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Abstract 34 

Theory predicts that biological communities can have multiple basins of attraction in terms of 35 
their species/taxonomic compositions. The presence of such basins of community structure has 36 
been examined in classic empirical studies on forest–savanna transitions and those on 37 
eutrophication in freshwater lakes. Nonetheless, it remains a major challenge to extend the 38 
investigations of multistability to species-rich microbial communities. By targeting soil 39 
microbiomes, we infer the stability landscapes of community structure based on the concepts of 40 
statistical physics. Our analysis on the compiled dataset involving 11 archaeal, 332 bacterial, and 41 
240 fungal families detected from > 1,500 agroecosystem soil samples suggested that both 42 
prokaryotic and fungal community compositions could be classified into several basins of 43 
attraction. We also found that the basins differed greatly in their associations with crop disease 44 
prevalence in agroecosystems. A further analysis highlighted microbial taxa potentially playing 45 
key roles in transitions between basins with different ecosystem-scale functions. The statistical 46 
framework commonly applicable to diverse microbial and non-microbial communities will 47 
reorganize our understanding of relationship among community structure, stability, and functions.  48 

 49 
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Introduction 51 

The idea that the state space of biological community structure can comprise multiple basins of 52 
attraction have inspired both empirical and theoretical ecologists since the late 1960s (Beisner et 53 
al., 2003; May, 1977; Scheffer et al., 1993). The concept of multistability has been examined in 54 
aquatic and terrestrial ecosystems (Scheffer and Carpenter, 2003; Schröder et al., 2005; Suding 55 
and Hobbs, 2009). Community structure in shallow lakes, for example, is known to show two 56 
discrete states depending on nutrient (phosphorus) concentrations as represented by the bistability 57 
of charophyte densities (Ibelings et al., 2007; Scheffer et al., 1993; Smith and Schindler, 2009). 58 
Likewise, worldwide inventories of tree cover have shown that forest and savanna vegetation 59 
types possibly represent different basins of attraction (Hirota et al., 2011; Staver et al., 2011b, 60 
2011a). Those studies have further shown that ecosystem functions (e.g., fishery, agricultural, and 61 
forestry production) can differ greatly between such basins of biological community structure 62 
(Gunderson, 2000; Scheffer et al., 2001, 1993; Scheffer and Carpenter, 2003). Consequently, 63 
understanding how structure, stability, and biological functions are organized in real communities 64 
and ecosystems has been one of the major goals in ecology.  65 

 While classic studies targeting freshwater and terrestrial biomes have explored basins of 66 
attraction based on simple characterization of community states (e.g., tree cover percentages), 67 
recent technical advances in microbial community (microbiome) research have come to provide 68 
opportunities for deepening our knowledge of biological community stability (Amor et al., 2020; 69 
Costea et al., 2017; Faust et al., 2015; Shaw et al., 2019; Toju et al., 2018; Zaneveld et al., 2017). 70 
Based on amplicon and shotgun sequencing technologies, large datasets of microbial 71 
species/taxonomic compositions have been made available, providing a basis for exploring 72 
reproducible states in microbiome community structure (Amor et al., 2020; H Fujita et al., 2023; 73 
Hayashi et al., 2024). Such high-throughput DNA sequencing studies in medicine, for example, 74 
have shown that human individuals can be classified into three or four semi-discrete clusters in 75 
terms of their intestinal microbiome compositions (Arumugam et al., 2011; Wu et al., 2011) [see 76 
also (Jeffery et al., 2012; Knights et al., 2014)]. Intriguingly, these alternative gut microbiomes 77 
(“enterotypes”) differ in their associations with human disease such as type II diabetes and 78 
Crohn’s disease (Costea et al., 2017). In addition to those studies on animal-associated 79 
microbiomes (Arumugam et al., 2011; Moeller et al., 2012; Yajima et al., 2023), studies on plant-80 
associated microbiomes have started to reorganize our recognition of how multistability of 81 
phyllosphere/rhizosphere microbiome structure is associated with ecosystem-scale processes and 82 
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functions (Toju et al., 2018, 2016). Because hundreds or thousands of replicate community 83 
samples are available in such microbiome studies, it is now possible to discuss potential 84 
relationship between community structure and ecosystem functions based on statistical signs of 85 
the presence of multiple basins (and background attractors).  86 

 In theoretical ecology, stability of community states (taxonomic or species compositions) is 87 
often discussed in the framework of stability landscapes (Beisner et al., 2003; Hastings et al., 88 
2018; Lewontin, 1969; Scheffer and Carpenter, 2003; Suzuki et al., 2021). On the landscape 89 
representing stability/instability of community structure, basins of attraction are split by “tipping 90 
points” representing unstable equilibria (Beisner et al., 2003; Scheffer et al., 2001; Scheffer and 91 
Carpenter, 2003; Suzuki et al., 2021) (Figure 1). As these basins differ in the biological functions 92 
of constituent communities, stable and highly functional community states can be explored within 93 
the stability landscapes. With the application of a recently proposed mathematical approach 94 
developed based on statistical physics (Becker and Karplus, 1997; Watanabe et al., 2014), it is 95 
now possible to infer “energy landscapes”, which represent structure of stability landscapes, from 96 
empirical datasets of ecological communities (Dakos and Kéfi, 2022; Sánchez-Pinillos et al., 97 
2024; Suzuki et al., 2021). The statistical framework allows us to explore the probabilities of 98 
community compositions within the “assembly graphs” (Coyte et al., 2021; Serván and Allesina, 99 
2021) representing paths of possible community assembly (H Fujita et al., 2023; Suzuki et al., 100 
2021) (Figure 1). Although hundreds or thousands of community compositional data points are 101 
required to apply the statistical approach (H Fujita et al., 2023; Suzuki et al., 2021), such energy 102 
landscape analyses will allow us to define key features of stable and highly functional 103 
microbiome states out of numerous possible combinations of microbial species or taxa. Despite 104 
the potential for systematically profiling the relationship among community structure, stability, 105 
and functions based on massive community datasets, the energy landscape analysis has been 106 
applied only to a few microbial community datasets (H Fujita et al., 2023; Suzuki et al., 2021). 107 

 We here apply the emerging statistical framework to soil microbiomes, which often show 108 
highest levels of structural diversity in nature. We compile a cropland soil microbiome dataset 109 
consisting of > 1,500 sampling positions across the Japan Archipelago (Fujita et al., 2024). With 110 
the massive dataset, we infer the compositional stability of prokaryotic and fungal communities 111 
based on maximum entropy models of the energy landscape analysis (Suzuki et al., 2021). We 112 
then examine whether the basins of attraction of soil microbiomes can differ in ecosystem-scale 113 
functions by focusing on potential relationship between soil microbial compositions and the 114 
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prevalence of crop plant disease. We also explore key microbial taxa whose abundance critically 115 
divide the basins representing favorable and unfavorable ecosystem functions. The results of the 116 
energy landscape analysis are further used to infer tipping points splitting the inferred basins. 117 
Overall, this study illustrates how we can integrate the information of community structure, 118 
stability, and functions based on a statistical platform commonly applicable to diverse microbial 119 
and non-microbial communities.  120 

 121 

Methods 122 

Dataset compilation 123 

We compiled a publicly available dataset of cropland soil microbiomes (DDBJ accession: 124 
DRA015491; Figure 2) with its metadata of the samples (Fujita et al., 2024). In the previous 125 
study reporting the data (Fujita et al., 2024), 2,903 bulk soil samples collected from the field of 126 
19 crop plant species (apple, broccoli, cabbage, celery, Chinese cabbage, eggplant, ginger, 127 
komatsuna, lettuce, onion, potato, radish, rice, satsuma mandarin, soybean, spinach, strawberry, 128 
sweet corn, tomato) across the Japan Archipelago from January 23, 2006 to July 28, 2014 129 
(latitudes of the sampling positions: 26.1–42.8 °N) were subjected to the amplicon sequencing 130 
analysis of the prokaryotic 16S rRNA region and the fungal internal transcribed spacer 1 (ITS1) 131 
region (Fujita et al., 2024). The information of dry soil pH, electrical conductivity, 132 
carbon/nitrogen (C/N) ratio, and available phosphorous concentration was available for 2,830, 133 
2,610, 2,346, and 2,249 samples, respectively. Likewise, the information of crop plant disease 134 
[the percentage of diseased plants or disease severity index (Chiang et al., 2017)] was available 135 
for 1,471 samples (Fujita et al., 2024). The plant pathogens surveyed were Colletotrichum 136 
gloeosporioides on the strawberry, Fusarium oxysporum on the celery, the lettuce, the strawberry, 137 
and the tomato, Phytophthora sojae on the soybean, Plasmodiophora brassicae on Cruciferae 138 
plants, Pyrenochaeta lycopersici on the tomato, Pythium myriotylum on the ginger, Ralstonia 139 
solanacearum on the eggplant and the tomato, and Verticillium spp. on Chinese cabbage (Fujita 140 
et al., 2024). After a series of quality filtering, prokaryotic and fungal community data were 141 
available for 2,318 and 2,186 samples, respectively. In total, 579 archaeal amplicon sequence 142 
variants (ASVs) representing 11 families, 26,640 bacterial ASVs representing 332 families, and 143 
6,306 fungal ASVs representing 240 families were detected (Fujita et al., 2024) (Figures 2; 144 
Figure 2–figure supplement 1). 145 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2024. ; https://doi.org/10.1101/2022.08.23.505048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505048
http://creativecommons.org/licenses/by/4.0/


 7 

 146 

Community structure along environmental gradients 147 

We first inspected how prokaryotic and fungal community structure varied along environmental 148 
gradients. For each data matrix representing the family-level compositions of prokaryotes or 149 
fungi, a principal coordinate analysis (PCoA) was performed based on Bray-Curtis b-diversity. 150 
The PCoA1 and PCoA2 scores were then plotted, respectively, along the axes of soil 151 
environmental factors. Specifically, the axes of the environmental factors were defined based on 152 
a principal component analysis (PCA) of soil pH, electrical conductivity, C/N ratio, and available 153 
phosphorous concentration. In total, 1,771 and 1,664 samples for which the information of both 154 
community structure and all the four environmental variables was available were included in the 155 
analyses of prokaryotes and fungi, respectively. For each plot representing relationship between 156 
environmental conditions and community structure, the density of data points was visualized with 157 
the ggplot2 3.3.6 package (Wickham, 2011) of R v.4.1.2 (R Core Team, 2020). 158 

 159 

Energy landscape analysis 160 

We examined the stability landscape of soil microbiome structure based on the framework of an 161 
energy landscape analysis (H Fujita et al., 2023; Suzuki et al., 2021; Watanabe et al., 2014) 162 
(tutorials of energy landscape analyses are available at https://github.com/kecosz/rELA). In the 163 
framework, the term “energy” is defined by the following equations based on statistical physics 164 
(Suzuki et al., 2021; Watanabe et al., 2014). Within the “assembly graphs” representing paths of 165 
community dynamics (Coyte et al., 2021; Serván and Allesina, 2021), probabilities of observing 166 
specific community compositions can be explored as detailed previously (Suzuki et al., 2021). In 167 
brief, probabilities of community states p"#⃗(")%	are given by 168 

'"#⃗(")|)% = +$%(&''⃗ ("),*)/- [eq. 1] 169 

- = ∑ +$%(&''⃗ ($),*)+%
,-.  [eq. 2], 170 

where #⃗(") = (#.("), #+("), … , #/(")) is a community state vector of k-th community state and S is 171 
the total number of taxa (e.g., ASVs, species, genera, or families) examined. ) = ()., )+, … , )0) 172 
is an array of continuous values representing environmental factors (e.g., soil pH and electrical 173 

conductivity) and M is the total number of environmental parameters. #1(") is a binary variable 174 
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that represents presence (1) or absence (0) of taxon i: i.e., there are a total of 2/ community 175 
states. As the exploration of the 2/ community states were computationally intensive, we coded 176 
community states at the family-level taxonomic compositions. Specifically, for each sample, 177 
families whose relative abundance exceeds a certain threshold value (threshold for binarization) 178 
were coded as 1, while the remaining minor families were coded as 0. Subsequently, families 179 
whose occurrence ratios (i.e., the proportions of samples in which target families were coded as 180 
1) were less than a certain threshold (occurrence threshold) were excluded from the dataset. 181 
Likewise, families that appeared in almost all samples (1 – occurrence threshold) were excluded. 182 
Note that without such thinning of input data, the dimensions of community states are too high to 183 
be explored even using supercomputers. Therefore, exclusion of the taxa that contribute little to 184 
the classification of community states (i.e., taxa appearing only in a small fraction of samples or 185 
those appearing in most samples) is inevitable in the energy landscape analysis. Through 186 
intensive preliminary computational runs with various combinations of binarization and 187 
occurrence thresholds, we found that the number of taxa (S) should be kept less than 65 as 188 
detailed in the next subsection.  189 

 When input community matrix is defined, the energy of the community state #⃗(") is given 190 
by the extended pairwise maximum entropy model: 191 

4(#⃗("), )) = 	−∑ ℎ,#⃗,(") −∑ ∑ 7,20
,-. ),(")#2(")/

2-. −∑ ∑ 8,2#⃗,(")/
2-. #⃗2(")/2/

,-.
/
,-.  [eq. 3], 192 

where ℎ, represents the net effect of implicit abiotic factors, by which i-th taxon is more likely 193 
to present (hi > 0) or not (hi < 0), 7,2 represents the effect of the i-th observed environmental 194 
factor, and 8,2 represents a co-occurrence pattern of i-th and j-th taxa. Since the logarithm of the 195 

probability of a community state is inversely proportional to 4(#⃗(")), a community state having 196 
lower E is more frequently observed. To consider dynamics on an assembly graph defined as a 197 
network whose 2/ nodes represent possible community states and the edges represents transition 198 
path between them (two community states are adjacent only if they have the opposite 199 
presence/absence status for just one species), we assigned energy to nodes with the above 200 
equation, and so imposed the directionality in state transitions. Then, by using the steepest 201 
descent algorithm (Suzuki et al., 2021), we identified nodes having the lowest energy compared 202 
to all its neighbors within the weighted network, and determined their basins of attraction 203 
(Lewontin, 1969; Suzuki et al., 2021). These community states whose energy was lower than that 204 
of all adjacent community states represent estimated point equilibria (attractors), around which 205 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2024. ; https://doi.org/10.1101/2022.08.23.505048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505048
http://creativecommons.org/licenses/by/4.0/


 9 

community states are expected to show transient fluctuations due to demographic stochasticity as 206 
considered in the statistical framework (H Fujita et al., 2023; Suzuki et al., 2021) (Figure 1). Soil 207 
pH, electrical conductivity, C/N ratio, and available phosphorous concentration were included as 208 
environmental variables in the model after normalization within the ranges from 0 to 1. 209 

 210 

Energy landscape structure 211 

The energy landscapes of community structure were inferred, respectively, for three types of 212 
datasets, namely, the prokaryotic community matrix, the fungal matrix, and the matrix including 213 
both prokaryotes and fungi. As mentioned above, various combinations of binarization and 214 
occurrence thresholds were examined to check the reproducibility of the results. In addition to the 215 
energy landscape analysis based on the above-mentioned family-level delineation of community 216 
states, analyses based on community-state delineation at the order-level were performed. In the 217 
main body and supplementary figures of this study, we show the results at the following settings: 218 
prokaryotes (family), binarization = 0.020, occurrence = 0.10; prokaryotes (order), binarization = 219 
0.020, occurrence = 0.10; fungi (family), binarization = 0.001, occurrence = 0.05; fungi (family), 220 
binarization = 0.001, occurrence = 0.10; prokaryotes + fungi (family), binarization = 0.030, 221 
occurrence = 0.10; prokaryotes + fungi (order), binarization = 0.030, occurrence = 0.10. Note that 222 
these thresholds were selected to make the state space (2/) neither too simplified (e.g., S < 30) 223 
nor too complex (S < 65).  224 

 For each setting, the parameters of the extended pairwise maximum entropy model [eq. 3] 225 
were adjusted to the empirical data. More precisely, the maximum likelihood estimates of hi, 7,2, 226 
and 8,2 was obtained by a stochastic approximation method as detailed elsewhere (Suzuki et al., 227 
2021). The parameters were regularized by a logistic prior with location 0 and scale 2.0 (for 228 
environmental responses) or 0.5 (for pairwise relationships) (Harris, 2016). Hyperparameters for 229 
the algorithm, criterion value for judging the convergence of parameters qth = 10-5, were set 230 
according to a series of preliminary analyses. Based on the inferred maximum entropy model, we 231 
determined basins of attraction (Lewontin, 1969) within the energy landscape based on a steepest 232 
descent procedure (Suzuki et al., 2021). The structure of the energy landscape was visualized by 233 
showing the energy of each soil sample on the two-dimensional surface of the community state 234 
space defined with the abovementioned PCoA scores. The default setting of environmental 235 
variables (the mean value for each of soil pH, electrical conductivity, C/N ratio, and available 236 
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 10 

phosphorous concentration) was used in the energy calculation. Spline smoothing of the energy 237 
landscape was performed with optimized penalty scores using the mgcv v.1.8-40 package (Wood, 238 
2022) of R. For each analysis of the prokaryote, fungi, and prokaryote + fungi datasets, 1,771, 239 
1,664, and 1,474 samples for which the information of both community structure and all the four 240 
environmental variables was available were subjected to the analysis, respectively. 241 

  242 

Ecosystem functions and key taxa 243 

For the inferred basins of microbial community compositions, associations with crop disease 244 
prevalence were examined. We first constructed the list of soil samples whose community 245 
structure was located within each basin of attraction. We then evaluated the ecosystem-scale 246 
properties of the basins in light of the metadata of crop disease symptoms (Fujita et al., 2024). 247 
Specifically, for each basin, we calculated the proportion of constituent soil samples with the 248 
minimal level of crop disease symptoms (the percentage of diseased plants < 20 or disease 249 
severity index < 20; (Fujita et al., 2024)). The bottoms of basins representing different levels of 250 
crop disease prevalence were then compared in terms of taxonomic compositions in order to 251 
explore microbial taxa that were keys to distinguish potentially disease-suppressive and disease-252 
promotive soil ecosystems.  253 

 254 

Disconnectivity graphs 255 

For the reconstructed energy landscape, we inferred “disconnectivity graphs” (Suzuki et al., 256 
2021) representing how basins of attraction were split by tipping points (Figure 1A). Within a 257 
disconnectivity graph, community states whose energy is much lower than the energy of 258 
connected tipping points are expected to be resistant to perturbations (demographic stochasticity). 259 
In contrast, community states with small energy gaps to tipping points may be shifted from 260 
current basins to adjacent basins with minimal perturbations.  261 

 262 

Results 263 

Community structure along environmental gradients 264 
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On each plot showing community compositions (PCoA1 or PCoA2 scores) along the soil 265 
environmental gradient (Figure 3), multiple clusters of data points were observed for both 266 
prokaryotes and fungi (Figure 3–figure supplements 1-2). In other words, community states are 267 
expected to be classified into some clusters even under equivalent edaphic conditions.  268 

  269 

Energy landscape structure 270 

The energy landscape of the family-level prokaryotic data included several major basins differing 271 
remarkably in associations with the prevalence of crop plant disease (Figure 4). Specifically, 272 
59.6% of soil samples located within a basin (basin ID = 0IK1G2) were associated with the 273 
minimal plant-disease level, while the proportion was only 10.7% for another basin (LQWZ02) 274 
(Figure 4C-D). The presence of basins differing greatly in their associations with plant-disease 275 
levels was inferred as well at the order-level analysis of the prokaryotic data (Figure 4–figure 276 
supplement 1). Such variation in crop disease prevalence among inferred basins was observed 277 
also for the family-level analysis of fungal community structure (Figure 5). Specifically, while 278 
57.9% of samples belonging to the basin 7QH9moTf8Xa, but none of the samples belonging to 279 
the basin 68C0849W020, were associated with the minimal plant-disease level (Figure 5D). 280 
Meanwhile, such difference in associations with disease prevalence was moderate in an analysis 281 
in which a smaller number of fungal families were examined to define community states (Figure 282 
5–figure supplement 1). The presence of multiple basins, which differed in associations with 283 
crop-disease prevalence, was suggested even when prokaryotic and fungal community data were 284 
simultaneously analyzed (Figure 4–figure supplements 2-3).  285 

 286 

Ecosystem functions and key taxa 287 

In an analysis of the prokaryotic community structure, 19 families were keys to distinguish basins 288 
differing in associations with crop-disease prevalence (Figure 4D). The presence of 289 
Pyrinomonadaceae and Vicinamibacteraceae, for example, was unique to the basin with the 290 
highest proportion of samples showing the minimal plant-disease level (Figure 4D). Likewise, in 291 
an analysis of the fungal community structure, the basin associated closely with the minimal 292 
plant-disease prevalence (7QH9moTf8Xa) was defined by the presence of several families such 293 
as Basidiobolaceae, Cordycipitaceae, and Gelatinodiscaceae (Figure 5D). The exploration of 294 
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microbial taxa keys to distinguish basins with different ecosystem-level functions can be 295 
performed at other taxonomic levels (e.g., order-level; Figures 4–figure supplements 1 and 3). 296 

 297 

Disconnectivity graphs 298 

Within the energy landscape of the family-level analysis of prokaryotes (Figure 4), both the 299 
basins associated with the least-diseased (OIK1G2) and most-diseased (N21H04) crop status 300 
were the deepest among the inferred basins (i.e., showing the largest energy gaps from the bottom 301 
to tipping points; Figure 6A-B). In the family-level analysis of fungi, the basin associated with 302 
the least-diseased status (7QH9moTf8Xa) was the deepest, while the other basin representing the 303 
most-diseased status (68C0849W020) was the shallowest (Figure 6C). 304 

 305 

Discussion 306 

We have estimated the stability landscape structure of complex microbiomes based on a 307 
statistical framework commonly applicable to diverse types of biological communities. The 308 
energy landscape analysis allows systematic analyses of taxon-rich community datasets by 309 
incorporating the information of multiple environmental factors (Dakos and Kéfi, 2022; Sánchez-310 
Pinillos et al., 2024; Suzuki et al., 2021). While classic studies on community multistability have 311 
discussed ecological processes spanning a few intuitively distinguishable community states 312 
[high/low tree cover in forest-savanna transitions (Hirota et al., 2011; Staver et al., 2011a, 2011b) 313 
or macrophyte-/phytoplankton-dominated state in shallow lakes (Ibelings et al., 2007; Scheffer 314 
and Carpenter, 2003)], it is now made possible to define basins of attraction based on high-315 
dimensional community datasets involving hundreds of species/taxa (Arumugam et al., 2011; 316 
Costea et al., 2017; H Fujita et al., 2023; Guim Aguadé-Gorgorió et al., 2023; Hayashi et al., 317 
2024). Application of the general statistical platform will enhance our understanding of how 318 
stability landscape properties differ among diverse microbial and non-microbial systems. 319 

 Despite numerous potential compositions (2/ community states; S is the number of 320 
considered species/taxa), the prokaryotic and fungal community states were grouped into small 321 
numbers of basins within energy landscapes (Figures 4-5). This result suggests that soil 322 
microbiome structure remain within certain regions even after demographic perturbations. In 323 
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other words, once trapped in a basin of attraction, large shifts in community structure would not 324 
occur without perturbations whose strength exceed certain thresholds (Beisner et al., 2003; 325 
Lewontin, 1969; May, 1977; Scheffer et al., 1993). Importantly, the threshold strength of 326 
perturbations is estimated as the energy gap between bottoms of basins and tipping points (Suzuki 327 
et al., 2021) (Figure 6A). Furthermore, potential paths of community structural transitions can be 328 
quantitatively inferred as illustrated in disconnectivity graphs (Suzuki et al., 2021) (Figures 6B-329 
C). Such statistical framework of quantitative science will entail novel opportunities for testing 330 
theories on biological community processes in the era of massive datasets.  331 

 Among potential processes or mechanisms underlying the multistability of community 332 
structure, historical contingency is of particular interest (Fukami, 2015). In the local assembly of 333 
microbial communities, early colonizers or residents can prevent the settlement of followers by 334 
constructing physical barriers (e.g., biofilms and mycelia) (Baümler and Sperandio, 2016; 335 
Fukami, 2015; Leopold et al., 2017; Verbruggen et al., 2013; Werner and Kiers, 2015) or 336 
emitting antibiotics (Mendes et al., 2013; Raaijmakers et al., 2002). In addition to those 337 
antagonistic effects on late colonizers, webs of mutualistic or commensalistic interactions within 338 
the microbiomes of early colonizers (Elias and Banin, 2012; Hiroaki Fujita et al., 2023; Zelezniak 339 
et al., 2015) would influence community dynamics. Due to such “priority effects” (Fukami, 340 
2015), bacterial and fungal community compositions may persist within limited ranges of 341 
community states without substantial perturbations. Given that abilities to form physical or 342 
chemical barriers can differ greatly among microbial species/taxa (Mendes et al., 2013; 343 
Raaijmakers et al., 2002; Werner and Kiers, 2015), such variation in constituent species’ priority 344 
effects may underly the observed variation in the depth of basins (Figure 6B-C).  345 

 The inference of stability landscape structure provided an opportunity for evaluating 346 
relationship between community stability and ecosystem-scale functions. The basins of attraction 347 
of prokaryotic/fungal community structure differed considerably in associations with crop disease 348 
prevalence (Figure 5), suggesting the presence of “stable and favorable” and “stable but 349 
unfavorable” states of microbiomes (Mendes et al., 2011; Schlatter et al., 2017; Yuan et al., 2020) 350 
in terms of agricultural productivity. This finding adds an important dimension of discussion on 351 
the use of microbes in agriculture. Beyond investigations on single species/strains of microbes, 352 
microbiome studies have explored sets of microbes that collectively maximize biological 353 
functions (Jansson and Hofmockel, 2018; Toju et al., 2018; Trivedi et al., 2020; Vorholt et al., 354 
2017). In particular, experimental studies on “synthetic” communities have reorganized our 355 
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knowledge of microbiome functions (Jansson and Hofmockel, 2018; Trivedi et al., 2020; Vorholt 356 
et al., 2017). Nonetheless, such microbial functions cannot be realized in real agroecosystems if 357 
the synthesized or designed microbiome compositions are vulnerable to biotic and abiotic 358 
environmental changes in the wild (Mazzola and Freilich, 2017). Thus, in addition to functional 359 
properties, compositional stability is the key to manage microbiomes in agroecosystems (Faust 360 
and Raes, 2012; Toju et al., 2020; Vorholt et al., 2017).  361 

 In our analysis across the Japan Archipelago, prokaryotic and fungal taxa keys to 362 
distinguish least-diseased and severely-diseased states of soil microbiomes were highlighted 363 
(Figures 4-5). Among them, Basidiobolaceae and Cordycipitaceae are of particular interest 364 
because they include many species potentially utilized as biological control agents for 365 
suppressing pest insects (Meyling and Eilenberg, 2007; Möckel et al., 2022). Gelatinodiscaceae is 366 
another fungal taxon playing potentially important roles as symbionts of plants (Johnston et al., 367 
2019). These results illuminate the hypothesis that plant disease could be suppressed under the 368 
coexistence of multiple prokaryotic and fungal taxa with favorable ecosystem functions (Toju et 369 
al., 2018; Toju and Tanaka, 2019). Thus, statistical analyses of stability landscapes allow the 370 
exploration of key species or taxa (Paine, 1966; Power et al., 1996), whose management could 371 
result in transitions from unfavorable ecosystem states to favorable ones (Gunderson, 2000; 372 
Scheffer et al., 2001, 1993; Scheffer and Carpenter, 2003). Given that most prokaryotic and 373 
fungal families highlighted in our analysis have cosmopolitan distributions, a next crucial step is 374 
to test whether the basins defined across the Japan Archipelago can be used to categorize disease-375 
suppressive and disease-susceptible microbiomes in other regions on the globe. 376 

 Although the energy landscape analysis enhances our understanding of community stability 377 
and functions, its results should be interpreted with caution. First, given that classic empirical 378 
studies examined community multistability with system-specific simple criteria [e.g., high/low 379 
tree cover (Hirota et al., 2011; Staver et al., 2011a, 2011b)], special care should be taken when 380 
we extend the approach to species-rich (high-dimensional) community datasets (Guim Aguadé-381 
Gorgorió et al., 2023). In other words, unambiguous and broadly applicable criteria based on 382 
statistical evaluation are the prerequisite for comparative analyses of community multistability. 383 
Although we applied a straightforward statistical definition of basins of attraction (Suzuki et al., 384 
2021) (Figure 1) in light of classic theoretical studies (Beisner et al., 2003; Lewontin, 1969; May, 385 
1977; Scheffer et al., 1993), continuous methodological improvements should be explored 386 
towards further comprehensive analyses. Second, our analysis on hyper-diverse soil microbiomes 387 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 3, 2024. ; https://doi.org/10.1101/2022.08.23.505048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.23.505048
http://creativecommons.org/licenses/by/4.0/


 15 

incurred substantial computational costs, forcing us to limit the energy landscape analysis to 388 
family-level input data. Further improvements of codes are necessary for inferring stability 389 
landscapes at genus-, species-, or strain-level analyses. Third, it should be acknowledged that 390 
detailed discussion on ecological processes require time-series datasets (Davidson et al., 2023; 391 
Scheffer et al., 2012, 2009). Because our present data lacked the information of temporal changes 392 
in community structure, we are unable to discuss the frequency and pace of community structural 393 
transitions between basins of attraction. Monitoring of microbiome compositions (Faust et al., 394 
2015; Hayashi et al., 2024; Yajima et al., 2023) is necessary for filling the gap between 395 
theoretical and empirical studies (Long et al., 2024).  396 

 The energy landscape framework of multistability analysis is readily applicable to a wide 397 
range of microbiome datasets. Application to human microbiome data is of particular interest in 398 
terms of the confirmation of the existence of multiple basins of attraction (Jeffery et al., 2012). In 399 
addition, insights into the key microbial species/taxa that would play key roles in the transitions 400 
from disease-associated microbiome states to healthy ones will open new directions of 401 
microbiome therapy. Furthermore, time-series analyses of community dynamics on stability 402 
landscapes will allow us to forecast and prevent transitions into unfavorable community states 403 
[e.g., dysbiosis (Carding et al., 2015; H Fujita et al., 2023; Long et al., 2024)]. Along with such 404 
extensions of observational research, experimental studies controlling key species/taxa or 405 
environmental parameters (Schröder et al., 2005) will promote both basic and applied sciences of 406 
ecosystem functions. 407 
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 635 

Figure 1. Schema of multistability of ecological communities. (A) Basins of attraction and 636 
tipping points. The structure of “stability landscapes” showing relationship between community 637 
states (species or taxonomic compositions) and their stability is inferred based on the energy 638 
landscape analysis. The “energy” of each community state is calculated with maximum entropy 639 
models as detailed in Methods. Lower energy represents a more stable community state on a 640 
stability landscape. Transient fluctuations around the bottoms of basins (i.e., point attractors) are 641 
assumed as probabilistic phenomena in the statistical approach. (B) Assembly graph. To explore 642 
numerous possible states of real ecological communities, input data are binarized in the energy 643 
landscape analysis. Potential transitions between community states are then considered within 644 
“assembly graphs”, in which paths between different species/taxonomic compositions are treated 645 
as network links. Thus, by the assembly-graph approach, the energy landscape analysis provides 646 
a general framework for inferring the structure of stability landscapes in empirical studies of 647 
complex microbiome datasets.  648 
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 650 

Figure 2. Community structure of the source data. The family-level compositions of prokaryotes 651 
(A) and fungi (B) are shown based on the source dataset (Fujita et al., 2024). The soil samples 652 
from which DNA sequence data were unavailable for either prokaryotic 16S rRNA or fungal ITS 653 
regions are indicated as blanks.  654 

Figure supplement 1. Community structure of the source data (order- and genus-level 655 
compositions). 656 
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 658 

Figure 3. Community structure along environmental gradients. The scores representing 659 
prokaryotic/fungal community compositions (community PCoA1 scores) are shown along each 660 
PCA axis of soil environmental conditions. Regarding the environmental PCA axes, factor 661 
loadings of environmental variables examined (pH, electrical conductivity, C/N ratio, and 662 
available phosphorous concentration) are shown separately for prokaryotic (N = 1,771) and 663 
fungal (N = 1,664) datasets.  664 

Figure supplement 1. Prokaryotic community structure along environmental gradients (detailed 665 
analyses). 666 

Figure supplement 2. Fungal community structure along environmental gradients (detailed 667 
analyses). 668 
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 670 

Figure 4. Energy landscape of prokaryotic communities. (A) Inferred energy landscape of 671 
family-level prokaryotic community structure (threshold for binarization = 0.020; occurrence 672 
threshold = 0.10; S = 35). The surface of energy levels was reconstructed across the PCoA space 673 
of fungal community structure (community PCoA1 and PCoA2 scores in Figures 2–figure 674 
supplement 1) based on spline smoothing. Community states with lower energy are inferred to be 675 
more stable. (B) Landscape of crop disease prevalence. Across the PCoA space of prokaryotic 676 
compositions, the proportion of samples with disease severity index < 20 is shown based on 677 
spline smoothing. (C) Community data points on the energy landscape. The axis of “energy of 678 
community state” is more expanded than that in panel A in order to cover the range of samples. 679 
Data points (samples) indicated by the same color belong to the same basins of attraction, which 680 
are represented by the IDs of the community states whose energy is lower than that of any 681 
adjacent community states (i.e., bottoms of basins). (D) Key taxa whose abundance represent 682 
basins. In the upper panel, the mean proportion of soil samples with the minimum level of plant 683 
(crop) disease symptoms (the percentage of diseased plants < 20 or disease severity index < 20) is 684 
shown for each basin. The lower panel indicates the key taxa whose abundance characterizes 685 
difference among the bottoms of the basins.  686 

Figure supplement 1. Energy landscape of prokaryotic communities (order-level compositions; 687 
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threshold for binarization = 0.020; occurrence threshold = 0.10; S = 32). 688 

Figure supplement 2. Energy landscape of communities including both prokaryotes and fungi 689 
(family-level compositions; threshold for binarization = 0.030; occurrence threshold = 0.10; S = 690 
31). 691 

Figure supplement 3. Energy landscape of communities including both prokaryotes and fungi 692 
(order-level compositions; threshold for binarization = 0.030; occurrence threshold = 0.10; S = 693 
32). 694 
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 696 

Figure 5. Energy landscape of fungal communities. (A) Inferred energy landscape of family-level 697 
fungal community structure (threshold for binarization = 0.001; occurrence threshold = 0.05; S = 698 
62). The surface of energy levels was reconstructed across the PCoA space of fungal community 699 
structure (community PCoA1 and PCoA2 scores in in Figures 2–figure supplement 2) based on 700 
spline smoothing. Community states with lower energy are inferred to be more stable. (B) 701 
Landscape of crop disease prevalence. Across the PCoA space of prokaryotic compositions, the 702 
proportion of samples with disease severity index < 20 is shown based on spline smoothing. (C) 703 
Community data points on the energy landscape. The axis of “energy of community state” is 704 
more expanded than that in panel A in order to cover the range of samples. Data points (samples) 705 
indicated by the same color belong to the same basins of attraction, which are represented by the 706 
IDs of the community states whose energy is lower than that of any adjacent community states 707 
(i.e., bottoms of basins). (D) Key taxa whose abundance represent basins. In the upper panel, the 708 
mean proportion of soil samples with the minimum level of plant (crop) disease symptoms (the 709 
percentage of diseased plants < 20 or disease severity index < 20) is shown for each basin. The 710 
lower panel indicates the key taxa whose abundance characterizes difference among the bottoms 711 
of the basins. 712 
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Figure supplement 1. Energy landscape of fungal communities (family-level compositions; 713 
threshold for binarization = 0.001; occurrence threshold = 0.10; S = 42). 714 
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 716 

Figure 6. Disconnectivity graphs of the energy landscapes. (A) Schema of a disconnectivity 717 
graph. The energy of the “tipping points” splitting basins of attraction are presented across the 718 
axis of 2S possible community states, where S denotes the number of the species or taxa 719 
examined. The energy of the bottom of each basin is shown. (B) Tipping points and basins on the 720 
energy landscape of prokaryotes. The major basins of attraction with ³ 10 samples with plant-721 
disease information are highlighted with the colors defined in Figure 4. (C) Tipping points and 722 
basins on the energy landscape of fungi. The major basins of attraction with ³ 10 samples with 723 
plant-disease information are highlighted with the colors defined in Figure 5. 724 
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