,959 images taken at 441 locations.
In total, 267 classes, containing a highly unbalanced number of entities, were defined. Fig. 2d
displays the 10 classes that contain most of the elements (excluding the ‘empty’ class, where no
animals are visible in the image).

Segmentation

CellProfiler 2.2.0 was used to segment images from the high-content-screening dataset of drug-
treated MCF-7 samples. The adaptive Otsu method was used to detect nuclei. Cells smaller than
5 um and nuclei contacting the borders of the images were eliminated. Adaptive thresholding
was used to extract the cytoplasm of cells, using watershed separation based on the nuclei as
seed points.

For the segmentation of the tissue datasets and for the annotation of the MCF-7, UBC and LC
datasets we used an image analysis and machine learning software named BIAS32, which was
developed by Single-Cell Technologies Ltd. (Szeged, Hungary).

The SLIC superpixel segmentation technique3® was employed to segment urinary bladder cancer
and lung cancer section images. We set 35 pixel as superpixel size, and forced connectivity
between superpixels when a superpixel included less than 25 pixels. We have previously
demonstrated that this superpixel size works best to represent the cellular structure of tissues?.

During the annotation process of these three (MCF-7, urinary bladder and lung cancer) datasets,
we saved the x-y coordinates of the centre of the nuclei/superpixels, and used these coordinates
as inputs for the fisheye transformation.
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For the iWildCam dataset, the organisers of the competition provided a general animal detection
model  (https://github.com/microsoft/CameraTraps/blob/master/megadetector.md) called
MegaDetector, along with an annotation file that contained one label per image. When more
than one animal were visible in the image, we selected only the detection with the highest

accuracy, and gave the label to it. MegaDetector works with bounding boxes. In the present
study, we used the x-y coordinates of the centre of the bounding boxes as inputs for the fisheye
transformation.

Fisheye transformation

Several types of ultra-wide angle lenses are available, and all are associated with a significant
visual distortion. In our study we evaluated an algorithm that artificially reproduces the same
kind of distortion which is inherent in images taken with ultra-wide angle lenses. We analysed
the relevance of neighbourhood features to determine the most optimal distance to be
considered for the highest accuracy of classification.

The first parameter we optimised was the range around our object-of-interest (in an optical
manner, this is object height, later referred as ‘window size’, see Fig. 1c). For the MCF-7, UBC and
LC datasets, as we have mentioned before, we saved the x-y coordinates of the centre of the
nuclei/superpixels and then we used the selected pixel range for the fisheye transformation
based on these points. In case of the iWildCam dataset, we cropped out areas of interest from
the original images for our fisheye transformation in four different sizes. We took the size of the
original bounding box and multiplied it with 1.0, 1.5, 2.0 and 2.5. When we multiplied the original
size with 1.0, we cropped the images with the same size for the baseline images and for the
fisheye-transformation. In all of the other cases, we took a bigger size of the environment into
account.

The second modifiable parameter was focal distance, which essentially defines the strength of
the distortion. Contrary to our original neighbourhood idea?, information acquisition was not cell-
based, but pixel-based (Fig. 1a,d). The third parameter was the mapping function, which originally
(in cameras) is responsible for transforming a part of a spherical object to a 2D plane. In the
present study we chose the ‘equidistant’ function -as it is one of the most popular mapping
functions used in cameras - to test our hypothesis on the significance of neighbourhood regarding
classification accuracy. In all cases we set the object distance (the distance between the original
image and the lenses) in a way to eliminate scaling due to fisheye distortion. For more
information about the transformation and examples of the transformed images, see
Supplementary Section 1 and Supplementary Figure S1-54.
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Figure 1. (a) Neighbourhood with classical machine learning. The K-nearest neighbours (KNN)
and N-distance methods, illustrated in a schematic figure and in real cell culture and tissue section
scenarios (K=5, cell culture: n=19.51 ym, tissue sections: n=13.5 ym). (b) Schematic figure of
phenotypic classification with deep learning. (c) lllustration of the optical parameters for the
fisheye transformation. (d) The difference between classical and fisheye pixel sampling: in the
classic case we select pixels evenly, while in case of fisheye, sampling is dense near to the object-
of-interest, and less dense as the distance from the object increases. (e) Examples of the fisheye
transformation

TRANSFORMED  ORIGINAL

Deep learning-based object classification

For image classification we used Matlab R2019b and its Deep Learning Toolbox (version 13.0).
This toolbox provides a framework to design or implement networks, pre-trained models, and
apps. Two networks pre-trained on ImageNet, ResNet50 and InceptionV3 were utilised for
transfer learning. Our decision for the models (i.e. using ResNet50 and InceptionV3), was based
on the accuracy, speed and size of the networks. Particular attention was paid to avoid that an
annotated cell is included in the training dataset and appears in a validation image as a neighbour
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afterwards. Thus, to prevent a potentially positive influence of evaluation, both the MCF-7 and
UBC datasets were processed with pre-defined train and validation folders at the image level,
instead of the cell level. For the LC and iWildCam datasets this was not an issue, as these were
created to contain only one annotated object per image. The latter two datasets were
randomised and split to a training and a test set, thus 80% was used for training and 20% was
used for testing the methods. Three independent trials were run for each dataset.

Data augmentation has a seminal role in improving classification accuracy. We applied the
following standard geometry transformations on our training datasets: reflection in the left-right
and a top-bottom directions, rotation, horizontal and vertical scaling. It is important to mention
that we have not used any transformation that spatially moves the cell-of-interest away from the
centre of the image because that would have consequences to the fisheye transformation.
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Figure 2. Distinguished classes. (a) Cells of nine different phenotype classes identified in the
MCF-7 High-Content-Screening Dataset. (b) Eight phenotypic classes in the UBC tissue image
dataset. (c) Ten phenotypic classes in the LC tissue image dataset. (d) The ten most common
animal species in the iWildCam2020 dataset.
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Results

We evaluated the performance of a fisheye-like sampling on several image datasets, aiming to
improve classification accuracy by deep learning-based image classification networks. We
compared two convolutional neural network-based classifiers using ResNet50 and InceptionV3
backbones, as well as the relevance of the extent of neighbourhood and the focal distance of
fisheye transformation. We benchmarked what combination of these parameters produce the
best results.

The baselines we compared our method were also calculated with ResNet50 and InceptionV3
models. In case of the cell culture and tissue section datasets, the input images were generated
as: based on the centre of the cells, we cropped out 192x192 pixel-sized images around them,
then resized these images to 224x224 to meet the requirement of the models. For the iWildCam
dataset, we cropped out the inside of the bounding boxes that were drawn around the animals,
then resized these to 224x224 pixel images. For benchmarking, we have not used the fisheye
transformation. For the statistical analysis of the classification accuracy results, two-sample t-
tests were performed (Supplementary Section 4).

Based on previous studies in cellular biology, we expected that taking the cell’s
microenvironment into consideration improves the performance of deep learning classification.
To test this hypothesis, we have introduced a fisheye transformation, as this kind of distortion
considers more pixels from the direct neighbourhood of the object-of-interest than from the
region beyond that (Fig. 1d). We also hypothesised that there should be an optimal
neighbourhood range and focal distance combination with respect to deep learning based
classification accuracy.

Increased classification accuracy on images of cell cultures

In case of the MCF-7 breast cancer cell database, an environmental range of 45 to 724 pixels
(17.56-282.54 um) was defined. For comparison, the average nuclei size in this dataset is 37 pixels
(14.44 pum). Validation results indicate that applying the fisheye transformation improves the
accuracy of both (Resnet50 and InceptionV3) classifiers (Fig. 3a). The best performance was
achieved when we applied a window size of 543 pixels (211.91 um) with a focal length of 130
arbitrary units (where 1 unit corresponds to the size of a pixel), using the ResNet50 model. In this
case, accuracy reached 91.38%, which is 7% better than that achieved when using deep learning
only (84.31%). The highest classification accuracy achieved with fisheye distortion also
outperformed our previous results with classical machine learning approaches?!, where the
maximum accuracy was 90.80% with the support vector machine classifier. Although the deep
learning baseline was higher for InceptionV3 (85.85%) than for ResNet50, the best result we
could achieve with InceptionV3 using distorted images was 89.33% only.
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In order to demonstrate that the increase in classification accuracy is due to the inclusion of the
environment and the fisheye transformation, we performed additional experiments on images
containing only the nucleus, or the nucleus and cytoplasm of the cell (see Supplementary Section
5). Both of these data largely underperformed the proposed fisheye model achieving only 80.33%
in case of nuclei and 82.29% in case of whole cell images.

Fisheye transformation has a major impact on phenotyping tissue sections

In case of the UBC tissue image dataset, we also collected neighbourhood information for a 45
to 724 window size (12.15-195.48 um), where the average nuclei size is 32 pixels (8.64 um), while
for the lung cancer dataset we used a range of 45 to 362 pixels (17.55-141.18 um) with average
nuclei size 39 pixels (15.21 um). For both datasets, we were able to achieve higher classification
accuracy on the fisheye transformed images than with traditional deep learning, irrespective of
whether we used ResNet50 or InceptionV3.

For the UBC dataset, we had previous results using neighbourhood features with classical
machine learning®. Then the maximum of classification accuracy reached 93.37% with MLP
(multilayer perceptron) calculations. In our current study the best performance reached 98.14%,
appearing at a window size of 272 pixels with 150 arbitrary unit focal length using ResNet50 (Fig.
3b). Without using the distorted images, classification accuracy was 94.41% only. Using
InceptionV3, both the deep learning baseline (93.24%) and the highest accuracy achieved on
fisheye distorted images (97.65%) were less favourable than those yielded with ResNet50.

The lung cancer dataset is the only exception where InceptionV3 performed slightly better than
ResNet50 (Fig. 3c). With ResNet50, the highest classification accuracy was 99.36%, while
InceptionV3 yielded a maximum of 99.46% upon incorporating the neighbourhood feature with
a 272 pixel range and using 170 arbitrary units as focal distance. This is more than 2% better than
the results yielded with InceptionV3 on undistorted images (accuracy: 97.25%).
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Figure 3. Comparison of the performance of deep learning networks (ResNet50, InceptionV3)
upon considering different neighbourhood distances. (a) Classification accuracies for the MCF-7
cell culture dataset using ResNet50 (left) and InceptionV3 (right). (b) Classification accuracies for
the urinary bladder cancer tissue image dataset. (c) Classification accuracies for the lung cancer
tissue dataset. (d) Classification accuracies for the iWildCam2020 dataset. Green lines indicate
the baseline yielded with deep learning upon using the original (undistorted) images, while black
lines indicate the results achieved on fisheye distorted images with different f (focal distance)
values (the values are measured in arbitrary units).

Fisheye transformation outperforms image pyramids

In order to benchmark our proposed fisheye transformation against classical multiscale
approaches, we tested the phenotypic classification accuracy on UBC and LC datasets using image
pyramid as an input to the networks. For this purpose, we fed the ResNet50 networks with
images of varying (1/1, 1/2, 1/4) scales in parallel. Accuracy reached 97.9% and 99.1% for the
UBC and lung cancer datasets, respectively, indicating that applying the image pyramid approach
yields better results than traditional deep learning, but performs less favourable compared to
the fisheye distorted solution.

Improved accuracy in case of the iWildCam2020 dataset

We investigated whether the inclusion of the environment of real scenes can improve
classification results. The dataset included photos of animals taken from fixed camera positions.
Because of the perspective, the animals could appear either very small or large in the images. To
handle this sort of discrepancy, we considered the size of the bounding boxes around the animals
as references, instead of using fixed pixel-distances. The baselines for classification accuracy with
traditional deep learning were 95.3% and 95.22% upon using ResNet50 and InceptionV3,
respectively. In case of fisheye-transformed images, classification accuracy reached 95.48% with
ResNet50, when 2.5x the size of bounding boxes were considered as the neighbourhood feature
and focal length was set to 150 units.
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Figure 4. The effect of combining the fisheye transformation with deep learning. (a) Prediction
examples and confusion matrices based on ResNet50 models in the cell culture dataset. Original
image (left), prediction and confusion matrix using the model built on standard images (middle),
prediction and confusion matrix using the model built on fisheye-transformed images, window
size: 543 pixels, focal length: 130 a.u. (right). In the second and fourth images we show with
different colours the predicted phenotypes and in the third and fifth images we show if the
prediction was true (green) or false (red). (b) Prediction examples and confusion matrices of the
best deep learning performance (ResNet50) in the urinary bladder cancer tissue dataset. Original
image (left), prediction and confusion matrix using traditional deep learning (middle) and
considering the cellular neighbourhood with fisheye transformation, window size: 272 pixels, focal
length: 150 a.u. (right). (c) Prediction examples and confusion matrices based on InceptionV3
models in the lung cancer tissue dataset. Original image (left), prediction and confusion matrix
using the model built on undistorted images (middle), prediction and confusion matrix using the
combination of deep-learning and fisheye-distorted images, window size: 272 pixels, focal length:
170 a.u. (right).

Discussion

Here we present a method combining fisheye transformation with deep learning, an extension
to our previous model, incorporating the information obtained from the cellular
microenvironment in phenotypic classification. We demonstrated on MCF-7 cell culture and
Urinary Bladder Cancer datasets, that our method outperforms the approach of using classical
machine learning with single-cell and neighbourhood features. Our results were compared to the
accuracies obtained with deep learning (ResNet50 and InceptionV3), where the input for the net
were non-fish-eye transformed images. For all four datasets we used (a cell culture, two tissue
sections and a dataset containing images of animals), training with fisheye-transformed images
resulted in significantly higher accuracies. Though our method is robust, it is easy and fast to use.
Furthermore, the new fisheye distortion approach is generally applicable to any kind of image
data, where the environment has an influential role, as demonstrated by applying this method
on the iWildCam2020 dataset.

The highest improvement in accuracy appeared when we applied our method on tissue section
images. Generally, microenvironmental differences are visible in tissue histology studies. These
are obvious manifestations of the cooperation and interdependence of different cells, which are
also characterised histoanatomically. For example, the robust adjacency information of
endothelial cells is the presence of a lumen on one side of them, or the presence of well-known
restricted cell types such as connective tissue cells, smooth muscle cells on the other side.

In the case of cell cultures, we also achieved an improvement in phenotyping accuracy. The
explanation relies on two factors. Firstly, homogeneous-looking areas do not consist of
molecularly completely identical cells?*. This is captured by the fisheye transformation, similarly
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as described in case of cancer tissues. Secondly, in homogenous cellular regions the
neighbourhood may provide a statistically more stable and consequently more powerful basis
for decision.

We observed minor improvement in accuracy in the case of iWildCam data. A possible
explanation is that during the recording of this dataset, fixed positioned cameras were used.
Because of this, depending on whether the animals are positioned near or far from the camera,
one can see larger, smaller or no surroundings. Therefore, increasing the window size, it may
occur that we do not gain more information about the environment.

In conclusion, we show that the incorporation of the microenvironment into machine-based
decisions can improve the task of classifying single cells into phenotypic classes. This confirms
the fact that cellular structures are not arbitrarily organised and it is beneficial taking these macro
structures into consideration. We also show that using a non-uniformly sampling of the original
image data for deep learning training and inference is feasible and can further improve accuracy.
A potential extension to the presented approach could rely on the introduction of data
transformer layers that are capable of learning non-linear spatial sampling functions.
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