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Abstract

Theory predicts that biological communities can have multiple basins of attraction in terms of
their species/taxonomic compositions. The presence of such basins of community structure has
been examined in classic empirical studies on forest—savanna transitions and those on
eutrophication in freshwater lakes. Nonetheless, it remains a major challenge to extend the
investigations of multistability to species-rich microbial communities. By targeting soil
microbiomes, we infer the stability landscapes of community structure based on the concepts of
statistical physics. Our analysis on the compiled dataset involving 11 archaeal, 332 bacterial, and
240 fungal families detected from > 1,500 agroecosystem soil samples suggested that both
prokaryotic and fungal community compositions could be classified into several basins of
attraction. We also found that the basins differed greatly in their associations with crop disease
prevalence in agroecosystems. A further analysis highlighted microbial taxa potentially playing
key roles in transitions between basins with different ecosystem-scale functions. The statistical
framework commonly applicable to diverse microbial and non-microbial communities will

reorganize our understanding of relationship among community structure, stability, and functions.
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Introduction

The idea that the state space of biological community structure can comprise multiple basins of
attraction have inspired both empirical and theoretical ecologists since the late 1960s (Beisner et
al., 2003; May, 1977; Scheffer et al., 1993). The concept of multistability has been examined in
aquatic and terrestrial ecosystems (Scheffer and Carpenter, 2003; Schroder et al., 2005; Suding
and Hobbs, 2009). Community structure in shallow lakes, for example, is known to show two
discrete states depending on nutrient (phosphorus) concentrations as represented by the bistability
of charophyte densities (Ibelings et al., 2007; Scheffer et al., 1993; Smith and Schindler, 2009).
Likewise, worldwide inventories of tree cover have shown that forest and savanna vegetation
types possibly represent different basins of attraction (Hirota et al., 2011; Staver et al., 2011b,
2011a). Those studies have further shown that ecosystem functions (e.g., fishery, agricultural, and
forestry production) can differ greatly between such basins of biological community structure
(Gunderson, 2000; Scheffer et al., 2001, 1993; Scheffer and Carpenter, 2003). Consequently,
understanding how structure, stability, and biological functions are organized in real communities

and ecosystems has been one of the major goals in ecology.

While classic studies targeting freshwater and terrestrial biomes have explored basins of
attraction based on simple characterization of community states (e.g., tree cover percentages),
recent technical advances in microbial community (microbiome) research have come to provide
opportunities for deepening our knowledge of biological community stability (Amor et al., 2020;
Costea et al., 2017; Faust et al., 2015; Shaw et al., 2019; Toju et al., 2018; Zaneveld et al., 2017).
Based on amplicon and shotgun sequencing technologies, large datasets of microbial
species/taxonomic compositions have been made available, providing a basis for exploring
reproducible states in microbiome community structure (Amor et al., 2020; H Fujita et al., 2023;
Hayashi et al., 2024). Such high-throughput DNA sequencing studies in medicine, for example,
have shown that human individuals can be classified into three or four semi-discrete clusters in
terms of their intestinal microbiome compositions (Arumugam et al., 2011; Wu et al., 2011) [see
also (Jeffery et al., 2012; Knights et al., 2014)]. Intriguingly, these alternative gut microbiomes
(“enterotypes”) differ in their associations with human disease such as type II diabetes and
Crohn’s disease (Costea et al., 2017). In addition to those studies on animal-associated
microbiomes (Arumugam et al., 2011; Moeller et al., 2012; Yajima et al., 2023), studies on plant-
associated microbiomes have started to reorganize our recognition of how multistability of

phyllosphere/rhizosphere microbiome structure is associated with ecosystem-scale processes and
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functions (Toju et al., 2018, 2016). Because hundreds or thousands of replicate community
samples are available in such microbiome studies, it is now possible to discuss potential
relationship between community structure and ecosystem functions based on statistical signs of

the presence of multiple basins (and background attractors).

In theoretical ecology, stability of community states (taxonomic or species compositions) is
often discussed in the framework of stability landscapes (Beisner et al., 2003; Hastings et al.,
2018; Lewontin, 1969; Scheffer and Carpenter, 2003; Suzuki et al., 2021). On the landscape
representing stability/instability of community structure, basins of attraction are split by “tipping
points” representing unstable equilibria (Beisner et al., 2003; Scheffer et al., 2001; Scheffer and
Carpenter, 2003; Suzuki et al., 2021) (Figure 1). As these basins differ in the biological functions
of constituent communities, stable and highly functional community states can be explored within
the stability landscapes. With the application of a recently proposed mathematical approach
developed based on statistical physics (Becker and Karplus, 1997; Watanabe et al., 2014), it is
now possible to infer “energy landscapes”, which represent structure of stability landscapes, from
empirical datasets of ecological communities (Dakos and Kéfi, 2022; Sanchez-Pinillos et al.,
2024; Suzuki et al., 2021). The statistical framework allows us to explore the probabilities of
community compositions within the “assembly graphs” (Coyte et al., 2021; Servan and Allesina,
2021) representing paths of possible community assembly (H Fujita et al., 2023; Suzuki et al.,
2021) (Figure 1). Although hundreds or thousands of community compositional data points are
required to apply the statistical approach (H Fujita et al., 2023; Suzuki et al., 2021), such energy
landscape analyses will allow us to define key features of stable and highly functional
microbiome states out of numerous possible combinations of microbial species or taxa. Despite
the potential for systematically profiling the relationship among community structure, stability,
and functions based on massive community datasets, the energy landscape analysis has been

applied only to a few microbial community datasets (H Fujita et al., 2023; Suzuki et al., 2021).

We here apply the emerging statistical framework to soil microbiomes, which often show
highest levels of structural diversity in nature. We compile a cropland soil microbiome dataset
consisting of > 1,500 sampling positions across the Japan Archipelago (Fujita et al., 2024). With
the massive dataset, we infer the compositional stability of prokaryotic and fungal communities
based on maximum entropy models of the energy landscape analysis (Suzuki et al., 2021). We
then examine whether the basins of attraction of soil microbiomes can differ in ecosystem-scale

functions by focusing on potential relationship between soil microbial compositions and the
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prevalence of crop plant disease. We also explore key microbial taxa whose abundance critically
divide the basins representing favorable and unfavorable ecosystem functions. The results of the
energy landscape analysis are further used to infer tipping points splitting the inferred basins.
Overall, this study illustrates how we can integrate the information of community structure,
stability, and functions based on a statistical platform commonly applicable to diverse microbial

and non-microbial communities.

Methods
Dataset compilation

We compiled a publicly available dataset of cropland soil microbiomes (DDBJ accession:
DRAO015491; Figure 2) with its metadata of the samples (Fujita et al., 2024). In the previous
study reporting the data (Fujita et al., 2024), 2,903 bulk soil samples collected from the field of
19 crop plant species (apple, broccoli, cabbage, celery, Chinese cabbage, eggplant, ginger,
komatsuna, lettuce, onion, potato, radish, rice, satsuma mandarin, soybean, spinach, strawberry,
sweet corn, tomato) across the Japan Archipelago from January 23, 2006 to July 28, 2014
(latitudes of the sampling positions: 26.1-42.8 °N) were subjected to the amplicon sequencing
analysis of the prokaryotic 16S rRNA region and the fungal internal transcribed spacer 1 (ITS1)
region (Fujita et al., 2024). The information of dry soil pH, electrical conductivity,
carbon/nitrogen (C/N) ratio, and available phosphorous concentration was available for 2,830,
2,610, 2,346, and 2,249 samples, respectively. Likewise, the information of crop plant disease
[the percentage of diseased plants or disease severity index (Chiang et al., 2017)] was available
for 1,471 samples (Fujita et al., 2024). The plant pathogens surveyed were Colletotrichum
gloeosporioides on the strawberry, Fusarium oxysporum on the celery, the lettuce, the strawberry,
and the tomato, Phytophthora sojae on the soybean, Plasmodiophora brassicae on Cruciferae
plants, Pyrenochaeta lycopersici on the tomato, Pythium myriotylum on the ginger, Ralstonia
solanacearum on the eggplant and the tomato, and Verticillium spp. on Chinese cabbage (Fujita
et al., 2024). After a series of quality filtering, prokaryotic and fungal community data were
available for 2,318 and 2,186 samples, respectively. In total, 579 archaeal amplicon sequence
variants (ASVs) representing 11 families, 26,640 bacterial ASVs representing 332 families, and
6,306 fungal ASVs representing 240 families were detected (Fujita et al., 2024) (Figures 2;
Figure 2—figure supplement 1).


https://doi.org/10.1101/2022.08.23.505048
http://creativecommons.org/licenses/by/4.0/

146

147

148
149
150
151
152
153
154
155
156
157
158

159

160

161
162
163
164
165
166
167
168

169

170

171
172
173
174

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.23.505048; this version posted April 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Community structure along environmental gradients

We first inspected how prokaryotic and fungal community structure varied along environmental
gradients. For each data matrix representing the family-level compositions of prokaryotes or
fungi, a principal coordinate analysis (PCoA) was performed based on Bray-Curtis f-diversity.
The PCoA1l and PCoA2 scores were then plotted, respectively, along the axes of soil
environmental factors. Specifically, the axes of the environmental factors were defined based on
a principal component analysis (PCA) of soil pH, electrical conductivity, C/N ratio, and available
phosphorous concentration. In total, 1,771 and 1,664 samples for which the information of both
community structure and all the four environmental variables was available were included in the
analyses of prokaryotes and fungi, respectively. For each plot representing relationship between
environmental conditions and community structure, the density of data points was visualized with

the ggplot2 3.3.6 package (Wickham, 2011) of R v.4.1.2 (R Core Team, 2020).

Energy landscape analysis

We examined the stability landscape of soil microbiome structure based on the framework of an
energy landscape analysis (H Fujita et al., 2023; Suzuki et al., 2021; Watanabe et al., 2014)
(tutorials of energy landscape analyses are available at https://github.com/kecosz/rELA). In the
framework, the term “energy” is defined by the following equations based on statistical physics
(Suzuki et al., 2021; Watanabe et al., 2014). Within the “assembly graphs” representing paths of
community dynamics (Coyte et al., 2021; Servan and Allesina, 2021), probabilities of observing
specific community compositions can be explored as detailed previously (Suzuki et al., 2021). In

brief, probabilities of community states p(ﬁ(k)) are given by
P(¢®W|e) = e~E@9.e) 17 [eq. 1]

7 = Z?zsl e~E@Ve) [eq. 2],

(k) _(k)
1 10,

where ¢ = (o ) s as(k)) 1s a community state vector of k-th community state and S is

the total number of taxa (e.g., ASVs, species, genera, or families) examined. € = (&4, &, ..., Ey)

is an array of continuous values representing environmental factors (e.g., soil pH and electrical

()

conductivity) and M is the total number of environmental parameters. o;" is a binary variable
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175  that represents presence (1) or absence (0) of taxon i: i.e., there are a total of 25 community

176  states. As the exploration of the 25 community states were computationally intensive, we coded
177  community states at the family-level taxonomic compositions. Specifically, for each sample,

178  families whose relative abundance exceeds a certain threshold value (threshold for binarization)
179  were coded as 1, while the remaining minor families were coded as 0. Subsequently, families
180  whose occurrence ratios (i.e., the proportions of samples in which target families were coded as
181 1) were less than a certain threshold (occurrence threshold) were excluded from the dataset.

182  Likewise, families that appeared in almost all samples (1 — occurrence threshold) were excluded.
183  Note that without such thinning of input data, the dimensions of community states are too high to
184  be explored even using supercomputers. Therefore, exclusion of the taxa that contribute little to
185  the classification of community states (i.e., taxa appearing only in a small fraction of samples or
186  those appearing in most samples) is inevitable in the energy landscape analysis. Through

187  intensive preliminary computational runs with various combinations of binarization and

188  occurrence thresholds, we found that the number of taxa (S) should be kept less than 65 as

189  detailed in the next subsection.

190 When input community matrix is defined, the energy of the community state ¢ is given

191 by the extended pairwise maximum entropy model:

192 E@W,e) = =5 b =25 21, gy e 00 - 25, B3 ;600 679 /2 [eq. 3],

193 where h; represents the net effect of implicit abiotic factors, by which i-th taxon is more likely
194 to present (h; > 0) or not (h; <0), g;; represents the effect of the i-th observed environmental
195  factor, and J;; represents a co-occurrence pattern of i-th and j-th taxa. Since the logarithm of the
196  probability of a community state is inversely proportional to E(G*)), a community state having
197  lower E is more frequently observed. To consider dynamics on an assembly graph defined as a
198  network whose 25 nodes represent possible community states and the edges represents transition
199  path between them (two community states are adjacent only if they have the opposite

200  presence/absence status for just one species), we assigned energy to nodes with the above

201  equation, and so imposed the directionality in state transitions. Then, by using the steepest

202 descent algorithm (Suzuki et al., 2021), we identified nodes having the lowest energy compared
203 to all its neighbors within the weighted network, and determined their basins of attraction

204  (Lewontin, 1969; Suzuki et al., 2021). These community states whose energy was lower than that

205  ofall adjacent community states represent estimated point equilibria (attractors), around which
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community states are expected to show transient fluctuations due to demographic stochasticity as
considered in the statistical framework (H Fujita et al., 2023; Suzuki et al., 2021) (Figure 1). Soil
pH, electrical conductivity, C/N ratio, and available phosphorous concentration were included as

environmental variables in the model after normalization within the ranges from 0 to 1.

Energy landscape structure

The energy landscapes of community structure were inferred, respectively, for three types of
datasets, namely, the prokaryotic community matrix, the fungal matrix, and the matrix including
both prokaryotes and fungi. As mentioned above, various combinations of binarization and
occurrence thresholds were examined to check the reproducibility of the results. In addition to the
energy landscape analysis based on the above-mentioned family-level delineation of community
states, analyses based on community-state delineation at the order-level were performed. In the
main body and supplementary figures of this study, we show the results at the following settings:
prokaryotes (family), binarization = 0.020, occurrence = 0.10; prokaryotes (order), binarization =
0.020, occurrence = 0.10; fungi (family), binarization = 0.001, occurrence = 0.05; fungi (family),
binarization = 0.001, occurrence = 0.10; prokaryotes + fungi (family), binarization = 0.030,
occurrence = 0.10; prokaryotes + fungi (order), binarization = 0.030, occurrence = 0.10. Note that
these thresholds were selected to make the state space (2°) neither too simplified (e.g., S < 30)

nor too complex (S < 65).

For each setting, the parameters of the extended pairwise maximum entropy model [eq. 3]
were adjusted to the empirical data. More precisely, the maximum likelihood estimates of 4i, g;;,
and J;; was obtained by a stochastic approximation method as detailed elsewhere (Suzuki et al.,
2021). The parameters were regularized by a logistic prior with location 0 and scale 2.0 (for
environmental responses) or 0.5 (for pairwise relationships) (Harris, 2016). Hyperparameters for
the algorithm, criterion value for judging the convergence of parameters qth = 107, were set
according to a series of preliminary analyses. Based on the inferred maximum entropy model, we
determined basins of attraction (Lewontin, 1969) within the energy landscape based on a steepest
descent procedure (Suzuki et al., 2021). The structure of the energy landscape was visualized by
showing the energy of each soil sample on the two-dimensional surface of the community state
space defined with the abovementioned PCoA scores. The default setting of environmental

variables (the mean value for each of soil pH, electrical conductivity, C/N ratio, and available
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237  phosphorous concentration) was used in the energy calculation. Spline smoothing of the energy
238  landscape was performed with optimized penalty scores using the mgcv v.1.8-40 package (Wood,
239  2022) of R. For each analysis of the prokaryote, fungi, and prokaryote + fungi datasets, 1,771,
240 1,664, and 1,474 samples for which the information of both community structure and all the four

241  environmental variables was available were subjected to the analysis, respectively.
242
243 Ecosystem functions and key taxa

244  For the inferred basins of microbial community compositions, associations with crop disease
245  prevalence were examined. We first constructed the list of soil samples whose community

246  structure was located within each basin of attraction. We then evaluated the ecosystem-scale
247  properties of the basins in light of the metadata of crop disease symptoms (Fujita et al., 2024).
248  Specifically, for each basin, we calculated the proportion of constituent soil samples with the
249  minimal level of crop disease symptoms (the percentage of diseased plants < 20 or disease

250  severity index < 20; (Fujita et al., 2024)). The bottoms of basins representing different levels of
251  crop disease prevalence were then compared in terms of taxonomic compositions in order to
252  explore microbial taxa that were keys to distinguish potentially disease-suppressive and disease-

253 promotive soil ecosystems.
254
255  Disconnectivity graphs

256  For the reconstructed energy landscape, we inferred “disconnectivity graphs” (Suzuki et al.,

257  2021) representing how basins of attraction were split by tipping points (Figure 1A). Within a
258  disconnectivity graph, community states whose energy is much lower than the energy of

259  connected tipping points are expected to be resistant to perturbations (demographic stochasticity).
260  In contrast, community states with small energy gaps to tipping points may be shifted from

261  current basins to adjacent basins with minimal perturbations.

262

263  Results

264  Community structure along environmental gradients

10
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On each plot showing community compositions (PCoA1l or PCoA2 scores) along the soil
environmental gradient (Figure 3), multiple clusters of data points were observed for both
prokaryotes and fungi (Figure 3—figure supplements 1-2). In other words, community states are

expected to be classified into some clusters even under equivalent edaphic conditions.

Energy landscape structure

The energy landscape of the family-level prokaryotic data included several major basins differing
remarkably in associations with the prevalence of crop plant disease (Figure 4). Specifically,
59.6% of soil samples located within a basin (basin ID = 0IK1G2) were associated with the
minimal plant-disease level, while the proportion was only 10.7% for another basin (LQWZ02)
(Figure 4C-D). The presence of basins differing greatly in their associations with plant-disease
levels was inferred as well at the order-level analysis of the prokaryotic data (Figure 4—figure
supplement 1). Such variation in crop disease prevalence among inferred basins was observed
also for the family-level analysis of fungal community structure (Figure 5). Specifically, while
57.9% of samples belonging to the basin 7QHImoT{8Xa, but none of the samples belonging to
the basin 68C0849W020, were associated with the minimal plant-disease level (Figure 5D).
Meanwhile, such difference in associations with disease prevalence was moderate in an analysis
in which a smaller number of fungal families were examined to define community states (Figure
S—figure supplement 1). The presence of multiple basins, which differed in associations with
crop-disease prevalence, was suggested even when prokaryotic and fungal community data were

simultaneously analyzed (Figure 4—figure supplements 2-3).

Ecosystem functions and key taxa

In an analysis of the prokaryotic community structure, 19 families were keys to distinguish basins
differing in associations with crop-disease prevalence (Figure 4D). The presence of
Pyrinomonadaceae and Vicinamibacteraceae, for example, was unique to the basin with the
highest proportion of samples showing the minimal plant-disease level (Figure 4D). Likewise, in
an analysis of the fungal community structure, the basin associated closely with the minimal
plant-disease prevalence (7QH9moTf8Xa) was defined by the presence of several families such

as Basidiobolaceae, Cordycipitaceae, and Gelatinodiscaceae (Figure 5D). The exploration of

11
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295  microbial taxa keys to distinguish basins with different ecosystem-level functions can be

296  performed at other taxonomic levels (e.g., order-level; Figures 4—figure supplements 1 and 3).
297
298  Disconnectivity graphs

299  Within the energy landscape of the family-level analysis of prokaryotes (Figure 4), both the

300  basins associated with the least-diseased (OIK1G2) and most-diseased (N21H04) crop status

301  were the deepest among the inferred basins (i.e., showing the largest energy gaps from the bottom
302  to tipping points; Figure 6A-B). In the family-level analysis of fungi, the basin associated with
303  the least-diseased status (7TQH9moT{8Xa) was the deepest, while the other basin representing the
304  most-diseased status (68C0849W020) was the shallowest (Figure 6C).

305

306 Discussion

307  We have estimated the stability landscape structure of complex microbiomes based on a

308 statistical framework commonly applicable to diverse types of biological communities. The

309  energy landscape analysis allows systematic analyses of taxon-rich community datasets by

310  incorporating the information of multiple environmental factors (Dakos and Kéfi, 2022; Sanchez-
311  Pinillos et al., 2024; Suzuki et al., 2021). While classic studies on community multistability have
312 discussed ecological processes spanning a few intuitively distinguishable community states

313  [high/low tree cover in forest-savanna transitions (Hirota et al., 2011; Staver et al., 2011a, 2011b)
314  or macrophyte-/phytoplankton-dominated state in shallow lakes (Ibelings et al., 2007; Scheffer
315 and Carpenter, 2003)], it is now made possible to define basins of attraction based on high-

316  dimensional community datasets involving hundreds of species/taxa (Arumugam et al., 2011;
317  Costea et al., 2017; H Fujita et al., 2023; Guim Aguadé-Gorgorid et al., 2023; Hayashi et al.,

318  2024). Application of the general statistical platform will enhance our understanding of how

319  stability landscape properties differ among diverse microbial and non-microbial systems.

320 Despite numerous potential compositions (25 community states; S is the number of
321  considered species/taxa), the prokaryotic and fungal community states were grouped into small
322  numbers of basins within energy landscapes (Figures 4-5). This result suggests that soil

323  microbiome structure remain within certain regions even after demographic perturbations. In
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other words, once trapped in a basin of attraction, large shifts in community structure would not
occur without perturbations whose strength exceed certain thresholds (Beisner et al., 2003;
Lewontin, 1969; May, 1977; Scheffer et al., 1993). Importantly, the threshold strength of
perturbations is estimated as the energy gap between bottoms of basins and tipping points (Suzuki
et al., 2021) (Figure 6A). Furthermore, potential paths of community structural transitions can be
quantitatively inferred as illustrated in disconnectivity graphs (Suzuki et al., 2021) (Figures 6B-
C). Such statistical framework of quantitative science will entail novel opportunities for testing

theories on biological community processes in the era of massive datasets.

Among potential processes or mechanisms underlying the multistability of community
structure, historical contingency is of particular interest (Fukami, 2015). In the local assembly of
microbial communities, early colonizers or residents can prevent the settlement of followers by
constructing physical barriers (e.g., biofilms and mycelia) (Batimler and Sperandio, 2016;
Fukami, 2015; Leopold et al., 2017; Verbruggen et al., 2013; Werner and Kiers, 2015) or
emitting antibiotics (Mendes et al., 2013; Raaijmakers et al., 2002). In addition to those
antagonistic effects on late colonizers, webs of mutualistic or commensalistic interactions within
the microbiomes of early colonizers (Elias and Banin, 2012; Hiroaki Fujita et al., 2023; Zelezniak
et al., 2015) would influence community dynamics. Due to such “priority effects” (Fukami,
2015), bacterial and fungal community compositions may persist within limited ranges of
community states without substantial perturbations. Given that abilities to form physical or
chemical barriers can differ greatly among microbial species/taxa (Mendes et al., 2013;
Raaijmakers et al., 2002; Werner and Kiers, 2015), such variation in constituent species’ priority

effects may underly the observed variation in the depth of basins (Figure 6B-C).

The inference of stability landscape structure provided an opportunity for evaluating
relationship between community stability and ecosystem-scale functions. The basins of attraction
of prokaryotic/fungal community structure differed considerably in associations with crop disease
prevalence (Figure 5), suggesting the presence of “stable and favorable” and “stable but
unfavorable” states of microbiomes (Mendes et al., 2011; Schlatter et al., 2017; Yuan et al., 2020)
in terms of agricultural productivity. This finding adds an important dimension of discussion on
the use of microbes in agriculture. Beyond investigations on single species/strains of microbes,
microbiome studies have explored sets of microbes that collectively maximize biological
functions (Jansson and Hofmockel, 2018; Toju et al., 2018; Trivedi et al., 2020; Vorholt et al.,

2017). In particular, experimental studies on “synthetic” communities have reorganized our
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knowledge of microbiome functions (Jansson and Hofmockel, 2018; Trivedi et al., 2020; Vorholt
et al., 2017). Nonetheless, such microbial functions cannot be realized in real agroecosystems if
the synthesized or designed microbiome compositions are vulnerable to biotic and abiotic
environmental changes in the wild (Mazzola and Freilich, 2017). Thus, in addition to functional
properties, compositional stability is the key to manage microbiomes in agroecosystems (Faust

and Raes, 2012; Toju et al., 2020; Vorholt et al., 2017).

In our analysis across the Japan Archipelago, prokaryotic and fungal taxa keys to
distinguish least-diseased and severely-diseased states of soil microbiomes were highlighted
(Figures 4-5). Among them, Basidiobolaceae and Cordycipitaceae are of particular interest
because they include many species potentially utilized as biological control agents for
suppressing pest insects (Meyling and Eilenberg, 2007; Mdckel et al., 2022). Gelatinodiscaceae is
another fungal taxon playing potentially important roles as symbionts of plants (Johnston et al.,
2019). These results illuminate the hypothesis that plant disease could be suppressed under the
coexistence of multiple prokaryotic and fungal taxa with favorable ecosystem functions (Toju et
al., 2018; Toju and Tanaka, 2019). Thus, statistical analyses of stability landscapes allow the
exploration of key species or taxa (Paine, 1966; Power et al., 1996), whose management could
result in transitions from unfavorable ecosystem states to favorable ones (Gunderson, 2000;
Scheffer et al., 2001, 1993; Scheffer and Carpenter, 2003). Given that most prokaryotic and
fungal families highlighted in our analysis have cosmopolitan distributions, a next crucial step is
to test whether the basins defined across the Japan Archipelago can be used to categorize disease-

suppressive and disease-susceptible microbiomes in other regions on the globe.

Although the energy landscape analysis enhances our understanding of community stability
and functions, its results should be interpreted with caution. First, given that classic empirical
studies examined community multistability with system-specific simple criteria [e.g., high/low
tree cover (Hirota et al., 2011; Staver et al., 2011a, 2011b)], special care should be taken when
we extend the approach to species-rich (high-dimensional) community datasets (Guim Aguadé-
Gorgori6 et al., 2023). In other words, unambiguous and broadly applicable criteria based on
statistical evaluation are the prerequisite for comparative analyses of community multistability.
Although we applied a straightforward statistical definition of basins of attraction (Suzuki et al.,
2021) (Figure 1) in light of classic theoretical studies (Beisner et al., 2003; Lewontin, 1969; May,
1977, Scheffer et al., 1993), continuous methodological improvements should be explored

towards further comprehensive analyses. Second, our analysis on hyper-diverse soil microbiomes
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388  incurred substantial computational costs, forcing us to limit the energy landscape analysis to

389  family-level input data. Further improvements of codes are necessary for inferring stability

390 landscapes at genus-, species-, or strain-level analyses. Third, it should be acknowledged that

391  detailed discussion on ecological processes require time-series datasets (Davidson et al., 2023;
392 Scheffer et al., 2012, 2009). Because our present data lacked the information of temporal changes
393  in community structure, we are unable to discuss the frequency and pace of community structural
394  transitions between basins of attraction. Monitoring of microbiome compositions (Faust et al.,
395  2015; Hayashi et al., 2024; Yajima et al., 2023) is necessary for filling the gap between

396  theoretical and empirical studies (Long et al., 2024).

397 The energy landscape framework of multistability analysis is readily applicable to a wide
398  range of microbiome datasets. Application to human microbiome data is of particular interest in
399  terms of the confirmation of the existence of multiple basins of attraction (Jeffery et al., 2012). In
400  addition, insights into the key microbial species/taxa that would play key roles in the transitions
401  from disease-associated microbiome states to healthy ones will open new directions of

402  microbiome therapy. Furthermore, time-series analyses of community dynamics on stability

403  landscapes will allow us to forecast and prevent transitions into unfavorable community states
404  [e.g., dysbiosis (Carding et al., 2015; H Fujita et al., 2023; Long et al., 2024)]. Along with such
405  extensions of observational research, experimental studies controlling key species/taxa or

406  environmental parameters (Schroder et al., 2005) will promote both basic and applied sciences of

407  ecosystem functions.
408
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636  Figure 1. Schema of multistability of ecological communities. (A) Basins of attraction and

637  tipping points. The structure of “stability landscapes” showing relationship between community
638  states (species or taxonomic compositions) and their stability is inferred based on the energy
639  landscape analysis. The “energy” of each community state is calculated with maximum entropy
640  models as detailed in Methods. Lower energy represents a more stable community state on a
641  stability landscape. Transient fluctuations around the bottoms of basins (i.e., point attractors) are
642  assumed as probabilistic phenomena in the statistical approach. (B) Assembly graph. To explore
643  numerous possible states of real ecological communities, input data are binarized in the energy
644  landscape analysis. Potential transitions between community states are then considered within
645  “assembly graphs”, in which paths between different species/taxonomic compositions are treated
646  as network links. Thus, by the assembly-graph approach, the energy landscape analysis provides
647  a general framework for inferring the structure of stability landscapes in empirical studies of

648  complex microbiome datasets.
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Figure 2. Community structure of the source data. The family-level compositions of prokaryotes

(A) and fungi (B) are shown based on the source dataset (Fujita et al., 2024). The soil samples

from which DNA sequence data were unavailable for either prokaryotic 16S rRNA or fungal ITS

regions are indicated as blanks.

Figure supplement 1. Community structure of the source data (order- and genus-level

compositions).
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659  Figure 3. Community structure along environmental gradients. The scores representing

660  prokaryotic/fungal community compositions (community PCoA1 scores) are shown along each
661  PCA axis of soil environmental conditions. Regarding the environmental PCA axes, factor

662  loadings of environmental variables examined (pH, electrical conductivity, C/N ratio, and

663  available phosphorous concentration) are shown separately for prokaryotic (N =1,771) and

664  fungal (N = 1,664) datasets.

665  Figure supplement 1. Prokaryotic community structure along environmental gradients (detailed

666  analyses).

667  Figure supplement 2. Fungal community structure along environmental gradients (detailed

668  analyses).
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Figure 4. Energy landscape of prokaryotic communities. (A) Inferred energy landscape of
family-level prokaryotic community structure (threshold for binarization = 0.020; occurrence
threshold = 0.10; S = 35). The surface of energy levels was reconstructed across the PCoA space
of fungal community structure (community PCoA1 and PCoA?2 scores in Figures 2—figure
supplement 1) based on spline smoothing. Community states with lower energy are inferred to be
more stable. (B) Landscape of crop disease prevalence. Across the PCoA space of prokaryotic
compositions, the proportion of samples with disease severity index < 20 is shown based on
spline smoothing. (C) Community data points on the energy landscape. The axis of “energy of
community state” is more expanded than that in panel A in order to cover the range of samples.
Data points (samples) indicated by the same color belong to the same basins of attraction, which
are represented by the IDs of the community states whose energy is lower than that of any
adjacent community states (i.e., bottoms of basins). (D) Key taxa whose abundance represent
basins. In the upper panel, the mean proportion of soil samples with the minimum level of plant
(crop) disease symptoms (the percentage of diseased plants < 20 or disease severity index < 20) is
shown for each basin. The lower panel indicates the key taxa whose abundance characterizes

difference among the bottoms of the basins.

Figure supplement 1. Energy landscape of prokaryotic communities (order-level compositions;
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threshold for binarization = 0.020; occurrence threshold = 0.10; S = 32).

Figure supplement 2. Energy landscape of communities including both prokaryotes and fungi
(family-level compositions; threshold for binarization = 0.030; occurrence threshold = 0.10; S =

31).

Figure supplement 3. Energy landscape of communities including both prokaryotes and fungi
(order-level compositions; threshold for binarization = 0.030; occurrence threshold = 0.10; S =

32).
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697  Figure 5. Energy landscape of fungal communities. (A) Inferred energy landscape of family-level
698  fungal community structure (threshold for binarization = 0.001; occurrence threshold = 0.05; S =
699  62). The surface of energy levels was reconstructed across the PCoA space of fungal community
700  structure (community PCoAl and PCoA2 scores in in Figures 2—figure supplement 2) based on
701  spline smoothing. Community states with lower energy are inferred to be more stable. (B)

702  Landscape of crop disease prevalence. Across the PCoA space of prokaryotic compositions, the
703  proportion of samples with disease severity index < 20 is shown based on spline smoothing. (C)
704  Community data points on the energy landscape. The axis of “energy of community state” is

705  more expanded than that in panel A in order to cover the range of samples. Data points (samples)
706  1indicated by the same color belong to the same basins of attraction, which are represented by the
707  IDs of the community states whose energy is lower than that of any adjacent community states
708  (i.e., bottoms of basins). (D) Key taxa whose abundance represent basins. In the upper panel, the
709  mean proportion of soil samples with the minimum level of plant (crop) disease symptoms (the
710  percentage of diseased plants < 20 or disease severity index < 20) is shown for each basin. The

711  lower panel indicates the key taxa whose abundance characterizes difference among the bottoms
712 of the basins.
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713 Figure supplement 1. Energy landscape of fungal communities (family-level compositions;

714  threshold for binarization = 0.001; occurrence threshold = 0.10; § = 42).

715
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Figure 6. Disconnectivity graphs of the energy landscapes. (A) Schema of a disconnectivity
graph. The energy of the “tipping points” splitting basins of attraction are presented across the
axis of 25 possible community states, where S denotes the number of the species or taxa
examined. The energy of the bottom of each basin is shown. (B) Tipping points and basins on the
energy landscape of prokaryotes. The major basins of attraction with > 10 samples with plant-
disease information are highlighted with the colors defined in Figure 4. (C) Tipping points and

basins on the energy landscape of fungi. The major basins of attraction with > 10 samples with

plant-disease information are highlighted with the colors defined in Figure 5.
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