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Abstract 

Recently we have concluded that image-based features derived from the microenvironment have 

an enormous impact on successfully determining the class of an object1. Here we demonstrate 

that deep learning-based phenotypic analysis of cells with a properly chosen microenvironment-

size provides results comparable to our earlier neighbourhood-based methods that utilise hand-

crafted image features. We hypothesised that treating cells with equal weight, regardless of their 

position within the cellular microenvironment, is suboptimal, and direct neighbours have a larger 

impact on the phenotype of the cell-of-interest than cells in its larger proximity. Hence we 

present a novel approach that (1) considers the fully featured view of the cell-of-interest, (2) 

includes the neighbourhood and (3) gives lesser weight to cells that are far from the cell. To 

achieve this, we present a transformation similar to those characteristic for fisheye cameras. Such 

a transformation satisfies all the above defined criteria, with a fast rate of transform for any 

images. Using the proposed transformation with proper settings we could significantly increase 

the accuracy of single-cell phenotyping, both in case of cell culture and tissue-based microscopy 

images. The range of potential applications of the proposed method goes beyond microscopy, as 

we present improved results on the iWildCam 2020 dataset containing images of wild animals. 
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 Introduction 

All living entities adjust to their environment, manifested as visually observable morphological 

differences both at the macro- and microscales. Therefore, incorporating microenvironmental 

information into object classification may have an enormous impact on the accuracy of 

evaluation1. This phenomenon may be of particular interest when the phenotypes of cells are 

determined. 

The modern technological advancements in microscopy, sequential hybridization2,3, and mass 

spectrometry4 have paved the way to evaluate cellular structures at high spatial and temporal 

resolution. These measurements generate large datasets, hence automated computational 

methods are required to obtain objective information from these images5,6. Utilising the inherent 

potentials of automated image analysis offers several advantages: it eliminates operator bias, 

provides quantitative data, and identifies visual characteristics that would otherwise go 

undetected.7–9 

Various computer vision and classical machine learning techniques have been used10 to support 

researchers with tasks like image exploration (e.g. to find changes in cell structure in an imaging-

based drug screen11), image classification (e.g. to determine the distribution of different proteins 

within cells12), image segmentation (e.g. identifying single cells in images13), or object tracking14. 

Despite the acknowledged capabilities of these techniques, deep learning-based analyses often 

perform more efficiently in recognizing biological patterns based on the pixels of images15,16. 

Deep learning has yielded fascinating results in solving biology-related issues17. The phenotype 

of a cell is determined by various cellular processes and factors (including the stochasticity of 

gene expression, as well as a variety of proteomes and metabolomes4) that result in a particular 

morphological arrangement. Deep learning has enabled the exploration of factors like replicative 

age, organelle inheritance and response to stress18. It has been demonstrated to perform 

comparable to human pathologists upon classifying whole-slide images into two categories of 

cancerous and normal lung tissues (it was even able to predict the ten most commonly mutated 

genes)19. Another frequent challenge in cell biology lies in identifying various proteins and 

determining their locations within the cells. Numerous models have been developed20,21 to 

automatically identify subcellular localization patterns, based on the Human Protein Atlas22 

which contains acquisitions of 12,003 human proteins at the single-cell level. 

Single cell heterogeneity within cell populations is also influenced by the cell’s 

microenvironment23,24. Several studies have demonstrated that the peculiarities of cellular 

neighbourhood can be exceptionally relevant when investigating the collective organisation of 

cells in a variety of settings. Snijder et al. have reported that in a cell culture context one may 

predict the burden of viral infection at the single cell level, solely based on each cell’s 
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microenvironment24. In a study of competitive interactions between wild-type Madin-Darby 

canine kidney (MDCK) cells and cells depleted of the polarity protein scribble, Bove et al. found 

that the probability of cell division is significantly higher for MDCK cells when their 

neighbourhood is mostly populated by scribble cells25. Several other examples of the importance 

of cellular neighbourhood are also published in literature. For instance, neighbouring epidermal 

stem cells affect each other (differentiation of a single stem cell is followed by division of a direct 

neighbour)26; ligand-producing hair cell precursors in the inner ear are smaller than their 

neighbours27. 

In a previous work our group has also concluded that incorporating the features of the 

microenvironment of cells improves phenotype classification in high content screens1. In that 

study, we extracted commonly used cell-based features for every segmented cell. The centre of 

mass was measured for each segmented area and was used as a reference point for distance 

calculation. We used two different approaches to define cellular neighbourhoods: the K-nearest 

neighbours (KNN) and the N-distance methods (Fig. 1a). Neighbourhood features were derived 

from the mean, median, standard deviation, minimum, and maximum statistics of the previously 

calculated cellular features. Then, we used these neighbourhood features to classify cells and we 

got the best result using Multi-layer Perceptron classifier. Based on these findings, we 

hypothesised that it is worth using environmental data for deep learning phenotypic profiling. 

Recently, fisheye cameras have received significant interest from both technical professionals 

and the public in general. Fisheye lenses are ultra-wide angle lenses capable of taking wide 

panoramic or hemispheric images, however, they incorporate a significant optical distortion into 

the process. Fisheye lenses utilise specific mapping (stereographic, equidistant, equisolid angle, 

orthogonal) which lands the images a characteristic convex non-rectilinear appearance28. These 

specific lenses have a wide range of applications due to their ability to provide rich visual 

information, including the generation of augmented or virtual reality29, improving the 

performance of intelligent robot vision systems30, and simplifying the complexity of surveillance 

systems31. Various correction models have been proposed to rectify the distortion of fisheye 

lenses32–34. 

In this paper we introduce a novel way of representing images to deep learning-based image 

classification networks. The basic idea is the following: the original image includes the object of 

interest (which is located in the middle of the image), as well as its microenvironment of a 

predefined range. The images are then transformed by a fisheye-like spatial sampling method 

that collects more pixels from the close proximity of the object-of-interest, and the resolution 

decreases for larger proximity (Fig. 1d). Our results indicate that the proposed transformation 

highly outperforms classical machine learning methods and deep learning-based classifiers 

benchmarked on cell cultures, scans of cancerous tissues and real life images. We remark that 
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our fisheye transform method provides improved classification accuracy, as demonstrated by 

higher accuracy scores on several test datasets, compared to relying on feeding the network with 

multi-scale images in parallel (i.e. an image pyramid). Also, the presented fisheye transformation 

has the advantage that it can be incorporated into the network as a layer35, although technically 

it is more resource intensive when large images are fed into the network. 

 

Materials and methods 

Datasets 

MCF-7 High-Content-Screening Dataset 

We used a publicly available breast cancer cell line (MCF-7) dataset that included images of cells 

treated with 113 different small molecules at eight different concentrations for 24 hours 

(available online at the Broad Bioimage Benchmark Collection 

https://www.broadinstitute.org/bbbc/BBBC021/). In brief, the MCF-7 cell line was treated with 

a variety of targeted anticancer agents and standard cytotoxic compounds, resulting in a wide 

range of visible and subtle phenotypic changes at the cellular level. After 24 hours of incubation, 

the cells were fixed and stained for DNA, F-actin and B-tubulin before being scanned by 

fluorescence microscopy. Images were collected from 55 microtiter plates of 96-well format. The 

dataset contains more than 39,000 images of almost 2 million cells36. Piccinini and colleagues37 

published a single-cell phenotypic annotation method which we have adopted in our study. Nine 

phenotypic classes (i.e. abundant, rounded, elongated, multinucleated, bundled microtubule, 

peripheral cytoskeleton, punctate actin foci, decreased cell size and fragmented nucleus) and a 

debris class were identified (Fig. 2a), and approximately 1,500 cells were labelled. 

 

Urinary bladder cancer and lung cancer tissue sections 

Images of urinary bladder cancer (UBC) and lung cancer (LC) tissues served as our second and 

third test datasets (Fig. 2b,c). The slides of urinary and lung cancer tissues were stained with 

hematoxylin-eosin (HE) in standard histopathological procedures. Formalin-fixed and paraffin-

embedded tissue sections were cut into 4 µm thick slices, and were stained using a Tissue-Tek 

DRS 2000E-D2 Slide Stainer (Sakura Finetek Japan) according to the manufacturer’s instructions. 

Using the AxioVision SE64Rel.4.9.1.1 (Carl Zeiss Meditec AG, Germany) software, images were 

captured with an Axio Imager Z.1 (Carl Zeiss Meditec AG, Germany) microscope equipped with 

an EC Plan-NEOFLUOAR 20x/0.5NA lens.  
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For the analysis of the bladder cancer tissue dataset, containing 38 images, we used the 

annotation presented in our previous neighbourhood study1. We distinguished eight phenotypic 

classes (cancer cell, lumen cell, endothelial cell, stroma cell, fibroblast-fibrocyte, lymphocyte-

plasma cell, smooth muscle cell and lipocyte), and labelled 1,200 cells. For the lung cancer 

dataset, we differentiated 10 phenotypic classes (blood cell, cancer cell, cartilage, endothelial 

cell, epithelium, fibroblast-fibrocyte, gland, lymphocyte-plasma cell, muscle cell and stroma cell), 

and labelled 5,000 cells. 

 

iWildCam 2020 dataset 

The iWildCam 2020 dataset is derived from the iWildCam 2020 competition organised by Kaggle, 

where the competition task focused on classifying animal species. Data were primarily provided 

by the Wildlife Conservation Society, iNaturalist, the U.S. Geological Survey, and Microsoft AI for 

Earth. The training dataset of the competition consists of 217,959 images taken at 441 locations. 

In total, 267 classes, containing a highly unbalanced number of entities, were defined. Fig. 2d 

displays the 10 classes that contain most of the elements (excluding the ‘empty’ class, where no 

animals are visible in the image). 

Segmentation 

CellProfiler 2.2.0 was used to segment images from the high-content-screening dataset of drug-

treated MCF-7 samples. The adaptive Otsu method was used to detect nuclei. Cells smaller than 

5 µm and nuclei contacting the borders of the images were eliminated. Adaptive thresholding 

was used to extract the cytoplasm of cells, using watershed separation based on the nuclei as 

seed points. 

For the segmentation of the tissue datasets and for the annotation of the MCF-7, UBC and LC 

datasets we used an image analysis and machine learning software named BIAS38, which was 

developed by Single-Cell Technologies Ltd. (Szeged, Hungary). 

The SLIC superpixel segmentation technique39 was employed to segment urinary bladder cancer 

and lung cancer section images. We set 35 pixel as superpixel size, and forced connectivity 

between superpixels when a superpixel included less than 25 pixels. We have previously 

demonstrated that this superpixel size works best to represent the cellular structure of tissues1. 

During the annotation process of these three (MCF-7, urinary bladder and lung cancer) datasets, 

we saved the x-y coordinates of the centre of the nuclei/superpixels, and used these coordinates 

as inputs for the fisheye transformation. 
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For the iWildCam dataset, the organisers of the competition provided a general animal detection 

model (https://github.com/microsoft/CameraTraps/blob/master/megadetector.md) called 

MegaDetector, along with an annotation file that contained one label per image. When more 

than one animal were visible in the image, we selected only the detection with the highest 

accuracy, and gave the label to it. MegaDetector works with bounding boxes. In the present 

study, we used the x-y coordinates of the centre of the bounding boxes as inputs for the fisheye 

transformation. 

 

Fisheye transformation 

Several types of ultra-wide angle lenses are available, and all are associated with a significant 

visual distortion. In our study we evaluated an algorithm that artificially reproduces the same 

kind of distortion which is inherent in images taken with ultra-wide angle lenses. We analysed 

the relevance of neighbourhood features to determine the most optimal distance to be 

considered for the highest accuracy of classification.  

The first parameter we optimised was the range around our object-of-interest (in an optical 

manner, this is object height, later referred as ‘window size’, see Fig. 1c). For the MCF-7, UBC and 

LC datasets, as we have mentioned before, we saved the x-y coordinates of the centre of the 

nuclei/superpixels and then we used the selected pixel range for the fisheye transformation 

based on these points. In case of the iWildCam dataset, we cropped out areas of interest from 

the original images for our fisheye transformation in four different sizes. We took the size of the 

original bounding box and multiplied it with 1.0, 1.5, 2.0 and 2.5. When we multiplied the original 

size with 1.0, we cropped the images with the same size for the baseline images and for the 

fisheye-transformation. In all of the other cases, we took a bigger size of the environment into 

account. 

The second modifiable parameter was focal distance, which essentially defines the strength of 

the distortion. Contrary to our original neighbourhood idea1, information acquisition was not cell-

based, but pixel-based (Fig. 1a,d). The third parameter was the mapping function, which originally 

(in cameras) is responsible for transforming a part of a spherical object to a 2D plane. In the 

present study we chose the ‘equidistant’ function -as it is one of the most popular mapping 

functions used in cameras - to test our hypothesis on the significance of neighbourhood regarding 

classification accuracy. In all cases we set the object distance (the distance between the original 

image and the lenses) in a way to eliminate scaling due to fisheye distortion. For more 

information about the transformation and examples of the transformed images, see 

Supplementary Section 1 and Supplementary Figure S1-S4. 
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Figure 1. (a) Neighbourhood with classical machine learning1. The K-nearest neighbours (KNN) 

and N-distance methods, illustrated in a schematic figure and in real cell culture and tissue section 

scenarios (K=5, cell culture: n=19.51 μm, tissue sections: n=13.5 μm). (b) Schematic figure of 

phenotypic classification with deep learning. (c) Illustration of the optical parameters for the 

fisheye transformation. (d) The difference between classical and fisheye pixel sampling: in the 

classic case we select pixels evenly, while in case of fisheye, sampling is dense near to the object-

of-interest, and less dense as the distance from the object increases. (e) Examples of the fisheye 

transformation 

 

Deep learning-based object classification 

For image classification we used Matlab R2019b and its Deep Learning Toolbox (version 13.0). 

This toolbox provides a framework to design or implement networks, pre-trained models, and 

apps. Two networks pre-trained on ImageNet, ResNet50 and InceptionV3 were utilised for 

transfer learning. Our decision for the models (i.e. using ResNet50 and InceptionV3), was based 

on the accuracy, speed and size of the networks. Particular attention was paid to avoid that an 

annotated cell is included in the training dataset and appears in a validation image as a neighbour 
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afterwards. Thus, to prevent a potentially positive influence of evaluation, both the MCF-7 and 

UBC datasets were processed with pre-defined train and validation folders at the image level, 

instead of the cell level. For the LC and iWildCam datasets this was not an issue, as these were 

created to contain only one annotated object per image.  The latter two datasets were 

randomised and split to a training and a test set, thus 80% was used for training and 20% was 

used for testing the methods. Three independent trials were run for each dataset. 

Data augmentation has a seminal role in improving classification accuracy. We applied the 

following standard geometry transformations on our training datasets: reflection in the left-right 

and a top-bottom directions, rotation, horizontal and vertical scaling. It is important to mention 

that we have not used any transformation that spatially moves the cell-of-interest away from the 

centre of the image because that would have consequences to the fisheye transformation. 

 

 

Figure 2. Distinguished classes. (a) Cells of nine different phenotype classes identified in the 

MCF-7 High-Content-Screening Dataset. (b) Eight phenotypic classes in the UBC tissue image 

dataset. (c) Ten phenotypic classes in the LC tissue image dataset. (d) The ten most common 

animal species in the iWildCam2020 dataset. 
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Results 

We evaluated the performance of a fisheye-like sampling on several image datasets, aiming to 

improve classification accuracy by deep learning-based image classification networks. We 

compared two convolutional neural network-based classifiers using ResNet50 and InceptionV3 

backbones, as well as the relevance of the extent of neighbourhood and the focal distance of 

fisheye transformation. We benchmarked what combination of these parameters produce the 

best results. 

The baselines we compared our method were also calculated with ResNet50 and InceptionV3 

models. In case of the cell culture and tissue section datasets, the input images were generated 

as: based on the centre of the cells, we cropped out 192x192 pixel-sized images around them, 

then resized these images to 224x224 to meet the requirement of the models. For the iWildCam 

dataset, we cropped out the inside of the bounding boxes that were drawn around the animals, 

then resized these to 224x224 pixel images. For benchmarking, we have not used the fisheye 

transformation. For the statistical analysis of the classification accuracy results, two-sample t-

tests were performed (Supplementary Section 4). 

Based on previous studies in cellular biology, we expected that taking the cell’s 

microenvironment into consideration improves the performance of deep learning classification. 

To test this hypothesis, we have introduced a fisheye transformation, as this kind of distortion 

considers more pixels from the direct neighbourhood of the object-of-interest than from the 

region beyond that (Fig. 1d). We also hypothesised that there should be an optimal 

neighbourhood range and focal distance combination with respect to deep learning based 

classification accuracy. 

Increased classification accuracy on images of cell cultures 

In case of the MCF-7 breast cancer cell database, an environmental range of 45 to 724 pixels 

(17.56-282.54 µm) was defined. For comparison, the average nuclei size in this dataset is 37 pixels 

(14.44 µm). Validation results indicate that applying the fisheye transformation improves the 

accuracy of both (Resnet50 and InceptionV3) classifiers (Fig. 3a). The best performance was 

achieved when we applied a window size of 543 pixels (211.91 µm) with a focal length of 130 

arbitrary units (where 1 unit corresponds to the size of a pixel), using the ResNet50 model. In this 

case, accuracy reached 91.38%, which is 7% better than that achieved when using deep learning 

only (84.31%). The highest classification accuracy achieved with fisheye distortion also 

outperformed our previous results with classical machine learning approaches1, where the 

maximum accuracy was 90.80% with the support vector machine classifier. Although the deep 

learning baseline was higher for InceptionV3 (85.85%) than for ResNet50, the best result we 

could achieve with InceptionV3 using distorted images was 89.33% only.  
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In order to demonstrate that the increase in classification accuracy is due to the inclusion of the 

environment and the fisheye transformation, we performed additional experiments on images 

containing only the nucleus, or the nucleus and cytoplasm of the cell (see Supplementary Section 

5). Both of these data largely underperformed the proposed fisheye model achieving only 80.33% 

in case of nuclei and 82.29% in case of whole cell images. 

Fisheye transformation has a major impact on phenotyping tissue sections 

In case of the UBC tissue image dataset, we also collected neighbourhood information for a 45 

to 724 window size (12.15-195.48 µm), where the average nuclei size is 32 pixels (8.64 µm), while 

for the lung cancer dataset we used a range of 45 to 362 pixels (17.55-141.18 µm) with average 

nuclei size 39 pixels (15.21 µm). For both datasets, we were able to achieve higher classification 

accuracy on the fisheye transformed images than with traditional deep learning, irrespective of 

whether we used ResNet50 or InceptionV3. 

For the UBC dataset, we had previous results using neighbourhood features with classical 

machine learning1. Then the maximum of classification accuracy reached 93.37% with MLP 

(multilayer perceptron) calculations. In our current study the best performance reached 98.14%, 

appearing at a window size of 272 pixels with 150 arbitrary unit focal length using ResNet50 (Fig. 

3b). Without using the distorted images, classification accuracy was 94.41% only. Using 

InceptionV3, both the deep learning baseline (93.24%) and the highest accuracy achieved on 

fisheye distorted images (97.65%) were less favourable than those yielded with ResNet50. 

The lung cancer dataset is the only exception where InceptionV3 performed slightly better than 

ResNet50 (Fig. 3c). With ResNet50, the highest classification accuracy was 99.36%, while 

InceptionV3 yielded a maximum of 99.46% upon incorporating the neighbourhood feature with 

a 272 pixel range and using 170 arbitrary units as focal distance. This is more than 2% better than 

the results yielded with InceptionV3 on undistorted images (accuracy: 97.25%). 
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Figure 3. Comparison of the performance of deep learning networks (ResNet50, InceptionV3) 

upon considering different neighbourhood distances. (a) Classification accuracies for the MCF-7 

cell culture dataset using ResNet50 (left) and InceptionV3 (right). (b) Classification accuracies for 

the urinary bladder cancer tissue image dataset. (c) Classification accuracies for the lung cancer 

tissue dataset. (d) Classification accuracies for the iWildCam2020 dataset. Green lines indicate 

the baseline yielded with deep learning upon using the original (undistorted) images, while black 

lines indicate the results achieved on fisheye distorted images with different f (focal distance) 

values (the values are measured in arbitrary units). 

 

Fisheye transformation outperforms image pyramids 

In order to benchmark our proposed fisheye transformation against classical multiscale 

approaches, we tested the phenotypic classification accuracy on UBC and LC datasets using image 

pyramid as an input to the networks. For this purpose, we fed the ResNet50 networks with 

images of varying (1/1, 1/2, 1/4) scales in parallel.  Accuracy reached 97.9% and 99.1% for the 

UBC and lung cancer datasets, respectively, indicating that applying the image pyramid approach 

yields better results than traditional deep learning, but performs less favourable compared to 

the fisheye distorted solution. 

Improved accuracy in case of the iWildCam2020 dataset 

We investigated whether the inclusion of the environment of real scenes can improve 

classification results. The dataset included photos of animals taken from fixed camera positions. 

Because of the perspective, the animals could appear either very small or large in the images. To 

handle this sort of discrepancy, we considered the size of the bounding boxes around the animals 

as references, instead of using fixed pixel-distances. The baselines for classification accuracy with 

traditional deep learning were 95.3% and 95.22% upon using ResNet50 and InceptionV3, 

respectively. In case of fisheye-transformed images, classification accuracy reached 95.48% with 

ResNet50, when 2.5× the size of bounding boxes were considered as the neighbourhood feature 

and focal length was set to 150 units. 
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Figure 4. The effect of combining the fisheye transformation with deep learning. (a) Prediction 

examples and confusion matrices based on ResNet50 models in the cell culture dataset. Original 

image (left), prediction and confusion matrix using the model built on standard images (middle), 

prediction and confusion matrix using the model built on fisheye-transformed images, window 

size: 543 pixels, focal length: 130 a.u. (right). In the second and fourth images we show with 

different colours the predicted phenotypes and in the third and fifth images we show if the 

prediction was true (green) or false (red). (b) Prediction examples and confusion matrices of the 

best deep learning performance (ResNet50) in the urinary bladder cancer tissue dataset. Original 

image (left), prediction and confusion matrix using traditional deep learning (middle) and 

considering the cellular neighbourhood with fisheye transformation, window size: 272 pixels, focal 

length: 150 a.u. (right). (c) Prediction examples and confusion matrices based on InceptionV3 

models in the lung cancer tissue dataset. Original image (left), prediction and confusion matrix 

using the model built on undistorted images (middle), prediction and confusion matrix using the 

combination of deep-learning and fisheye-distorted images, window size: 272 pixels, focal length: 

170 a.u. (right). 

 

Discussion 

Here we present a method combining fisheye transformation with deep learning, an extension 

to our previous model, incorporating the information obtained from the cellular 

microenvironment in phenotypic classification. We demonstrated on MCF-7 cell culture and 

Urinary Bladder Cancer datasets, that our method outperforms the approach of using classical 

machine learning with single-cell and neighbourhood features. Our results were compared to the 

accuracies obtained with deep learning (ResNet50 and InceptionV3), where the input for the net 

were non-fish-eye transformed images. For all four datasets we used (a cell culture, two tissue 

sections and a dataset containing images of animals), training with fisheye-transformed images 

resulted in significantly higher accuracies. Though our method is robust, it is easy and fast to use. 

Furthermore, the new fisheye distortion approach is generally applicable to any kind of image 

data, where the environment has an influential role, as demonstrated by applying this method 

on the iWildCam2020 dataset.  

The highest improvement in accuracy appeared when we applied our method on tissue section 

images. Generally, microenvironmental differences are visible in tissue histology studies. These 

are obvious manifestations of the cooperation and interdependence of different cells, which are 

also characterised histoanatomically. For example, the robust adjacency information of 

endothelial cells is the presence of a lumen on one side of them, or the presence of well-known 

restricted cell types such as connective tissue cells, smooth muscle cells on the other side. 

In the case of cell cultures, we also achieved an improvement in phenotyping accuracy. The 

explanation relies on two factors. Firstly, homogeneous-looking areas do not consist of 

molecularly completely identical cells24. This is captured by the fisheye transformation, similarly 
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as described in case of cancer tissues. Secondly, in homogenous cellular regions the 

neighbourhood may provide a statistically more stable and consequently more powerful basis 

for decision. 

We observed minor improvement in accuracy in the case of iWildCam data. A possible 

explanation is that during the recording of this dataset, fixed positioned cameras were used. 

Because of this, depending on whether the animals are positioned near or far from the camera, 

one can see larger, smaller or no surroundings. Therefore, increasing the window size, it may 

occur that we do not gain more information about the environment. 

In conclusion, we show that the incorporation of the microenvironment into machine-based 

decisions can improve the task of classifying single cells into phenotypic classes. This confirms 

the fact that cellular structures are not arbitrarily organised and it is beneficial taking these macro 

structures into consideration. We also show that using a non-uniformly sampling of the original 

image data for deep learning training and inference is feasible and can further improve accuracy. 

A potential extension to the presented approach could rely on the introduction of data 

transformer layers that are capable of learning non-linear spatial sampling functions.   
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