

1 Basins of attraction of microbiome structure 2 and soil ecosystem functions

3

4 Hiroaki Fujita¹, Shigenobu Yoshida², Kenta Suzuki^{3,4} and Hirokazu Toju^{1,5,6†}

5

6 ¹Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan

7 ²Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba,
8 Ibaraki 305-8666, Japan

9 ³Integrated Bioresource Information Division, BioResource Research Center, RIKEN, Tsukuba,
10 Ibaraki 305-0074, Japan

11 ⁴Institute of Multidisciplinary Sciences, Yokohama National University. Yokohama, Kanagawa
12 240-8501, Japan.

13 ⁵Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University,
14 Kyoto 606-8501, Japan

15 ⁶Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies,
16 Kyoto University, Kyoto 606-8501, Japan

17

18 **For correspondence:**

19 toju.hirokazu.4c@kyoto-u.ac.jp

20

21 **Competing interest:**

22 HT is the founder and director of Sunlit Seedlings Ltd. The other authors declare that the research
23 was conducted in the absence of any commercial or financial relationships that could be
24 construed as a potential conflict of interest.

25

26 **Funding**

27 This work was financially supported by JST PRESTO (JPMJPR16Q6), JST FOREST
28 (JPMJFR2048), Human Frontier Science Program (RGP0029/2019), JSPS Grant-in-Aid for
29 Scientific Research (20K20586), NEDO Moonshot Research and Development Program
30 (JPNP18016), and JST CREST (JPMJCR23N5) to H.T., JSPS Grant-in-Aid for Scientific
31 Research (20K06820 and 20H03010) to K.S., and JSPS Fellowship to H.F.

32

33

34 **Abstract**

35 Theory predicts that biological communities can have multiple basins of attraction in terms of
36 their species/taxonomic compositions. The presence of such basins of community structure has
37 been examined in classic empirical studies on forest–savanna transitions and those on
38 eutrophication in freshwater lakes. Nonetheless, it remains a major challenge to extend the
39 investigations of multistability to species-rich microbial communities. By targeting soil
40 microbiomes, we infer the stability landscapes of community structure based on the concepts of
41 statistical physics. Our analysis on the compiled dataset involving 11 archaeal, 332 bacterial, and
42 240 fungal families detected from > 1,500 agroecosystem soil samples suggested that both
43 prokaryotic and fungal community compositions could be classified into several basins of
44 attraction. We also found that the basins differed greatly in their associations with crop disease
45 prevalence in agroecosystems. A further analysis highlighted microbial taxa potentially playing
46 key roles in transitions between basins with different ecosystem-scale functions. The statistical
47 framework commonly applicable to diverse microbial and non-microbial communities will
48 reorganize our understanding of relationship among community structure, stability, and functions.

49

50

51 **Introduction**

52 The idea that the state space of biological community structure can comprise multiple basins of
53 attraction have inspired both empirical and theoretical ecologists since the late 1960s (Beisner et
54 al., 2003; May, 1977; Scheffer et al., 1993). The concept of multistability has been examined in
55 aquatic and terrestrial ecosystems (Scheffer and Carpenter, 2003; Schröder et al., 2005; Suding
56 and Hobbs, 2009). Community structure in shallow lakes, for example, is known to show two
57 discrete states depending on nutrient (phosphorus) concentrations as represented by the bistability
58 of charophyte densities (Ibelings et al., 2007; Scheffer et al., 1993; Smith and Schindler, 2009).
59 Likewise, worldwide inventories of tree cover have shown that forest and savanna vegetation
60 types possibly represent different basins of attraction (Hirota et al., 2011; Staver et al., 2011b,
61 2011a). Those studies have further shown that ecosystem functions (e.g., fishery, agricultural, and
62 forestry production) can differ greatly between such basins of biological community structure
63 (Gunderson, 2000; Scheffer et al., 2001, 1993; Scheffer and Carpenter, 2003). Consequently,
64 understanding how structure, stability, and biological functions are organized in real communities
65 and ecosystems has been one of the major goals in ecology.

66 While classic studies targeting freshwater and terrestrial biomes have explored basins of
67 attraction based on simple characterization of community states (e.g., tree cover percentages),
68 recent technical advances in microbial community (microbiome) research have come to provide
69 opportunities for deepening our knowledge of biological community stability (Amor et al., 2020;
70 Costea et al., 2017; Faust et al., 2015; Shaw et al., 2019; Toju et al., 2018; Zaneveld et al., 2017).
71 Based on amplicon and shotgun sequencing technologies, large datasets of microbial
72 species/taxonomic compositions have been made available, providing a basis for exploring
73 reproducible states in microbiome community structure (Amor et al., 2020; H Fujita et al., 2023;
74 Hayashi et al., 2024). Such high-throughput DNA sequencing studies in medicine, for example,
75 have shown that human individuals can be classified into three or four semi-discrete clusters in
76 terms of their intestinal microbiome compositions (Arumugam et al., 2011; Wu et al., 2011) [see
77 also (Jeffery et al., 2012; Knights et al., 2014)]. Intriguingly, these alternative gut microbiomes
78 (“enterotypes”) differ in their associations with human disease such as type II diabetes and
79 Crohn’s disease (Costea et al., 2017). In addition to those studies on animal-associated
80 microbiomes (Arumugam et al., 2011; Moeller et al., 2012; Yajima et al., 2023), studies on plant-
81 associated microbiomes have started to reorganize our recognition of how multistability of
82 phyllosphere/rhizosphere microbiome structure is associated with ecosystem-scale processes and

83 functions (Toju et al., 2018, 2016). Because hundreds or thousands of replicate community
84 samples are available in such microbiome studies, it is now possible to discuss potential
85 relationship between community structure and ecosystem functions based on statistical signs of
86 the presence of multiple basins (and background attractors).

87 In theoretical ecology, stability of community states (taxonomic or species compositions) is
88 often discussed in the framework of stability landscapes (Beisner et al., 2003; Hastings et al.,
89 2018; Lewontin, 1969; Scheffer and Carpenter, 2003; Suzuki et al., 2021). On the landscape
90 representing stability/instability of community structure, basins of attraction are split by “tipping
91 points” representing unstable equilibria (Beisner et al., 2003; Scheffer et al., 2001; Scheffer and
92 Carpenter, 2003; Suzuki et al., 2021) (Figure 1). As these basins differ in the biological functions
93 of constituent communities, stable and highly functional community states can be explored within
94 the stability landscapes. With the application of a recently proposed mathematical approach
95 developed based on statistical physics (Becker and Karplus, 1997; Watanabe et al., 2014), it is
96 now possible to infer “energy landscapes”, which represent structure of stability landscapes, from
97 empirical datasets of ecological communities (Dakos and Kéfi, 2022; Sánchez-Pinillos et al.,
98 2024; Suzuki et al., 2021). The statistical framework allows us to explore the probabilities of
99 community compositions within the “assembly graphs” (Coyte et al., 2021; Serván and Allesina,
100 2021) representing paths of possible community assembly (H Fujita et al., 2023; Suzuki et al.,
101 2021) (Figure 1). Although hundreds or thousands of community compositional data points are
102 required to apply the statistical approach (H Fujita et al., 2023; Suzuki et al., 2021), such energy
103 landscape analyses will allow us to define key features of stable and highly functional
104 microbiome states out of numerous possible combinations of microbial species or taxa. Despite
105 the potential for systematically profiling the relationship among community structure, stability,
106 and functions based on massive community datasets, the energy landscape analysis has been
107 applied only to a few microbial community datasets (H Fujita et al., 2023; Suzuki et al., 2021).

108 We here apply the emerging statistical framework to soil microbiomes, which often show
109 highest levels of structural diversity in nature. We compile a cropland soil microbiome dataset
110 consisting of > 1,500 sampling positions across the Japan Archipelago (Fujita et al., 2024). With
111 the massive dataset, we infer the compositional stability of prokaryotic and fungal communities
112 based on maximum entropy models of the energy landscape analysis (Suzuki et al., 2021). We
113 then examine whether the basins of attraction of soil microbiomes can differ in ecosystem-scale
114 functions by focusing on potential relationship between soil microbial compositions and the

115 prevalence of crop plant disease. We also explore key microbial taxa whose abundance critically
116 divide the basins representing favorable and unfavorable ecosystem functions. The results of the
117 energy landscape analysis are further used to infer tipping points splitting the inferred basins.
118 Overall, this study illustrates how we can integrate the information of community structure,
119 stability, and functions based on a statistical platform commonly applicable to diverse microbial
120 and non-microbial communities.

121

122 **Methods**

123 **Dataset compilation**

124 We compiled a publicly available dataset of cropland soil microbiomes (DDBJ accession:
125 DRA015491; Figure 2) with its metadata of the samples (Fujita et al., 2024). In the previous
126 study reporting the data (Fujita et al., 2024), 2,903 bulk soil samples collected from the field of
127 19 crop plant species (apple, broccoli, cabbage, celery, Chinese cabbage, eggplant, ginger,
128 komatsuna, lettuce, onion, potato, radish, rice, satsuma mandarin, soybean, spinach, strawberry,
129 sweet corn, tomato) across the Japan Archipelago from January 23, 2006 to July 28, 2014
130 (latitudes of the sampling positions: 26.1–42.8 °N) were subjected to the amplicon sequencing
131 analysis of the prokaryotic 16S rRNA region and the fungal internal transcribed spacer 1 (ITS1)
132 region (Fujita et al., 2024). The information of dry soil pH, electrical conductivity,
133 carbon/nitrogen (C/N) ratio, and available phosphorous concentration was available for 2,830,
134 2,610, 2,346, and 2,249 samples, respectively. Likewise, the information of crop plant disease
135 [the percentage of diseased plants or disease severity index (Chiang et al., 2017)] was available
136 for 1,471 samples (Fujita et al., 2024). The plant pathogens surveyed were *Colletotrichum*
137 *gloeosporioides* on the strawberry, *Fusarium oxysporum* on the celery, the lettuce, the strawberry,
138 and the tomato, *Phytophthora sojae* on the soybean, *Plasmoidiophora brassicae* on Cruciferae
139 plants, *Pyrenopeziza lycopersici* on the tomato, *Pythium myriotylum* on the ginger, *Ralstonia*
140 *solanacearum* on the eggplant and the tomato, and *Verticillium* spp. on Chinese cabbage (Fujita
141 et al., 2024). After a series of quality filtering, prokaryotic and fungal community data were
142 available for 2,318 and 2,186 samples, respectively. In total, 579 archaeal amplicon sequence
143 variants (ASVs) representing 11 families, 26,640 bacterial ASVs representing 332 families, and
144 6,306 fungal ASVs representing 240 families were detected (Fujita et al., 2024) (Figures 2;
145 Figure 2–figure supplement 1).

146

147 **Community structure along environmental gradients**

148 We first inspected how prokaryotic and fungal community structure varied along environmental
149 gradients. For each data matrix representing the family-level compositions of prokaryotes or
150 fungi, a principal coordinate analysis (PCoA) was performed based on Bray-Curtis β -diversity.
151 The PCoA1 and PCoA2 scores were then plotted, respectively, along the axes of soil
152 environmental factors. Specifically, the axes of the environmental factors were defined based on
153 a principal component analysis (PCA) of soil pH, electrical conductivity, C/N ratio, and available
154 phosphorous concentration. In total, 1,771 and 1,664 samples for which the information of both
155 community structure and all the four environmental variables was available were included in the
156 analyses of prokaryotes and fungi, respectively. For each plot representing relationship between
157 environmental conditions and community structure, the density of data points was visualized with
158 the ggplot2 3.3.6 package (Wickham, 2011) of R v.4.1.2 (R Core Team, 2020).

159

160 **Energy landscape analysis**

161 We examined the stability landscape of soil microbiome structure based on the framework of an
162 energy landscape analysis (H Fujita et al., 2023; Suzuki et al., 2021; Watanabe et al., 2014)
163 (tutorials of energy landscape analyses are available at <https://github.com/kecosz/rELA>). In the
164 framework, the term “energy” is defined by the following equations based on statistical physics
165 (Suzuki et al., 2021; Watanabe et al., 2014). Within the “assembly graphs” representing paths of
166 community dynamics (Coyte et al., 2021; Serván and Allesina, 2021), probabilities of observing
167 specific community compositions can be explored as detailed previously (Suzuki et al., 2021). In
168 brief, probabilities of community states $p(\vec{\sigma}^{(k)})$ are given by

169
$$P(\vec{\sigma}^{(k)} | \varepsilon) = e^{-E(\vec{\sigma}^{(k)}, \varepsilon)} / Z \quad [\text{eq. 1}]$$

170
$$Z = \sum_{i=1}^{2^S} e^{-E(\vec{\sigma}^{(i)}, \varepsilon)} \quad [\text{eq. 2}],$$

171 where $\vec{\sigma}^{(k)} = (\sigma_1^{(k)}, \sigma_2^{(k)}, \dots, \sigma_S^{(k)})$ is a community state vector of k -th community state and S is
172 the total number of taxa (e.g., ASVs, species, genera, or families) examined. $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_M)$
173 is an array of continuous values representing environmental factors (e.g., soil pH and electrical
174 conductivity) and M is the total number of environmental parameters. $\sigma_i^{(k)}$ is a binary variable

175 that represents presence (1) or absence (0) of taxon i : i.e., there are a total of 2^S community
176 states. As the exploration of the 2^S community states were computationally intensive, we coded
177 community states at the family-level taxonomic compositions. Specifically, for each sample,
178 families whose relative abundance exceeds a certain threshold value (threshold for binarization)
179 were coded as 1, while the remaining minor families were coded as 0. Subsequently, families
180 whose occurrence ratios (i.e., the proportions of samples in which target families were coded as
181 1) were less than a certain threshold (occurrence threshold) were excluded from the dataset.
182 Likewise, families that appeared in almost all samples (1 – occurrence threshold) were excluded.
183 Note that without such thinning of input data, the dimensions of community states are too high to
184 be explored even using supercomputers. Therefore, exclusion of the taxa that contribute little to
185 the classification of community states (i.e., taxa appearing only in a small fraction of samples or
186 those appearing in most samples) is inevitable in the energy landscape analysis. Through
187 intensive preliminary computational runs with various combinations of binarization and
188 occurrence thresholds, we found that the number of taxa (S) should be kept less than 65 as
189 detailed in the next subsection.

190 When input community matrix is defined, the energy of the community state $\vec{\sigma}^{(k)}$ is given
191 by the extended pairwise maximum entropy model:

$$192 E(\vec{\sigma}^{(k)}, \varepsilon) = -\sum_{i=1}^S h_i \vec{\sigma}_i^{(k)} - \sum_{j=1}^S \sum_{i=1}^M g_{ij} \varepsilon_i^{(k)} \sigma_j^{(k)} - \sum_{i=1}^S \sum_{j=1}^S J_{ij} \vec{\sigma}_i^{(k)} \vec{\sigma}_j^{(k)} / 2 \quad [eq. 3],$$

193 where h_i represents the net effect of implicit abiotic factors, by which i -th taxon is more likely
194 to present ($h_i > 0$) or not ($h_i < 0$), g_{ij} represents the effect of the i -th observed environmental
195 factor, and J_{ij} represents a co-occurrence pattern of i -th and j -th taxa. Since the logarithm of the
196 probability of a community state is inversely proportional to $E(\vec{\sigma}^{(k)})$, a community state having
197 lower E is more frequently observed. To consider dynamics on an assembly graph defined as a
198 network whose 2^S nodes represent possible community states and the edges represents transition
199 path between them (two community states are adjacent only if they have the opposite
200 presence/absence status for just one species), we assigned energy to nodes with the above
201 equation, and so imposed the directionality in state transitions. Then, by using the steepest
202 descent algorithm (Suzuki et al., 2021), we identified nodes having the lowest energy compared
203 to all its neighbors within the weighted network, and determined their basins of attraction
204 (Lewontin, 1969; Suzuki et al., 2021). These community states whose energy was lower than that
205 of all adjacent community states represent estimated point equilibria (attractors), around which

206 community states are expected to show transient fluctuations due to demographic stochasticity as
207 considered in the statistical framework (H Fujita et al., 2023; Suzuki et al., 2021) (Figure 1). Soil
208 pH, electrical conductivity, C/N ratio, and available phosphorous concentration were included as
209 environmental variables in the model after normalization within the ranges from 0 to 1.

210

211 **Energy landscape structure**

212 The energy landscapes of community structure were inferred, respectively, for three types of
213 datasets, namely, the prokaryotic community matrix, the fungal matrix, and the matrix including
214 both prokaryotes and fungi. As mentioned above, various combinations of binarization and
215 occurrence thresholds were examined to check the reproducibility of the results. In addition to the
216 energy landscape analysis based on the above-mentioned family-level delineation of community
217 states, analyses based on community-state delineation at the order-level were performed. In the
218 main body and supplementary figures of this study, we show the results at the following settings:
219 prokaryotes (family), binarization = 0.020, occurrence = 0.10; prokaryotes (order), binarization =
220 0.020, occurrence = 0.10; fungi (family), binarization = 0.001, occurrence = 0.05; fungi (family),
221 binarization = 0.001, occurrence = 0.10; prokaryotes + fungi (family), binarization = 0.030,
222 occurrence = 0.10; prokaryotes + fungi (order), binarization = 0.030, occurrence = 0.10. Note that
223 these thresholds were selected to make the state space (2^S) neither too simplified (e.g., $S < 30$)
224 nor too complex ($S < 65$).

225 For each setting, the parameters of the extended pairwise maximum entropy model [eq. 3]
226 were adjusted to the empirical data. More precisely, the maximum likelihood estimates of h_i , g_{ij} ,
227 and J_{ij} was obtained by a stochastic approximation method as detailed elsewhere (Suzuki et al.,
228 2021). The parameters were regularized by a logistic prior with location 0 and scale 2.0 (for
229 environmental responses) or 0.5 (for pairwise relationships) (Harris, 2016). Hyperparameters for
230 the algorithm, criterion value for judging the convergence of parameters $qth = 10^{-5}$, were set
231 according to a series of preliminary analyses. Based on the inferred maximum entropy model, we
232 determined basins of attraction (Lewontin, 1969) within the energy landscape based on a steepest
233 descent procedure (Suzuki et al., 2021). The structure of the energy landscape was visualized by
234 showing the energy of each soil sample on the two-dimensional surface of the community state
235 space defined with the abovementioned PCoA scores. The default setting of environmental
236 variables (the mean value for each of soil pH, electrical conductivity, C/N ratio, and available

237 phosphorous concentration) was used in the energy calculation. Spline smoothing of the energy
238 landscape was performed with optimized penalty scores using the mgcv v.1.8-40 package (Wood,
239 2022) of R. For each analysis of the prokaryote, fungi, and prokaryote + fungi datasets, 1,771,
240 1,664, and 1,474 samples for which the information of both community structure and all the four
241 environmental variables was available were subjected to the analysis, respectively.

242

243 **Ecosystem functions and key taxa**

244 For the inferred basins of microbial community compositions, associations with crop disease
245 prevalence were examined. We first constructed the list of soil samples whose community
246 structure was located within each basin of attraction. We then evaluated the ecosystem-scale
247 properties of the basins in light of the metadata of crop disease symptoms (Fujita et al., 2024).
248 Specifically, for each basin, we calculated the proportion of constituent soil samples with the
249 minimal level of crop disease symptoms (the percentage of diseased plants < 20 or disease
250 severity index < 20; (Fujita et al., 2024)). The bottoms of basins representing different levels of
251 crop disease prevalence were then compared in terms of taxonomic compositions in order to
252 explore microbial taxa that were keys to distinguish potentially disease-suppressive and disease-
253 promotive soil ecosystems.

254

255 **Disconnectivity graphs**

256 For the reconstructed energy landscape, we inferred “disconnectivity graphs” (Suzuki et al.,
257 2021) representing how basins of attraction were split by tipping points (Figure 1A). Within a
258 disconnectivity graph, community states whose energy is much lower than the energy of
259 connected tipping points are expected to be resistant to perturbations (demographic stochasticity).
260 In contrast, community states with small energy gaps to tipping points may be shifted from
261 current basins to adjacent basins with minimal perturbations.

262

263 **Results**

264 **Community structure along environmental gradients**

265 On each plot showing community compositions (PCoA1 or PCoA2 scores) along the soil
266 environmental gradient (Figure 3), multiple clusters of data points were observed for both
267 prokaryotes and fungi (Figure 3–figure supplements 1-2). In other words, community states are
268 expected to be classified into some clusters even under equivalent edaphic conditions.

269

270 **Energy landscape structure**

271 The energy landscape of the family-level prokaryotic data included several major basins differing
272 remarkably in associations with the prevalence of crop plant disease (Figure 4). Specifically,
273 59.6% of soil samples located within a basin (basin ID = 0IK1G2) were associated with the
274 minimal plant-disease level, while the proportion was only 10.7% for another basin (LQWZ02)
275 (Figure 4C-D). The presence of basins differing greatly in their associations with plant-disease
276 levels was inferred as well at the order-level analysis of the prokaryotic data (Figure 4–figure
277 supplement 1). Such variation in crop disease prevalence among inferred basins was observed
278 also for the family-level analysis of fungal community structure (Figure 5). Specifically, while
279 57.9% of samples belonging to the basin 7QH9moTf8Xa, but none of the samples belonging to
280 the basin 68C0849W020, were associated with the minimal plant-disease level (Figure 5D).
281 Meanwhile, such difference in associations with disease prevalence was moderate in an analysis
282 in which a smaller number of fungal families were examined to define community states (Figure
283 5–figure supplement 1). The presence of multiple basins, which differed in associations with
284 crop-disease prevalence, was suggested even when prokaryotic and fungal community data were
285 simultaneously analyzed (Figure 4–figure supplements 2-3).

286

287 **Ecosystem functions and key taxa**

288 In an analysis of the prokaryotic community structure, 19 families were keys to distinguish basins
289 differing in associations with crop-disease prevalence (Figure 4D). The presence of
290 Pyrinomonadaceae and Vicinamibacteraceae, for example, was unique to the basin with the
291 highest proportion of samples showing the minimal plant-disease level (Figure 4D). Likewise, in
292 an analysis of the fungal community structure, the basin associated closely with the minimal
293 plant-disease prevalence (7QH9moTf8Xa) was defined by the presence of several families such
294 as Basidiobolaceae, Cordycipitaceae, and Gelatinodiscaceae (Figure 5D). The exploration of

295 microbial taxa keys to distinguish basins with different ecosystem-level functions can be
296 performed at other taxonomic levels (e.g., order-level; Figures 4–figure supplements 1 and 3).

297

298 **Disconnectivity graphs**

299 Within the energy landscape of the family-level analysis of prokaryotes (Figure 4), both the
300 basins associated with the least-diseased (OIK1G2) and most-diseased (N21H04) crop status
301 were the deepest among the inferred basins (i.e., showing the largest energy gaps from the bottom
302 to tipping points; Figure 6A-B). In the family-level analysis of fungi, the basin associated with
303 the least-diseased status (7QH9moTf8Xa) was the deepest, while the other basin representing the
304 most-diseased status (68C0849W020) was the shallowest (Figure 6C).

305

306 **Discussion**

307 We have estimated the stability landscape structure of complex microbiomes based on a
308 statistical framework commonly applicable to diverse types of biological communities. The
309 energy landscape analysis allows systematic analyses of taxon-rich community datasets by
310 incorporating the information of multiple environmental factors (Dakos and Kéfi, 2022; Sánchez-
311 Pinillos et al., 2024; Suzuki et al., 2021). While classic studies on community multistability have
312 discussed ecological processes spanning a few intuitively distinguishable community states
313 [high/low tree cover in forest-savanna transitions (Hirota et al., 2011; Staver et al., 2011a, 2011b)
314 or macrophyte-/phytoplankton-dominated state in shallow lakes (Ibelings et al., 2007; Scheffer
315 and Carpenter, 2003)], it is now made possible to define basins of attraction based on high-
316 dimensional community datasets involving hundreds of species/taxa (Arumugam et al., 2011;
317 Costea et al., 2017; H Fujita et al., 2023; Guim Aguadé-Gorgorió et al., 2023; Hayashi et al.,
318 2024). Application of the general statistical platform will enhance our understanding of how
319 stability landscape properties differ among diverse microbial and non-microbial systems.

320 Despite numerous potential compositions (2^S community states; S is the number of
321 considered species/taxa), the prokaryotic and fungal community states were grouped into small
322 numbers of basins within energy landscapes (Figures 4-5). This result suggests that soil
323 microbiome structure remain within certain regions even after demographic perturbations. In

324 other words, once trapped in a basin of attraction, large shifts in community structure would not
325 occur without perturbations whose strength exceed certain thresholds (Beisner et al., 2003;
326 Lewontin, 1969; May, 1977; Scheffer et al., 1993). Importantly, the threshold strength of
327 perturbations is estimated as the energy gap between bottoms of basins and tipping points (Suzuki
328 et al., 2021) (Figure 6A). Furthermore, potential paths of community structural transitions can be
329 quantitatively inferred as illustrated in disconnectivity graphs (Suzuki et al., 2021) (Figures 6B-
330 C). Such statistical framework of quantitative science will entail novel opportunities for testing
331 theories on biological community processes in the era of massive datasets.

332 Among potential processes or mechanisms underlying the multistability of community
333 structure, historical contingency is of particular interest (Fukami, 2015). In the local assembly of
334 microbial communities, early colonizers or residents can prevent the settlement of followers by
335 constructing physical barriers (e.g., biofilms and mycelia) (Baümler and Sperandio, 2016;
336 Fukami, 2015; Leopold et al., 2017; Verbruggen et al., 2013; Werner and Kiers, 2015) or
337 emitting antibiotics (Mendes et al., 2013; Raaijmakers et al., 2002). In addition to those
338 antagonistic effects on late colonizers, webs of mutualistic or commensalistic interactions within
339 the microbiomes of early colonizers (Elias and Banin, 2012; Hiroaki Fujita et al., 2023; Zelezniak
340 et al., 2015) would influence community dynamics. Due to such “priority effects” (Fukami,
341 2015), bacterial and fungal community compositions may persist within limited ranges of
342 community states without substantial perturbations. Given that abilities to form physical or
343 chemical barriers can differ greatly among microbial species/taxa (Mendes et al., 2013;
344 Raaijmakers et al., 2002; Werner and Kiers, 2015), such variation in constituent species’ priority
345 effects may underly the observed variation in the depth of basins (Figure 6B-C).

346 The inference of stability landscape structure provided an opportunity for evaluating
347 relationship between community stability and ecosystem-scale functions. The basins of attraction
348 of prokaryotic/fungal community structure differed considerably in associations with crop disease
349 prevalence (Figure 5), suggesting the presence of “stable and favorable” and “stable but
350 unfavorable” states of microbiomes (Mendes et al., 2011; Schlatter et al., 2017; Yuan et al., 2020)
351 in terms of agricultural productivity. This finding adds an important dimension of discussion on
352 the use of microbes in agriculture. Beyond investigations on single species/strains of microbes,
353 microbiome studies have explored sets of microbes that collectively maximize biological
354 functions (Jansson and Hofmockel, 2018; Toju et al., 2018; Trivedi et al., 2020; Vorholt et al.,
355 2017). In particular, experimental studies on “synthetic” communities have reorganized our

356 knowledge of microbiome functions (Jansson and Hofmockel, 2018; Trivedi et al., 2020; Vorholt
357 et al., 2017). Nonetheless, such microbial functions cannot be realized in real agroecosystems if
358 the synthesized or designed microbiome compositions are vulnerable to biotic and abiotic
359 environmental changes in the wild (Mazzola and Freilich, 2017). Thus, in addition to functional
360 properties, compositional stability is the key to manage microbiomes in agroecosystems (Faust
361 and Raes, 2012; Toju et al., 2020; Vorholt et al., 2017).

362 In our analysis across the Japan Archipelago, prokaryotic and fungal taxa keys to
363 distinguish least-diseased and severely-diseased states of soil microbiomes were highlighted
364 (Figures 4-5). Among them, Basidiobolaceae and Cordycipitaceae are of particular interest
365 because they include many species potentially utilized as biological control agents for
366 suppressing pest insects (Meyling and Eilenberg, 2007; Möckel et al., 2022). Gelatinodiscaceae is
367 another fungal taxon playing potentially important roles as symbionts of plants (Johnston et al.,
368 2019). These results illuminate the hypothesis that plant disease could be suppressed under the
369 coexistence of multiple prokaryotic and fungal taxa with favorable ecosystem functions (Toju et
370 al., 2018; Toju and Tanaka, 2019). Thus, statistical analyses of stability landscapes allow the
371 exploration of key species or taxa (Paine, 1966; Power et al., 1996), whose management could
372 result in transitions from unfavorable ecosystem states to favorable ones (Gunderson, 2000;
373 Scheffer et al., 2001, 1993; Scheffer and Carpenter, 2003). Given that most prokaryotic and
374 fungal families highlighted in our analysis have cosmopolitan distributions, a next crucial step is
375 to test whether the basins defined across the Japan Archipelago can be used to categorize disease-
376 suppressive and disease-susceptible microbiomes in other regions on the globe.

377 Although the energy landscape analysis enhances our understanding of community stability
378 and functions, its results should be interpreted with caution. First, given that classic empirical
379 studies examined community multistability with system-specific simple criteria [e.g., high/low
380 tree cover (Hirota et al., 2011; Staver et al., 2011a, 2011b)], special care should be taken when
381 we extend the approach to species-rich (high-dimensional) community datasets (Guim Aguadé-
382 Gorgorió et al., 2023). In other words, unambiguous and broadly applicable criteria based on
383 statistical evaluation are the prerequisite for comparative analyses of community multistability.
384 Although we applied a straightforward statistical definition of basins of attraction (Suzuki et al.,
385 2021) (Figure 1) in light of classic theoretical studies (Beisner et al., 2003; Lewontin, 1969; May,
386 1977; Scheffer et al., 1993), continuous methodological improvements should be explored
387 towards further comprehensive analyses. Second, our analysis on hyper-diverse soil microbiomes

388 incurred substantial computational costs, forcing us to limit the energy landscape analysis to
389 family-level input data. Further improvements of codes are necessary for inferring stability
390 landscapes at genus-, species-, or strain-level analyses. Third, it should be acknowledged that
391 detailed discussion on ecological processes require time-series datasets (Davidson et al., 2023;
392 Scheffer et al., 2012, 2009). Because our present data lacked the information of temporal changes
393 in community structure, we are unable to discuss the frequency and pace of community structural
394 transitions between basins of attraction. Monitoring of microbiome compositions (Faust et al.,
395 2015; Hayashi et al., 2024; Yajima et al., 2023) is necessary for filling the gap between
396 theoretical and empirical studies (Long et al., 2024).

397 The energy landscape framework of multistability analysis is readily applicable to a wide
398 range of microbiome datasets. Application to human microbiome data is of particular interest in
399 terms of the confirmation of the existence of multiple basins of attraction (Jeffery et al., 2012). In
400 addition, insights into the key microbial species/taxa that would play key roles in the transitions
401 from disease-associated microbiome states to healthy ones will open new directions of
402 microbiome therapy. Furthermore, time-series analyses of community dynamics on stability
403 landscapes will allow us to forecast and prevent transitions into unfavorable community states
404 [e.g., dysbiosis (Carding et al., 2015; H Fujita et al., 2023; Long et al., 2024)]. Along with such
405 extensions of observational research, experimental studies controlling key species/taxa or
406 environmental parameters (Schröder et al., 2005) will promote both basic and applied sciences of
407 ecosystem functions.

408

409 **Acknowledgements.** We thank the SuperComputer System, Institute for Chemical Research,
410 Kyoto University for the use of super computers.

411

412 **Author contributions**

413 H.F., S.Y. and H.T. designed the work. H.F. performed molecular experiments. H.F. and H.T.
414 analyzed the data. H.T. wrote the paper with H.F., S.Y., and K.S.

415

416 **Author ORCIDs**

417 Hiroaki Fujita: <https://orcid.org/0009-0003-5422-9775>
418 Shigenobu Yoshida: <https://orcid.org/0000-0001-5105-0807>
419 Kenta Suzuki: <https://orcid.org/0000-0002-0639-2303>
420 Hirokazu Toju: <https://orcid.org/0000-0002-3362-3285>

421

422 **Data accessibility**

423 The accession number of the DDBJ Sequence Read Archive: DRA015491. The microbial
424 community matrices are provided with codes at our GitHub repository (<https://github.com/hiro->
425 [toju/Soil_EnergyLandscape_NARO3000](https://github.com/hiro-toju/Soil_EnergyLandscape_NARO3000)) [to be released after the acceptance of the manuscript].

426

427 **References**

428 Amor DR, Ratzke C, Gore J. 2020. Transient invaders can induce shifts between alternative
429 stable states of microbial communities. *Sci Adv* **6**:eaay8676. doi:10.1126/sciadv.aay8676

430 Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J,
431 Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T,
432 Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C,
433 Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D,
434 Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, De Vos WM, Brunak S, Doré J,
435 Weissenbach J, Ehrlich SD, Bork P. 2011. Enterotypes of the human gut microbiome.
436 *Nature* **473**:174–180. doi:10.1038/nature09944

437 Baümler AJ, Sperandio V. 2016. Interactions between the microbiota and pathogenic bacteria in
438 the gut. *Nature*. doi:10.1038/nature18849

439 Becker OM, Karplus M. 1997. The topology of multidimensional potential energy surfaces:
440 Theory and application to peptide structure and kinetics. *Journal of Chemical Physics*
441 **106**:1495. doi:10.1063/1.473299

442 Beisner BE, Haydon DT, Cuddington K. 2003. Alternative stable states in ecology. *Front Ecol*
443 *Environ* **1**:376–382. doi:10.1890/1540-9295(2003)001[0376:ASSIE]2.0.CO;2

444 Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. 2015. Dysbiosis of the gut microbiota in
445 disease. *Microb Ecol Health Dis* **26**:26191. doi:10.3402/mehd.v26.26191

446 Chiang KS, Liu HI, Bock CH. 2017. A discussion on disease severity index values. Part I: warning
447 on inherent errors and suggestions to maximise accuracy. *Annals of Applied Biology*
448 171:139–154. doi:10.1111/aab.12362

449 Costea PI, Hildebrand F, Manimozhiyan A, Bäckhed F, Blaser MJ, Bushman FD, De Vos WM,
450 Ehrlich SD, Fraser CM, Hattori M, Huttenhower C, Jeffery IB, Knights D, Lewis JD, Ley
451 RE, Ochman H, O'Toole PW, Quince C, Relman DA, Shanahan F, Sunagawa S, Wang J,
452 Weinstock GM, Wu GD, Zeller G, Zhao L, Raes J, Knight R, Bork P. 2017. Enterotypes in
453 the landscape of gut microbial community composition. *Nat Microbiol* 3:8–16.
454 doi:10.1038/s41564-017-0072-8

455 Coyte KZ, Rao C, Rakoff-Nahoum S, Foster KR. 2021. Ecological rules for the assembly of
456 microbiome communities. *PLoS Biol* 19:e3001116. doi:10.1371/JOURNAL.PBIO.3001116

457 Dakos V, Kéfi S. 2022. Ecological resilience: What to measure and how. *Environmental Research
458 Letters* 17:043003. doi:10.1088/1748-9326/ac5767

459 Davidson TA, Sayer CD, Jeppesen E, Søndergaard M, Lauridsen TL, Johansson LS, Baker A,
460 Graeber D. 2023. Bimodality and alternative equilibria do not help explain long-term
461 patterns in shallow lake chlorophyll-a. *Nat Commun* 14:398. doi:10.1038/s41467-023-
462 36043-9

463 Elias S, Banin E. 2012. Multi-species biofilms: Living with friendly neighbors. *FEMS Microbiol
464 Rev* 36:990–1004. doi:10.1111/j.1574-6976.2012.00325.x

465 Faust K, Lahti L, Gonze D, de Vos WM, Raes J. 2015. Metagenomics meets time series analysis:
466 Unraveling microbial community dynamics. *Curr Opin Microbiol* 25:56–66.
467 doi:10.1016/j.mib.2015.04.004

468 Faust K, Raes J. 2012. Microbial interactions: From networks to models. *Nat Rev Microbiol*
469 10:538–550. doi:10.1038/nrmicro2832

470 Fujita H, Ushio M, Suzuki K, Abe M, Yamamichi M, Iwayama K, Canarini A, Hayashi I,
471 Fukushima K, Fukuda S, Kiers E, Toju H. 2023. Alternative stable states, nonlinear behavior,
472 and predictability of microbiome dynamics. *Microbiome* 11:63. doi:10.1186/s40168-023-
473 01474-5

474 Fujita Hiroaki, Ushio M, Suzuki K, Abe MS, Yamamichi M, Okazaki Y, Canarini A, Hayashi I,
475 Fukushima K, Fukuda S, Kiers ET, Toju H. 2023. Facilitative interaction networks in
476 experimental microbial community dynamics. *Front Microbiol* 14:1153952.
477 doi:10.3389/fmicb.2023.1153952

478 Fujita H, Yoshida S, Suzuki K, Toju H. 2024. Soil prokaryotic and fungal biome structures
479 associated with crop disease status across the Japan Archipelago. *mSphere* in press.

480 Fukami T. 2015. Historical contingency in community assembly: integrating niches, species
481 pools, and priority effects. *Annu Rev Ecol Evol Syst* **46**:1–23. doi:10.1146/annurev-ecolsys-
482 110411-160340

483 Guim Aguadé-Gorgorió, Jean-François Arnoldi, Matthieu Barbier, Sonia Kéfi. 2023. A taxonomy
484 of multiple stable states in complex ecological communities. *bioRxiv*
485 <https://doi.org/10.1101/2023.08.30.555051>.

486 Gunderson LH. 2000. Ecological resilience - In theory and application. *Annu Rev Ecol Syst*
487 **31**:425–439. doi:10.1146/annurev.ecolsys.31.1.425

488 Harris DJ. 2016. Inferring species interactions from co-occurrence data with Markov networks.
489 *Ecology* **97**:3308–3314. doi:10.1002/ecy.1605

490 Hastings A, Abbott KC, Cuddington K, Francis T, Gellner G, Lai YC, Morozov A, Petrovskii S,
491 Scranton K, Zeeman M Lou. 2018. Transient phenomena in ecology. *Science (1979)*
492 **361**:eaat6412. doi:10.1126/science.aat6412

493 Hayashi I, Fujita H, Toju H. 2024. Deterministic and stochastic processes generating alternative
494 states of microbiomes. *ISME Communications* **4**:ycae007. doi:10.1093/ismeco/ycae007

495 Hirota M, Holmgren M, Van Nes EH, Scheffer M. 2011. Global resilience of tropical forest and
496 savanna to critical transitions. *Science (1979)* **334**:232–235. doi:10.1126/science.1210657

497 Ibelings BW, Portielje R, Lammens EHRR, Noordhuis R, Van Den Berg MS, Joosse W, Meijer
498 ML. 2007. Resilience of alternative stable states during the recovery of shallow lakes from
499 eutrophication: Lake Veluwe as a case study. *Ecosystems* **10**:4–16. doi:10.1007/s10021-006-
500 9009-4

501 Jansson JK, Hofmockel KS. 2018. The soil microbiome — from metagenomics to metagenomics.
502 *Curr Opin Microbiol* **43**:162–168. doi:10.1016/j.mib.2018.01.013

503 Jeffery IB, Claesson MJ, O'Toole PW, Shanahan F. 2012. Categorization of the gut microbiota:
504 Enterotypes or gradients? *Nat Rev Microbiol* **10**:591–592. doi:10.1038/nrmicro2859

505 Johnston PR, Quijada L, Smith CA, Baral HO, Hosoya T, Baschien C, Pärtel K, Zhuang WY,
506 Haelewaters D, Park D, Carl S, López-Giráldez F, Wang Z, Townsend JP. 2019. A
507 multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. *IMA
508 Fungus* **10**:1–22. doi:10.1186/s43008-019-0002-x

509 Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D, Knight R. 2014.
510 Rethinking enterotypes. *Cell Host Microbe* **16**:433–437. doi:10.1016/j.chom.2014.09.013

511 Leopold DR, Wilkie JP, Dickie IA, Allen RB, Buchanan PK, Fukami T. 2017. Priority effects are
512 interactively regulated by top-down and bottom-up forces: evidence from wood decomposer
513 communities. *Ecol Lett* **20**:1054–1063. doi:10.1111/ele.12803

514 Lewontin RC. 1969. The meaning of stability. *Brookhaven Symp Biol* **22**:13–23.
515 doi:10.2307/j.ctv14161w4.26

516 Long C, Deng J, Nguyen J, Liu Y-Y, Alm EJ, Solé R, Saavedra S. 2024. Structured community
517 transitions explain the switching capacity of microbial systems. *Proceedings of the National
518 Academy of Sciences* **121**:e2312521121. doi:10.1073/pnas.2312521121

519 May RM. 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states.
520 *Nature* **269**:471–477. doi:10.1038/269471a0

521 Mazzola M, Freilich S. 2017. Prospects for biological soilborne disease control: Application of
522 indigenous versus synthetic microbiomes. *Phytopathology* **107**:256–263.
523 doi:10.1094/PHYTO-09-16-0330-RVW

524 Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: Significance of plant
525 beneficial, plant pathogenic, and human pathogenic microorganisms. *FEMS Microbiol Rev*
526 **37**:634–663. doi:10.1111/1574-6976.12028

527 Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM,
528 DeSantis TZ, Andersen GL, Bakker P a HM, Raaijmakers JM. 2011. Deciphering the
529 rhizosphere microbiome for disease-suppressive bacteria. *Science* **332**:1097–100.
530 doi:10.1126/science.1203980

531 Meyling N V., Eilenberg J. 2007. Ecology of the entomopathogenic fungi Beauveria bassiana and
532 Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological
533 control. *Biological Control* **43**:145–155. doi:10.1016/j.biocontrol.2007.07.007

534 Möckel L, Meusemann K, Misof B, Schwartze VU, De Fine Licht HH, Voigt K, Stielow B, de
535 Hoog S, Beutel RG, Buellesbach J. 2022. Phylogenetic Revision and Patterns of Host
536 Specificity in the Fungal Subphylum Entomophthoromycotina. *Microorganisms* **10**:256.
537 doi:10.3390/microorganisms10020256

538 Moeller AH, Degnan PH, Pusey AE, Wilson ML, Hahn BH, Ochman H. 2012. Chimpanzees and
539 humans harbour compositionally similar gut enterotypes. *Nat Commun* **3**:1179.
540 doi:10.1038/ncomms2159

541 Paine RT. 1966. Food Web Complexity and Species Diversity. *Am Nat* **100**:65–75.
542 doi:10.1086/282400

543 Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco
544 J, Paine RT. 1996. Challenges in the quest for kestones. *Bioscience* **46**:609–620.
545 doi:10.2307/1312990

546 R Core Team. 2020. R: A language and environment for statistical computing. *R: A language and*
547 *environment for statistical computing R Foundation for Statistical Computing, Vienna,*
548 *Austria URL* <https://www.R-project.org/>.

549 Raaijmakers JM, Vlami M, de Souza JT. 2002. Antibiotic production by bacterial biocontrol
550 agents. *Antonie Van Leeuwenhoek* **81**:537–547. doi:10.1023/A:1020501420831

551 Sánchez-Pinillos M, Dakos V, Kéfi S. 2024. Ecological dynamic regimes: A key concept for
552 assessing ecological resilience. *Biol Conserv* **289**:110409. doi:10.1016/j.biocon.2023.110409

553 Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, Van Nes EH,
554 Rietkerk M, Sugihara G. 2009. Early-warning signals for critical transitions. *Nature* **461**:53–
555 59. doi:10.1038/nature08227

556 Scheffer M, Carpenter S, Foley J a, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems.
557 *Nature* **413**:591–596. doi:10.1038/35098000

558 Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: Linking theory to
559 observation. *Trends Ecol Evol* **18**:648–656. doi:10.1016/j.tree.2003.09.002

560 Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, Van De Koppel J, Van
561 De Leemput IA, Levin SA, Van Nes EH, Pascual M, Vandermeer J. 2012. Anticipating
562 critical transitions. *Science (1979)* **338**:344–348. doi:10.1126/science.1225244

563 Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow
564 lakes. *Trends Ecol Evol* **8**:275–279. doi:10.1016/0169-5347(93)90254-M

565 Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. 2017. Disease suppressive soils: New
566 insights from the soil microbiome. *Phytopathology* **107**:1284–1297. doi:10.1094/PHYTO-
567 03-17-0111-RVW

568 Schröder A, Persson L, De Roos AM. 2005. Direct experimental evidence for alternative stable
569 states: A review. *Oikos* **110**:3–19. doi:10.1111/j.0030-1299.2005.13962.x

570 Serván CA, Allesina S. 2021. Tractable models of ecological assembly. *Ecol Lett* **24**:1029–1037.
571 doi:10.1111/ele.13702

572 Shaw LP, Bassam H, Barnes CP, Walker AS, Klein N, Balloux F. 2019. Modelling microbiome
573 recovery after antibiotics using a stability landscape framework. *ISME Journal* **13**:1845–
574 1856. doi:10.1038/s41396-019-0392-1

575 Smith VH, Schindler DW. 2009. Eutrophication science: where do we go from here? *Trends Ecol
576 Evol* **24**:201–207. doi:10.1016/j.tree.2008.11.009

577 Staver AC, Archibald S, Levin S. 2011a. Tree cover in sub-Saharan Africa: Rainfall and fire
578 constrain forest and savanna as alternative stable states. *Ecology* **92**:1063–1072.
579 doi:10.1890/10-1684.1

580 Staver AC, Archibald S, Levin SA. 2011b. The global extent and determinants of savanna and
581 forest as alternative biome states. *Science (1979)* **334**:230–232.
582 doi:10.1126/science.1210465

583 Suding KN, Hobbs RJ. 2009. Threshold models in restoration and conservation: a developing
584 framework. *Trends Ecol Evol* **24**:271–279. doi:10.1016/j.tree.2008.11.012

585 Suzuki K, Nakaoka S, Fukuda S, Masuya H. 2021. Energy landscape analysis elucidates the
586 multistability of ecological communities across environmental gradients. *Ecol Monogr* **91**:1–
587 21. doi:10.1002/ecm.1469

588 Toju H, Abe MS, Ishii C, Hori Y, Fujita H, Fukuda S. 2020. Scoring species for synthetic
589 community design: network analyses of functional core microbiomes. *Front Microbiol*
590 **11**:1361–1361. doi:10.3389/fmicb.2020.01361

591 Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka
592 S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers
593 ET. 2018. Core microbiomes for sustainable agroecosystems. *Nat Plants* **4**:247–257.
594 doi:10.1038/s41477-018-0139-4

595 Toju H, Tanaka Y. 2019. Consortia of anti-nematode fungi and bacteria in the rhizosphere of
596 soybean plants attacked by root-knot nematodes. *R Soc Open Sci* **6**:181693.
597 doi:10.1098/rsos.181693

598 Toju H, Yamamoto S, Tanabe AS, Hayakawa T, Ishii HS. 2016. Network modules and hubs in
599 plant–root fungal biomes. *J R Soc Interface* **13**:20151097–20151097.
600 doi:10.1098/rsif.2015.1097

601 Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant–microbiome interactions: from
602 community assembly to plant health. *Nat Rev Microbiol* **18**:607–621. doi:10.1038/s41579-
603 020-0412-1

604 Verbruggen E, van der Heijden MGA, Rillig MC, Kiers ET. 2013. Mycorrhizal fungal
605 establishment in agricultural soils: Factors determining inoculation success. *New Phytologist*
606 **197**:1104–1109. doi:10.1111/j.1469-8137.2012.04348.x

607 Vorholt JA, Vogel C, Carlström CI, Müller DB. 2017. Establishing causality: opportunities of
608 synthetic communities for plant microbiome research. *Cell Host Microbe* **22**:142–155.
609 doi:10.1016/j.chom.2017.07.004

610 Watanabe T, Masuda N, Megumi F, Kanai R, Rees G. 2014. Energy landscape and dynamics of
611 brain activity during human bistable perception. *Nat Commun* **5**:4765.
612 doi:10.1038/ncomms5765

613 Werner GDA, Kiers ET. 2015. Order of arrival structures arbuscular mycorrhizal colonization of
614 plants. *New Phytologist* **205**:1515–1524. doi:10.1111/nph.13092

615 Wickham H. 2011. ggplot2. *Wiley Interdiscip Rev Comput Stat* **3**:180–185. doi:10.1002/wics.147

616 Wood S. 2022. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation
617 available at <https://cran.r-project.org/web/packages/mgcv/index.html>.

618 Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D,
619 Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman
620 FD, Lewis JD. 2011. Linking long-term dietary patterns with gut microbial enterotypes.
621 *Science (1979)* **334**:105–108. doi:10.1126/science.1208344

622 Yajima D, Fujita H, Hayashi I, Shima G, Suzuki K, Toju H. 2023. Core species and interactions
623 prominent in fish-associated microbiome dynamics. *Microbiome* **11**:53.
624 doi:10.1186/s40168-023-01498-x

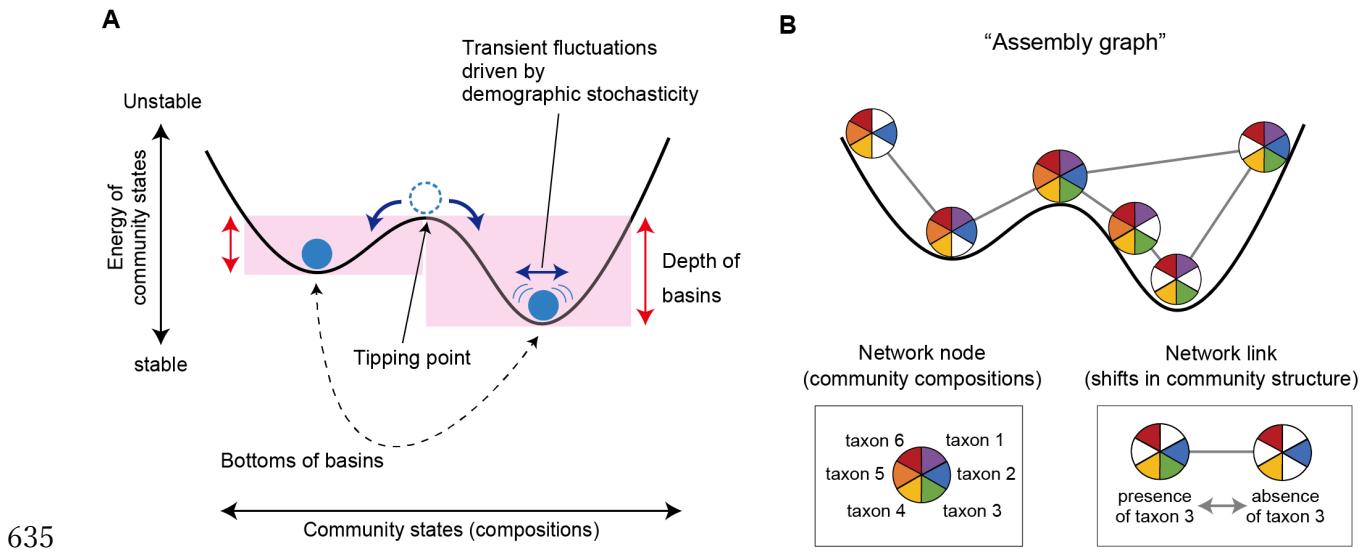
625 Yuan J, Wen T, Zhang H, Zhao M, Penton CR, Thomashow LS, Shen Q. 2020. Predicting disease
626 occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt.
627 *ISME Journal* **14**:2936–2950. doi:10.1038/s41396-020-0720-5

628 Zaneveld JR, McMinds R, Thurber RV. 2017. Stress and stability: Applying the Anna Karenina
629 principle to animal microbiomes. *Nat Microbiol* **2**:17121. doi:10.1038/nmicrobiol.2017.121

630 Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. 2015. Metabolic
631 dependencies drive species co-occurrence in diverse microbial communities. *Proc Natl Acad
632 Sci USA* **112**:6449–6454. doi:10.1073/pnas.1421834112

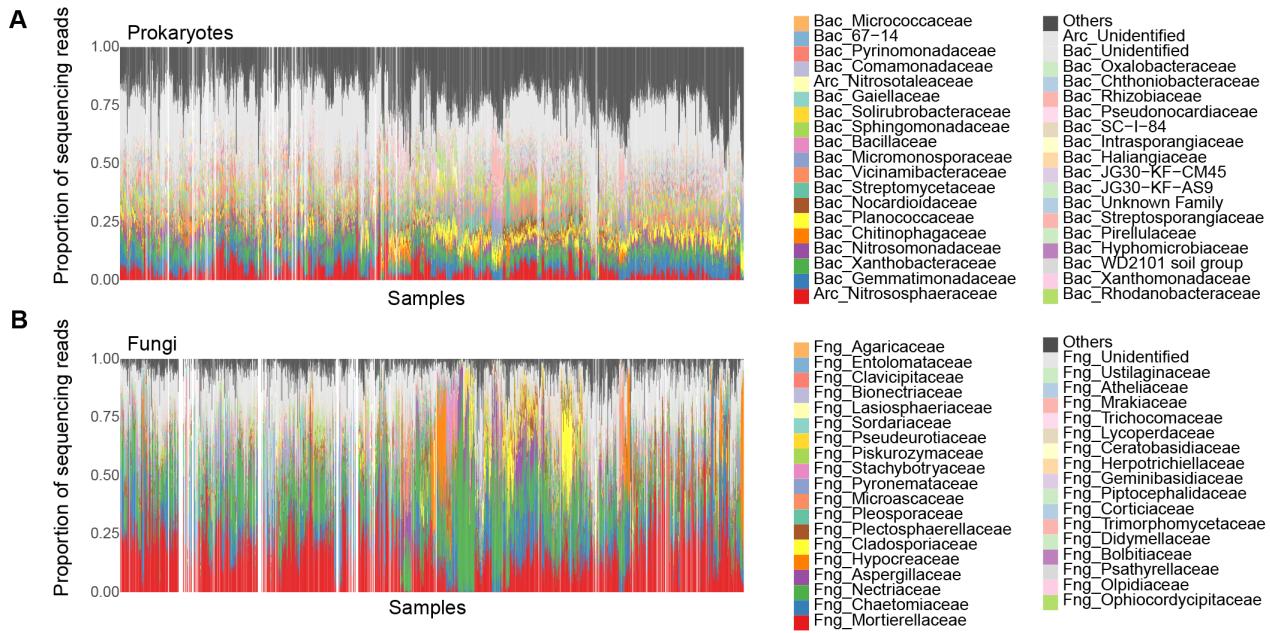
633

634



636 **Figure 1.** Schema of multistability of ecological communities. **(A)** Basins of attraction and
637 tipping points. The structure of “stability landscapes” showing relationship between community
638 states (species or taxonomic compositions) and their stability is inferred based on the energy
639 landscape analysis. The “energy” of each community state is calculated with maximum entropy
640 models as detailed in Methods. Lower energy represents a more stable community state on a
641 stability landscape. Transient fluctuations around the bottoms of basins (i.e., point attractors) are
642 assumed as probabilistic phenomena in the statistical approach. **(B)** Assembly graph. To explore
643 numerous possible states of real ecological communities, input data are binarized in the energy
644 landscape analysis. Potential transitions between community states are then considered within
645 “assembly graphs”, in which paths between different species/taxonomic compositions are treated
646 as network links. Thus, by the assembly-graph approach, the energy landscape analysis provides
647 a general framework for inferring the structure of stability landscapes in empirical studies of
648 complex microbiome datasets.

649

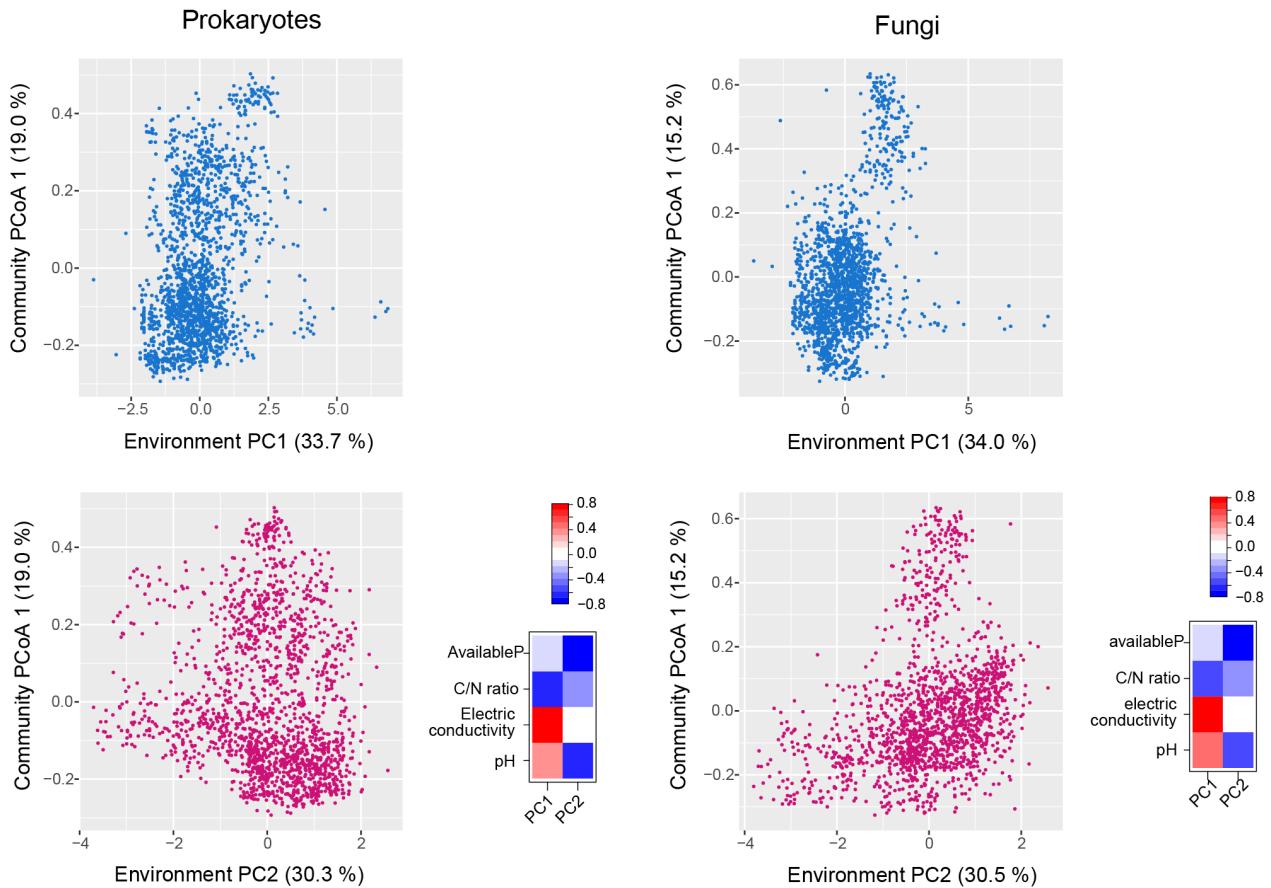


650

651 **Figure 2.** Community structure of the source data. The family-level compositions of prokaryotes
652 (A) and fungi (B) are shown based on the source dataset (Fujita et al., 2024). The soil samples
653 from which DNA sequence data were unavailable for either prokaryotic 16S rRNA or fungal ITS
654 regions are indicated as blanks.

655 **Figure supplement 1.** Community structure of the source data (order- and genus-level
656 compositions).

657



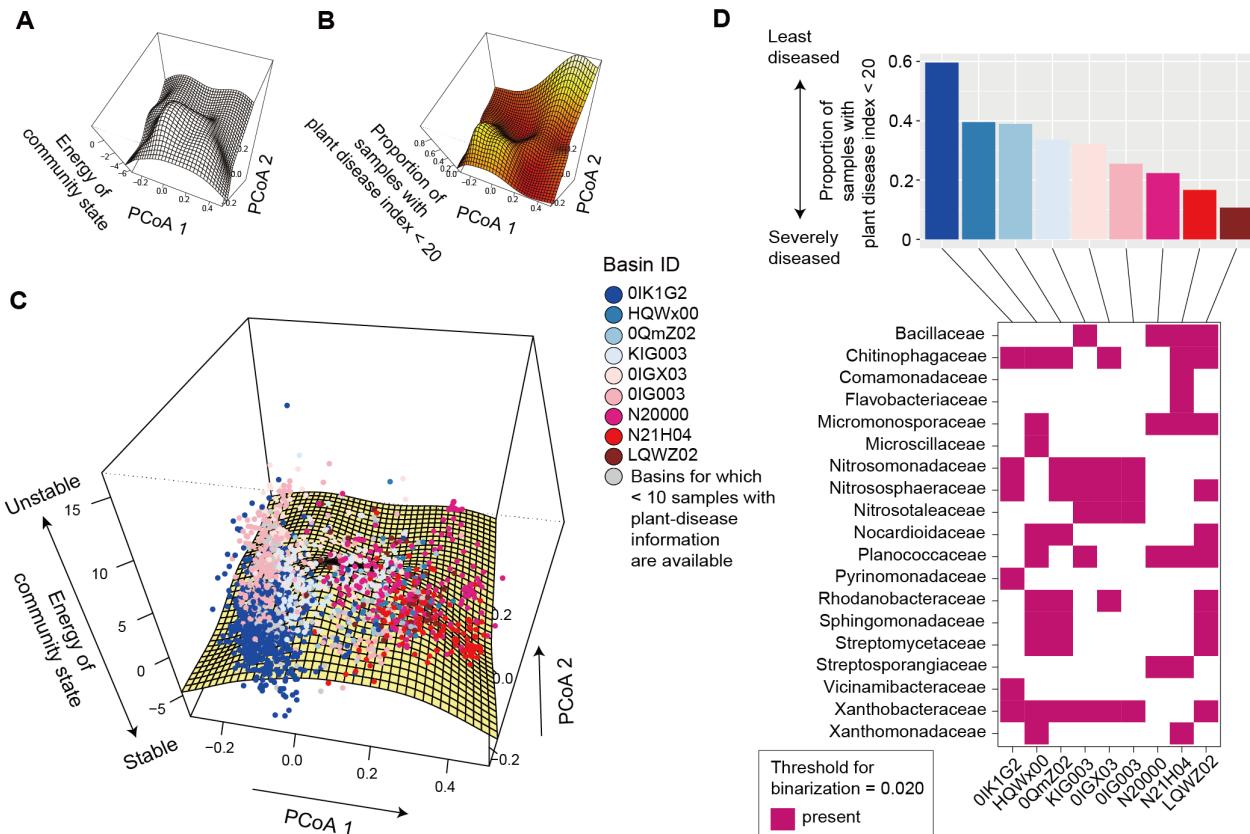
658

659 **Figure 3.** Community structure along environmental gradients. The scores representing
660 prokaryotic/fungal community compositions (community PCoA1 scores) are shown along each
661 PCA axis of soil environmental conditions. Regarding the environmental PCA axes, factor
662 loadings of environmental variables examined (pH, electrical conductivity, C/N ratio, and
663 available phosphorous concentration) are shown separately for prokaryotic ($N = 1,771$) and
664 fungal ($N = 1,664$) datasets.

665 **Figure supplement 1.** Prokaryotic community structure along environmental gradients (detailed
666 analyses).

667 **Figure supplement 2.** Fungal community structure along environmental gradients (detailed
668 analyses).

669



671 **Figure 4.** Energy landscape of prokaryotic communities. **(A)** Inferred energy landscape of
672 family-level prokaryotic community structure (threshold for binarization = 0.020; occurrence
673 threshold = 0.10; $S = 35$). The surface of energy levels was reconstructed across the PCoA space
674 of fungal community structure (community PCoA1 and PCoA2 scores in Figures 2–figure
675 supplement 1) based on spline smoothing. Community states with lower energy are inferred to be
676 more stable. **(B)** Landscape of crop disease prevalence. Across the PCoA space of prokaryotic
677 compositions, the proportion of samples with disease severity index < 20 is shown based on
678 spline smoothing. **(C)** Community data points on the energy landscape. The axis of “energy of
679 community state” is more expanded than that in panel **A** in order to cover the range of samples.
680 Data points (samples) indicated by the same color belong to the same basins of attraction, which
681 are represented by the IDs of the community states whose energy is lower than that of any
682 adjacent community states (i.e., bottoms of basins). **(D)** Key taxa whose abundance represent
683 basins. In the upper panel, the mean proportion of soil samples with the minimum level of plant
684 (crop) disease symptoms (the percentage of diseased plants < 20 or disease severity index < 20) is
685 shown for each basin. The lower panel indicates the key taxa whose abundance characterizes
686 difference among the bottoms of the basins.

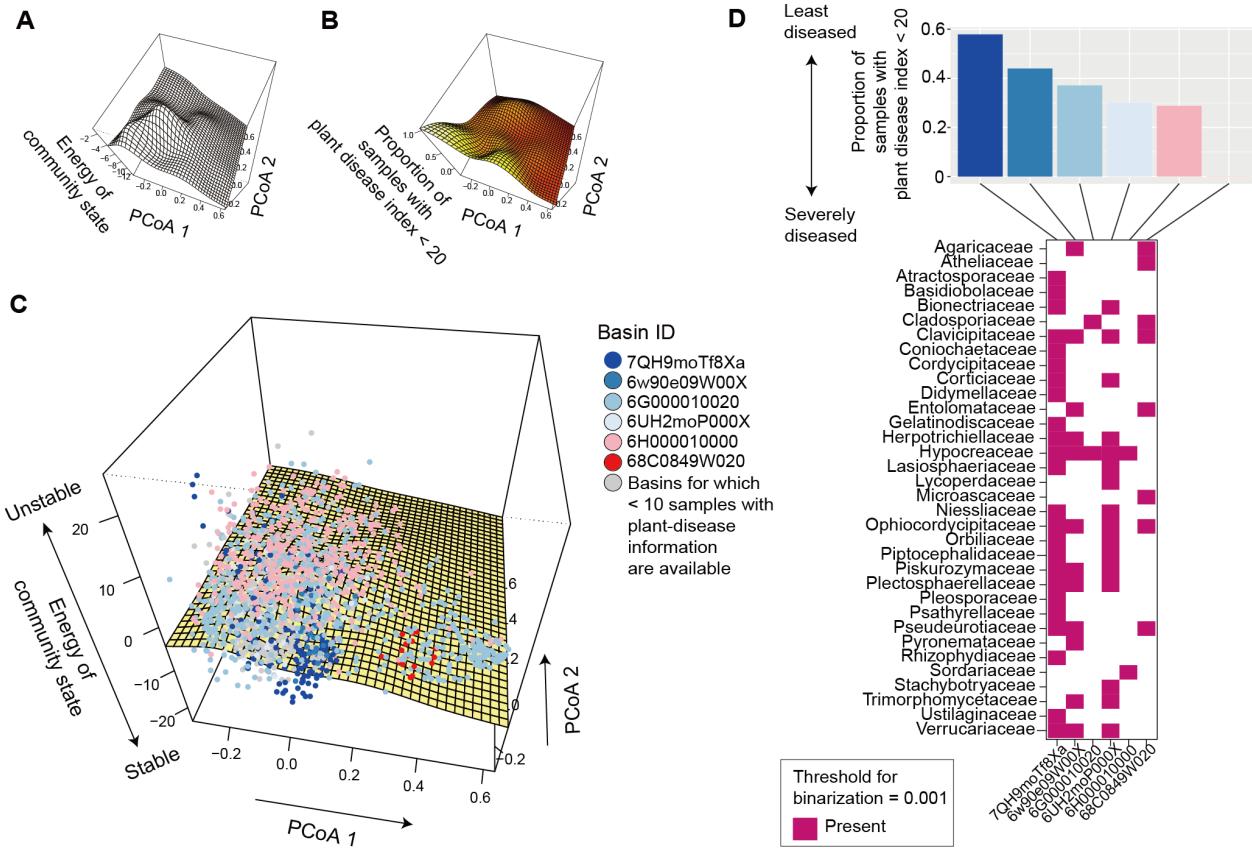
687 **Figure supplement 1.** Energy landscape of prokaryotic communities (order-level compositions;

688 threshold for binarization = 0.020; occurrence threshold = 0.10; $S = 32$).

689 **Figure supplement 2.** Energy landscape of communities including both prokaryotes and fungi
690 (family-level compositions; threshold for binarization = 0.030; occurrence threshold = 0.10; $S =$
691 31).

692 **Figure supplement 3.** Energy landscape of communities including both prokaryotes and fungi
693 (order-level compositions; threshold for binarization = 0.030; occurrence threshold = 0.10; $S =$
694 32).

695

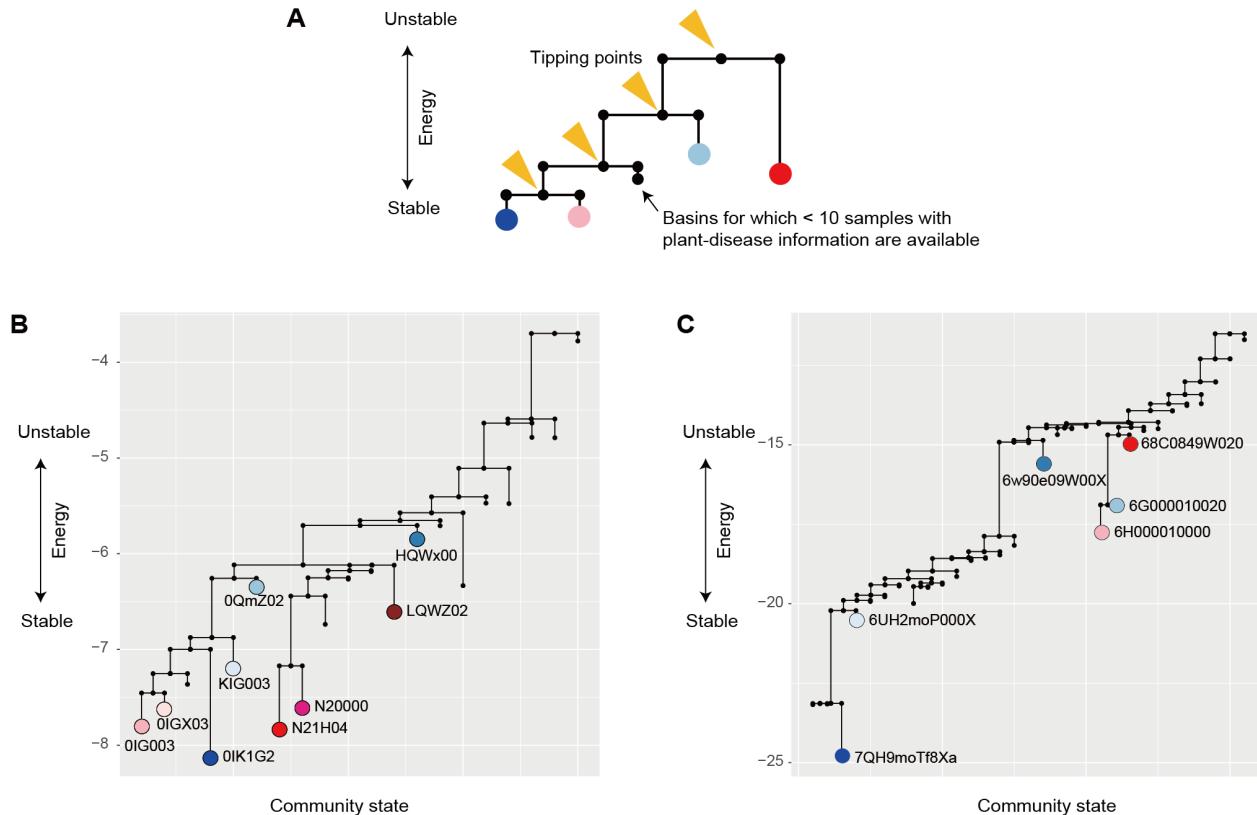


696

697 **Figure 5.** Energy landscape of fungal communities. **(A)** Inferred energy landscape of family-level
698 fungal community structure (threshold for binarization = 0.001; occurrence threshold = 0.05; $S =$
699 62). The surface of energy levels was reconstructed across the PCoA space of fungal community
700 structure (community PCoA1 and PCoA2 scores in in Figures 2–figure supplement 2) based on
701 spline smoothing. Community states with lower energy are inferred to be more stable. **(B)**
702 Landscape of crop disease prevalence. Across the PCoA space of prokaryotic compositions, the
703 proportion of samples with disease severity index < 20 is shown based on spline smoothing. **(C)**
704 Community data points on the energy landscape. The axis of “energy of community state” is
705 more expanded than that in panel **A** in order to cover the range of samples. Data points (samples)
706 indicated by the same color belong to the same basins of attraction, which are represented by the
707 IDs of the community states whose energy is lower than that of any adjacent community states
708 (i.e., bottoms of basins). **(D)** Key taxa whose abundance represent basins. In the upper panel, the
709 mean proportion of soil samples with the minimum level of plant (crop) disease symptoms (the
710 percentage of diseased plants < 20 or disease severity index < 20) is shown for each basin. The
711 lower panel indicates the key taxa whose abundance characterizes difference among the bottoms
712 of the basins.

713 **Figure supplement 1.** Energy landscape of fungal communities (family-level compositions;
714 threshold for binarization = 0.001; occurrence threshold = 0.10; $S = 42$).

715



716

717 **Figure 6.** Disconnectivity graphs of the energy landscapes. **(A)** Schema of a disconnectivity
718 graph. The energy of the “tipping points” splitting basins of attraction are presented across the
719 axis of 2^S possible community states, where S denotes the number of the species or taxa
720 examined. The energy of the bottom of each basin is shown. **(B)** Tipping points and basins on the
721 energy landscape of prokaryotes. The major basins of attraction with ≥ 10 samples with plant-
722 disease information are highlighted with the colors defined in Figure 4. **(C)** Tipping points and
723 basins on the energy landscape of fungi. The major basins of attraction with ≥ 10 samples with
724 plant-disease information are highlighted with the colors defined in Figure 5.

725